mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 41cb08555c
			
		
	
	
		41cb08555c
		
	
	
	
	
		
			
			Move this API to the canonical timer_*() namespace. [ tglx: Redone against pre rc1 ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/aB2X0jCKQO56WdMt@gmail.com
		
			
				
	
	
		
			1703 lines
		
	
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1703 lines
		
	
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0+ */
 | |
| /*
 | |
|  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 | |
|  * Internal non-public definitions that provide either classic
 | |
|  * or preemptible semantics.
 | |
|  *
 | |
|  * Copyright Red Hat, 2009
 | |
|  * Copyright IBM Corporation, 2009
 | |
|  * Copyright SUSE, 2021
 | |
|  *
 | |
|  * Author: Ingo Molnar <mingo@elte.hu>
 | |
|  *	   Paul E. McKenney <paulmck@linux.ibm.com>
 | |
|  *	   Frederic Weisbecker <frederic@kernel.org>
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_RCU_NOCB_CPU
 | |
| static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
 | |
| static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
 | |
| 
 | |
| static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
 | |
| {
 | |
| 	/* Race on early boot between thread creation and assignment */
 | |
| 	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
 | |
| 		return true;
 | |
| 
 | |
| 	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
 | |
| 		if (in_task())
 | |
| 			return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Offload callback processing from the boot-time-specified set of CPUs
 | |
|  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
 | |
|  * created that pull the callbacks from the corresponding CPU, wait for
 | |
|  * a grace period to elapse, and invoke the callbacks.  These kthreads
 | |
|  * are organized into GP kthreads, which manage incoming callbacks, wait for
 | |
|  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
 | |
|  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
 | |
|  * do a wake_up() on their GP kthread when they insert a callback into any
 | |
|  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
 | |
|  * in which case each kthread actively polls its CPU.  (Which isn't so great
 | |
|  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
 | |
|  *
 | |
|  * This is intended to be used in conjunction with Frederic Weisbecker's
 | |
|  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 | |
|  * running CPU-bound user-mode computations.
 | |
|  *
 | |
|  * Offloading of callbacks can also be used as an energy-efficiency
 | |
|  * measure because CPUs with no RCU callbacks queued are more aggressive
 | |
|  * about entering dyntick-idle mode.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
 | |
|  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
 | |
|  */
 | |
| static int __init rcu_nocb_setup(char *str)
 | |
| {
 | |
| 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
 | |
| 	if (*str == '=') {
 | |
| 		if (cpulist_parse(++str, rcu_nocb_mask)) {
 | |
| 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
 | |
| 			cpumask_setall(rcu_nocb_mask);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_state.nocb_is_setup = true;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("rcu_nocbs", rcu_nocb_setup);
 | |
| 
 | |
| static int __init parse_rcu_nocb_poll(char *arg)
 | |
| {
 | |
| 	rcu_nocb_poll = true;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
 | |
| 
 | |
| /*
 | |
|  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
 | |
|  * After all, the main point of bypassing is to avoid lock contention
 | |
|  * on ->nocb_lock, which only can happen at high call_rcu() rates.
 | |
|  */
 | |
| static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
 | |
| module_param(nocb_nobypass_lim_per_jiffy, int, 0);
 | |
| 
 | |
| /*
 | |
|  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
 | |
|  * lock isn't immediately available, perform minimal sanity check.
 | |
|  */
 | |
| static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
 | |
| 	__acquires(&rdp->nocb_bypass_lock)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Contention expected only when local enqueue collide with
 | |
| 	 * remote flush from kthreads.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
 | |
| 	raw_spin_lock(&rdp->nocb_bypass_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conditionally acquire the specified rcu_data structure's
 | |
|  * ->nocb_bypass_lock.
 | |
|  */
 | |
| static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the specified rcu_data structure's ->nocb_bypass_lock.
 | |
|  */
 | |
| static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
 | |
| 	__releases(&rdp->nocb_bypass_lock)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	raw_spin_unlock(&rdp->nocb_bypass_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Acquire the specified rcu_data structure's ->nocb_lock, but only
 | |
|  * if it corresponds to a no-CBs CPU.
 | |
|  */
 | |
| static void rcu_nocb_lock(struct rcu_data *rdp)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (!rcu_rdp_is_offloaded(rdp))
 | |
| 		return;
 | |
| 	raw_spin_lock(&rdp->nocb_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the specified rcu_data structure's ->nocb_lock, but only
 | |
|  * if it corresponds to a no-CBs CPU.
 | |
|  */
 | |
| static void rcu_nocb_unlock(struct rcu_data *rdp)
 | |
| {
 | |
| 	if (rcu_rdp_is_offloaded(rdp)) {
 | |
| 		lockdep_assert_irqs_disabled();
 | |
| 		raw_spin_unlock(&rdp->nocb_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the specified rcu_data structure's ->nocb_lock and restore
 | |
|  * interrupts, but only if it corresponds to a no-CBs CPU.
 | |
|  */
 | |
| static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
 | |
| 				       unsigned long flags)
 | |
| {
 | |
| 	if (rcu_rdp_is_offloaded(rdp)) {
 | |
| 		lockdep_assert_irqs_disabled();
 | |
| 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 | |
| 	} else {
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Lockdep check that ->cblist may be safely accessed. */
 | |
| static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (rcu_rdp_is_offloaded(rdp))
 | |
| 		lockdep_assert_held(&rdp->nocb_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 | |
|  * grace period.
 | |
|  */
 | |
| static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
 | |
| {
 | |
| 	swake_up_all(sq);
 | |
| }
 | |
| 
 | |
| static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
 | |
| {
 | |
| 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
 | |
| }
 | |
| 
 | |
| static void rcu_init_one_nocb(struct rcu_node *rnp)
 | |
| {
 | |
| 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
 | |
| 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
 | |
| }
 | |
| 
 | |
| static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
 | |
| 			   struct rcu_data *rdp,
 | |
| 			   bool force, unsigned long flags)
 | |
| 	__releases(rdp_gp->nocb_gp_lock)
 | |
| {
 | |
| 	bool needwake = false;
 | |
| 
 | |
| 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
 | |
| 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 				    TPS("AlreadyAwake"));
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
 | |
| 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
 | |
| 		timer_delete(&rdp_gp->nocb_timer);
 | |
| 	}
 | |
| 
 | |
| 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
 | |
| 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
 | |
| 		needwake = true;
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 	if (needwake) {
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
 | |
| 		swake_up_one(&rdp_gp->nocb_gp_wq);
 | |
| 	}
 | |
| 
 | |
| 	return needwake;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick the GP kthread for this NOCB group.
 | |
|  */
 | |
| static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 | |
| 	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RCU_LAZY
 | |
| /*
 | |
|  * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
 | |
|  * can elapse before lazy callbacks are flushed. Lazy callbacks
 | |
|  * could be flushed much earlier for a number of other reasons
 | |
|  * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
 | |
|  * left unsubmitted to RCU after those many jiffies.
 | |
|  */
 | |
| #define LAZY_FLUSH_JIFFIES (10 * HZ)
 | |
| static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
 | |
| 
 | |
| // To be called only from test code.
 | |
| void rcu_set_jiffies_lazy_flush(unsigned long jif)
 | |
| {
 | |
| 	jiffies_lazy_flush = jif;
 | |
| }
 | |
| EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
 | |
| 
 | |
| unsigned long rcu_get_jiffies_lazy_flush(void)
 | |
| {
 | |
| 	return jiffies_lazy_flush;
 | |
| }
 | |
| EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Arrange to wake the GP kthread for this NOCB group at some future
 | |
|  * time when it is safe to do so.
 | |
|  */
 | |
| static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
 | |
| 			       const char *reason)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Bypass wakeup overrides previous deferments. In case of
 | |
| 	 * callback storms, no need to wake up too early.
 | |
| 	 */
 | |
| 	if (waketype == RCU_NOCB_WAKE_LAZY &&
 | |
| 	    rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
 | |
| 		mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
 | |
| 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 | |
| 	} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
 | |
| 		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
 | |
| 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 | |
| 	} else {
 | |
| 		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
 | |
| 			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
 | |
| 		if (rdp_gp->nocb_defer_wakeup < waketype)
 | |
| 			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 
 | |
| 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 | |
|  * However, if there is a callback to be enqueued and if ->nocb_bypass
 | |
|  * proves to be initially empty, just return false because the no-CB GP
 | |
|  * kthread may need to be awakened in this case.
 | |
|  *
 | |
|  * Return true if there was something to be flushed and it succeeded, otherwise
 | |
|  * false.
 | |
|  *
 | |
|  * Note that this function always returns true if rhp is NULL.
 | |
|  */
 | |
| static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
 | |
| 				     unsigned long j, bool lazy)
 | |
| {
 | |
| 	struct rcu_cblist rcl;
 | |
| 	struct rcu_head *rhp = rhp_in;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
 | |
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | |
| 	lockdep_assert_held(&rdp->nocb_bypass_lock);
 | |
| 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
 | |
| 		raw_spin_unlock(&rdp->nocb_bypass_lock);
 | |
| 		return false;
 | |
| 	}
 | |
| 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
 | |
| 	if (rhp)
 | |
| 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new CB requested was a lazy one, queue it onto the main
 | |
| 	 * ->cblist so that we can take advantage of the grace-period that will
 | |
| 	 * happen regardless. But queue it onto the bypass list first so that
 | |
| 	 * the lazy CB is ordered with the existing CBs in the bypass list.
 | |
| 	 */
 | |
| 	if (lazy && rhp) {
 | |
| 		rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
 | |
| 		rhp = NULL;
 | |
| 	}
 | |
| 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
 | |
| 	WRITE_ONCE(rdp->lazy_len, 0);
 | |
| 
 | |
| 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
 | |
| 	WRITE_ONCE(rdp->nocb_bypass_first, j);
 | |
| 	rcu_nocb_bypass_unlock(rdp);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 | |
|  * However, if there is a callback to be enqueued and if ->nocb_bypass
 | |
|  * proves to be initially empty, just return false because the no-CB GP
 | |
|  * kthread may need to be awakened in this case.
 | |
|  *
 | |
|  * Note that this function always returns true if rhp is NULL.
 | |
|  */
 | |
| static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 				  unsigned long j, bool lazy)
 | |
| {
 | |
| 	if (!rcu_rdp_is_offloaded(rdp))
 | |
| 		return true;
 | |
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | |
| 	rcu_nocb_bypass_lock(rdp);
 | |
| 	return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the ->nocb_bypass_lock is immediately available, flush the
 | |
|  * ->nocb_bypass queue into ->cblist.
 | |
|  */
 | |
| static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
 | |
| {
 | |
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | |
| 	if (!rcu_rdp_is_offloaded(rdp) ||
 | |
| 	    !rcu_nocb_bypass_trylock(rdp))
 | |
| 		return;
 | |
| 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See whether it is appropriate to use the ->nocb_bypass list in order
 | |
|  * to control contention on ->nocb_lock.  A limited number of direct
 | |
|  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
 | |
|  * is non-empty, further callbacks must be placed into ->nocb_bypass,
 | |
|  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
 | |
|  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
 | |
|  * used if ->cblist is empty, because otherwise callbacks can be stranded
 | |
|  * on ->nocb_bypass because we cannot count on the current CPU ever again
 | |
|  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
 | |
|  * non-empty, the corresponding no-CBs grace-period kthread must not be
 | |
|  * in an indefinite sleep state.
 | |
|  *
 | |
|  * Finally, it is not permitted to use the bypass during early boot,
 | |
|  * as doing so would confuse the auto-initialization code.  Besides
 | |
|  * which, there is no point in worrying about lock contention while
 | |
|  * there is only one CPU in operation.
 | |
|  */
 | |
| static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 				bool *was_alldone, unsigned long flags,
 | |
| 				bool lazy)
 | |
| {
 | |
| 	unsigned long c;
 | |
| 	unsigned long cur_gp_seq;
 | |
| 	unsigned long j = jiffies;
 | |
| 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 | |
| 	bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	// Pure softirq/rcuc based processing: no bypassing, no
 | |
| 	// locking.
 | |
| 	if (!rcu_rdp_is_offloaded(rdp)) {
 | |
| 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	// Don't use ->nocb_bypass during early boot.
 | |
| 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
 | |
| 		rcu_nocb_lock(rdp);
 | |
| 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	// If we have advanced to a new jiffy, reset counts to allow
 | |
| 	// moving back from ->nocb_bypass to ->cblist.
 | |
| 	if (j == rdp->nocb_nobypass_last) {
 | |
| 		c = rdp->nocb_nobypass_count + 1;
 | |
| 	} else {
 | |
| 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
 | |
| 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
 | |
| 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
 | |
| 				 nocb_nobypass_lim_per_jiffy))
 | |
| 			c = 0;
 | |
| 		else if (c > nocb_nobypass_lim_per_jiffy)
 | |
| 			c = nocb_nobypass_lim_per_jiffy;
 | |
| 	}
 | |
| 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
 | |
| 
 | |
| 	// If there hasn't yet been all that many ->cblist enqueues
 | |
| 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
 | |
| 	// ->nocb_bypass first.
 | |
| 	// Lazy CBs throttle this back and do immediate bypass queuing.
 | |
| 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
 | |
| 		rcu_nocb_lock(rdp);
 | |
| 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 | |
| 		if (*was_alldone)
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("FirstQ"));
 | |
| 
 | |
| 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
 | |
| 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 		return false; // Caller must enqueue the callback.
 | |
| 	}
 | |
| 
 | |
| 	// If ->nocb_bypass has been used too long or is too full,
 | |
| 	// flush ->nocb_bypass to ->cblist.
 | |
| 	if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
 | |
| 	    (ncbs &&  bypass_is_lazy &&
 | |
| 	     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
 | |
| 	    ncbs >= qhimark) {
 | |
| 		rcu_nocb_lock(rdp);
 | |
| 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 | |
| 
 | |
| 		if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
 | |
| 			if (*was_alldone)
 | |
| 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 						    TPS("FirstQ"));
 | |
| 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 			return false; // Caller must enqueue the callback.
 | |
| 		}
 | |
| 		if (j != rdp->nocb_gp_adv_time &&
 | |
| 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 | |
| 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
 | |
| 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
 | |
| 			rdp->nocb_gp_adv_time = j;
 | |
| 		}
 | |
| 
 | |
| 		// The flush succeeded and we moved CBs into the regular list.
 | |
| 		// Don't wait for the wake up timer as it may be too far ahead.
 | |
| 		// Wake up the GP thread now instead, if the cblist was empty.
 | |
| 		__call_rcu_nocb_wake(rdp, *was_alldone, flags);
 | |
| 
 | |
| 		return true; // Callback already enqueued.
 | |
| 	}
 | |
| 
 | |
| 	// We need to use the bypass.
 | |
| 	rcu_nocb_bypass_lock(rdp);
 | |
| 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 | |
| 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
 | |
| 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
 | |
| 
 | |
| 	if (lazy)
 | |
| 		WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
 | |
| 
 | |
| 	if (!ncbs) {
 | |
| 		WRITE_ONCE(rdp->nocb_bypass_first, j);
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
 | |
| 	}
 | |
| 	rcu_nocb_bypass_unlock(rdp);
 | |
| 
 | |
| 	// A wake up of the grace period kthread or timer adjustment
 | |
| 	// needs to be done only if:
 | |
| 	// 1. Bypass list was fully empty before (this is the first
 | |
| 	//    bypass list entry), or:
 | |
| 	// 2. Both of these conditions are met:
 | |
| 	//    a. The bypass list previously had only lazy CBs, and:
 | |
| 	//    b. The new CB is non-lazy.
 | |
| 	if (!ncbs || (bypass_is_lazy && !lazy)) {
 | |
| 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
 | |
| 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
 | |
| 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("FirstBQwake"));
 | |
| 			__call_rcu_nocb_wake(rdp, true, flags);
 | |
| 		} else {
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("FirstBQnoWake"));
 | |
| 			rcu_nocb_unlock(rdp);
 | |
| 		}
 | |
| 	}
 | |
| 	return true; // Callback already enqueued.
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Awaken the no-CBs grace-period kthread if needed, either due to it
 | |
|  * legitimately being asleep or due to overload conditions.
 | |
|  *
 | |
|  * If warranted, also wake up the kthread servicing this CPUs queues.
 | |
|  */
 | |
| static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
 | |
| 				 unsigned long flags)
 | |
| 				 __releases(rdp->nocb_lock)
 | |
| {
 | |
| 	long bypass_len;
 | |
| 	unsigned long cur_gp_seq;
 | |
| 	unsigned long j;
 | |
| 	long lazy_len;
 | |
| 	long len;
 | |
| 	struct task_struct *t;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 
 | |
| 	// If we are being polled or there is no kthread, just leave.
 | |
| 	t = READ_ONCE(rdp->nocb_gp_kthread);
 | |
| 	if (rcu_nocb_poll || !t) {
 | |
| 		rcu_nocb_unlock(rdp);
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 				    TPS("WakeNotPoll"));
 | |
| 		return;
 | |
| 	}
 | |
| 	// Need to actually to a wakeup.
 | |
| 	len = rcu_segcblist_n_cbs(&rdp->cblist);
 | |
| 	bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 | |
| 	lazy_len = READ_ONCE(rdp->lazy_len);
 | |
| 	if (was_alldone) {
 | |
| 		rdp->qlen_last_fqs_check = len;
 | |
| 		// Only lazy CBs in bypass list
 | |
| 		if (lazy_len && bypass_len == lazy_len) {
 | |
| 			rcu_nocb_unlock(rdp);
 | |
| 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
 | |
| 					   TPS("WakeLazy"));
 | |
| 		} else if (!irqs_disabled_flags(flags)) {
 | |
| 			/* ... if queue was empty ... */
 | |
| 			rcu_nocb_unlock(rdp);
 | |
| 			wake_nocb_gp(rdp, false);
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("WakeEmpty"));
 | |
| 		} else {
 | |
| 			rcu_nocb_unlock(rdp);
 | |
| 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
 | |
| 					   TPS("WakeEmptyIsDeferred"));
 | |
| 		}
 | |
| 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
 | |
| 		/* ... or if many callbacks queued. */
 | |
| 		rdp->qlen_last_fqs_check = len;
 | |
| 		j = jiffies;
 | |
| 		if (j != rdp->nocb_gp_adv_time &&
 | |
| 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 | |
| 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
 | |
| 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
 | |
| 			rdp->nocb_gp_adv_time = j;
 | |
| 		}
 | |
| 		smp_mb(); /* Enqueue before timer_pending(). */
 | |
| 		if ((rdp->nocb_cb_sleep ||
 | |
| 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
 | |
| 		    !timer_pending(&rdp_gp->nocb_timer)) {
 | |
| 			rcu_nocb_unlock(rdp);
 | |
| 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
 | |
| 					   TPS("WakeOvfIsDeferred"));
 | |
| 		} else {
 | |
| 			rcu_nocb_unlock(rdp);
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
 | |
| 		}
 | |
| 	} else {
 | |
| 		rcu_nocb_unlock(rdp);
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
 | |
| 			  rcu_callback_t func, unsigned long flags, bool lazy)
 | |
| {
 | |
| 	bool was_alldone;
 | |
| 
 | |
| 	if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
 | |
| 		/* Not enqueued on bypass but locked, do regular enqueue */
 | |
| 		rcutree_enqueue(rdp, head, func);
 | |
| 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void nocb_gp_toggle_rdp(struct rcu_data *rdp_gp, struct rcu_data *rdp)
 | |
| {
 | |
| 	struct rcu_segcblist *cblist = &rdp->cblist;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Locking orders future de-offloaded callbacks enqueue against previous
 | |
| 	 * handling of this rdp. Ie: Make sure rcuog is done with this rdp before
 | |
| 	 * deoffloaded callbacks can be enqueued.
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
 | |
| 	if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
 | |
| 		/*
 | |
| 		 * Offloading. Set our flag and notify the offload worker.
 | |
| 		 * We will handle this rdp until it ever gets de-offloaded.
 | |
| 		 */
 | |
| 		list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
 | |
| 		rcu_segcblist_set_flags(cblist, SEGCBLIST_OFFLOADED);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * De-offloading. Clear our flag and notify the de-offload worker.
 | |
| 		 * We will ignore this rdp until it ever gets re-offloaded.
 | |
| 		 */
 | |
| 		list_del(&rdp->nocb_entry_rdp);
 | |
| 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_OFFLOADED);
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 | |
| }
 | |
| 
 | |
| static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
 | |
| {
 | |
| 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
 | |
| 	swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
 | |
| 					!READ_ONCE(my_rdp->nocb_gp_sleep));
 | |
| 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No-CBs GP kthreads come here to wait for additional callbacks to show up
 | |
|  * or for grace periods to end.
 | |
|  */
 | |
| static void nocb_gp_wait(struct rcu_data *my_rdp)
 | |
| {
 | |
| 	bool bypass = false;
 | |
| 	int __maybe_unused cpu = my_rdp->cpu;
 | |
| 	unsigned long cur_gp_seq;
 | |
| 	unsigned long flags;
 | |
| 	bool gotcbs = false;
 | |
| 	unsigned long j = jiffies;
 | |
| 	bool lazy = false;
 | |
| 	bool needwait_gp = false; // This prevents actual uninitialized use.
 | |
| 	bool needwake;
 | |
| 	bool needwake_gp;
 | |
| 	struct rcu_data *rdp, *rdp_toggling = NULL;
 | |
| 	struct rcu_node *rnp;
 | |
| 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
 | |
| 	bool wasempty = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Each pass through the following loop checks for CBs and for the
 | |
| 	 * nearest grace period (if any) to wait for next.  The CB kthreads
 | |
| 	 * and the global grace-period kthread are awakened if needed.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
 | |
| 	/*
 | |
| 	 * An rcu_data structure is removed from the list after its
 | |
| 	 * CPU is de-offloaded and added to the list before that CPU is
 | |
| 	 * (re-)offloaded.  If the following loop happens to be referencing
 | |
| 	 * that rcu_data structure during the time that the corresponding
 | |
| 	 * CPU is de-offloaded and then immediately re-offloaded, this
 | |
| 	 * loop's rdp pointer will be carried to the end of the list by
 | |
| 	 * the resulting pair of list operations.  This can cause the loop
 | |
| 	 * to skip over some of the rcu_data structures that were supposed
 | |
| 	 * to have been scanned.  Fortunately a new iteration through the
 | |
| 	 * entire loop is forced after a given CPU's rcu_data structure
 | |
| 	 * is added to the list, so the skipped-over rcu_data structures
 | |
| 	 * won't be ignored for long.
 | |
| 	 */
 | |
| 	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
 | |
| 		long bypass_ncbs;
 | |
| 		bool flush_bypass = false;
 | |
| 		long lazy_ncbs;
 | |
| 
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
 | |
| 		rcu_nocb_lock_irqsave(rdp, flags);
 | |
| 		lockdep_assert_held(&rdp->nocb_lock);
 | |
| 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 | |
| 		lazy_ncbs = READ_ONCE(rdp->lazy_len);
 | |
| 
 | |
| 		if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
 | |
| 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
 | |
| 		     bypass_ncbs > 2 * qhimark)) {
 | |
| 			flush_bypass = true;
 | |
| 		} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
 | |
| 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
 | |
| 		     bypass_ncbs > 2 * qhimark)) {
 | |
| 			flush_bypass = true;
 | |
| 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 			continue; /* No callbacks here, try next. */
 | |
| 		}
 | |
| 
 | |
| 		if (flush_bypass) {
 | |
| 			// Bypass full or old, so flush it.
 | |
| 			(void)rcu_nocb_try_flush_bypass(rdp, j);
 | |
| 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 | |
| 			lazy_ncbs = READ_ONCE(rdp->lazy_len);
 | |
| 		}
 | |
| 
 | |
| 		if (bypass_ncbs) {
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
 | |
| 			if (bypass_ncbs == lazy_ncbs)
 | |
| 				lazy = true;
 | |
| 			else
 | |
| 				bypass = true;
 | |
| 		}
 | |
| 		rnp = rdp->mynode;
 | |
| 
 | |
| 		// Advance callbacks if helpful and low contention.
 | |
| 		needwake_gp = false;
 | |
| 		if (!rcu_segcblist_restempty(&rdp->cblist,
 | |
| 					     RCU_NEXT_READY_TAIL) ||
 | |
| 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 | |
| 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
 | |
| 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
 | |
| 			needwake_gp = rcu_advance_cbs(rnp, rdp);
 | |
| 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
 | |
| 							   RCU_NEXT_READY_TAIL);
 | |
| 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
 | |
| 		}
 | |
| 		// Need to wait on some grace period?
 | |
| 		WARN_ON_ONCE(wasempty &&
 | |
| 			     !rcu_segcblist_restempty(&rdp->cblist,
 | |
| 						      RCU_NEXT_READY_TAIL));
 | |
| 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
 | |
| 			if (!needwait_gp ||
 | |
| 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
 | |
| 				wait_gp_seq = cur_gp_seq;
 | |
| 			needwait_gp = true;
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("NeedWaitGP"));
 | |
| 		}
 | |
| 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
 | |
| 			needwake = rdp->nocb_cb_sleep;
 | |
| 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
 | |
| 		} else {
 | |
| 			needwake = false;
 | |
| 		}
 | |
| 		rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 		if (needwake) {
 | |
| 			swake_up_one(&rdp->nocb_cb_wq);
 | |
| 			gotcbs = true;
 | |
| 		}
 | |
| 		if (needwake_gp)
 | |
| 			rcu_gp_kthread_wake();
 | |
| 	}
 | |
| 
 | |
| 	my_rdp->nocb_gp_bypass = bypass;
 | |
| 	my_rdp->nocb_gp_gp = needwait_gp;
 | |
| 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
 | |
| 
 | |
| 	// At least one child with non-empty ->nocb_bypass, so set
 | |
| 	// timer in order to avoid stranding its callbacks.
 | |
| 	if (!rcu_nocb_poll) {
 | |
| 		// If bypass list only has lazy CBs. Add a deferred lazy wake up.
 | |
| 		if (lazy && !bypass) {
 | |
| 			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
 | |
| 					TPS("WakeLazyIsDeferred"));
 | |
| 		// Otherwise add a deferred bypass wake up.
 | |
| 		} else if (bypass) {
 | |
| 			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
 | |
| 					TPS("WakeBypassIsDeferred"));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rcu_nocb_poll) {
 | |
| 		/* Polling, so trace if first poll in the series. */
 | |
| 		if (gotcbs)
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
 | |
| 		if (list_empty(&my_rdp->nocb_head_rdp)) {
 | |
| 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 | |
| 			if (!my_rdp->nocb_toggling_rdp)
 | |
| 				WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
 | |
| 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 | |
| 			/* Wait for any offloading rdp */
 | |
| 			nocb_gp_sleep(my_rdp, cpu);
 | |
| 		} else {
 | |
| 			schedule_timeout_idle(1);
 | |
| 		}
 | |
| 	} else if (!needwait_gp) {
 | |
| 		/* Wait for callbacks to appear. */
 | |
| 		nocb_gp_sleep(my_rdp, cpu);
 | |
| 	} else {
 | |
| 		rnp = my_rdp->mynode;
 | |
| 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
 | |
| 		swait_event_interruptible_exclusive(
 | |
| 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
 | |
| 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
 | |
| 			!READ_ONCE(my_rdp->nocb_gp_sleep));
 | |
| 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
 | |
| 	}
 | |
| 
 | |
| 	if (!rcu_nocb_poll) {
 | |
| 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 | |
| 		// (De-)queue an rdp to/from the group if its nocb state is changing
 | |
| 		rdp_toggling = my_rdp->nocb_toggling_rdp;
 | |
| 		if (rdp_toggling)
 | |
| 			my_rdp->nocb_toggling_rdp = NULL;
 | |
| 
 | |
| 		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
 | |
| 			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
 | |
| 			timer_delete(&my_rdp->nocb_timer);
 | |
| 		}
 | |
| 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
 | |
| 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 | |
| 	} else {
 | |
| 		rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
 | |
| 		if (rdp_toggling) {
 | |
| 			/*
 | |
| 			 * Paranoid locking to make sure nocb_toggling_rdp is well
 | |
| 			 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
 | |
| 			 * race with another round of nocb toggling for this rdp.
 | |
| 			 * Nocb locking should prevent from that already but we stick
 | |
| 			 * to paranoia, especially in rare path.
 | |
| 			 */
 | |
| 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 | |
| 			my_rdp->nocb_toggling_rdp = NULL;
 | |
| 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rdp_toggling) {
 | |
| 		nocb_gp_toggle_rdp(my_rdp, rdp_toggling);
 | |
| 		swake_up_one(&rdp_toggling->nocb_state_wq);
 | |
| 	}
 | |
| 
 | |
| 	my_rdp->nocb_gp_seq = -1;
 | |
| 	WARN_ON(signal_pending(current));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No-CBs grace-period-wait kthread.  There is one of these per group
 | |
|  * of CPUs, but only once at least one CPU in that group has come online
 | |
|  * at least once since boot.  This kthread checks for newly posted
 | |
|  * callbacks from any of the CPUs it is responsible for, waits for a
 | |
|  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
 | |
|  * that then have callback-invocation work to do.
 | |
|  */
 | |
| static int rcu_nocb_gp_kthread(void *arg)
 | |
| {
 | |
| 	struct rcu_data *rdp = arg;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
 | |
| 		nocb_gp_wait(rdp);
 | |
| 		cond_resched_tasks_rcu_qs();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
 | |
| {
 | |
| 	return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoke any ready callbacks from the corresponding no-CBs CPU,
 | |
|  * then, if there are no more, wait for more to appear.
 | |
|  */
 | |
| static void nocb_cb_wait(struct rcu_data *rdp)
 | |
| {
 | |
| 	struct rcu_segcblist *cblist = &rdp->cblist;
 | |
| 	unsigned long cur_gp_seq;
 | |
| 	unsigned long flags;
 | |
| 	bool needwake_gp = false;
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
 | |
| 					    nocb_cb_wait_cond(rdp));
 | |
| 	if (kthread_should_park()) {
 | |
| 		/*
 | |
| 		 * kthread_park() must be preceded by an rcu_barrier().
 | |
| 		 * But yet another rcu_barrier() might have sneaked in between
 | |
| 		 * the barrier callback execution and the callbacks counter
 | |
| 		 * decrement.
 | |
| 		 */
 | |
| 		if (rdp->nocb_cb_sleep) {
 | |
| 			rcu_nocb_lock_irqsave(rdp, flags);
 | |
| 			WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 			kthread_parkme();
 | |
| 		}
 | |
| 	} else if (READ_ONCE(rdp->nocb_cb_sleep)) {
 | |
| 		WARN_ON(signal_pending(current));
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rcu_momentary_eqs();
 | |
| 	local_irq_restore(flags);
 | |
| 	/*
 | |
| 	 * Disable BH to provide the expected environment.  Also, when
 | |
| 	 * transitioning to/from NOCB mode, a self-requeuing callback might
 | |
| 	 * be invoked from softirq.  A short grace period could cause both
 | |
| 	 * instances of this callback would execute concurrently.
 | |
| 	 */
 | |
| 	local_bh_disable();
 | |
| 	rcu_do_batch(rdp);
 | |
| 	local_bh_enable();
 | |
| 	lockdep_assert_irqs_enabled();
 | |
| 	rcu_nocb_lock_irqsave(rdp, flags);
 | |
| 	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
 | |
| 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
 | |
| 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
 | |
| 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
 | |
| 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | |
| 	}
 | |
| 
 | |
| 	if (!rcu_segcblist_ready_cbs(cblist)) {
 | |
| 		WRITE_ONCE(rdp->nocb_cb_sleep, true);
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
 | |
| 	} else {
 | |
| 		WRITE_ONCE(rdp->nocb_cb_sleep, false);
 | |
| 	}
 | |
| 
 | |
| 	rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 	if (needwake_gp)
 | |
| 		rcu_gp_kthread_wake();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
 | |
|  * nocb_cb_wait() to do the dirty work.
 | |
|  */
 | |
| static int rcu_nocb_cb_kthread(void *arg)
 | |
| {
 | |
| 	struct rcu_data *rdp = arg;
 | |
| 
 | |
| 	// Each pass through this loop does one callback batch, and,
 | |
| 	// if there are no more ready callbacks, waits for them.
 | |
| 	for (;;) {
 | |
| 		nocb_cb_wait(rdp);
 | |
| 		cond_resched_tasks_rcu_qs();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Is a deferred wakeup of rcu_nocb_kthread() required? */
 | |
| static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
 | |
| {
 | |
| 	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
 | |
| }
 | |
| 
 | |
| /* Do a deferred wakeup of rcu_nocb_kthread(). */
 | |
| static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
 | |
| 					   struct rcu_data *rdp, int level,
 | |
| 					   unsigned long flags)
 | |
| 	__releases(rdp_gp->nocb_gp_lock)
 | |
| {
 | |
| 	int ndw;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
 | |
| 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	ndw = rdp_gp->nocb_defer_wakeup;
 | |
| 	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
 | |
| 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
 | |
| static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp = timer_container_of(rdp, t, nocb_timer);
 | |
| 
 | |
| 	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
 | |
| 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
 | |
| 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
 | |
| 	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
 | |
|  * This means we do an inexact common-case check.  Note that if
 | |
|  * we miss, ->nocb_timer will eventually clean things up.
 | |
|  */
 | |
| static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 
 | |
| 	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
 | |
| 		return false;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 | |
| 	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
 | |
| }
 | |
| 
 | |
| void rcu_nocb_flush_deferred_wakeup(void)
 | |
| {
 | |
| 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
 | |
| 
 | |
| static int rcu_nocb_queue_toggle_rdp(struct rcu_data *rdp)
 | |
| {
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 	bool wake_gp = false;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 | |
| 	// Queue this rdp for add/del to/from the list to iterate on rcuog
 | |
| 	WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
 | |
| 	if (rdp_gp->nocb_gp_sleep) {
 | |
| 		rdp_gp->nocb_gp_sleep = false;
 | |
| 		wake_gp = true;
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 
 | |
| 	return wake_gp;
 | |
| }
 | |
| 
 | |
| static bool rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Locking makes sure rcuog is done handling this rdp before deoffloaded
 | |
| 	 * enqueue can happen. Also it keeps the SEGCBLIST_OFFLOADED flag stable
 | |
| 	 * while the ->nocb_lock is held.
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
 | |
| 	ret = !rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
 | |
| 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int wake_gp;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 
 | |
| 	/* CPU must be offline, unless it's early boot */
 | |
| 	WARN_ON_ONCE(cpu_online(rdp->cpu) && rdp->cpu != raw_smp_processor_id());
 | |
| 
 | |
| 	pr_info("De-offloading %d\n", rdp->cpu);
 | |
| 
 | |
| 	/* Flush all callbacks from segcblist and bypass */
 | |
| 	rcu_barrier();
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure the rcuoc kthread isn't in the middle of a nocb locked
 | |
| 	 * sequence while offloading is deactivated, along with nocb locking.
 | |
| 	 */
 | |
| 	if (rdp->nocb_cb_kthread)
 | |
| 		kthread_park(rdp->nocb_cb_kthread);
 | |
| 
 | |
| 	rcu_nocb_lock_irqsave(rdp, flags);
 | |
| 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 	WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
 | |
| 	rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 
 | |
| 	wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
 | |
| 
 | |
| 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
 | |
| 
 | |
| 	if (rdp_gp->nocb_gp_kthread) {
 | |
| 		if (wake_gp)
 | |
| 			wake_up_process(rdp_gp->nocb_gp_kthread);
 | |
| 
 | |
| 		swait_event_exclusive(rdp->nocb_state_wq,
 | |
| 				      rcu_nocb_rdp_deoffload_wait_cond(rdp));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * No kthread to clear the flags for us or remove the rdp from the nocb list
 | |
| 		 * to iterate. Do it here instead. Locking doesn't look stricly necessary
 | |
| 		 * but we stick to paranoia in this rare path.
 | |
| 		 */
 | |
| 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
 | |
| 		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
 | |
| 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 | |
| 
 | |
| 		list_del(&rdp->nocb_entry_rdp);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int rcu_nocb_cpu_deoffload(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&rcu_state.nocb_mutex);
 | |
| 	if (rcu_rdp_is_offloaded(rdp)) {
 | |
| 		if (!cpu_online(cpu)) {
 | |
| 			ret = rcu_nocb_rdp_deoffload(rdp);
 | |
| 			if (!ret)
 | |
| 				cpumask_clear_cpu(cpu, rcu_nocb_mask);
 | |
| 		} else {
 | |
| 			pr_info("NOCB: Cannot CB-deoffload online CPU %d\n", rdp->cpu);
 | |
| 			ret = -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&rcu_state.nocb_mutex);
 | |
| 	cpus_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
 | |
| 
 | |
| static bool rcu_nocb_rdp_offload_wait_cond(struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool ret;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
 | |
| 	ret = rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
 | |
| 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rcu_nocb_rdp_offload(struct rcu_data *rdp)
 | |
| {
 | |
| 	int wake_gp;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 
 | |
| 	WARN_ON_ONCE(cpu_online(rdp->cpu));
 | |
| 	/*
 | |
| 	 * For now we only support re-offload, ie: the rdp must have been
 | |
| 	 * offloaded on boot first.
 | |
| 	 */
 | |
| 	if (!rdp->nocb_gp_rdp)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pr_info("Offloading %d\n", rdp->cpu);
 | |
| 
 | |
| 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 	WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
 | |
| 
 | |
| 	wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
 | |
| 	if (wake_gp)
 | |
| 		wake_up_process(rdp_gp->nocb_gp_kthread);
 | |
| 
 | |
| 	swait_event_exclusive(rdp->nocb_state_wq,
 | |
| 			      rcu_nocb_rdp_offload_wait_cond(rdp));
 | |
| 
 | |
| 	kthread_unpark(rdp->nocb_cb_kthread);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int rcu_nocb_cpu_offload(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&rcu_state.nocb_mutex);
 | |
| 	if (!rcu_rdp_is_offloaded(rdp)) {
 | |
| 		if (!cpu_online(cpu)) {
 | |
| 			ret = rcu_nocb_rdp_offload(rdp);
 | |
| 			if (!ret)
 | |
| 				cpumask_set_cpu(cpu, rcu_nocb_mask);
 | |
| 		} else {
 | |
| 			pr_info("NOCB: Cannot CB-offload online CPU %d\n", rdp->cpu);
 | |
| 			ret = -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&rcu_state.nocb_mutex);
 | |
| 	cpus_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
 | |
| 
 | |
| #ifdef CONFIG_RCU_LAZY
 | |
| static unsigned long
 | |
| lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long count = 0;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
 | |
| 	if (!mutex_trylock(&rcu_state.nocb_mutex))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Snapshot count of all CPUs */
 | |
| 	for_each_cpu(cpu, rcu_nocb_mask) {
 | |
| 		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 
 | |
| 		count +=  READ_ONCE(rdp->lazy_len);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rcu_state.nocb_mutex);
 | |
| 
 | |
| 	return count ? count : SHRINK_EMPTY;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long count = 0;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Protect against concurrent (de-)offloading. Otherwise nocb locking
 | |
| 	 * may be ignored or imbalanced.
 | |
| 	 */
 | |
| 	if (!mutex_trylock(&rcu_state.nocb_mutex)) {
 | |
| 		/*
 | |
| 		 * But really don't insist if nocb_mutex is contended since we
 | |
| 		 * can't guarantee that it will never engage in a dependency
 | |
| 		 * chain involving memory allocation. The lock is seldom contended
 | |
| 		 * anyway.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Snapshot count of all CPUs */
 | |
| 	for_each_cpu(cpu, rcu_nocb_mask) {
 | |
| 		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 		int _count;
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!READ_ONCE(rdp->lazy_len))
 | |
| 			continue;
 | |
| 
 | |
| 		rcu_nocb_lock_irqsave(rdp, flags);
 | |
| 		/*
 | |
| 		 * Recheck under the nocb lock. Since we are not holding the bypass
 | |
| 		 * lock we may still race with increments from the enqueuer but still
 | |
| 		 * we know for sure if there is at least one lazy callback.
 | |
| 		 */
 | |
| 		_count = READ_ONCE(rdp->lazy_len);
 | |
| 		if (!_count) {
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		rcu_nocb_try_flush_bypass(rdp, jiffies);
 | |
| 		rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 		wake_nocb_gp(rdp, false);
 | |
| 		sc->nr_to_scan -= _count;
 | |
| 		count += _count;
 | |
| 		if (sc->nr_to_scan <= 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rcu_state.nocb_mutex);
 | |
| 
 | |
| 	return count ? count : SHRINK_STOP;
 | |
| }
 | |
| #endif // #ifdef CONFIG_RCU_LAZY
 | |
| 
 | |
| void __init rcu_init_nohz(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct rcu_data *rdp;
 | |
| 	const struct cpumask *cpumask = NULL;
 | |
| 	struct shrinker * __maybe_unused lazy_rcu_shrinker;
 | |
| 
 | |
| #if defined(CONFIG_NO_HZ_FULL)
 | |
| 	if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
 | |
| 		cpumask = tick_nohz_full_mask;
 | |
| #endif
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
 | |
| 	    !rcu_state.nocb_is_setup && !cpumask)
 | |
| 		cpumask = cpu_possible_mask;
 | |
| 
 | |
| 	if (cpumask) {
 | |
| 		if (!cpumask_available(rcu_nocb_mask)) {
 | |
| 			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
 | |
| 				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
 | |
| 		rcu_state.nocb_is_setup = true;
 | |
| 	}
 | |
| 
 | |
| 	if (!rcu_state.nocb_is_setup)
 | |
| 		return;
 | |
| 
 | |
| #ifdef CONFIG_RCU_LAZY
 | |
| 	lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
 | |
| 	if (!lazy_rcu_shrinker) {
 | |
| 		pr_err("Failed to allocate lazy_rcu shrinker!\n");
 | |
| 	} else {
 | |
| 		lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
 | |
| 		lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
 | |
| 
 | |
| 		shrinker_register(lazy_rcu_shrinker);
 | |
| 	}
 | |
| #endif // #ifdef CONFIG_RCU_LAZY
 | |
| 
 | |
| 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
 | |
| 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
 | |
| 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
 | |
| 			    rcu_nocb_mask);
 | |
| 	}
 | |
| 	if (cpumask_empty(rcu_nocb_mask))
 | |
| 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
 | |
| 	else
 | |
| 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
 | |
| 			cpumask_pr_args(rcu_nocb_mask));
 | |
| 	if (rcu_nocb_poll)
 | |
| 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
 | |
| 
 | |
| 	for_each_cpu(cpu, rcu_nocb_mask) {
 | |
| 		rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 		if (rcu_segcblist_empty(&rdp->cblist))
 | |
| 			rcu_segcblist_init(&rdp->cblist);
 | |
| 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
 | |
| 	}
 | |
| 	rcu_organize_nocb_kthreads();
 | |
| }
 | |
| 
 | |
| /* Initialize per-rcu_data variables for no-CBs CPUs. */
 | |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
 | |
| {
 | |
| 	init_swait_queue_head(&rdp->nocb_cb_wq);
 | |
| 	init_swait_queue_head(&rdp->nocb_gp_wq);
 | |
| 	init_swait_queue_head(&rdp->nocb_state_wq);
 | |
| 	raw_spin_lock_init(&rdp->nocb_lock);
 | |
| 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
 | |
| 	raw_spin_lock_init(&rdp->nocb_gp_lock);
 | |
| 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
 | |
| 	rcu_cblist_init(&rdp->nocb_bypass);
 | |
| 	WRITE_ONCE(rdp->lazy_len, 0);
 | |
| 	mutex_init(&rdp->nocb_gp_kthread_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the specified CPU is a no-CBs CPU that does not already have its
 | |
|  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
 | |
|  * for this CPU's group has not yet been created, spawn it as well.
 | |
|  */
 | |
| static void rcu_spawn_cpu_nocb_kthread(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 	struct rcu_data *rdp_gp;
 | |
| 	struct task_struct *t;
 | |
| 	struct sched_param sp;
 | |
| 
 | |
| 	if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
 | |
| 		return;
 | |
| 
 | |
| 	/* If there already is an rcuo kthread, then nothing to do. */
 | |
| 	if (rdp->nocb_cb_kthread)
 | |
| 		return;
 | |
| 
 | |
| 	/* If we didn't spawn the GP kthread first, reorganize! */
 | |
| 	sp.sched_priority = kthread_prio;
 | |
| 	rdp_gp = rdp->nocb_gp_rdp;
 | |
| 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
 | |
| 	if (!rdp_gp->nocb_gp_kthread) {
 | |
| 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
 | |
| 				"rcuog/%d", rdp_gp->cpu);
 | |
| 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
 | |
| 			mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
 | |
| 			goto err;
 | |
| 		}
 | |
| 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
 | |
| 		if (kthread_prio)
 | |
| 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 | |
| 	}
 | |
| 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
 | |
| 
 | |
| 	/* Spawn the kthread for this CPU. */
 | |
| 	t = kthread_create(rcu_nocb_cb_kthread, rdp,
 | |
| 			   "rcuo%c/%d", rcu_state.abbr, cpu);
 | |
| 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
 | |
| 		goto err;
 | |
| 
 | |
| 	if (rcu_rdp_is_offloaded(rdp))
 | |
| 		wake_up_process(t);
 | |
| 	else
 | |
| 		kthread_park(t);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
 | |
| 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 | |
| 
 | |
| 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
 | |
| 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
 | |
| 	return;
 | |
| 
 | |
| err:
 | |
| 	/*
 | |
| 	 * No need to protect against concurrent rcu_barrier()
 | |
| 	 * because the number of callbacks should be 0 for a non-boot CPU,
 | |
| 	 * therefore rcu_barrier() shouldn't even try to grab the nocb_lock.
 | |
| 	 * But hold nocb_mutex to avoid nocb_lock imbalance from shrinker.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(system_state > SYSTEM_BOOTING && rcu_segcblist_n_cbs(&rdp->cblist));
 | |
| 	mutex_lock(&rcu_state.nocb_mutex);
 | |
| 	if (rcu_rdp_is_offloaded(rdp)) {
 | |
| 		rcu_nocb_rdp_deoffload(rdp);
 | |
| 		cpumask_clear_cpu(cpu, rcu_nocb_mask);
 | |
| 	}
 | |
| 	mutex_unlock(&rcu_state.nocb_mutex);
 | |
| }
 | |
| 
 | |
| /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
 | |
| static int rcu_nocb_gp_stride = -1;
 | |
| module_param(rcu_nocb_gp_stride, int, 0444);
 | |
| 
 | |
| /*
 | |
|  * Initialize GP-CB relationships for all no-CBs CPU.
 | |
|  */
 | |
| static void __init rcu_organize_nocb_kthreads(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	bool firsttime = true;
 | |
| 	bool gotnocbs = false;
 | |
| 	bool gotnocbscbs = true;
 | |
| 	int ls = rcu_nocb_gp_stride;
 | |
| 	int nl = 0;  /* Next GP kthread. */
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
 | |
| 
 | |
| 	if (!cpumask_available(rcu_nocb_mask))
 | |
| 		return;
 | |
| 	if (ls == -1) {
 | |
| 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
 | |
| 		rcu_nocb_gp_stride = ls;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Each pass through this loop sets up one rcu_data structure.
 | |
| 	 * Should the corresponding CPU come online in the future, then
 | |
| 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 		if (rdp->cpu >= nl) {
 | |
| 			/* New GP kthread, set up for CBs & next GP. */
 | |
| 			gotnocbs = true;
 | |
| 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
 | |
| 			rdp_gp = rdp;
 | |
| 			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
 | |
| 			if (dump_tree) {
 | |
| 				if (!firsttime)
 | |
| 					pr_cont("%s\n", gotnocbscbs
 | |
| 							? "" : " (self only)");
 | |
| 				gotnocbscbs = false;
 | |
| 				firsttime = false;
 | |
| 				pr_alert("%s: No-CB GP kthread CPU %d:",
 | |
| 					 __func__, cpu);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Another CB kthread, link to previous GP kthread. */
 | |
| 			gotnocbscbs = true;
 | |
| 			if (dump_tree)
 | |
| 				pr_cont(" %d", cpu);
 | |
| 		}
 | |
| 		rdp->nocb_gp_rdp = rdp_gp;
 | |
| 		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
 | |
| 			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
 | |
| 	}
 | |
| 	if (gotnocbs && dump_tree)
 | |
| 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bind the current task to the offloaded CPUs.  If there are no offloaded
 | |
|  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
 | |
|  */
 | |
| void rcu_bind_current_to_nocb(void)
 | |
| {
 | |
| 	if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
 | |
| 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
 | |
| 
 | |
| // The ->on_cpu field is available only in CONFIG_SMP=y, so...
 | |
| #ifdef CONFIG_SMP
 | |
| static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
 | |
| {
 | |
| 	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
 | |
| }
 | |
| #else // #ifdef CONFIG_SMP
 | |
| static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
 | |
| {
 | |
| 	return "";
 | |
| }
 | |
| #endif // #else #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * Dump out nocb grace-period kthread state for the specified rcu_data
 | |
|  * structure.
 | |
|  */
 | |
| static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
 | |
| {
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
 | |
| 		rdp->cpu,
 | |
| 		"kK"[!!rdp->nocb_gp_kthread],
 | |
| 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
 | |
| 		"dD"[!!rdp->nocb_defer_wakeup],
 | |
| 		"tT"[timer_pending(&rdp->nocb_timer)],
 | |
| 		"sS"[!!rdp->nocb_gp_sleep],
 | |
| 		".W"[swait_active(&rdp->nocb_gp_wq)],
 | |
| 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
 | |
| 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
 | |
| 		".B"[!!rdp->nocb_gp_bypass],
 | |
| 		".G"[!!rdp->nocb_gp_gp],
 | |
| 		(long)rdp->nocb_gp_seq,
 | |
| 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
 | |
| 		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
 | |
| 		rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
 | |
| 		show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
 | |
| }
 | |
| 
 | |
| /* Dump out nocb kthread state for the specified rcu_data structure. */
 | |
| static void show_rcu_nocb_state(struct rcu_data *rdp)
 | |
| {
 | |
| 	char bufd[22];
 | |
| 	char bufw[45];
 | |
| 	char bufr[45];
 | |
| 	char bufn[22];
 | |
| 	char bufb[22];
 | |
| 	struct rcu_data *nocb_next_rdp;
 | |
| 	struct rcu_segcblist *rsclp = &rdp->cblist;
 | |
| 	bool waslocked;
 | |
| 	bool wassleep;
 | |
| 
 | |
| 	if (rdp->nocb_gp_rdp == rdp)
 | |
| 		show_rcu_nocb_gp_state(rdp);
 | |
| 
 | |
| 	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
 | |
| 					      &rdp->nocb_entry_rdp,
 | |
| 					      typeof(*rdp),
 | |
| 					      nocb_entry_rdp);
 | |
| 
 | |
| 	sprintf(bufd, "%ld", rsclp->seglen[RCU_DONE_TAIL]);
 | |
| 	sprintf(bufw, "%ld(%ld)", rsclp->seglen[RCU_WAIT_TAIL], rsclp->gp_seq[RCU_WAIT_TAIL]);
 | |
| 	sprintf(bufr, "%ld(%ld)", rsclp->seglen[RCU_NEXT_READY_TAIL],
 | |
| 		      rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
 | |
| 	sprintf(bufn, "%ld", rsclp->seglen[RCU_NEXT_TAIL]);
 | |
| 	sprintf(bufb, "%ld", rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 	pr_info("   CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%s%c%s%c%s%c%s%c%s q%ld %c CPU %d%s\n",
 | |
| 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
 | |
| 		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
 | |
| 		"kK"[!!rdp->nocb_cb_kthread],
 | |
| 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
 | |
| 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
 | |
| 		"sS"[!!rdp->nocb_cb_sleep],
 | |
| 		".W"[swait_active(&rdp->nocb_cb_wq)],
 | |
| 		jiffies - rdp->nocb_bypass_first,
 | |
| 		jiffies - rdp->nocb_nobypass_last,
 | |
| 		rdp->nocb_nobypass_count,
 | |
| 		".D"[rcu_segcblist_ready_cbs(rsclp)],
 | |
| 		rcu_segcblist_segempty(rsclp, RCU_DONE_TAIL) ? "" : bufd,
 | |
| 		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
 | |
| 		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
 | |
| 		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
 | |
| 		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
 | |
| 		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
 | |
| 		rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL) ? "" : bufn,
 | |
| 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
 | |
| 		!rcu_cblist_n_cbs(&rdp->nocb_bypass) ? "" : bufb,
 | |
| 		rcu_segcblist_n_cbs(&rdp->cblist),
 | |
| 		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
 | |
| 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
 | |
| 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
 | |
| 
 | |
| 	/* It is OK for GP kthreads to have GP state. */
 | |
| 	if (rdp->nocb_gp_rdp == rdp)
 | |
| 		return;
 | |
| 
 | |
| 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
 | |
| 	wassleep = swait_active(&rdp->nocb_gp_wq);
 | |
| 	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
 | |
| 		return;  /* Nothing untoward. */
 | |
| 
 | |
| 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
 | |
| 		"lL"[waslocked],
 | |
| 		"dD"[!!rdp->nocb_defer_wakeup],
 | |
| 		"sS"[!!rdp->nocb_gp_sleep],
 | |
| 		".W"[wassleep]);
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| 
 | |
| /* No ->nocb_lock to acquire.  */
 | |
| static void rcu_nocb_lock(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* No ->nocb_lock to release.  */
 | |
| static void rcu_nocb_unlock(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* No ->nocb_lock to release.  */
 | |
| static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
 | |
| 				       unsigned long flags)
 | |
| {
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* Lockdep check that ->cblist may be safely accessed. */
 | |
| static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| }
 | |
| 
 | |
| static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void rcu_init_one_nocb(struct rcu_node *rnp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 				  unsigned long j, bool lazy)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
 | |
| 			  rcu_callback_t func, unsigned long flags, bool lazy)
 | |
| {
 | |
| 	WARN_ON_ONCE(1);  /* Should be dead code! */
 | |
| }
 | |
| 
 | |
| static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
 | |
| 				 unsigned long flags)
 | |
| {
 | |
| 	WARN_ON_ONCE(1);  /* Should be dead code! */
 | |
| }
 | |
| 
 | |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void rcu_spawn_cpu_nocb_kthread(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void show_rcu_nocb_state(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 |