mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 a50b4fe095
			
		
	
	
		a50b4fe095
		
	
	
	
	
		
			
			hrtimers are initialized with hrtimer_init() and a subsequent store to the callback pointer. This turned out to be suboptimal for the upcoming Rust integration and is obviously a silly implementation to begin with. This cleanup replaces the hrtimer_init(T); T->function = cb; sequence with hrtimer_setup(T, cb); The conversion was done with Coccinelle and a few manual fixups. Once the conversion has completely landed in mainline, hrtimer_init() will be removed and the hrtimer::function becomes a private member. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmff5jQTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoVvRD/wKtuwmiA66NJFgXC0qVq82A6fO3bY8 GBdbfysDJIbqGu5PTcULTbJ8qkqv3jeLUv6CcXvS4sZ7y/uJQl2lzf8yrD/0bbwc rLI6sHiPSZmK93kNVN4X5H7kvt7cE/DYC9nnEOgK3BY5FgKc4n9887d4aVBhL8Lv ODwVXvZ+xi351YCj7qRyPU24zt/p4tkkT1o2k4a0HBluqLI0D+V20fke9IERUL8r d1uWKlcn0TqYDesE8HXKIhbst3gx52rMJrXBJDHwFmG6v8Pj1fkTXCVpPo8QcBz8 OTVkpomN9f/Tx4+GZwhZOF86LhLL3OhxD6pT7JhFCXdmSGv+Ez8uyk1YZysM/XpV Juy/1yAcBpDIDkmhMFGdAAn48Nn9Fotty0r4je60zSEp1d/4QMXcFme29qr2JTUE iWnQ/HD6DxUjVHqy7CYvvo26Xegg1C7qgyOVt4PYZwAM1VKF5P3kzYTb4SAdxtop Tpji1sfW9QV08jqMNo6XntD32DSP9S2HqjO9LwBw700jnx2jjJ35fcJs6iodMOUn gckIZLMn3L0OoglPdyA5O7SNTbKE7aFiRKdnT/cJtR3Fa39Qu27CwC5gfiyuie9I Q+LG8GLuYSBHXAR+PBK4GWlzJ7Dn8k3eqmbnLeKpRMsU6ZzcttgA64xhaviN2wN0 iJbvLJeisXr3GA== =bYAX -----END PGP SIGNATURE----- Merge tag 'timers-cleanups-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer cleanups from Thomas Gleixner: "A treewide hrtimer timer cleanup hrtimers are initialized with hrtimer_init() and a subsequent store to the callback pointer. This turned out to be suboptimal for the upcoming Rust integration and is obviously a silly implementation to begin with. This cleanup replaces the hrtimer_init(T); T->function = cb; sequence with hrtimer_setup(T, cb); The conversion was done with Coccinelle and a few manual fixups. Once the conversion has completely landed in mainline, hrtimer_init() will be removed and the hrtimer::function becomes a private member" * tag 'timers-cleanups-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (100 commits) wifi: rt2x00: Switch to use hrtimer_update_function() io_uring: Use helper function hrtimer_update_function() serial: xilinx_uartps: Use helper function hrtimer_update_function() ASoC: fsl: imx-pcm-fiq: Switch to use hrtimer_setup() RDMA: Switch to use hrtimer_setup() virtio: mem: Switch to use hrtimer_setup() drm/vmwgfx: Switch to use hrtimer_setup() drm/xe/oa: Switch to use hrtimer_setup() drm/vkms: Switch to use hrtimer_setup() drm/msm: Switch to use hrtimer_setup() drm/i915/request: Switch to use hrtimer_setup() drm/i915/uncore: Switch to use hrtimer_setup() drm/i915/pmu: Switch to use hrtimer_setup() drm/i915/perf: Switch to use hrtimer_setup() drm/i915/gvt: Switch to use hrtimer_setup() drm/i915/huc: Switch to use hrtimer_setup() drm/amdgpu: Switch to use hrtimer_setup() stm class: heartbeat: Switch to use hrtimer_setup() i2c: Switch to use hrtimer_setup() iio: Switch to use hrtimer_setup() ...
		
			
				
	
	
		
			3578 lines
		
	
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3578 lines
		
	
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Deadline Scheduling Class (SCHED_DEADLINE)
 | |
|  *
 | |
|  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
 | |
|  *
 | |
|  * Tasks that periodically executes their instances for less than their
 | |
|  * runtime won't miss any of their deadlines.
 | |
|  * Tasks that are not periodic or sporadic or that tries to execute more
 | |
|  * than their reserved bandwidth will be slowed down (and may potentially
 | |
|  * miss some of their deadlines), and won't affect any other task.
 | |
|  *
 | |
|  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
 | |
|  *                    Juri Lelli <juri.lelli@gmail.com>,
 | |
|  *                    Michael Trimarchi <michael@amarulasolutions.com>,
 | |
|  *                    Fabio Checconi <fchecconi@gmail.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/cpuset.h>
 | |
| 
 | |
| /*
 | |
|  * Default limits for DL period; on the top end we guard against small util
 | |
|  * tasks still getting ridiculously long effective runtimes, on the bottom end we
 | |
|  * guard against timer DoS.
 | |
|  */
 | |
| static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
 | |
| static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
 | |
| #ifdef CONFIG_SYSCTL
 | |
| static const struct ctl_table sched_dl_sysctls[] = {
 | |
| 	{
 | |
| 		.procname       = "sched_deadline_period_max_us",
 | |
| 		.data           = &sysctl_sched_dl_period_max,
 | |
| 		.maxlen         = sizeof(unsigned int),
 | |
| 		.mode           = 0644,
 | |
| 		.proc_handler   = proc_douintvec_minmax,
 | |
| 		.extra1         = (void *)&sysctl_sched_dl_period_min,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname       = "sched_deadline_period_min_us",
 | |
| 		.data           = &sysctl_sched_dl_period_min,
 | |
| 		.maxlen         = sizeof(unsigned int),
 | |
| 		.mode           = 0644,
 | |
| 		.proc_handler   = proc_douintvec_minmax,
 | |
| 		.extra2         = (void *)&sysctl_sched_dl_period_max,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init sched_dl_sysctl_init(void)
 | |
| {
 | |
| 	register_sysctl_init("kernel", sched_dl_sysctls);
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(sched_dl_sysctl_init);
 | |
| #endif
 | |
| 
 | |
| static bool dl_server(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return dl_se->dl_server;
 | |
| }
 | |
| 
 | |
| static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	BUG_ON(dl_server(dl_se));
 | |
| 	return container_of(dl_se, struct task_struct, dl);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
 | |
| {
 | |
| 	return container_of(dl_rq, struct rq, dl);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct rq *rq = dl_se->rq;
 | |
| 
 | |
| 	if (!dl_server(dl_se))
 | |
| 		rq = task_rq(dl_task_of(dl_se));
 | |
| 
 | |
| 	return rq;
 | |
| }
 | |
| 
 | |
| static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return &rq_of_dl_se(dl_se)->dl;
 | |
| }
 | |
| 
 | |
| static inline int on_dl_rq(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return !RB_EMPTY_NODE(&dl_se->rb_node);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return dl_se->pi_se;
 | |
| }
 | |
| 
 | |
| static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return pi_of(dl_se) != dl_se;
 | |
| }
 | |
| #else
 | |
| static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return dl_se;
 | |
| }
 | |
| 
 | |
| static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline struct dl_bw *dl_bw_of(int i)
 | |
| {
 | |
| 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 | |
| 			 "sched RCU must be held");
 | |
| 	return &cpu_rq(i)->rd->dl_bw;
 | |
| }
 | |
| 
 | |
| static inline int dl_bw_cpus(int i)
 | |
| {
 | |
| 	struct root_domain *rd = cpu_rq(i)->rd;
 | |
| 	int cpus;
 | |
| 
 | |
| 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 | |
| 			 "sched RCU must be held");
 | |
| 
 | |
| 	if (cpumask_subset(rd->span, cpu_active_mask))
 | |
| 		return cpumask_weight(rd->span);
 | |
| 
 | |
| 	cpus = 0;
 | |
| 
 | |
| 	for_each_cpu_and(i, rd->span, cpu_active_mask)
 | |
| 		cpus++;
 | |
| 
 | |
| 	return cpus;
 | |
| }
 | |
| 
 | |
| static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
 | |
| {
 | |
| 	unsigned long cap = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu_and(i, mask, cpu_active_mask)
 | |
| 		cap += arch_scale_cpu_capacity(i);
 | |
| 
 | |
| 	return cap;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
 | |
|  * of the CPU the task is running on rather rd's \Sum CPU capacity.
 | |
|  */
 | |
| static inline unsigned long dl_bw_capacity(int i)
 | |
| {
 | |
| 	if (!sched_asym_cpucap_active() &&
 | |
| 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
 | |
| 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
 | |
| 	} else {
 | |
| 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 | |
| 				 "sched RCU must be held");
 | |
| 
 | |
| 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool dl_bw_visited(int cpu, u64 cookie)
 | |
| {
 | |
| 	struct root_domain *rd = cpu_rq(cpu)->rd;
 | |
| 
 | |
| 	if (rd->visit_cookie == cookie)
 | |
| 		return true;
 | |
| 
 | |
| 	rd->visit_cookie = cookie;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __dl_update(struct dl_bw *dl_b, s64 bw)
 | |
| {
 | |
| 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
 | |
| 	int i;
 | |
| 
 | |
| 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 | |
| 			 "sched RCU must be held");
 | |
| 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 
 | |
| 		rq->dl.extra_bw += bw;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline struct dl_bw *dl_bw_of(int i)
 | |
| {
 | |
| 	return &cpu_rq(i)->dl.dl_bw;
 | |
| }
 | |
| 
 | |
| static inline int dl_bw_cpus(int i)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline unsigned long dl_bw_capacity(int i)
 | |
| {
 | |
| 	return SCHED_CAPACITY_SCALE;
 | |
| }
 | |
| 
 | |
| bool dl_bw_visited(int cpu, u64 cookie)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __dl_update(struct dl_bw *dl_b, s64 bw)
 | |
| {
 | |
| 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
 | |
| 
 | |
| 	dl->extra_bw += bw;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline
 | |
| void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 | |
| {
 | |
| 	dl_b->total_bw -= tsk_bw;
 | |
| 	__dl_update(dl_b, (s32)tsk_bw / cpus);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 | |
| {
 | |
| 	dl_b->total_bw += tsk_bw;
 | |
| 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
 | |
| {
 | |
| 	return dl_b->bw != -1 &&
 | |
| 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	u64 old = dl_rq->running_bw;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 | |
| 	dl_rq->running_bw += dl_bw;
 | |
| 	WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
 | |
| 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
 | |
| 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 | |
| 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	u64 old = dl_rq->running_bw;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 | |
| 	dl_rq->running_bw -= dl_bw;
 | |
| 	WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
 | |
| 	if (dl_rq->running_bw > old)
 | |
| 		dl_rq->running_bw = 0;
 | |
| 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 | |
| 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	u64 old = dl_rq->this_bw;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 | |
| 	dl_rq->this_bw += dl_bw;
 | |
| 	WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	u64 old = dl_rq->this_bw;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 | |
| 	dl_rq->this_bw -= dl_bw;
 | |
| 	WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
 | |
| 	if (dl_rq->this_bw > old)
 | |
| 		dl_rq->this_bw = 0;
 | |
| 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	if (!dl_entity_is_special(dl_se))
 | |
| 		__add_rq_bw(dl_se->dl_bw, dl_rq);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	if (!dl_entity_is_special(dl_se))
 | |
| 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	if (!dl_entity_is_special(dl_se))
 | |
| 		__add_running_bw(dl_se->dl_bw, dl_rq);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	if (!dl_entity_is_special(dl_se))
 | |
| 		__sub_running_bw(dl_se->dl_bw, dl_rq);
 | |
| }
 | |
| 
 | |
| static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
 | |
| {
 | |
| 	if (dl_se->dl_non_contending) {
 | |
| 		sub_running_bw(dl_se, &rq->dl);
 | |
| 		dl_se->dl_non_contending = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the timer handler is currently running and the
 | |
| 		 * timer cannot be canceled, inactive_task_timer()
 | |
| 		 * will see that dl_not_contending is not set, and
 | |
| 		 * will not touch the rq's active utilization,
 | |
| 		 * so we are still safe.
 | |
| 		 */
 | |
| 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
 | |
| 			if (!dl_server(dl_se))
 | |
| 				put_task_struct(dl_task_of(dl_se));
 | |
| 		}
 | |
| 	}
 | |
| 	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
 | |
| 	__add_rq_bw(new_bw, &rq->dl);
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the timer callback was running (hrtimer_try_to_cancel == -1),
 | |
| 	 * it will eventually call put_task_struct().
 | |
| 	 */
 | |
| 	if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
 | |
| 		put_task_struct(dl_task_of(dl_se));
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| void cancel_replenish_timer(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	cancel_dl_timer(dl_se, &dl_se->dl_timer);
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| void cancel_inactive_timer(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	cancel_dl_timer(dl_se, &dl_se->inactive_timer);
 | |
| }
 | |
| 
 | |
| static void dl_change_utilization(struct task_struct *p, u64 new_bw)
 | |
| {
 | |
| 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
 | |
| 
 | |
| 	if (task_on_rq_queued(p))
 | |
| 		return;
 | |
| 
 | |
| 	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
 | |
| }
 | |
| 
 | |
| static void __dl_clear_params(struct sched_dl_entity *dl_se);
 | |
| 
 | |
| /*
 | |
|  * The utilization of a task cannot be immediately removed from
 | |
|  * the rq active utilization (running_bw) when the task blocks.
 | |
|  * Instead, we have to wait for the so called "0-lag time".
 | |
|  *
 | |
|  * If a task blocks before the "0-lag time", a timer (the inactive
 | |
|  * timer) is armed, and running_bw is decreased when the timer
 | |
|  * fires.
 | |
|  *
 | |
|  * If the task wakes up again before the inactive timer fires,
 | |
|  * the timer is canceled, whereas if the task wakes up after the
 | |
|  * inactive timer fired (and running_bw has been decreased) the
 | |
|  * task's utilization has to be added to running_bw again.
 | |
|  * A flag in the deadline scheduling entity (dl_non_contending)
 | |
|  * is used to avoid race conditions between the inactive timer handler
 | |
|  * and task wakeups.
 | |
|  *
 | |
|  * The following diagram shows how running_bw is updated. A task is
 | |
|  * "ACTIVE" when its utilization contributes to running_bw; an
 | |
|  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 | |
|  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 | |
|  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 | |
|  * time already passed, which does not contribute to running_bw anymore.
 | |
|  *                              +------------------+
 | |
|  *             wakeup           |    ACTIVE        |
 | |
|  *          +------------------>+   contending     |
 | |
|  *          | add_running_bw    |                  |
 | |
|  *          |                   +----+------+------+
 | |
|  *          |                        |      ^
 | |
|  *          |                dequeue |      |
 | |
|  * +--------+-------+                |      |
 | |
|  * |                |   t >= 0-lag   |      | wakeup
 | |
|  * |    INACTIVE    |<---------------+      |
 | |
|  * |                | sub_running_bw |      |
 | |
|  * +--------+-------+                |      |
 | |
|  *          ^                        |      |
 | |
|  *          |              t < 0-lag |      |
 | |
|  *          |                        |      |
 | |
|  *          |                        V      |
 | |
|  *          |                   +----+------+------+
 | |
|  *          | sub_running_bw    |    ACTIVE        |
 | |
|  *          +-------------------+                  |
 | |
|  *            inactive timer    |  non contending  |
 | |
|  *            fired             +------------------+
 | |
|  *
 | |
|  * The task_non_contending() function is invoked when a task
 | |
|  * blocks, and checks if the 0-lag time already passed or
 | |
|  * not (in the first case, it directly updates running_bw;
 | |
|  * in the second case, it arms the inactive timer).
 | |
|  *
 | |
|  * The task_contending() function is invoked when a task wakes
 | |
|  * up, and checks if the task is still in the "ACTIVE non contending"
 | |
|  * state or not (in the second case, it updates running_bw).
 | |
|  */
 | |
| static void task_non_contending(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct hrtimer *timer = &dl_se->inactive_timer;
 | |
| 	struct rq *rq = rq_of_dl_se(dl_se);
 | |
| 	struct dl_rq *dl_rq = &rq->dl;
 | |
| 	s64 zerolag_time;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a non-deadline task that has been boosted,
 | |
| 	 * do nothing
 | |
| 	 */
 | |
| 	if (dl_se->dl_runtime == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (dl_entity_is_special(dl_se))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(dl_se->dl_non_contending);
 | |
| 
 | |
| 	zerolag_time = dl_se->deadline -
 | |
| 		 div64_long((dl_se->runtime * dl_se->dl_period),
 | |
| 			dl_se->dl_runtime);
 | |
| 
 | |
| 	/*
 | |
| 	 * Using relative times instead of the absolute "0-lag time"
 | |
| 	 * allows to simplify the code
 | |
| 	 */
 | |
| 	zerolag_time -= rq_clock(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the "0-lag time" already passed, decrease the active
 | |
| 	 * utilization now, instead of starting a timer
 | |
| 	 */
 | |
| 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 | |
| 		if (dl_server(dl_se)) {
 | |
| 			sub_running_bw(dl_se, dl_rq);
 | |
| 		} else {
 | |
| 			struct task_struct *p = dl_task_of(dl_se);
 | |
| 
 | |
| 			if (dl_task(p))
 | |
| 				sub_running_bw(dl_se, dl_rq);
 | |
| 
 | |
| 			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
 | |
| 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 | |
| 
 | |
| 				if (READ_ONCE(p->__state) == TASK_DEAD)
 | |
| 					sub_rq_bw(dl_se, &rq->dl);
 | |
| 				raw_spin_lock(&dl_b->lock);
 | |
| 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
 | |
| 				raw_spin_unlock(&dl_b->lock);
 | |
| 				__dl_clear_params(dl_se);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dl_se->dl_non_contending = 1;
 | |
| 	if (!dl_server(dl_se))
 | |
| 		get_task_struct(dl_task_of(dl_se));
 | |
| 
 | |
| 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 | |
| }
 | |
| 
 | |
| static void task_contending(struct sched_dl_entity *dl_se, int flags)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a non-deadline task that has been boosted,
 | |
| 	 * do nothing
 | |
| 	 */
 | |
| 	if (dl_se->dl_runtime == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (flags & ENQUEUE_MIGRATED)
 | |
| 		add_rq_bw(dl_se, dl_rq);
 | |
| 
 | |
| 	if (dl_se->dl_non_contending) {
 | |
| 		dl_se->dl_non_contending = 0;
 | |
| 		/*
 | |
| 		 * If the timer handler is currently running and the
 | |
| 		 * timer cannot be canceled, inactive_task_timer()
 | |
| 		 * will see that dl_not_contending is not set, and
 | |
| 		 * will not touch the rq's active utilization,
 | |
| 		 * so we are still safe.
 | |
| 		 */
 | |
| 		cancel_inactive_timer(dl_se);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Since "dl_non_contending" is not set, the
 | |
| 		 * task's utilization has already been removed from
 | |
| 		 * active utilization (either when the task blocked,
 | |
| 		 * when the "inactive timer" fired).
 | |
| 		 * So, add it back.
 | |
| 		 */
 | |
| 		add_running_bw(dl_se, dl_rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
 | |
| }
 | |
| 
 | |
| static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
 | |
| 
 | |
| void init_dl_bw(struct dl_bw *dl_b)
 | |
| {
 | |
| 	raw_spin_lock_init(&dl_b->lock);
 | |
| 	if (global_rt_runtime() == RUNTIME_INF)
 | |
| 		dl_b->bw = -1;
 | |
| 	else
 | |
| 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 | |
| 	dl_b->total_bw = 0;
 | |
| }
 | |
| 
 | |
| void init_dl_rq(struct dl_rq *dl_rq)
 | |
| {
 | |
| 	dl_rq->root = RB_ROOT_CACHED;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* zero means no -deadline tasks */
 | |
| 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 | |
| 
 | |
| 	dl_rq->overloaded = 0;
 | |
| 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 | |
| #else
 | |
| 	init_dl_bw(&dl_rq->dl_bw);
 | |
| #endif
 | |
| 
 | |
| 	dl_rq->running_bw = 0;
 | |
| 	dl_rq->this_bw = 0;
 | |
| 	init_dl_rq_bw_ratio(dl_rq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static inline int dl_overloaded(struct rq *rq)
 | |
| {
 | |
| 	return atomic_read(&rq->rd->dlo_count);
 | |
| }
 | |
| 
 | |
| static inline void dl_set_overload(struct rq *rq)
 | |
| {
 | |
| 	if (!rq->online)
 | |
| 		return;
 | |
| 
 | |
| 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 | |
| 	/*
 | |
| 	 * Must be visible before the overload count is
 | |
| 	 * set (as in sched_rt.c).
 | |
| 	 *
 | |
| 	 * Matched by the barrier in pull_dl_task().
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	atomic_inc(&rq->rd->dlo_count);
 | |
| }
 | |
| 
 | |
| static inline void dl_clear_overload(struct rq *rq)
 | |
| {
 | |
| 	if (!rq->online)
 | |
| 		return;
 | |
| 
 | |
| 	atomic_dec(&rq->rd->dlo_count);
 | |
| 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 | |
| }
 | |
| 
 | |
| #define __node_2_pdl(node) \
 | |
| 	rb_entry((node), struct task_struct, pushable_dl_tasks)
 | |
| 
 | |
| static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
 | |
| {
 | |
| 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
 | |
| }
 | |
| 
 | |
| static inline int has_pushable_dl_tasks(struct rq *rq)
 | |
| {
 | |
| 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The list of pushable -deadline task is not a plist, like in
 | |
|  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 | |
|  */
 | |
| static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct rb_node *leftmost;
 | |
| 
 | |
| 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 | |
| 
 | |
| 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
 | |
| 				 &rq->dl.pushable_dl_tasks_root,
 | |
| 				 __pushable_less);
 | |
| 	if (leftmost)
 | |
| 		rq->dl.earliest_dl.next = p->dl.deadline;
 | |
| 
 | |
| 	if (!rq->dl.overloaded) {
 | |
| 		dl_set_overload(rq);
 | |
| 		rq->dl.overloaded = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = &rq->dl;
 | |
| 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
 | |
| 	struct rb_node *leftmost;
 | |
| 
 | |
| 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 | |
| 		return;
 | |
| 
 | |
| 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
 | |
| 	if (leftmost)
 | |
| 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
 | |
| 
 | |
| 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 | |
| 
 | |
| 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
 | |
| 		dl_clear_overload(rq);
 | |
| 		rq->dl.overloaded = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int push_dl_task(struct rq *rq);
 | |
| 
 | |
| static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	return rq->online && dl_task(prev);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
 | |
| static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
 | |
| 
 | |
| static void push_dl_tasks(struct rq *);
 | |
| static void pull_dl_task(struct rq *);
 | |
| 
 | |
| static inline void deadline_queue_push_tasks(struct rq *rq)
 | |
| {
 | |
| 	if (!has_pushable_dl_tasks(rq))
 | |
| 		return;
 | |
| 
 | |
| 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 | |
| }
 | |
| 
 | |
| static inline void deadline_queue_pull_task(struct rq *rq)
 | |
| {
 | |
| 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 | |
| }
 | |
| 
 | |
| static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 | |
| 
 | |
| static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct rq *later_rq = NULL;
 | |
| 	struct dl_bw *dl_b;
 | |
| 
 | |
| 	later_rq = find_lock_later_rq(p, rq);
 | |
| 	if (!later_rq) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we cannot preempt any rq, fall back to pick any
 | |
| 		 * online CPU:
 | |
| 		 */
 | |
| 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 | |
| 		if (cpu >= nr_cpu_ids) {
 | |
| 			/*
 | |
| 			 * Failed to find any suitable CPU.
 | |
| 			 * The task will never come back!
 | |
| 			 */
 | |
| 			WARN_ON_ONCE(dl_bandwidth_enabled());
 | |
| 
 | |
| 			/*
 | |
| 			 * If admission control is disabled we
 | |
| 			 * try a little harder to let the task
 | |
| 			 * run.
 | |
| 			 */
 | |
| 			cpu = cpumask_any(cpu_active_mask);
 | |
| 		}
 | |
| 		later_rq = cpu_rq(cpu);
 | |
| 		double_lock_balance(rq, later_rq);
 | |
| 	}
 | |
| 
 | |
| 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 | |
| 		/*
 | |
| 		 * Inactive timer is armed (or callback is running, but
 | |
| 		 * waiting for us to release rq locks). In any case, when it
 | |
| 		 * will fire (or continue), it will see running_bw of this
 | |
| 		 * task migrated to later_rq (and correctly handle it).
 | |
| 		 */
 | |
| 		sub_running_bw(&p->dl, &rq->dl);
 | |
| 		sub_rq_bw(&p->dl, &rq->dl);
 | |
| 
 | |
| 		add_rq_bw(&p->dl, &later_rq->dl);
 | |
| 		add_running_bw(&p->dl, &later_rq->dl);
 | |
| 	} else {
 | |
| 		sub_rq_bw(&p->dl, &rq->dl);
 | |
| 		add_rq_bw(&p->dl, &later_rq->dl);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * And we finally need to fix up root_domain(s) bandwidth accounting,
 | |
| 	 * since p is still hanging out in the old (now moved to default) root
 | |
| 	 * domain.
 | |
| 	 */
 | |
| 	dl_b = &rq->rd->dl_bw;
 | |
| 	raw_spin_lock(&dl_b->lock);
 | |
| 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 | |
| 	raw_spin_unlock(&dl_b->lock);
 | |
| 
 | |
| 	dl_b = &later_rq->rd->dl_bw;
 | |
| 	raw_spin_lock(&dl_b->lock);
 | |
| 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 | |
| 	raw_spin_unlock(&dl_b->lock);
 | |
| 
 | |
| 	set_task_cpu(p, later_rq->cpu);
 | |
| 	double_unlock_balance(later_rq, rq);
 | |
| 
 | |
| 	return later_rq;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline
 | |
| void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void deadline_queue_push_tasks(struct rq *rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void deadline_queue_pull_task(struct rq *rq)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void
 | |
| enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
 | |
| static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 | |
| static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
 | |
| static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
 | |
| 					    struct rq *rq)
 | |
| {
 | |
| 	/* for non-boosted task, pi_of(dl_se) == dl_se */
 | |
| 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 | |
| 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it is a deferred reservation, and the server
 | |
| 	 * is not handling an starvation case, defer it.
 | |
| 	 */
 | |
| 	if (dl_se->dl_defer && !dl_se->dl_defer_running) {
 | |
| 		dl_se->dl_throttled = 1;
 | |
| 		dl_se->dl_defer_armed = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are being explicitly informed that a new instance is starting,
 | |
|  * and this means that:
 | |
|  *  - the absolute deadline of the entity has to be placed at
 | |
|  *    current time + relative deadline;
 | |
|  *  - the runtime of the entity has to be set to the maximum value.
 | |
|  *
 | |
|  * The capability of specifying such event is useful whenever a -deadline
 | |
|  * entity wants to (try to!) synchronize its behaviour with the scheduler's
 | |
|  * one, and to (try to!) reconcile itself with its own scheduling
 | |
|  * parameters.
 | |
|  */
 | |
| static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 
 | |
| 	WARN_ON(is_dl_boosted(dl_se));
 | |
| 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 | |
| 
 | |
| 	/*
 | |
| 	 * We are racing with the deadline timer. So, do nothing because
 | |
| 	 * the deadline timer handler will take care of properly recharging
 | |
| 	 * the runtime and postponing the deadline
 | |
| 	 */
 | |
| 	if (dl_se->dl_throttled)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use the regular wall clock time to set deadlines in the
 | |
| 	 * future; in fact, we must consider execution overheads (time
 | |
| 	 * spent on hardirq context, etc.).
 | |
| 	 */
 | |
| 	replenish_dl_new_period(dl_se, rq);
 | |
| }
 | |
| 
 | |
| static int start_dl_timer(struct sched_dl_entity *dl_se);
 | |
| static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
 | |
| 
 | |
| /*
 | |
|  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 | |
|  * possibility of a entity lasting more than what it declared, and thus
 | |
|  * exhausting its runtime.
 | |
|  *
 | |
|  * Here we are interested in making runtime overrun possible, but we do
 | |
|  * not want a entity which is misbehaving to affect the scheduling of all
 | |
|  * other entities.
 | |
|  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 | |
|  * is used, in order to confine each entity within its own bandwidth.
 | |
|  *
 | |
|  * This function deals exactly with that, and ensures that when the runtime
 | |
|  * of a entity is replenished, its deadline is also postponed. That ensures
 | |
|  * the overrunning entity can't interfere with other entity in the system and
 | |
|  * can't make them miss their deadlines. Reasons why this kind of overruns
 | |
|  * could happen are, typically, a entity voluntarily trying to overcome its
 | |
|  * runtime, or it just underestimated it during sched_setattr().
 | |
|  */
 | |
| static void replenish_dl_entity(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 
 | |
| 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * This could be the case for a !-dl task that is boosted.
 | |
| 	 * Just go with full inherited parameters.
 | |
| 	 *
 | |
| 	 * Or, it could be the case of a deferred reservation that
 | |
| 	 * was not able to consume its runtime in background and
 | |
| 	 * reached this point with current u > U.
 | |
| 	 *
 | |
| 	 * In both cases, set a new period.
 | |
| 	 */
 | |
| 	if (dl_se->dl_deadline == 0 ||
 | |
| 	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
 | |
| 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 | |
| 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
 | |
| 	}
 | |
| 
 | |
| 	if (dl_se->dl_yielded && dl_se->runtime > 0)
 | |
| 		dl_se->runtime = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We keep moving the deadline away until we get some
 | |
| 	 * available runtime for the entity. This ensures correct
 | |
| 	 * handling of situations where the runtime overrun is
 | |
| 	 * arbitrary large.
 | |
| 	 */
 | |
| 	while (dl_se->runtime <= 0) {
 | |
| 		dl_se->deadline += pi_of(dl_se)->dl_period;
 | |
| 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, the deadline really should be "in
 | |
| 	 * the future" with respect to rq->clock. If it's
 | |
| 	 * not, we are, for some reason, lagging too much!
 | |
| 	 * Anyway, after having warn userspace abut that,
 | |
| 	 * we still try to keep the things running by
 | |
| 	 * resetting the deadline and the budget of the
 | |
| 	 * entity.
 | |
| 	 */
 | |
| 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 | |
| 		printk_deferred_once("sched: DL replenish lagged too much\n");
 | |
| 		replenish_dl_new_period(dl_se, rq);
 | |
| 	}
 | |
| 
 | |
| 	if (dl_se->dl_yielded)
 | |
| 		dl_se->dl_yielded = 0;
 | |
| 	if (dl_se->dl_throttled)
 | |
| 		dl_se->dl_throttled = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is the replenishment of a deferred reservation,
 | |
| 	 * clear the flag and return.
 | |
| 	 */
 | |
| 	if (dl_se->dl_defer_armed) {
 | |
| 		dl_se->dl_defer_armed = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A this point, if the deferred server is not armed, and the deadline
 | |
| 	 * is in the future, if it is not running already, throttle the server
 | |
| 	 * and arm the defer timer.
 | |
| 	 */
 | |
| 	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
 | |
| 	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
 | |
| 		if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
 | |
| 
 | |
| 			/*
 | |
| 			 * Set dl_se->dl_defer_armed and dl_throttled variables to
 | |
| 			 * inform the start_dl_timer() that this is a deferred
 | |
| 			 * activation.
 | |
| 			 */
 | |
| 			dl_se->dl_defer_armed = 1;
 | |
| 			dl_se->dl_throttled = 1;
 | |
| 			if (!start_dl_timer(dl_se)) {
 | |
| 				/*
 | |
| 				 * If for whatever reason (delays), a previous timer was
 | |
| 				 * queued but not serviced, cancel it and clean the
 | |
| 				 * deferrable server variables intended for start_dl_timer().
 | |
| 				 */
 | |
| 				hrtimer_try_to_cancel(&dl_se->dl_timer);
 | |
| 				dl_se->dl_defer_armed = 0;
 | |
| 				dl_se->dl_throttled = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Here we check if --at time t-- an entity (which is probably being
 | |
|  * [re]activated or, in general, enqueued) can use its remaining runtime
 | |
|  * and its current deadline _without_ exceeding the bandwidth it is
 | |
|  * assigned (function returns true if it can't). We are in fact applying
 | |
|  * one of the CBS rules: when a task wakes up, if the residual runtime
 | |
|  * over residual deadline fits within the allocated bandwidth, then we
 | |
|  * can keep the current (absolute) deadline and residual budget without
 | |
|  * disrupting the schedulability of the system. Otherwise, we should
 | |
|  * refill the runtime and set the deadline a period in the future,
 | |
|  * because keeping the current (absolute) deadline of the task would
 | |
|  * result in breaking guarantees promised to other tasks (refer to
 | |
|  * Documentation/scheduler/sched-deadline.rst for more information).
 | |
|  *
 | |
|  * This function returns true if:
 | |
|  *
 | |
|  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 | |
|  *
 | |
|  * IOW we can't recycle current parameters.
 | |
|  *
 | |
|  * Notice that the bandwidth check is done against the deadline. For
 | |
|  * task with deadline equal to period this is the same of using
 | |
|  * dl_period instead of dl_deadline in the equation above.
 | |
|  */
 | |
| static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
 | |
| {
 | |
| 	u64 left, right;
 | |
| 
 | |
| 	/*
 | |
| 	 * left and right are the two sides of the equation above,
 | |
| 	 * after a bit of shuffling to use multiplications instead
 | |
| 	 * of divisions.
 | |
| 	 *
 | |
| 	 * Note that none of the time values involved in the two
 | |
| 	 * multiplications are absolute: dl_deadline and dl_runtime
 | |
| 	 * are the relative deadline and the maximum runtime of each
 | |
| 	 * instance, runtime is the runtime left for the last instance
 | |
| 	 * and (deadline - t), since t is rq->clock, is the time left
 | |
| 	 * to the (absolute) deadline. Even if overflowing the u64 type
 | |
| 	 * is very unlikely to occur in both cases, here we scale down
 | |
| 	 * as we want to avoid that risk at all. Scaling down by 10
 | |
| 	 * means that we reduce granularity to 1us. We are fine with it,
 | |
| 	 * since this is only a true/false check and, anyway, thinking
 | |
| 	 * of anything below microseconds resolution is actually fiction
 | |
| 	 * (but still we want to give the user that illusion >;).
 | |
| 	 */
 | |
| 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 | |
| 	right = ((dl_se->deadline - t) >> DL_SCALE) *
 | |
| 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
 | |
| 
 | |
| 	return dl_time_before(right, left);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Revised wakeup rule [1]: For self-suspending tasks, rather then
 | |
|  * re-initializing task's runtime and deadline, the revised wakeup
 | |
|  * rule adjusts the task's runtime to avoid the task to overrun its
 | |
|  * density.
 | |
|  *
 | |
|  * Reasoning: a task may overrun the density if:
 | |
|  *    runtime / (deadline - t) > dl_runtime / dl_deadline
 | |
|  *
 | |
|  * Therefore, runtime can be adjusted to:
 | |
|  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 | |
|  *
 | |
|  * In such way that runtime will be equal to the maximum density
 | |
|  * the task can use without breaking any rule.
 | |
|  *
 | |
|  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 | |
|  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 | |
|  */
 | |
| static void
 | |
| update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 | |
| {
 | |
| 	u64 laxity = dl_se->deadline - rq_clock(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the task has deadline < period, and the deadline is in the past,
 | |
| 	 * it should already be throttled before this check.
 | |
| 	 *
 | |
| 	 * See update_dl_entity() comments for further details.
 | |
| 	 */
 | |
| 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 | |
| 
 | |
| 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Regarding the deadline, a task with implicit deadline has a relative
 | |
|  * deadline == relative period. A task with constrained deadline has a
 | |
|  * relative deadline <= relative period.
 | |
|  *
 | |
|  * We support constrained deadline tasks. However, there are some restrictions
 | |
|  * applied only for tasks which do not have an implicit deadline. See
 | |
|  * update_dl_entity() to know more about such restrictions.
 | |
|  *
 | |
|  * The dl_is_implicit() returns true if the task has an implicit deadline.
 | |
|  */
 | |
| static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return dl_se->dl_deadline == dl_se->dl_period;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a deadline entity is placed in the runqueue, its runtime and deadline
 | |
|  * might need to be updated. This is done by a CBS wake up rule. There are two
 | |
|  * different rules: 1) the original CBS; and 2) the Revisited CBS.
 | |
|  *
 | |
|  * When the task is starting a new period, the Original CBS is used. In this
 | |
|  * case, the runtime is replenished and a new absolute deadline is set.
 | |
|  *
 | |
|  * When a task is queued before the begin of the next period, using the
 | |
|  * remaining runtime and deadline could make the entity to overflow, see
 | |
|  * dl_entity_overflow() to find more about runtime overflow. When such case
 | |
|  * is detected, the runtime and deadline need to be updated.
 | |
|  *
 | |
|  * If the task has an implicit deadline, i.e., deadline == period, the Original
 | |
|  * CBS is applied. The runtime is replenished and a new absolute deadline is
 | |
|  * set, as in the previous cases.
 | |
|  *
 | |
|  * However, the Original CBS does not work properly for tasks with
 | |
|  * deadline < period, which are said to have a constrained deadline. By
 | |
|  * applying the Original CBS, a constrained deadline task would be able to run
 | |
|  * runtime/deadline in a period. With deadline < period, the task would
 | |
|  * overrun the runtime/period allowed bandwidth, breaking the admission test.
 | |
|  *
 | |
|  * In order to prevent this misbehave, the Revisited CBS is used for
 | |
|  * constrained deadline tasks when a runtime overflow is detected. In the
 | |
|  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 | |
|  * the remaining runtime of the task is reduced to avoid runtime overflow.
 | |
|  * Please refer to the comments update_dl_revised_wakeup() function to find
 | |
|  * more about the Revised CBS rule.
 | |
|  */
 | |
| static void update_dl_entity(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct rq *rq = rq_of_dl_se(dl_se);
 | |
| 
 | |
| 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 | |
| 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
 | |
| 
 | |
| 		if (unlikely(!dl_is_implicit(dl_se) &&
 | |
| 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 | |
| 			     !is_dl_boosted(dl_se))) {
 | |
| 			update_dl_revised_wakeup(dl_se, rq);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		replenish_dl_new_period(dl_se, rq);
 | |
| 	} else if (dl_server(dl_se) && dl_se->dl_defer) {
 | |
| 		/*
 | |
| 		 * The server can still use its previous deadline, so check if
 | |
| 		 * it left the dl_defer_running state.
 | |
| 		 */
 | |
| 		if (!dl_se->dl_defer_running) {
 | |
| 			dl_se->dl_defer_armed = 1;
 | |
| 			dl_se->dl_throttled = 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the entity depleted all its runtime, and if we want it to sleep
 | |
|  * while waiting for some new execution time to become available, we
 | |
|  * set the bandwidth replenishment timer to the replenishment instant
 | |
|  * and try to activate it.
 | |
|  *
 | |
|  * Notice that it is important for the caller to know if the timer
 | |
|  * actually started or not (i.e., the replenishment instant is in
 | |
|  * the future or in the past).
 | |
|  */
 | |
| static int start_dl_timer(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct hrtimer *timer = &dl_se->dl_timer;
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 	ktime_t now, act;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * We want the timer to fire at the deadline, but considering
 | |
| 	 * that it is actually coming from rq->clock and not from
 | |
| 	 * hrtimer's time base reading.
 | |
| 	 *
 | |
| 	 * The deferred reservation will have its timer set to
 | |
| 	 * (deadline - runtime). At that point, the CBS rule will decide
 | |
| 	 * if the current deadline can be used, or if a replenishment is
 | |
| 	 * required to avoid add too much pressure on the system
 | |
| 	 * (current u > U).
 | |
| 	 */
 | |
| 	if (dl_se->dl_defer_armed) {
 | |
| 		WARN_ON_ONCE(!dl_se->dl_throttled);
 | |
| 		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
 | |
| 	} else {
 | |
| 		/* act = deadline - rel-deadline + period */
 | |
| 		act = ns_to_ktime(dl_next_period(dl_se));
 | |
| 	}
 | |
| 
 | |
| 	now = hrtimer_cb_get_time(timer);
 | |
| 	delta = ktime_to_ns(now) - rq_clock(rq);
 | |
| 	act = ktime_add_ns(act, delta);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the expiry time already passed, e.g., because the value
 | |
| 	 * chosen as the deadline is too small, don't even try to
 | |
| 	 * start the timer in the past!
 | |
| 	 */
 | |
| 	if (ktime_us_delta(act, now) < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * !enqueued will guarantee another callback; even if one is already in
 | |
| 	 * progress. This ensures a balanced {get,put}_task_struct().
 | |
| 	 *
 | |
| 	 * The race against __run_timer() clearing the enqueued state is
 | |
| 	 * harmless because we're holding task_rq()->lock, therefore the timer
 | |
| 	 * expiring after we've done the check will wait on its task_rq_lock()
 | |
| 	 * and observe our state.
 | |
| 	 */
 | |
| 	if (!hrtimer_is_queued(timer)) {
 | |
| 		if (!dl_server(dl_se))
 | |
| 			get_task_struct(dl_task_of(dl_se));
 | |
| 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Queueing this task back might have overloaded rq, check if we need
 | |
| 	 * to kick someone away.
 | |
| 	 */
 | |
| 	if (has_pushable_dl_tasks(rq)) {
 | |
| 		/*
 | |
| 		 * Nothing relies on rq->lock after this, so its safe to drop
 | |
| 		 * rq->lock.
 | |
| 		 */
 | |
| 		rq_unpin_lock(rq, rf);
 | |
| 		push_dl_task(rq);
 | |
| 		rq_repin_lock(rq, rf);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
 | |
| static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
 | |
| 
 | |
| static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct rq *rq = rq_of_dl_se(dl_se);
 | |
| 	u64 fw;
 | |
| 
 | |
| 	scoped_guard (rq_lock, rq) {
 | |
| 		struct rq_flags *rf = &scope.rf;
 | |
| 
 | |
| 		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
 | |
| 			return HRTIMER_NORESTART;
 | |
| 
 | |
| 		sched_clock_tick();
 | |
| 		update_rq_clock(rq);
 | |
| 
 | |
| 		if (!dl_se->dl_runtime)
 | |
| 			return HRTIMER_NORESTART;
 | |
| 
 | |
| 		if (!dl_se->server_has_tasks(dl_se)) {
 | |
| 			replenish_dl_entity(dl_se);
 | |
| 			return HRTIMER_NORESTART;
 | |
| 		}
 | |
| 
 | |
| 		if (dl_se->dl_defer_armed) {
 | |
| 			/*
 | |
| 			 * First check if the server could consume runtime in background.
 | |
| 			 * If so, it is possible to push the defer timer for this amount
 | |
| 			 * of time. The dl_server_min_res serves as a limit to avoid
 | |
| 			 * forwarding the timer for a too small amount of time.
 | |
| 			 */
 | |
| 			if (dl_time_before(rq_clock(dl_se->rq),
 | |
| 					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
 | |
| 
 | |
| 				/* reset the defer timer */
 | |
| 				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
 | |
| 
 | |
| 				hrtimer_forward_now(timer, ns_to_ktime(fw));
 | |
| 				return HRTIMER_RESTART;
 | |
| 			}
 | |
| 
 | |
| 			dl_se->dl_defer_running = 1;
 | |
| 		}
 | |
| 
 | |
| 		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
 | |
| 
 | |
| 		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
 | |
| 			resched_curr(rq);
 | |
| 
 | |
| 		__push_dl_task(rq, rf);
 | |
| 	}
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the bandwidth enforcement timer callback. If here, we know
 | |
|  * a task is not on its dl_rq, since the fact that the timer was running
 | |
|  * means the task is throttled and needs a runtime replenishment.
 | |
|  *
 | |
|  * However, what we actually do depends on the fact the task is active,
 | |
|  * (it is on its rq) or has been removed from there by a call to
 | |
|  * dequeue_task_dl(). In the former case we must issue the runtime
 | |
|  * replenishment and add the task back to the dl_rq; in the latter, we just
 | |
|  * do nothing but clearing dl_throttled, so that runtime and deadline
 | |
|  * updating (and the queueing back to dl_rq) will be done by the
 | |
|  * next call to enqueue_task_dl().
 | |
|  */
 | |
| static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = container_of(timer,
 | |
| 						     struct sched_dl_entity,
 | |
| 						     dl_timer);
 | |
| 	struct task_struct *p;
 | |
| 	struct rq_flags rf;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	if (dl_server(dl_se))
 | |
| 		return dl_server_timer(timer, dl_se);
 | |
| 
 | |
| 	p = dl_task_of(dl_se);
 | |
| 	rq = task_rq_lock(p, &rf);
 | |
| 
 | |
| 	/*
 | |
| 	 * The task might have changed its scheduling policy to something
 | |
| 	 * different than SCHED_DEADLINE (through switched_from_dl()).
 | |
| 	 */
 | |
| 	if (!dl_task(p))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * The task might have been boosted by someone else and might be in the
 | |
| 	 * boosting/deboosting path, its not throttled.
 | |
| 	 */
 | |
| 	if (is_dl_boosted(dl_se))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Spurious timer due to start_dl_timer() race; or we already received
 | |
| 	 * a replenishment from rt_mutex_setprio().
 | |
| 	 */
 | |
| 	if (!dl_se->dl_throttled)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	sched_clock_tick();
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the throttle happened during sched-out; like:
 | |
| 	 *
 | |
| 	 *   schedule()
 | |
| 	 *     deactivate_task()
 | |
| 	 *       dequeue_task_dl()
 | |
| 	 *         update_curr_dl()
 | |
| 	 *           start_dl_timer()
 | |
| 	 *         __dequeue_task_dl()
 | |
| 	 *     prev->on_rq = 0;
 | |
| 	 *
 | |
| 	 * We can be both throttled and !queued. Replenish the counter
 | |
| 	 * but do not enqueue -- wait for our wakeup to do that.
 | |
| 	 */
 | |
| 	if (!task_on_rq_queued(p)) {
 | |
| 		replenish_dl_entity(dl_se);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (unlikely(!rq->online)) {
 | |
| 		/*
 | |
| 		 * If the runqueue is no longer available, migrate the
 | |
| 		 * task elsewhere. This necessarily changes rq.
 | |
| 		 */
 | |
| 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
 | |
| 		rq = dl_task_offline_migration(rq, p);
 | |
| 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
 | |
| 		update_rq_clock(rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that the task has been migrated to the new RQ and we
 | |
| 		 * have that locked, proceed as normal and enqueue the task
 | |
| 		 * there.
 | |
| 		 */
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
 | |
| 	if (dl_task(rq->donor))
 | |
| 		wakeup_preempt_dl(rq, p, 0);
 | |
| 	else
 | |
| 		resched_curr(rq);
 | |
| 
 | |
| 	__push_dl_task(rq, &rf);
 | |
| 
 | |
| unlock:
 | |
| 	task_rq_unlock(rq, p, &rf);
 | |
| 
 | |
| 	/*
 | |
| 	 * This can free the task_struct, including this hrtimer, do not touch
 | |
| 	 * anything related to that after this.
 | |
| 	 */
 | |
| 	put_task_struct(p);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| static void init_dl_task_timer(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct hrtimer *timer = &dl_se->dl_timer;
 | |
| 
 | |
| 	hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * During the activation, CBS checks if it can reuse the current task's
 | |
|  * runtime and period. If the deadline of the task is in the past, CBS
 | |
|  * cannot use the runtime, and so it replenishes the task. This rule
 | |
|  * works fine for implicit deadline tasks (deadline == period), and the
 | |
|  * CBS was designed for implicit deadline tasks. However, a task with
 | |
|  * constrained deadline (deadline < period) might be awakened after the
 | |
|  * deadline, but before the next period. In this case, replenishing the
 | |
|  * task would allow it to run for runtime / deadline. As in this case
 | |
|  * deadline < period, CBS enables a task to run for more than the
 | |
|  * runtime / period. In a very loaded system, this can cause a domino
 | |
|  * effect, making other tasks miss their deadlines.
 | |
|  *
 | |
|  * To avoid this problem, in the activation of a constrained deadline
 | |
|  * task after the deadline but before the next period, throttle the
 | |
|  * task and set the replenishing timer to the begin of the next period,
 | |
|  * unless it is boosted.
 | |
|  */
 | |
| static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct rq *rq = rq_of_dl_se(dl_se);
 | |
| 
 | |
| 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 | |
| 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
 | |
| 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
 | |
| 			return;
 | |
| 		dl_se->dl_throttled = 1;
 | |
| 		if (dl_se->runtime > 0)
 | |
| 			dl_se->runtime = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static
 | |
| int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return (dl_se->runtime <= 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function implements the GRUB accounting rule. According to the
 | |
|  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
 | |
|  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
 | |
|  * where u is the utilization of the task, Umax is the maximum reclaimable
 | |
|  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
 | |
|  * as the difference between the "total runqueue utilization" and the
 | |
|  * "runqueue active utilization", and Uextra is the (per runqueue) extra
 | |
|  * reclaimable utilization.
 | |
|  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
 | |
|  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
 | |
|  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
 | |
|  * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
 | |
|  * Since delta is a 64 bit variable, to have an overflow its value should be
 | |
|  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
 | |
|  * not an issue here.
 | |
|  */
 | |
| static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	u64 u_act;
 | |
| 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
 | |
| 
 | |
| 	/*
 | |
| 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
 | |
| 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
 | |
| 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
 | |
| 	 * negative leading to wrong results.
 | |
| 	 */
 | |
| 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
 | |
| 		u_act = dl_se->dl_bw;
 | |
| 	else
 | |
| 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
 | |
| 
 | |
| 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
 | |
| 	return (delta * u_act) >> BW_SHIFT;
 | |
| }
 | |
| 
 | |
| s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
 | |
| {
 | |
| 	s64 scaled_delta_exec;
 | |
| 
 | |
| 	/*
 | |
| 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
 | |
| 	 * spare reclaimed bandwidth is used to clock down frequency.
 | |
| 	 *
 | |
| 	 * For the others, we still need to scale reservation parameters
 | |
| 	 * according to current frequency and CPU maximum capacity.
 | |
| 	 */
 | |
| 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
 | |
| 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
 | |
| 	} else {
 | |
| 		int cpu = cpu_of(rq);
 | |
| 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
 | |
| 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
 | |
| 
 | |
| 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
 | |
| 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
 | |
| 	}
 | |
| 
 | |
| 	return scaled_delta_exec;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
 | |
| 			int flags);
 | |
| static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
 | |
| {
 | |
| 	s64 scaled_delta_exec;
 | |
| 
 | |
| 	if (unlikely(delta_exec <= 0)) {
 | |
| 		if (unlikely(dl_se->dl_yielded))
 | |
| 			goto throttle;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
 | |
| 		return;
 | |
| 
 | |
| 	if (dl_entity_is_special(dl_se))
 | |
| 		return;
 | |
| 
 | |
| 	scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
 | |
| 
 | |
| 	dl_se->runtime -= scaled_delta_exec;
 | |
| 
 | |
| 	/*
 | |
| 	 * The fair server can consume its runtime while throttled (not queued/
 | |
| 	 * running as regular CFS).
 | |
| 	 *
 | |
| 	 * If the server consumes its entire runtime in this state. The server
 | |
| 	 * is not required for the current period. Thus, reset the server by
 | |
| 	 * starting a new period, pushing the activation.
 | |
| 	 */
 | |
| 	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
 | |
| 		/*
 | |
| 		 * If the server was previously activated - the starving condition
 | |
| 		 * took place, it this point it went away because the fair scheduler
 | |
| 		 * was able to get runtime in background. So return to the initial
 | |
| 		 * state.
 | |
| 		 */
 | |
| 		dl_se->dl_defer_running = 0;
 | |
| 
 | |
| 		hrtimer_try_to_cancel(&dl_se->dl_timer);
 | |
| 
 | |
| 		replenish_dl_new_period(dl_se, dl_se->rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * Not being able to start the timer seems problematic. If it could not
 | |
| 		 * be started for whatever reason, we need to "unthrottle" the DL server
 | |
| 		 * and queue right away. Otherwise nothing might queue it. That's similar
 | |
| 		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(!start_dl_timer(dl_se));
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| throttle:
 | |
| 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
 | |
| 		dl_se->dl_throttled = 1;
 | |
| 
 | |
| 		/* If requested, inform the user about runtime overruns. */
 | |
| 		if (dl_runtime_exceeded(dl_se) &&
 | |
| 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
 | |
| 			dl_se->dl_overrun = 1;
 | |
| 
 | |
| 		dequeue_dl_entity(dl_se, 0);
 | |
| 		if (!dl_server(dl_se)) {
 | |
| 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
 | |
| 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
 | |
| 			if (dl_server(dl_se))
 | |
| 				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
 | |
| 			else
 | |
| 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
 | |
| 		}
 | |
| 
 | |
| 		if (!is_leftmost(dl_se, &rq->dl))
 | |
| 			resched_curr(rq);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The fair server (sole dl_server) does not account for real-time
 | |
| 	 * workload because it is running fair work.
 | |
| 	 */
 | |
| 	if (dl_se == &rq->fair_server)
 | |
| 		return;
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	/*
 | |
| 	 * Because -- for now -- we share the rt bandwidth, we need to
 | |
| 	 * account our runtime there too, otherwise actual rt tasks
 | |
| 	 * would be able to exceed the shared quota.
 | |
| 	 *
 | |
| 	 * Account to the root rt group for now.
 | |
| 	 *
 | |
| 	 * The solution we're working towards is having the RT groups scheduled
 | |
| 	 * using deadline servers -- however there's a few nasties to figure
 | |
| 	 * out before that can happen.
 | |
| 	 */
 | |
| 	if (rt_bandwidth_enabled()) {
 | |
| 		struct rt_rq *rt_rq = &rq->rt;
 | |
| 
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		/*
 | |
| 		 * We'll let actual RT tasks worry about the overflow here, we
 | |
| 		 * have our own CBS to keep us inline; only account when RT
 | |
| 		 * bandwidth is relevant.
 | |
| 		 */
 | |
| 		if (sched_rt_bandwidth_account(rt_rq))
 | |
| 			rt_rq->rt_time += delta_exec;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In the non-defer mode, the idle time is not accounted, as the
 | |
|  * server provides a guarantee.
 | |
|  *
 | |
|  * If the dl_server is in defer mode, the idle time is also considered
 | |
|  * as time available for the fair server, avoiding a penalty for the
 | |
|  * rt scheduler that did not consumed that time.
 | |
|  */
 | |
| void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	s64 delta_exec, scaled_delta_exec;
 | |
| 
 | |
| 	if (!rq->fair_server.dl_defer)
 | |
| 		return;
 | |
| 
 | |
| 	/* no need to discount more */
 | |
| 	if (rq->fair_server.runtime < 0)
 | |
| 		return;
 | |
| 
 | |
| 	delta_exec = rq_clock_task(rq) - p->se.exec_start;
 | |
| 	if (delta_exec < 0)
 | |
| 		return;
 | |
| 
 | |
| 	scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
 | |
| 
 | |
| 	rq->fair_server.runtime -= scaled_delta_exec;
 | |
| 
 | |
| 	if (rq->fair_server.runtime < 0) {
 | |
| 		rq->fair_server.dl_defer_running = 0;
 | |
| 		rq->fair_server.runtime = 0;
 | |
| 	}
 | |
| 
 | |
| 	p->se.exec_start = rq_clock_task(rq);
 | |
| }
 | |
| 
 | |
| void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
 | |
| {
 | |
| 	/* 0 runtime = fair server disabled */
 | |
| 	if (dl_se->dl_runtime)
 | |
| 		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
 | |
| }
 | |
| 
 | |
| void dl_server_start(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct rq *rq = dl_se->rq;
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX: the apply do not work fine at the init phase for the
 | |
| 	 * fair server because things are not yet set. We need to improve
 | |
| 	 * this before getting generic.
 | |
| 	 */
 | |
| 	if (!dl_server(dl_se)) {
 | |
| 		u64 runtime =  50 * NSEC_PER_MSEC;
 | |
| 		u64 period = 1000 * NSEC_PER_MSEC;
 | |
| 
 | |
| 		dl_server_apply_params(dl_se, runtime, period, 1);
 | |
| 
 | |
| 		dl_se->dl_server = 1;
 | |
| 		dl_se->dl_defer = 1;
 | |
| 		setup_new_dl_entity(dl_se);
 | |
| 	}
 | |
| 
 | |
| 	if (!dl_se->dl_runtime)
 | |
| 		return;
 | |
| 
 | |
| 	dl_se->dl_server_active = 1;
 | |
| 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
 | |
| 	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
 | |
| 		resched_curr(dl_se->rq);
 | |
| }
 | |
| 
 | |
| void dl_server_stop(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	if (!dl_se->dl_runtime)
 | |
| 		return;
 | |
| 
 | |
| 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
 | |
| 	hrtimer_try_to_cancel(&dl_se->dl_timer);
 | |
| 	dl_se->dl_defer_armed = 0;
 | |
| 	dl_se->dl_throttled = 0;
 | |
| 	dl_se->dl_server_active = 0;
 | |
| }
 | |
| 
 | |
| void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
 | |
| 		    dl_server_has_tasks_f has_tasks,
 | |
| 		    dl_server_pick_f pick_task)
 | |
| {
 | |
| 	dl_se->rq = rq;
 | |
| 	dl_se->server_has_tasks = has_tasks;
 | |
| 	dl_se->server_pick_task = pick_task;
 | |
| }
 | |
| 
 | |
| void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
 | |
| {
 | |
| 	u64 new_bw = dl_se->dl_bw;
 | |
| 	int cpu = cpu_of(rq);
 | |
| 	struct dl_bw *dl_b;
 | |
| 
 | |
| 	dl_b = dl_bw_of(cpu_of(rq));
 | |
| 	guard(raw_spinlock)(&dl_b->lock);
 | |
| 
 | |
| 	if (!dl_bw_cpus(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
 | |
| }
 | |
| 
 | |
| int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
 | |
| {
 | |
| 	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
 | |
| 	u64 new_bw = to_ratio(period, runtime);
 | |
| 	struct rq *rq = dl_se->rq;
 | |
| 	int cpu = cpu_of(rq);
 | |
| 	struct dl_bw *dl_b;
 | |
| 	unsigned long cap;
 | |
| 	int retval = 0;
 | |
| 	int cpus;
 | |
| 
 | |
| 	dl_b = dl_bw_of(cpu);
 | |
| 	guard(raw_spinlock)(&dl_b->lock);
 | |
| 
 | |
| 	cpus = dl_bw_cpus(cpu);
 | |
| 	cap = dl_bw_capacity(cpu);
 | |
| 
 | |
| 	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (init) {
 | |
| 		__add_rq_bw(new_bw, &rq->dl);
 | |
| 		__dl_add(dl_b, new_bw, cpus);
 | |
| 	} else {
 | |
| 		__dl_sub(dl_b, dl_se->dl_bw, cpus);
 | |
| 		__dl_add(dl_b, new_bw, cpus);
 | |
| 
 | |
| 		dl_rq_change_utilization(rq, dl_se, new_bw);
 | |
| 	}
 | |
| 
 | |
| 	dl_se->dl_runtime = runtime;
 | |
| 	dl_se->dl_deadline = period;
 | |
| 	dl_se->dl_period = period;
 | |
| 
 | |
| 	dl_se->runtime = 0;
 | |
| 	dl_se->deadline = 0;
 | |
| 
 | |
| 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
 | |
| 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the current task's runtime statistics (provided it is still
 | |
|  * a -deadline task and has not been removed from the dl_rq).
 | |
|  */
 | |
| static void update_curr_dl(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *donor = rq->donor;
 | |
| 	struct sched_dl_entity *dl_se = &donor->dl;
 | |
| 	s64 delta_exec;
 | |
| 
 | |
| 	if (!dl_task(donor) || !on_dl_rq(dl_se))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Consumed budget is computed considering the time as
 | |
| 	 * observed by schedulable tasks (excluding time spent
 | |
| 	 * in hardirq context, etc.). Deadlines are instead
 | |
| 	 * computed using hard walltime. This seems to be the more
 | |
| 	 * natural solution, but the full ramifications of this
 | |
| 	 * approach need further study.
 | |
| 	 */
 | |
| 	delta_exec = update_curr_common(rq);
 | |
| 	update_curr_dl_se(rq, dl_se, delta_exec);
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = container_of(timer,
 | |
| 						     struct sched_dl_entity,
 | |
| 						     inactive_timer);
 | |
| 	struct task_struct *p = NULL;
 | |
| 	struct rq_flags rf;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	if (!dl_server(dl_se)) {
 | |
| 		p = dl_task_of(dl_se);
 | |
| 		rq = task_rq_lock(p, &rf);
 | |
| 	} else {
 | |
| 		rq = dl_se->rq;
 | |
| 		rq_lock(rq, &rf);
 | |
| 	}
 | |
| 
 | |
| 	sched_clock_tick();
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	if (dl_server(dl_se))
 | |
| 		goto no_task;
 | |
| 
 | |
| 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
 | |
| 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 | |
| 
 | |
| 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
 | |
| 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
 | |
| 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
 | |
| 			dl_se->dl_non_contending = 0;
 | |
| 		}
 | |
| 
 | |
| 		raw_spin_lock(&dl_b->lock);
 | |
| 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 | |
| 		raw_spin_unlock(&dl_b->lock);
 | |
| 		__dl_clear_params(dl_se);
 | |
| 
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| no_task:
 | |
| 	if (dl_se->dl_non_contending == 0)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	sub_running_bw(dl_se, &rq->dl);
 | |
| 	dl_se->dl_non_contending = 0;
 | |
| unlock:
 | |
| 
 | |
| 	if (!dl_server(dl_se)) {
 | |
| 		task_rq_unlock(rq, p, &rf);
 | |
| 		put_task_struct(p);
 | |
| 	} else {
 | |
| 		rq_unlock(rq, &rf);
 | |
| 	}
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct hrtimer *timer = &dl_se->inactive_timer;
 | |
| 
 | |
| 	hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 | |
| }
 | |
| 
 | |
| #define __node_2_dle(node) \
 | |
| 	rb_entry((node), struct sched_dl_entity, rb_node)
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 | |
| {
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 
 | |
| 	if (dl_rq->earliest_dl.curr == 0 ||
 | |
| 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
 | |
| 		if (dl_rq->earliest_dl.curr == 0)
 | |
| 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
 | |
| 		dl_rq->earliest_dl.curr = deadline;
 | |
| 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 | |
| {
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we may have removed our earliest (and/or next earliest)
 | |
| 	 * task we must recompute them.
 | |
| 	 */
 | |
| 	if (!dl_rq->dl_nr_running) {
 | |
| 		dl_rq->earliest_dl.curr = 0;
 | |
| 		dl_rq->earliest_dl.next = 0;
 | |
| 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
 | |
| 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
 | |
| 	} else {
 | |
| 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
 | |
| 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
 | |
| 
 | |
| 		dl_rq->earliest_dl.curr = entry->deadline;
 | |
| 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 | |
| static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static inline
 | |
| void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	u64 deadline = dl_se->deadline;
 | |
| 
 | |
| 	dl_rq->dl_nr_running++;
 | |
| 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
 | |
| 
 | |
| 	inc_dl_deadline(dl_rq, deadline);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	WARN_ON(!dl_rq->dl_nr_running);
 | |
| 	dl_rq->dl_nr_running--;
 | |
| 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
 | |
| 
 | |
| 	dec_dl_deadline(dl_rq, dl_se->deadline);
 | |
| }
 | |
| 
 | |
| static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
 | |
| {
 | |
| 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
 | |
| }
 | |
| 
 | |
| static __always_inline struct sched_statistics *
 | |
| __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	if (!schedstat_enabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (dl_server(dl_se))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &dl_task_of(dl_se)->stats;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
 | |
| 	if (stats)
 | |
| 		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
 | |
| 	if (stats)
 | |
| 		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
 | |
| 	if (stats)
 | |
| 		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
 | |
| 			int flags)
 | |
| {
 | |
| 	if (!schedstat_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (flags & ENQUEUE_WAKEUP)
 | |
| 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
 | |
| 			int flags)
 | |
| {
 | |
| 	struct task_struct *p = dl_task_of(dl_se);
 | |
| 
 | |
| 	if (!schedstat_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	if ((flags & DEQUEUE_SLEEP)) {
 | |
| 		unsigned int state;
 | |
| 
 | |
| 		state = READ_ONCE(p->__state);
 | |
| 		if (state & TASK_INTERRUPTIBLE)
 | |
| 			__schedstat_set(p->stats.sleep_start,
 | |
| 					rq_clock(rq_of_dl_rq(dl_rq)));
 | |
| 
 | |
| 		if (state & TASK_UNINTERRUPTIBLE)
 | |
| 			__schedstat_set(p->stats.block_start,
 | |
| 					rq_clock(rq_of_dl_rq(dl_rq)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 
 | |
| 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
 | |
| 
 | |
| 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
 | |
| 
 | |
| 	inc_dl_tasks(dl_se, dl_rq);
 | |
| }
 | |
| 
 | |
| static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 
 | |
| 	if (RB_EMPTY_NODE(&dl_se->rb_node))
 | |
| 		return;
 | |
| 
 | |
| 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
 | |
| 
 | |
| 	RB_CLEAR_NODE(&dl_se->rb_node);
 | |
| 
 | |
| 	dec_dl_tasks(dl_se, dl_rq);
 | |
| }
 | |
| 
 | |
| static void
 | |
| enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
 | |
| {
 | |
| 	WARN_ON_ONCE(on_dl_rq(dl_se));
 | |
| 
 | |
| 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if a constrained deadline task was activated
 | |
| 	 * after the deadline but before the next period.
 | |
| 	 * If that is the case, the task will be throttled and
 | |
| 	 * the replenishment timer will be set to the next period.
 | |
| 	 */
 | |
| 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
 | |
| 		dl_check_constrained_dl(dl_se);
 | |
| 
 | |
| 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
 | |
| 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 
 | |
| 		add_rq_bw(dl_se, dl_rq);
 | |
| 		add_running_bw(dl_se, dl_rq);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
 | |
| 	 * its budget it needs a replenishment and, since it now is on
 | |
| 	 * its rq, the bandwidth timer callback (which clearly has not
 | |
| 	 * run yet) will take care of this.
 | |
| 	 * However, the active utilization does not depend on the fact
 | |
| 	 * that the task is on the runqueue or not (but depends on the
 | |
| 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
 | |
| 	 * In other words, even if a task is throttled its utilization must
 | |
| 	 * be counted in the active utilization; hence, we need to call
 | |
| 	 * add_running_bw().
 | |
| 	 */
 | |
| 	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
 | |
| 		if (flags & ENQUEUE_WAKEUP)
 | |
| 			task_contending(dl_se, flags);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a wakeup or a new instance, the scheduling
 | |
| 	 * parameters of the task might need updating. Otherwise,
 | |
| 	 * we want a replenishment of its runtime.
 | |
| 	 */
 | |
| 	if (flags & ENQUEUE_WAKEUP) {
 | |
| 		task_contending(dl_se, flags);
 | |
| 		update_dl_entity(dl_se);
 | |
| 	} else if (flags & ENQUEUE_REPLENISH) {
 | |
| 		replenish_dl_entity(dl_se);
 | |
| 	} else if ((flags & ENQUEUE_RESTORE) &&
 | |
| 		   !is_dl_boosted(dl_se) &&
 | |
| 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
 | |
| 		setup_new_dl_entity(dl_se);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the reservation is still throttled, e.g., it got replenished but is a
 | |
| 	 * deferred task and still got to wait, don't enqueue.
 | |
| 	 */
 | |
| 	if (dl_se->dl_throttled && start_dl_timer(dl_se))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're about to enqueue, make sure we're not ->dl_throttled!
 | |
| 	 * In case the timer was not started, say because the defer time
 | |
| 	 * has passed, mark as not throttled and mark unarmed.
 | |
| 	 * Also cancel earlier timers, since letting those run is pointless.
 | |
| 	 */
 | |
| 	if (dl_se->dl_throttled) {
 | |
| 		hrtimer_try_to_cancel(&dl_se->dl_timer);
 | |
| 		dl_se->dl_defer_armed = 0;
 | |
| 		dl_se->dl_throttled = 0;
 | |
| 	}
 | |
| 
 | |
| 	__enqueue_dl_entity(dl_se);
 | |
| }
 | |
| 
 | |
| static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
 | |
| {
 | |
| 	__dequeue_dl_entity(dl_se);
 | |
| 
 | |
| 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
 | |
| 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 
 | |
| 		sub_running_bw(dl_se, dl_rq);
 | |
| 		sub_rq_bw(dl_se, dl_rq);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This check allows to start the inactive timer (or to immediately
 | |
| 	 * decrease the active utilization, if needed) in two cases:
 | |
| 	 * when the task blocks and when it is terminating
 | |
| 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
 | |
| 	 * way, because from GRUB's point of view the same thing is happening
 | |
| 	 * (the task moves from "active contending" to "active non contending"
 | |
| 	 * or "inactive")
 | |
| 	 */
 | |
| 	if (flags & DEQUEUE_SLEEP)
 | |
| 		task_non_contending(dl_se);
 | |
| }
 | |
| 
 | |
| static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	if (is_dl_boosted(&p->dl)) {
 | |
| 		/*
 | |
| 		 * Because of delays in the detection of the overrun of a
 | |
| 		 * thread's runtime, it might be the case that a thread
 | |
| 		 * goes to sleep in a rt mutex with negative runtime. As
 | |
| 		 * a consequence, the thread will be throttled.
 | |
| 		 *
 | |
| 		 * While waiting for the mutex, this thread can also be
 | |
| 		 * boosted via PI, resulting in a thread that is throttled
 | |
| 		 * and boosted at the same time.
 | |
| 		 *
 | |
| 		 * In this case, the boost overrides the throttle.
 | |
| 		 */
 | |
| 		if (p->dl.dl_throttled) {
 | |
| 			/*
 | |
| 			 * The replenish timer needs to be canceled. No
 | |
| 			 * problem if it fires concurrently: boosted threads
 | |
| 			 * are ignored in dl_task_timer().
 | |
| 			 */
 | |
| 			cancel_replenish_timer(&p->dl);
 | |
| 			p->dl.dl_throttled = 0;
 | |
| 		}
 | |
| 	} else if (!dl_prio(p->normal_prio)) {
 | |
| 		/*
 | |
| 		 * Special case in which we have a !SCHED_DEADLINE task that is going
 | |
| 		 * to be deboosted, but exceeds its runtime while doing so. No point in
 | |
| 		 * replenishing it, as it's going to return back to its original
 | |
| 		 * scheduling class after this. If it has been throttled, we need to
 | |
| 		 * clear the flag, otherwise the task may wake up as throttled after
 | |
| 		 * being boosted again with no means to replenish the runtime and clear
 | |
| 		 * the throttle.
 | |
| 		 */
 | |
| 		p->dl.dl_throttled = 0;
 | |
| 		if (!(flags & ENQUEUE_REPLENISH))
 | |
| 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
 | |
| 					     task_pid_nr(p));
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	check_schedstat_required();
 | |
| 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
 | |
| 
 | |
| 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
 | |
| 		flags |= ENQUEUE_MIGRATING;
 | |
| 
 | |
| 	enqueue_dl_entity(&p->dl, flags);
 | |
| 
 | |
| 	if (dl_server(&p->dl))
 | |
| 		return;
 | |
| 
 | |
| 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
 | |
| 		enqueue_pushable_dl_task(rq, p);
 | |
| }
 | |
| 
 | |
| static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	update_curr_dl(rq);
 | |
| 
 | |
| 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
 | |
| 		flags |= DEQUEUE_MIGRATING;
 | |
| 
 | |
| 	dequeue_dl_entity(&p->dl, flags);
 | |
| 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
 | |
| 		dequeue_pushable_dl_task(rq, p);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Yield task semantic for -deadline tasks is:
 | |
|  *
 | |
|  *   get off from the CPU until our next instance, with
 | |
|  *   a new runtime. This is of little use now, since we
 | |
|  *   don't have a bandwidth reclaiming mechanism. Anyway,
 | |
|  *   bandwidth reclaiming is planned for the future, and
 | |
|  *   yield_task_dl will indicate that some spare budget
 | |
|  *   is available for other task instances to use it.
 | |
|  */
 | |
| static void yield_task_dl(struct rq *rq)
 | |
| {
 | |
| 	/*
 | |
| 	 * We make the task go to sleep until its current deadline by
 | |
| 	 * forcing its runtime to zero. This way, update_curr_dl() stops
 | |
| 	 * it and the bandwidth timer will wake it up and will give it
 | |
| 	 * new scheduling parameters (thanks to dl_yielded=1).
 | |
| 	 */
 | |
| 	rq->curr->dl.dl_yielded = 1;
 | |
| 
 | |
| 	update_rq_clock(rq);
 | |
| 	update_curr_dl(rq);
 | |
| 	/*
 | |
| 	 * Tell update_rq_clock() that we've just updated,
 | |
| 	 * so we don't do microscopic update in schedule()
 | |
| 	 * and double the fastpath cost.
 | |
| 	 */
 | |
| 	rq_clock_skip_update(rq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
 | |
| 						 struct rq *rq)
 | |
| {
 | |
| 	return (!rq->dl.dl_nr_running ||
 | |
| 		dl_time_before(p->dl.deadline,
 | |
| 			       rq->dl.earliest_dl.curr));
 | |
| }
 | |
| 
 | |
| static int find_later_rq(struct task_struct *task);
 | |
| 
 | |
| static int
 | |
| select_task_rq_dl(struct task_struct *p, int cpu, int flags)
 | |
| {
 | |
| 	struct task_struct *curr, *donor;
 | |
| 	bool select_rq;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	if (!(flags & WF_TTWU))
 | |
| 		goto out;
 | |
| 
 | |
| 	rq = cpu_rq(cpu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	curr = READ_ONCE(rq->curr); /* unlocked access */
 | |
| 	donor = READ_ONCE(rq->donor);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are dealing with a -deadline task, we must
 | |
| 	 * decide where to wake it up.
 | |
| 	 * If it has a later deadline and the current task
 | |
| 	 * on this rq can't move (provided the waking task
 | |
| 	 * can!) we prefer to send it somewhere else. On the
 | |
| 	 * other hand, if it has a shorter deadline, we
 | |
| 	 * try to make it stay here, it might be important.
 | |
| 	 */
 | |
| 	select_rq = unlikely(dl_task(donor)) &&
 | |
| 		    (curr->nr_cpus_allowed < 2 ||
 | |
| 		     !dl_entity_preempt(&p->dl, &donor->dl)) &&
 | |
| 		    p->nr_cpus_allowed > 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Take the capacity of the CPU into account to
 | |
| 	 * ensure it fits the requirement of the task.
 | |
| 	 */
 | |
| 	if (sched_asym_cpucap_active())
 | |
| 		select_rq |= !dl_task_fits_capacity(p, cpu);
 | |
| 
 | |
| 	if (select_rq) {
 | |
| 		int target = find_later_rq(p);
 | |
| 
 | |
| 		if (target != -1 &&
 | |
| 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
 | |
| 			cpu = target;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| out:
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
 | |
| {
 | |
| 	struct rq_flags rf;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	if (READ_ONCE(p->__state) != TASK_WAKING)
 | |
| 		return;
 | |
| 
 | |
| 	rq = task_rq(p);
 | |
| 	/*
 | |
| 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
 | |
| 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
 | |
| 	 * rq->lock is not... So, lock it
 | |
| 	 */
 | |
| 	rq_lock(rq, &rf);
 | |
| 	if (p->dl.dl_non_contending) {
 | |
| 		update_rq_clock(rq);
 | |
| 		sub_running_bw(&p->dl, &rq->dl);
 | |
| 		p->dl.dl_non_contending = 0;
 | |
| 		/*
 | |
| 		 * If the timer handler is currently running and the
 | |
| 		 * timer cannot be canceled, inactive_task_timer()
 | |
| 		 * will see that dl_not_contending is not set, and
 | |
| 		 * will not touch the rq's active utilization,
 | |
| 		 * so we are still safe.
 | |
| 		 */
 | |
| 		cancel_inactive_timer(&p->dl);
 | |
| 	}
 | |
| 	sub_rq_bw(&p->dl, &rq->dl);
 | |
| 	rq_unlock(rq, &rf);
 | |
| }
 | |
| 
 | |
| static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Current can't be migrated, useless to reschedule,
 | |
| 	 * let's hope p can move out.
 | |
| 	 */
 | |
| 	if (rq->curr->nr_cpus_allowed == 1 ||
 | |
| 	    !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * p is migratable, so let's not schedule it and
 | |
| 	 * see if it is pushed or pulled somewhere else.
 | |
| 	 */
 | |
| 	if (p->nr_cpus_allowed != 1 &&
 | |
| 	    cpudl_find(&rq->rd->cpudl, p, NULL))
 | |
| 		return;
 | |
| 
 | |
| 	resched_curr(rq);
 | |
| }
 | |
| 
 | |
| static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
 | |
| {
 | |
| 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
 | |
| 		/*
 | |
| 		 * This is OK, because current is on_cpu, which avoids it being
 | |
| 		 * picked for load-balance and preemption/IRQs are still
 | |
| 		 * disabled avoiding further scheduler activity on it and we've
 | |
| 		 * not yet started the picking loop.
 | |
| 		 */
 | |
| 		rq_unpin_lock(rq, rf);
 | |
| 		pull_dl_task(rq);
 | |
| 		rq_repin_lock(rq, rf);
 | |
| 	}
 | |
| 
 | |
| 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Only called when both the current and waking task are -deadline
 | |
|  * tasks.
 | |
|  */
 | |
| static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
 | |
| 				  int flags)
 | |
| {
 | |
| 	if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
 | |
| 		resched_curr(rq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * In the unlikely case current and p have the same deadline
 | |
| 	 * let us try to decide what's the best thing to do...
 | |
| 	 */
 | |
| 	if ((p->dl.deadline == rq->donor->dl.deadline) &&
 | |
| 	    !test_tsk_need_resched(rq->curr))
 | |
| 		check_preempt_equal_dl(rq, p);
 | |
| #endif /* CONFIG_SMP */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	hrtick_start(rq, dl_se->runtime);
 | |
| }
 | |
| #else /* !CONFIG_SCHED_HRTICK */
 | |
| static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = &p->dl;
 | |
| 	struct dl_rq *dl_rq = &rq->dl;
 | |
| 
 | |
| 	p->se.exec_start = rq_clock_task(rq);
 | |
| 	if (on_dl_rq(&p->dl))
 | |
| 		update_stats_wait_end_dl(dl_rq, dl_se);
 | |
| 
 | |
| 	/* You can't push away the running task */
 | |
| 	dequeue_pushable_dl_task(rq, p);
 | |
| 
 | |
| 	if (!first)
 | |
| 		return;
 | |
| 
 | |
| 	if (rq->donor->sched_class != &dl_sched_class)
 | |
| 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
 | |
| 
 | |
| 	deadline_queue_push_tasks(rq);
 | |
| 
 | |
| 	if (hrtick_enabled_dl(rq))
 | |
| 		start_hrtick_dl(rq, &p->dl);
 | |
| }
 | |
| 
 | |
| static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
 | |
| {
 | |
| 	struct rb_node *left = rb_first_cached(&dl_rq->root);
 | |
| 
 | |
| 	if (!left)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __node_2_dle(left);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __pick_next_task_dl - Helper to pick the next -deadline task to run.
 | |
|  * @rq: The runqueue to pick the next task from.
 | |
|  */
 | |
| static struct task_struct *__pick_task_dl(struct rq *rq)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se;
 | |
| 	struct dl_rq *dl_rq = &rq->dl;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| again:
 | |
| 	if (!sched_dl_runnable(rq))
 | |
| 		return NULL;
 | |
| 
 | |
| 	dl_se = pick_next_dl_entity(dl_rq);
 | |
| 	WARN_ON_ONCE(!dl_se);
 | |
| 
 | |
| 	if (dl_server(dl_se)) {
 | |
| 		p = dl_se->server_pick_task(dl_se);
 | |
| 		if (!p) {
 | |
| 			if (dl_server_active(dl_se)) {
 | |
| 				dl_se->dl_yielded = 1;
 | |
| 				update_curr_dl_se(rq, dl_se, 0);
 | |
| 			}
 | |
| 			goto again;
 | |
| 		}
 | |
| 		rq->dl_server = dl_se;
 | |
| 	} else {
 | |
| 		p = dl_task_of(dl_se);
 | |
| 	}
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_task_dl(struct rq *rq)
 | |
| {
 | |
| 	return __pick_task_dl(rq);
 | |
| }
 | |
| 
 | |
| static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = &p->dl;
 | |
| 	struct dl_rq *dl_rq = &rq->dl;
 | |
| 
 | |
| 	if (on_dl_rq(&p->dl))
 | |
| 		update_stats_wait_start_dl(dl_rq, dl_se);
 | |
| 
 | |
| 	update_curr_dl(rq);
 | |
| 
 | |
| 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
 | |
| 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
 | |
| 		enqueue_pushable_dl_task(rq, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * scheduler tick hitting a task of our scheduling class.
 | |
|  *
 | |
|  * NOTE: This function can be called remotely by the tick offload that
 | |
|  * goes along full dynticks. Therefore no local assumption can be made
 | |
|  * and everything must be accessed through the @rq and @curr passed in
 | |
|  * parameters.
 | |
|  */
 | |
| static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
 | |
| {
 | |
| 	update_curr_dl(rq);
 | |
| 
 | |
| 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
 | |
| 	/*
 | |
| 	 * Even when we have runtime, update_curr_dl() might have resulted in us
 | |
| 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
 | |
| 	 * be set and schedule() will start a new hrtick for the next task.
 | |
| 	 */
 | |
| 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
 | |
| 	    is_leftmost(&p->dl, &rq->dl))
 | |
| 		start_hrtick_dl(rq, &p->dl);
 | |
| }
 | |
| 
 | |
| static void task_fork_dl(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
 | |
| 	 * sched_fork()
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /* Only try algorithms three times */
 | |
| #define DL_MAX_TRIES 3
 | |
| 
 | |
| /*
 | |
|  * Return the earliest pushable rq's task, which is suitable to be executed
 | |
|  * on the CPU, NULL otherwise:
 | |
|  */
 | |
| static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
 | |
| {
 | |
| 	struct task_struct *p = NULL;
 | |
| 	struct rb_node *next_node;
 | |
| 
 | |
| 	if (!has_pushable_dl_tasks(rq))
 | |
| 		return NULL;
 | |
| 
 | |
| 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
 | |
| 	while (next_node) {
 | |
| 		p = __node_2_pdl(next_node);
 | |
| 
 | |
| 		if (task_is_pushable(rq, p, cpu))
 | |
| 			return p;
 | |
| 
 | |
| 		next_node = rb_next(next_node);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
 | |
| 
 | |
| static int find_later_rq(struct task_struct *task)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	int cpu = task_cpu(task);
 | |
| 
 | |
| 	/* Make sure the mask is initialized first */
 | |
| 	if (unlikely(!later_mask))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (task->nr_cpus_allowed == 1)
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to consider system topology and task affinity
 | |
| 	 * first, then we can look for a suitable CPU.
 | |
| 	 */
 | |
| 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are here, some targets have been found, including
 | |
| 	 * the most suitable which is, among the runqueues where the
 | |
| 	 * current tasks have later deadlines than the task's one, the
 | |
| 	 * rq with the latest possible one.
 | |
| 	 *
 | |
| 	 * Now we check how well this matches with task's
 | |
| 	 * affinity and system topology.
 | |
| 	 *
 | |
| 	 * The last CPU where the task run is our first
 | |
| 	 * guess, since it is most likely cache-hot there.
 | |
| 	 */
 | |
| 	if (cpumask_test_cpu(cpu, later_mask))
 | |
| 		return cpu;
 | |
| 	/*
 | |
| 	 * Check if this_cpu is to be skipped (i.e., it is
 | |
| 	 * not in the mask) or not.
 | |
| 	 */
 | |
| 	if (!cpumask_test_cpu(this_cpu, later_mask))
 | |
| 		this_cpu = -1;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (sd->flags & SD_WAKE_AFFINE) {
 | |
| 			int best_cpu;
 | |
| 
 | |
| 			/*
 | |
| 			 * If possible, preempting this_cpu is
 | |
| 			 * cheaper than migrating.
 | |
| 			 */
 | |
| 			if (this_cpu != -1 &&
 | |
| 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
 | |
| 				rcu_read_unlock();
 | |
| 				return this_cpu;
 | |
| 			}
 | |
| 
 | |
| 			best_cpu = cpumask_any_and_distribute(later_mask,
 | |
| 							      sched_domain_span(sd));
 | |
| 			/*
 | |
| 			 * Last chance: if a CPU being in both later_mask
 | |
| 			 * and current sd span is valid, that becomes our
 | |
| 			 * choice. Of course, the latest possible CPU is
 | |
| 			 * already under consideration through later_mask.
 | |
| 			 */
 | |
| 			if (best_cpu < nr_cpu_ids) {
 | |
| 				rcu_read_unlock();
 | |
| 				return best_cpu;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, all our guesses failed, we just return
 | |
| 	 * 'something', and let the caller sort the things out.
 | |
| 	 */
 | |
| 	if (this_cpu != -1)
 | |
| 		return this_cpu;
 | |
| 
 | |
| 	cpu = cpumask_any_distribute(later_mask);
 | |
| 	if (cpu < nr_cpu_ids)
 | |
| 		return cpu;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Locks the rq it finds */
 | |
| static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
 | |
| {
 | |
| 	struct rq *later_rq = NULL;
 | |
| 	int tries;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
 | |
| 		cpu = find_later_rq(task);
 | |
| 
 | |
| 		if ((cpu == -1) || (cpu == rq->cpu))
 | |
| 			break;
 | |
| 
 | |
| 		later_rq = cpu_rq(cpu);
 | |
| 
 | |
| 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
 | |
| 			/*
 | |
| 			 * Target rq has tasks of equal or earlier deadline,
 | |
| 			 * retrying does not release any lock and is unlikely
 | |
| 			 * to yield a different result.
 | |
| 			 */
 | |
| 			later_rq = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Retry if something changed. */
 | |
| 		if (double_lock_balance(rq, later_rq)) {
 | |
| 			if (unlikely(task_rq(task) != rq ||
 | |
| 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
 | |
| 				     task_on_cpu(rq, task) ||
 | |
| 				     !dl_task(task) ||
 | |
| 				     is_migration_disabled(task) ||
 | |
| 				     !task_on_rq_queued(task))) {
 | |
| 				double_unlock_balance(rq, later_rq);
 | |
| 				later_rq = NULL;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the rq we found has no -deadline task, or
 | |
| 		 * its earliest one has a later deadline than our
 | |
| 		 * task, the rq is a good one.
 | |
| 		 */
 | |
| 		if (dl_task_is_earliest_deadline(task, later_rq))
 | |
| 			break;
 | |
| 
 | |
| 		/* Otherwise we try again. */
 | |
| 		double_unlock_balance(rq, later_rq);
 | |
| 		later_rq = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return later_rq;
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (!has_pushable_dl_tasks(rq))
 | |
| 		return NULL;
 | |
| 
 | |
| 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
 | |
| 
 | |
| 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
 | |
| 	WARN_ON_ONCE(task_current(rq, p));
 | |
| 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
 | |
| 
 | |
| 	WARN_ON_ONCE(!task_on_rq_queued(p));
 | |
| 	WARN_ON_ONCE(!dl_task(p));
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if the non running -deadline tasks on this rq
 | |
|  * can be sent to some other CPU where they can preempt
 | |
|  * and start executing.
 | |
|  */
 | |
| static int push_dl_task(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *next_task;
 | |
| 	struct rq *later_rq;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	next_task = pick_next_pushable_dl_task(rq);
 | |
| 	if (!next_task)
 | |
| 		return 0;
 | |
| 
 | |
| retry:
 | |
| 	/*
 | |
| 	 * If next_task preempts rq->curr, and rq->curr
 | |
| 	 * can move away, it makes sense to just reschedule
 | |
| 	 * without going further in pushing next_task.
 | |
| 	 */
 | |
| 	if (dl_task(rq->donor) &&
 | |
| 	    dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
 | |
| 	    rq->curr->nr_cpus_allowed > 1) {
 | |
| 		resched_curr(rq);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (is_migration_disabled(next_task))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (WARN_ON(next_task == rq->curr))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* We might release rq lock */
 | |
| 	get_task_struct(next_task);
 | |
| 
 | |
| 	/* Will lock the rq it'll find */
 | |
| 	later_rq = find_lock_later_rq(next_task, rq);
 | |
| 	if (!later_rq) {
 | |
| 		struct task_struct *task;
 | |
| 
 | |
| 		/*
 | |
| 		 * We must check all this again, since
 | |
| 		 * find_lock_later_rq releases rq->lock and it is
 | |
| 		 * then possible that next_task has migrated.
 | |
| 		 */
 | |
| 		task = pick_next_pushable_dl_task(rq);
 | |
| 		if (task == next_task) {
 | |
| 			/*
 | |
| 			 * The task is still there. We don't try
 | |
| 			 * again, some other CPU will pull it when ready.
 | |
| 			 */
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (!task)
 | |
| 			/* No more tasks */
 | |
| 			goto out;
 | |
| 
 | |
| 		put_task_struct(next_task);
 | |
| 		next_task = task;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	move_queued_task_locked(rq, later_rq, next_task);
 | |
| 	ret = 1;
 | |
| 
 | |
| 	resched_curr(later_rq);
 | |
| 
 | |
| 	double_unlock_balance(rq, later_rq);
 | |
| 
 | |
| out:
 | |
| 	put_task_struct(next_task);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void push_dl_tasks(struct rq *rq)
 | |
| {
 | |
| 	/* push_dl_task() will return true if it moved a -deadline task */
 | |
| 	while (push_dl_task(rq))
 | |
| 		;
 | |
| }
 | |
| 
 | |
| static void pull_dl_task(struct rq *this_rq)
 | |
| {
 | |
| 	int this_cpu = this_rq->cpu, cpu;
 | |
| 	struct task_struct *p, *push_task;
 | |
| 	bool resched = false;
 | |
| 	struct rq *src_rq;
 | |
| 	u64 dmin = LONG_MAX;
 | |
| 
 | |
| 	if (likely(!dl_overloaded(this_rq)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
 | |
| 	 * see overloaded we must also see the dlo_mask bit.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
 | |
| 		if (this_cpu == cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		src_rq = cpu_rq(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * It looks racy, and it is! However, as in sched_rt.c,
 | |
| 		 * we are fine with this.
 | |
| 		 */
 | |
| 		if (this_rq->dl.dl_nr_running &&
 | |
| 		    dl_time_before(this_rq->dl.earliest_dl.curr,
 | |
| 				   src_rq->dl.earliest_dl.next))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Might drop this_rq->lock */
 | |
| 		push_task = NULL;
 | |
| 		double_lock_balance(this_rq, src_rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * If there are no more pullable tasks on the
 | |
| 		 * rq, we're done with it.
 | |
| 		 */
 | |
| 		if (src_rq->dl.dl_nr_running <= 1)
 | |
| 			goto skip;
 | |
| 
 | |
| 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * We found a task to be pulled if:
 | |
| 		 *  - it preempts our current (if there's one),
 | |
| 		 *  - it will preempt the last one we pulled (if any).
 | |
| 		 */
 | |
| 		if (p && dl_time_before(p->dl.deadline, dmin) &&
 | |
| 		    dl_task_is_earliest_deadline(p, this_rq)) {
 | |
| 			WARN_ON(p == src_rq->curr);
 | |
| 			WARN_ON(!task_on_rq_queued(p));
 | |
| 
 | |
| 			/*
 | |
| 			 * Then we pull iff p has actually an earlier
 | |
| 			 * deadline than the current task of its runqueue.
 | |
| 			 */
 | |
| 			if (dl_time_before(p->dl.deadline,
 | |
| 					   src_rq->donor->dl.deadline))
 | |
| 				goto skip;
 | |
| 
 | |
| 			if (is_migration_disabled(p)) {
 | |
| 				push_task = get_push_task(src_rq);
 | |
| 			} else {
 | |
| 				move_queued_task_locked(src_rq, this_rq, p);
 | |
| 				dmin = p->dl.deadline;
 | |
| 				resched = true;
 | |
| 			}
 | |
| 
 | |
| 			/* Is there any other task even earlier? */
 | |
| 		}
 | |
| skip:
 | |
| 		double_unlock_balance(this_rq, src_rq);
 | |
| 
 | |
| 		if (push_task) {
 | |
| 			preempt_disable();
 | |
| 			raw_spin_rq_unlock(this_rq);
 | |
| 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
 | |
| 					    push_task, &src_rq->push_work);
 | |
| 			preempt_enable();
 | |
| 			raw_spin_rq_lock(this_rq);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (resched)
 | |
| 		resched_curr(this_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since the task is not running and a reschedule is not going to happen
 | |
|  * anytime soon on its runqueue, we try pushing it away now.
 | |
|  */
 | |
| static void task_woken_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	if (!task_on_cpu(rq, p) &&
 | |
| 	    !test_tsk_need_resched(rq->curr) &&
 | |
| 	    p->nr_cpus_allowed > 1 &&
 | |
| 	    dl_task(rq->donor) &&
 | |
| 	    (rq->curr->nr_cpus_allowed < 2 ||
 | |
| 	     !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
 | |
| 		push_dl_tasks(rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_cpus_allowed_dl(struct task_struct *p,
 | |
| 				struct affinity_context *ctx)
 | |
| {
 | |
| 	struct root_domain *src_rd;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	WARN_ON_ONCE(!dl_task(p));
 | |
| 
 | |
| 	rq = task_rq(p);
 | |
| 	src_rd = rq->rd;
 | |
| 	/*
 | |
| 	 * Migrating a SCHED_DEADLINE task between exclusive
 | |
| 	 * cpusets (different root_domains) entails a bandwidth
 | |
| 	 * update. We already made space for us in the destination
 | |
| 	 * domain (see cpuset_can_attach()).
 | |
| 	 */
 | |
| 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
 | |
| 		struct dl_bw *src_dl_b;
 | |
| 
 | |
| 		src_dl_b = dl_bw_of(cpu_of(rq));
 | |
| 		/*
 | |
| 		 * We now free resources of the root_domain we are migrating
 | |
| 		 * off. In the worst case, sched_setattr() may temporary fail
 | |
| 		 * until we complete the update.
 | |
| 		 */
 | |
| 		raw_spin_lock(&src_dl_b->lock);
 | |
| 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 | |
| 		raw_spin_unlock(&src_dl_b->lock);
 | |
| 	}
 | |
| 
 | |
| 	set_cpus_allowed_common(p, ctx);
 | |
| }
 | |
| 
 | |
| /* Assumes rq->lock is held */
 | |
| static void rq_online_dl(struct rq *rq)
 | |
| {
 | |
| 	if (rq->dl.overloaded)
 | |
| 		dl_set_overload(rq);
 | |
| 
 | |
| 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
 | |
| 	if (rq->dl.dl_nr_running > 0)
 | |
| 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
 | |
| }
 | |
| 
 | |
| /* Assumes rq->lock is held */
 | |
| static void rq_offline_dl(struct rq *rq)
 | |
| {
 | |
| 	if (rq->dl.overloaded)
 | |
| 		dl_clear_overload(rq);
 | |
| 
 | |
| 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
 | |
| 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
 | |
| }
 | |
| 
 | |
| void __init init_sched_dl_class(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
 | |
| 					GFP_KERNEL, cpu_to_node(i));
 | |
| }
 | |
| 
 | |
| void dl_add_task_root_domain(struct task_struct *p)
 | |
| {
 | |
| 	struct rq_flags rf;
 | |
| 	struct rq *rq;
 | |
| 	struct dl_bw *dl_b;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 | |
| 	if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
 | |
| 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rq = __task_rq_lock(p, &rf);
 | |
| 
 | |
| 	dl_b = &rq->rd->dl_bw;
 | |
| 	raw_spin_lock(&dl_b->lock);
 | |
| 
 | |
| 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 | |
| 
 | |
| 	raw_spin_unlock(&dl_b->lock);
 | |
| 
 | |
| 	task_rq_unlock(rq, p, &rf);
 | |
| }
 | |
| 
 | |
| void dl_clear_root_domain(struct root_domain *rd)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
 | |
| 	rd->dl_bw.total_bw = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
 | |
| 	 * them, we need to account for them here explicitly.
 | |
| 	 */
 | |
| 	for_each_cpu(i, rd->span) {
 | |
| 		struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
 | |
| 
 | |
| 		if (dl_server(dl_se) && cpu_active(i))
 | |
| 			__dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void dl_clear_root_domain_cpu(int cpu)
 | |
| {
 | |
| 	dl_clear_root_domain(cpu_rq(cpu)->rd);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void switched_from_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
 | |
| 	 * time is in the future). If the task switches back to dl before
 | |
| 	 * the "inactive timer" fires, it can continue to consume its current
 | |
| 	 * runtime using its current deadline. If it stays outside of
 | |
| 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
 | |
| 	 * will reset the task parameters.
 | |
| 	 */
 | |
| 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
 | |
| 		task_non_contending(&p->dl);
 | |
| 
 | |
| 	/*
 | |
| 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
 | |
| 	 * keep track of that on its cpuset (for correct bandwidth tracking).
 | |
| 	 */
 | |
| 	dec_dl_tasks_cs(p);
 | |
| 
 | |
| 	if (!task_on_rq_queued(p)) {
 | |
| 		/*
 | |
| 		 * Inactive timer is armed. However, p is leaving DEADLINE and
 | |
| 		 * might migrate away from this rq while continuing to run on
 | |
| 		 * some other class. We need to remove its contribution from
 | |
| 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
 | |
| 		 */
 | |
| 		if (p->dl.dl_non_contending)
 | |
| 			sub_running_bw(&p->dl, &rq->dl);
 | |
| 		sub_rq_bw(&p->dl, &rq->dl);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
 | |
| 	 * at the 0-lag time, because the task could have been migrated
 | |
| 	 * while SCHED_OTHER in the meanwhile.
 | |
| 	 */
 | |
| 	if (p->dl.dl_non_contending)
 | |
| 		p->dl.dl_non_contending = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since this might be the only -deadline task on the rq,
 | |
| 	 * this is the right place to try to pull some other one
 | |
| 	 * from an overloaded CPU, if any.
 | |
| 	 */
 | |
| 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
 | |
| 		return;
 | |
| 
 | |
| 	deadline_queue_pull_task(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When switching to -deadline, we may overload the rq, then
 | |
|  * we try to push someone off, if possible.
 | |
|  */
 | |
| static void switched_to_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	cancel_inactive_timer(&p->dl);
 | |
| 
 | |
| 	/*
 | |
| 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
 | |
| 	 * track of that on its cpuset (for correct bandwidth tracking).
 | |
| 	 */
 | |
| 	inc_dl_tasks_cs(p);
 | |
| 
 | |
| 	/* If p is not queued we will update its parameters at next wakeup. */
 | |
| 	if (!task_on_rq_queued(p)) {
 | |
| 		add_rq_bw(&p->dl, &rq->dl);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (rq->donor != p) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
 | |
| 			deadline_queue_push_tasks(rq);
 | |
| #endif
 | |
| 		if (dl_task(rq->donor))
 | |
| 			wakeup_preempt_dl(rq, p, 0);
 | |
| 		else
 | |
| 			resched_curr(rq);
 | |
| 	} else {
 | |
| 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the scheduling parameters of a -deadline task changed,
 | |
|  * a push or pull operation might be needed.
 | |
|  */
 | |
| static void prio_changed_dl(struct rq *rq, struct task_struct *p,
 | |
| 			    int oldprio)
 | |
| {
 | |
| 	if (!task_on_rq_queued(p))
 | |
| 		return;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * This might be too much, but unfortunately
 | |
| 	 * we don't have the old deadline value, and
 | |
| 	 * we can't argue if the task is increasing
 | |
| 	 * or lowering its prio, so...
 | |
| 	 */
 | |
| 	if (!rq->dl.overloaded)
 | |
| 		deadline_queue_pull_task(rq);
 | |
| 
 | |
| 	if (task_current_donor(rq, p)) {
 | |
| 		/*
 | |
| 		 * If we now have a earlier deadline task than p,
 | |
| 		 * then reschedule, provided p is still on this
 | |
| 		 * runqueue.
 | |
| 		 */
 | |
| 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
 | |
| 			resched_curr(rq);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Current may not be deadline in case p was throttled but we
 | |
| 		 * have just replenished it (e.g. rt_mutex_setprio()).
 | |
| 		 *
 | |
| 		 * Otherwise, if p was given an earlier deadline, reschedule.
 | |
| 		 */
 | |
| 		if (!dl_task(rq->curr) ||
 | |
| 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
 | |
| 			resched_curr(rq);
 | |
| 	}
 | |
| #else
 | |
| 	/*
 | |
| 	 * We don't know if p has a earlier or later deadline, so let's blindly
 | |
| 	 * set a (maybe not needed) rescheduling point.
 | |
| 	 */
 | |
| 	resched_curr(rq);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| static int task_is_throttled_dl(struct task_struct *p, int cpu)
 | |
| {
 | |
| 	return p->dl.dl_throttled;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| DEFINE_SCHED_CLASS(dl) = {
 | |
| 
 | |
| 	.enqueue_task		= enqueue_task_dl,
 | |
| 	.dequeue_task		= dequeue_task_dl,
 | |
| 	.yield_task		= yield_task_dl,
 | |
| 
 | |
| 	.wakeup_preempt		= wakeup_preempt_dl,
 | |
| 
 | |
| 	.pick_task		= pick_task_dl,
 | |
| 	.put_prev_task		= put_prev_task_dl,
 | |
| 	.set_next_task		= set_next_task_dl,
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	.balance		= balance_dl,
 | |
| 	.select_task_rq		= select_task_rq_dl,
 | |
| 	.migrate_task_rq	= migrate_task_rq_dl,
 | |
| 	.set_cpus_allowed       = set_cpus_allowed_dl,
 | |
| 	.rq_online              = rq_online_dl,
 | |
| 	.rq_offline             = rq_offline_dl,
 | |
| 	.task_woken		= task_woken_dl,
 | |
| 	.find_lock_rq		= find_lock_later_rq,
 | |
| #endif
 | |
| 
 | |
| 	.task_tick		= task_tick_dl,
 | |
| 	.task_fork              = task_fork_dl,
 | |
| 
 | |
| 	.prio_changed           = prio_changed_dl,
 | |
| 	.switched_from		= switched_from_dl,
 | |
| 	.switched_to		= switched_to_dl,
 | |
| 
 | |
| 	.update_curr		= update_curr_dl,
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| 	.task_is_throttled	= task_is_throttled_dl,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
 | |
|  * sched_domains_mutex.
 | |
|  */
 | |
| u64 dl_cookie;
 | |
| 
 | |
| int sched_dl_global_validate(void)
 | |
| {
 | |
| 	u64 runtime = global_rt_runtime();
 | |
| 	u64 period = global_rt_period();
 | |
| 	u64 new_bw = to_ratio(period, runtime);
 | |
| 	u64 cookie = ++dl_cookie;
 | |
| 	struct dl_bw *dl_b;
 | |
| 	int cpu, cpus, ret = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we want to check the bandwidth not being set to some
 | |
| 	 * value smaller than the currently allocated bandwidth in
 | |
| 	 * any of the root_domains.
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		rcu_read_lock_sched();
 | |
| 
 | |
| 		if (dl_bw_visited(cpu, cookie))
 | |
| 			goto next;
 | |
| 
 | |
| 		dl_b = dl_bw_of(cpu);
 | |
| 		cpus = dl_bw_cpus(cpu);
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&dl_b->lock, flags);
 | |
| 		if (new_bw * cpus < dl_b->total_bw)
 | |
| 			ret = -EBUSY;
 | |
| 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
 | |
| 
 | |
| next:
 | |
| 		rcu_read_unlock_sched();
 | |
| 
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
 | |
| {
 | |
| 	if (global_rt_runtime() == RUNTIME_INF) {
 | |
| 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
 | |
| 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
 | |
| 	} else {
 | |
| 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
 | |
| 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
 | |
| 		dl_rq->max_bw = dl_rq->extra_bw =
 | |
| 			to_ratio(global_rt_period(), global_rt_runtime());
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void sched_dl_do_global(void)
 | |
| {
 | |
| 	u64 new_bw = -1;
 | |
| 	u64 cookie = ++dl_cookie;
 | |
| 	struct dl_bw *dl_b;
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (global_rt_runtime() != RUNTIME_INF)
 | |
| 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		rcu_read_lock_sched();
 | |
| 
 | |
| 		if (dl_bw_visited(cpu, cookie)) {
 | |
| 			rcu_read_unlock_sched();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		dl_b = dl_bw_of(cpu);
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&dl_b->lock, flags);
 | |
| 		dl_b->bw = new_bw;
 | |
| 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
 | |
| 
 | |
| 		rcu_read_unlock_sched();
 | |
| 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We must be sure that accepting a new task (or allowing changing the
 | |
|  * parameters of an existing one) is consistent with the bandwidth
 | |
|  * constraints. If yes, this function also accordingly updates the currently
 | |
|  * allocated bandwidth to reflect the new situation.
 | |
|  *
 | |
|  * This function is called while holding p's rq->lock.
 | |
|  */
 | |
| int sched_dl_overflow(struct task_struct *p, int policy,
 | |
| 		      const struct sched_attr *attr)
 | |
| {
 | |
| 	u64 period = attr->sched_period ?: attr->sched_deadline;
 | |
| 	u64 runtime = attr->sched_runtime;
 | |
| 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
 | |
| 	int cpus, err = -1, cpu = task_cpu(p);
 | |
| 	struct dl_bw *dl_b = dl_bw_of(cpu);
 | |
| 	unsigned long cap;
 | |
| 
 | |
| 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* !deadline task may carry old deadline bandwidth */
 | |
| 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Either if a task, enters, leave, or stays -deadline but changes
 | |
| 	 * its parameters, we may need to update accordingly the total
 | |
| 	 * allocated bandwidth of the container.
 | |
| 	 */
 | |
| 	raw_spin_lock(&dl_b->lock);
 | |
| 	cpus = dl_bw_cpus(cpu);
 | |
| 	cap = dl_bw_capacity(cpu);
 | |
| 
 | |
| 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
 | |
| 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
 | |
| 		if (hrtimer_active(&p->dl.inactive_timer))
 | |
| 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
 | |
| 		__dl_add(dl_b, new_bw, cpus);
 | |
| 		err = 0;
 | |
| 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
 | |
| 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
 | |
| 		/*
 | |
| 		 * XXX this is slightly incorrect: when the task
 | |
| 		 * utilization decreases, we should delay the total
 | |
| 		 * utilization change until the task's 0-lag point.
 | |
| 		 * But this would require to set the task's "inactive
 | |
| 		 * timer" when the task is not inactive.
 | |
| 		 */
 | |
| 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
 | |
| 		__dl_add(dl_b, new_bw, cpus);
 | |
| 		dl_change_utilization(p, new_bw);
 | |
| 		err = 0;
 | |
| 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
 | |
| 		/*
 | |
| 		 * Do not decrease the total deadline utilization here,
 | |
| 		 * switched_from_dl() will take care to do it at the correct
 | |
| 		 * (0-lag) time.
 | |
| 		 */
 | |
| 		err = 0;
 | |
| 	}
 | |
| 	raw_spin_unlock(&dl_b->lock);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function initializes the sched_dl_entity of a newly becoming
 | |
|  * SCHED_DEADLINE task.
 | |
|  *
 | |
|  * Only the static values are considered here, the actual runtime and the
 | |
|  * absolute deadline will be properly calculated when the task is enqueued
 | |
|  * for the first time with its new policy.
 | |
|  */
 | |
| void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = &p->dl;
 | |
| 
 | |
| 	dl_se->dl_runtime = attr->sched_runtime;
 | |
| 	dl_se->dl_deadline = attr->sched_deadline;
 | |
| 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
 | |
| 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
 | |
| 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
 | |
| 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
 | |
| }
 | |
| 
 | |
| void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = &p->dl;
 | |
| 
 | |
| 	attr->sched_priority = p->rt_priority;
 | |
| 	attr->sched_runtime = dl_se->dl_runtime;
 | |
| 	attr->sched_deadline = dl_se->dl_deadline;
 | |
| 	attr->sched_period = dl_se->dl_period;
 | |
| 	attr->sched_flags &= ~SCHED_DL_FLAGS;
 | |
| 	attr->sched_flags |= dl_se->flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function validates the new parameters of a -deadline task.
 | |
|  * We ask for the deadline not being zero, and greater or equal
 | |
|  * than the runtime, as well as the period of being zero or
 | |
|  * greater than deadline. Furthermore, we have to be sure that
 | |
|  * user parameters are above the internal resolution of 1us (we
 | |
|  * check sched_runtime only since it is always the smaller one) and
 | |
|  * below 2^63 ns (we have to check both sched_deadline and
 | |
|  * sched_period, as the latter can be zero).
 | |
|  */
 | |
| bool __checkparam_dl(const struct sched_attr *attr)
 | |
| {
 | |
| 	u64 period, max, min;
 | |
| 
 | |
| 	/* special dl tasks don't actually use any parameter */
 | |
| 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
 | |
| 		return true;
 | |
| 
 | |
| 	/* deadline != 0 */
 | |
| 	if (attr->sched_deadline == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we truncate DL_SCALE bits, make sure we're at least
 | |
| 	 * that big.
 | |
| 	 */
 | |
| 	if (attr->sched_runtime < (1ULL << DL_SCALE))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we use the MSB for wrap-around and sign issues, make
 | |
| 	 * sure it's not set (mind that period can be equal to zero).
 | |
| 	 */
 | |
| 	if (attr->sched_deadline & (1ULL << 63) ||
 | |
| 	    attr->sched_period & (1ULL << 63))
 | |
| 		return false;
 | |
| 
 | |
| 	period = attr->sched_period;
 | |
| 	if (!period)
 | |
| 		period = attr->sched_deadline;
 | |
| 
 | |
| 	/* runtime <= deadline <= period (if period != 0) */
 | |
| 	if (period < attr->sched_deadline ||
 | |
| 	    attr->sched_deadline < attr->sched_runtime)
 | |
| 		return false;
 | |
| 
 | |
| 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
 | |
| 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
 | |
| 
 | |
| 	if (period < min || period > max)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function clears the sched_dl_entity static params.
 | |
|  */
 | |
| static void __dl_clear_params(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	dl_se->dl_runtime		= 0;
 | |
| 	dl_se->dl_deadline		= 0;
 | |
| 	dl_se->dl_period		= 0;
 | |
| 	dl_se->flags			= 0;
 | |
| 	dl_se->dl_bw			= 0;
 | |
| 	dl_se->dl_density		= 0;
 | |
| 
 | |
| 	dl_se->dl_throttled		= 0;
 | |
| 	dl_se->dl_yielded		= 0;
 | |
| 	dl_se->dl_non_contending	= 0;
 | |
| 	dl_se->dl_overrun		= 0;
 | |
| 	dl_se->dl_server		= 0;
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 	dl_se->pi_se			= dl_se;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void init_dl_entity(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	RB_CLEAR_NODE(&dl_se->rb_node);
 | |
| 	init_dl_task_timer(dl_se);
 | |
| 	init_dl_inactive_task_timer(dl_se);
 | |
| 	__dl_clear_params(dl_se);
 | |
| }
 | |
| 
 | |
| bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = &p->dl;
 | |
| 
 | |
| 	if (dl_se->dl_runtime != attr->sched_runtime ||
 | |
| 	    dl_se->dl_deadline != attr->sched_deadline ||
 | |
| 	    dl_se->dl_period != attr->sched_period ||
 | |
| 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
 | |
| 				 const struct cpumask *trial)
 | |
| {
 | |
| 	unsigned long flags, cap;
 | |
| 	struct dl_bw *cur_dl_b;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	rcu_read_lock_sched();
 | |
| 	cur_dl_b = dl_bw_of(cpumask_any(cur));
 | |
| 	cap = __dl_bw_capacity(trial);
 | |
| 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
 | |
| 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
 | |
| 		ret = 0;
 | |
| 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
 | |
| 	rcu_read_unlock_sched();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| enum dl_bw_request {
 | |
| 	dl_bw_req_deactivate = 0,
 | |
| 	dl_bw_req_alloc,
 | |
| 	dl_bw_req_free
 | |
| };
 | |
| 
 | |
| static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
 | |
| {
 | |
| 	unsigned long flags, cap;
 | |
| 	struct dl_bw *dl_b;
 | |
| 	bool overflow = 0;
 | |
| 	u64 fair_server_bw = 0;
 | |
| 
 | |
| 	rcu_read_lock_sched();
 | |
| 	dl_b = dl_bw_of(cpu);
 | |
| 	raw_spin_lock_irqsave(&dl_b->lock, flags);
 | |
| 
 | |
| 	cap = dl_bw_capacity(cpu);
 | |
| 	switch (req) {
 | |
| 	case dl_bw_req_free:
 | |
| 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
 | |
| 		break;
 | |
| 	case dl_bw_req_alloc:
 | |
| 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
 | |
| 
 | |
| 		if (!overflow) {
 | |
| 			/*
 | |
| 			 * We reserve space in the destination
 | |
| 			 * root_domain, as we can't fail after this point.
 | |
| 			 * We will free resources in the source root_domain
 | |
| 			 * later on (see set_cpus_allowed_dl()).
 | |
| 			 */
 | |
| 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
 | |
| 		}
 | |
| 		break;
 | |
| 	case dl_bw_req_deactivate:
 | |
| 		/*
 | |
| 		 * cpu is not off yet, but we need to do the math by
 | |
| 		 * considering it off already (i.e., what would happen if we
 | |
| 		 * turn cpu off?).
 | |
| 		 */
 | |
| 		cap -= arch_scale_cpu_capacity(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * cpu is going offline and NORMAL tasks will be moved away
 | |
| 		 * from it. We can thus discount dl_server bandwidth
 | |
| 		 * contribution as it won't need to be servicing tasks after
 | |
| 		 * the cpu is off.
 | |
| 		 */
 | |
| 		if (cpu_rq(cpu)->fair_server.dl_server)
 | |
| 			fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
 | |
| 
 | |
| 		/*
 | |
| 		 * Not much to check if no DEADLINE bandwidth is present.
 | |
| 		 * dl_servers we can discount, as tasks will be moved out the
 | |
| 		 * offlined CPUs anyway.
 | |
| 		 */
 | |
| 		if (dl_b->total_bw - fair_server_bw > 0) {
 | |
| 			/*
 | |
| 			 * Leaving at least one CPU for DEADLINE tasks seems a
 | |
| 			 * wise thing to do. As said above, cpu is not offline
 | |
| 			 * yet, so account for that.
 | |
| 			 */
 | |
| 			if (dl_bw_cpus(cpu) - 1)
 | |
| 				overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
 | |
| 			else
 | |
| 				overflow = 1;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
 | |
| 	rcu_read_unlock_sched();
 | |
| 
 | |
| 	return overflow ? -EBUSY : 0;
 | |
| }
 | |
| 
 | |
| int dl_bw_deactivate(int cpu)
 | |
| {
 | |
| 	return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
 | |
| }
 | |
| 
 | |
| int dl_bw_alloc(int cpu, u64 dl_bw)
 | |
| {
 | |
| 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
 | |
| }
 | |
| 
 | |
| void dl_bw_free(int cpu, u64 dl_bw)
 | |
| {
 | |
| 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void print_dl_stats(struct seq_file *m, int cpu)
 | |
| {
 | |
| 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
 | |
| }
 |