mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 fd1f847350
			
		
	
	
		fd1f847350
		
	
	
	
	
		
			
			Sergey Senozhatsky adds infrastructure for passing algorithm-specific parameters into zram. A single parameter `winbits' is implemented at this time. - The 5 patch series "memcg: nmi-safe kmem charging" from Shakeel Butt makes memcg charging nmi-safe, which is required by BFP, which can operate in NMI context. - The 5 patch series "Some random fixes and cleanup to shmem" from Kemeng Shi implements small fixes and cleanups in the shmem code. - The 2 patch series "Skip mm selftests instead when kernel features are not present" from Zi Yan fixes some issues in the MM selftest code. - The 2 patch series "mm/damon: build-enable essential DAMON components by default" from SeongJae Park reworks DAMON Kconfig to make it easier to enable CONFIG_DAMON. - The 2 patch series "sched/numa: add statistics of numa balance task migration" from Libo Chen adds more info into sysfs and procfs files to improve visibility into the NUMA balancer's task migration activity. - The 4 patch series "selftests/mm: cow and gup_longterm cleanups" from Mark Brown provides various updates to some of the MM selftests to make them play better with the overall containing framework. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaDzA9wAKCRDdBJ7gKXxA js8sAP9V3COg+vzTmimzP3ocTkkbbIJzDfM6nXpE2EQ4BR3ejwD+NsIT2ZLtTF6O LqAZpgO7ju6wMjR/lM30ebCq5qFbZAw= =oruw -----END PGP SIGNATURE----- Merge tag 'mm-stable-2025-06-01-14-06' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull more MM updates from Andrew Morton: - "zram: support algorithm-specific parameters" from Sergey Senozhatsky adds infrastructure for passing algorithm-specific parameters into zram. A single parameter `winbits' is implemented at this time. - "memcg: nmi-safe kmem charging" from Shakeel Butt makes memcg charging nmi-safe, which is required by BFP, which can operate in NMI context. - "Some random fixes and cleanup to shmem" from Kemeng Shi implements small fixes and cleanups in the shmem code. - "Skip mm selftests instead when kernel features are not present" from Zi Yan fixes some issues in the MM selftest code. - "mm/damon: build-enable essential DAMON components by default" from SeongJae Park reworks DAMON Kconfig to make it easier to enable CONFIG_DAMON. - "sched/numa: add statistics of numa balance task migration" from Libo Chen adds more info into sysfs and procfs files to improve visibility into the NUMA balancer's task migration activity. - "selftests/mm: cow and gup_longterm cleanups" from Mark Brown provides various updates to some of the MM selftests to make them play better with the overall containing framework. * tag 'mm-stable-2025-06-01-14-06' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (43 commits) mm/khugepaged: clean up refcount check using folio_expected_ref_count() selftests/mm: fix test result reporting in gup_longterm selftests/mm: report unique test names for each cow test selftests/mm: add helper for logging test start and results selftests/mm: use standard ksft_finished() in cow and gup_longterm selftests/damon/_damon_sysfs: skip testcases if CONFIG_DAMON_SYSFS is disabled sched/numa: add statistics of numa balance task sched/numa: fix task swap by skipping kernel threads tools/testing: check correct variable in open_procmap() tools/testing/vma: add missing function stub mm/gup: update comment explaining why gup_fast() disables IRQs selftests/mm: two fixes for the pfnmap test mm/khugepaged: fix race with folio split/free using temporary reference mm: add CONFIG_PAGE_BLOCK_ORDER to select page block order mmu_notifiers: remove leftover stub macros selftests/mm: deduplicate test names in madv_populate kcov: rust: add flags for KCOV with Rust mm: rust: make CONFIG_MMU ifdefs more narrow mmu_gather: move tlb flush for VM_PFNMAP/VM_MIXEDMAP vmas into free_pgtables() mm/damon/Kconfig: enable CONFIG_DAMON by default ...
		
			
				
	
	
		
			13742 lines
		
	
	
	
		
			365 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			13742 lines
		
	
	
	
		
			365 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 | |
|  *
 | |
|  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 | |
|  *
 | |
|  *  Interactivity improvements by Mike Galbraith
 | |
|  *  (C) 2007 Mike Galbraith <efault@gmx.de>
 | |
|  *
 | |
|  *  Various enhancements by Dmitry Adamushko.
 | |
|  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 | |
|  *
 | |
|  *  Group scheduling enhancements by Srivatsa Vaddagiri
 | |
|  *  Copyright IBM Corporation, 2007
 | |
|  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 | |
|  *
 | |
|  *  Scaled math optimizations by Thomas Gleixner
 | |
|  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 | |
|  *
 | |
|  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 | |
|  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
 | |
|  */
 | |
| #include <linux/energy_model.h>
 | |
| #include <linux/mmap_lock.h>
 | |
| #include <linux/hugetlb_inline.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/mm_api.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/spinlock_api.h>
 | |
| #include <linux/cpumask_api.h>
 | |
| #include <linux/lockdep_api.h>
 | |
| #include <linux/softirq.h>
 | |
| #include <linux/refcount_api.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/sched/cond_resched.h>
 | |
| #include <linux/sched/cputime.h>
 | |
| #include <linux/sched/isolation.h>
 | |
| #include <linux/sched/nohz.h>
 | |
| #include <linux/sched/prio.h>
 | |
| 
 | |
| #include <linux/cpuidle.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/memory-tiers.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/mutex_api.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/psi.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/task_work.h>
 | |
| #include <linux/rbtree_augmented.h>
 | |
| 
 | |
| #include <asm/switch_to.h>
 | |
| 
 | |
| #include <uapi/linux/sched/types.h>
 | |
| 
 | |
| #include "sched.h"
 | |
| #include "stats.h"
 | |
| #include "autogroup.h"
 | |
| 
 | |
| /*
 | |
|  * The initial- and re-scaling of tunables is configurable
 | |
|  *
 | |
|  * Options are:
 | |
|  *
 | |
|  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 | |
|  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
 | |
|  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 | |
|  *
 | |
|  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 | |
|  */
 | |
| unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
 | |
| 
 | |
| /*
 | |
|  * Minimal preemption granularity for CPU-bound tasks:
 | |
|  *
 | |
|  * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  */
 | |
| unsigned int sysctl_sched_base_slice			= 700000ULL;
 | |
| static unsigned int normalized_sysctl_sched_base_slice	= 700000ULL;
 | |
| 
 | |
| __read_mostly unsigned int sysctl_sched_migration_cost	= 500000UL;
 | |
| 
 | |
| static int __init setup_sched_thermal_decay_shift(char *str)
 | |
| {
 | |
| 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
 | |
| 	return 1;
 | |
| }
 | |
| __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * For asym packing, by default the lower numbered CPU has higher priority.
 | |
|  */
 | |
| int __weak arch_asym_cpu_priority(int cpu)
 | |
| {
 | |
| 	return -cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The margin used when comparing utilization with CPU capacity.
 | |
|  *
 | |
|  * (default: ~20%)
 | |
|  */
 | |
| #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
 | |
| 
 | |
| /*
 | |
|  * The margin used when comparing CPU capacities.
 | |
|  * is 'cap1' noticeably greater than 'cap2'
 | |
|  *
 | |
|  * (default: ~5%)
 | |
|  */
 | |
| #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| /*
 | |
|  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 | |
|  * each time a cfs_rq requests quota.
 | |
|  *
 | |
|  * Note: in the case that the slice exceeds the runtime remaining (either due
 | |
|  * to consumption or the quota being specified to be smaller than the slice)
 | |
|  * we will always only issue the remaining available time.
 | |
|  *
 | |
|  * (default: 5 msec, units: microseconds)
 | |
|  */
 | |
| static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
 | |
| static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| static const struct ctl_table sched_fair_sysctls[] = {
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 	{
 | |
| 		.procname       = "sched_cfs_bandwidth_slice_us",
 | |
| 		.data           = &sysctl_sched_cfs_bandwidth_slice,
 | |
| 		.maxlen         = sizeof(unsigned int),
 | |
| 		.mode           = 0644,
 | |
| 		.proc_handler   = proc_dointvec_minmax,
 | |
| 		.extra1         = SYSCTL_ONE,
 | |
| 	},
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	{
 | |
| 		.procname	= "numa_balancing_promote_rate_limit_MBps",
 | |
| 		.data		= &sysctl_numa_balancing_promote_rate_limit,
 | |
| 		.maxlen		= sizeof(unsigned int),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 	},
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| };
 | |
| 
 | |
| static int __init sched_fair_sysctl_init(void)
 | |
| {
 | |
| 	register_sysctl_init("kernel", sched_fair_sysctls);
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(sched_fair_sysctl_init);
 | |
| #endif
 | |
| 
 | |
| static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 | |
| {
 | |
| 	lw->weight += inc;
 | |
| 	lw->inv_weight = 0;
 | |
| }
 | |
| 
 | |
| static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 | |
| {
 | |
| 	lw->weight -= dec;
 | |
| 	lw->inv_weight = 0;
 | |
| }
 | |
| 
 | |
| static inline void update_load_set(struct load_weight *lw, unsigned long w)
 | |
| {
 | |
| 	lw->weight = w;
 | |
| 	lw->inv_weight = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increase the granularity value when there are more CPUs,
 | |
|  * because with more CPUs the 'effective latency' as visible
 | |
|  * to users decreases. But the relationship is not linear,
 | |
|  * so pick a second-best guess by going with the log2 of the
 | |
|  * number of CPUs.
 | |
|  *
 | |
|  * This idea comes from the SD scheduler of Con Kolivas:
 | |
|  */
 | |
| static unsigned int get_update_sysctl_factor(void)
 | |
| {
 | |
| 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 | |
| 	unsigned int factor;
 | |
| 
 | |
| 	switch (sysctl_sched_tunable_scaling) {
 | |
| 	case SCHED_TUNABLESCALING_NONE:
 | |
| 		factor = 1;
 | |
| 		break;
 | |
| 	case SCHED_TUNABLESCALING_LINEAR:
 | |
| 		factor = cpus;
 | |
| 		break;
 | |
| 	case SCHED_TUNABLESCALING_LOG:
 | |
| 	default:
 | |
| 		factor = 1 + ilog2(cpus);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return factor;
 | |
| }
 | |
| 
 | |
| static void update_sysctl(void)
 | |
| {
 | |
| 	unsigned int factor = get_update_sysctl_factor();
 | |
| 
 | |
| #define SET_SYSCTL(name) \
 | |
| 	(sysctl_##name = (factor) * normalized_sysctl_##name)
 | |
| 	SET_SYSCTL(sched_base_slice);
 | |
| #undef SET_SYSCTL
 | |
| }
 | |
| 
 | |
| void __init sched_init_granularity(void)
 | |
| {
 | |
| 	update_sysctl();
 | |
| }
 | |
| 
 | |
| #define WMULT_CONST	(~0U)
 | |
| #define WMULT_SHIFT	32
 | |
| 
 | |
| static void __update_inv_weight(struct load_weight *lw)
 | |
| {
 | |
| 	unsigned long w;
 | |
| 
 | |
| 	if (likely(lw->inv_weight))
 | |
| 		return;
 | |
| 
 | |
| 	w = scale_load_down(lw->weight);
 | |
| 
 | |
| 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 | |
| 		lw->inv_weight = 1;
 | |
| 	else if (unlikely(!w))
 | |
| 		lw->inv_weight = WMULT_CONST;
 | |
| 	else
 | |
| 		lw->inv_weight = WMULT_CONST / w;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * delta_exec * weight / lw.weight
 | |
|  *   OR
 | |
|  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 | |
|  *
 | |
|  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
 | |
|  * we're guaranteed shift stays positive because inv_weight is guaranteed to
 | |
|  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 | |
|  *
 | |
|  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 | |
|  * weight/lw.weight <= 1, and therefore our shift will also be positive.
 | |
|  */
 | |
| static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 | |
| {
 | |
| 	u64 fact = scale_load_down(weight);
 | |
| 	u32 fact_hi = (u32)(fact >> 32);
 | |
| 	int shift = WMULT_SHIFT;
 | |
| 	int fs;
 | |
| 
 | |
| 	__update_inv_weight(lw);
 | |
| 
 | |
| 	if (unlikely(fact_hi)) {
 | |
| 		fs = fls(fact_hi);
 | |
| 		shift -= fs;
 | |
| 		fact >>= fs;
 | |
| 	}
 | |
| 
 | |
| 	fact = mul_u32_u32(fact, lw->inv_weight);
 | |
| 
 | |
| 	fact_hi = (u32)(fact >> 32);
 | |
| 	if (fact_hi) {
 | |
| 		fs = fls(fact_hi);
 | |
| 		shift -= fs;
 | |
| 		fact >>= fs;
 | |
| 	}
 | |
| 
 | |
| 	return mul_u64_u32_shr(delta_exec, fact, shift);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * delta /= w
 | |
|  */
 | |
| static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 | |
| {
 | |
| 	if (unlikely(se->load.weight != NICE_0_LOAD))
 | |
| 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| const struct sched_class fair_sched_class;
 | |
| 
 | |
| /**************************************************************
 | |
|  * CFS operations on generic schedulable entities:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 
 | |
| /* Walk up scheduling entities hierarchy */
 | |
| #define for_each_sched_entity(se) \
 | |
| 		for (; se; se = se->parent)
 | |
| 
 | |
| static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	if (cfs_rq->on_list)
 | |
| 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
 | |
| 
 | |
| 	cfs_rq->on_list = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure we either appear before our parent (if already
 | |
| 	 * enqueued) or force our parent to appear after us when it is
 | |
| 	 * enqueued. The fact that we always enqueue bottom-up
 | |
| 	 * reduces this to two cases and a special case for the root
 | |
| 	 * cfs_rq. Furthermore, it also means that we will always reset
 | |
| 	 * tmp_alone_branch either when the branch is connected
 | |
| 	 * to a tree or when we reach the top of the tree
 | |
| 	 */
 | |
| 	if (cfs_rq->tg->parent &&
 | |
| 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
 | |
| 		/*
 | |
| 		 * If parent is already on the list, we add the child
 | |
| 		 * just before. Thanks to circular linked property of
 | |
| 		 * the list, this means to put the child at the tail
 | |
| 		 * of the list that starts by parent.
 | |
| 		 */
 | |
| 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 | |
| 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
 | |
| 		/*
 | |
| 		 * The branch is now connected to its tree so we can
 | |
| 		 * reset tmp_alone_branch to the beginning of the
 | |
| 		 * list.
 | |
| 		 */
 | |
| 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (!cfs_rq->tg->parent) {
 | |
| 		/*
 | |
| 		 * cfs rq without parent should be put
 | |
| 		 * at the tail of the list.
 | |
| 		 */
 | |
| 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 | |
| 			&rq->leaf_cfs_rq_list);
 | |
| 		/*
 | |
| 		 * We have reach the top of a tree so we can reset
 | |
| 		 * tmp_alone_branch to the beginning of the list.
 | |
| 		 */
 | |
| 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The parent has not already been added so we want to
 | |
| 	 * make sure that it will be put after us.
 | |
| 	 * tmp_alone_branch points to the begin of the branch
 | |
| 	 * where we will add parent.
 | |
| 	 */
 | |
| 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
 | |
| 	/*
 | |
| 	 * update tmp_alone_branch to points to the new begin
 | |
| 	 * of the branch
 | |
| 	 */
 | |
| 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (cfs_rq->on_list) {
 | |
| 		struct rq *rq = rq_of(cfs_rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * With cfs_rq being unthrottled/throttled during an enqueue,
 | |
| 		 * it can happen the tmp_alone_branch points to the leaf that
 | |
| 		 * we finally want to delete. In this case, tmp_alone_branch moves
 | |
| 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
 | |
| 		 * at the end of the enqueue.
 | |
| 		 */
 | |
| 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
 | |
| 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
 | |
| 
 | |
| 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 | |
| 		cfs_rq->on_list = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 | |
| {
 | |
| 	WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
 | |
| }
 | |
| 
 | |
| /* Iterate through all leaf cfs_rq's on a runqueue */
 | |
| #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
 | |
| 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
 | |
| 				 leaf_cfs_rq_list)
 | |
| 
 | |
| /* Do the two (enqueued) entities belong to the same group ? */
 | |
| static inline struct cfs_rq *
 | |
| is_same_group(struct sched_entity *se, struct sched_entity *pse)
 | |
| {
 | |
| 	if (se->cfs_rq == pse->cfs_rq)
 | |
| 		return se->cfs_rq;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct sched_entity *parent_entity(const struct sched_entity *se)
 | |
| {
 | |
| 	return se->parent;
 | |
| }
 | |
| 
 | |
| static void
 | |
| find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 | |
| {
 | |
| 	int se_depth, pse_depth;
 | |
| 
 | |
| 	/*
 | |
| 	 * preemption test can be made between sibling entities who are in the
 | |
| 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 | |
| 	 * both tasks until we find their ancestors who are siblings of common
 | |
| 	 * parent.
 | |
| 	 */
 | |
| 
 | |
| 	/* First walk up until both entities are at same depth */
 | |
| 	se_depth = (*se)->depth;
 | |
| 	pse_depth = (*pse)->depth;
 | |
| 
 | |
| 	while (se_depth > pse_depth) {
 | |
| 		se_depth--;
 | |
| 		*se = parent_entity(*se);
 | |
| 	}
 | |
| 
 | |
| 	while (pse_depth > se_depth) {
 | |
| 		pse_depth--;
 | |
| 		*pse = parent_entity(*pse);
 | |
| 	}
 | |
| 
 | |
| 	while (!is_same_group(*se, *pse)) {
 | |
| 		*se = parent_entity(*se);
 | |
| 		*pse = parent_entity(*pse);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int tg_is_idle(struct task_group *tg)
 | |
| {
 | |
| 	return tg->idle > 0;
 | |
| }
 | |
| 
 | |
| static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_rq->idle > 0;
 | |
| }
 | |
| 
 | |
| static int se_is_idle(struct sched_entity *se)
 | |
| {
 | |
| 	if (entity_is_task(se))
 | |
| 		return task_has_idle_policy(task_of(se));
 | |
| 	return cfs_rq_is_idle(group_cfs_rq(se));
 | |
| }
 | |
| 
 | |
| #else	/* !CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| #define for_each_sched_entity(se) \
 | |
| 		for (; se; se = NULL)
 | |
| 
 | |
| static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
 | |
| 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
 | |
| 
 | |
| static inline struct sched_entity *parent_entity(struct sched_entity *se)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int tg_is_idle(struct task_group *tg)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int se_is_idle(struct sched_entity *se)
 | |
| {
 | |
| 	return task_has_idle_policy(task_of(se));
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| static __always_inline
 | |
| void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 | |
| 
 | |
| /**************************************************************
 | |
|  * Scheduling class tree data structure manipulation methods:
 | |
|  */
 | |
| 
 | |
| static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 | |
| {
 | |
| 	s64 delta = (s64)(vruntime - max_vruntime);
 | |
| 	if (delta > 0)
 | |
| 		max_vruntime = vruntime;
 | |
| 
 | |
| 	return max_vruntime;
 | |
| }
 | |
| 
 | |
| static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 | |
| {
 | |
| 	s64 delta = (s64)(vruntime - min_vruntime);
 | |
| 	if (delta < 0)
 | |
| 		min_vruntime = vruntime;
 | |
| 
 | |
| 	return min_vruntime;
 | |
| }
 | |
| 
 | |
| static inline bool entity_before(const struct sched_entity *a,
 | |
| 				 const struct sched_entity *b)
 | |
| {
 | |
| 	/*
 | |
| 	 * Tiebreak on vruntime seems unnecessary since it can
 | |
| 	 * hardly happen.
 | |
| 	 */
 | |
| 	return (s64)(a->deadline - b->deadline) < 0;
 | |
| }
 | |
| 
 | |
| static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
 | |
| }
 | |
| 
 | |
| #define __node_2_se(node) \
 | |
| 	rb_entry((node), struct sched_entity, run_node)
 | |
| 
 | |
| /*
 | |
|  * Compute virtual time from the per-task service numbers:
 | |
|  *
 | |
|  * Fair schedulers conserve lag:
 | |
|  *
 | |
|  *   \Sum lag_i = 0
 | |
|  *
 | |
|  * Where lag_i is given by:
 | |
|  *
 | |
|  *   lag_i = S - s_i = w_i * (V - v_i)
 | |
|  *
 | |
|  * Where S is the ideal service time and V is it's virtual time counterpart.
 | |
|  * Therefore:
 | |
|  *
 | |
|  *   \Sum lag_i = 0
 | |
|  *   \Sum w_i * (V - v_i) = 0
 | |
|  *   \Sum w_i * V - w_i * v_i = 0
 | |
|  *
 | |
|  * From which we can solve an expression for V in v_i (which we have in
 | |
|  * se->vruntime):
 | |
|  *
 | |
|  *       \Sum v_i * w_i   \Sum v_i * w_i
 | |
|  *   V = -------------- = --------------
 | |
|  *          \Sum w_i            W
 | |
|  *
 | |
|  * Specifically, this is the weighted average of all entity virtual runtimes.
 | |
|  *
 | |
|  * [[ NOTE: this is only equal to the ideal scheduler under the condition
 | |
|  *          that join/leave operations happen at lag_i = 0, otherwise the
 | |
|  *          virtual time has non-contiguous motion equivalent to:
 | |
|  *
 | |
|  *	      V +-= lag_i / W
 | |
|  *
 | |
|  *	    Also see the comment in place_entity() that deals with this. ]]
 | |
|  *
 | |
|  * However, since v_i is u64, and the multiplication could easily overflow
 | |
|  * transform it into a relative form that uses smaller quantities:
 | |
|  *
 | |
|  * Substitute: v_i == (v_i - v0) + v0
 | |
|  *
 | |
|  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
 | |
|  * V = ---------------------------- = --------------------- + v0
 | |
|  *                  W                            W
 | |
|  *
 | |
|  * Which we track using:
 | |
|  *
 | |
|  *                    v0 := cfs_rq->min_vruntime
 | |
|  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
 | |
|  *              \Sum w_i := cfs_rq->avg_load
 | |
|  *
 | |
|  * Since min_vruntime is a monotonic increasing variable that closely tracks
 | |
|  * the per-task service, these deltas: (v_i - v), will be in the order of the
 | |
|  * maximal (virtual) lag induced in the system due to quantisation.
 | |
|  *
 | |
|  * Also, we use scale_load_down() to reduce the size.
 | |
|  *
 | |
|  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
 | |
|  */
 | |
| static void
 | |
| avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	unsigned long weight = scale_load_down(se->load.weight);
 | |
| 	s64 key = entity_key(cfs_rq, se);
 | |
| 
 | |
| 	cfs_rq->avg_vruntime += key * weight;
 | |
| 	cfs_rq->avg_load += weight;
 | |
| }
 | |
| 
 | |
| static void
 | |
| avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	unsigned long weight = scale_load_down(se->load.weight);
 | |
| 	s64 key = entity_key(cfs_rq, se);
 | |
| 
 | |
| 	cfs_rq->avg_vruntime -= key * weight;
 | |
| 	cfs_rq->avg_load -= weight;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
 | |
| {
 | |
| 	/*
 | |
| 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
 | |
| 	 */
 | |
| 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
 | |
|  * For this to be so, the result of this function must have a left bias.
 | |
|  */
 | |
| u64 avg_vruntime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *curr = cfs_rq->curr;
 | |
| 	s64 avg = cfs_rq->avg_vruntime;
 | |
| 	long load = cfs_rq->avg_load;
 | |
| 
 | |
| 	if (curr && curr->on_rq) {
 | |
| 		unsigned long weight = scale_load_down(curr->load.weight);
 | |
| 
 | |
| 		avg += entity_key(cfs_rq, curr) * weight;
 | |
| 		load += weight;
 | |
| 	}
 | |
| 
 | |
| 	if (load) {
 | |
| 		/* sign flips effective floor / ceiling */
 | |
| 		if (avg < 0)
 | |
| 			avg -= (load - 1);
 | |
| 		avg = div_s64(avg, load);
 | |
| 	}
 | |
| 
 | |
| 	return cfs_rq->min_vruntime + avg;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lag_i = S - s_i = w_i * (V - v_i)
 | |
|  *
 | |
|  * However, since V is approximated by the weighted average of all entities it
 | |
|  * is possible -- by addition/removal/reweight to the tree -- to move V around
 | |
|  * and end up with a larger lag than we started with.
 | |
|  *
 | |
|  * Limit this to either double the slice length with a minimum of TICK_NSEC
 | |
|  * since that is the timing granularity.
 | |
|  *
 | |
|  * EEVDF gives the following limit for a steady state system:
 | |
|  *
 | |
|  *   -r_max < lag < max(r_max, q)
 | |
|  *
 | |
|  * XXX could add max_slice to the augmented data to track this.
 | |
|  */
 | |
| static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	s64 vlag, limit;
 | |
| 
 | |
| 	WARN_ON_ONCE(!se->on_rq);
 | |
| 
 | |
| 	vlag = avg_vruntime(cfs_rq) - se->vruntime;
 | |
| 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
 | |
| 
 | |
| 	se->vlag = clamp(vlag, -limit, limit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Entity is eligible once it received less service than it ought to have,
 | |
|  * eg. lag >= 0.
 | |
|  *
 | |
|  * lag_i = S - s_i = w_i*(V - v_i)
 | |
|  *
 | |
|  * lag_i >= 0 -> V >= v_i
 | |
|  *
 | |
|  *     \Sum (v_i - v)*w_i
 | |
|  * V = ------------------ + v
 | |
|  *          \Sum w_i
 | |
|  *
 | |
|  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
 | |
|  *
 | |
|  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
 | |
|  *       to the loss in precision caused by the division.
 | |
|  */
 | |
| static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
 | |
| {
 | |
| 	struct sched_entity *curr = cfs_rq->curr;
 | |
| 	s64 avg = cfs_rq->avg_vruntime;
 | |
| 	long load = cfs_rq->avg_load;
 | |
| 
 | |
| 	if (curr && curr->on_rq) {
 | |
| 		unsigned long weight = scale_load_down(curr->load.weight);
 | |
| 
 | |
| 		avg += entity_key(cfs_rq, curr) * weight;
 | |
| 		load += weight;
 | |
| 	}
 | |
| 
 | |
| 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
 | |
| }
 | |
| 
 | |
| int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	return vruntime_eligible(cfs_rq, se->vruntime);
 | |
| }
 | |
| 
 | |
| static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
 | |
| {
 | |
| 	u64 min_vruntime = cfs_rq->min_vruntime;
 | |
| 	/*
 | |
| 	 * open coded max_vruntime() to allow updating avg_vruntime
 | |
| 	 */
 | |
| 	s64 delta = (s64)(vruntime - min_vruntime);
 | |
| 	if (delta > 0) {
 | |
| 		avg_vruntime_update(cfs_rq, delta);
 | |
| 		min_vruntime = vruntime;
 | |
| 	}
 | |
| 	return min_vruntime;
 | |
| }
 | |
| 
 | |
| static void update_min_vruntime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *se = __pick_root_entity(cfs_rq);
 | |
| 	struct sched_entity *curr = cfs_rq->curr;
 | |
| 	u64 vruntime = cfs_rq->min_vruntime;
 | |
| 
 | |
| 	if (curr) {
 | |
| 		if (curr->on_rq)
 | |
| 			vruntime = curr->vruntime;
 | |
| 		else
 | |
| 			curr = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (se) {
 | |
| 		if (!curr)
 | |
| 			vruntime = se->min_vruntime;
 | |
| 		else
 | |
| 			vruntime = min_vruntime(vruntime, se->min_vruntime);
 | |
| 	}
 | |
| 
 | |
| 	/* ensure we never gain time by being placed backwards. */
 | |
| 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
 | |
| }
 | |
| 
 | |
| static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *root = __pick_root_entity(cfs_rq);
 | |
| 	struct sched_entity *curr = cfs_rq->curr;
 | |
| 	u64 min_slice = ~0ULL;
 | |
| 
 | |
| 	if (curr && curr->on_rq)
 | |
| 		min_slice = curr->slice;
 | |
| 
 | |
| 	if (root)
 | |
| 		min_slice = min(min_slice, root->min_slice);
 | |
| 
 | |
| 	return min_slice;
 | |
| }
 | |
| 
 | |
| static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
 | |
| {
 | |
| 	return entity_before(__node_2_se(a), __node_2_se(b));
 | |
| }
 | |
| 
 | |
| #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
 | |
| 
 | |
| static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
 | |
| {
 | |
| 	if (node) {
 | |
| 		struct sched_entity *rse = __node_2_se(node);
 | |
| 		if (vruntime_gt(min_vruntime, se, rse))
 | |
| 			se->min_vruntime = rse->min_vruntime;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
 | |
| {
 | |
| 	if (node) {
 | |
| 		struct sched_entity *rse = __node_2_se(node);
 | |
| 		if (rse->min_slice < se->min_slice)
 | |
| 			se->min_slice = rse->min_slice;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
 | |
|  */
 | |
| static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
 | |
| {
 | |
| 	u64 old_min_vruntime = se->min_vruntime;
 | |
| 	u64 old_min_slice = se->min_slice;
 | |
| 	struct rb_node *node = &se->run_node;
 | |
| 
 | |
| 	se->min_vruntime = se->vruntime;
 | |
| 	__min_vruntime_update(se, node->rb_right);
 | |
| 	__min_vruntime_update(se, node->rb_left);
 | |
| 
 | |
| 	se->min_slice = se->slice;
 | |
| 	__min_slice_update(se, node->rb_right);
 | |
| 	__min_slice_update(se, node->rb_left);
 | |
| 
 | |
| 	return se->min_vruntime == old_min_vruntime &&
 | |
| 	       se->min_slice == old_min_slice;
 | |
| }
 | |
| 
 | |
| RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
 | |
| 		     run_node, min_vruntime, min_vruntime_update);
 | |
| 
 | |
| /*
 | |
|  * Enqueue an entity into the rb-tree:
 | |
|  */
 | |
| static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	avg_vruntime_add(cfs_rq, se);
 | |
| 	se->min_vruntime = se->vruntime;
 | |
| 	se->min_slice = se->slice;
 | |
| 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
 | |
| 				__entity_less, &min_vruntime_cb);
 | |
| }
 | |
| 
 | |
| static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
 | |
| 				  &min_vruntime_cb);
 | |
| 	avg_vruntime_sub(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
 | |
| 
 | |
| 	if (!root)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __node_2_se(root);
 | |
| }
 | |
| 
 | |
| struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
 | |
| 
 | |
| 	if (!left)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __node_2_se(left);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * HACK, stash a copy of deadline at the point of pick in vlag,
 | |
|  * which isn't used until dequeue.
 | |
|  */
 | |
| static inline void set_protect_slice(struct sched_entity *se)
 | |
| {
 | |
| 	se->vlag = se->deadline;
 | |
| }
 | |
| 
 | |
| static inline bool protect_slice(struct sched_entity *se)
 | |
| {
 | |
| 	return se->vlag == se->deadline;
 | |
| }
 | |
| 
 | |
| static inline void cancel_protect_slice(struct sched_entity *se)
 | |
| {
 | |
| 	if (protect_slice(se))
 | |
| 		se->vlag = se->deadline + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Earliest Eligible Virtual Deadline First
 | |
|  *
 | |
|  * In order to provide latency guarantees for different request sizes
 | |
|  * EEVDF selects the best runnable task from two criteria:
 | |
|  *
 | |
|  *  1) the task must be eligible (must be owed service)
 | |
|  *
 | |
|  *  2) from those tasks that meet 1), we select the one
 | |
|  *     with the earliest virtual deadline.
 | |
|  *
 | |
|  * We can do this in O(log n) time due to an augmented RB-tree. The
 | |
|  * tree keeps the entries sorted on deadline, but also functions as a
 | |
|  * heap based on the vruntime by keeping:
 | |
|  *
 | |
|  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
 | |
|  *
 | |
|  * Which allows tree pruning through eligibility.
 | |
|  */
 | |
| static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
 | |
| 	struct sched_entity *se = __pick_first_entity(cfs_rq);
 | |
| 	struct sched_entity *curr = cfs_rq->curr;
 | |
| 	struct sched_entity *best = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can safely skip eligibility check if there is only one entity
 | |
| 	 * in this cfs_rq, saving some cycles.
 | |
| 	 */
 | |
| 	if (cfs_rq->nr_queued == 1)
 | |
| 		return curr && curr->on_rq ? curr : se;
 | |
| 
 | |
| 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
 | |
| 		curr = NULL;
 | |
| 
 | |
| 	if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr))
 | |
| 		return curr;
 | |
| 
 | |
| 	/* Pick the leftmost entity if it's eligible */
 | |
| 	if (se && entity_eligible(cfs_rq, se)) {
 | |
| 		best = se;
 | |
| 		goto found;
 | |
| 	}
 | |
| 
 | |
| 	/* Heap search for the EEVD entity */
 | |
| 	while (node) {
 | |
| 		struct rb_node *left = node->rb_left;
 | |
| 
 | |
| 		/*
 | |
| 		 * Eligible entities in left subtree are always better
 | |
| 		 * choices, since they have earlier deadlines.
 | |
| 		 */
 | |
| 		if (left && vruntime_eligible(cfs_rq,
 | |
| 					__node_2_se(left)->min_vruntime)) {
 | |
| 			node = left;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		se = __node_2_se(node);
 | |
| 
 | |
| 		/*
 | |
| 		 * The left subtree either is empty or has no eligible
 | |
| 		 * entity, so check the current node since it is the one
 | |
| 		 * with earliest deadline that might be eligible.
 | |
| 		 */
 | |
| 		if (entity_eligible(cfs_rq, se)) {
 | |
| 			best = se;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		node = node->rb_right;
 | |
| 	}
 | |
| found:
 | |
| 	if (!best || (curr && entity_before(curr, best)))
 | |
| 		best = curr;
 | |
| 
 | |
| 	return best;
 | |
| }
 | |
| 
 | |
| struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
 | |
| 
 | |
| 	if (!last)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __node_2_se(last);
 | |
| }
 | |
| 
 | |
| /**************************************************************
 | |
|  * Scheduling class statistics methods:
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| int sched_update_scaling(void)
 | |
| {
 | |
| 	unsigned int factor = get_update_sysctl_factor();
 | |
| 
 | |
| #define WRT_SYSCTL(name) \
 | |
| 	(normalized_sysctl_##name = sysctl_##name / (factor))
 | |
| 	WRT_SYSCTL(sched_base_slice);
 | |
| #undef WRT_SYSCTL
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
 | |
| 
 | |
| /*
 | |
|  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
 | |
|  * this is probably good enough.
 | |
|  */
 | |
| static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	if ((s64)(se->vruntime - se->deadline) < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * For EEVDF the virtual time slope is determined by w_i (iow.
 | |
| 	 * nice) while the request time r_i is determined by
 | |
| 	 * sysctl_sched_base_slice.
 | |
| 	 */
 | |
| 	if (!se->custom_slice)
 | |
| 		se->slice = sysctl_sched_base_slice;
 | |
| 
 | |
| 	/*
 | |
| 	 * EEVDF: vd_i = ve_i + r_i / w_i
 | |
| 	 */
 | |
| 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
 | |
| 
 | |
| 	/*
 | |
| 	 * The task has consumed its request, reschedule.
 | |
| 	 */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #include "pelt.h"
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
 | |
| static unsigned long task_h_load(struct task_struct *p);
 | |
| static unsigned long capacity_of(int cpu);
 | |
| 
 | |
| /* Give new sched_entity start runnable values to heavy its load in infant time */
 | |
| void init_entity_runnable_average(struct sched_entity *se)
 | |
| {
 | |
| 	struct sched_avg *sa = &se->avg;
 | |
| 
 | |
| 	memset(sa, 0, sizeof(*sa));
 | |
| 
 | |
| 	/*
 | |
| 	 * Tasks are initialized with full load to be seen as heavy tasks until
 | |
| 	 * they get a chance to stabilize to their real load level.
 | |
| 	 * Group entities are initialized with zero load to reflect the fact that
 | |
| 	 * nothing has been attached to the task group yet.
 | |
| 	 */
 | |
| 	if (entity_is_task(se))
 | |
| 		sa->load_avg = scale_load_down(se->load.weight);
 | |
| 
 | |
| 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * With new tasks being created, their initial util_avgs are extrapolated
 | |
|  * based on the cfs_rq's current util_avg:
 | |
|  *
 | |
|  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
 | |
|  *		* se_weight(se)
 | |
|  *
 | |
|  * However, in many cases, the above util_avg does not give a desired
 | |
|  * value. Moreover, the sum of the util_avgs may be divergent, such
 | |
|  * as when the series is a harmonic series.
 | |
|  *
 | |
|  * To solve this problem, we also cap the util_avg of successive tasks to
 | |
|  * only 1/2 of the left utilization budget:
 | |
|  *
 | |
|  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
 | |
|  *
 | |
|  * where n denotes the nth task and cpu_scale the CPU capacity.
 | |
|  *
 | |
|  * For example, for a CPU with 1024 of capacity, a simplest series from
 | |
|  * the beginning would be like:
 | |
|  *
 | |
|  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 | |
|  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 | |
|  *
 | |
|  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 | |
|  * if util_avg > util_avg_cap.
 | |
|  */
 | |
| void post_init_entity_util_avg(struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 	struct sched_avg *sa = &se->avg;
 | |
| 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
 | |
| 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
 | |
| 
 | |
| 	if (p->sched_class != &fair_sched_class) {
 | |
| 		/*
 | |
| 		 * For !fair tasks do:
 | |
| 		 *
 | |
| 		update_cfs_rq_load_avg(now, cfs_rq);
 | |
| 		attach_entity_load_avg(cfs_rq, se);
 | |
| 		switched_from_fair(rq, p);
 | |
| 		 *
 | |
| 		 * such that the next switched_to_fair() has the
 | |
| 		 * expected state.
 | |
| 		 */
 | |
| 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cap > 0) {
 | |
| 		if (cfs_rq->avg.util_avg != 0) {
 | |
| 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
 | |
| 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
 | |
| 
 | |
| 			if (sa->util_avg > cap)
 | |
| 				sa->util_avg = cap;
 | |
| 		} else {
 | |
| 			sa->util_avg = cap;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sa->runnable_avg = sa->util_avg;
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_SMP */
 | |
| void init_entity_runnable_average(struct sched_entity *se)
 | |
| {
 | |
| }
 | |
| void post_init_entity_util_avg(struct task_struct *p)
 | |
| {
 | |
| }
 | |
| static void update_tg_load_avg(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
 | |
| {
 | |
| 	u64 now = rq_clock_task(rq);
 | |
| 	s64 delta_exec;
 | |
| 
 | |
| 	delta_exec = now - curr->exec_start;
 | |
| 	if (unlikely(delta_exec <= 0))
 | |
| 		return delta_exec;
 | |
| 
 | |
| 	curr->exec_start = now;
 | |
| 	curr->sum_exec_runtime += delta_exec;
 | |
| 
 | |
| 	if (schedstat_enabled()) {
 | |
| 		struct sched_statistics *stats;
 | |
| 
 | |
| 		stats = __schedstats_from_se(curr);
 | |
| 		__schedstat_set(stats->exec_max,
 | |
| 				max(delta_exec, stats->exec_max));
 | |
| 	}
 | |
| 
 | |
| 	return delta_exec;
 | |
| }
 | |
| 
 | |
| static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
 | |
| {
 | |
| 	trace_sched_stat_runtime(p, delta_exec);
 | |
| 	account_group_exec_runtime(p, delta_exec);
 | |
| 	cgroup_account_cputime(p, delta_exec);
 | |
| }
 | |
| 
 | |
| static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 | |
| {
 | |
| 	if (!sched_feat(PREEMPT_SHORT))
 | |
| 		return false;
 | |
| 
 | |
| 	if (curr->vlag == curr->deadline)
 | |
| 		return false;
 | |
| 
 | |
| 	return !entity_eligible(cfs_rq, curr);
 | |
| }
 | |
| 
 | |
| static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
 | |
| 				    struct sched_entity *pse, struct sched_entity *se)
 | |
| {
 | |
| 	if (!sched_feat(PREEMPT_SHORT))
 | |
| 		return false;
 | |
| 
 | |
| 	if (pse->slice >= se->slice)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!entity_eligible(cfs_rq, pse))
 | |
| 		return false;
 | |
| 
 | |
| 	if (entity_before(pse, se))
 | |
| 		return true;
 | |
| 
 | |
| 	if (!entity_eligible(cfs_rq, se))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used by other classes to account runtime.
 | |
|  */
 | |
| s64 update_curr_common(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *donor = rq->donor;
 | |
| 	s64 delta_exec;
 | |
| 
 | |
| 	delta_exec = update_curr_se(rq, &donor->se);
 | |
| 	if (likely(delta_exec > 0))
 | |
| 		update_curr_task(donor, delta_exec);
 | |
| 
 | |
| 	return delta_exec;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the current task's runtime statistics.
 | |
|  */
 | |
| static void update_curr(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *curr = cfs_rq->curr;
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 	s64 delta_exec;
 | |
| 	bool resched;
 | |
| 
 | |
| 	if (unlikely(!curr))
 | |
| 		return;
 | |
| 
 | |
| 	delta_exec = update_curr_se(rq, curr);
 | |
| 	if (unlikely(delta_exec <= 0))
 | |
| 		return;
 | |
| 
 | |
| 	curr->vruntime += calc_delta_fair(delta_exec, curr);
 | |
| 	resched = update_deadline(cfs_rq, curr);
 | |
| 	update_min_vruntime(cfs_rq);
 | |
| 
 | |
| 	if (entity_is_task(curr)) {
 | |
| 		struct task_struct *p = task_of(curr);
 | |
| 
 | |
| 		update_curr_task(p, delta_exec);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the fair_server is active, we need to account for the
 | |
| 		 * fair_server time whether or not the task is running on
 | |
| 		 * behalf of fair_server or not:
 | |
| 		 *  - If the task is running on behalf of fair_server, we need
 | |
| 		 *    to limit its time based on the assigned runtime.
 | |
| 		 *  - Fair task that runs outside of fair_server should account
 | |
| 		 *    against fair_server such that it can account for this time
 | |
| 		 *    and possibly avoid running this period.
 | |
| 		 */
 | |
| 		if (dl_server_active(&rq->fair_server))
 | |
| 			dl_server_update(&rq->fair_server, delta_exec);
 | |
| 	}
 | |
| 
 | |
| 	account_cfs_rq_runtime(cfs_rq, delta_exec);
 | |
| 
 | |
| 	if (cfs_rq->nr_queued == 1)
 | |
| 		return;
 | |
| 
 | |
| 	if (resched || did_preempt_short(cfs_rq, curr)) {
 | |
| 		resched_curr_lazy(rq);
 | |
| 		clear_buddies(cfs_rq, curr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_curr_fair(struct rq *rq)
 | |
| {
 | |
| 	update_curr(cfs_rq_of(&rq->donor->se));
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	struct sched_statistics *stats;
 | |
| 	struct task_struct *p = NULL;
 | |
| 
 | |
| 	if (!schedstat_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	stats = __schedstats_from_se(se);
 | |
| 
 | |
| 	if (entity_is_task(se))
 | |
| 		p = task_of(se);
 | |
| 
 | |
| 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	struct sched_statistics *stats;
 | |
| 	struct task_struct *p = NULL;
 | |
| 
 | |
| 	if (!schedstat_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	stats = __schedstats_from_se(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * When the sched_schedstat changes from 0 to 1, some sched se
 | |
| 	 * maybe already in the runqueue, the se->statistics.wait_start
 | |
| 	 * will be 0.So it will let the delta wrong. We need to avoid this
 | |
| 	 * scenario.
 | |
| 	 */
 | |
| 	if (unlikely(!schedstat_val(stats->wait_start)))
 | |
| 		return;
 | |
| 
 | |
| 	if (entity_is_task(se))
 | |
| 		p = task_of(se);
 | |
| 
 | |
| 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	struct sched_statistics *stats;
 | |
| 	struct task_struct *tsk = NULL;
 | |
| 
 | |
| 	if (!schedstat_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	stats = __schedstats_from_se(se);
 | |
| 
 | |
| 	if (entity_is_task(se))
 | |
| 		tsk = task_of(se);
 | |
| 
 | |
| 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Task is being enqueued - update stats:
 | |
|  */
 | |
| static inline void
 | |
| update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	if (!schedstat_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we enqueueing a waiting task? (for current tasks
 | |
| 	 * a dequeue/enqueue event is a NOP)
 | |
| 	 */
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		update_stats_wait_start_fair(cfs_rq, se);
 | |
| 
 | |
| 	if (flags & ENQUEUE_WAKEUP)
 | |
| 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 
 | |
| 	if (!schedstat_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the end of the wait period if dequeueing a
 | |
| 	 * waiting task:
 | |
| 	 */
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		update_stats_wait_end_fair(cfs_rq, se);
 | |
| 
 | |
| 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
 | |
| 		struct task_struct *tsk = task_of(se);
 | |
| 		unsigned int state;
 | |
| 
 | |
| 		/* XXX racy against TTWU */
 | |
| 		state = READ_ONCE(tsk->__state);
 | |
| 		if (state & TASK_INTERRUPTIBLE)
 | |
| 			__schedstat_set(tsk->stats.sleep_start,
 | |
| 				      rq_clock(rq_of(cfs_rq)));
 | |
| 		if (state & TASK_UNINTERRUPTIBLE)
 | |
| 			__schedstat_set(tsk->stats.block_start,
 | |
| 				      rq_clock(rq_of(cfs_rq)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are picking a new current task - update its stats:
 | |
|  */
 | |
| static inline void
 | |
| update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * We are starting a new run period:
 | |
| 	 */
 | |
| 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
 | |
| }
 | |
| 
 | |
| /**************************************************
 | |
|  * Scheduling class queueing methods:
 | |
|  */
 | |
| 
 | |
| static inline bool is_core_idle(int cpu)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	int sibling;
 | |
| 
 | |
| 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
 | |
| 		if (cpu == sibling)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!idle_cpu(sibling))
 | |
| 			return false;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| #define NUMA_IMBALANCE_MIN 2
 | |
| 
 | |
| static inline long
 | |
| adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
 | |
| {
 | |
| 	/*
 | |
| 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
 | |
| 	 * threshold. Above this threshold, individual tasks may be contending
 | |
| 	 * for both memory bandwidth and any shared HT resources.  This is an
 | |
| 	 * approximation as the number of running tasks may not be related to
 | |
| 	 * the number of busy CPUs due to sched_setaffinity.
 | |
| 	 */
 | |
| 	if (dst_running > imb_numa_nr)
 | |
| 		return imbalance;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow a small imbalance based on a simple pair of communicating
 | |
| 	 * tasks that remain local when the destination is lightly loaded.
 | |
| 	 */
 | |
| 	if (imbalance <= NUMA_IMBALANCE_MIN)
 | |
| 		return 0;
 | |
| 
 | |
| 	return imbalance;
 | |
| }
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /*
 | |
|  * Approximate time to scan a full NUMA task in ms. The task scan period is
 | |
|  * calculated based on the tasks virtual memory size and
 | |
|  * numa_balancing_scan_size.
 | |
|  */
 | |
| unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 | |
| unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 | |
| 
 | |
| /* Portion of address space to scan in MB */
 | |
| unsigned int sysctl_numa_balancing_scan_size = 256;
 | |
| 
 | |
| /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 | |
| unsigned int sysctl_numa_balancing_scan_delay = 1000;
 | |
| 
 | |
| /* The page with hint page fault latency < threshold in ms is considered hot */
 | |
| unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
 | |
| 
 | |
| struct numa_group {
 | |
| 	refcount_t refcount;
 | |
| 
 | |
| 	spinlock_t lock; /* nr_tasks, tasks */
 | |
| 	int nr_tasks;
 | |
| 	pid_t gid;
 | |
| 	int active_nodes;
 | |
| 
 | |
| 	struct rcu_head rcu;
 | |
| 	unsigned long total_faults;
 | |
| 	unsigned long max_faults_cpu;
 | |
| 	/*
 | |
| 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
 | |
| 	 *
 | |
| 	 * Faults_cpu is used to decide whether memory should move
 | |
| 	 * towards the CPU. As a consequence, these stats are weighted
 | |
| 	 * more by CPU use than by memory faults.
 | |
| 	 */
 | |
| 	unsigned long faults[];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * For functions that can be called in multiple contexts that permit reading
 | |
|  * ->numa_group (see struct task_struct for locking rules).
 | |
|  */
 | |
| static struct numa_group *deref_task_numa_group(struct task_struct *p)
 | |
| {
 | |
| 	return rcu_dereference_check(p->numa_group, p == current ||
 | |
| 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
 | |
| }
 | |
| 
 | |
| static struct numa_group *deref_curr_numa_group(struct task_struct *p)
 | |
| {
 | |
| 	return rcu_dereference_protected(p->numa_group, p == current);
 | |
| }
 | |
| 
 | |
| static inline unsigned long group_faults_priv(struct numa_group *ng);
 | |
| static inline unsigned long group_faults_shared(struct numa_group *ng);
 | |
| 
 | |
| static unsigned int task_nr_scan_windows(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long rss = 0;
 | |
| 	unsigned long nr_scan_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculations based on RSS as non-present and empty pages are skipped
 | |
| 	 * by the PTE scanner and NUMA hinting faults should be trapped based
 | |
| 	 * on resident pages
 | |
| 	 */
 | |
| 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 | |
| 	rss = get_mm_rss(p->mm);
 | |
| 	if (!rss)
 | |
| 		rss = nr_scan_pages;
 | |
| 
 | |
| 	rss = round_up(rss, nr_scan_pages);
 | |
| 	return rss / nr_scan_pages;
 | |
| }
 | |
| 
 | |
| /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 | |
| #define MAX_SCAN_WINDOW 2560
 | |
| 
 | |
| static unsigned int task_scan_min(struct task_struct *p)
 | |
| {
 | |
| 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
 | |
| 	unsigned int scan, floor;
 | |
| 	unsigned int windows = 1;
 | |
| 
 | |
| 	if (scan_size < MAX_SCAN_WINDOW)
 | |
| 		windows = MAX_SCAN_WINDOW / scan_size;
 | |
| 	floor = 1000 / windows;
 | |
| 
 | |
| 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 | |
| 	return max_t(unsigned int, floor, scan);
 | |
| }
 | |
| 
 | |
| static unsigned int task_scan_start(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long smin = task_scan_min(p);
 | |
| 	unsigned long period = smin;
 | |
| 	struct numa_group *ng;
 | |
| 
 | |
| 	/* Scale the maximum scan period with the amount of shared memory. */
 | |
| 	rcu_read_lock();
 | |
| 	ng = rcu_dereference(p->numa_group);
 | |
| 	if (ng) {
 | |
| 		unsigned long shared = group_faults_shared(ng);
 | |
| 		unsigned long private = group_faults_priv(ng);
 | |
| 
 | |
| 		period *= refcount_read(&ng->refcount);
 | |
| 		period *= shared + 1;
 | |
| 		period /= private + shared + 1;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return max(smin, period);
 | |
| }
 | |
| 
 | |
| static unsigned int task_scan_max(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long smin = task_scan_min(p);
 | |
| 	unsigned long smax;
 | |
| 	struct numa_group *ng;
 | |
| 
 | |
| 	/* Watch for min being lower than max due to floor calculations */
 | |
| 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 | |
| 
 | |
| 	/* Scale the maximum scan period with the amount of shared memory. */
 | |
| 	ng = deref_curr_numa_group(p);
 | |
| 	if (ng) {
 | |
| 		unsigned long shared = group_faults_shared(ng);
 | |
| 		unsigned long private = group_faults_priv(ng);
 | |
| 		unsigned long period = smax;
 | |
| 
 | |
| 		period *= refcount_read(&ng->refcount);
 | |
| 		period *= shared + 1;
 | |
| 		period /= private + shared + 1;
 | |
| 
 | |
| 		smax = max(smax, period);
 | |
| 	}
 | |
| 
 | |
| 	return max(smin, smax);
 | |
| }
 | |
| 
 | |
| static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
 | |
| 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 | |
| }
 | |
| 
 | |
| static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
 | |
| 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 | |
| }
 | |
| 
 | |
| /* Shared or private faults. */
 | |
| #define NR_NUMA_HINT_FAULT_TYPES 2
 | |
| 
 | |
| /* Memory and CPU locality */
 | |
| #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 | |
| 
 | |
| /* Averaged statistics, and temporary buffers. */
 | |
| #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 | |
| 
 | |
| pid_t task_numa_group_id(struct task_struct *p)
 | |
| {
 | |
| 	struct numa_group *ng;
 | |
| 	pid_t gid = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ng = rcu_dereference(p->numa_group);
 | |
| 	if (ng)
 | |
| 		gid = ng->gid;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return gid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The averaged statistics, shared & private, memory & CPU,
 | |
|  * occupy the first half of the array. The second half of the
 | |
|  * array is for current counters, which are averaged into the
 | |
|  * first set by task_numa_placement.
 | |
|  */
 | |
| static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
 | |
| {
 | |
| 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
 | |
| }
 | |
| 
 | |
| static inline unsigned long task_faults(struct task_struct *p, int nid)
 | |
| {
 | |
| 	if (!p->numa_faults)
 | |
| 		return 0;
 | |
| 
 | |
| 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 | |
| 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
 | |
| }
 | |
| 
 | |
| static inline unsigned long group_faults(struct task_struct *p, int nid)
 | |
| {
 | |
| 	struct numa_group *ng = deref_task_numa_group(p);
 | |
| 
 | |
| 	if (!ng)
 | |
| 		return 0;
 | |
| 
 | |
| 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 | |
| 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
 | |
| }
 | |
| 
 | |
| static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 | |
| {
 | |
| 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
 | |
| 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
 | |
| }
 | |
| 
 | |
| static inline unsigned long group_faults_priv(struct numa_group *ng)
 | |
| {
 | |
| 	unsigned long faults = 0;
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
 | |
| 	}
 | |
| 
 | |
| 	return faults;
 | |
| }
 | |
| 
 | |
| static inline unsigned long group_faults_shared(struct numa_group *ng)
 | |
| {
 | |
| 	unsigned long faults = 0;
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
 | |
| 	}
 | |
| 
 | |
| 	return faults;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A node triggering more than 1/3 as many NUMA faults as the maximum is
 | |
|  * considered part of a numa group's pseudo-interleaving set. Migrations
 | |
|  * between these nodes are slowed down, to allow things to settle down.
 | |
|  */
 | |
| #define ACTIVE_NODE_FRACTION 3
 | |
| 
 | |
| static bool numa_is_active_node(int nid, struct numa_group *ng)
 | |
| {
 | |
| 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
 | |
| }
 | |
| 
 | |
| /* Handle placement on systems where not all nodes are directly connected. */
 | |
| static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
 | |
| 					int lim_dist, bool task)
 | |
| {
 | |
| 	unsigned long score = 0;
 | |
| 	int node, max_dist;
 | |
| 
 | |
| 	/*
 | |
| 	 * All nodes are directly connected, and the same distance
 | |
| 	 * from each other. No need for fancy placement algorithms.
 | |
| 	 */
 | |
| 	if (sched_numa_topology_type == NUMA_DIRECT)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* sched_max_numa_distance may be changed in parallel. */
 | |
| 	max_dist = READ_ONCE(sched_max_numa_distance);
 | |
| 	/*
 | |
| 	 * This code is called for each node, introducing N^2 complexity,
 | |
| 	 * which should be OK given the number of nodes rarely exceeds 8.
 | |
| 	 */
 | |
| 	for_each_online_node(node) {
 | |
| 		unsigned long faults;
 | |
| 		int dist = node_distance(nid, node);
 | |
| 
 | |
| 		/*
 | |
| 		 * The furthest away nodes in the system are not interesting
 | |
| 		 * for placement; nid was already counted.
 | |
| 		 */
 | |
| 		if (dist >= max_dist || node == nid)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * On systems with a backplane NUMA topology, compare groups
 | |
| 		 * of nodes, and move tasks towards the group with the most
 | |
| 		 * memory accesses. When comparing two nodes at distance
 | |
| 		 * "hoplimit", only nodes closer by than "hoplimit" are part
 | |
| 		 * of each group. Skip other nodes.
 | |
| 		 */
 | |
| 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Add up the faults from nearby nodes. */
 | |
| 		if (task)
 | |
| 			faults = task_faults(p, node);
 | |
| 		else
 | |
| 			faults = group_faults(p, node);
 | |
| 
 | |
| 		/*
 | |
| 		 * On systems with a glueless mesh NUMA topology, there are
 | |
| 		 * no fixed "groups of nodes". Instead, nodes that are not
 | |
| 		 * directly connected bounce traffic through intermediate
 | |
| 		 * nodes; a numa_group can occupy any set of nodes.
 | |
| 		 * The further away a node is, the less the faults count.
 | |
| 		 * This seems to result in good task placement.
 | |
| 		 */
 | |
| 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 | |
| 			faults *= (max_dist - dist);
 | |
| 			faults /= (max_dist - LOCAL_DISTANCE);
 | |
| 		}
 | |
| 
 | |
| 		score += faults;
 | |
| 	}
 | |
| 
 | |
| 	return score;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These return the fraction of accesses done by a particular task, or
 | |
|  * task group, on a particular numa node.  The group weight is given a
 | |
|  * larger multiplier, in order to group tasks together that are almost
 | |
|  * evenly spread out between numa nodes.
 | |
|  */
 | |
| static inline unsigned long task_weight(struct task_struct *p, int nid,
 | |
| 					int dist)
 | |
| {
 | |
| 	unsigned long faults, total_faults;
 | |
| 
 | |
| 	if (!p->numa_faults)
 | |
| 		return 0;
 | |
| 
 | |
| 	total_faults = p->total_numa_faults;
 | |
| 
 | |
| 	if (!total_faults)
 | |
| 		return 0;
 | |
| 
 | |
| 	faults = task_faults(p, nid);
 | |
| 	faults += score_nearby_nodes(p, nid, dist, true);
 | |
| 
 | |
| 	return 1000 * faults / total_faults;
 | |
| }
 | |
| 
 | |
| static inline unsigned long group_weight(struct task_struct *p, int nid,
 | |
| 					 int dist)
 | |
| {
 | |
| 	struct numa_group *ng = deref_task_numa_group(p);
 | |
| 	unsigned long faults, total_faults;
 | |
| 
 | |
| 	if (!ng)
 | |
| 		return 0;
 | |
| 
 | |
| 	total_faults = ng->total_faults;
 | |
| 
 | |
| 	if (!total_faults)
 | |
| 		return 0;
 | |
| 
 | |
| 	faults = group_faults(p, nid);
 | |
| 	faults += score_nearby_nodes(p, nid, dist, false);
 | |
| 
 | |
| 	return 1000 * faults / total_faults;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If memory tiering mode is enabled, cpupid of slow memory page is
 | |
|  * used to record scan time instead of CPU and PID.  When tiering mode
 | |
|  * is disabled at run time, the scan time (in cpupid) will be
 | |
|  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
 | |
|  * access out of array bound.
 | |
|  */
 | |
| static inline bool cpupid_valid(int cpupid)
 | |
| {
 | |
| 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For memory tiering mode, if there are enough free pages (more than
 | |
|  * enough watermark defined here) in fast memory node, to take full
 | |
|  * advantage of fast memory capacity, all recently accessed slow
 | |
|  * memory pages will be migrated to fast memory node without
 | |
|  * considering hot threshold.
 | |
|  */
 | |
| static bool pgdat_free_space_enough(struct pglist_data *pgdat)
 | |
| {
 | |
| 	int z;
 | |
| 	unsigned long enough_wmark;
 | |
| 
 | |
| 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
 | |
| 			   pgdat->node_present_pages >> 4);
 | |
| 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
 | |
| 		struct zone *zone = pgdat->node_zones + z;
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		if (zone_watermark_ok(zone, 0,
 | |
| 				      promo_wmark_pages(zone) + enough_wmark,
 | |
| 				      ZONE_MOVABLE, 0))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For memory tiering mode, when page tables are scanned, the scan
 | |
|  * time will be recorded in struct page in addition to make page
 | |
|  * PROT_NONE for slow memory page.  So when the page is accessed, in
 | |
|  * hint page fault handler, the hint page fault latency is calculated
 | |
|  * via,
 | |
|  *
 | |
|  *	hint page fault latency = hint page fault time - scan time
 | |
|  *
 | |
|  * The smaller the hint page fault latency, the higher the possibility
 | |
|  * for the page to be hot.
 | |
|  */
 | |
| static int numa_hint_fault_latency(struct folio *folio)
 | |
| {
 | |
| 	int last_time, time;
 | |
| 
 | |
| 	time = jiffies_to_msecs(jiffies);
 | |
| 	last_time = folio_xchg_access_time(folio, time);
 | |
| 
 | |
| 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For memory tiering mode, too high promotion/demotion throughput may
 | |
|  * hurt application latency.  So we provide a mechanism to rate limit
 | |
|  * the number of pages that are tried to be promoted.
 | |
|  */
 | |
| static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
 | |
| 				      unsigned long rate_limit, int nr)
 | |
| {
 | |
| 	unsigned long nr_cand;
 | |
| 	unsigned int now, start;
 | |
| 
 | |
| 	now = jiffies_to_msecs(jiffies);
 | |
| 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
 | |
| 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
 | |
| 	start = pgdat->nbp_rl_start;
 | |
| 	if (now - start > MSEC_PER_SEC &&
 | |
| 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
 | |
| 		pgdat->nbp_rl_nr_cand = nr_cand;
 | |
| 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #define NUMA_MIGRATION_ADJUST_STEPS	16
 | |
| 
 | |
| static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
 | |
| 					    unsigned long rate_limit,
 | |
| 					    unsigned int ref_th)
 | |
| {
 | |
| 	unsigned int now, start, th_period, unit_th, th;
 | |
| 	unsigned long nr_cand, ref_cand, diff_cand;
 | |
| 
 | |
| 	now = jiffies_to_msecs(jiffies);
 | |
| 	th_period = sysctl_numa_balancing_scan_period_max;
 | |
| 	start = pgdat->nbp_th_start;
 | |
| 	if (now - start > th_period &&
 | |
| 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
 | |
| 		ref_cand = rate_limit *
 | |
| 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
 | |
| 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
 | |
| 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
 | |
| 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
 | |
| 		th = pgdat->nbp_threshold ? : ref_th;
 | |
| 		if (diff_cand > ref_cand * 11 / 10)
 | |
| 			th = max(th - unit_th, unit_th);
 | |
| 		else if (diff_cand < ref_cand * 9 / 10)
 | |
| 			th = min(th + unit_th, ref_th * 2);
 | |
| 		pgdat->nbp_th_nr_cand = nr_cand;
 | |
| 		pgdat->nbp_threshold = th;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
 | |
| 				int src_nid, int dst_cpu)
 | |
| {
 | |
| 	struct numa_group *ng = deref_curr_numa_group(p);
 | |
| 	int dst_nid = cpu_to_node(dst_cpu);
 | |
| 	int last_cpupid, this_cpupid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cannot migrate to memoryless nodes.
 | |
| 	 */
 | |
| 	if (!node_state(dst_nid, N_MEMORY))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The pages in slow memory node should be migrated according
 | |
| 	 * to hot/cold instead of private/shared.
 | |
| 	 */
 | |
| 	if (folio_use_access_time(folio)) {
 | |
| 		struct pglist_data *pgdat;
 | |
| 		unsigned long rate_limit;
 | |
| 		unsigned int latency, th, def_th;
 | |
| 
 | |
| 		pgdat = NODE_DATA(dst_nid);
 | |
| 		if (pgdat_free_space_enough(pgdat)) {
 | |
| 			/* workload changed, reset hot threshold */
 | |
| 			pgdat->nbp_threshold = 0;
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		def_th = sysctl_numa_balancing_hot_threshold;
 | |
| 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
 | |
| 			(20 - PAGE_SHIFT);
 | |
| 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
 | |
| 
 | |
| 		th = pgdat->nbp_threshold ? : def_th;
 | |
| 		latency = numa_hint_fault_latency(folio);
 | |
| 		if (latency >= th)
 | |
| 			return false;
 | |
| 
 | |
| 		return !numa_promotion_rate_limit(pgdat, rate_limit,
 | |
| 						  folio_nr_pages(folio));
 | |
| 	}
 | |
| 
 | |
| 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
 | |
| 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
 | |
| 
 | |
| 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
 | |
| 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow first faults or private faults to migrate immediately early in
 | |
| 	 * the lifetime of a task. The magic number 4 is based on waiting for
 | |
| 	 * two full passes of the "multi-stage node selection" test that is
 | |
| 	 * executed below.
 | |
| 	 */
 | |
| 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
 | |
| 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Multi-stage node selection is used in conjunction with a periodic
 | |
| 	 * migration fault to build a temporal task<->page relation. By using
 | |
| 	 * a two-stage filter we remove short/unlikely relations.
 | |
| 	 *
 | |
| 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
 | |
| 	 * a task's usage of a particular page (n_p) per total usage of this
 | |
| 	 * page (n_t) (in a given time-span) to a probability.
 | |
| 	 *
 | |
| 	 * Our periodic faults will sample this probability and getting the
 | |
| 	 * same result twice in a row, given these samples are fully
 | |
| 	 * independent, is then given by P(n)^2, provided our sample period
 | |
| 	 * is sufficiently short compared to the usage pattern.
 | |
| 	 *
 | |
| 	 * This quadric squishes small probabilities, making it less likely we
 | |
| 	 * act on an unlikely task<->page relation.
 | |
| 	 */
 | |
| 	if (!cpupid_pid_unset(last_cpupid) &&
 | |
| 				cpupid_to_nid(last_cpupid) != dst_nid)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Always allow migrate on private faults */
 | |
| 	if (cpupid_match_pid(p, last_cpupid))
 | |
| 		return true;
 | |
| 
 | |
| 	/* A shared fault, but p->numa_group has not been set up yet. */
 | |
| 	if (!ng)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Destination node is much more heavily used than the source
 | |
| 	 * node? Allow migration.
 | |
| 	 */
 | |
| 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
 | |
| 					ACTIVE_NODE_FRACTION)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Distribute memory according to CPU & memory use on each node,
 | |
| 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
 | |
| 	 *
 | |
| 	 * faults_cpu(dst)   3   faults_cpu(src)
 | |
| 	 * --------------- * - > ---------------
 | |
| 	 * faults_mem(dst)   4   faults_mem(src)
 | |
| 	 */
 | |
| 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
 | |
| 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'numa_type' describes the node at the moment of load balancing.
 | |
|  */
 | |
| enum numa_type {
 | |
| 	/* The node has spare capacity that can be used to run more tasks.  */
 | |
| 	node_has_spare = 0,
 | |
| 	/*
 | |
| 	 * The node is fully used and the tasks don't compete for more CPU
 | |
| 	 * cycles. Nevertheless, some tasks might wait before running.
 | |
| 	 */
 | |
| 	node_fully_busy,
 | |
| 	/*
 | |
| 	 * The node is overloaded and can't provide expected CPU cycles to all
 | |
| 	 * tasks.
 | |
| 	 */
 | |
| 	node_overloaded
 | |
| };
 | |
| 
 | |
| /* Cached statistics for all CPUs within a node */
 | |
| struct numa_stats {
 | |
| 	unsigned long load;
 | |
| 	unsigned long runnable;
 | |
| 	unsigned long util;
 | |
| 	/* Total compute capacity of CPUs on a node */
 | |
| 	unsigned long compute_capacity;
 | |
| 	unsigned int nr_running;
 | |
| 	unsigned int weight;
 | |
| 	enum numa_type node_type;
 | |
| 	int idle_cpu;
 | |
| };
 | |
| 
 | |
| struct task_numa_env {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	int src_cpu, src_nid;
 | |
| 	int dst_cpu, dst_nid;
 | |
| 	int imb_numa_nr;
 | |
| 
 | |
| 	struct numa_stats src_stats, dst_stats;
 | |
| 
 | |
| 	int imbalance_pct;
 | |
| 	int dist;
 | |
| 
 | |
| 	struct task_struct *best_task;
 | |
| 	long best_imp;
 | |
| 	int best_cpu;
 | |
| };
 | |
| 
 | |
| static unsigned long cpu_load(struct rq *rq);
 | |
| static unsigned long cpu_runnable(struct rq *rq);
 | |
| 
 | |
| static inline enum
 | |
| numa_type numa_classify(unsigned int imbalance_pct,
 | |
| 			 struct numa_stats *ns)
 | |
| {
 | |
| 	if ((ns->nr_running > ns->weight) &&
 | |
| 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
 | |
| 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
 | |
| 		return node_overloaded;
 | |
| 
 | |
| 	if ((ns->nr_running < ns->weight) ||
 | |
| 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
 | |
| 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
 | |
| 		return node_has_spare;
 | |
| 
 | |
| 	return node_fully_busy;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| /* Forward declarations of select_idle_sibling helpers */
 | |
| static inline bool test_idle_cores(int cpu);
 | |
| static inline int numa_idle_core(int idle_core, int cpu)
 | |
| {
 | |
| 	if (!static_branch_likely(&sched_smt_present) ||
 | |
| 	    idle_core >= 0 || !test_idle_cores(cpu))
 | |
| 		return idle_core;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prefer cores instead of packing HT siblings
 | |
| 	 * and triggering future load balancing.
 | |
| 	 */
 | |
| 	if (is_core_idle(cpu))
 | |
| 		idle_core = cpu;
 | |
| 
 | |
| 	return idle_core;
 | |
| }
 | |
| #else
 | |
| static inline int numa_idle_core(int idle_core, int cpu)
 | |
| {
 | |
| 	return idle_core;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Gather all necessary information to make NUMA balancing placement
 | |
|  * decisions that are compatible with standard load balancer. This
 | |
|  * borrows code and logic from update_sg_lb_stats but sharing a
 | |
|  * common implementation is impractical.
 | |
|  */
 | |
| static void update_numa_stats(struct task_numa_env *env,
 | |
| 			      struct numa_stats *ns, int nid,
 | |
| 			      bool find_idle)
 | |
| {
 | |
| 	int cpu, idle_core = -1;
 | |
| 
 | |
| 	memset(ns, 0, sizeof(*ns));
 | |
| 	ns->idle_cpu = -1;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_cpu(cpu, cpumask_of_node(nid)) {
 | |
| 		struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 		ns->load += cpu_load(rq);
 | |
| 		ns->runnable += cpu_runnable(rq);
 | |
| 		ns->util += cpu_util_cfs(cpu);
 | |
| 		ns->nr_running += rq->cfs.h_nr_runnable;
 | |
| 		ns->compute_capacity += capacity_of(cpu);
 | |
| 
 | |
| 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
 | |
| 			if (READ_ONCE(rq->numa_migrate_on) ||
 | |
| 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
 | |
| 				continue;
 | |
| 
 | |
| 			if (ns->idle_cpu == -1)
 | |
| 				ns->idle_cpu = cpu;
 | |
| 
 | |
| 			idle_core = numa_idle_core(idle_core, cpu);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	ns->weight = cpumask_weight(cpumask_of_node(nid));
 | |
| 
 | |
| 	ns->node_type = numa_classify(env->imbalance_pct, ns);
 | |
| 
 | |
| 	if (idle_core >= 0)
 | |
| 		ns->idle_cpu = idle_core;
 | |
| }
 | |
| 
 | |
| static void task_numa_assign(struct task_numa_env *env,
 | |
| 			     struct task_struct *p, long imp)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(env->dst_cpu);
 | |
| 
 | |
| 	/* Check if run-queue part of active NUMA balance. */
 | |
| 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
 | |
| 		int cpu;
 | |
| 		int start = env->dst_cpu;
 | |
| 
 | |
| 		/* Find alternative idle CPU. */
 | |
| 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
 | |
| 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
 | |
| 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			env->dst_cpu = cpu;
 | |
| 			rq = cpu_rq(env->dst_cpu);
 | |
| 			if (!xchg(&rq->numa_migrate_on, 1))
 | |
| 				goto assign;
 | |
| 		}
 | |
| 
 | |
| 		/* Failed to find an alternative idle CPU */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| assign:
 | |
| 	/*
 | |
| 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
 | |
| 	 * found a better CPU to move/swap.
 | |
| 	 */
 | |
| 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
 | |
| 		rq = cpu_rq(env->best_cpu);
 | |
| 		WRITE_ONCE(rq->numa_migrate_on, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (env->best_task)
 | |
| 		put_task_struct(env->best_task);
 | |
| 	if (p)
 | |
| 		get_task_struct(p);
 | |
| 
 | |
| 	env->best_task = p;
 | |
| 	env->best_imp = imp;
 | |
| 	env->best_cpu = env->dst_cpu;
 | |
| }
 | |
| 
 | |
| static bool load_too_imbalanced(long src_load, long dst_load,
 | |
| 				struct task_numa_env *env)
 | |
| {
 | |
| 	long imb, old_imb;
 | |
| 	long orig_src_load, orig_dst_load;
 | |
| 	long src_capacity, dst_capacity;
 | |
| 
 | |
| 	/*
 | |
| 	 * The load is corrected for the CPU capacity available on each node.
 | |
| 	 *
 | |
| 	 * src_load        dst_load
 | |
| 	 * ------------ vs ---------
 | |
| 	 * src_capacity    dst_capacity
 | |
| 	 */
 | |
| 	src_capacity = env->src_stats.compute_capacity;
 | |
| 	dst_capacity = env->dst_stats.compute_capacity;
 | |
| 
 | |
| 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
 | |
| 
 | |
| 	orig_src_load = env->src_stats.load;
 | |
| 	orig_dst_load = env->dst_stats.load;
 | |
| 
 | |
| 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
 | |
| 
 | |
| 	/* Would this change make things worse? */
 | |
| 	return (imb > old_imb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Maximum NUMA importance can be 1998 (2*999);
 | |
|  * SMALLIMP @ 30 would be close to 1998/64.
 | |
|  * Used to deter task migration.
 | |
|  */
 | |
| #define SMALLIMP	30
 | |
| 
 | |
| /*
 | |
|  * This checks if the overall compute and NUMA accesses of the system would
 | |
|  * be improved if the source tasks was migrated to the target dst_cpu taking
 | |
|  * into account that it might be best if task running on the dst_cpu should
 | |
|  * be exchanged with the source task
 | |
|  */
 | |
| static bool task_numa_compare(struct task_numa_env *env,
 | |
| 			      long taskimp, long groupimp, bool maymove)
 | |
| {
 | |
| 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
 | |
| 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
 | |
| 	long imp = p_ng ? groupimp : taskimp;
 | |
| 	struct task_struct *cur;
 | |
| 	long src_load, dst_load;
 | |
| 	int dist = env->dist;
 | |
| 	long moveimp = imp;
 | |
| 	long load;
 | |
| 	bool stopsearch = false;
 | |
| 
 | |
| 	if (READ_ONCE(dst_rq->numa_migrate_on))
 | |
| 		return false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cur = rcu_dereference(dst_rq->curr);
 | |
| 	if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
 | |
| 		    !cur->mm))
 | |
| 		cur = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we have preemption enabled we can get migrated around and
 | |
| 	 * end try selecting ourselves (current == env->p) as a swap candidate.
 | |
| 	 */
 | |
| 	if (cur == env->p) {
 | |
| 		stopsearch = true;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (!cur) {
 | |
| 		if (maymove && moveimp >= env->best_imp)
 | |
| 			goto assign;
 | |
| 		else
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip this swap candidate if cannot move to the source cpu. */
 | |
| 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip this swap candidate if it is not moving to its preferred
 | |
| 	 * node and the best task is.
 | |
| 	 */
 | |
| 	if (env->best_task &&
 | |
| 	    env->best_task->numa_preferred_nid == env->src_nid &&
 | |
| 	    cur->numa_preferred_nid != env->src_nid) {
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * "imp" is the fault differential for the source task between the
 | |
| 	 * source and destination node. Calculate the total differential for
 | |
| 	 * the source task and potential destination task. The more negative
 | |
| 	 * the value is, the more remote accesses that would be expected to
 | |
| 	 * be incurred if the tasks were swapped.
 | |
| 	 *
 | |
| 	 * If dst and source tasks are in the same NUMA group, or not
 | |
| 	 * in any group then look only at task weights.
 | |
| 	 */
 | |
| 	cur_ng = rcu_dereference(cur->numa_group);
 | |
| 	if (cur_ng == p_ng) {
 | |
| 		/*
 | |
| 		 * Do not swap within a group or between tasks that have
 | |
| 		 * no group if there is spare capacity. Swapping does
 | |
| 		 * not address the load imbalance and helps one task at
 | |
| 		 * the cost of punishing another.
 | |
| 		 */
 | |
| 		if (env->dst_stats.node_type == node_has_spare)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
 | |
| 		      task_weight(cur, env->dst_nid, dist);
 | |
| 		/*
 | |
| 		 * Add some hysteresis to prevent swapping the
 | |
| 		 * tasks within a group over tiny differences.
 | |
| 		 */
 | |
| 		if (cur_ng)
 | |
| 			imp -= imp / 16;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Compare the group weights. If a task is all by itself
 | |
| 		 * (not part of a group), use the task weight instead.
 | |
| 		 */
 | |
| 		if (cur_ng && p_ng)
 | |
| 			imp += group_weight(cur, env->src_nid, dist) -
 | |
| 			       group_weight(cur, env->dst_nid, dist);
 | |
| 		else
 | |
| 			imp += task_weight(cur, env->src_nid, dist) -
 | |
| 			       task_weight(cur, env->dst_nid, dist);
 | |
| 	}
 | |
| 
 | |
| 	/* Discourage picking a task already on its preferred node */
 | |
| 	if (cur->numa_preferred_nid == env->dst_nid)
 | |
| 		imp -= imp / 16;
 | |
| 
 | |
| 	/*
 | |
| 	 * Encourage picking a task that moves to its preferred node.
 | |
| 	 * This potentially makes imp larger than it's maximum of
 | |
| 	 * 1998 (see SMALLIMP and task_weight for why) but in this
 | |
| 	 * case, it does not matter.
 | |
| 	 */
 | |
| 	if (cur->numa_preferred_nid == env->src_nid)
 | |
| 		imp += imp / 8;
 | |
| 
 | |
| 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
 | |
| 		imp = moveimp;
 | |
| 		cur = NULL;
 | |
| 		goto assign;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prefer swapping with a task moving to its preferred node over a
 | |
| 	 * task that is not.
 | |
| 	 */
 | |
| 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
 | |
| 	    env->best_task->numa_preferred_nid != env->src_nid) {
 | |
| 		goto assign;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the NUMA importance is less than SMALLIMP,
 | |
| 	 * task migration might only result in ping pong
 | |
| 	 * of tasks and also hurt performance due to cache
 | |
| 	 * misses.
 | |
| 	 */
 | |
| 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the overloaded case, try and keep the load balanced.
 | |
| 	 */
 | |
| 	load = task_h_load(env->p) - task_h_load(cur);
 | |
| 	if (!load)
 | |
| 		goto assign;
 | |
| 
 | |
| 	dst_load = env->dst_stats.load + load;
 | |
| 	src_load = env->src_stats.load - load;
 | |
| 
 | |
| 	if (load_too_imbalanced(src_load, dst_load, env))
 | |
| 		goto unlock;
 | |
| 
 | |
| assign:
 | |
| 	/* Evaluate an idle CPU for a task numa move. */
 | |
| 	if (!cur) {
 | |
| 		int cpu = env->dst_stats.idle_cpu;
 | |
| 
 | |
| 		/* Nothing cached so current CPU went idle since the search. */
 | |
| 		if (cpu < 0)
 | |
| 			cpu = env->dst_cpu;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the CPU is no longer truly idle and the previous best CPU
 | |
| 		 * is, keep using it.
 | |
| 		 */
 | |
| 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
 | |
| 		    idle_cpu(env->best_cpu)) {
 | |
| 			cpu = env->best_cpu;
 | |
| 		}
 | |
| 
 | |
| 		env->dst_cpu = cpu;
 | |
| 	}
 | |
| 
 | |
| 	task_numa_assign(env, cur, imp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If a move to idle is allowed because there is capacity or load
 | |
| 	 * balance improves then stop the search. While a better swap
 | |
| 	 * candidate may exist, a search is not free.
 | |
| 	 */
 | |
| 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
 | |
| 		stopsearch = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If a swap candidate must be identified and the current best task
 | |
| 	 * moves its preferred node then stop the search.
 | |
| 	 */
 | |
| 	if (!maymove && env->best_task &&
 | |
| 	    env->best_task->numa_preferred_nid == env->src_nid) {
 | |
| 		stopsearch = true;
 | |
| 	}
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return stopsearch;
 | |
| }
 | |
| 
 | |
| static void task_numa_find_cpu(struct task_numa_env *env,
 | |
| 				long taskimp, long groupimp)
 | |
| {
 | |
| 	bool maymove = false;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * If dst node has spare capacity, then check if there is an
 | |
| 	 * imbalance that would be overruled by the load balancer.
 | |
| 	 */
 | |
| 	if (env->dst_stats.node_type == node_has_spare) {
 | |
| 		unsigned int imbalance;
 | |
| 		int src_running, dst_running;
 | |
| 
 | |
| 		/*
 | |
| 		 * Would movement cause an imbalance? Note that if src has
 | |
| 		 * more running tasks that the imbalance is ignored as the
 | |
| 		 * move improves the imbalance from the perspective of the
 | |
| 		 * CPU load balancer.
 | |
| 		 * */
 | |
| 		src_running = env->src_stats.nr_running - 1;
 | |
| 		dst_running = env->dst_stats.nr_running + 1;
 | |
| 		imbalance = max(0, dst_running - src_running);
 | |
| 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
 | |
| 						  env->imb_numa_nr);
 | |
| 
 | |
| 		/* Use idle CPU if there is no imbalance */
 | |
| 		if (!imbalance) {
 | |
| 			maymove = true;
 | |
| 			if (env->dst_stats.idle_cpu >= 0) {
 | |
| 				env->dst_cpu = env->dst_stats.idle_cpu;
 | |
| 				task_numa_assign(env, NULL, 0);
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		long src_load, dst_load, load;
 | |
| 		/*
 | |
| 		 * If the improvement from just moving env->p direction is better
 | |
| 		 * than swapping tasks around, check if a move is possible.
 | |
| 		 */
 | |
| 		load = task_h_load(env->p);
 | |
| 		dst_load = env->dst_stats.load + load;
 | |
| 		src_load = env->src_stats.load - load;
 | |
| 		maymove = !load_too_imbalanced(src_load, dst_load, env);
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
 | |
| 		/* Skip this CPU if the source task cannot migrate */
 | |
| 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
 | |
| 			continue;
 | |
| 
 | |
| 		env->dst_cpu = cpu;
 | |
| 		if (task_numa_compare(env, taskimp, groupimp, maymove))
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int task_numa_migrate(struct task_struct *p)
 | |
| {
 | |
| 	struct task_numa_env env = {
 | |
| 		.p = p,
 | |
| 
 | |
| 		.src_cpu = task_cpu(p),
 | |
| 		.src_nid = task_node(p),
 | |
| 
 | |
| 		.imbalance_pct = 112,
 | |
| 
 | |
| 		.best_task = NULL,
 | |
| 		.best_imp = 0,
 | |
| 		.best_cpu = -1,
 | |
| 	};
 | |
| 	unsigned long taskweight, groupweight;
 | |
| 	struct sched_domain *sd;
 | |
| 	long taskimp, groupimp;
 | |
| 	struct numa_group *ng;
 | |
| 	struct rq *best_rq;
 | |
| 	int nid, ret, dist;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
 | |
| 	 * imbalance and would be the first to start moving tasks about.
 | |
| 	 *
 | |
| 	 * And we want to avoid any moving of tasks about, as that would create
 | |
| 	 * random movement of tasks -- counter the numa conditions we're trying
 | |
| 	 * to satisfy here.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
 | |
| 	if (sd) {
 | |
| 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
 | |
| 		env.imb_numa_nr = sd->imb_numa_nr;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Cpusets can break the scheduler domain tree into smaller
 | |
| 	 * balance domains, some of which do not cross NUMA boundaries.
 | |
| 	 * Tasks that are "trapped" in such domains cannot be migrated
 | |
| 	 * elsewhere, so there is no point in (re)trying.
 | |
| 	 */
 | |
| 	if (unlikely(!sd)) {
 | |
| 		sched_setnuma(p, task_node(p));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	env.dst_nid = p->numa_preferred_nid;
 | |
| 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
 | |
| 	taskweight = task_weight(p, env.src_nid, dist);
 | |
| 	groupweight = group_weight(p, env.src_nid, dist);
 | |
| 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
 | |
| 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
 | |
| 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
 | |
| 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
 | |
| 
 | |
| 	/* Try to find a spot on the preferred nid. */
 | |
| 	task_numa_find_cpu(&env, taskimp, groupimp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Look at other nodes in these cases:
 | |
| 	 * - there is no space available on the preferred_nid
 | |
| 	 * - the task is part of a numa_group that is interleaved across
 | |
| 	 *   multiple NUMA nodes; in order to better consolidate the group,
 | |
| 	 *   we need to check other locations.
 | |
| 	 */
 | |
| 	ng = deref_curr_numa_group(p);
 | |
| 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
 | |
| 		for_each_node_state(nid, N_CPU) {
 | |
| 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
 | |
| 				continue;
 | |
| 
 | |
| 			dist = node_distance(env.src_nid, env.dst_nid);
 | |
| 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
 | |
| 						dist != env.dist) {
 | |
| 				taskweight = task_weight(p, env.src_nid, dist);
 | |
| 				groupweight = group_weight(p, env.src_nid, dist);
 | |
| 			}
 | |
| 
 | |
| 			/* Only consider nodes where both task and groups benefit */
 | |
| 			taskimp = task_weight(p, nid, dist) - taskweight;
 | |
| 			groupimp = group_weight(p, nid, dist) - groupweight;
 | |
| 			if (taskimp < 0 && groupimp < 0)
 | |
| 				continue;
 | |
| 
 | |
| 			env.dist = dist;
 | |
| 			env.dst_nid = nid;
 | |
| 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
 | |
| 			task_numa_find_cpu(&env, taskimp, groupimp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the task is part of a workload that spans multiple NUMA nodes,
 | |
| 	 * and is migrating into one of the workload's active nodes, remember
 | |
| 	 * this node as the task's preferred numa node, so the workload can
 | |
| 	 * settle down.
 | |
| 	 * A task that migrated to a second choice node will be better off
 | |
| 	 * trying for a better one later. Do not set the preferred node here.
 | |
| 	 */
 | |
| 	if (ng) {
 | |
| 		if (env.best_cpu == -1)
 | |
| 			nid = env.src_nid;
 | |
| 		else
 | |
| 			nid = cpu_to_node(env.best_cpu);
 | |
| 
 | |
| 		if (nid != p->numa_preferred_nid)
 | |
| 			sched_setnuma(p, nid);
 | |
| 	}
 | |
| 
 | |
| 	/* No better CPU than the current one was found. */
 | |
| 	if (env.best_cpu == -1) {
 | |
| 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	best_rq = cpu_rq(env.best_cpu);
 | |
| 	if (env.best_task == NULL) {
 | |
| 		ret = migrate_task_to(p, env.best_cpu);
 | |
| 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
 | |
| 		if (ret != 0)
 | |
| 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
 | |
| 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
 | |
| 
 | |
| 	if (ret != 0)
 | |
| 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
 | |
| 	put_task_struct(env.best_task);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Attempt to migrate a task to a CPU on the preferred node. */
 | |
| static void numa_migrate_preferred(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long interval = HZ;
 | |
| 
 | |
| 	/* This task has no NUMA fault statistics yet */
 | |
| 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
 | |
| 		return;
 | |
| 
 | |
| 	/* Periodically retry migrating the task to the preferred node */
 | |
| 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
 | |
| 	p->numa_migrate_retry = jiffies + interval;
 | |
| 
 | |
| 	/* Success if task is already running on preferred CPU */
 | |
| 	if (task_node(p) == p->numa_preferred_nid)
 | |
| 		return;
 | |
| 
 | |
| 	/* Otherwise, try migrate to a CPU on the preferred node */
 | |
| 	task_numa_migrate(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find out how many nodes the workload is actively running on. Do this by
 | |
|  * tracking the nodes from which NUMA hinting faults are triggered. This can
 | |
|  * be different from the set of nodes where the workload's memory is currently
 | |
|  * located.
 | |
|  */
 | |
| static void numa_group_count_active_nodes(struct numa_group *numa_group)
 | |
| {
 | |
| 	unsigned long faults, max_faults = 0;
 | |
| 	int nid, active_nodes = 0;
 | |
| 
 | |
| 	for_each_node_state(nid, N_CPU) {
 | |
| 		faults = group_faults_cpu(numa_group, nid);
 | |
| 		if (faults > max_faults)
 | |
| 			max_faults = faults;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node_state(nid, N_CPU) {
 | |
| 		faults = group_faults_cpu(numa_group, nid);
 | |
| 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
 | |
| 			active_nodes++;
 | |
| 	}
 | |
| 
 | |
| 	numa_group->max_faults_cpu = max_faults;
 | |
| 	numa_group->active_nodes = active_nodes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 | |
|  * increments. The more local the fault statistics are, the higher the scan
 | |
|  * period will be for the next scan window. If local/(local+remote) ratio is
 | |
|  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 | |
|  * the scan period will decrease. Aim for 70% local accesses.
 | |
|  */
 | |
| #define NUMA_PERIOD_SLOTS 10
 | |
| #define NUMA_PERIOD_THRESHOLD 7
 | |
| 
 | |
| /*
 | |
|  * Increase the scan period (slow down scanning) if the majority of
 | |
|  * our memory is already on our local node, or if the majority of
 | |
|  * the page accesses are shared with other processes.
 | |
|  * Otherwise, decrease the scan period.
 | |
|  */
 | |
| static void update_task_scan_period(struct task_struct *p,
 | |
| 			unsigned long shared, unsigned long private)
 | |
| {
 | |
| 	unsigned int period_slot;
 | |
| 	int lr_ratio, ps_ratio;
 | |
| 	int diff;
 | |
| 
 | |
| 	unsigned long remote = p->numa_faults_locality[0];
 | |
| 	unsigned long local = p->numa_faults_locality[1];
 | |
| 
 | |
| 	/*
 | |
| 	 * If there were no record hinting faults then either the task is
 | |
| 	 * completely idle or all activity is in areas that are not of interest
 | |
| 	 * to automatic numa balancing. Related to that, if there were failed
 | |
| 	 * migration then it implies we are migrating too quickly or the local
 | |
| 	 * node is overloaded. In either case, scan slower
 | |
| 	 */
 | |
| 	if (local + shared == 0 || p->numa_faults_locality[2]) {
 | |
| 		p->numa_scan_period = min(p->numa_scan_period_max,
 | |
| 			p->numa_scan_period << 1);
 | |
| 
 | |
| 		p->mm->numa_next_scan = jiffies +
 | |
| 			msecs_to_jiffies(p->numa_scan_period);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare to scale scan period relative to the current period.
 | |
| 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
 | |
| 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
 | |
| 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
 | |
| 	 */
 | |
| 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
 | |
| 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
 | |
| 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
 | |
| 
 | |
| 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
 | |
| 		/*
 | |
| 		 * Most memory accesses are local. There is no need to
 | |
| 		 * do fast NUMA scanning, since memory is already local.
 | |
| 		 */
 | |
| 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
 | |
| 		if (!slot)
 | |
| 			slot = 1;
 | |
| 		diff = slot * period_slot;
 | |
| 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
 | |
| 		/*
 | |
| 		 * Most memory accesses are shared with other tasks.
 | |
| 		 * There is no point in continuing fast NUMA scanning,
 | |
| 		 * since other tasks may just move the memory elsewhere.
 | |
| 		 */
 | |
| 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
 | |
| 		if (!slot)
 | |
| 			slot = 1;
 | |
| 		diff = slot * period_slot;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
 | |
| 		 * yet they are not on the local NUMA node. Speed up
 | |
| 		 * NUMA scanning to get the memory moved over.
 | |
| 		 */
 | |
| 		int ratio = max(lr_ratio, ps_ratio);
 | |
| 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
 | |
| 	}
 | |
| 
 | |
| 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
 | |
| 			task_scan_min(p), task_scan_max(p));
 | |
| 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the fraction of time the task has been running since the last
 | |
|  * NUMA placement cycle. The scheduler keeps similar statistics, but
 | |
|  * decays those on a 32ms period, which is orders of magnitude off
 | |
|  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 | |
|  * stats only if the task is so new there are no NUMA statistics yet.
 | |
|  */
 | |
| static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
 | |
| {
 | |
| 	u64 runtime, delta, now;
 | |
| 	/* Use the start of this time slice to avoid calculations. */
 | |
| 	now = p->se.exec_start;
 | |
| 	runtime = p->se.sum_exec_runtime;
 | |
| 
 | |
| 	if (p->last_task_numa_placement) {
 | |
| 		delta = runtime - p->last_sum_exec_runtime;
 | |
| 		*period = now - p->last_task_numa_placement;
 | |
| 
 | |
| 		/* Avoid time going backwards, prevent potential divide error: */
 | |
| 		if (unlikely((s64)*period < 0))
 | |
| 			*period = 0;
 | |
| 	} else {
 | |
| 		delta = p->se.avg.load_sum;
 | |
| 		*period = LOAD_AVG_MAX;
 | |
| 	}
 | |
| 
 | |
| 	p->last_sum_exec_runtime = runtime;
 | |
| 	p->last_task_numa_placement = now;
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the preferred nid for a task in a numa_group. This needs to
 | |
|  * be done in a way that produces consistent results with group_weight,
 | |
|  * otherwise workloads might not converge.
 | |
|  */
 | |
| static int preferred_group_nid(struct task_struct *p, int nid)
 | |
| {
 | |
| 	nodemask_t nodes;
 | |
| 	int dist;
 | |
| 
 | |
| 	/* Direct connections between all NUMA nodes. */
 | |
| 	if (sched_numa_topology_type == NUMA_DIRECT)
 | |
| 		return nid;
 | |
| 
 | |
| 	/*
 | |
| 	 * On a system with glueless mesh NUMA topology, group_weight
 | |
| 	 * scores nodes according to the number of NUMA hinting faults on
 | |
| 	 * both the node itself, and on nearby nodes.
 | |
| 	 */
 | |
| 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 | |
| 		unsigned long score, max_score = 0;
 | |
| 		int node, max_node = nid;
 | |
| 
 | |
| 		dist = sched_max_numa_distance;
 | |
| 
 | |
| 		for_each_node_state(node, N_CPU) {
 | |
| 			score = group_weight(p, node, dist);
 | |
| 			if (score > max_score) {
 | |
| 				max_score = score;
 | |
| 				max_node = node;
 | |
| 			}
 | |
| 		}
 | |
| 		return max_node;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Finding the preferred nid in a system with NUMA backplane
 | |
| 	 * interconnect topology is more involved. The goal is to locate
 | |
| 	 * tasks from numa_groups near each other in the system, and
 | |
| 	 * untangle workloads from different sides of the system. This requires
 | |
| 	 * searching down the hierarchy of node groups, recursively searching
 | |
| 	 * inside the highest scoring group of nodes. The nodemask tricks
 | |
| 	 * keep the complexity of the search down.
 | |
| 	 */
 | |
| 	nodes = node_states[N_CPU];
 | |
| 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
 | |
| 		unsigned long max_faults = 0;
 | |
| 		nodemask_t max_group = NODE_MASK_NONE;
 | |
| 		int a, b;
 | |
| 
 | |
| 		/* Are there nodes at this distance from each other? */
 | |
| 		if (!find_numa_distance(dist))
 | |
| 			continue;
 | |
| 
 | |
| 		for_each_node_mask(a, nodes) {
 | |
| 			unsigned long faults = 0;
 | |
| 			nodemask_t this_group;
 | |
| 			nodes_clear(this_group);
 | |
| 
 | |
| 			/* Sum group's NUMA faults; includes a==b case. */
 | |
| 			for_each_node_mask(b, nodes) {
 | |
| 				if (node_distance(a, b) < dist) {
 | |
| 					faults += group_faults(p, b);
 | |
| 					node_set(b, this_group);
 | |
| 					node_clear(b, nodes);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* Remember the top group. */
 | |
| 			if (faults > max_faults) {
 | |
| 				max_faults = faults;
 | |
| 				max_group = this_group;
 | |
| 				/*
 | |
| 				 * subtle: at the smallest distance there is
 | |
| 				 * just one node left in each "group", the
 | |
| 				 * winner is the preferred nid.
 | |
| 				 */
 | |
| 				nid = a;
 | |
| 			}
 | |
| 		}
 | |
| 		/* Next round, evaluate the nodes within max_group. */
 | |
| 		if (!max_faults)
 | |
| 			break;
 | |
| 		nodes = max_group;
 | |
| 	}
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| static void task_numa_placement(struct task_struct *p)
 | |
| {
 | |
| 	int seq, nid, max_nid = NUMA_NO_NODE;
 | |
| 	unsigned long max_faults = 0;
 | |
| 	unsigned long fault_types[2] = { 0, 0 };
 | |
| 	unsigned long total_faults;
 | |
| 	u64 runtime, period;
 | |
| 	spinlock_t *group_lock = NULL;
 | |
| 	struct numa_group *ng;
 | |
| 
 | |
| 	/*
 | |
| 	 * The p->mm->numa_scan_seq field gets updated without
 | |
| 	 * exclusive access. Use READ_ONCE() here to ensure
 | |
| 	 * that the field is read in a single access:
 | |
| 	 */
 | |
| 	seq = READ_ONCE(p->mm->numa_scan_seq);
 | |
| 	if (p->numa_scan_seq == seq)
 | |
| 		return;
 | |
| 	p->numa_scan_seq = seq;
 | |
| 	p->numa_scan_period_max = task_scan_max(p);
 | |
| 
 | |
| 	total_faults = p->numa_faults_locality[0] +
 | |
| 		       p->numa_faults_locality[1];
 | |
| 	runtime = numa_get_avg_runtime(p, &period);
 | |
| 
 | |
| 	/* If the task is part of a group prevent parallel updates to group stats */
 | |
| 	ng = deref_curr_numa_group(p);
 | |
| 	if (ng) {
 | |
| 		group_lock = &ng->lock;
 | |
| 		spin_lock_irq(group_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Find the node with the highest number of faults */
 | |
| 	for_each_online_node(nid) {
 | |
| 		/* Keep track of the offsets in numa_faults array */
 | |
| 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
 | |
| 		unsigned long faults = 0, group_faults = 0;
 | |
| 		int priv;
 | |
| 
 | |
| 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
 | |
| 			long diff, f_diff, f_weight;
 | |
| 
 | |
| 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
 | |
| 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
 | |
| 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
 | |
| 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
 | |
| 
 | |
| 			/* Decay existing window, copy faults since last scan */
 | |
| 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
 | |
| 			fault_types[priv] += p->numa_faults[membuf_idx];
 | |
| 			p->numa_faults[membuf_idx] = 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * Normalize the faults_from, so all tasks in a group
 | |
| 			 * count according to CPU use, instead of by the raw
 | |
| 			 * number of faults. Tasks with little runtime have
 | |
| 			 * little over-all impact on throughput, and thus their
 | |
| 			 * faults are less important.
 | |
| 			 */
 | |
| 			f_weight = div64_u64(runtime << 16, period + 1);
 | |
| 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
 | |
| 				   (total_faults + 1);
 | |
| 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
 | |
| 			p->numa_faults[cpubuf_idx] = 0;
 | |
| 
 | |
| 			p->numa_faults[mem_idx] += diff;
 | |
| 			p->numa_faults[cpu_idx] += f_diff;
 | |
| 			faults += p->numa_faults[mem_idx];
 | |
| 			p->total_numa_faults += diff;
 | |
| 			if (ng) {
 | |
| 				/*
 | |
| 				 * safe because we can only change our own group
 | |
| 				 *
 | |
| 				 * mem_idx represents the offset for a given
 | |
| 				 * nid and priv in a specific region because it
 | |
| 				 * is at the beginning of the numa_faults array.
 | |
| 				 */
 | |
| 				ng->faults[mem_idx] += diff;
 | |
| 				ng->faults[cpu_idx] += f_diff;
 | |
| 				ng->total_faults += diff;
 | |
| 				group_faults += ng->faults[mem_idx];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!ng) {
 | |
| 			if (faults > max_faults) {
 | |
| 				max_faults = faults;
 | |
| 				max_nid = nid;
 | |
| 			}
 | |
| 		} else if (group_faults > max_faults) {
 | |
| 			max_faults = group_faults;
 | |
| 			max_nid = nid;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Cannot migrate task to CPU-less node */
 | |
| 	max_nid = numa_nearest_node(max_nid, N_CPU);
 | |
| 
 | |
| 	if (ng) {
 | |
| 		numa_group_count_active_nodes(ng);
 | |
| 		spin_unlock_irq(group_lock);
 | |
| 		max_nid = preferred_group_nid(p, max_nid);
 | |
| 	}
 | |
| 
 | |
| 	if (max_faults) {
 | |
| 		/* Set the new preferred node */
 | |
| 		if (max_nid != p->numa_preferred_nid)
 | |
| 			sched_setnuma(p, max_nid);
 | |
| 	}
 | |
| 
 | |
| 	update_task_scan_period(p, fault_types[0], fault_types[1]);
 | |
| }
 | |
| 
 | |
| static inline int get_numa_group(struct numa_group *grp)
 | |
| {
 | |
| 	return refcount_inc_not_zero(&grp->refcount);
 | |
| }
 | |
| 
 | |
| static inline void put_numa_group(struct numa_group *grp)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&grp->refcount))
 | |
| 		kfree_rcu(grp, rcu);
 | |
| }
 | |
| 
 | |
| static void task_numa_group(struct task_struct *p, int cpupid, int flags,
 | |
| 			int *priv)
 | |
| {
 | |
| 	struct numa_group *grp, *my_grp;
 | |
| 	struct task_struct *tsk;
 | |
| 	bool join = false;
 | |
| 	int cpu = cpupid_to_cpu(cpupid);
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!deref_curr_numa_group(p))) {
 | |
| 		unsigned int size = sizeof(struct numa_group) +
 | |
| 				    NR_NUMA_HINT_FAULT_STATS *
 | |
| 				    nr_node_ids * sizeof(unsigned long);
 | |
| 
 | |
| 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
 | |
| 		if (!grp)
 | |
| 			return;
 | |
| 
 | |
| 		refcount_set(&grp->refcount, 1);
 | |
| 		grp->active_nodes = 1;
 | |
| 		grp->max_faults_cpu = 0;
 | |
| 		spin_lock_init(&grp->lock);
 | |
| 		grp->gid = p->pid;
 | |
| 
 | |
| 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 | |
| 			grp->faults[i] = p->numa_faults[i];
 | |
| 
 | |
| 		grp->total_faults = p->total_numa_faults;
 | |
| 
 | |
| 		grp->nr_tasks++;
 | |
| 		rcu_assign_pointer(p->numa_group, grp);
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
 | |
| 
 | |
| 	if (!cpupid_match_pid(tsk, cpupid))
 | |
| 		goto no_join;
 | |
| 
 | |
| 	grp = rcu_dereference(tsk->numa_group);
 | |
| 	if (!grp)
 | |
| 		goto no_join;
 | |
| 
 | |
| 	my_grp = deref_curr_numa_group(p);
 | |
| 	if (grp == my_grp)
 | |
| 		goto no_join;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only join the other group if its bigger; if we're the bigger group,
 | |
| 	 * the other task will join us.
 | |
| 	 */
 | |
| 	if (my_grp->nr_tasks > grp->nr_tasks)
 | |
| 		goto no_join;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tie-break on the grp address.
 | |
| 	 */
 | |
| 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
 | |
| 		goto no_join;
 | |
| 
 | |
| 	/* Always join threads in the same process. */
 | |
| 	if (tsk->mm == current->mm)
 | |
| 		join = true;
 | |
| 
 | |
| 	/* Simple filter to avoid false positives due to PID collisions */
 | |
| 	if (flags & TNF_SHARED)
 | |
| 		join = true;
 | |
| 
 | |
| 	/* Update priv based on whether false sharing was detected */
 | |
| 	*priv = !join;
 | |
| 
 | |
| 	if (join && !get_numa_group(grp))
 | |
| 		goto no_join;
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!join)
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON_ONCE(irqs_disabled());
 | |
| 	double_lock_irq(&my_grp->lock, &grp->lock);
 | |
| 
 | |
| 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
 | |
| 		my_grp->faults[i] -= p->numa_faults[i];
 | |
| 		grp->faults[i] += p->numa_faults[i];
 | |
| 	}
 | |
| 	my_grp->total_faults -= p->total_numa_faults;
 | |
| 	grp->total_faults += p->total_numa_faults;
 | |
| 
 | |
| 	my_grp->nr_tasks--;
 | |
| 	grp->nr_tasks++;
 | |
| 
 | |
| 	spin_unlock(&my_grp->lock);
 | |
| 	spin_unlock_irq(&grp->lock);
 | |
| 
 | |
| 	rcu_assign_pointer(p->numa_group, grp);
 | |
| 
 | |
| 	put_numa_group(my_grp);
 | |
| 	return;
 | |
| 
 | |
| no_join:
 | |
| 	rcu_read_unlock();
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get rid of NUMA statistics associated with a task (either current or dead).
 | |
|  * If @final is set, the task is dead and has reached refcount zero, so we can
 | |
|  * safely free all relevant data structures. Otherwise, there might be
 | |
|  * concurrent reads from places like load balancing and procfs, and we should
 | |
|  * reset the data back to default state without freeing ->numa_faults.
 | |
|  */
 | |
| void task_numa_free(struct task_struct *p, bool final)
 | |
| {
 | |
| 	/* safe: p either is current or is being freed by current */
 | |
| 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
 | |
| 	unsigned long *numa_faults = p->numa_faults;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!numa_faults)
 | |
| 		return;
 | |
| 
 | |
| 	if (grp) {
 | |
| 		spin_lock_irqsave(&grp->lock, flags);
 | |
| 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 | |
| 			grp->faults[i] -= p->numa_faults[i];
 | |
| 		grp->total_faults -= p->total_numa_faults;
 | |
| 
 | |
| 		grp->nr_tasks--;
 | |
| 		spin_unlock_irqrestore(&grp->lock, flags);
 | |
| 		RCU_INIT_POINTER(p->numa_group, NULL);
 | |
| 		put_numa_group(grp);
 | |
| 	}
 | |
| 
 | |
| 	if (final) {
 | |
| 		p->numa_faults = NULL;
 | |
| 		kfree(numa_faults);
 | |
| 	} else {
 | |
| 		p->total_numa_faults = 0;
 | |
| 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 | |
| 			numa_faults[i] = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Got a PROT_NONE fault for a page on @node.
 | |
|  */
 | |
| void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
 | |
| {
 | |
| 	struct task_struct *p = current;
 | |
| 	bool migrated = flags & TNF_MIGRATED;
 | |
| 	int cpu_node = task_node(current);
 | |
| 	int local = !!(flags & TNF_FAULT_LOCAL);
 | |
| 	struct numa_group *ng;
 | |
| 	int priv;
 | |
| 
 | |
| 	if (!static_branch_likely(&sched_numa_balancing))
 | |
| 		return;
 | |
| 
 | |
| 	/* for example, ksmd faulting in a user's mm */
 | |
| 	if (!p->mm)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * NUMA faults statistics are unnecessary for the slow memory
 | |
| 	 * node for memory tiering mode.
 | |
| 	 */
 | |
| 	if (!node_is_toptier(mem_node) &&
 | |
| 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
 | |
| 	     !cpupid_valid(last_cpupid)))
 | |
| 		return;
 | |
| 
 | |
| 	/* Allocate buffer to track faults on a per-node basis */
 | |
| 	if (unlikely(!p->numa_faults)) {
 | |
| 		int size = sizeof(*p->numa_faults) *
 | |
| 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
 | |
| 
 | |
| 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
 | |
| 		if (!p->numa_faults)
 | |
| 			return;
 | |
| 
 | |
| 		p->total_numa_faults = 0;
 | |
| 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First accesses are treated as private, otherwise consider accesses
 | |
| 	 * to be private if the accessing pid has not changed
 | |
| 	 */
 | |
| 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
 | |
| 		priv = 1;
 | |
| 	} else {
 | |
| 		priv = cpupid_match_pid(p, last_cpupid);
 | |
| 		if (!priv && !(flags & TNF_NO_GROUP))
 | |
| 			task_numa_group(p, last_cpupid, flags, &priv);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a workload spans multiple NUMA nodes, a shared fault that
 | |
| 	 * occurs wholly within the set of nodes that the workload is
 | |
| 	 * actively using should be counted as local. This allows the
 | |
| 	 * scan rate to slow down when a workload has settled down.
 | |
| 	 */
 | |
| 	ng = deref_curr_numa_group(p);
 | |
| 	if (!priv && !local && ng && ng->active_nodes > 1 &&
 | |
| 				numa_is_active_node(cpu_node, ng) &&
 | |
| 				numa_is_active_node(mem_node, ng))
 | |
| 		local = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Retry to migrate task to preferred node periodically, in case it
 | |
| 	 * previously failed, or the scheduler moved us.
 | |
| 	 */
 | |
| 	if (time_after(jiffies, p->numa_migrate_retry)) {
 | |
| 		task_numa_placement(p);
 | |
| 		numa_migrate_preferred(p);
 | |
| 	}
 | |
| 
 | |
| 	if (migrated)
 | |
| 		p->numa_pages_migrated += pages;
 | |
| 	if (flags & TNF_MIGRATE_FAIL)
 | |
| 		p->numa_faults_locality[2] += pages;
 | |
| 
 | |
| 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
 | |
| 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
 | |
| 	p->numa_faults_locality[local] += pages;
 | |
| }
 | |
| 
 | |
| static void reset_ptenuma_scan(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * We only did a read acquisition of the mmap sem, so
 | |
| 	 * p->mm->numa_scan_seq is written to without exclusive access
 | |
| 	 * and the update is not guaranteed to be atomic. That's not
 | |
| 	 * much of an issue though, since this is just used for
 | |
| 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
 | |
| 	 * expensive, to avoid any form of compiler optimizations:
 | |
| 	 */
 | |
| 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
 | |
| 	p->mm->numa_scan_offset = 0;
 | |
| }
 | |
| 
 | |
| static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned long pids;
 | |
| 	/*
 | |
| 	 * Allow unconditional access first two times, so that all the (pages)
 | |
| 	 * of VMAs get prot_none fault introduced irrespective of accesses.
 | |
| 	 * This is also done to avoid any side effect of task scanning
 | |
| 	 * amplifying the unfairness of disjoint set of VMAs' access.
 | |
| 	 */
 | |
| 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
 | |
| 		return true;
 | |
| 
 | |
| 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
 | |
| 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Complete a scan that has already started regardless of PID access, or
 | |
| 	 * some VMAs may never be scanned in multi-threaded applications:
 | |
| 	 */
 | |
| 	if (mm->numa_scan_offset > vma->vm_start) {
 | |
| 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This vma has not been accessed for a while, and if the number
 | |
| 	 * the threads in the same process is low, which means no other
 | |
| 	 * threads can help scan this vma, force a vma scan.
 | |
| 	 */
 | |
| 	if (READ_ONCE(mm->numa_scan_seq) >
 | |
| 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
 | |
| 
 | |
| /*
 | |
|  * The expensive part of numa migration is done from task_work context.
 | |
|  * Triggered from task_tick_numa().
 | |
|  */
 | |
| static void task_numa_work(struct callback_head *work)
 | |
| {
 | |
| 	unsigned long migrate, next_scan, now = jiffies;
 | |
| 	struct task_struct *p = current;
 | |
| 	struct mm_struct *mm = p->mm;
 | |
| 	u64 runtime = p->se.sum_exec_runtime;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long start, end;
 | |
| 	unsigned long nr_pte_updates = 0;
 | |
| 	long pages, virtpages;
 | |
| 	struct vma_iterator vmi;
 | |
| 	bool vma_pids_skipped;
 | |
| 	bool vma_pids_forced = false;
 | |
| 
 | |
| 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
 | |
| 
 | |
| 	work->next = work;
 | |
| 	/*
 | |
| 	 * Who cares about NUMA placement when they're dying.
 | |
| 	 *
 | |
| 	 * NOTE: make sure not to dereference p->mm before this check,
 | |
| 	 * exit_task_work() happens _after_ exit_mm() so we could be called
 | |
| 	 * without p->mm even though we still had it when we enqueued this
 | |
| 	 * work.
 | |
| 	 */
 | |
| 	if (p->flags & PF_EXITING)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Memory is pinned to only one NUMA node via cpuset.mems, naturally
 | |
| 	 * no page can be migrated.
 | |
| 	 */
 | |
| 	if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
 | |
| 		trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!mm->numa_next_scan) {
 | |
| 		mm->numa_next_scan = now +
 | |
| 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enforce maximal scan/migration frequency..
 | |
| 	 */
 | |
| 	migrate = mm->numa_next_scan;
 | |
| 	if (time_before(now, migrate))
 | |
| 		return;
 | |
| 
 | |
| 	if (p->numa_scan_period == 0) {
 | |
| 		p->numa_scan_period_max = task_scan_max(p);
 | |
| 		p->numa_scan_period = task_scan_start(p);
 | |
| 	}
 | |
| 
 | |
| 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
 | |
| 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Delay this task enough that another task of this mm will likely win
 | |
| 	 * the next time around.
 | |
| 	 */
 | |
| 	p->node_stamp += 2 * TICK_NSEC;
 | |
| 
 | |
| 	pages = sysctl_numa_balancing_scan_size;
 | |
| 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
 | |
| 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
 | |
| 	if (!pages)
 | |
| 		return;
 | |
| 
 | |
| 
 | |
| 	if (!mmap_read_trylock(mm))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * VMAs are skipped if the current PID has not trapped a fault within
 | |
| 	 * the VMA recently. Allow scanning to be forced if there is no
 | |
| 	 * suitable VMA remaining.
 | |
| 	 */
 | |
| 	vma_pids_skipped = false;
 | |
| 
 | |
| retry_pids:
 | |
| 	start = mm->numa_scan_offset;
 | |
| 	vma_iter_init(&vmi, mm, start);
 | |
| 	vma = vma_next(&vmi);
 | |
| 	if (!vma) {
 | |
| 		reset_ptenuma_scan(p);
 | |
| 		start = 0;
 | |
| 		vma_iter_set(&vmi, start);
 | |
| 		vma = vma_next(&vmi);
 | |
| 	}
 | |
| 
 | |
| 	for (; vma; vma = vma_next(&vmi)) {
 | |
| 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
 | |
| 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
 | |
| 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Shared library pages mapped by multiple processes are not
 | |
| 		 * migrated as it is expected they are cache replicated. Avoid
 | |
| 		 * hinting faults in read-only file-backed mappings or the vDSO
 | |
| 		 * as migrating the pages will be of marginal benefit.
 | |
| 		 */
 | |
| 		if (!vma->vm_mm ||
 | |
| 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
 | |
| 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip inaccessible VMAs to avoid any confusion between
 | |
| 		 * PROT_NONE and NUMA hinting PTEs
 | |
| 		 */
 | |
| 		if (!vma_is_accessible(vma)) {
 | |
| 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Initialise new per-VMA NUMAB state. */
 | |
| 		if (!vma->numab_state) {
 | |
| 			struct vma_numab_state *ptr;
 | |
| 
 | |
| 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
 | |
| 			if (!ptr)
 | |
| 				continue;
 | |
| 
 | |
| 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
 | |
| 				kfree(ptr);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
 | |
| 
 | |
| 			vma->numab_state->next_scan = now +
 | |
| 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
 | |
| 
 | |
| 			/* Reset happens after 4 times scan delay of scan start */
 | |
| 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
 | |
| 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
 | |
| 
 | |
| 			/*
 | |
| 			 * Ensure prev_scan_seq does not match numa_scan_seq,
 | |
| 			 * to prevent VMAs being skipped prematurely on the
 | |
| 			 * first scan:
 | |
| 			 */
 | |
| 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Scanning the VMAs of short lived tasks add more overhead. So
 | |
| 		 * delay the scan for new VMAs.
 | |
| 		 */
 | |
| 		if (mm->numa_scan_seq && time_before(jiffies,
 | |
| 						vma->numab_state->next_scan)) {
 | |
| 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* RESET access PIDs regularly for old VMAs. */
 | |
| 		if (mm->numa_scan_seq &&
 | |
| 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
 | |
| 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
 | |
| 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
 | |
| 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
 | |
| 			vma->numab_state->pids_active[1] = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Do not rescan VMAs twice within the same sequence. */
 | |
| 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
 | |
| 			mm->numa_scan_offset = vma->vm_end;
 | |
| 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not scan the VMA if task has not accessed it, unless no other
 | |
| 		 * VMA candidate exists.
 | |
| 		 */
 | |
| 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
 | |
| 			vma_pids_skipped = true;
 | |
| 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		do {
 | |
| 			start = max(start, vma->vm_start);
 | |
| 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
 | |
| 			end = min(end, vma->vm_end);
 | |
| 			nr_pte_updates = change_prot_numa(vma, start, end);
 | |
| 
 | |
| 			/*
 | |
| 			 * Try to scan sysctl_numa_balancing_size worth of
 | |
| 			 * hpages that have at least one present PTE that
 | |
| 			 * is not already PTE-numa. If the VMA contains
 | |
| 			 * areas that are unused or already full of prot_numa
 | |
| 			 * PTEs, scan up to virtpages, to skip through those
 | |
| 			 * areas faster.
 | |
| 			 */
 | |
| 			if (nr_pte_updates)
 | |
| 				pages -= (end - start) >> PAGE_SHIFT;
 | |
| 			virtpages -= (end - start) >> PAGE_SHIFT;
 | |
| 
 | |
| 			start = end;
 | |
| 			if (pages <= 0 || virtpages <= 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			cond_resched();
 | |
| 		} while (end != vma->vm_end);
 | |
| 
 | |
| 		/* VMA scan is complete, do not scan until next sequence. */
 | |
| 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only force scan within one VMA at a time, to limit the
 | |
| 		 * cost of scanning a potentially uninteresting VMA.
 | |
| 		 */
 | |
| 		if (vma_pids_forced)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If no VMAs are remaining and VMAs were skipped due to the PID
 | |
| 	 * not accessing the VMA previously, then force a scan to ensure
 | |
| 	 * forward progress:
 | |
| 	 */
 | |
| 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
 | |
| 		vma_pids_forced = true;
 | |
| 		goto retry_pids;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * It is possible to reach the end of the VMA list but the last few
 | |
| 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
 | |
| 	 * would find the !migratable VMA on the next scan but not reset the
 | |
| 	 * scanner to the start so check it now.
 | |
| 	 */
 | |
| 	if (vma)
 | |
| 		mm->numa_scan_offset = start;
 | |
| 	else
 | |
| 		reset_ptenuma_scan(p);
 | |
| 	mmap_read_unlock(mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure tasks use at least 32x as much time to run other code
 | |
| 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
 | |
| 	 * Usually update_task_scan_period slows down scanning enough; on an
 | |
| 	 * overloaded system we need to limit overhead on a per task basis.
 | |
| 	 */
 | |
| 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
 | |
| 		u64 diff = p->se.sum_exec_runtime - runtime;
 | |
| 		p->node_stamp += 32 * diff;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
 | |
| {
 | |
| 	int mm_users = 0;
 | |
| 	struct mm_struct *mm = p->mm;
 | |
| 
 | |
| 	if (mm) {
 | |
| 		mm_users = atomic_read(&mm->mm_users);
 | |
| 		if (mm_users == 1) {
 | |
| 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
 | |
| 			mm->numa_scan_seq = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	p->node_stamp			= 0;
 | |
| 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
 | |
| 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
 | |
| 	p->numa_migrate_retry		= 0;
 | |
| 	/* Protect against double add, see task_tick_numa and task_numa_work */
 | |
| 	p->numa_work.next		= &p->numa_work;
 | |
| 	p->numa_faults			= NULL;
 | |
| 	p->numa_pages_migrated		= 0;
 | |
| 	p->total_numa_faults		= 0;
 | |
| 	RCU_INIT_POINTER(p->numa_group, NULL);
 | |
| 	p->last_task_numa_placement	= 0;
 | |
| 	p->last_sum_exec_runtime	= 0;
 | |
| 
 | |
| 	init_task_work(&p->numa_work, task_numa_work);
 | |
| 
 | |
| 	/* New address space, reset the preferred nid */
 | |
| 	if (!(clone_flags & CLONE_VM)) {
 | |
| 		p->numa_preferred_nid = NUMA_NO_NODE;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * New thread, keep existing numa_preferred_nid which should be copied
 | |
| 	 * already by arch_dup_task_struct but stagger when scans start.
 | |
| 	 */
 | |
| 	if (mm) {
 | |
| 		unsigned int delay;
 | |
| 
 | |
| 		delay = min_t(unsigned int, task_scan_max(current),
 | |
| 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
 | |
| 		delay += 2 * TICK_NSEC;
 | |
| 		p->node_stamp = delay;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drive the periodic memory faults..
 | |
|  */
 | |
| static void task_tick_numa(struct rq *rq, struct task_struct *curr)
 | |
| {
 | |
| 	struct callback_head *work = &curr->numa_work;
 | |
| 	u64 period, now;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't care about NUMA placement if we don't have memory.
 | |
| 	 */
 | |
| 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Using runtime rather than walltime has the dual advantage that
 | |
| 	 * we (mostly) drive the selection from busy threads and that the
 | |
| 	 * task needs to have done some actual work before we bother with
 | |
| 	 * NUMA placement.
 | |
| 	 */
 | |
| 	now = curr->se.sum_exec_runtime;
 | |
| 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
 | |
| 
 | |
| 	if (now > curr->node_stamp + period) {
 | |
| 		if (!curr->node_stamp)
 | |
| 			curr->numa_scan_period = task_scan_start(curr);
 | |
| 		curr->node_stamp += period;
 | |
| 
 | |
| 		if (!time_before(jiffies, curr->mm->numa_next_scan))
 | |
| 			task_work_add(curr, work, TWA_RESUME);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_scan_period(struct task_struct *p, int new_cpu)
 | |
| {
 | |
| 	int src_nid = cpu_to_node(task_cpu(p));
 | |
| 	int dst_nid = cpu_to_node(new_cpu);
 | |
| 
 | |
| 	if (!static_branch_likely(&sched_numa_balancing))
 | |
| 		return;
 | |
| 
 | |
| 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
 | |
| 		return;
 | |
| 
 | |
| 	if (src_nid == dst_nid)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow resets if faults have been trapped before one scan
 | |
| 	 * has completed. This is most likely due to a new task that
 | |
| 	 * is pulled cross-node due to wakeups or load balancing.
 | |
| 	 */
 | |
| 	if (p->numa_scan_seq) {
 | |
| 		/*
 | |
| 		 * Avoid scan adjustments if moving to the preferred
 | |
| 		 * node or if the task was not previously running on
 | |
| 		 * the preferred node.
 | |
| 		 */
 | |
| 		if (dst_nid == p->numa_preferred_nid ||
 | |
| 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
 | |
| 			src_nid != p->numa_preferred_nid))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	p->numa_scan_period = task_scan_start(p);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static void task_tick_numa(struct rq *rq, struct task_struct *curr)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void update_scan_period(struct task_struct *p, int new_cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| static void
 | |
| account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	update_load_add(&cfs_rq->load, se->load.weight);
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (entity_is_task(se)) {
 | |
| 		struct rq *rq = rq_of(cfs_rq);
 | |
| 
 | |
| 		account_numa_enqueue(rq, task_of(se));
 | |
| 		list_add(&se->group_node, &rq->cfs_tasks);
 | |
| 	}
 | |
| #endif
 | |
| 	cfs_rq->nr_queued++;
 | |
| }
 | |
| 
 | |
| static void
 | |
| account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	update_load_sub(&cfs_rq->load, se->load.weight);
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (entity_is_task(se)) {
 | |
| 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
 | |
| 		list_del_init(&se->group_node);
 | |
| 	}
 | |
| #endif
 | |
| 	cfs_rq->nr_queued--;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed add and clamp on underflow.
 | |
|  *
 | |
|  * Explicitly do a load-store to ensure the intermediate value never hits
 | |
|  * memory. This allows lockless observations without ever seeing the negative
 | |
|  * values.
 | |
|  */
 | |
| #define add_positive(_ptr, _val) do {                           \
 | |
| 	typeof(_ptr) ptr = (_ptr);                              \
 | |
| 	typeof(_val) val = (_val);                              \
 | |
| 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
 | |
| 								\
 | |
| 	res = var + val;                                        \
 | |
| 								\
 | |
| 	if (val < 0 && res > var)                               \
 | |
| 		res = 0;                                        \
 | |
| 								\
 | |
| 	WRITE_ONCE(*ptr, res);                                  \
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * Unsigned subtract and clamp on underflow.
 | |
|  *
 | |
|  * Explicitly do a load-store to ensure the intermediate value never hits
 | |
|  * memory. This allows lockless observations without ever seeing the negative
 | |
|  * values.
 | |
|  */
 | |
| #define sub_positive(_ptr, _val) do {				\
 | |
| 	typeof(_ptr) ptr = (_ptr);				\
 | |
| 	typeof(*ptr) val = (_val);				\
 | |
| 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
 | |
| 	res = var - val;					\
 | |
| 	if (res > var)						\
 | |
| 		res = 0;					\
 | |
| 	WRITE_ONCE(*ptr, res);					\
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * Remove and clamp on negative, from a local variable.
 | |
|  *
 | |
|  * A variant of sub_positive(), which does not use explicit load-store
 | |
|  * and is thus optimized for local variable updates.
 | |
|  */
 | |
| #define lsub_positive(_ptr, _val) do {				\
 | |
| 	typeof(_ptr) ptr = (_ptr);				\
 | |
| 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
 | |
| } while (0)
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline void
 | |
| enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	cfs_rq->avg.load_avg += se->avg.load_avg;
 | |
| 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
 | |
| 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
 | |
| 	/* See update_cfs_rq_load_avg() */
 | |
| 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
 | |
| 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
 | |
| }
 | |
| #else
 | |
| static inline void
 | |
| enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
 | |
| static inline void
 | |
| dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
 | |
| #endif
 | |
| 
 | |
| static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
 | |
| 
 | |
| static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
 | |
| 			    unsigned long weight)
 | |
| {
 | |
| 	bool curr = cfs_rq->curr == se;
 | |
| 
 | |
| 	if (se->on_rq) {
 | |
| 		/* commit outstanding execution time */
 | |
| 		update_curr(cfs_rq);
 | |
| 		update_entity_lag(cfs_rq, se);
 | |
| 		se->deadline -= se->vruntime;
 | |
| 		se->rel_deadline = 1;
 | |
| 		cfs_rq->nr_queued--;
 | |
| 		if (!curr)
 | |
| 			__dequeue_entity(cfs_rq, se);
 | |
| 		update_load_sub(&cfs_rq->load, se->load.weight);
 | |
| 	}
 | |
| 	dequeue_load_avg(cfs_rq, se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
 | |
| 	 * we need to scale se->vlag when w_i changes.
 | |
| 	 */
 | |
| 	se->vlag = div_s64(se->vlag * se->load.weight, weight);
 | |
| 	if (se->rel_deadline)
 | |
| 		se->deadline = div_s64(se->deadline * se->load.weight, weight);
 | |
| 
 | |
| 	update_load_set(&se->load, weight);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	do {
 | |
| 		u32 divider = get_pelt_divider(&se->avg);
 | |
| 
 | |
| 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
 | |
| 	} while (0);
 | |
| #endif
 | |
| 
 | |
| 	enqueue_load_avg(cfs_rq, se);
 | |
| 	if (se->on_rq) {
 | |
| 		place_entity(cfs_rq, se, 0);
 | |
| 		update_load_add(&cfs_rq->load, se->load.weight);
 | |
| 		if (!curr)
 | |
| 			__enqueue_entity(cfs_rq, se);
 | |
| 		cfs_rq->nr_queued++;
 | |
| 
 | |
| 		/*
 | |
| 		 * The entity's vruntime has been adjusted, so let's check
 | |
| 		 * whether the rq-wide min_vruntime needs updated too. Since
 | |
| 		 * the calculations above require stable min_vruntime rather
 | |
| 		 * than up-to-date one, we do the update at the end of the
 | |
| 		 * reweight process.
 | |
| 		 */
 | |
| 		update_min_vruntime(cfs_rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void reweight_task_fair(struct rq *rq, struct task_struct *p,
 | |
| 			       const struct load_weight *lw)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 	struct load_weight *load = &se->load;
 | |
| 
 | |
| 	reweight_entity(cfs_rq, se, lw->weight);
 | |
| 	load->inv_weight = lw->inv_weight;
 | |
| }
 | |
| 
 | |
| static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * All this does is approximate the hierarchical proportion which includes that
 | |
|  * global sum we all love to hate.
 | |
|  *
 | |
|  * That is, the weight of a group entity, is the proportional share of the
 | |
|  * group weight based on the group runqueue weights. That is:
 | |
|  *
 | |
|  *                     tg->weight * grq->load.weight
 | |
|  *   ge->load.weight = -----------------------------               (1)
 | |
|  *                       \Sum grq->load.weight
 | |
|  *
 | |
|  * Now, because computing that sum is prohibitively expensive to compute (been
 | |
|  * there, done that) we approximate it with this average stuff. The average
 | |
|  * moves slower and therefore the approximation is cheaper and more stable.
 | |
|  *
 | |
|  * So instead of the above, we substitute:
 | |
|  *
 | |
|  *   grq->load.weight -> grq->avg.load_avg                         (2)
 | |
|  *
 | |
|  * which yields the following:
 | |
|  *
 | |
|  *                     tg->weight * grq->avg.load_avg
 | |
|  *   ge->load.weight = ------------------------------              (3)
 | |
|  *                             tg->load_avg
 | |
|  *
 | |
|  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 | |
|  *
 | |
|  * That is shares_avg, and it is right (given the approximation (2)).
 | |
|  *
 | |
|  * The problem with it is that because the average is slow -- it was designed
 | |
|  * to be exactly that of course -- this leads to transients in boundary
 | |
|  * conditions. In specific, the case where the group was idle and we start the
 | |
|  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 | |
|  * yielding bad latency etc..
 | |
|  *
 | |
|  * Now, in that special case (1) reduces to:
 | |
|  *
 | |
|  *                     tg->weight * grq->load.weight
 | |
|  *   ge->load.weight = ----------------------------- = tg->weight   (4)
 | |
|  *                         grp->load.weight
 | |
|  *
 | |
|  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 | |
|  *
 | |
|  * So what we do is modify our approximation (3) to approach (4) in the (near)
 | |
|  * UP case, like:
 | |
|  *
 | |
|  *   ge->load.weight =
 | |
|  *
 | |
|  *              tg->weight * grq->load.weight
 | |
|  *     ---------------------------------------------------         (5)
 | |
|  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 | |
|  *
 | |
|  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 | |
|  * we need to use grq->avg.load_avg as its lower bound, which then gives:
 | |
|  *
 | |
|  *
 | |
|  *                     tg->weight * grq->load.weight
 | |
|  *   ge->load.weight = -----------------------------		   (6)
 | |
|  *                             tg_load_avg'
 | |
|  *
 | |
|  * Where:
 | |
|  *
 | |
|  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 | |
|  *                  max(grq->load.weight, grq->avg.load_avg)
 | |
|  *
 | |
|  * And that is shares_weight and is icky. In the (near) UP case it approaches
 | |
|  * (4) while in the normal case it approaches (3). It consistently
 | |
|  * overestimates the ge->load.weight and therefore:
 | |
|  *
 | |
|  *   \Sum ge->load.weight >= tg->weight
 | |
|  *
 | |
|  * hence icky!
 | |
|  */
 | |
| static long calc_group_shares(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	long tg_weight, tg_shares, load, shares;
 | |
| 	struct task_group *tg = cfs_rq->tg;
 | |
| 
 | |
| 	tg_shares = READ_ONCE(tg->shares);
 | |
| 
 | |
| 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
 | |
| 
 | |
| 	tg_weight = atomic_long_read(&tg->load_avg);
 | |
| 
 | |
| 	/* Ensure tg_weight >= load */
 | |
| 	tg_weight -= cfs_rq->tg_load_avg_contrib;
 | |
| 	tg_weight += load;
 | |
| 
 | |
| 	shares = (tg_shares * load);
 | |
| 	if (tg_weight)
 | |
| 		shares /= tg_weight;
 | |
| 
 | |
| 	/*
 | |
| 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
 | |
| 	 * of a group with small tg->shares value. It is a floor value which is
 | |
| 	 * assigned as a minimum load.weight to the sched_entity representing
 | |
| 	 * the group on a CPU.
 | |
| 	 *
 | |
| 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
 | |
| 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
 | |
| 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
 | |
| 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
 | |
| 	 * instead of 0.
 | |
| 	 */
 | |
| 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Recomputes the group entity based on the current state of its group
 | |
|  * runqueue.
 | |
|  */
 | |
| static void update_cfs_group(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
 | |
| 	long shares;
 | |
| 
 | |
| 	/*
 | |
| 	 * When a group becomes empty, preserve its weight. This matters for
 | |
| 	 * DELAY_DEQUEUE.
 | |
| 	 */
 | |
| 	if (!gcfs_rq || !gcfs_rq->load.weight)
 | |
| 		return;
 | |
| 
 | |
| 	if (throttled_hierarchy(gcfs_rq))
 | |
| 		return;
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| 	shares = READ_ONCE(gcfs_rq->tg->shares);
 | |
| #else
 | |
| 	shares = calc_group_shares(gcfs_rq);
 | |
| #endif
 | |
| 	if (unlikely(se->load.weight != shares))
 | |
| 		reweight_entity(cfs_rq_of(se), se, shares);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_FAIR_GROUP_SCHED */
 | |
| static inline void update_cfs_group(struct sched_entity *se)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
 | |
| {
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 
 | |
| 	if (&rq->cfs == cfs_rq) {
 | |
| 		/*
 | |
| 		 * There are a few boundary cases this might miss but it should
 | |
| 		 * get called often enough that that should (hopefully) not be
 | |
| 		 * a real problem.
 | |
| 		 *
 | |
| 		 * It will not get called when we go idle, because the idle
 | |
| 		 * thread is a different class (!fair), nor will the utilization
 | |
| 		 * number include things like RT tasks.
 | |
| 		 *
 | |
| 		 * As is, the util number is not freq-invariant (we'd have to
 | |
| 		 * implement arch_scale_freq_capacity() for that).
 | |
| 		 *
 | |
| 		 * See cpu_util_cfs().
 | |
| 		 */
 | |
| 		cpufreq_update_util(rq, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline bool load_avg_is_decayed(struct sched_avg *sa)
 | |
| {
 | |
| 	if (sa->load_sum)
 | |
| 		return false;
 | |
| 
 | |
| 	if (sa->util_sum)
 | |
| 		return false;
 | |
| 
 | |
| 	if (sa->runnable_sum)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * _avg must be null when _sum are null because _avg = _sum / divider
 | |
| 	 * Make sure that rounding and/or propagation of PELT values never
 | |
| 	 * break this.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(sa->load_avg ||
 | |
| 		      sa->util_avg ||
 | |
| 		      sa->runnable_avg);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
 | |
| 				 cfs_rq->last_update_time_copy);
 | |
| }
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| /*
 | |
|  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
 | |
|  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
 | |
|  * bottom-up, we only have to test whether the cfs_rq before us on the list
 | |
|  * is our child.
 | |
|  * If cfs_rq is not on the list, test whether a child needs its to be added to
 | |
|  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
 | |
|  */
 | |
| static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct cfs_rq *prev_cfs_rq;
 | |
| 	struct list_head *prev;
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 
 | |
| 	if (cfs_rq->on_list) {
 | |
| 		prev = cfs_rq->leaf_cfs_rq_list.prev;
 | |
| 	} else {
 | |
| 		prev = rq->tmp_alone_branch;
 | |
| 	}
 | |
| 
 | |
| 	if (prev == &rq->leaf_cfs_rq_list)
 | |
| 		return false;
 | |
| 
 | |
| 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
 | |
| 
 | |
| 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
 | |
| }
 | |
| 
 | |
| static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (cfs_rq->load.weight)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!load_avg_is_decayed(&cfs_rq->avg))
 | |
| 		return false;
 | |
| 
 | |
| 	if (child_cfs_rq_on_list(cfs_rq))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_tg_load_avg - update the tg's load avg
 | |
|  * @cfs_rq: the cfs_rq whose avg changed
 | |
|  *
 | |
|  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 | |
|  * However, because tg->load_avg is a global value there are performance
 | |
|  * considerations.
 | |
|  *
 | |
|  * In order to avoid having to look at the other cfs_rq's, we use a
 | |
|  * differential update where we store the last value we propagated. This in
 | |
|  * turn allows skipping updates if the differential is 'small'.
 | |
|  *
 | |
|  * Updating tg's load_avg is necessary before update_cfs_share().
 | |
|  */
 | |
| static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	long delta;
 | |
| 	u64 now;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to update load_avg for root_task_group as it is not used.
 | |
| 	 */
 | |
| 	if (cfs_rq->tg == &root_task_group)
 | |
| 		return;
 | |
| 
 | |
| 	/* rq has been offline and doesn't contribute to the share anymore: */
 | |
| 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * For migration heavy workloads, access to tg->load_avg can be
 | |
| 	 * unbound. Limit the update rate to at most once per ms.
 | |
| 	 */
 | |
| 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
 | |
| 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
 | |
| 		return;
 | |
| 
 | |
| 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
 | |
| 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
 | |
| 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
 | |
| 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
 | |
| 		cfs_rq->last_update_tg_load_avg = now;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	long delta;
 | |
| 	u64 now;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to update load_avg for root_task_group, as it is not used.
 | |
| 	 */
 | |
| 	if (cfs_rq->tg == &root_task_group)
 | |
| 		return;
 | |
| 
 | |
| 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
 | |
| 	delta = 0 - cfs_rq->tg_load_avg_contrib;
 | |
| 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
 | |
| 	cfs_rq->tg_load_avg_contrib = 0;
 | |
| 	cfs_rq->last_update_tg_load_avg = now;
 | |
| }
 | |
| 
 | |
| /* CPU offline callback: */
 | |
| static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
 | |
| {
 | |
| 	struct task_group *tg;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * The rq clock has already been updated in
 | |
| 	 * set_rq_offline(), so we should skip updating
 | |
| 	 * the rq clock again in unthrottle_cfs_rq().
 | |
| 	 */
 | |
| 	rq_clock_start_loop_update(rq);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(tg, &task_groups, list) {
 | |
| 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 | |
| 
 | |
| 		clear_tg_load_avg(cfs_rq);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	rq_clock_stop_loop_update(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called within set_task_rq() right before setting a task's CPU. The
 | |
|  * caller only guarantees p->pi_lock is held; no other assumptions,
 | |
|  * including the state of rq->lock, should be made.
 | |
|  */
 | |
| void set_task_rq_fair(struct sched_entity *se,
 | |
| 		      struct cfs_rq *prev, struct cfs_rq *next)
 | |
| {
 | |
| 	u64 p_last_update_time;
 | |
| 	u64 n_last_update_time;
 | |
| 
 | |
| 	if (!sched_feat(ATTACH_AGE_LOAD))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are supposed to update the task to "current" time, then its up to
 | |
| 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
 | |
| 	 * getting what current time is, so simply throw away the out-of-date
 | |
| 	 * time. This will result in the wakee task is less decayed, but giving
 | |
| 	 * the wakee more load sounds not bad.
 | |
| 	 */
 | |
| 	if (!(se->avg.last_update_time && prev))
 | |
| 		return;
 | |
| 
 | |
| 	p_last_update_time = cfs_rq_last_update_time(prev);
 | |
| 	n_last_update_time = cfs_rq_last_update_time(next);
 | |
| 
 | |
| 	__update_load_avg_blocked_se(p_last_update_time, se);
 | |
| 	se->avg.last_update_time = n_last_update_time;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 | |
|  * propagate its contribution. The key to this propagation is the invariant
 | |
|  * that for each group:
 | |
|  *
 | |
|  *   ge->avg == grq->avg						(1)
 | |
|  *
 | |
|  * _IFF_ we look at the pure running and runnable sums. Because they
 | |
|  * represent the very same entity, just at different points in the hierarchy.
 | |
|  *
 | |
|  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
 | |
|  * and simply copies the running/runnable sum over (but still wrong, because
 | |
|  * the group entity and group rq do not have their PELT windows aligned).
 | |
|  *
 | |
|  * However, update_tg_cfs_load() is more complex. So we have:
 | |
|  *
 | |
|  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 | |
|  *
 | |
|  * And since, like util, the runnable part should be directly transferable,
 | |
|  * the following would _appear_ to be the straight forward approach:
 | |
|  *
 | |
|  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
 | |
|  *
 | |
|  * And per (1) we have:
 | |
|  *
 | |
|  *   ge->avg.runnable_avg == grq->avg.runnable_avg
 | |
|  *
 | |
|  * Which gives:
 | |
|  *
 | |
|  *                      ge->load.weight * grq->avg.load_avg
 | |
|  *   ge->avg.load_avg = -----------------------------------		(4)
 | |
|  *                               grq->load.weight
 | |
|  *
 | |
|  * Except that is wrong!
 | |
|  *
 | |
|  * Because while for entities historical weight is not important and we
 | |
|  * really only care about our future and therefore can consider a pure
 | |
|  * runnable sum, runqueues can NOT do this.
 | |
|  *
 | |
|  * We specifically want runqueues to have a load_avg that includes
 | |
|  * historical weights. Those represent the blocked load, the load we expect
 | |
|  * to (shortly) return to us. This only works by keeping the weights as
 | |
|  * integral part of the sum. We therefore cannot decompose as per (3).
 | |
|  *
 | |
|  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 | |
|  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 | |
|  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 | |
|  * runnable section of these tasks overlap (or not). If they were to perfectly
 | |
|  * align the rq as a whole would be runnable 2/3 of the time. If however we
 | |
|  * always have at least 1 runnable task, the rq as a whole is always runnable.
 | |
|  *
 | |
|  * So we'll have to approximate.. :/
 | |
|  *
 | |
|  * Given the constraint:
 | |
|  *
 | |
|  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
 | |
|  *
 | |
|  * We can construct a rule that adds runnable to a rq by assuming minimal
 | |
|  * overlap.
 | |
|  *
 | |
|  * On removal, we'll assume each task is equally runnable; which yields:
 | |
|  *
 | |
|  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
 | |
|  *
 | |
|  * XXX: only do this for the part of runnable > running ?
 | |
|  *
 | |
|  */
 | |
| static inline void
 | |
| update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
 | |
| {
 | |
| 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
 | |
| 	u32 new_sum, divider;
 | |
| 
 | |
| 	/* Nothing to update */
 | |
| 	if (!delta_avg)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 | |
| 	 * See ___update_load_avg() for details.
 | |
| 	 */
 | |
| 	divider = get_pelt_divider(&cfs_rq->avg);
 | |
| 
 | |
| 
 | |
| 	/* Set new sched_entity's utilization */
 | |
| 	se->avg.util_avg = gcfs_rq->avg.util_avg;
 | |
| 	new_sum = se->avg.util_avg * divider;
 | |
| 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
 | |
| 	se->avg.util_sum = new_sum;
 | |
| 
 | |
| 	/* Update parent cfs_rq utilization */
 | |
| 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
 | |
| 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
 | |
| 
 | |
| 	/* See update_cfs_rq_load_avg() */
 | |
| 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
 | |
| 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
 | |
| {
 | |
| 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
 | |
| 	u32 new_sum, divider;
 | |
| 
 | |
| 	/* Nothing to update */
 | |
| 	if (!delta_avg)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 | |
| 	 * See ___update_load_avg() for details.
 | |
| 	 */
 | |
| 	divider = get_pelt_divider(&cfs_rq->avg);
 | |
| 
 | |
| 	/* Set new sched_entity's runnable */
 | |
| 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
 | |
| 	new_sum = se->avg.runnable_avg * divider;
 | |
| 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
 | |
| 	se->avg.runnable_sum = new_sum;
 | |
| 
 | |
| 	/* Update parent cfs_rq runnable */
 | |
| 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
 | |
| 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
 | |
| 	/* See update_cfs_rq_load_avg() */
 | |
| 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
 | |
| 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
 | |
| {
 | |
| 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
 | |
| 	unsigned long load_avg;
 | |
| 	u64 load_sum = 0;
 | |
| 	s64 delta_sum;
 | |
| 	u32 divider;
 | |
| 
 | |
| 	if (!runnable_sum)
 | |
| 		return;
 | |
| 
 | |
| 	gcfs_rq->prop_runnable_sum = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 | |
| 	 * See ___update_load_avg() for details.
 | |
| 	 */
 | |
| 	divider = get_pelt_divider(&cfs_rq->avg);
 | |
| 
 | |
| 	if (runnable_sum >= 0) {
 | |
| 		/*
 | |
| 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
 | |
| 		 * the CPU is saturated running == runnable.
 | |
| 		 */
 | |
| 		runnable_sum += se->avg.load_sum;
 | |
| 		runnable_sum = min_t(long, runnable_sum, divider);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
 | |
| 		 * assuming all tasks are equally runnable.
 | |
| 		 */
 | |
| 		if (scale_load_down(gcfs_rq->load.weight)) {
 | |
| 			load_sum = div_u64(gcfs_rq->avg.load_sum,
 | |
| 				scale_load_down(gcfs_rq->load.weight));
 | |
| 		}
 | |
| 
 | |
| 		/* But make sure to not inflate se's runnable */
 | |
| 		runnable_sum = min(se->avg.load_sum, load_sum);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * runnable_sum can't be lower than running_sum
 | |
| 	 * Rescale running sum to be in the same range as runnable sum
 | |
| 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
 | |
| 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
 | |
| 	 */
 | |
| 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
 | |
| 	runnable_sum = max(runnable_sum, running_sum);
 | |
| 
 | |
| 	load_sum = se_weight(se) * runnable_sum;
 | |
| 	load_avg = div_u64(load_sum, divider);
 | |
| 
 | |
| 	delta_avg = load_avg - se->avg.load_avg;
 | |
| 	if (!delta_avg)
 | |
| 		return;
 | |
| 
 | |
| 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
 | |
| 
 | |
| 	se->avg.load_sum = runnable_sum;
 | |
| 	se->avg.load_avg = load_avg;
 | |
| 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
 | |
| 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
 | |
| 	/* See update_cfs_rq_load_avg() */
 | |
| 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
 | |
| 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
 | |
| }
 | |
| 
 | |
| static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
 | |
| {
 | |
| 	cfs_rq->propagate = 1;
 | |
| 	cfs_rq->prop_runnable_sum += runnable_sum;
 | |
| }
 | |
| 
 | |
| /* Update task and its cfs_rq load average */
 | |
| static inline int propagate_entity_load_avg(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq, *gcfs_rq;
 | |
| 
 | |
| 	if (entity_is_task(se))
 | |
| 		return 0;
 | |
| 
 | |
| 	gcfs_rq = group_cfs_rq(se);
 | |
| 	if (!gcfs_rq->propagate)
 | |
| 		return 0;
 | |
| 
 | |
| 	gcfs_rq->propagate = 0;
 | |
| 
 | |
| 	cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
 | |
| 
 | |
| 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
 | |
| 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
 | |
| 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
 | |
| 
 | |
| 	trace_pelt_cfs_tp(cfs_rq);
 | |
| 	trace_pelt_se_tp(se);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if we need to update the load and the utilization of a blocked
 | |
|  * group_entity:
 | |
|  */
 | |
| static inline bool skip_blocked_update(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * If sched_entity still have not zero load or utilization, we have to
 | |
| 	 * decay it:
 | |
| 	 */
 | |
| 	if (se->avg.load_avg || se->avg.util_avg)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a pending propagation, we have to update the load and
 | |
| 	 * the utilization of the sched_entity:
 | |
| 	 */
 | |
| 	if (gcfs_rq->propagate)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise, the load and the utilization of the sched_entity is
 | |
| 	 * already zero and there is no pending propagation, so it will be a
 | |
| 	 * waste of time to try to decay it:
 | |
| 	 */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
 | |
| 
 | |
| static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
 | |
| 
 | |
| static inline int propagate_entity_load_avg(struct sched_entity *se)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
 | |
| 
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| static inline void migrate_se_pelt_lag(struct sched_entity *se)
 | |
| {
 | |
| 	u64 throttled = 0, now, lut;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct rq *rq;
 | |
| 	bool is_idle;
 | |
| 
 | |
| 	if (load_avg_is_decayed(&se->avg))
 | |
| 		return;
 | |
| 
 | |
| 	cfs_rq = cfs_rq_of(se);
 | |
| 	rq = rq_of(cfs_rq);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	is_idle = is_idle_task(rcu_dereference(rq->curr));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * The lag estimation comes with a cost we don't want to pay all the
 | |
| 	 * time. Hence, limiting to the case where the source CPU is idle and
 | |
| 	 * we know we are at the greatest risk to have an outdated clock.
 | |
| 	 */
 | |
| 	if (!is_idle)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
 | |
| 	 *
 | |
| 	 *   last_update_time (the cfs_rq's last_update_time)
 | |
| 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
 | |
| 	 *      = rq_clock_pelt()@cfs_rq_idle
 | |
| 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
 | |
| 	 *
 | |
| 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
 | |
| 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
 | |
| 	 *
 | |
| 	 *   rq_idle_lag (delta between now and rq's update)
 | |
| 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
 | |
| 	 *
 | |
| 	 * We can then write:
 | |
| 	 *
 | |
| 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
 | |
| 	 *          sched_clock_cpu() - rq_clock()@rq_idle
 | |
| 	 * Where:
 | |
| 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
 | |
| 	 *      rq_clock()@rq_idle      is rq->clock_idle
 | |
| 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
 | |
| 	 *                              is cfs_rq->throttled_pelt_idle
 | |
| 	 */
 | |
| 
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
 | |
| 	/* The clock has been stopped for throttling */
 | |
| 	if (throttled == U64_MAX)
 | |
| 		return;
 | |
| #endif
 | |
| 	now = u64_u32_load(rq->clock_pelt_idle);
 | |
| 	/*
 | |
| 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
 | |
| 	 * is observed the old clock_pelt_idle value and the new clock_idle,
 | |
| 	 * which lead to an underestimation. The opposite would lead to an
 | |
| 	 * overestimation.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	lut = cfs_rq_last_update_time(cfs_rq);
 | |
| 
 | |
| 	now -= throttled;
 | |
| 	if (now < lut)
 | |
| 		/*
 | |
| 		 * cfs_rq->avg.last_update_time is more recent than our
 | |
| 		 * estimation, let's use it.
 | |
| 		 */
 | |
| 		now = lut;
 | |
| 	else
 | |
| 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
 | |
| 
 | |
| 	__update_load_avg_blocked_se(now, se);
 | |
| }
 | |
| #else
 | |
| static void migrate_se_pelt_lag(struct sched_entity *se) {}
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 | |
|  * @now: current time, as per cfs_rq_clock_pelt()
 | |
|  * @cfs_rq: cfs_rq to update
 | |
|  *
 | |
|  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 | |
|  * avg. The immediate corollary is that all (fair) tasks must be attached.
 | |
|  *
 | |
|  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 | |
|  *
 | |
|  * Return: true if the load decayed or we removed load.
 | |
|  *
 | |
|  * Since both these conditions indicate a changed cfs_rq->avg.load we should
 | |
|  * call update_tg_load_avg() when this function returns true.
 | |
|  */
 | |
| static inline int
 | |
| update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
 | |
| 	struct sched_avg *sa = &cfs_rq->avg;
 | |
| 	int decayed = 0;
 | |
| 
 | |
| 	if (cfs_rq->removed.nr) {
 | |
| 		unsigned long r;
 | |
| 		u32 divider = get_pelt_divider(&cfs_rq->avg);
 | |
| 
 | |
| 		raw_spin_lock(&cfs_rq->removed.lock);
 | |
| 		swap(cfs_rq->removed.util_avg, removed_util);
 | |
| 		swap(cfs_rq->removed.load_avg, removed_load);
 | |
| 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
 | |
| 		cfs_rq->removed.nr = 0;
 | |
| 		raw_spin_unlock(&cfs_rq->removed.lock);
 | |
| 
 | |
| 		r = removed_load;
 | |
| 		sub_positive(&sa->load_avg, r);
 | |
| 		sub_positive(&sa->load_sum, r * divider);
 | |
| 		/* See sa->util_sum below */
 | |
| 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
 | |
| 
 | |
| 		r = removed_util;
 | |
| 		sub_positive(&sa->util_avg, r);
 | |
| 		sub_positive(&sa->util_sum, r * divider);
 | |
| 		/*
 | |
| 		 * Because of rounding, se->util_sum might ends up being +1 more than
 | |
| 		 * cfs->util_sum. Although this is not a problem by itself, detaching
 | |
| 		 * a lot of tasks with the rounding problem between 2 updates of
 | |
| 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
 | |
| 		 * cfs_util_avg is not.
 | |
| 		 * Check that util_sum is still above its lower bound for the new
 | |
| 		 * util_avg. Given that period_contrib might have moved since the last
 | |
| 		 * sync, we are only sure that util_sum must be above or equal to
 | |
| 		 *    util_avg * minimum possible divider
 | |
| 		 */
 | |
| 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
 | |
| 
 | |
| 		r = removed_runnable;
 | |
| 		sub_positive(&sa->runnable_avg, r);
 | |
| 		sub_positive(&sa->runnable_sum, r * divider);
 | |
| 		/* See sa->util_sum above */
 | |
| 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
 | |
| 					      sa->runnable_avg * PELT_MIN_DIVIDER);
 | |
| 
 | |
| 		/*
 | |
| 		 * removed_runnable is the unweighted version of removed_load so we
 | |
| 		 * can use it to estimate removed_load_sum.
 | |
| 		 */
 | |
| 		add_tg_cfs_propagate(cfs_rq,
 | |
| 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
 | |
| 
 | |
| 		decayed = 1;
 | |
| 	}
 | |
| 
 | |
| 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
 | |
| 	u64_u32_store_copy(sa->last_update_time,
 | |
| 			   cfs_rq->last_update_time_copy,
 | |
| 			   sa->last_update_time);
 | |
| 	return decayed;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 | |
|  * @cfs_rq: cfs_rq to attach to
 | |
|  * @se: sched_entity to attach
 | |
|  *
 | |
|  * Must call update_cfs_rq_load_avg() before this, since we rely on
 | |
|  * cfs_rq->avg.last_update_time being current.
 | |
|  */
 | |
| static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 | |
| 	 * See ___update_load_avg() for details.
 | |
| 	 */
 | |
| 	u32 divider = get_pelt_divider(&cfs_rq->avg);
 | |
| 
 | |
| 	/*
 | |
| 	 * When we attach the @se to the @cfs_rq, we must align the decay
 | |
| 	 * window because without that, really weird and wonderful things can
 | |
| 	 * happen.
 | |
| 	 *
 | |
| 	 * XXX illustrate
 | |
| 	 */
 | |
| 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
 | |
| 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
 | |
| 
 | |
| 	/*
 | |
| 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
 | |
| 	 * period_contrib. This isn't strictly correct, but since we're
 | |
| 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
 | |
| 	 * _sum a little.
 | |
| 	 */
 | |
| 	se->avg.util_sum = se->avg.util_avg * divider;
 | |
| 
 | |
| 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
 | |
| 
 | |
| 	se->avg.load_sum = se->avg.load_avg * divider;
 | |
| 	if (se_weight(se) < se->avg.load_sum)
 | |
| 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
 | |
| 	else
 | |
| 		se->avg.load_sum = 1;
 | |
| 
 | |
| 	enqueue_load_avg(cfs_rq, se);
 | |
| 	cfs_rq->avg.util_avg += se->avg.util_avg;
 | |
| 	cfs_rq->avg.util_sum += se->avg.util_sum;
 | |
| 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
 | |
| 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
 | |
| 
 | |
| 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
 | |
| 
 | |
| 	cfs_rq_util_change(cfs_rq, 0);
 | |
| 
 | |
| 	trace_pelt_cfs_tp(cfs_rq);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 | |
|  * @cfs_rq: cfs_rq to detach from
 | |
|  * @se: sched_entity to detach
 | |
|  *
 | |
|  * Must call update_cfs_rq_load_avg() before this, since we rely on
 | |
|  * cfs_rq->avg.last_update_time being current.
 | |
|  */
 | |
| static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	dequeue_load_avg(cfs_rq, se);
 | |
| 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
 | |
| 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
 | |
| 	/* See update_cfs_rq_load_avg() */
 | |
| 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
 | |
| 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
 | |
| 
 | |
| 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
 | |
| 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
 | |
| 	/* See update_cfs_rq_load_avg() */
 | |
| 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
 | |
| 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
 | |
| 
 | |
| 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
 | |
| 
 | |
| 	cfs_rq_util_change(cfs_rq, 0);
 | |
| 
 | |
| 	trace_pelt_cfs_tp(cfs_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Optional action to be done while updating the load average
 | |
|  */
 | |
| #define UPDATE_TG	0x1
 | |
| #define SKIP_AGE_LOAD	0x2
 | |
| #define DO_ATTACH	0x4
 | |
| #define DO_DETACH	0x8
 | |
| 
 | |
| /* Update task and its cfs_rq load average */
 | |
| static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	u64 now = cfs_rq_clock_pelt(cfs_rq);
 | |
| 	int decayed;
 | |
| 
 | |
| 	/*
 | |
| 	 * Track task load average for carrying it to new CPU after migrated, and
 | |
| 	 * track group sched_entity load average for task_h_load calculation in migration
 | |
| 	 */
 | |
| 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
 | |
| 		__update_load_avg_se(now, cfs_rq, se);
 | |
| 
 | |
| 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
 | |
| 	decayed |= propagate_entity_load_avg(se);
 | |
| 
 | |
| 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
 | |
| 
 | |
| 		/*
 | |
| 		 * DO_ATTACH means we're here from enqueue_entity().
 | |
| 		 * !last_update_time means we've passed through
 | |
| 		 * migrate_task_rq_fair() indicating we migrated.
 | |
| 		 *
 | |
| 		 * IOW we're enqueueing a task on a new CPU.
 | |
| 		 */
 | |
| 		attach_entity_load_avg(cfs_rq, se);
 | |
| 		update_tg_load_avg(cfs_rq);
 | |
| 
 | |
| 	} else if (flags & DO_DETACH) {
 | |
| 		/*
 | |
| 		 * DO_DETACH means we're here from dequeue_entity()
 | |
| 		 * and we are migrating task out of the CPU.
 | |
| 		 */
 | |
| 		detach_entity_load_avg(cfs_rq, se);
 | |
| 		update_tg_load_avg(cfs_rq);
 | |
| 	} else if (decayed) {
 | |
| 		cfs_rq_util_change(cfs_rq, 0);
 | |
| 
 | |
| 		if (flags & UPDATE_TG)
 | |
| 			update_tg_load_avg(cfs_rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Synchronize entity load avg of dequeued entity without locking
 | |
|  * the previous rq.
 | |
|  */
 | |
| static void sync_entity_load_avg(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 	u64 last_update_time;
 | |
| 
 | |
| 	last_update_time = cfs_rq_last_update_time(cfs_rq);
 | |
| 	__update_load_avg_blocked_se(last_update_time, se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Task first catches up with cfs_rq, and then subtract
 | |
|  * itself from the cfs_rq (task must be off the queue now).
 | |
|  */
 | |
| static void remove_entity_load_avg(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * tasks cannot exit without having gone through wake_up_new_task() ->
 | |
| 	 * enqueue_task_fair() which will have added things to the cfs_rq,
 | |
| 	 * so we can remove unconditionally.
 | |
| 	 */
 | |
| 
 | |
| 	sync_entity_load_avg(se);
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
 | |
| 	++cfs_rq->removed.nr;
 | |
| 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
 | |
| 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
 | |
| 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
 | |
| 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
 | |
| }
 | |
| 
 | |
| static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_rq->avg.runnable_avg;
 | |
| }
 | |
| 
 | |
| static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_rq->avg.load_avg;
 | |
| }
 | |
| 
 | |
| static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
 | |
| 
 | |
| static inline unsigned long task_util(struct task_struct *p)
 | |
| {
 | |
| 	return READ_ONCE(p->se.avg.util_avg);
 | |
| }
 | |
| 
 | |
| static inline unsigned long task_runnable(struct task_struct *p)
 | |
| {
 | |
| 	return READ_ONCE(p->se.avg.runnable_avg);
 | |
| }
 | |
| 
 | |
| static inline unsigned long _task_util_est(struct task_struct *p)
 | |
| {
 | |
| 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
 | |
| }
 | |
| 
 | |
| static inline unsigned long task_util_est(struct task_struct *p)
 | |
| {
 | |
| 	return max(task_util(p), _task_util_est(p));
 | |
| }
 | |
| 
 | |
| static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
 | |
| 				    struct task_struct *p)
 | |
| {
 | |
| 	unsigned int enqueued;
 | |
| 
 | |
| 	if (!sched_feat(UTIL_EST))
 | |
| 		return;
 | |
| 
 | |
| 	/* Update root cfs_rq's estimated utilization */
 | |
| 	enqueued  = cfs_rq->avg.util_est;
 | |
| 	enqueued += _task_util_est(p);
 | |
| 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
 | |
| 
 | |
| 	trace_sched_util_est_cfs_tp(cfs_rq);
 | |
| }
 | |
| 
 | |
| static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
 | |
| 				    struct task_struct *p)
 | |
| {
 | |
| 	unsigned int enqueued;
 | |
| 
 | |
| 	if (!sched_feat(UTIL_EST))
 | |
| 		return;
 | |
| 
 | |
| 	/* Update root cfs_rq's estimated utilization */
 | |
| 	enqueued  = cfs_rq->avg.util_est;
 | |
| 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
 | |
| 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
 | |
| 
 | |
| 	trace_sched_util_est_cfs_tp(cfs_rq);
 | |
| }
 | |
| 
 | |
| #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
 | |
| 
 | |
| static inline void util_est_update(struct cfs_rq *cfs_rq,
 | |
| 				   struct task_struct *p,
 | |
| 				   bool task_sleep)
 | |
| {
 | |
| 	unsigned int ewma, dequeued, last_ewma_diff;
 | |
| 
 | |
| 	if (!sched_feat(UTIL_EST))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip update of task's estimated utilization when the task has not
 | |
| 	 * yet completed an activation, e.g. being migrated.
 | |
| 	 */
 | |
| 	if (!task_sleep)
 | |
| 		return;
 | |
| 
 | |
| 	/* Get current estimate of utilization */
 | |
| 	ewma = READ_ONCE(p->se.avg.util_est);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the PELT values haven't changed since enqueue time,
 | |
| 	 * skip the util_est update.
 | |
| 	 */
 | |
| 	if (ewma & UTIL_AVG_UNCHANGED)
 | |
| 		return;
 | |
| 
 | |
| 	/* Get utilization at dequeue */
 | |
| 	dequeued = task_util(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset EWMA on utilization increases, the moving average is used only
 | |
| 	 * to smooth utilization decreases.
 | |
| 	 */
 | |
| 	if (ewma <= dequeued) {
 | |
| 		ewma = dequeued;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip update of task's estimated utilization when its members are
 | |
| 	 * already ~1% close to its last activation value.
 | |
| 	 */
 | |
| 	last_ewma_diff = ewma - dequeued;
 | |
| 	if (last_ewma_diff < UTIL_EST_MARGIN)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * To avoid underestimate of task utilization, skip updates of EWMA if
 | |
| 	 * we cannot grant that thread got all CPU time it wanted.
 | |
| 	 */
 | |
| 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
 | |
| 		goto done;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Update Task's estimated utilization
 | |
| 	 *
 | |
| 	 * When *p completes an activation we can consolidate another sample
 | |
| 	 * of the task size. This is done by using this value to update the
 | |
| 	 * Exponential Weighted Moving Average (EWMA):
 | |
| 	 *
 | |
| 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
 | |
| 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
 | |
| 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
 | |
| 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
 | |
| 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
 | |
| 	 *
 | |
| 	 * Where 'w' is the weight of new samples, which is configured to be
 | |
| 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
 | |
| 	 */
 | |
| 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
 | |
| 	ewma  -= last_ewma_diff;
 | |
| 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
 | |
| done:
 | |
| 	ewma |= UTIL_AVG_UNCHANGED;
 | |
| 	WRITE_ONCE(p->se.avg.util_est, ewma);
 | |
| 
 | |
| 	trace_sched_util_est_se_tp(&p->se);
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_actual_cpu_capacity(int cpu)
 | |
| {
 | |
| 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
 | |
| 
 | |
| 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
 | |
| 
 | |
| 	return capacity;
 | |
| }
 | |
| 
 | |
| static inline int util_fits_cpu(unsigned long util,
 | |
| 				unsigned long uclamp_min,
 | |
| 				unsigned long uclamp_max,
 | |
| 				int cpu)
 | |
| {
 | |
| 	unsigned long capacity = capacity_of(cpu);
 | |
| 	unsigned long capacity_orig;
 | |
| 	bool fits, uclamp_max_fits;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the real util fits without any uclamp boost/cap applied.
 | |
| 	 */
 | |
| 	fits = fits_capacity(util, capacity);
 | |
| 
 | |
| 	if (!uclamp_is_used())
 | |
| 		return fits;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
 | |
| 	 * uclamp_max. We only care about capacity pressure (by using
 | |
| 	 * capacity_of()) for comparing against the real util.
 | |
| 	 *
 | |
| 	 * If a task is boosted to 1024 for example, we don't want a tiny
 | |
| 	 * pressure to skew the check whether it fits a CPU or not.
 | |
| 	 *
 | |
| 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
 | |
| 	 * should fit a little cpu even if there's some pressure.
 | |
| 	 *
 | |
| 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
 | |
| 	 * on available OPP of the system.
 | |
| 	 *
 | |
| 	 * We honour it for uclamp_min only as a drop in performance level
 | |
| 	 * could result in not getting the requested minimum performance level.
 | |
| 	 *
 | |
| 	 * For uclamp_max, we can tolerate a drop in performance level as the
 | |
| 	 * goal is to cap the task. So it's okay if it's getting less.
 | |
| 	 */
 | |
| 	capacity_orig = arch_scale_cpu_capacity(cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to force a task to fit a cpu as implied by uclamp_max.
 | |
| 	 * But we do have some corner cases to cater for..
 | |
| 	 *
 | |
| 	 *
 | |
| 	 *                                 C=z
 | |
| 	 *   |                             ___
 | |
| 	 *   |                  C=y       |   |
 | |
| 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
 | |
| 	 *   |      C=x        |   |      |   |
 | |
| 	 *   |      ___        |   |      |   |
 | |
| 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
 | |
| 	 *   |     |   |       |   |      |   |
 | |
| 	 *   |     |   |       |   |      |   |
 | |
| 	 *   +----------------------------------------
 | |
| 	 *         CPU0        CPU1       CPU2
 | |
| 	 *
 | |
| 	 *   In the above example if a task is capped to a specific performance
 | |
| 	 *   point, y, then when:
 | |
| 	 *
 | |
| 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
 | |
| 	 *     to CPU1
 | |
| 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
 | |
| 	 *     uclamp_max request.
 | |
| 	 *
 | |
| 	 *   which is what we're enforcing here. A task always fits if
 | |
| 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
 | |
| 	 *   the normal upmigration rules should withhold still.
 | |
| 	 *
 | |
| 	 *   Only exception is when we are on max capacity, then we need to be
 | |
| 	 *   careful not to block overutilized state. This is so because:
 | |
| 	 *
 | |
| 	 *     1. There's no concept of capping at max_capacity! We can't go
 | |
| 	 *        beyond this performance level anyway.
 | |
| 	 *     2. The system is being saturated when we're operating near
 | |
| 	 *        max capacity, it doesn't make sense to block overutilized.
 | |
| 	 */
 | |
| 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
 | |
| 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
 | |
| 	fits = fits || uclamp_max_fits;
 | |
| 
 | |
| 	/*
 | |
| 	 *
 | |
| 	 *                                 C=z
 | |
| 	 *   |                             ___       (region a, capped, util >= uclamp_max)
 | |
| 	 *   |                  C=y       |   |
 | |
| 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
 | |
| 	 *   |      C=x        |   |      |   |
 | |
| 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
 | |
| 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
 | |
| 	 *   |     |   |       |   |      |   |
 | |
| 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
 | |
| 	 *   +----------------------------------------
 | |
| 	 *         CPU0        CPU1       CPU2
 | |
| 	 *
 | |
| 	 * a) If util > uclamp_max, then we're capped, we don't care about
 | |
| 	 *    actual fitness value here. We only care if uclamp_max fits
 | |
| 	 *    capacity without taking margin/pressure into account.
 | |
| 	 *    See comment above.
 | |
| 	 *
 | |
| 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
 | |
| 	 *    fits_capacity() rules apply. Except we need to ensure that we
 | |
| 	 *    enforce we remain within uclamp_max, see comment above.
 | |
| 	 *
 | |
| 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
 | |
| 	 *    need to take into account the boosted value fits the CPU without
 | |
| 	 *    taking margin/pressure into account.
 | |
| 	 *
 | |
| 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
 | |
| 	 * just need to consider an extra check for case (c) after ensuring we
 | |
| 	 * handle the case uclamp_min > uclamp_max.
 | |
| 	 */
 | |
| 	uclamp_min = min(uclamp_min, uclamp_max);
 | |
| 	if (fits && (util < uclamp_min) &&
 | |
| 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
 | |
| 		return -1;
 | |
| 
 | |
| 	return fits;
 | |
| }
 | |
| 
 | |
| static inline int task_fits_cpu(struct task_struct *p, int cpu)
 | |
| {
 | |
| 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
 | |
| 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
 | |
| 	unsigned long util = task_util_est(p);
 | |
| 	/*
 | |
| 	 * Return true only if the cpu fully fits the task requirements, which
 | |
| 	 * include the utilization but also the performance hints.
 | |
| 	 */
 | |
| 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
 | |
| }
 | |
| 
 | |
| static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
 | |
| {
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	if (!sched_asym_cpucap_active())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
 | |
| 	 * available CPU already? Or do we fit into this CPU ?
 | |
| 	 */
 | |
| 	if (!p || (p->nr_cpus_allowed == 1) ||
 | |
| 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
 | |
| 	    task_fits_cpu(p, cpu)) {
 | |
| 
 | |
| 		rq->misfit_task_load = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that misfit_task_load will not be null even if
 | |
| 	 * task_h_load() returns 0.
 | |
| 	 */
 | |
| 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return !cfs_rq->nr_queued;
 | |
| }
 | |
| 
 | |
| #define UPDATE_TG	0x0
 | |
| #define SKIP_AGE_LOAD	0x0
 | |
| #define DO_ATTACH	0x0
 | |
| #define DO_DETACH	0x0
 | |
| 
 | |
| static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
 | |
| {
 | |
| 	cfs_rq_util_change(cfs_rq, 0);
 | |
| }
 | |
| 
 | |
| static inline void remove_entity_load_avg(struct sched_entity *se) {}
 | |
| 
 | |
| static inline void
 | |
| attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
 | |
| static inline void
 | |
| detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
 | |
| 
 | |
| static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
 | |
| 
 | |
| static inline void
 | |
| util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
 | |
| 
 | |
| static inline void
 | |
| util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
 | |
| 		bool task_sleep) {}
 | |
| static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	p->static_prio = NICE_TO_PRIO(attr->sched_nice);
 | |
| 	if (attr->sched_runtime) {
 | |
| 		se->custom_slice = 1;
 | |
| 		se->slice = clamp_t(u64, attr->sched_runtime,
 | |
| 				      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
 | |
| 				      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
 | |
| 	} else {
 | |
| 		se->custom_slice = 0;
 | |
| 		se->slice = sysctl_sched_base_slice;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
 | |
| 	s64 lag = 0;
 | |
| 
 | |
| 	if (!se->custom_slice)
 | |
| 		se->slice = sysctl_sched_base_slice;
 | |
| 	vslice = calc_delta_fair(se->slice, se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to how V is constructed as the weighted average of entities,
 | |
| 	 * adding tasks with positive lag, or removing tasks with negative lag
 | |
| 	 * will move 'time' backwards, this can screw around with the lag of
 | |
| 	 * other tasks.
 | |
| 	 *
 | |
| 	 * EEVDF: placement strategy #1 / #2
 | |
| 	 */
 | |
| 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
 | |
| 		struct sched_entity *curr = cfs_rq->curr;
 | |
| 		unsigned long load;
 | |
| 
 | |
| 		lag = se->vlag;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we want to place a task and preserve lag, we have to
 | |
| 		 * consider the effect of the new entity on the weighted
 | |
| 		 * average and compensate for this, otherwise lag can quickly
 | |
| 		 * evaporate.
 | |
| 		 *
 | |
| 		 * Lag is defined as:
 | |
| 		 *
 | |
| 		 *   lag_i = S - s_i = w_i * (V - v_i)
 | |
| 		 *
 | |
| 		 * To avoid the 'w_i' term all over the place, we only track
 | |
| 		 * the virtual lag:
 | |
| 		 *
 | |
| 		 *   vl_i = V - v_i <=> v_i = V - vl_i
 | |
| 		 *
 | |
| 		 * And we take V to be the weighted average of all v:
 | |
| 		 *
 | |
| 		 *   V = (\Sum w_j*v_j) / W
 | |
| 		 *
 | |
| 		 * Where W is: \Sum w_j
 | |
| 		 *
 | |
| 		 * Then, the weighted average after adding an entity with lag
 | |
| 		 * vl_i is given by:
 | |
| 		 *
 | |
| 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
 | |
| 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
 | |
| 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
 | |
| 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
 | |
| 		 *      = V - w_i*vl_i / (W + w_i)
 | |
| 		 *
 | |
| 		 * And the actual lag after adding an entity with vl_i is:
 | |
| 		 *
 | |
| 		 *   vl'_i = V' - v_i
 | |
| 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
 | |
| 		 *         = vl_i - w_i*vl_i / (W + w_i)
 | |
| 		 *
 | |
| 		 * Which is strictly less than vl_i. So in order to preserve lag
 | |
| 		 * we should inflate the lag before placement such that the
 | |
| 		 * effective lag after placement comes out right.
 | |
| 		 *
 | |
| 		 * As such, invert the above relation for vl'_i to get the vl_i
 | |
| 		 * we need to use such that the lag after placement is the lag
 | |
| 		 * we computed before dequeue.
 | |
| 		 *
 | |
| 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
 | |
| 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
 | |
| 		 *
 | |
| 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
 | |
| 		 *                   = W*vl_i
 | |
| 		 *
 | |
| 		 *   vl_i = (W + w_i)*vl'_i / W
 | |
| 		 */
 | |
| 		load = cfs_rq->avg_load;
 | |
| 		if (curr && curr->on_rq)
 | |
| 			load += scale_load_down(curr->load.weight);
 | |
| 
 | |
| 		lag *= load + scale_load_down(se->load.weight);
 | |
| 		if (WARN_ON_ONCE(!load))
 | |
| 			load = 1;
 | |
| 		lag = div_s64(lag, load);
 | |
| 	}
 | |
| 
 | |
| 	se->vruntime = vruntime - lag;
 | |
| 
 | |
| 	if (se->rel_deadline) {
 | |
| 		se->deadline += se->vruntime;
 | |
| 		se->rel_deadline = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When joining the competition; the existing tasks will be,
 | |
| 	 * on average, halfway through their slice, as such start tasks
 | |
| 	 * off with half a slice to ease into the competition.
 | |
| 	 */
 | |
| 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
 | |
| 		vslice /= 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * EEVDF: vd_i = ve_i + r_i/w_i
 | |
| 	 */
 | |
| 	se->deadline = se->vruntime + vslice;
 | |
| }
 | |
| 
 | |
| static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
 | |
| static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| static void
 | |
| requeue_delayed_entity(struct sched_entity *se);
 | |
| 
 | |
| static void
 | |
| enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	bool curr = cfs_rq->curr == se;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're the current task, we must renormalise before calling
 | |
| 	 * update_curr().
 | |
| 	 */
 | |
| 	if (curr)
 | |
| 		place_entity(cfs_rq, se, flags);
 | |
| 
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * When enqueuing a sched_entity, we must:
 | |
| 	 *   - Update loads to have both entity and cfs_rq synced with now.
 | |
| 	 *   - For group_entity, update its runnable_weight to reflect the new
 | |
| 	 *     h_nr_runnable of its group cfs_rq.
 | |
| 	 *   - For group_entity, update its weight to reflect the new share of
 | |
| 	 *     its group cfs_rq
 | |
| 	 *   - Add its new weight to cfs_rq->load.weight
 | |
| 	 */
 | |
| 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
 | |
| 	se_update_runnable(se);
 | |
| 	/*
 | |
| 	 * XXX update_load_avg() above will have attached us to the pelt sum;
 | |
| 	 * but update_cfs_group() here will re-adjust the weight and have to
 | |
| 	 * undo/redo all that. Seems wasteful.
 | |
| 	 */
 | |
| 	update_cfs_group(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
 | |
| 	 * we can place the entity.
 | |
| 	 */
 | |
| 	if (!curr)
 | |
| 		place_entity(cfs_rq, se, flags);
 | |
| 
 | |
| 	account_entity_enqueue(cfs_rq, se);
 | |
| 
 | |
| 	/* Entity has migrated, no longer consider this task hot */
 | |
| 	if (flags & ENQUEUE_MIGRATED)
 | |
| 		se->exec_start = 0;
 | |
| 
 | |
| 	check_schedstat_required();
 | |
| 	update_stats_enqueue_fair(cfs_rq, se, flags);
 | |
| 	if (!curr)
 | |
| 		__enqueue_entity(cfs_rq, se);
 | |
| 	se->on_rq = 1;
 | |
| 
 | |
| 	if (cfs_rq->nr_queued == 1) {
 | |
| 		check_enqueue_throttle(cfs_rq);
 | |
| 		if (!throttled_hierarchy(cfs_rq)) {
 | |
| 			list_add_leaf_cfs_rq(cfs_rq);
 | |
| 		} else {
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 			struct rq *rq = rq_of(cfs_rq);
 | |
| 
 | |
| 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
 | |
| 				cfs_rq->throttled_clock = rq_clock(rq);
 | |
| 			if (!cfs_rq->throttled_clock_self)
 | |
| 				cfs_rq->throttled_clock_self = rq_clock(rq);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __clear_buddies_next(struct sched_entity *se)
 | |
| {
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 		if (cfs_rq->next != se)
 | |
| 			break;
 | |
| 
 | |
| 		cfs_rq->next = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	if (cfs_rq->next == se)
 | |
| 		__clear_buddies_next(se);
 | |
| }
 | |
| 
 | |
| static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| static void set_delayed(struct sched_entity *se)
 | |
| {
 | |
| 	se->sched_delayed = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Delayed se of cfs_rq have no tasks queued on them.
 | |
| 	 * Do not adjust h_nr_runnable since dequeue_entities()
 | |
| 	 * will account it for blocked tasks.
 | |
| 	 */
 | |
| 	if (!entity_is_task(se))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		cfs_rq->h_nr_runnable--;
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void clear_delayed(struct sched_entity *se)
 | |
| {
 | |
| 	se->sched_delayed = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Delayed se of cfs_rq have no tasks queued on them.
 | |
| 	 * Do not adjust h_nr_runnable since a dequeue has
 | |
| 	 * already accounted for it or an enqueue of a task
 | |
| 	 * below it will account for it in enqueue_task_fair().
 | |
| 	 */
 | |
| 	if (!entity_is_task(se))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		cfs_rq->h_nr_runnable++;
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
 | |
| {
 | |
| 	clear_delayed(se);
 | |
| 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
 | |
| 		se->vlag = 0;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	bool sleep = flags & DEQUEUE_SLEEP;
 | |
| 	int action = UPDATE_TG;
 | |
| 
 | |
| 	update_curr(cfs_rq);
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	if (flags & DEQUEUE_DELAYED) {
 | |
| 		WARN_ON_ONCE(!se->sched_delayed);
 | |
| 	} else {
 | |
| 		bool delay = sleep;
 | |
| 		/*
 | |
| 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
 | |
| 		 * states must not suffer spurious wakeups, excempt them.
 | |
| 		 */
 | |
| 		if (flags & DEQUEUE_SPECIAL)
 | |
| 			delay = false;
 | |
| 
 | |
| 		WARN_ON_ONCE(delay && se->sched_delayed);
 | |
| 
 | |
| 		if (sched_feat(DELAY_DEQUEUE) && delay &&
 | |
| 		    !entity_eligible(cfs_rq, se)) {
 | |
| 			update_load_avg(cfs_rq, se, 0);
 | |
| 			set_delayed(se);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
 | |
| 		action |= DO_DETACH;
 | |
| 
 | |
| 	/*
 | |
| 	 * When dequeuing a sched_entity, we must:
 | |
| 	 *   - Update loads to have both entity and cfs_rq synced with now.
 | |
| 	 *   - For group_entity, update its runnable_weight to reflect the new
 | |
| 	 *     h_nr_runnable of its group cfs_rq.
 | |
| 	 *   - Subtract its previous weight from cfs_rq->load.weight.
 | |
| 	 *   - For group entity, update its weight to reflect the new share
 | |
| 	 *     of its group cfs_rq.
 | |
| 	 */
 | |
| 	update_load_avg(cfs_rq, se, action);
 | |
| 	se_update_runnable(se);
 | |
| 
 | |
| 	update_stats_dequeue_fair(cfs_rq, se, flags);
 | |
| 
 | |
| 	update_entity_lag(cfs_rq, se);
 | |
| 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
 | |
| 		se->deadline -= se->vruntime;
 | |
| 		se->rel_deadline = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		__dequeue_entity(cfs_rq, se);
 | |
| 	se->on_rq = 0;
 | |
| 	account_entity_dequeue(cfs_rq, se);
 | |
| 
 | |
| 	/* return excess runtime on last dequeue */
 | |
| 	return_cfs_rq_runtime(cfs_rq);
 | |
| 
 | |
| 	update_cfs_group(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now advance min_vruntime if @se was the entity holding it back,
 | |
| 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
 | |
| 	 * put back on, and if we advance min_vruntime, we'll be placed back
 | |
| 	 * further than we started -- i.e. we'll be penalized.
 | |
| 	 */
 | |
| 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
 | |
| 		update_min_vruntime(cfs_rq);
 | |
| 
 | |
| 	if (flags & DEQUEUE_DELAYED)
 | |
| 		finish_delayed_dequeue_entity(se);
 | |
| 
 | |
| 	if (cfs_rq->nr_queued == 0)
 | |
| 		update_idle_cfs_rq_clock_pelt(cfs_rq);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void
 | |
| set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	/* 'current' is not kept within the tree. */
 | |
| 	if (se->on_rq) {
 | |
| 		/*
 | |
| 		 * Any task has to be enqueued before it get to execute on
 | |
| 		 * a CPU. So account for the time it spent waiting on the
 | |
| 		 * runqueue.
 | |
| 		 */
 | |
| 		update_stats_wait_end_fair(cfs_rq, se);
 | |
| 		__dequeue_entity(cfs_rq, se);
 | |
| 		update_load_avg(cfs_rq, se, UPDATE_TG);
 | |
| 
 | |
| 		set_protect_slice(se);
 | |
| 	}
 | |
| 
 | |
| 	update_stats_curr_start(cfs_rq, se);
 | |
| 	WARN_ON_ONCE(cfs_rq->curr);
 | |
| 	cfs_rq->curr = se;
 | |
| 
 | |
| 	/*
 | |
| 	 * Track our maximum slice length, if the CPU's load is at
 | |
| 	 * least twice that of our own weight (i.e. don't track it
 | |
| 	 * when there are only lesser-weight tasks around):
 | |
| 	 */
 | |
| 	if (schedstat_enabled() &&
 | |
| 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
 | |
| 		struct sched_statistics *stats;
 | |
| 
 | |
| 		stats = __schedstats_from_se(se);
 | |
| 		__schedstat_set(stats->slice_max,
 | |
| 				max((u64)stats->slice_max,
 | |
| 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
 | |
| 	}
 | |
| 
 | |
| 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
 | |
| }
 | |
| 
 | |
| static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
 | |
| 
 | |
| /*
 | |
|  * Pick the next process, keeping these things in mind, in this order:
 | |
|  * 1) keep things fair between processes/task groups
 | |
|  * 2) pick the "next" process, since someone really wants that to run
 | |
|  * 3) pick the "last" process, for cache locality
 | |
|  * 4) do not run the "skip" process, if something else is available
 | |
|  */
 | |
| static struct sched_entity *
 | |
| pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *se;
 | |
| 
 | |
| 	/*
 | |
| 	 * Picking the ->next buddy will affect latency but not fairness.
 | |
| 	 */
 | |
| 	if (sched_feat(PICK_BUDDY) &&
 | |
| 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
 | |
| 		/* ->next will never be delayed */
 | |
| 		WARN_ON_ONCE(cfs_rq->next->sched_delayed);
 | |
| 		return cfs_rq->next;
 | |
| 	}
 | |
| 
 | |
| 	se = pick_eevdf(cfs_rq);
 | |
| 	if (se->sched_delayed) {
 | |
| 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
 | |
| 		/*
 | |
| 		 * Must not reference @se again, see __block_task().
 | |
| 		 */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return se;
 | |
| }
 | |
| 
 | |
| static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
 | |
| {
 | |
| 	/*
 | |
| 	 * If still on the runqueue then deactivate_task()
 | |
| 	 * was not called and update_curr() has to be done:
 | |
| 	 */
 | |
| 	if (prev->on_rq)
 | |
| 		update_curr(cfs_rq);
 | |
| 
 | |
| 	/* throttle cfs_rqs exceeding runtime */
 | |
| 	check_cfs_rq_runtime(cfs_rq);
 | |
| 
 | |
| 	if (prev->on_rq) {
 | |
| 		update_stats_wait_start_fair(cfs_rq, prev);
 | |
| 		/* Put 'current' back into the tree. */
 | |
| 		__enqueue_entity(cfs_rq, prev);
 | |
| 		/* in !on_rq case, update occurred at dequeue */
 | |
| 		update_load_avg(cfs_rq, prev, 0);
 | |
| 	}
 | |
| 	WARN_ON_ONCE(cfs_rq->curr != prev);
 | |
| 	cfs_rq->curr = NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that runnable average is periodically updated.
 | |
| 	 */
 | |
| 	update_load_avg(cfs_rq, curr, UPDATE_TG);
 | |
| 	update_cfs_group(curr);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| 	/*
 | |
| 	 * queued ticks are scheduled to match the slice, so don't bother
 | |
| 	 * validating it and just reschedule.
 | |
| 	 */
 | |
| 	if (queued) {
 | |
| 		resched_curr_lazy(rq_of(cfs_rq));
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /**************************************************
 | |
|  * CFS bandwidth control machinery
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 
 | |
| #ifdef CONFIG_JUMP_LABEL
 | |
| static struct static_key __cfs_bandwidth_used;
 | |
| 
 | |
| static inline bool cfs_bandwidth_used(void)
 | |
| {
 | |
| 	return static_key_false(&__cfs_bandwidth_used);
 | |
| }
 | |
| 
 | |
| void cfs_bandwidth_usage_inc(void)
 | |
| {
 | |
| 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
 | |
| }
 | |
| 
 | |
| void cfs_bandwidth_usage_dec(void)
 | |
| {
 | |
| 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
 | |
| }
 | |
| #else /* CONFIG_JUMP_LABEL */
 | |
| static bool cfs_bandwidth_used(void)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void cfs_bandwidth_usage_inc(void) {}
 | |
| void cfs_bandwidth_usage_dec(void) {}
 | |
| #endif /* CONFIG_JUMP_LABEL */
 | |
| 
 | |
| /*
 | |
|  * default period for cfs group bandwidth.
 | |
|  * default: 0.1s, units: nanoseconds
 | |
|  */
 | |
| static inline u64 default_cfs_period(void)
 | |
| {
 | |
| 	return 100000000ULL;
 | |
| }
 | |
| 
 | |
| static inline u64 sched_cfs_bandwidth_slice(void)
 | |
| {
 | |
| 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replenish runtime according to assigned quota. We use sched_clock_cpu
 | |
|  * directly instead of rq->clock to avoid adding additional synchronization
 | |
|  * around rq->lock.
 | |
|  *
 | |
|  * requires cfs_b->lock
 | |
|  */
 | |
| void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	s64 runtime;
 | |
| 
 | |
| 	if (unlikely(cfs_b->quota == RUNTIME_INF))
 | |
| 		return;
 | |
| 
 | |
| 	cfs_b->runtime += cfs_b->quota;
 | |
| 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
 | |
| 	if (runtime > 0) {
 | |
| 		cfs_b->burst_time += runtime;
 | |
| 		cfs_b->nr_burst++;
 | |
| 	}
 | |
| 
 | |
| 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
 | |
| 	cfs_b->runtime_snap = cfs_b->runtime;
 | |
| }
 | |
| 
 | |
| static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
 | |
| {
 | |
| 	return &tg->cfs_bandwidth;
 | |
| }
 | |
| 
 | |
| /* returns 0 on failure to allocate runtime */
 | |
| static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
 | |
| 				   struct cfs_rq *cfs_rq, u64 target_runtime)
 | |
| {
 | |
| 	u64 min_amount, amount = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&cfs_b->lock);
 | |
| 
 | |
| 	/* note: this is a positive sum as runtime_remaining <= 0 */
 | |
| 	min_amount = target_runtime - cfs_rq->runtime_remaining;
 | |
| 
 | |
| 	if (cfs_b->quota == RUNTIME_INF)
 | |
| 		amount = min_amount;
 | |
| 	else {
 | |
| 		start_cfs_bandwidth(cfs_b);
 | |
| 
 | |
| 		if (cfs_b->runtime > 0) {
 | |
| 			amount = min(cfs_b->runtime, min_amount);
 | |
| 			cfs_b->runtime -= amount;
 | |
| 			cfs_b->idle = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cfs_rq->runtime_remaining += amount;
 | |
| 
 | |
| 	return cfs_rq->runtime_remaining > 0;
 | |
| }
 | |
| 
 | |
| /* returns 0 on failure to allocate runtime */
 | |
| static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 | |
| 	int ret;
 | |
| 
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
 | |
| {
 | |
| 	/* dock delta_exec before expiring quota (as it could span periods) */
 | |
| 	cfs_rq->runtime_remaining -= delta_exec;
 | |
| 
 | |
| 	if (likely(cfs_rq->runtime_remaining > 0))
 | |
| 		return;
 | |
| 
 | |
| 	if (cfs_rq->throttled)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * if we're unable to extend our runtime we resched so that the active
 | |
| 	 * hierarchy can be throttled
 | |
| 	 */
 | |
| 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
 | |
| 		resched_curr(rq_of(cfs_rq));
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
 | |
| {
 | |
| 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
 | |
| }
 | |
| 
 | |
| static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_bandwidth_used() && cfs_rq->throttled;
 | |
| }
 | |
| 
 | |
| /* check whether cfs_rq, or any parent, is throttled */
 | |
| static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure that neither of the group entities corresponding to src_cpu or
 | |
|  * dest_cpu are members of a throttled hierarchy when performing group
 | |
|  * load-balance operations.
 | |
|  */
 | |
| static inline int throttled_lb_pair(struct task_group *tg,
 | |
| 				    int src_cpu, int dest_cpu)
 | |
| {
 | |
| 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
 | |
| 
 | |
| 	src_cfs_rq = tg->cfs_rq[src_cpu];
 | |
| 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
 | |
| 
 | |
| 	return throttled_hierarchy(src_cfs_rq) ||
 | |
| 	       throttled_hierarchy(dest_cfs_rq);
 | |
| }
 | |
| 
 | |
| static int tg_unthrottle_up(struct task_group *tg, void *data)
 | |
| {
 | |
| 	struct rq *rq = data;
 | |
| 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 | |
| 
 | |
| 	cfs_rq->throttle_count--;
 | |
| 	if (!cfs_rq->throttle_count) {
 | |
| 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
 | |
| 					     cfs_rq->throttled_clock_pelt;
 | |
| 
 | |
| 		/* Add cfs_rq with load or one or more already running entities to the list */
 | |
| 		if (!cfs_rq_is_decayed(cfs_rq))
 | |
| 			list_add_leaf_cfs_rq(cfs_rq);
 | |
| 
 | |
| 		if (cfs_rq->throttled_clock_self) {
 | |
| 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
 | |
| 
 | |
| 			cfs_rq->throttled_clock_self = 0;
 | |
| 
 | |
| 			if (WARN_ON_ONCE((s64)delta < 0))
 | |
| 				delta = 0;
 | |
| 
 | |
| 			cfs_rq->throttled_clock_self_time += delta;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tg_throttle_down(struct task_group *tg, void *data)
 | |
| {
 | |
| 	struct rq *rq = data;
 | |
| 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 | |
| 
 | |
| 	/* group is entering throttled state, stop time */
 | |
| 	if (!cfs_rq->throttle_count) {
 | |
| 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
 | |
| 		list_del_leaf_cfs_rq(cfs_rq);
 | |
| 
 | |
| 		WARN_ON_ONCE(cfs_rq->throttled_clock_self);
 | |
| 		if (cfs_rq->nr_queued)
 | |
| 			cfs_rq->throttled_clock_self = rq_clock(rq);
 | |
| 	}
 | |
| 	cfs_rq->throttle_count++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 | |
| 	struct sched_entity *se;
 | |
| 	long queued_delta, runnable_delta, idle_delta, dequeue = 1;
 | |
| 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
 | |
| 
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	/* This will start the period timer if necessary */
 | |
| 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
 | |
| 		/*
 | |
| 		 * We have raced with bandwidth becoming available, and if we
 | |
| 		 * actually throttled the timer might not unthrottle us for an
 | |
| 		 * entire period. We additionally needed to make sure that any
 | |
| 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
 | |
| 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
 | |
| 		 * for 1ns of runtime rather than just check cfs_b.
 | |
| 		 */
 | |
| 		dequeue = 0;
 | |
| 	} else {
 | |
| 		list_add_tail_rcu(&cfs_rq->throttled_list,
 | |
| 				  &cfs_b->throttled_cfs_rq);
 | |
| 	}
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 	if (!dequeue)
 | |
| 		return false;  /* Throttle no longer required. */
 | |
| 
 | |
| 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
 | |
| 
 | |
| 	/* freeze hierarchy runnable averages while throttled */
 | |
| 	rcu_read_lock();
 | |
| 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	queued_delta = cfs_rq->h_nr_queued;
 | |
| 	runnable_delta = cfs_rq->h_nr_runnable;
 | |
| 	idle_delta = cfs_rq->h_nr_idle;
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
 | |
| 		int flags;
 | |
| 
 | |
| 		/* throttled entity or throttle-on-deactivate */
 | |
| 		if (!se->on_rq)
 | |
| 			goto done;
 | |
| 
 | |
| 		/*
 | |
| 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
 | |
| 		 * This avoids teaching dequeue_entities() about throttled
 | |
| 		 * entities and keeps things relatively simple.
 | |
| 		 */
 | |
| 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
 | |
| 		if (se->sched_delayed)
 | |
| 			flags |= DEQUEUE_DELAYED;
 | |
| 		dequeue_entity(qcfs_rq, se, flags);
 | |
| 
 | |
| 		if (cfs_rq_is_idle(group_cfs_rq(se)))
 | |
| 			idle_delta = cfs_rq->h_nr_queued;
 | |
| 
 | |
| 		qcfs_rq->h_nr_queued -= queued_delta;
 | |
| 		qcfs_rq->h_nr_runnable -= runnable_delta;
 | |
| 		qcfs_rq->h_nr_idle -= idle_delta;
 | |
| 
 | |
| 		if (qcfs_rq->load.weight) {
 | |
| 			/* Avoid re-evaluating load for this entity: */
 | |
| 			se = parent_entity(se);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
 | |
| 		/* throttled entity or throttle-on-deactivate */
 | |
| 		if (!se->on_rq)
 | |
| 			goto done;
 | |
| 
 | |
| 		update_load_avg(qcfs_rq, se, 0);
 | |
| 		se_update_runnable(se);
 | |
| 
 | |
| 		if (cfs_rq_is_idle(group_cfs_rq(se)))
 | |
| 			idle_delta = cfs_rq->h_nr_queued;
 | |
| 
 | |
| 		qcfs_rq->h_nr_queued -= queued_delta;
 | |
| 		qcfs_rq->h_nr_runnable -= runnable_delta;
 | |
| 		qcfs_rq->h_nr_idle -= idle_delta;
 | |
| 	}
 | |
| 
 | |
| 	/* At this point se is NULL and we are at root level*/
 | |
| 	sub_nr_running(rq, queued_delta);
 | |
| 
 | |
| 	/* Stop the fair server if throttling resulted in no runnable tasks */
 | |
| 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
 | |
| 		dl_server_stop(&rq->fair_server);
 | |
| done:
 | |
| 	/*
 | |
| 	 * Note: distribution will already see us throttled via the
 | |
| 	 * throttled-list.  rq->lock protects completion.
 | |
| 	 */
 | |
| 	cfs_rq->throttled = 1;
 | |
| 	WARN_ON_ONCE(cfs_rq->throttled_clock);
 | |
| 	if (cfs_rq->nr_queued)
 | |
| 		cfs_rq->throttled_clock = rq_clock(rq);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 | |
| 	struct sched_entity *se;
 | |
| 	long queued_delta, runnable_delta, idle_delta;
 | |
| 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
 | |
| 
 | |
| 	se = cfs_rq->tg->se[cpu_of(rq)];
 | |
| 
 | |
| 	cfs_rq->throttled = 0;
 | |
| 
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	if (cfs_rq->throttled_clock) {
 | |
| 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
 | |
| 		cfs_rq->throttled_clock = 0;
 | |
| 	}
 | |
| 	list_del_rcu(&cfs_rq->throttled_list);
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 	/* update hierarchical throttle state */
 | |
| 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
 | |
| 
 | |
| 	if (!cfs_rq->load.weight) {
 | |
| 		if (!cfs_rq->on_list)
 | |
| 			return;
 | |
| 		/*
 | |
| 		 * Nothing to run but something to decay (on_list)?
 | |
| 		 * Complete the branch.
 | |
| 		 */
 | |
| 		for_each_sched_entity(se) {
 | |
| 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
 | |
| 				break;
 | |
| 		}
 | |
| 		goto unthrottle_throttle;
 | |
| 	}
 | |
| 
 | |
| 	queued_delta = cfs_rq->h_nr_queued;
 | |
| 	runnable_delta = cfs_rq->h_nr_runnable;
 | |
| 	idle_delta = cfs_rq->h_nr_idle;
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		/* Handle any unfinished DELAY_DEQUEUE business first. */
 | |
| 		if (se->sched_delayed) {
 | |
| 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
 | |
| 
 | |
| 			dequeue_entity(qcfs_rq, se, flags);
 | |
| 		} else if (se->on_rq)
 | |
| 			break;
 | |
| 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
 | |
| 
 | |
| 		if (cfs_rq_is_idle(group_cfs_rq(se)))
 | |
| 			idle_delta = cfs_rq->h_nr_queued;
 | |
| 
 | |
| 		qcfs_rq->h_nr_queued += queued_delta;
 | |
| 		qcfs_rq->h_nr_runnable += runnable_delta;
 | |
| 		qcfs_rq->h_nr_idle += idle_delta;
 | |
| 
 | |
| 		/* end evaluation on encountering a throttled cfs_rq */
 | |
| 		if (cfs_rq_throttled(qcfs_rq))
 | |
| 			goto unthrottle_throttle;
 | |
| 	}
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		update_load_avg(qcfs_rq, se, UPDATE_TG);
 | |
| 		se_update_runnable(se);
 | |
| 
 | |
| 		if (cfs_rq_is_idle(group_cfs_rq(se)))
 | |
| 			idle_delta = cfs_rq->h_nr_queued;
 | |
| 
 | |
| 		qcfs_rq->h_nr_queued += queued_delta;
 | |
| 		qcfs_rq->h_nr_runnable += runnable_delta;
 | |
| 		qcfs_rq->h_nr_idle += idle_delta;
 | |
| 
 | |
| 		/* end evaluation on encountering a throttled cfs_rq */
 | |
| 		if (cfs_rq_throttled(qcfs_rq))
 | |
| 			goto unthrottle_throttle;
 | |
| 	}
 | |
| 
 | |
| 	/* Start the fair server if un-throttling resulted in new runnable tasks */
 | |
| 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
 | |
| 		dl_server_start(&rq->fair_server);
 | |
| 
 | |
| 	/* At this point se is NULL and we are at root level*/
 | |
| 	add_nr_running(rq, queued_delta);
 | |
| 
 | |
| unthrottle_throttle:
 | |
| 	assert_list_leaf_cfs_rq(rq);
 | |
| 
 | |
| 	/* Determine whether we need to wake up potentially idle CPU: */
 | |
| 	if (rq->curr == rq->idle && rq->cfs.nr_queued)
 | |
| 		resched_curr(rq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static void __cfsb_csd_unthrottle(void *arg)
 | |
| {
 | |
| 	struct cfs_rq *cursor, *tmp;
 | |
| 	struct rq *rq = arg;
 | |
| 	struct rq_flags rf;
 | |
| 
 | |
| 	rq_lock(rq, &rf);
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterating over the list can trigger several call to
 | |
| 	 * update_rq_clock() in unthrottle_cfs_rq().
 | |
| 	 * Do it once and skip the potential next ones.
 | |
| 	 */
 | |
| 	update_rq_clock(rq);
 | |
| 	rq_clock_start_loop_update(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we hold rq lock we're safe from concurrent manipulation of
 | |
| 	 * the CSD list. However, this RCU critical section annotates the
 | |
| 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
 | |
| 	 * race with group being freed in the window between removing it
 | |
| 	 * from the list and advancing to the next entry in the list.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
 | |
| 				 throttled_csd_list) {
 | |
| 		list_del_init(&cursor->throttled_csd_list);
 | |
| 
 | |
| 		if (cfs_rq_throttled(cursor))
 | |
| 			unthrottle_cfs_rq(cursor);
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	rq_clock_stop_loop_update(rq);
 | |
| 	rq_unlock(rq, &rf);
 | |
| }
 | |
| 
 | |
| static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 	bool first;
 | |
| 
 | |
| 	if (rq == this_rq()) {
 | |
| 		unthrottle_cfs_rq(cfs_rq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Already enqueued */
 | |
| 	if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
 | |
| 		return;
 | |
| 
 | |
| 	first = list_empty(&rq->cfsb_csd_list);
 | |
| 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
 | |
| 	if (first)
 | |
| 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
 | |
| }
 | |
| #else
 | |
| static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	unthrottle_cfs_rq(cfs_rq);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq_of(cfs_rq));
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
 | |
| 	    cfs_rq->runtime_remaining <= 0))
 | |
| 		return;
 | |
| 
 | |
| 	__unthrottle_cfs_rq_async(cfs_rq);
 | |
| }
 | |
| 
 | |
| static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	u64 runtime, remaining = 1;
 | |
| 	bool throttled = false;
 | |
| 	struct cfs_rq *cfs_rq, *tmp;
 | |
| 	struct rq_flags rf;
 | |
| 	struct rq *rq;
 | |
| 	LIST_HEAD(local_unthrottle);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
 | |
| 				throttled_list) {
 | |
| 		rq = rq_of(cfs_rq);
 | |
| 
 | |
| 		if (!remaining) {
 | |
| 			throttled = true;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		rq_lock_irqsave(rq, &rf);
 | |
| 		if (!cfs_rq_throttled(cfs_rq))
 | |
| 			goto next;
 | |
| 
 | |
| 		/* Already queued for async unthrottle */
 | |
| 		if (!list_empty(&cfs_rq->throttled_csd_list))
 | |
| 			goto next;
 | |
| 
 | |
| 		/* By the above checks, this should never be true */
 | |
| 		WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
 | |
| 
 | |
| 		raw_spin_lock(&cfs_b->lock);
 | |
| 		runtime = -cfs_rq->runtime_remaining + 1;
 | |
| 		if (runtime > cfs_b->runtime)
 | |
| 			runtime = cfs_b->runtime;
 | |
| 		cfs_b->runtime -= runtime;
 | |
| 		remaining = cfs_b->runtime;
 | |
| 		raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 		cfs_rq->runtime_remaining += runtime;
 | |
| 
 | |
| 		/* we check whether we're throttled above */
 | |
| 		if (cfs_rq->runtime_remaining > 0) {
 | |
| 			if (cpu_of(rq) != this_cpu) {
 | |
| 				unthrottle_cfs_rq_async(cfs_rq);
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * We currently only expect to be unthrottling
 | |
| 				 * a single cfs_rq locally.
 | |
| 				 */
 | |
| 				WARN_ON_ONCE(!list_empty(&local_unthrottle));
 | |
| 				list_add_tail(&cfs_rq->throttled_csd_list,
 | |
| 					      &local_unthrottle);
 | |
| 			}
 | |
| 		} else {
 | |
| 			throttled = true;
 | |
| 		}
 | |
| 
 | |
| next:
 | |
| 		rq_unlock_irqrestore(rq, &rf);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
 | |
| 				 throttled_csd_list) {
 | |
| 		struct rq *rq = rq_of(cfs_rq);
 | |
| 
 | |
| 		rq_lock_irqsave(rq, &rf);
 | |
| 
 | |
| 		list_del_init(&cfs_rq->throttled_csd_list);
 | |
| 
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			unthrottle_cfs_rq(cfs_rq);
 | |
| 
 | |
| 		rq_unlock_irqrestore(rq, &rf);
 | |
| 	}
 | |
| 	WARN_ON_ONCE(!list_empty(&local_unthrottle));
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return throttled;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Responsible for refilling a task_group's bandwidth and unthrottling its
 | |
|  * cfs_rqs as appropriate. If there has been no activity within the last
 | |
|  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 | |
|  * used to track this state.
 | |
|  */
 | |
| static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
 | |
| {
 | |
| 	int throttled;
 | |
| 
 | |
| 	/* no need to continue the timer with no bandwidth constraint */
 | |
| 	if (cfs_b->quota == RUNTIME_INF)
 | |
| 		goto out_deactivate;
 | |
| 
 | |
| 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
 | |
| 	cfs_b->nr_periods += overrun;
 | |
| 
 | |
| 	/* Refill extra burst quota even if cfs_b->idle */
 | |
| 	__refill_cfs_bandwidth_runtime(cfs_b);
 | |
| 
 | |
| 	/*
 | |
| 	 * idle depends on !throttled (for the case of a large deficit), and if
 | |
| 	 * we're going inactive then everything else can be deferred
 | |
| 	 */
 | |
| 	if (cfs_b->idle && !throttled)
 | |
| 		goto out_deactivate;
 | |
| 
 | |
| 	if (!throttled) {
 | |
| 		/* mark as potentially idle for the upcoming period */
 | |
| 		cfs_b->idle = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* account preceding periods in which throttling occurred */
 | |
| 	cfs_b->nr_throttled += overrun;
 | |
| 
 | |
| 	/*
 | |
| 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
 | |
| 	 */
 | |
| 	while (throttled && cfs_b->runtime > 0) {
 | |
| 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 | |
| 		/* we can't nest cfs_b->lock while distributing bandwidth */
 | |
| 		throttled = distribute_cfs_runtime(cfs_b);
 | |
| 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * While we are ensured activity in the period following an
 | |
| 	 * unthrottle, this also covers the case in which the new bandwidth is
 | |
| 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
 | |
| 	 * timer to remain active while there are any throttled entities.)
 | |
| 	 */
 | |
| 	cfs_b->idle = 0;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_deactivate:
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* a cfs_rq won't donate quota below this amount */
 | |
| static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
 | |
| /* minimum remaining period time to redistribute slack quota */
 | |
| static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
 | |
| /* how long we wait to gather additional slack before distributing */
 | |
| static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
 | |
| 
 | |
| /*
 | |
|  * Are we near the end of the current quota period?
 | |
|  *
 | |
|  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 | |
|  * hrtimer base being cleared by hrtimer_start. In the case of
 | |
|  * migrate_hrtimers, base is never cleared, so we are fine.
 | |
|  */
 | |
| static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
 | |
| {
 | |
| 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
 | |
| 	s64 remaining;
 | |
| 
 | |
| 	/* if the call-back is running a quota refresh is already occurring */
 | |
| 	if (hrtimer_callback_running(refresh_timer))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* is a quota refresh about to occur? */
 | |
| 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
 | |
| 	if (remaining < (s64)min_expire)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
 | |
| 
 | |
| 	/* if there's a quota refresh soon don't bother with slack */
 | |
| 	if (runtime_refresh_within(cfs_b, min_left))
 | |
| 		return;
 | |
| 
 | |
| 	/* don't push forwards an existing deferred unthrottle */
 | |
| 	if (cfs_b->slack_started)
 | |
| 		return;
 | |
| 	cfs_b->slack_started = true;
 | |
| 
 | |
| 	hrtimer_start(&cfs_b->slack_timer,
 | |
| 			ns_to_ktime(cfs_bandwidth_slack_period),
 | |
| 			HRTIMER_MODE_REL);
 | |
| }
 | |
| 
 | |
| /* we know any runtime found here is valid as update_curr() precedes return */
 | |
| static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 | |
| 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
 | |
| 
 | |
| 	if (slack_runtime <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	if (cfs_b->quota != RUNTIME_INF) {
 | |
| 		cfs_b->runtime += slack_runtime;
 | |
| 
 | |
| 		/* we are under rq->lock, defer unthrottling using a timer */
 | |
| 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
 | |
| 		    !list_empty(&cfs_b->throttled_cfs_rq))
 | |
| 			start_cfs_slack_bandwidth(cfs_b);
 | |
| 	}
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 	/* even if it's not valid for return we don't want to try again */
 | |
| 	cfs_rq->runtime_remaining -= slack_runtime;
 | |
| }
 | |
| 
 | |
| static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (!cfs_bandwidth_used())
 | |
| 		return;
 | |
| 
 | |
| 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
 | |
| 		return;
 | |
| 
 | |
| 	__return_cfs_rq_runtime(cfs_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is done with a timer (instead of inline with bandwidth return) since
 | |
|  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 | |
|  */
 | |
| static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* confirm we're still not at a refresh boundary */
 | |
| 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
 | |
| 	cfs_b->slack_started = false;
 | |
| 
 | |
| 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
 | |
| 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
 | |
| 		runtime = cfs_b->runtime;
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 | |
| 
 | |
| 	if (!runtime)
 | |
| 		return;
 | |
| 
 | |
| 	distribute_cfs_runtime(cfs_b);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a group wakes up we want to make sure that its quota is not already
 | |
|  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 | |
|  * runtime as update_curr() throttling can not trigger until it's on-rq.
 | |
|  */
 | |
| static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (!cfs_bandwidth_used())
 | |
| 		return;
 | |
| 
 | |
| 	/* an active group must be handled by the update_curr()->put() path */
 | |
| 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
 | |
| 		return;
 | |
| 
 | |
| 	/* ensure the group is not already throttled */
 | |
| 	if (cfs_rq_throttled(cfs_rq))
 | |
| 		return;
 | |
| 
 | |
| 	/* update runtime allocation */
 | |
| 	account_cfs_rq_runtime(cfs_rq, 0);
 | |
| 	if (cfs_rq->runtime_remaining <= 0)
 | |
| 		throttle_cfs_rq(cfs_rq);
 | |
| }
 | |
| 
 | |
| static void sync_throttle(struct task_group *tg, int cpu)
 | |
| {
 | |
| 	struct cfs_rq *pcfs_rq, *cfs_rq;
 | |
| 
 | |
| 	if (!cfs_bandwidth_used())
 | |
| 		return;
 | |
| 
 | |
| 	if (!tg->parent)
 | |
| 		return;
 | |
| 
 | |
| 	cfs_rq = tg->cfs_rq[cpu];
 | |
| 	pcfs_rq = tg->parent->cfs_rq[cpu];
 | |
| 
 | |
| 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
 | |
| 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
 | |
| }
 | |
| 
 | |
| /* conditionally throttle active cfs_rq's from put_prev_entity() */
 | |
| static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (!cfs_bandwidth_used())
 | |
| 		return false;
 | |
| 
 | |
| 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * it's possible for a throttled entity to be forced into a running
 | |
| 	 * state (e.g. set_curr_task), in this case we're finished.
 | |
| 	 */
 | |
| 	if (cfs_rq_throttled(cfs_rq))
 | |
| 		return true;
 | |
| 
 | |
| 	return throttle_cfs_rq(cfs_rq);
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct cfs_bandwidth *cfs_b =
 | |
| 		container_of(timer, struct cfs_bandwidth, slack_timer);
 | |
| 
 | |
| 	do_sched_cfs_slack_timer(cfs_b);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| extern const u64 max_cfs_quota_period;
 | |
| 
 | |
| static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct cfs_bandwidth *cfs_b =
 | |
| 		container_of(timer, struct cfs_bandwidth, period_timer);
 | |
| 	unsigned long flags;
 | |
| 	int overrun;
 | |
| 	int idle = 0;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
 | |
| 	for (;;) {
 | |
| 		overrun = hrtimer_forward_now(timer, cfs_b->period);
 | |
| 		if (!overrun)
 | |
| 			break;
 | |
| 
 | |
| 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
 | |
| 
 | |
| 		if (++count > 3) {
 | |
| 			u64 new, old = ktime_to_ns(cfs_b->period);
 | |
| 
 | |
| 			/*
 | |
| 			 * Grow period by a factor of 2 to avoid losing precision.
 | |
| 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
 | |
| 			 * to fail.
 | |
| 			 */
 | |
| 			new = old * 2;
 | |
| 			if (new < max_cfs_quota_period) {
 | |
| 				cfs_b->period = ns_to_ktime(new);
 | |
| 				cfs_b->quota *= 2;
 | |
| 				cfs_b->burst *= 2;
 | |
| 
 | |
| 				pr_warn_ratelimited(
 | |
| 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
 | |
| 					smp_processor_id(),
 | |
| 					div_u64(new, NSEC_PER_USEC),
 | |
| 					div_u64(cfs_b->quota, NSEC_PER_USEC));
 | |
| 			} else {
 | |
| 				pr_warn_ratelimited(
 | |
| 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
 | |
| 					smp_processor_id(),
 | |
| 					div_u64(old, NSEC_PER_USEC),
 | |
| 					div_u64(cfs_b->quota, NSEC_PER_USEC));
 | |
| 			}
 | |
| 
 | |
| 			/* reset count so we don't come right back in here */
 | |
| 			count = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	if (idle)
 | |
| 		cfs_b->period_active = 0;
 | |
| 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 | |
| 
 | |
| 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 | |
| }
 | |
| 
 | |
| void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
 | |
| {
 | |
| 	raw_spin_lock_init(&cfs_b->lock);
 | |
| 	cfs_b->runtime = 0;
 | |
| 	cfs_b->quota = RUNTIME_INF;
 | |
| 	cfs_b->period = ns_to_ktime(default_cfs_period());
 | |
| 	cfs_b->burst = 0;
 | |
| 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
 | |
| 	hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
 | |
| 		      HRTIMER_MODE_ABS_PINNED);
 | |
| 
 | |
| 	/* Add a random offset so that timers interleave */
 | |
| 	hrtimer_set_expires(&cfs_b->period_timer,
 | |
| 			    get_random_u32_below(cfs_b->period));
 | |
| 	hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
 | |
| 		      HRTIMER_MODE_REL);
 | |
| 	cfs_b->slack_started = false;
 | |
| }
 | |
| 
 | |
| static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	cfs_rq->runtime_enabled = 0;
 | |
| 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
 | |
| 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
 | |
| }
 | |
| 
 | |
| void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	lockdep_assert_held(&cfs_b->lock);
 | |
| 
 | |
| 	if (cfs_b->period_active)
 | |
| 		return;
 | |
| 
 | |
| 	cfs_b->period_active = 1;
 | |
| 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
 | |
| 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
 | |
| }
 | |
| 
 | |
| static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	int __maybe_unused i;
 | |
| 
 | |
| 	/* init_cfs_bandwidth() was not called */
 | |
| 	if (!cfs_b->throttled_cfs_rq.next)
 | |
| 		return;
 | |
| 
 | |
| 	hrtimer_cancel(&cfs_b->period_timer);
 | |
| 	hrtimer_cancel(&cfs_b->slack_timer);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible that we still have some cfs_rq's pending on a CSD
 | |
| 	 * list, though this race is very rare. In order for this to occur, we
 | |
| 	 * must have raced with the last task leaving the group while there
 | |
| 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
 | |
| 	 * CSD item but the remote cpu has not yet processed it. To handle this,
 | |
| 	 * we can simply flush all pending CSD work inline here. We're
 | |
| 	 * guaranteed at this point that no additional cfs_rq of this group can
 | |
| 	 * join a CSD list.
 | |
| 	 */
 | |
| #ifdef CONFIG_SMP
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		if (list_empty(&rq->cfsb_csd_list))
 | |
| 			continue;
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		__cfsb_csd_unthrottle(rq);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
 | |
|  *
 | |
|  * The race is harmless, since modifying bandwidth settings of unhooked group
 | |
|  * bits doesn't do much.
 | |
|  */
 | |
| 
 | |
| /* cpu online callback */
 | |
| static void __maybe_unused update_runtime_enabled(struct rq *rq)
 | |
| {
 | |
| 	struct task_group *tg;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(tg, &task_groups, list) {
 | |
| 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 | |
| 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 | |
| 
 | |
| 		raw_spin_lock(&cfs_b->lock);
 | |
| 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
 | |
| 		raw_spin_unlock(&cfs_b->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* cpu offline callback */
 | |
| static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
 | |
| {
 | |
| 	struct task_group *tg;
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	// Do not unthrottle for an active CPU
 | |
| 	if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The rq clock has already been updated in the
 | |
| 	 * set_rq_offline(), so we should skip updating
 | |
| 	 * the rq clock again in unthrottle_cfs_rq().
 | |
| 	 */
 | |
| 	rq_clock_start_loop_update(rq);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(tg, &task_groups, list) {
 | |
| 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 | |
| 
 | |
| 		if (!cfs_rq->runtime_enabled)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Offline rq is schedulable till CPU is completely disabled
 | |
| 		 * in take_cpu_down(), so we prevent new cfs throttling here.
 | |
| 		 */
 | |
| 		cfs_rq->runtime_enabled = 0;
 | |
| 
 | |
| 		if (!cfs_rq_throttled(cfs_rq))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * clock_task is not advancing so we just need to make sure
 | |
| 		 * there's some valid quota amount
 | |
| 		 */
 | |
| 		cfs_rq->runtime_remaining = 1;
 | |
| 		unthrottle_cfs_rq(cfs_rq);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	rq_clock_stop_loop_update(rq);
 | |
| }
 | |
| 
 | |
| bool cfs_task_bw_constrained(struct task_struct *p)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 | |
| 
 | |
| 	if (!cfs_bandwidth_used())
 | |
| 		return false;
 | |
| 
 | |
| 	if (cfs_rq->runtime_enabled ||
 | |
| 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| /* called from pick_next_task_fair() */
 | |
| static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	if (!cfs_bandwidth_used())
 | |
| 		return;
 | |
| 
 | |
| 	if (!tick_nohz_full_cpu(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	if (rq->nr_running != 1)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 *  We know there is only one task runnable and we've just picked it. The
 | |
| 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
 | |
| 	 *  be otherwise able to stop the tick. Just need to check if we are using
 | |
| 	 *  bandwidth control.
 | |
| 	 */
 | |
| 	if (cfs_task_bw_constrained(p))
 | |
| 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #else /* CONFIG_CFS_BANDWIDTH */
 | |
| 
 | |
| static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
 | |
| static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
 | |
| static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
 | |
| static inline void sync_throttle(struct task_group *tg, int cpu) {}
 | |
| static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
 | |
| 
 | |
| static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int throttled_lb_pair(struct task_group *tg,
 | |
| 				    int src_cpu, int dest_cpu)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
 | |
| static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
 | |
| #endif
 | |
| 
 | |
| static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
 | |
| static inline void update_runtime_enabled(struct rq *rq) {}
 | |
| static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| bool cfs_task_bw_constrained(struct task_struct *p)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| #endif /* CONFIG_CFS_BANDWIDTH */
 | |
| 
 | |
| #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
 | |
| static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
 | |
| #endif
 | |
| 
 | |
| /**************************************************
 | |
|  * CFS operations on tasks:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	WARN_ON_ONCE(task_rq(p) != rq);
 | |
| 
 | |
| 	if (rq->cfs.h_nr_queued > 1) {
 | |
| 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
 | |
| 		u64 slice = se->slice;
 | |
| 		s64 delta = slice - ran;
 | |
| 
 | |
| 		if (delta < 0) {
 | |
| 			if (task_current_donor(rq, p))
 | |
| 				resched_curr(rq);
 | |
| 			return;
 | |
| 		}
 | |
| 		hrtick_start(rq, delta);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called from enqueue/dequeue and updates the hrtick when the
 | |
|  * current task is from our class and nr_running is low enough
 | |
|  * to matter.
 | |
|  */
 | |
| static void hrtick_update(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *donor = rq->donor;
 | |
| 
 | |
| 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
 | |
| 		return;
 | |
| 
 | |
| 	hrtick_start_fair(rq, donor);
 | |
| }
 | |
| #else /* !CONFIG_SCHED_HRTICK */
 | |
| static inline void
 | |
| hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void hrtick_update(struct rq *rq)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline bool cpu_overutilized(int cpu)
 | |
| {
 | |
| 	unsigned long  rq_util_min, rq_util_max;
 | |
| 
 | |
| 	if (!sched_energy_enabled())
 | |
| 		return false;
 | |
| 
 | |
| 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
 | |
| 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
 | |
| 
 | |
| 	/* Return true only if the utilization doesn't fit CPU's capacity */
 | |
| 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * overutilized value make sense only if EAS is enabled
 | |
|  */
 | |
| static inline bool is_rd_overutilized(struct root_domain *rd)
 | |
| {
 | |
| 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
 | |
| }
 | |
| 
 | |
| static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
 | |
| {
 | |
| 	if (!sched_energy_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	WRITE_ONCE(rd->overutilized, flag);
 | |
| 	trace_sched_overutilized_tp(rd, flag);
 | |
| }
 | |
| 
 | |
| static inline void check_update_overutilized_status(struct rq *rq)
 | |
| {
 | |
| 	/*
 | |
| 	 * overutilized field is used for load balancing decisions only
 | |
| 	 * if energy aware scheduler is being used
 | |
| 	 */
 | |
| 
 | |
| 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
 | |
| 		set_rd_overutilized(rq->rd, 1);
 | |
| }
 | |
| #else
 | |
| static inline void check_update_overutilized_status(struct rq *rq) { }
 | |
| #endif
 | |
| 
 | |
| /* Runqueue only has SCHED_IDLE tasks enqueued */
 | |
| static int sched_idle_rq(struct rq *rq)
 | |
| {
 | |
| 	return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
 | |
| 			rq->nr_running);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static int sched_idle_cpu(int cpu)
 | |
| {
 | |
| 	return sched_idle_rq(cpu_rq(cpu));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| requeue_delayed_entity(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * se->sched_delayed should imply: se->on_rq == 1.
 | |
| 	 * Because a delayed entity is one that is still on
 | |
| 	 * the runqueue competing until elegibility.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!se->sched_delayed);
 | |
| 	WARN_ON_ONCE(!se->on_rq);
 | |
| 
 | |
| 	if (sched_feat(DELAY_ZERO)) {
 | |
| 		update_entity_lag(cfs_rq, se);
 | |
| 		if (se->vlag > 0) {
 | |
| 			cfs_rq->nr_queued--;
 | |
| 			if (se != cfs_rq->curr)
 | |
| 				__dequeue_entity(cfs_rq, se);
 | |
| 			se->vlag = 0;
 | |
| 			place_entity(cfs_rq, se, 0);
 | |
| 			if (se != cfs_rq->curr)
 | |
| 				__enqueue_entity(cfs_rq, se);
 | |
| 			cfs_rq->nr_queued++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	update_load_avg(cfs_rq, se, 0);
 | |
| 	clear_delayed(se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The enqueue_task method is called before nr_running is
 | |
|  * increased. Here we update the fair scheduling stats and
 | |
|  * then put the task into the rbtree:
 | |
|  */
 | |
| static void
 | |
| enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	int h_nr_idle = task_has_idle_policy(p);
 | |
| 	int h_nr_runnable = 1;
 | |
| 	int task_new = !(flags & ENQUEUE_WAKEUP);
 | |
| 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
 | |
| 	u64 slice = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The code below (indirectly) updates schedutil which looks at
 | |
| 	 * the cfs_rq utilization to select a frequency.
 | |
| 	 * Let's add the task's estimated utilization to the cfs_rq's
 | |
| 	 * estimated utilization, before we update schedutil.
 | |
| 	 */
 | |
| 	if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
 | |
| 		util_est_enqueue(&rq->cfs, p);
 | |
| 
 | |
| 	if (flags & ENQUEUE_DELAYED) {
 | |
| 		requeue_delayed_entity(se);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If in_iowait is set, the code below may not trigger any cpufreq
 | |
| 	 * utilization updates, so do it here explicitly with the IOWAIT flag
 | |
| 	 * passed.
 | |
| 	 */
 | |
| 	if (p->in_iowait)
 | |
| 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
 | |
| 
 | |
| 	if (task_new && se->sched_delayed)
 | |
| 		h_nr_runnable = 0;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		if (se->on_rq) {
 | |
| 			if (se->sched_delayed)
 | |
| 				requeue_delayed_entity(se);
 | |
| 			break;
 | |
| 		}
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		/*
 | |
| 		 * Basically set the slice of group entries to the min_slice of
 | |
| 		 * their respective cfs_rq. This ensures the group can service
 | |
| 		 * its entities in the desired time-frame.
 | |
| 		 */
 | |
| 		if (slice) {
 | |
| 			se->slice = slice;
 | |
| 			se->custom_slice = 1;
 | |
| 		}
 | |
| 		enqueue_entity(cfs_rq, se, flags);
 | |
| 		slice = cfs_rq_min_slice(cfs_rq);
 | |
| 
 | |
| 		cfs_rq->h_nr_runnable += h_nr_runnable;
 | |
| 		cfs_rq->h_nr_queued++;
 | |
| 		cfs_rq->h_nr_idle += h_nr_idle;
 | |
| 
 | |
| 		if (cfs_rq_is_idle(cfs_rq))
 | |
| 			h_nr_idle = 1;
 | |
| 
 | |
| 		/* end evaluation on encountering a throttled cfs_rq */
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			goto enqueue_throttle;
 | |
| 
 | |
| 		flags = ENQUEUE_WAKEUP;
 | |
| 	}
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		update_load_avg(cfs_rq, se, UPDATE_TG);
 | |
| 		se_update_runnable(se);
 | |
| 		update_cfs_group(se);
 | |
| 
 | |
| 		se->slice = slice;
 | |
| 		if (se != cfs_rq->curr)
 | |
| 			min_vruntime_cb_propagate(&se->run_node, NULL);
 | |
| 		slice = cfs_rq_min_slice(cfs_rq);
 | |
| 
 | |
| 		cfs_rq->h_nr_runnable += h_nr_runnable;
 | |
| 		cfs_rq->h_nr_queued++;
 | |
| 		cfs_rq->h_nr_idle += h_nr_idle;
 | |
| 
 | |
| 		if (cfs_rq_is_idle(cfs_rq))
 | |
| 			h_nr_idle = 1;
 | |
| 
 | |
| 		/* end evaluation on encountering a throttled cfs_rq */
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			goto enqueue_throttle;
 | |
| 	}
 | |
| 
 | |
| 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
 | |
| 		/* Account for idle runtime */
 | |
| 		if (!rq->nr_running)
 | |
| 			dl_server_update_idle_time(rq, rq->curr);
 | |
| 		dl_server_start(&rq->fair_server);
 | |
| 	}
 | |
| 
 | |
| 	/* At this point se is NULL and we are at root level*/
 | |
| 	add_nr_running(rq, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since new tasks are assigned an initial util_avg equal to
 | |
| 	 * half of the spare capacity of their CPU, tiny tasks have the
 | |
| 	 * ability to cross the overutilized threshold, which will
 | |
| 	 * result in the load balancer ruining all the task placement
 | |
| 	 * done by EAS. As a way to mitigate that effect, do not account
 | |
| 	 * for the first enqueue operation of new tasks during the
 | |
| 	 * overutilized flag detection.
 | |
| 	 *
 | |
| 	 * A better way of solving this problem would be to wait for
 | |
| 	 * the PELT signals of tasks to converge before taking them
 | |
| 	 * into account, but that is not straightforward to implement,
 | |
| 	 * and the following generally works well enough in practice.
 | |
| 	 */
 | |
| 	if (!task_new)
 | |
| 		check_update_overutilized_status(rq);
 | |
| 
 | |
| enqueue_throttle:
 | |
| 	assert_list_leaf_cfs_rq(rq);
 | |
| 
 | |
| 	hrtick_update(rq);
 | |
| }
 | |
| 
 | |
| static void set_next_buddy(struct sched_entity *se);
 | |
| 
 | |
| /*
 | |
|  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
 | |
|  * failing half-way through and resume the dequeue later.
 | |
|  *
 | |
|  * Returns:
 | |
|  * -1 - dequeue delayed
 | |
|  *  0 - dequeue throttled
 | |
|  *  1 - dequeue complete
 | |
|  */
 | |
| static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	bool was_sched_idle = sched_idle_rq(rq);
 | |
| 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
 | |
| 	bool task_sleep = flags & DEQUEUE_SLEEP;
 | |
| 	bool task_delayed = flags & DEQUEUE_DELAYED;
 | |
| 	struct task_struct *p = NULL;
 | |
| 	int h_nr_idle = 0;
 | |
| 	int h_nr_queued = 0;
 | |
| 	int h_nr_runnable = 0;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	u64 slice = 0;
 | |
| 
 | |
| 	if (entity_is_task(se)) {
 | |
| 		p = task_of(se);
 | |
| 		h_nr_queued = 1;
 | |
| 		h_nr_idle = task_has_idle_policy(p);
 | |
| 		if (task_sleep || task_delayed || !se->sched_delayed)
 | |
| 			h_nr_runnable = 1;
 | |
| 	}
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		if (!dequeue_entity(cfs_rq, se, flags)) {
 | |
| 			if (p && &p->se == se)
 | |
| 				return -1;
 | |
| 
 | |
| 			slice = cfs_rq_min_slice(cfs_rq);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cfs_rq->h_nr_runnable -= h_nr_runnable;
 | |
| 		cfs_rq->h_nr_queued -= h_nr_queued;
 | |
| 		cfs_rq->h_nr_idle -= h_nr_idle;
 | |
| 
 | |
| 		if (cfs_rq_is_idle(cfs_rq))
 | |
| 			h_nr_idle = h_nr_queued;
 | |
| 
 | |
| 		/* end evaluation on encountering a throttled cfs_rq */
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			return 0;
 | |
| 
 | |
| 		/* Don't dequeue parent if it has other entities besides us */
 | |
| 		if (cfs_rq->load.weight) {
 | |
| 			slice = cfs_rq_min_slice(cfs_rq);
 | |
| 
 | |
| 			/* Avoid re-evaluating load for this entity: */
 | |
| 			se = parent_entity(se);
 | |
| 			/*
 | |
| 			 * Bias pick_next to pick a task from this cfs_rq, as
 | |
| 			 * p is sleeping when it is within its sched_slice.
 | |
| 			 */
 | |
| 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
 | |
| 				set_next_buddy(se);
 | |
| 			break;
 | |
| 		}
 | |
| 		flags |= DEQUEUE_SLEEP;
 | |
| 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
 | |
| 	}
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		update_load_avg(cfs_rq, se, UPDATE_TG);
 | |
| 		se_update_runnable(se);
 | |
| 		update_cfs_group(se);
 | |
| 
 | |
| 		se->slice = slice;
 | |
| 		if (se != cfs_rq->curr)
 | |
| 			min_vruntime_cb_propagate(&se->run_node, NULL);
 | |
| 		slice = cfs_rq_min_slice(cfs_rq);
 | |
| 
 | |
| 		cfs_rq->h_nr_runnable -= h_nr_runnable;
 | |
| 		cfs_rq->h_nr_queued -= h_nr_queued;
 | |
| 		cfs_rq->h_nr_idle -= h_nr_idle;
 | |
| 
 | |
| 		if (cfs_rq_is_idle(cfs_rq))
 | |
| 			h_nr_idle = h_nr_queued;
 | |
| 
 | |
| 		/* end evaluation on encountering a throttled cfs_rq */
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	sub_nr_running(rq, h_nr_queued);
 | |
| 
 | |
| 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
 | |
| 		dl_server_stop(&rq->fair_server);
 | |
| 
 | |
| 	/* balance early to pull high priority tasks */
 | |
| 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
 | |
| 		rq->next_balance = jiffies;
 | |
| 
 | |
| 	if (p && task_delayed) {
 | |
| 		WARN_ON_ONCE(!task_sleep);
 | |
| 		WARN_ON_ONCE(p->on_rq != 1);
 | |
| 
 | |
| 		/* Fix-up what dequeue_task_fair() skipped */
 | |
| 		hrtick_update(rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * Fix-up what block_task() skipped.
 | |
| 		 *
 | |
| 		 * Must be last, @p might not be valid after this.
 | |
| 		 */
 | |
| 		__block_task(rq, p);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The dequeue_task method is called before nr_running is
 | |
|  * decreased. We remove the task from the rbtree and
 | |
|  * update the fair scheduling stats:
 | |
|  */
 | |
| static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	if (!p->se.sched_delayed)
 | |
| 		util_est_dequeue(&rq->cfs, p);
 | |
| 
 | |
| 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
 | |
| 	if (dequeue_entities(rq, &p->se, flags) < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
 | |
| 	 */
 | |
| 
 | |
| 	hrtick_update(rq);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
 | |
| {
 | |
| 	return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
 | |
| static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
 | |
| static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
 | |
| static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| 
 | |
| static struct {
 | |
| 	cpumask_var_t idle_cpus_mask;
 | |
| 	atomic_t nr_cpus;
 | |
| 	int has_blocked;		/* Idle CPUS has blocked load */
 | |
| 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
 | |
| 	unsigned long next_balance;     /* in jiffy units */
 | |
| 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
 | |
| } nohz ____cacheline_aligned;
 | |
| 
 | |
| #endif /* CONFIG_NO_HZ_COMMON */
 | |
| 
 | |
| static unsigned long cpu_load(struct rq *rq)
 | |
| {
 | |
| 	return cfs_rq_load_avg(&rq->cfs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpu_load_without - compute CPU load without any contributions from *p
 | |
|  * @cpu: the CPU which load is requested
 | |
|  * @p: the task which load should be discounted
 | |
|  *
 | |
|  * The load of a CPU is defined by the load of tasks currently enqueued on that
 | |
|  * CPU as well as tasks which are currently sleeping after an execution on that
 | |
|  * CPU.
 | |
|  *
 | |
|  * This method returns the load of the specified CPU by discounting the load of
 | |
|  * the specified task, whenever the task is currently contributing to the CPU
 | |
|  * load.
 | |
|  */
 | |
| static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	unsigned int load;
 | |
| 
 | |
| 	/* Task has no contribution or is new */
 | |
| 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 | |
| 		return cpu_load(rq);
 | |
| 
 | |
| 	cfs_rq = &rq->cfs;
 | |
| 	load = READ_ONCE(cfs_rq->avg.load_avg);
 | |
| 
 | |
| 	/* Discount task's util from CPU's util */
 | |
| 	lsub_positive(&load, task_h_load(p));
 | |
| 
 | |
| 	return load;
 | |
| }
 | |
| 
 | |
| static unsigned long cpu_runnable(struct rq *rq)
 | |
| {
 | |
| 	return cfs_rq_runnable_avg(&rq->cfs);
 | |
| }
 | |
| 
 | |
| static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	unsigned int runnable;
 | |
| 
 | |
| 	/* Task has no contribution or is new */
 | |
| 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 | |
| 		return cpu_runnable(rq);
 | |
| 
 | |
| 	cfs_rq = &rq->cfs;
 | |
| 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
 | |
| 
 | |
| 	/* Discount task's runnable from CPU's runnable */
 | |
| 	lsub_positive(&runnable, p->se.avg.runnable_avg);
 | |
| 
 | |
| 	return runnable;
 | |
| }
 | |
| 
 | |
| static unsigned long capacity_of(int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->cpu_capacity;
 | |
| }
 | |
| 
 | |
| static void record_wakee(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Only decay a single time; tasks that have less then 1 wakeup per
 | |
| 	 * jiffy will not have built up many flips.
 | |
| 	 */
 | |
| 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
 | |
| 		current->wakee_flips >>= 1;
 | |
| 		current->wakee_flip_decay_ts = jiffies;
 | |
| 	}
 | |
| 
 | |
| 	if (current->last_wakee != p) {
 | |
| 		current->last_wakee = p;
 | |
| 		current->wakee_flips++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 | |
|  *
 | |
|  * A waker of many should wake a different task than the one last awakened
 | |
|  * at a frequency roughly N times higher than one of its wakees.
 | |
|  *
 | |
|  * In order to determine whether we should let the load spread vs consolidating
 | |
|  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 | |
|  * partner, and a factor of lls_size higher frequency in the other.
 | |
|  *
 | |
|  * With both conditions met, we can be relatively sure that the relationship is
 | |
|  * non-monogamous, with partner count exceeding socket size.
 | |
|  *
 | |
|  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 | |
|  * whatever is irrelevant, spread criteria is apparent partner count exceeds
 | |
|  * socket size.
 | |
|  */
 | |
| static int wake_wide(struct task_struct *p)
 | |
| {
 | |
| 	unsigned int master = current->wakee_flips;
 | |
| 	unsigned int slave = p->wakee_flips;
 | |
| 	int factor = __this_cpu_read(sd_llc_size);
 | |
| 
 | |
| 	if (master < slave)
 | |
| 		swap(master, slave);
 | |
| 	if (slave < factor || master < slave * factor)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The purpose of wake_affine() is to quickly determine on which CPU we can run
 | |
|  * soonest. For the purpose of speed we only consider the waking and previous
 | |
|  * CPU.
 | |
|  *
 | |
|  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 | |
|  *			cache-affine and is (or	will be) idle.
 | |
|  *
 | |
|  * wake_affine_weight() - considers the weight to reflect the average
 | |
|  *			  scheduling latency of the CPUs. This seems to work
 | |
|  *			  for the overloaded case.
 | |
|  */
 | |
| static int
 | |
| wake_affine_idle(int this_cpu, int prev_cpu, int sync)
 | |
| {
 | |
| 	/*
 | |
| 	 * If this_cpu is idle, it implies the wakeup is from interrupt
 | |
| 	 * context. Only allow the move if cache is shared. Otherwise an
 | |
| 	 * interrupt intensive workload could force all tasks onto one
 | |
| 	 * node depending on the IO topology or IRQ affinity settings.
 | |
| 	 *
 | |
| 	 * If the prev_cpu is idle and cache affine then avoid a migration.
 | |
| 	 * There is no guarantee that the cache hot data from an interrupt
 | |
| 	 * is more important than cache hot data on the prev_cpu and from
 | |
| 	 * a cpufreq perspective, it's better to have higher utilisation
 | |
| 	 * on one CPU.
 | |
| 	 */
 | |
| 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
 | |
| 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
 | |
| 
 | |
| 	if (sync) {
 | |
| 		struct rq *rq = cpu_rq(this_cpu);
 | |
| 
 | |
| 		if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
 | |
| 			return this_cpu;
 | |
| 	}
 | |
| 
 | |
| 	if (available_idle_cpu(prev_cpu))
 | |
| 		return prev_cpu;
 | |
| 
 | |
| 	return nr_cpumask_bits;
 | |
| }
 | |
| 
 | |
| static int
 | |
| wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
 | |
| 		   int this_cpu, int prev_cpu, int sync)
 | |
| {
 | |
| 	s64 this_eff_load, prev_eff_load;
 | |
| 	unsigned long task_load;
 | |
| 
 | |
| 	this_eff_load = cpu_load(cpu_rq(this_cpu));
 | |
| 
 | |
| 	if (sync) {
 | |
| 		unsigned long current_load = task_h_load(current);
 | |
| 
 | |
| 		if (current_load > this_eff_load)
 | |
| 			return this_cpu;
 | |
| 
 | |
| 		this_eff_load -= current_load;
 | |
| 	}
 | |
| 
 | |
| 	task_load = task_h_load(p);
 | |
| 
 | |
| 	this_eff_load += task_load;
 | |
| 	if (sched_feat(WA_BIAS))
 | |
| 		this_eff_load *= 100;
 | |
| 	this_eff_load *= capacity_of(prev_cpu);
 | |
| 
 | |
| 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
 | |
| 	prev_eff_load -= task_load;
 | |
| 	if (sched_feat(WA_BIAS))
 | |
| 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
 | |
| 	prev_eff_load *= capacity_of(this_cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If sync, adjust the weight of prev_eff_load such that if
 | |
| 	 * prev_eff == this_eff that select_idle_sibling() will consider
 | |
| 	 * stacking the wakee on top of the waker if no other CPU is
 | |
| 	 * idle.
 | |
| 	 */
 | |
| 	if (sync)
 | |
| 		prev_eff_load += 1;
 | |
| 
 | |
| 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
 | |
| }
 | |
| 
 | |
| static int wake_affine(struct sched_domain *sd, struct task_struct *p,
 | |
| 		       int this_cpu, int prev_cpu, int sync)
 | |
| {
 | |
| 	int target = nr_cpumask_bits;
 | |
| 
 | |
| 	if (sched_feat(WA_IDLE))
 | |
| 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
 | |
| 
 | |
| 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
 | |
| 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
 | |
| 
 | |
| 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
 | |
| 	if (target != this_cpu)
 | |
| 		return prev_cpu;
 | |
| 
 | |
| 	schedstat_inc(sd->ttwu_move_affine);
 | |
| 	schedstat_inc(p->stats.nr_wakeups_affine);
 | |
| 	return target;
 | |
| }
 | |
| 
 | |
| static struct sched_group *
 | |
| sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
 | |
| 
 | |
| /*
 | |
|  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
 | |
|  */
 | |
| static int
 | |
| sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
 | |
| {
 | |
| 	unsigned long load, min_load = ULONG_MAX;
 | |
| 	unsigned int min_exit_latency = UINT_MAX;
 | |
| 	u64 latest_idle_timestamp = 0;
 | |
| 	int least_loaded_cpu = this_cpu;
 | |
| 	int shallowest_idle_cpu = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Check if we have any choice: */
 | |
| 	if (group->group_weight == 1)
 | |
| 		return cpumask_first(sched_group_span(group));
 | |
| 
 | |
| 	/* Traverse only the allowed CPUs */
 | |
| 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 
 | |
| 		if (!sched_core_cookie_match(rq, p))
 | |
| 			continue;
 | |
| 
 | |
| 		if (sched_idle_cpu(i))
 | |
| 			return i;
 | |
| 
 | |
| 		if (available_idle_cpu(i)) {
 | |
| 			struct cpuidle_state *idle = idle_get_state(rq);
 | |
| 			if (idle && idle->exit_latency < min_exit_latency) {
 | |
| 				/*
 | |
| 				 * We give priority to a CPU whose idle state
 | |
| 				 * has the smallest exit latency irrespective
 | |
| 				 * of any idle timestamp.
 | |
| 				 */
 | |
| 				min_exit_latency = idle->exit_latency;
 | |
| 				latest_idle_timestamp = rq->idle_stamp;
 | |
| 				shallowest_idle_cpu = i;
 | |
| 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
 | |
| 				   rq->idle_stamp > latest_idle_timestamp) {
 | |
| 				/*
 | |
| 				 * If equal or no active idle state, then
 | |
| 				 * the most recently idled CPU might have
 | |
| 				 * a warmer cache.
 | |
| 				 */
 | |
| 				latest_idle_timestamp = rq->idle_stamp;
 | |
| 				shallowest_idle_cpu = i;
 | |
| 			}
 | |
| 		} else if (shallowest_idle_cpu == -1) {
 | |
| 			load = cpu_load(cpu_rq(i));
 | |
| 			if (load < min_load) {
 | |
| 				min_load = load;
 | |
| 				least_loaded_cpu = i;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
 | |
| }
 | |
| 
 | |
| static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
 | |
| 				  int cpu, int prev_cpu, int sd_flag)
 | |
| {
 | |
| 	int new_cpu = cpu;
 | |
| 
 | |
| 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
 | |
| 		return prev_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need task's util for cpu_util_without, sync it up to
 | |
| 	 * prev_cpu's last_update_time.
 | |
| 	 */
 | |
| 	if (!(sd_flag & SD_BALANCE_FORK))
 | |
| 		sync_entity_load_avg(&p->se);
 | |
| 
 | |
| 	while (sd) {
 | |
| 		struct sched_group *group;
 | |
| 		struct sched_domain *tmp;
 | |
| 		int weight;
 | |
| 
 | |
| 		if (!(sd->flags & sd_flag)) {
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		group = sched_balance_find_dst_group(sd, p, cpu);
 | |
| 		if (!group) {
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
 | |
| 		if (new_cpu == cpu) {
 | |
| 			/* Now try balancing at a lower domain level of 'cpu': */
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Now try balancing at a lower domain level of 'new_cpu': */
 | |
| 		cpu = new_cpu;
 | |
| 		weight = sd->span_weight;
 | |
| 		sd = NULL;
 | |
| 		for_each_domain(cpu, tmp) {
 | |
| 			if (weight <= tmp->span_weight)
 | |
| 				break;
 | |
| 			if (tmp->flags & sd_flag)
 | |
| 				sd = tmp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return new_cpu;
 | |
| }
 | |
| 
 | |
| static inline int __select_idle_cpu(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
 | |
| 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
 | |
| 		return cpu;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| DEFINE_STATIC_KEY_FALSE(sched_smt_present);
 | |
| EXPORT_SYMBOL_GPL(sched_smt_present);
 | |
| 
 | |
| static inline void set_idle_cores(int cpu, int val)
 | |
| {
 | |
| 	struct sched_domain_shared *sds;
 | |
| 
 | |
| 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
 | |
| 	if (sds)
 | |
| 		WRITE_ONCE(sds->has_idle_cores, val);
 | |
| }
 | |
| 
 | |
| static inline bool test_idle_cores(int cpu)
 | |
| {
 | |
| 	struct sched_domain_shared *sds;
 | |
| 
 | |
| 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
 | |
| 	if (sds)
 | |
| 		return READ_ONCE(sds->has_idle_cores);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scans the local SMT mask to see if the entire core is idle, and records this
 | |
|  * information in sd_llc_shared->has_idle_cores.
 | |
|  *
 | |
|  * Since SMT siblings share all cache levels, inspecting this limited remote
 | |
|  * state should be fairly cheap.
 | |
|  */
 | |
| void __update_idle_core(struct rq *rq)
 | |
| {
 | |
| 	int core = cpu_of(rq);
 | |
| 	int cpu;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (test_idle_cores(core))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	for_each_cpu(cpu, cpu_smt_mask(core)) {
 | |
| 		if (cpu == core)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!available_idle_cpu(cpu))
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	set_idle_cores(core, 1);
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the entire LLC domain for idle cores; this dynamically switches off if
 | |
|  * there are no idle cores left in the system; tracked through
 | |
|  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 | |
|  */
 | |
| static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
 | |
| {
 | |
| 	bool idle = true;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, cpu_smt_mask(core)) {
 | |
| 		if (!available_idle_cpu(cpu)) {
 | |
| 			idle = false;
 | |
| 			if (*idle_cpu == -1) {
 | |
| 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
 | |
| 					*idle_cpu = cpu;
 | |
| 					break;
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
 | |
| 			*idle_cpu = cpu;
 | |
| 	}
 | |
| 
 | |
| 	if (idle)
 | |
| 		return core;
 | |
| 
 | |
| 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the local SMT mask for idle CPUs.
 | |
|  */
 | |
| static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
 | |
| 		if (cpu == target)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Check if the CPU is in the LLC scheduling domain of @target.
 | |
| 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
 | |
| 		 */
 | |
| 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
 | |
| 			continue;
 | |
| 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
 | |
| 			return cpu;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SCHED_SMT */
 | |
| 
 | |
| static inline void set_idle_cores(int cpu, int val)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool test_idle_cores(int cpu)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
 | |
| {
 | |
| 	return __select_idle_cpu(core, p);
 | |
| }
 | |
| 
 | |
| static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SCHED_SMT */
 | |
| 
 | |
| /*
 | |
|  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 | |
|  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 | |
|  * average idle time for this rq (as found in rq->avg_idle).
 | |
|  */
 | |
| static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
 | |
| {
 | |
| 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
 | |
| 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
 | |
| 	struct sched_domain_shared *sd_share;
 | |
| 
 | |
| 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
 | |
| 
 | |
| 	if (sched_feat(SIS_UTIL)) {
 | |
| 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
 | |
| 		if (sd_share) {
 | |
| 			/* because !--nr is the condition to stop scan */
 | |
| 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
 | |
| 			/* overloaded LLC is unlikely to have idle cpu/core */
 | |
| 			if (nr == 1)
 | |
| 				return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (static_branch_unlikely(&sched_cluster_active)) {
 | |
| 		struct sched_group *sg = sd->groups;
 | |
| 
 | |
| 		if (sg->flags & SD_CLUSTER) {
 | |
| 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
 | |
| 				if (!cpumask_test_cpu(cpu, cpus))
 | |
| 					continue;
 | |
| 
 | |
| 				if (has_idle_core) {
 | |
| 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
 | |
| 					if ((unsigned int)i < nr_cpumask_bits)
 | |
| 						return i;
 | |
| 				} else {
 | |
| 					if (--nr <= 0)
 | |
| 						return -1;
 | |
| 					idle_cpu = __select_idle_cpu(cpu, p);
 | |
| 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
 | |
| 						return idle_cpu;
 | |
| 				}
 | |
| 			}
 | |
| 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu_wrap(cpu, cpus, target + 1) {
 | |
| 		if (has_idle_core) {
 | |
| 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
 | |
| 			if ((unsigned int)i < nr_cpumask_bits)
 | |
| 				return i;
 | |
| 
 | |
| 		} else {
 | |
| 			if (--nr <= 0)
 | |
| 				return -1;
 | |
| 			idle_cpu = __select_idle_cpu(cpu, p);
 | |
| 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (has_idle_core)
 | |
| 		set_idle_cores(target, false);
 | |
| 
 | |
| 	return idle_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
 | |
|  * the task fits. If no CPU is big enough, but there are idle ones, try to
 | |
|  * maximize capacity.
 | |
|  */
 | |
| static int
 | |
| select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
 | |
| {
 | |
| 	unsigned long task_util, util_min, util_max, best_cap = 0;
 | |
| 	int fits, best_fits = 0;
 | |
| 	int cpu, best_cpu = -1;
 | |
| 	struct cpumask *cpus;
 | |
| 
 | |
| 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
 | |
| 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
 | |
| 
 | |
| 	task_util = task_util_est(p);
 | |
| 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
 | |
| 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
 | |
| 
 | |
| 	for_each_cpu_wrap(cpu, cpus, target) {
 | |
| 		unsigned long cpu_cap = capacity_of(cpu);
 | |
| 
 | |
| 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
 | |
| 
 | |
| 		/* This CPU fits with all requirements */
 | |
| 		if (fits > 0)
 | |
| 			return cpu;
 | |
| 		/*
 | |
| 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
 | |
| 		 * Look for the CPU with best capacity.
 | |
| 		 */
 | |
| 		else if (fits < 0)
 | |
| 			cpu_cap = get_actual_cpu_capacity(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * First, select CPU which fits better (-1 being better than 0).
 | |
| 		 * Then, select the one with best capacity at same level.
 | |
| 		 */
 | |
| 		if ((fits < best_fits) ||
 | |
| 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
 | |
| 			best_cap = cpu_cap;
 | |
| 			best_cpu = cpu;
 | |
| 			best_fits = fits;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return best_cpu;
 | |
| }
 | |
| 
 | |
| static inline bool asym_fits_cpu(unsigned long util,
 | |
| 				 unsigned long util_min,
 | |
| 				 unsigned long util_max,
 | |
| 				 int cpu)
 | |
| {
 | |
| 	if (sched_asym_cpucap_active())
 | |
| 		/*
 | |
| 		 * Return true only if the cpu fully fits the task requirements
 | |
| 		 * which include the utilization and the performance hints.
 | |
| 		 */
 | |
| 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try and locate an idle core/thread in the LLC cache domain.
 | |
|  */
 | |
| static int select_idle_sibling(struct task_struct *p, int prev, int target)
 | |
| {
 | |
| 	bool has_idle_core = false;
 | |
| 	struct sched_domain *sd;
 | |
| 	unsigned long task_util, util_min, util_max;
 | |
| 	int i, recent_used_cpu, prev_aff = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * On asymmetric system, update task utilization because we will check
 | |
| 	 * that the task fits with CPU's capacity.
 | |
| 	 */
 | |
| 	if (sched_asym_cpucap_active()) {
 | |
| 		sync_entity_load_avg(&p->se);
 | |
| 		task_util = task_util_est(p);
 | |
| 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
 | |
| 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * per-cpu select_rq_mask usage
 | |
| 	 */
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
 | |
| 	    asym_fits_cpu(task_util, util_min, util_max, target))
 | |
| 		return target;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the previous CPU is cache affine and idle, don't be stupid:
 | |
| 	 */
 | |
| 	if (prev != target && cpus_share_cache(prev, target) &&
 | |
| 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
 | |
| 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
 | |
| 
 | |
| 		if (!static_branch_unlikely(&sched_cluster_active) ||
 | |
| 		    cpus_share_resources(prev, target))
 | |
| 			return prev;
 | |
| 
 | |
| 		prev_aff = prev;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow a per-cpu kthread to stack with the wakee if the
 | |
| 	 * kworker thread and the tasks previous CPUs are the same.
 | |
| 	 * The assumption is that the wakee queued work for the
 | |
| 	 * per-cpu kthread that is now complete and the wakeup is
 | |
| 	 * essentially a sync wakeup. An obvious example of this
 | |
| 	 * pattern is IO completions.
 | |
| 	 */
 | |
| 	if (is_per_cpu_kthread(current) &&
 | |
| 	    in_task() &&
 | |
| 	    prev == smp_processor_id() &&
 | |
| 	    this_rq()->nr_running <= 1 &&
 | |
| 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
 | |
| 		return prev;
 | |
| 	}
 | |
| 
 | |
| 	/* Check a recently used CPU as a potential idle candidate: */
 | |
| 	recent_used_cpu = p->recent_used_cpu;
 | |
| 	p->recent_used_cpu = prev;
 | |
| 	if (recent_used_cpu != prev &&
 | |
| 	    recent_used_cpu != target &&
 | |
| 	    cpus_share_cache(recent_used_cpu, target) &&
 | |
| 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
 | |
| 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
 | |
| 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
 | |
| 
 | |
| 		if (!static_branch_unlikely(&sched_cluster_active) ||
 | |
| 		    cpus_share_resources(recent_used_cpu, target))
 | |
| 			return recent_used_cpu;
 | |
| 
 | |
| 	} else {
 | |
| 		recent_used_cpu = -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For asymmetric CPU capacity systems, our domain of interest is
 | |
| 	 * sd_asym_cpucapacity rather than sd_llc.
 | |
| 	 */
 | |
| 	if (sched_asym_cpucap_active()) {
 | |
| 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
 | |
| 		/*
 | |
| 		 * On an asymmetric CPU capacity system where an exclusive
 | |
| 		 * cpuset defines a symmetric island (i.e. one unique
 | |
| 		 * capacity_orig value through the cpuset), the key will be set
 | |
| 		 * but the CPUs within that cpuset will not have a domain with
 | |
| 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
 | |
| 		 * capacity path.
 | |
| 		 */
 | |
| 		if (sd) {
 | |
| 			i = select_idle_capacity(p, sd, target);
 | |
| 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sd = rcu_dereference(per_cpu(sd_llc, target));
 | |
| 	if (!sd)
 | |
| 		return target;
 | |
| 
 | |
| 	if (sched_smt_active()) {
 | |
| 		has_idle_core = test_idle_cores(target);
 | |
| 
 | |
| 		if (!has_idle_core && cpus_share_cache(prev, target)) {
 | |
| 			i = select_idle_smt(p, sd, prev);
 | |
| 			if ((unsigned int)i < nr_cpumask_bits)
 | |
| 				return i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	i = select_idle_cpu(p, sd, has_idle_core, target);
 | |
| 	if ((unsigned)i < nr_cpumask_bits)
 | |
| 		return i;
 | |
| 
 | |
| 	/*
 | |
| 	 * For cluster machines which have lower sharing cache like L2 or
 | |
| 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
 | |
| 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
 | |
| 	 * use them if possible when no idle CPU found in select_idle_cpu().
 | |
| 	 */
 | |
| 	if ((unsigned int)prev_aff < nr_cpumask_bits)
 | |
| 		return prev_aff;
 | |
| 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
 | |
| 		return recent_used_cpu;
 | |
| 
 | |
| 	return target;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
 | |
|  * @cpu: the CPU to get the utilization for
 | |
|  * @p: task for which the CPU utilization should be predicted or NULL
 | |
|  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
 | |
|  * @boost: 1 to enable boosting, otherwise 0
 | |
|  *
 | |
|  * The unit of the return value must be the same as the one of CPU capacity
 | |
|  * so that CPU utilization can be compared with CPU capacity.
 | |
|  *
 | |
|  * CPU utilization is the sum of running time of runnable tasks plus the
 | |
|  * recent utilization of currently non-runnable tasks on that CPU.
 | |
|  * It represents the amount of CPU capacity currently used by CFS tasks in
 | |
|  * the range [0..max CPU capacity] with max CPU capacity being the CPU
 | |
|  * capacity at f_max.
 | |
|  *
 | |
|  * The estimated CPU utilization is defined as the maximum between CPU
 | |
|  * utilization and sum of the estimated utilization of the currently
 | |
|  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
 | |
|  * previously-executed tasks, which helps better deduce how busy a CPU will
 | |
|  * be when a long-sleeping task wakes up. The contribution to CPU utilization
 | |
|  * of such a task would be significantly decayed at this point of time.
 | |
|  *
 | |
|  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
 | |
|  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
 | |
|  * utilization. Boosting is implemented in cpu_util() so that internal
 | |
|  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
 | |
|  * latter via cpu_util_cfs_boost().
 | |
|  *
 | |
|  * CPU utilization can be higher than the current CPU capacity
 | |
|  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
 | |
|  * of rounding errors as well as task migrations or wakeups of new tasks.
 | |
|  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
 | |
|  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
 | |
|  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
 | |
|  * capacity. CPU utilization is allowed to overshoot current CPU capacity
 | |
|  * though since this is useful for predicting the CPU capacity required
 | |
|  * after task migrations (scheduler-driven DVFS).
 | |
|  *
 | |
|  * Return: (Boosted) (estimated) utilization for the specified CPU.
 | |
|  */
 | |
| static unsigned long
 | |
| cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
 | |
| 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
 | |
| 	unsigned long runnable;
 | |
| 
 | |
| 	if (boost) {
 | |
| 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
 | |
| 		util = max(util, runnable);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
 | |
| 	 * contribution. If @p migrates from another CPU to @cpu add its
 | |
| 	 * contribution. In all the other cases @cpu is not impacted by the
 | |
| 	 * migration so its util_avg is already correct.
 | |
| 	 */
 | |
| 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
 | |
| 		lsub_positive(&util, task_util(p));
 | |
| 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
 | |
| 		util += task_util(p);
 | |
| 
 | |
| 	if (sched_feat(UTIL_EST)) {
 | |
| 		unsigned long util_est;
 | |
| 
 | |
| 		util_est = READ_ONCE(cfs_rq->avg.util_est);
 | |
| 
 | |
| 		/*
 | |
| 		 * During wake-up @p isn't enqueued yet and doesn't contribute
 | |
| 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
 | |
| 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
 | |
| 		 * has been enqueued.
 | |
| 		 *
 | |
| 		 * During exec (@dst_cpu = -1) @p is enqueued and does
 | |
| 		 * contribute to cpu_rq(cpu)->cfs.util_est.
 | |
| 		 * Remove it to "simulate" cpu_util without @p's contribution.
 | |
| 		 *
 | |
| 		 * Despite the task_on_rq_queued(@p) check there is still a
 | |
| 		 * small window for a possible race when an exec
 | |
| 		 * select_task_rq_fair() races with LB's detach_task().
 | |
| 		 *
 | |
| 		 *   detach_task()
 | |
| 		 *     deactivate_task()
 | |
| 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
 | |
| 		 *       -------------------------------- A
 | |
| 		 *       dequeue_task()                    \
 | |
| 		 *         dequeue_task_fair()              + Race Time
 | |
| 		 *           util_est_dequeue()            /
 | |
| 		 *       -------------------------------- B
 | |
| 		 *
 | |
| 		 * The additional check "current == p" is required to further
 | |
| 		 * reduce the race window.
 | |
| 		 */
 | |
| 		if (dst_cpu == cpu)
 | |
| 			util_est += _task_util_est(p);
 | |
| 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
 | |
| 			lsub_positive(&util_est, _task_util_est(p));
 | |
| 
 | |
| 		util = max(util, util_est);
 | |
| 	}
 | |
| 
 | |
| 	return min(util, arch_scale_cpu_capacity(cpu));
 | |
| }
 | |
| 
 | |
| unsigned long cpu_util_cfs(int cpu)
 | |
| {
 | |
| 	return cpu_util(cpu, NULL, -1, 0);
 | |
| }
 | |
| 
 | |
| unsigned long cpu_util_cfs_boost(int cpu)
 | |
| {
 | |
| 	return cpu_util(cpu, NULL, -1, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpu_util_without: compute cpu utilization without any contributions from *p
 | |
|  * @cpu: the CPU which utilization is requested
 | |
|  * @p: the task which utilization should be discounted
 | |
|  *
 | |
|  * The utilization of a CPU is defined by the utilization of tasks currently
 | |
|  * enqueued on that CPU as well as tasks which are currently sleeping after an
 | |
|  * execution on that CPU.
 | |
|  *
 | |
|  * This method returns the utilization of the specified CPU by discounting the
 | |
|  * utilization of the specified task, whenever the task is currently
 | |
|  * contributing to the CPU utilization.
 | |
|  */
 | |
| static unsigned long cpu_util_without(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	/* Task has no contribution or is new */
 | |
| 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 | |
| 		p = NULL;
 | |
| 
 | |
| 	return cpu_util(cpu, p, -1, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function computes an effective utilization for the given CPU, to be
 | |
|  * used for frequency selection given the linear relation: f = u * f_max.
 | |
|  *
 | |
|  * The scheduler tracks the following metrics:
 | |
|  *
 | |
|  *   cpu_util_{cfs,rt,dl,irq}()
 | |
|  *   cpu_bw_dl()
 | |
|  *
 | |
|  * Where the cfs,rt and dl util numbers are tracked with the same metric and
 | |
|  * synchronized windows and are thus directly comparable.
 | |
|  *
 | |
|  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
 | |
|  * which excludes things like IRQ and steal-time. These latter are then accrued
 | |
|  * in the IRQ utilization.
 | |
|  *
 | |
|  * The DL bandwidth number OTOH is not a measured metric but a value computed
 | |
|  * based on the task model parameters and gives the minimal utilization
 | |
|  * required to meet deadlines.
 | |
|  */
 | |
| unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
 | |
| 				 unsigned long *min,
 | |
| 				 unsigned long *max)
 | |
| {
 | |
| 	unsigned long util, irq, scale;
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	scale = arch_scale_cpu_capacity(cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Early check to see if IRQ/steal time saturates the CPU, can be
 | |
| 	 * because of inaccuracies in how we track these -- see
 | |
| 	 * update_irq_load_avg().
 | |
| 	 */
 | |
| 	irq = cpu_util_irq(rq);
 | |
| 	if (unlikely(irq >= scale)) {
 | |
| 		if (min)
 | |
| 			*min = scale;
 | |
| 		if (max)
 | |
| 			*max = scale;
 | |
| 		return scale;
 | |
| 	}
 | |
| 
 | |
| 	if (min) {
 | |
| 		/*
 | |
| 		 * The minimum utilization returns the highest level between:
 | |
| 		 * - the computed DL bandwidth needed with the IRQ pressure which
 | |
| 		 *   steals time to the deadline task.
 | |
| 		 * - The minimum performance requirement for CFS and/or RT.
 | |
| 		 */
 | |
| 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
 | |
| 
 | |
| 		/*
 | |
| 		 * When an RT task is runnable and uclamp is not used, we must
 | |
| 		 * ensure that the task will run at maximum compute capacity.
 | |
| 		 */
 | |
| 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
 | |
| 			*min = max(*min, scale);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
 | |
| 	 * CFS tasks and we use the same metric to track the effective
 | |
| 	 * utilization (PELT windows are synchronized) we can directly add them
 | |
| 	 * to obtain the CPU's actual utilization.
 | |
| 	 */
 | |
| 	util = util_cfs + cpu_util_rt(rq);
 | |
| 	util += cpu_util_dl(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * The maximum hint is a soft bandwidth requirement, which can be lower
 | |
| 	 * than the actual utilization because of uclamp_max requirements.
 | |
| 	 */
 | |
| 	if (max)
 | |
| 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
 | |
| 
 | |
| 	if (util >= scale)
 | |
| 		return scale;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is still idle time; further improve the number by using the
 | |
| 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
 | |
| 	 * need to scale the task numbers:
 | |
| 	 *
 | |
| 	 *              max - irq
 | |
| 	 *   U' = irq + --------- * U
 | |
| 	 *                 max
 | |
| 	 */
 | |
| 	util = scale_irq_capacity(util, irq, scale);
 | |
| 	util += irq;
 | |
| 
 | |
| 	return min(scale, util);
 | |
| }
 | |
| 
 | |
| unsigned long sched_cpu_util(int cpu)
 | |
| {
 | |
| 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * energy_env - Utilization landscape for energy estimation.
 | |
|  * @task_busy_time: Utilization contribution by the task for which we test the
 | |
|  *                  placement. Given by eenv_task_busy_time().
 | |
|  * @pd_busy_time:   Utilization of the whole perf domain without the task
 | |
|  *                  contribution. Given by eenv_pd_busy_time().
 | |
|  * @cpu_cap:        Maximum CPU capacity for the perf domain.
 | |
|  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
 | |
|  */
 | |
| struct energy_env {
 | |
| 	unsigned long task_busy_time;
 | |
| 	unsigned long pd_busy_time;
 | |
| 	unsigned long cpu_cap;
 | |
| 	unsigned long pd_cap;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Compute the task busy time for compute_energy(). This time cannot be
 | |
|  * injected directly into effective_cpu_util() because of the IRQ scaling.
 | |
|  * The latter only makes sense with the most recent CPUs where the task has
 | |
|  * run.
 | |
|  */
 | |
| static inline void eenv_task_busy_time(struct energy_env *eenv,
 | |
| 				       struct task_struct *p, int prev_cpu)
 | |
| {
 | |
| 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
 | |
| 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
 | |
| 
 | |
| 	if (unlikely(irq >= max_cap))
 | |
| 		busy_time = max_cap;
 | |
| 	else
 | |
| 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
 | |
| 
 | |
| 	eenv->task_busy_time = busy_time;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
 | |
|  * utilization for each @pd_cpus, it however doesn't take into account
 | |
|  * clamping since the ratio (utilization / cpu_capacity) is already enough to
 | |
|  * scale the EM reported power consumption at the (eventually clamped)
 | |
|  * cpu_capacity.
 | |
|  *
 | |
|  * The contribution of the task @p for which we want to estimate the
 | |
|  * energy cost is removed (by cpu_util()) and must be calculated
 | |
|  * separately (see eenv_task_busy_time). This ensures:
 | |
|  *
 | |
|  *   - A stable PD utilization, no matter which CPU of that PD we want to place
 | |
|  *     the task on.
 | |
|  *
 | |
|  *   - A fair comparison between CPUs as the task contribution (task_util())
 | |
|  *     will always be the same no matter which CPU utilization we rely on
 | |
|  *     (util_avg or util_est).
 | |
|  *
 | |
|  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
 | |
|  * exceed @eenv->pd_cap.
 | |
|  */
 | |
| static inline void eenv_pd_busy_time(struct energy_env *eenv,
 | |
| 				     struct cpumask *pd_cpus,
 | |
| 				     struct task_struct *p)
 | |
| {
 | |
| 	unsigned long busy_time = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, pd_cpus) {
 | |
| 		unsigned long util = cpu_util(cpu, p, -1, 0);
 | |
| 
 | |
| 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
 | |
| 	}
 | |
| 
 | |
| 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the maximum utilization for compute_energy() when the task @p
 | |
|  * is placed on the cpu @dst_cpu.
 | |
|  *
 | |
|  * Returns the maximum utilization among @eenv->cpus. This utilization can't
 | |
|  * exceed @eenv->cpu_cap.
 | |
|  */
 | |
| static inline unsigned long
 | |
| eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
 | |
| 		 struct task_struct *p, int dst_cpu)
 | |
| {
 | |
| 	unsigned long max_util = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, pd_cpus) {
 | |
| 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
 | |
| 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
 | |
| 		unsigned long eff_util, min, max;
 | |
| 
 | |
| 		/*
 | |
| 		 * Performance domain frequency: utilization clamping
 | |
| 		 * must be considered since it affects the selection
 | |
| 		 * of the performance domain frequency.
 | |
| 		 * NOTE: in case RT tasks are running, by default the min
 | |
| 		 * utilization can be max OPP.
 | |
| 		 */
 | |
| 		eff_util = effective_cpu_util(cpu, util, &min, &max);
 | |
| 
 | |
| 		/* Task's uclamp can modify min and max value */
 | |
| 		if (tsk && uclamp_is_used()) {
 | |
| 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
 | |
| 
 | |
| 			/*
 | |
| 			 * If there is no active max uclamp constraint,
 | |
| 			 * directly use task's one, otherwise keep max.
 | |
| 			 */
 | |
| 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
 | |
| 				max = uclamp_eff_value(p, UCLAMP_MAX);
 | |
| 			else
 | |
| 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
 | |
| 		}
 | |
| 
 | |
| 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
 | |
| 		max_util = max(max_util, eff_util);
 | |
| 	}
 | |
| 
 | |
| 	return min(max_util, eenv->cpu_cap);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
 | |
|  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
 | |
|  * contribution is ignored.
 | |
|  */
 | |
| static inline unsigned long
 | |
| compute_energy(struct energy_env *eenv, struct perf_domain *pd,
 | |
| 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
 | |
| {
 | |
| 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
 | |
| 	unsigned long busy_time = eenv->pd_busy_time;
 | |
| 	unsigned long energy;
 | |
| 
 | |
| 	if (dst_cpu >= 0)
 | |
| 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
 | |
| 
 | |
| 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
 | |
| 
 | |
| 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
 | |
| 
 | |
| 	return energy;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
 | |
|  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
 | |
|  * spare capacity in each performance domain and uses it as a potential
 | |
|  * candidate to execute the task. Then, it uses the Energy Model to figure
 | |
|  * out which of the CPU candidates is the most energy-efficient.
 | |
|  *
 | |
|  * The rationale for this heuristic is as follows. In a performance domain,
 | |
|  * all the most energy efficient CPU candidates (according to the Energy
 | |
|  * Model) are those for which we'll request a low frequency. When there are
 | |
|  * several CPUs for which the frequency request will be the same, we don't
 | |
|  * have enough data to break the tie between them, because the Energy Model
 | |
|  * only includes active power costs. With this model, if we assume that
 | |
|  * frequency requests follow utilization (e.g. using schedutil), the CPU with
 | |
|  * the maximum spare capacity in a performance domain is guaranteed to be among
 | |
|  * the best candidates of the performance domain.
 | |
|  *
 | |
|  * In practice, it could be preferable from an energy standpoint to pack
 | |
|  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
 | |
|  * but that could also hurt our chances to go cluster idle, and we have no
 | |
|  * ways to tell with the current Energy Model if this is actually a good
 | |
|  * idea or not. So, find_energy_efficient_cpu() basically favors
 | |
|  * cluster-packing, and spreading inside a cluster. That should at least be
 | |
|  * a good thing for latency, and this is consistent with the idea that most
 | |
|  * of the energy savings of EAS come from the asymmetry of the system, and
 | |
|  * not so much from breaking the tie between identical CPUs. That's also the
 | |
|  * reason why EAS is enabled in the topology code only for systems where
 | |
|  * SD_ASYM_CPUCAPACITY is set.
 | |
|  *
 | |
|  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
 | |
|  * they don't have any useful utilization data yet and it's not possible to
 | |
|  * forecast their impact on energy consumption. Consequently, they will be
 | |
|  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
 | |
|  * to be energy-inefficient in some use-cases. The alternative would be to
 | |
|  * bias new tasks towards specific types of CPUs first, or to try to infer
 | |
|  * their util_avg from the parent task, but those heuristics could hurt
 | |
|  * other use-cases too. So, until someone finds a better way to solve this,
 | |
|  * let's keep things simple by re-using the existing slow path.
 | |
|  */
 | |
| static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
 | |
| {
 | |
| 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
 | |
| 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
 | |
| 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
 | |
| 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
 | |
| 	struct root_domain *rd = this_rq()->rd;
 | |
| 	int cpu, best_energy_cpu, target = -1;
 | |
| 	int prev_fits = -1, best_fits = -1;
 | |
| 	unsigned long best_actual_cap = 0;
 | |
| 	unsigned long prev_actual_cap = 0;
 | |
| 	struct sched_domain *sd;
 | |
| 	struct perf_domain *pd;
 | |
| 	struct energy_env eenv;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	pd = rcu_dereference(rd->pd);
 | |
| 	if (!pd)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Energy-aware wake-up happens on the lowest sched_domain starting
 | |
| 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
 | |
| 	 */
 | |
| 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
 | |
| 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
 | |
| 		sd = sd->parent;
 | |
| 	if (!sd)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	target = prev_cpu;
 | |
| 
 | |
| 	sync_entity_load_avg(&p->se);
 | |
| 	if (!task_util_est(p) && p_util_min == 0)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	eenv_task_busy_time(&eenv, p, prev_cpu);
 | |
| 
 | |
| 	for (; pd; pd = pd->next) {
 | |
| 		unsigned long util_min = p_util_min, util_max = p_util_max;
 | |
| 		unsigned long cpu_cap, cpu_actual_cap, util;
 | |
| 		long prev_spare_cap = -1, max_spare_cap = -1;
 | |
| 		unsigned long rq_util_min, rq_util_max;
 | |
| 		unsigned long cur_delta, base_energy;
 | |
| 		int max_spare_cap_cpu = -1;
 | |
| 		int fits, max_fits = -1;
 | |
| 
 | |
| 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
 | |
| 
 | |
| 		if (cpumask_empty(cpus))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Account external pressure for the energy estimation */
 | |
| 		cpu = cpumask_first(cpus);
 | |
| 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
 | |
| 
 | |
| 		eenv.cpu_cap = cpu_actual_cap;
 | |
| 		eenv.pd_cap = 0;
 | |
| 
 | |
| 		for_each_cpu(cpu, cpus) {
 | |
| 			struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 			eenv.pd_cap += cpu_actual_cap;
 | |
| 
 | |
| 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
 | |
| 				continue;
 | |
| 
 | |
| 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 | |
| 				continue;
 | |
| 
 | |
| 			util = cpu_util(cpu, p, cpu, 0);
 | |
| 			cpu_cap = capacity_of(cpu);
 | |
| 
 | |
| 			/*
 | |
| 			 * Skip CPUs that cannot satisfy the capacity request.
 | |
| 			 * IOW, placing the task there would make the CPU
 | |
| 			 * overutilized. Take uclamp into account to see how
 | |
| 			 * much capacity we can get out of the CPU; this is
 | |
| 			 * aligned with sched_cpu_util().
 | |
| 			 */
 | |
| 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
 | |
| 				/*
 | |
| 				 * Open code uclamp_rq_util_with() except for
 | |
| 				 * the clamp() part. I.e.: apply max aggregation
 | |
| 				 * only. util_fits_cpu() logic requires to
 | |
| 				 * operate on non clamped util but must use the
 | |
| 				 * max-aggregated uclamp_{min, max}.
 | |
| 				 */
 | |
| 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
 | |
| 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
 | |
| 
 | |
| 				util_min = max(rq_util_min, p_util_min);
 | |
| 				util_max = max(rq_util_max, p_util_max);
 | |
| 			}
 | |
| 
 | |
| 			fits = util_fits_cpu(util, util_min, util_max, cpu);
 | |
| 			if (!fits)
 | |
| 				continue;
 | |
| 
 | |
| 			lsub_positive(&cpu_cap, util);
 | |
| 
 | |
| 			if (cpu == prev_cpu) {
 | |
| 				/* Always use prev_cpu as a candidate. */
 | |
| 				prev_spare_cap = cpu_cap;
 | |
| 				prev_fits = fits;
 | |
| 			} else if ((fits > max_fits) ||
 | |
| 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
 | |
| 				/*
 | |
| 				 * Find the CPU with the maximum spare capacity
 | |
| 				 * among the remaining CPUs in the performance
 | |
| 				 * domain.
 | |
| 				 */
 | |
| 				max_spare_cap = cpu_cap;
 | |
| 				max_spare_cap_cpu = cpu;
 | |
| 				max_fits = fits;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		eenv_pd_busy_time(&eenv, cpus, p);
 | |
| 		/* Compute the 'base' energy of the pd, without @p */
 | |
| 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
 | |
| 
 | |
| 		/* Evaluate the energy impact of using prev_cpu. */
 | |
| 		if (prev_spare_cap > -1) {
 | |
| 			prev_delta = compute_energy(&eenv, pd, cpus, p,
 | |
| 						    prev_cpu);
 | |
| 			/* CPU utilization has changed */
 | |
| 			if (prev_delta < base_energy)
 | |
| 				goto unlock;
 | |
| 			prev_delta -= base_energy;
 | |
| 			prev_actual_cap = cpu_actual_cap;
 | |
| 			best_delta = min(best_delta, prev_delta);
 | |
| 		}
 | |
| 
 | |
| 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
 | |
| 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
 | |
| 			/* Current best energy cpu fits better */
 | |
| 			if (max_fits < best_fits)
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * Both don't fit performance hint (i.e. uclamp_min)
 | |
| 			 * but best energy cpu has better capacity.
 | |
| 			 */
 | |
| 			if ((max_fits < 0) &&
 | |
| 			    (cpu_actual_cap <= best_actual_cap))
 | |
| 				continue;
 | |
| 
 | |
| 			cur_delta = compute_energy(&eenv, pd, cpus, p,
 | |
| 						   max_spare_cap_cpu);
 | |
| 			/* CPU utilization has changed */
 | |
| 			if (cur_delta < base_energy)
 | |
| 				goto unlock;
 | |
| 			cur_delta -= base_energy;
 | |
| 
 | |
| 			/*
 | |
| 			 * Both fit for the task but best energy cpu has lower
 | |
| 			 * energy impact.
 | |
| 			 */
 | |
| 			if ((max_fits > 0) && (best_fits > 0) &&
 | |
| 			    (cur_delta >= best_delta))
 | |
| 				continue;
 | |
| 
 | |
| 			best_delta = cur_delta;
 | |
| 			best_energy_cpu = max_spare_cap_cpu;
 | |
| 			best_fits = max_fits;
 | |
| 			best_actual_cap = cpu_actual_cap;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if ((best_fits > prev_fits) ||
 | |
| 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
 | |
| 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
 | |
| 		target = best_energy_cpu;
 | |
| 
 | |
| 	return target;
 | |
| 
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return target;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * select_task_rq_fair: Select target runqueue for the waking task in domains
 | |
|  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
 | |
|  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
 | |
|  *
 | |
|  * Balances load by selecting the idlest CPU in the idlest group, or under
 | |
|  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
 | |
|  *
 | |
|  * Returns the target CPU number.
 | |
|  */
 | |
| static int
 | |
| select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
 | |
| {
 | |
| 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
 | |
| 	struct sched_domain *tmp, *sd = NULL;
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int new_cpu = prev_cpu;
 | |
| 	int want_affine = 0;
 | |
| 	/* SD_flags and WF_flags share the first nibble */
 | |
| 	int sd_flag = wake_flags & 0xF;
 | |
| 
 | |
| 	/*
 | |
| 	 * required for stable ->cpus_allowed
 | |
| 	 */
 | |
| 	lockdep_assert_held(&p->pi_lock);
 | |
| 	if (wake_flags & WF_TTWU) {
 | |
| 		record_wakee(p);
 | |
| 
 | |
| 		if ((wake_flags & WF_CURRENT_CPU) &&
 | |
| 		    cpumask_test_cpu(cpu, p->cpus_ptr))
 | |
| 			return cpu;
 | |
| 
 | |
| 		if (!is_rd_overutilized(this_rq()->rd)) {
 | |
| 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
 | |
| 			if (new_cpu >= 0)
 | |
| 				return new_cpu;
 | |
| 			new_cpu = prev_cpu;
 | |
| 		}
 | |
| 
 | |
| 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(cpu, tmp) {
 | |
| 		/*
 | |
| 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
 | |
| 		 * cpu is a valid SD_WAKE_AFFINE target.
 | |
| 		 */
 | |
| 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
 | |
| 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
 | |
| 			if (cpu != prev_cpu)
 | |
| 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
 | |
| 
 | |
| 			sd = NULL; /* Prefer wake_affine over balance flags */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
 | |
| 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
 | |
| 		 * will usually go to the fast path.
 | |
| 		 */
 | |
| 		if (tmp->flags & sd_flag)
 | |
| 			sd = tmp;
 | |
| 		else if (!want_affine)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(sd)) {
 | |
| 		/* Slow path */
 | |
| 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
 | |
| 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
 | |
| 		/* Fast path */
 | |
| 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return new_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
 | |
|  * cfs_rq_of(p) references at time of call are still valid and identify the
 | |
|  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
 | |
|  */
 | |
| static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	if (!task_on_rq_migrating(p)) {
 | |
| 		remove_entity_load_avg(se);
 | |
| 
 | |
| 		/*
 | |
| 		 * Here, the task's PELT values have been updated according to
 | |
| 		 * the current rq's clock. But if that clock hasn't been
 | |
| 		 * updated in a while, a substantial idle time will be missed,
 | |
| 		 * leading to an inflation after wake-up on the new rq.
 | |
| 		 *
 | |
| 		 * Estimate the missing time from the cfs_rq last_update_time
 | |
| 		 * and update sched_avg to improve the PELT continuity after
 | |
| 		 * migration.
 | |
| 		 */
 | |
| 		migrate_se_pelt_lag(se);
 | |
| 	}
 | |
| 
 | |
| 	/* Tell new CPU we are migrated */
 | |
| 	se->avg.last_update_time = 0;
 | |
| 
 | |
| 	update_scan_period(p, new_cpu);
 | |
| }
 | |
| 
 | |
| static void task_dead_fair(struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	if (se->sched_delayed) {
 | |
| 		struct rq_flags rf;
 | |
| 		struct rq *rq;
 | |
| 
 | |
| 		rq = task_rq_lock(p, &rf);
 | |
| 		if (se->sched_delayed) {
 | |
| 			update_rq_clock(rq);
 | |
| 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
 | |
| 		}
 | |
| 		task_rq_unlock(rq, p, &rf);
 | |
| 	}
 | |
| 
 | |
| 	remove_entity_load_avg(se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the max capacity the task is allowed to run at for misfit detection.
 | |
|  */
 | |
| static void set_task_max_allowed_capacity(struct task_struct *p)
 | |
| {
 | |
| 	struct asym_cap_data *entry;
 | |
| 
 | |
| 	if (!sched_asym_cpucap_active())
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
 | |
| 		cpumask_t *cpumask;
 | |
| 
 | |
| 		cpumask = cpu_capacity_span(entry);
 | |
| 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
 | |
| 			continue;
 | |
| 
 | |
| 		p->max_allowed_capacity = entry->capacity;
 | |
| 		break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
 | |
| {
 | |
| 	set_cpus_allowed_common(p, ctx);
 | |
| 	set_task_max_allowed_capacity(p);
 | |
| }
 | |
| 
 | |
| static int
 | |
| balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 | |
| {
 | |
| 	if (sched_fair_runnable(rq))
 | |
| 		return 1;
 | |
| 
 | |
| 	return sched_balance_newidle(rq, rf) != 0;
 | |
| }
 | |
| #else
 | |
| static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void set_next_buddy(struct sched_entity *se)
 | |
| {
 | |
| 	for_each_sched_entity(se) {
 | |
| 		if (WARN_ON_ONCE(!se->on_rq))
 | |
| 			return;
 | |
| 		if (se_is_idle(se))
 | |
| 			return;
 | |
| 		cfs_rq_of(se)->next = se;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preempt the current task with a newly woken task if needed:
 | |
|  */
 | |
| static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
 | |
| {
 | |
| 	struct task_struct *donor = rq->donor;
 | |
| 	struct sched_entity *se = &donor->se, *pse = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
 | |
| 	int cse_is_idle, pse_is_idle;
 | |
| 
 | |
| 	if (unlikely(se == pse))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is possible from callers such as attach_tasks(), in which we
 | |
| 	 * unconditionally wakeup_preempt() after an enqueue (which may have
 | |
| 	 * lead to a throttle).  This both saves work and prevents false
 | |
| 	 * next-buddy nomination below.
 | |
| 	 */
 | |
| 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
 | |
| 		return;
 | |
| 
 | |
| 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
 | |
| 		set_next_buddy(pse);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We can come here with TIF_NEED_RESCHED already set from new task
 | |
| 	 * wake up path.
 | |
| 	 *
 | |
| 	 * Note: this also catches the edge-case of curr being in a throttled
 | |
| 	 * group (e.g. via set_curr_task), since update_curr() (in the
 | |
| 	 * enqueue of curr) will have resulted in resched being set.  This
 | |
| 	 * prevents us from potentially nominating it as a false LAST_BUDDY
 | |
| 	 * below.
 | |
| 	 */
 | |
| 	if (test_tsk_need_resched(rq->curr))
 | |
| 		return;
 | |
| 
 | |
| 	if (!sched_feat(WAKEUP_PREEMPTION))
 | |
| 		return;
 | |
| 
 | |
| 	find_matching_se(&se, &pse);
 | |
| 	WARN_ON_ONCE(!pse);
 | |
| 
 | |
| 	cse_is_idle = se_is_idle(se);
 | |
| 	pse_is_idle = se_is_idle(pse);
 | |
| 
 | |
| 	/*
 | |
| 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
 | |
| 	 * in the inverse case).
 | |
| 	 */
 | |
| 	if (cse_is_idle && !pse_is_idle) {
 | |
| 		/*
 | |
| 		 * When non-idle entity preempt an idle entity,
 | |
| 		 * don't give idle entity slice protection.
 | |
| 		 */
 | |
| 		cancel_protect_slice(se);
 | |
| 		goto preempt;
 | |
| 	}
 | |
| 
 | |
| 	if (cse_is_idle != pse_is_idle)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * BATCH and IDLE tasks do not preempt others.
 | |
| 	 */
 | |
| 	if (unlikely(!normal_policy(p->policy)))
 | |
| 		return;
 | |
| 
 | |
| 	cfs_rq = cfs_rq_of(se);
 | |
| 	update_curr(cfs_rq);
 | |
| 	/*
 | |
| 	 * If @p has a shorter slice than current and @p is eligible, override
 | |
| 	 * current's slice protection in order to allow preemption.
 | |
| 	 *
 | |
| 	 * Note that even if @p does not turn out to be the most eligible
 | |
| 	 * task at this moment, current's slice protection will be lost.
 | |
| 	 */
 | |
| 	if (do_preempt_short(cfs_rq, pse, se))
 | |
| 		cancel_protect_slice(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * If @p has become the most eligible task, force preemption.
 | |
| 	 */
 | |
| 	if (pick_eevdf(cfs_rq) == pse)
 | |
| 		goto preempt;
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| preempt:
 | |
| 	resched_curr_lazy(rq);
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct sched_entity *se;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| again:
 | |
| 	cfs_rq = &rq->cfs;
 | |
| 	if (!cfs_rq->nr_queued)
 | |
| 		return NULL;
 | |
| 
 | |
| 	do {
 | |
| 		/* Might not have done put_prev_entity() */
 | |
| 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
 | |
| 			update_curr(cfs_rq);
 | |
| 
 | |
| 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
 | |
| 			goto again;
 | |
| 
 | |
| 		se = pick_next_entity(rq, cfs_rq);
 | |
| 		if (!se)
 | |
| 			goto again;
 | |
| 		cfs_rq = group_cfs_rq(se);
 | |
| 	} while (cfs_rq);
 | |
| 
 | |
| 	return task_of(se);
 | |
| }
 | |
| 
 | |
| static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
 | |
| static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
 | |
| 
 | |
| struct task_struct *
 | |
| pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 | |
| {
 | |
| 	struct sched_entity *se;
 | |
| 	struct task_struct *p;
 | |
| 	int new_tasks;
 | |
| 
 | |
| again:
 | |
| 	p = pick_task_fair(rq);
 | |
| 	if (!p)
 | |
| 		goto idle;
 | |
| 	se = &p->se;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	if (prev->sched_class != &fair_sched_class)
 | |
| 		goto simple;
 | |
| 
 | |
| 	__put_prev_set_next_dl_server(rq, prev, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
 | |
| 	 * likely that a next task is from the same cgroup as the current.
 | |
| 	 *
 | |
| 	 * Therefore attempt to avoid putting and setting the entire cgroup
 | |
| 	 * hierarchy, only change the part that actually changes.
 | |
| 	 *
 | |
| 	 * Since we haven't yet done put_prev_entity and if the selected task
 | |
| 	 * is a different task than we started out with, try and touch the
 | |
| 	 * least amount of cfs_rqs.
 | |
| 	 */
 | |
| 	if (prev != p) {
 | |
| 		struct sched_entity *pse = &prev->se;
 | |
| 		struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 		while (!(cfs_rq = is_same_group(se, pse))) {
 | |
| 			int se_depth = se->depth;
 | |
| 			int pse_depth = pse->depth;
 | |
| 
 | |
| 			if (se_depth <= pse_depth) {
 | |
| 				put_prev_entity(cfs_rq_of(pse), pse);
 | |
| 				pse = parent_entity(pse);
 | |
| 			}
 | |
| 			if (se_depth >= pse_depth) {
 | |
| 				set_next_entity(cfs_rq_of(se), se);
 | |
| 				se = parent_entity(se);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		put_prev_entity(cfs_rq, pse);
 | |
| 		set_next_entity(cfs_rq, se);
 | |
| 
 | |
| 		__set_next_task_fair(rq, p, true);
 | |
| 	}
 | |
| 
 | |
| 	return p;
 | |
| 
 | |
| simple:
 | |
| #endif
 | |
| 	put_prev_set_next_task(rq, prev, p);
 | |
| 	return p;
 | |
| 
 | |
| idle:
 | |
| 	if (!rf)
 | |
| 		return NULL;
 | |
| 
 | |
| 	new_tasks = sched_balance_newidle(rq, rf);
 | |
| 
 | |
| 	/*
 | |
| 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
 | |
| 	 * possible for any higher priority task to appear. In that case we
 | |
| 	 * must re-start the pick_next_entity() loop.
 | |
| 	 */
 | |
| 	if (new_tasks < 0)
 | |
| 		return RETRY_TASK;
 | |
| 
 | |
| 	if (new_tasks > 0)
 | |
| 		goto again;
 | |
| 
 | |
| 	/*
 | |
| 	 * rq is about to be idle, check if we need to update the
 | |
| 	 * lost_idle_time of clock_pelt
 | |
| 	 */
 | |
| 	update_idle_rq_clock_pelt(rq);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	return pick_next_task_fair(rq, prev, NULL);
 | |
| }
 | |
| 
 | |
| static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return !!dl_se->rq->cfs.nr_queued;
 | |
| }
 | |
| 
 | |
| static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return pick_task_fair(dl_se->rq);
 | |
| }
 | |
| 
 | |
| void fair_server_init(struct rq *rq)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = &rq->fair_server;
 | |
| 
 | |
| 	init_dl_entity(dl_se);
 | |
| 
 | |
| 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for a descheduled task:
 | |
|  */
 | |
| static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 | |
| {
 | |
| 	struct sched_entity *se = &prev->se;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		put_prev_entity(cfs_rq, se);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_yield() is very simple
 | |
|  */
 | |
| static void yield_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 | |
| 	struct sched_entity *se = &curr->se;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we the only task in the tree?
 | |
| 	 */
 | |
| 	if (unlikely(rq->nr_running == 1))
 | |
| 		return;
 | |
| 
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	update_rq_clock(rq);
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 	/*
 | |
| 	 * Tell update_rq_clock() that we've just updated,
 | |
| 	 * so we don't do microscopic update in schedule()
 | |
| 	 * and double the fastpath cost.
 | |
| 	 */
 | |
| 	rq_clock_skip_update(rq);
 | |
| 
 | |
| 	se->deadline += calc_delta_fair(se->slice, se);
 | |
| }
 | |
| 
 | |
| static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	/* throttled hierarchies are not runnable */
 | |
| 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Tell the scheduler that we'd really like se to run next. */
 | |
| 	set_next_buddy(se);
 | |
| 
 | |
| 	yield_task_fair(rq);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /**************************************************
 | |
|  * Fair scheduling class load-balancing methods.
 | |
|  *
 | |
|  * BASICS
 | |
|  *
 | |
|  * The purpose of load-balancing is to achieve the same basic fairness the
 | |
|  * per-CPU scheduler provides, namely provide a proportional amount of compute
 | |
|  * time to each task. This is expressed in the following equation:
 | |
|  *
 | |
|  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 | |
|  *
 | |
|  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
 | |
|  * W_i,0 is defined as:
 | |
|  *
 | |
|  *   W_i,0 = \Sum_j w_i,j                                             (2)
 | |
|  *
 | |
|  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
 | |
|  * is derived from the nice value as per sched_prio_to_weight[].
 | |
|  *
 | |
|  * The weight average is an exponential decay average of the instantaneous
 | |
|  * weight:
 | |
|  *
 | |
|  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 | |
|  *
 | |
|  * C_i is the compute capacity of CPU i, typically it is the
 | |
|  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 | |
|  * can also include other factors [XXX].
 | |
|  *
 | |
|  * To achieve this balance we define a measure of imbalance which follows
 | |
|  * directly from (1):
 | |
|  *
 | |
|  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
 | |
|  *
 | |
|  * We them move tasks around to minimize the imbalance. In the continuous
 | |
|  * function space it is obvious this converges, in the discrete case we get
 | |
|  * a few fun cases generally called infeasible weight scenarios.
 | |
|  *
 | |
|  * [XXX expand on:
 | |
|  *     - infeasible weights;
 | |
|  *     - local vs global optima in the discrete case. ]
 | |
|  *
 | |
|  *
 | |
|  * SCHED DOMAINS
 | |
|  *
 | |
|  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 | |
|  * for all i,j solution, we create a tree of CPUs that follows the hardware
 | |
|  * topology where each level pairs two lower groups (or better). This results
 | |
|  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
 | |
|  * tree to only the first of the previous level and we decrease the frequency
 | |
|  * of load-balance at each level inversely proportional to the number of CPUs in
 | |
|  * the groups.
 | |
|  *
 | |
|  * This yields:
 | |
|  *
 | |
|  *     log_2 n     1     n
 | |
|  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 | |
|  *     i = 0      2^i   2^i
 | |
|  *                               `- size of each group
 | |
|  *         |         |     `- number of CPUs doing load-balance
 | |
|  *         |         `- freq
 | |
|  *         `- sum over all levels
 | |
|  *
 | |
|  * Coupled with a limit on how many tasks we can migrate every balance pass,
 | |
|  * this makes (5) the runtime complexity of the balancer.
 | |
|  *
 | |
|  * An important property here is that each CPU is still (indirectly) connected
 | |
|  * to every other CPU in at most O(log n) steps:
 | |
|  *
 | |
|  * The adjacency matrix of the resulting graph is given by:
 | |
|  *
 | |
|  *             log_2 n
 | |
|  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 | |
|  *             k = 0
 | |
|  *
 | |
|  * And you'll find that:
 | |
|  *
 | |
|  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 | |
|  *
 | |
|  * Showing there's indeed a path between every CPU in at most O(log n) steps.
 | |
|  * The task movement gives a factor of O(m), giving a convergence complexity
 | |
|  * of:
 | |
|  *
 | |
|  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 | |
|  *
 | |
|  *
 | |
|  * WORK CONSERVING
 | |
|  *
 | |
|  * In order to avoid CPUs going idle while there's still work to do, new idle
 | |
|  * balancing is more aggressive and has the newly idle CPU iterate up the domain
 | |
|  * tree itself instead of relying on other CPUs to bring it work.
 | |
|  *
 | |
|  * This adds some complexity to both (5) and (8) but it reduces the total idle
 | |
|  * time.
 | |
|  *
 | |
|  * [XXX more?]
 | |
|  *
 | |
|  *
 | |
|  * CGROUPS
 | |
|  *
 | |
|  * Cgroups make a horror show out of (2), instead of a simple sum we get:
 | |
|  *
 | |
|  *                                s_k,i
 | |
|  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 | |
|  *                                 S_k
 | |
|  *
 | |
|  * Where
 | |
|  *
 | |
|  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 | |
|  *
 | |
|  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
 | |
|  *
 | |
|  * The big problem is S_k, its a global sum needed to compute a local (W_i)
 | |
|  * property.
 | |
|  *
 | |
|  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 | |
|  *      rewrite all of this once again.]
 | |
|  */
 | |
| 
 | |
| static unsigned long __read_mostly max_load_balance_interval = HZ/10;
 | |
| 
 | |
| enum fbq_type { regular, remote, all };
 | |
| 
 | |
| /*
 | |
|  * 'group_type' describes the group of CPUs at the moment of load balancing.
 | |
|  *
 | |
|  * The enum is ordered by pulling priority, with the group with lowest priority
 | |
|  * first so the group_type can simply be compared when selecting the busiest
 | |
|  * group. See update_sd_pick_busiest().
 | |
|  */
 | |
| enum group_type {
 | |
| 	/* The group has spare capacity that can be used to run more tasks.  */
 | |
| 	group_has_spare = 0,
 | |
| 	/*
 | |
| 	 * The group is fully used and the tasks don't compete for more CPU
 | |
| 	 * cycles. Nevertheless, some tasks might wait before running.
 | |
| 	 */
 | |
| 	group_fully_busy,
 | |
| 	/*
 | |
| 	 * One task doesn't fit with CPU's capacity and must be migrated to a
 | |
| 	 * more powerful CPU.
 | |
| 	 */
 | |
| 	group_misfit_task,
 | |
| 	/*
 | |
| 	 * Balance SMT group that's fully busy. Can benefit from migration
 | |
| 	 * a task on SMT with busy sibling to another CPU on idle core.
 | |
| 	 */
 | |
| 	group_smt_balance,
 | |
| 	/*
 | |
| 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
 | |
| 	 * and the task should be migrated to it instead of running on the
 | |
| 	 * current CPU.
 | |
| 	 */
 | |
| 	group_asym_packing,
 | |
| 	/*
 | |
| 	 * The tasks' affinity constraints previously prevented the scheduler
 | |
| 	 * from balancing the load across the system.
 | |
| 	 */
 | |
| 	group_imbalanced,
 | |
| 	/*
 | |
| 	 * The CPU is overloaded and can't provide expected CPU cycles to all
 | |
| 	 * tasks.
 | |
| 	 */
 | |
| 	group_overloaded
 | |
| };
 | |
| 
 | |
| enum migration_type {
 | |
| 	migrate_load = 0,
 | |
| 	migrate_util,
 | |
| 	migrate_task,
 | |
| 	migrate_misfit
 | |
| };
 | |
| 
 | |
| #define LBF_ALL_PINNED	0x01
 | |
| #define LBF_NEED_BREAK	0x02
 | |
| #define LBF_DST_PINNED  0x04
 | |
| #define LBF_SOME_PINNED	0x08
 | |
| #define LBF_ACTIVE_LB	0x10
 | |
| 
 | |
| struct lb_env {
 | |
| 	struct sched_domain	*sd;
 | |
| 
 | |
| 	struct rq		*src_rq;
 | |
| 	int			src_cpu;
 | |
| 
 | |
| 	int			dst_cpu;
 | |
| 	struct rq		*dst_rq;
 | |
| 
 | |
| 	struct cpumask		*dst_grpmask;
 | |
| 	int			new_dst_cpu;
 | |
| 	enum cpu_idle_type	idle;
 | |
| 	long			imbalance;
 | |
| 	/* The set of CPUs under consideration for load-balancing */
 | |
| 	struct cpumask		*cpus;
 | |
| 
 | |
| 	unsigned int		flags;
 | |
| 
 | |
| 	unsigned int		loop;
 | |
| 	unsigned int		loop_break;
 | |
| 	unsigned int		loop_max;
 | |
| 
 | |
| 	enum fbq_type		fbq_type;
 | |
| 	enum migration_type	migration_type;
 | |
| 	struct list_head	tasks;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Is this task likely cache-hot:
 | |
|  */
 | |
| static int task_hot(struct task_struct *p, struct lb_env *env)
 | |
| {
 | |
| 	s64 delta;
 | |
| 
 | |
| 	lockdep_assert_rq_held(env->src_rq);
 | |
| 
 | |
| 	if (p->sched_class != &fair_sched_class)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(task_has_idle_policy(p)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* SMT siblings share cache */
 | |
| 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Buddy candidates are cache hot:
 | |
| 	 */
 | |
| 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
 | |
| 	    (&p->se == cfs_rq_of(&p->se)->next))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (sysctl_sched_migration_cost == -1)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't migrate task if the task's cookie does not match
 | |
| 	 * with the destination CPU's core cookie.
 | |
| 	 */
 | |
| 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (sysctl_sched_migration_cost == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
 | |
| 
 | |
| 	return delta < (s64)sysctl_sched_migration_cost;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /*
 | |
|  * Returns a positive value, if task migration degrades locality.
 | |
|  * Returns 0, if task migration is not affected by locality.
 | |
|  * Returns a negative value, if task migration improves locality i.e migration preferred.
 | |
|  */
 | |
| static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
 | |
| {
 | |
| 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
 | |
| 	unsigned long src_weight, dst_weight;
 | |
| 	int src_nid, dst_nid, dist;
 | |
| 
 | |
| 	if (!static_branch_likely(&sched_numa_balancing))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
 | |
| 		return 0;
 | |
| 
 | |
| 	src_nid = cpu_to_node(env->src_cpu);
 | |
| 	dst_nid = cpu_to_node(env->dst_cpu);
 | |
| 
 | |
| 	if (src_nid == dst_nid)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Migrating away from the preferred node is always bad. */
 | |
| 	if (src_nid == p->numa_preferred_nid) {
 | |
| 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
 | |
| 			return 1;
 | |
| 		else
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Encourage migration to the preferred node. */
 | |
| 	if (dst_nid == p->numa_preferred_nid)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Leaving a core idle is often worse than degrading locality. */
 | |
| 	if (env->idle == CPU_IDLE)
 | |
| 		return 0;
 | |
| 
 | |
| 	dist = node_distance(src_nid, dst_nid);
 | |
| 	if (numa_group) {
 | |
| 		src_weight = group_weight(p, src_nid, dist);
 | |
| 		dst_weight = group_weight(p, dst_nid, dist);
 | |
| 	} else {
 | |
| 		src_weight = task_weight(p, src_nid, dist);
 | |
| 		dst_weight = task_weight(p, dst_nid, dist);
 | |
| 	}
 | |
| 
 | |
| 	return src_weight - dst_weight;
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline long migrate_degrades_locality(struct task_struct *p,
 | |
| 					     struct lb_env *env)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Check whether the task is ineligible on the destination cpu
 | |
|  *
 | |
|  * When the PLACE_LAG scheduling feature is enabled and
 | |
|  * dst_cfs_rq->nr_queued is greater than 1, if the task
 | |
|  * is ineligible, it will also be ineligible when
 | |
|  * it is migrated to the destination cpu.
 | |
|  */
 | |
| static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
 | |
| {
 | |
| 	struct cfs_rq *dst_cfs_rq;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
 | |
| #else
 | |
| 	dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
 | |
| #endif
 | |
| 	if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
 | |
| 	    !entity_eligible(task_cfs_rq(p), &p->se))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 | |
|  */
 | |
| static
 | |
| int can_migrate_task(struct task_struct *p, struct lb_env *env)
 | |
| {
 | |
| 	long degrades, hot;
 | |
| 
 | |
| 	lockdep_assert_rq_held(env->src_rq);
 | |
| 	if (p->sched_task_hot)
 | |
| 		p->sched_task_hot = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not migrate tasks that are:
 | |
| 	 * 1) delayed dequeued unless we migrate load, or
 | |
| 	 * 2) throttled_lb_pair, or
 | |
| 	 * 3) cannot be migrated to this CPU due to cpus_ptr, or
 | |
| 	 * 4) running (obviously), or
 | |
| 	 * 5) are cache-hot on their current CPU.
 | |
| 	 */
 | |
| 	if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to prioritize the migration of eligible tasks.
 | |
| 	 * For ineligible tasks we soft-limit them and only allow
 | |
| 	 * them to migrate when nr_balance_failed is non-zero to
 | |
| 	 * avoid load-balancing trying very hard to balance the load.
 | |
| 	 */
 | |
| 	if (!env->sd->nr_balance_failed &&
 | |
| 	    task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Disregard percpu kthreads; they are where they need to be. */
 | |
| 	if (kthread_is_per_cpu(p))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		schedstat_inc(p->stats.nr_failed_migrations_affine);
 | |
| 
 | |
| 		env->flags |= LBF_SOME_PINNED;
 | |
| 
 | |
| 		/*
 | |
| 		 * Remember if this task can be migrated to any other CPU in
 | |
| 		 * our sched_group. We may want to revisit it if we couldn't
 | |
| 		 * meet load balance goals by pulling other tasks on src_cpu.
 | |
| 		 *
 | |
| 		 * Avoid computing new_dst_cpu
 | |
| 		 * - for NEWLY_IDLE
 | |
| 		 * - if we have already computed one in current iteration
 | |
| 		 * - if it's an active balance
 | |
| 		 */
 | |
| 		if (env->idle == CPU_NEWLY_IDLE ||
 | |
| 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
 | |
| 			return 0;
 | |
| 
 | |
| 		/* Prevent to re-select dst_cpu via env's CPUs: */
 | |
| 		cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
 | |
| 
 | |
| 		if (cpu < nr_cpu_ids) {
 | |
| 			env->flags |= LBF_DST_PINNED;
 | |
| 			env->new_dst_cpu = cpu;
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Record that we found at least one task that could run on dst_cpu */
 | |
| 	env->flags &= ~LBF_ALL_PINNED;
 | |
| 
 | |
| 	if (task_on_cpu(env->src_rq, p)) {
 | |
| 		schedstat_inc(p->stats.nr_failed_migrations_running);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Aggressive migration if:
 | |
| 	 * 1) active balance
 | |
| 	 * 2) destination numa is preferred
 | |
| 	 * 3) task is cache cold, or
 | |
| 	 * 4) too many balance attempts have failed.
 | |
| 	 */
 | |
| 	if (env->flags & LBF_ACTIVE_LB)
 | |
| 		return 1;
 | |
| 
 | |
| 	degrades = migrate_degrades_locality(p, env);
 | |
| 	if (!degrades)
 | |
| 		hot = task_hot(p, env);
 | |
| 	else
 | |
| 		hot = degrades > 0;
 | |
| 
 | |
| 	if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
 | |
| 		if (hot)
 | |
| 			p->sched_task_hot = 1;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	schedstat_inc(p->stats.nr_failed_migrations_hot);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * detach_task() -- detach the task for the migration specified in env
 | |
|  */
 | |
| static void detach_task(struct task_struct *p, struct lb_env *env)
 | |
| {
 | |
| 	lockdep_assert_rq_held(env->src_rq);
 | |
| 
 | |
| 	if (p->sched_task_hot) {
 | |
| 		p->sched_task_hot = 0;
 | |
| 		schedstat_inc(env->sd->lb_hot_gained[env->idle]);
 | |
| 		schedstat_inc(p->stats.nr_forced_migrations);
 | |
| 	}
 | |
| 
 | |
| 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
 | |
| 	set_task_cpu(p, env->dst_cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
 | |
|  * part of active balancing operations within "domain".
 | |
|  *
 | |
|  * Returns a task if successful and NULL otherwise.
 | |
|  */
 | |
| static struct task_struct *detach_one_task(struct lb_env *env)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	lockdep_assert_rq_held(env->src_rq);
 | |
| 
 | |
| 	list_for_each_entry_reverse(p,
 | |
| 			&env->src_rq->cfs_tasks, se.group_node) {
 | |
| 		if (!can_migrate_task(p, env))
 | |
| 			continue;
 | |
| 
 | |
| 		detach_task(p, env);
 | |
| 
 | |
| 		/*
 | |
| 		 * Right now, this is only the second place where
 | |
| 		 * lb_gained[env->idle] is updated (other is detach_tasks)
 | |
| 		 * so we can safely collect stats here rather than
 | |
| 		 * inside detach_tasks().
 | |
| 		 */
 | |
| 		schedstat_inc(env->sd->lb_gained[env->idle]);
 | |
| 		return p;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
 | |
|  * busiest_rq, as part of a balancing operation within domain "sd".
 | |
|  *
 | |
|  * Returns number of detached tasks if successful and 0 otherwise.
 | |
|  */
 | |
| static int detach_tasks(struct lb_env *env)
 | |
| {
 | |
| 	struct list_head *tasks = &env->src_rq->cfs_tasks;
 | |
| 	unsigned long util, load;
 | |
| 	struct task_struct *p;
 | |
| 	int detached = 0;
 | |
| 
 | |
| 	lockdep_assert_rq_held(env->src_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Source run queue has been emptied by another CPU, clear
 | |
| 	 * LBF_ALL_PINNED flag as we will not test any task.
 | |
| 	 */
 | |
| 	if (env->src_rq->nr_running <= 1) {
 | |
| 		env->flags &= ~LBF_ALL_PINNED;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (env->imbalance <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (!list_empty(tasks)) {
 | |
| 		/*
 | |
| 		 * We don't want to steal all, otherwise we may be treated likewise,
 | |
| 		 * which could at worst lead to a livelock crash.
 | |
| 		 */
 | |
| 		if (env->idle && env->src_rq->nr_running <= 1)
 | |
| 			break;
 | |
| 
 | |
| 		env->loop++;
 | |
| 		/* We've more or less seen every task there is, call it quits */
 | |
| 		if (env->loop > env->loop_max)
 | |
| 			break;
 | |
| 
 | |
| 		/* take a breather every nr_migrate tasks */
 | |
| 		if (env->loop > env->loop_break) {
 | |
| 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
 | |
| 			env->flags |= LBF_NEED_BREAK;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		p = list_last_entry(tasks, struct task_struct, se.group_node);
 | |
| 
 | |
| 		if (!can_migrate_task(p, env))
 | |
| 			goto next;
 | |
| 
 | |
| 		switch (env->migration_type) {
 | |
| 		case migrate_load:
 | |
| 			/*
 | |
| 			 * Depending of the number of CPUs and tasks and the
 | |
| 			 * cgroup hierarchy, task_h_load() can return a null
 | |
| 			 * value. Make sure that env->imbalance decreases
 | |
| 			 * otherwise detach_tasks() will stop only after
 | |
| 			 * detaching up to loop_max tasks.
 | |
| 			 */
 | |
| 			load = max_t(unsigned long, task_h_load(p), 1);
 | |
| 
 | |
| 			if (sched_feat(LB_MIN) &&
 | |
| 			    load < 16 && !env->sd->nr_balance_failed)
 | |
| 				goto next;
 | |
| 
 | |
| 			/*
 | |
| 			 * Make sure that we don't migrate too much load.
 | |
| 			 * Nevertheless, let relax the constraint if
 | |
| 			 * scheduler fails to find a good waiting task to
 | |
| 			 * migrate.
 | |
| 			 */
 | |
| 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
 | |
| 				goto next;
 | |
| 
 | |
| 			env->imbalance -= load;
 | |
| 			break;
 | |
| 
 | |
| 		case migrate_util:
 | |
| 			util = task_util_est(p);
 | |
| 
 | |
| 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
 | |
| 				goto next;
 | |
| 
 | |
| 			env->imbalance -= util;
 | |
| 			break;
 | |
| 
 | |
| 		case migrate_task:
 | |
| 			env->imbalance--;
 | |
| 			break;
 | |
| 
 | |
| 		case migrate_misfit:
 | |
| 			/* This is not a misfit task */
 | |
| 			if (task_fits_cpu(p, env->src_cpu))
 | |
| 				goto next;
 | |
| 
 | |
| 			env->imbalance = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		detach_task(p, env);
 | |
| 		list_add(&p->se.group_node, &env->tasks);
 | |
| 
 | |
| 		detached++;
 | |
| 
 | |
| #ifdef CONFIG_PREEMPTION
 | |
| 		/*
 | |
| 		 * NEWIDLE balancing is a source of latency, so preemptible
 | |
| 		 * kernels will stop after the first task is detached to minimize
 | |
| 		 * the critical section.
 | |
| 		 */
 | |
| 		if (env->idle == CPU_NEWLY_IDLE)
 | |
| 			break;
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * We only want to steal up to the prescribed amount of
 | |
| 		 * load/util/tasks.
 | |
| 		 */
 | |
| 		if (env->imbalance <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		continue;
 | |
| next:
 | |
| 		if (p->sched_task_hot)
 | |
| 			schedstat_inc(p->stats.nr_failed_migrations_hot);
 | |
| 
 | |
| 		list_move(&p->se.group_node, tasks);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Right now, this is one of only two places we collect this stat
 | |
| 	 * so we can safely collect detach_one_task() stats here rather
 | |
| 	 * than inside detach_one_task().
 | |
| 	 */
 | |
| 	schedstat_add(env->sd->lb_gained[env->idle], detached);
 | |
| 
 | |
| 	return detached;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * attach_task() -- attach the task detached by detach_task() to its new rq.
 | |
|  */
 | |
| static void attach_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	WARN_ON_ONCE(task_rq(p) != rq);
 | |
| 	activate_task(rq, p, ENQUEUE_NOCLOCK);
 | |
| 	wakeup_preempt(rq, p, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * attach_one_task() -- attaches the task returned from detach_one_task() to
 | |
|  * its new rq.
 | |
|  */
 | |
| static void attach_one_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct rq_flags rf;
 | |
| 
 | |
| 	rq_lock(rq, &rf);
 | |
| 	update_rq_clock(rq);
 | |
| 	attach_task(rq, p);
 | |
| 	rq_unlock(rq, &rf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 | |
|  * new rq.
 | |
|  */
 | |
| static void attach_tasks(struct lb_env *env)
 | |
| {
 | |
| 	struct list_head *tasks = &env->tasks;
 | |
| 	struct task_struct *p;
 | |
| 	struct rq_flags rf;
 | |
| 
 | |
| 	rq_lock(env->dst_rq, &rf);
 | |
| 	update_rq_clock(env->dst_rq);
 | |
| 
 | |
| 	while (!list_empty(tasks)) {
 | |
| 		p = list_first_entry(tasks, struct task_struct, se.group_node);
 | |
| 		list_del_init(&p->se.group_node);
 | |
| 
 | |
| 		attach_task(env->dst_rq, p);
 | |
| 	}
 | |
| 
 | |
| 	rq_unlock(env->dst_rq, &rf);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (cfs_rq->avg.load_avg)
 | |
| 		return true;
 | |
| 
 | |
| 	if (cfs_rq->avg.util_avg)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool others_have_blocked(struct rq *rq)
 | |
| {
 | |
| 	if (cpu_util_rt(rq))
 | |
| 		return true;
 | |
| 
 | |
| 	if (cpu_util_dl(rq))
 | |
| 		return true;
 | |
| 
 | |
| 	if (hw_load_avg(rq))
 | |
| 		return true;
 | |
| 
 | |
| 	if (cpu_util_irq(rq))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void update_blocked_load_tick(struct rq *rq)
 | |
| {
 | |
| 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
 | |
| }
 | |
| 
 | |
| static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
 | |
| {
 | |
| 	if (!has_blocked)
 | |
| 		rq->has_blocked_load = 0;
 | |
| }
 | |
| #else
 | |
| static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
 | |
| static inline bool others_have_blocked(struct rq *rq) { return false; }
 | |
| static inline void update_blocked_load_tick(struct rq *rq) {}
 | |
| static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
 | |
| #endif
 | |
| 
 | |
| static bool __update_blocked_others(struct rq *rq, bool *done)
 | |
| {
 | |
| 	bool updated;
 | |
| 
 | |
| 	/*
 | |
| 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
 | |
| 	 * DL and IRQ signals have been updated before updating CFS.
 | |
| 	 */
 | |
| 	updated = update_other_load_avgs(rq);
 | |
| 
 | |
| 	if (others_have_blocked(rq))
 | |
| 		*done = false;
 | |
| 
 | |
| 	return updated;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 
 | |
| static bool __update_blocked_fair(struct rq *rq, bool *done)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq, *pos;
 | |
| 	bool decayed = false;
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterates the task_group tree in a bottom up fashion, see
 | |
| 	 * list_add_leaf_cfs_rq() for details.
 | |
| 	 */
 | |
| 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
 | |
| 		struct sched_entity *se;
 | |
| 
 | |
| 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
 | |
| 			update_tg_load_avg(cfs_rq);
 | |
| 
 | |
| 			if (cfs_rq->nr_queued == 0)
 | |
| 				update_idle_cfs_rq_clock_pelt(cfs_rq);
 | |
| 
 | |
| 			if (cfs_rq == &rq->cfs)
 | |
| 				decayed = true;
 | |
| 		}
 | |
| 
 | |
| 		/* Propagate pending load changes to the parent, if any: */
 | |
| 		se = cfs_rq->tg->se[cpu];
 | |
| 		if (se && !skip_blocked_update(se))
 | |
| 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
 | |
| 
 | |
| 		/*
 | |
| 		 * There can be a lot of idle CPU cgroups.  Don't let fully
 | |
| 		 * decayed cfs_rqs linger on the list.
 | |
| 		 */
 | |
| 		if (cfs_rq_is_decayed(cfs_rq))
 | |
| 			list_del_leaf_cfs_rq(cfs_rq);
 | |
| 
 | |
| 		/* Don't need periodic decay once load/util_avg are null */
 | |
| 		if (cfs_rq_has_blocked(cfs_rq))
 | |
| 			*done = false;
 | |
| 	}
 | |
| 
 | |
| 	return decayed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
 | |
|  * This needs to be done in a top-down fashion because the load of a child
 | |
|  * group is a fraction of its parents load.
 | |
|  */
 | |
| static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
 | |
| 	unsigned long now = jiffies;
 | |
| 	unsigned long load;
 | |
| 
 | |
| 	if (cfs_rq->last_h_load_update == now)
 | |
| 		return;
 | |
| 
 | |
| 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		WRITE_ONCE(cfs_rq->h_load_next, se);
 | |
| 		if (cfs_rq->last_h_load_update == now)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!se) {
 | |
| 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
 | |
| 		cfs_rq->last_h_load_update = now;
 | |
| 	}
 | |
| 
 | |
| 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
 | |
| 		load = cfs_rq->h_load;
 | |
| 		load = div64_ul(load * se->avg.load_avg,
 | |
| 			cfs_rq_load_avg(cfs_rq) + 1);
 | |
| 		cfs_rq = group_cfs_rq(se);
 | |
| 		cfs_rq->h_load = load;
 | |
| 		cfs_rq->last_h_load_update = now;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long task_h_load(struct task_struct *p)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 | |
| 
 | |
| 	update_cfs_rq_h_load(cfs_rq);
 | |
| 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
 | |
| 			cfs_rq_load_avg(cfs_rq) + 1);
 | |
| }
 | |
| #else
 | |
| static bool __update_blocked_fair(struct rq *rq, bool *done)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = &rq->cfs;
 | |
| 	bool decayed;
 | |
| 
 | |
| 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
 | |
| 	if (cfs_rq_has_blocked(cfs_rq))
 | |
| 		*done = false;
 | |
| 
 | |
| 	return decayed;
 | |
| }
 | |
| 
 | |
| static unsigned long task_h_load(struct task_struct *p)
 | |
| {
 | |
| 	return p->se.avg.load_avg;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void sched_balance_update_blocked_averages(int cpu)
 | |
| {
 | |
| 	bool decayed = false, done = true;
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	struct rq_flags rf;
 | |
| 
 | |
| 	rq_lock_irqsave(rq, &rf);
 | |
| 	update_blocked_load_tick(rq);
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	decayed |= __update_blocked_others(rq, &done);
 | |
| 	decayed |= __update_blocked_fair(rq, &done);
 | |
| 
 | |
| 	update_blocked_load_status(rq, !done);
 | |
| 	if (decayed)
 | |
| 		cpufreq_update_util(rq, 0);
 | |
| 	rq_unlock_irqrestore(rq, &rf);
 | |
| }
 | |
| 
 | |
| /********** Helpers for sched_balance_find_src_group ************************/
 | |
| 
 | |
| /*
 | |
|  * sg_lb_stats - stats of a sched_group required for load-balancing:
 | |
|  */
 | |
| struct sg_lb_stats {
 | |
| 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
 | |
| 	unsigned long group_load;		/* Total load          over the CPUs of the group */
 | |
| 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
 | |
| 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
 | |
| 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
 | |
| 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
 | |
| 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
 | |
| 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
 | |
| 	unsigned int group_weight;
 | |
| 	enum group_type group_type;
 | |
| 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
 | |
| 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
 | |
| 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	unsigned int nr_numa_running;
 | |
| 	unsigned int nr_preferred_running;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * sd_lb_stats - stats of a sched_domain required for load-balancing:
 | |
|  */
 | |
| struct sd_lb_stats {
 | |
| 	struct sched_group *busiest;		/* Busiest group in this sd */
 | |
| 	struct sched_group *local;		/* Local group in this sd */
 | |
| 	unsigned long total_load;		/* Total load of all groups in sd */
 | |
| 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
 | |
| 	unsigned long avg_load;			/* Average load across all groups in sd */
 | |
| 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
 | |
| 
 | |
| 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
 | |
| 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
 | |
| };
 | |
| 
 | |
| static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
 | |
| {
 | |
| 	/*
 | |
| 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
 | |
| 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
 | |
| 	 * We must however set busiest_stat::group_type and
 | |
| 	 * busiest_stat::idle_cpus to the worst busiest group because
 | |
| 	 * update_sd_pick_busiest() reads these before assignment.
 | |
| 	 */
 | |
| 	*sds = (struct sd_lb_stats){
 | |
| 		.busiest = NULL,
 | |
| 		.local = NULL,
 | |
| 		.total_load = 0UL,
 | |
| 		.total_capacity = 0UL,
 | |
| 		.busiest_stat = {
 | |
| 			.idle_cpus = UINT_MAX,
 | |
| 			.group_type = group_has_spare,
 | |
| 		},
 | |
| 	};
 | |
| }
 | |
| 
 | |
| static unsigned long scale_rt_capacity(int cpu)
 | |
| {
 | |
| 	unsigned long max = get_actual_cpu_capacity(cpu);
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long used, free;
 | |
| 	unsigned long irq;
 | |
| 
 | |
| 	irq = cpu_util_irq(rq);
 | |
| 
 | |
| 	if (unlikely(irq >= max))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
 | |
| 	 * (running and not running) with weights 0 and 1024 respectively.
 | |
| 	 */
 | |
| 	used = cpu_util_rt(rq);
 | |
| 	used += cpu_util_dl(rq);
 | |
| 
 | |
| 	if (unlikely(used >= max))
 | |
| 		return 1;
 | |
| 
 | |
| 	free = max - used;
 | |
| 
 | |
| 	return scale_irq_capacity(free, irq, max);
 | |
| }
 | |
| 
 | |
| static void update_cpu_capacity(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	unsigned long capacity = scale_rt_capacity(cpu);
 | |
| 	struct sched_group *sdg = sd->groups;
 | |
| 
 | |
| 	if (!capacity)
 | |
| 		capacity = 1;
 | |
| 
 | |
| 	cpu_rq(cpu)->cpu_capacity = capacity;
 | |
| 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
 | |
| 
 | |
| 	sdg->sgc->capacity = capacity;
 | |
| 	sdg->sgc->min_capacity = capacity;
 | |
| 	sdg->sgc->max_capacity = capacity;
 | |
| }
 | |
| 
 | |
| void update_group_capacity(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	struct sched_domain *child = sd->child;
 | |
| 	struct sched_group *group, *sdg = sd->groups;
 | |
| 	unsigned long capacity, min_capacity, max_capacity;
 | |
| 	unsigned long interval;
 | |
| 
 | |
| 	interval = msecs_to_jiffies(sd->balance_interval);
 | |
| 	interval = clamp(interval, 1UL, max_load_balance_interval);
 | |
| 	sdg->sgc->next_update = jiffies + interval;
 | |
| 
 | |
| 	if (!child) {
 | |
| 		update_cpu_capacity(sd, cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	capacity = 0;
 | |
| 	min_capacity = ULONG_MAX;
 | |
| 	max_capacity = 0;
 | |
| 
 | |
| 	if (child->flags & SD_OVERLAP) {
 | |
| 		/*
 | |
| 		 * SD_OVERLAP domains cannot assume that child groups
 | |
| 		 * span the current group.
 | |
| 		 */
 | |
| 
 | |
| 		for_each_cpu(cpu, sched_group_span(sdg)) {
 | |
| 			unsigned long cpu_cap = capacity_of(cpu);
 | |
| 
 | |
| 			capacity += cpu_cap;
 | |
| 			min_capacity = min(cpu_cap, min_capacity);
 | |
| 			max_capacity = max(cpu_cap, max_capacity);
 | |
| 		}
 | |
| 	} else  {
 | |
| 		/*
 | |
| 		 * !SD_OVERLAP domains can assume that child groups
 | |
| 		 * span the current group.
 | |
| 		 */
 | |
| 
 | |
| 		group = child->groups;
 | |
| 		do {
 | |
| 			struct sched_group_capacity *sgc = group->sgc;
 | |
| 
 | |
| 			capacity += sgc->capacity;
 | |
| 			min_capacity = min(sgc->min_capacity, min_capacity);
 | |
| 			max_capacity = max(sgc->max_capacity, max_capacity);
 | |
| 			group = group->next;
 | |
| 		} while (group != child->groups);
 | |
| 	}
 | |
| 
 | |
| 	sdg->sgc->capacity = capacity;
 | |
| 	sdg->sgc->min_capacity = min_capacity;
 | |
| 	sdg->sgc->max_capacity = max_capacity;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether the capacity of the rq has been noticeably reduced by side
 | |
|  * activity. The imbalance_pct is used for the threshold.
 | |
|  * Return true is the capacity is reduced
 | |
|  */
 | |
| static inline int
 | |
| check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
 | |
| {
 | |
| 	return ((rq->cpu_capacity * sd->imbalance_pct) <
 | |
| 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
 | |
| }
 | |
| 
 | |
| /* Check if the rq has a misfit task */
 | |
| static inline bool check_misfit_status(struct rq *rq)
 | |
| {
 | |
| 	return rq->misfit_task_load;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Group imbalance indicates (and tries to solve) the problem where balancing
 | |
|  * groups is inadequate due to ->cpus_ptr constraints.
 | |
|  *
 | |
|  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 | |
|  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
 | |
|  * Something like:
 | |
|  *
 | |
|  *	{ 0 1 2 3 } { 4 5 6 7 }
 | |
|  *	        *     * * *
 | |
|  *
 | |
|  * If we were to balance group-wise we'd place two tasks in the first group and
 | |
|  * two tasks in the second group. Clearly this is undesired as it will overload
 | |
|  * cpu 3 and leave one of the CPUs in the second group unused.
 | |
|  *
 | |
|  * The current solution to this issue is detecting the skew in the first group
 | |
|  * by noticing the lower domain failed to reach balance and had difficulty
 | |
|  * moving tasks due to affinity constraints.
 | |
|  *
 | |
|  * When this is so detected; this group becomes a candidate for busiest; see
 | |
|  * update_sd_pick_busiest(). And calculate_imbalance() and
 | |
|  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
 | |
|  * to create an effective group imbalance.
 | |
|  *
 | |
|  * This is a somewhat tricky proposition since the next run might not find the
 | |
|  * group imbalance and decide the groups need to be balanced again. A most
 | |
|  * subtle and fragile situation.
 | |
|  */
 | |
| 
 | |
| static inline int sg_imbalanced(struct sched_group *group)
 | |
| {
 | |
| 	return group->sgc->imbalance;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * group_has_capacity returns true if the group has spare capacity that could
 | |
|  * be used by some tasks.
 | |
|  * We consider that a group has spare capacity if the number of task is
 | |
|  * smaller than the number of CPUs or if the utilization is lower than the
 | |
|  * available capacity for CFS tasks.
 | |
|  * For the latter, we use a threshold to stabilize the state, to take into
 | |
|  * account the variance of the tasks' load and to return true if the available
 | |
|  * capacity in meaningful for the load balancer.
 | |
|  * As an example, an available capacity of 1% can appear but it doesn't make
 | |
|  * any benefit for the load balance.
 | |
|  */
 | |
| static inline bool
 | |
| group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	if (sgs->sum_nr_running < sgs->group_weight)
 | |
| 		return true;
 | |
| 
 | |
| 	if ((sgs->group_capacity * imbalance_pct) <
 | |
| 			(sgs->group_runnable * 100))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((sgs->group_capacity * 100) >
 | |
| 			(sgs->group_util * imbalance_pct))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  group_is_overloaded returns true if the group has more tasks than it can
 | |
|  *  handle.
 | |
|  *  group_is_overloaded is not equals to !group_has_capacity because a group
 | |
|  *  with the exact right number of tasks, has no more spare capacity but is not
 | |
|  *  overloaded so both group_has_capacity and group_is_overloaded return
 | |
|  *  false.
 | |
|  */
 | |
| static inline bool
 | |
| group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	if (sgs->sum_nr_running <= sgs->group_weight)
 | |
| 		return false;
 | |
| 
 | |
| 	if ((sgs->group_capacity * 100) <
 | |
| 			(sgs->group_util * imbalance_pct))
 | |
| 		return true;
 | |
| 
 | |
| 	if ((sgs->group_capacity * imbalance_pct) <
 | |
| 			(sgs->group_runnable * 100))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline enum
 | |
| group_type group_classify(unsigned int imbalance_pct,
 | |
| 			  struct sched_group *group,
 | |
| 			  struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	if (group_is_overloaded(imbalance_pct, sgs))
 | |
| 		return group_overloaded;
 | |
| 
 | |
| 	if (sg_imbalanced(group))
 | |
| 		return group_imbalanced;
 | |
| 
 | |
| 	if (sgs->group_asym_packing)
 | |
| 		return group_asym_packing;
 | |
| 
 | |
| 	if (sgs->group_smt_balance)
 | |
| 		return group_smt_balance;
 | |
| 
 | |
| 	if (sgs->group_misfit_task_load)
 | |
| 		return group_misfit_task;
 | |
| 
 | |
| 	if (!group_has_capacity(imbalance_pct, sgs))
 | |
| 		return group_fully_busy;
 | |
| 
 | |
| 	return group_has_spare;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sched_use_asym_prio - Check whether asym_packing priority must be used
 | |
|  * @sd:		The scheduling domain of the load balancing
 | |
|  * @cpu:	A CPU
 | |
|  *
 | |
|  * Always use CPU priority when balancing load between SMT siblings. When
 | |
|  * balancing load between cores, it is not sufficient that @cpu is idle. Only
 | |
|  * use CPU priority if the whole core is idle.
 | |
|  *
 | |
|  * Returns: True if the priority of @cpu must be followed. False otherwise.
 | |
|  */
 | |
| static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	if (!(sd->flags & SD_ASYM_PACKING))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!sched_smt_active())
 | |
| 		return true;
 | |
| 
 | |
| 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
 | |
| }
 | |
| 
 | |
| static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
 | |
| 	 * if it has higher priority than @src_cpu.
 | |
| 	 */
 | |
| 	return sched_use_asym_prio(sd, dst_cpu) &&
 | |
| 		sched_asym_prefer(dst_cpu, src_cpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sched_group_asym - Check if the destination CPU can do asym_packing balance
 | |
|  * @env:	The load balancing environment
 | |
|  * @sgs:	Load-balancing statistics of the candidate busiest group
 | |
|  * @group:	The candidate busiest group
 | |
|  *
 | |
|  * @env::dst_cpu can do asym_packing if it has higher priority than the
 | |
|  * preferred CPU of @group.
 | |
|  *
 | |
|  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
 | |
|  * otherwise.
 | |
|  */
 | |
| static inline bool
 | |
| sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
 | |
| {
 | |
| 	/*
 | |
| 	 * CPU priorities do not make sense for SMT cores with more than one
 | |
| 	 * busy sibling.
 | |
| 	 */
 | |
| 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
 | |
| 	    (sgs->group_weight - sgs->idle_cpus != 1))
 | |
| 		return false;
 | |
| 
 | |
| 	return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
 | |
| }
 | |
| 
 | |
| /* One group has more than one SMT CPU while the other group does not */
 | |
| static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
 | |
| 				    struct sched_group *sg2)
 | |
| {
 | |
| 	if (!sg1 || !sg2)
 | |
| 		return false;
 | |
| 
 | |
| 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
 | |
| 		(sg2->flags & SD_SHARE_CPUCAPACITY);
 | |
| }
 | |
| 
 | |
| static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
 | |
| 			       struct sched_group *group)
 | |
| {
 | |
| 	if (!env->idle)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * For SMT source group, it is better to move a task
 | |
| 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
 | |
| 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
 | |
| 	 * will not be on.
 | |
| 	 */
 | |
| 	if (group->flags & SD_SHARE_CPUCAPACITY &&
 | |
| 	    sgs->sum_h_nr_running > 1)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline long sibling_imbalance(struct lb_env *env,
 | |
| 				    struct sd_lb_stats *sds,
 | |
| 				    struct sg_lb_stats *busiest,
 | |
| 				    struct sg_lb_stats *local)
 | |
| {
 | |
| 	int ncores_busiest, ncores_local;
 | |
| 	long imbalance;
 | |
| 
 | |
| 	if (!env->idle || !busiest->sum_nr_running)
 | |
| 		return 0;
 | |
| 
 | |
| 	ncores_busiest = sds->busiest->cores;
 | |
| 	ncores_local = sds->local->cores;
 | |
| 
 | |
| 	if (ncores_busiest == ncores_local) {
 | |
| 		imbalance = busiest->sum_nr_running;
 | |
| 		lsub_positive(&imbalance, local->sum_nr_running);
 | |
| 		return imbalance;
 | |
| 	}
 | |
| 
 | |
| 	/* Balance such that nr_running/ncores ratio are same on both groups */
 | |
| 	imbalance = ncores_local * busiest->sum_nr_running;
 | |
| 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
 | |
| 	/* Normalize imbalance and do rounding on normalization */
 | |
| 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
 | |
| 	imbalance /= ncores_local + ncores_busiest;
 | |
| 
 | |
| 	/* Take advantage of resource in an empty sched group */
 | |
| 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
 | |
| 	    busiest->sum_nr_running > 1)
 | |
| 		imbalance = 2;
 | |
| 
 | |
| 	return imbalance;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
 | |
| {
 | |
| 	/*
 | |
| 	 * When there is more than 1 task, the group_overloaded case already
 | |
| 	 * takes care of cpu with reduced capacity
 | |
| 	 */
 | |
| 	if (rq->cfs.h_nr_runnable != 1)
 | |
| 		return false;
 | |
| 
 | |
| 	return check_cpu_capacity(rq, sd);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 | |
|  * @env: The load balancing environment.
 | |
|  * @sds: Load-balancing data with statistics of the local group.
 | |
|  * @group: sched_group whose statistics are to be updated.
 | |
|  * @sgs: variable to hold the statistics for this group.
 | |
|  * @sg_overloaded: sched_group is overloaded
 | |
|  * @sg_overutilized: sched_group is overutilized
 | |
|  */
 | |
| static inline void update_sg_lb_stats(struct lb_env *env,
 | |
| 				      struct sd_lb_stats *sds,
 | |
| 				      struct sched_group *group,
 | |
| 				      struct sg_lb_stats *sgs,
 | |
| 				      bool *sg_overloaded,
 | |
| 				      bool *sg_overutilized)
 | |
| {
 | |
| 	int i, nr_running, local_group, sd_flags = env->sd->flags;
 | |
| 	bool balancing_at_rd = !env->sd->parent;
 | |
| 
 | |
| 	memset(sgs, 0, sizeof(*sgs));
 | |
| 
 | |
| 	local_group = group == sds->local;
 | |
| 
 | |
| 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 		unsigned long load = cpu_load(rq);
 | |
| 
 | |
| 		sgs->group_load += load;
 | |
| 		sgs->group_util += cpu_util_cfs(i);
 | |
| 		sgs->group_runnable += cpu_runnable(rq);
 | |
| 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
 | |
| 
 | |
| 		nr_running = rq->nr_running;
 | |
| 		sgs->sum_nr_running += nr_running;
 | |
| 
 | |
| 		if (cpu_overutilized(i))
 | |
| 			*sg_overutilized = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to call idle_cpu() if nr_running is not 0
 | |
| 		 */
 | |
| 		if (!nr_running && idle_cpu(i)) {
 | |
| 			sgs->idle_cpus++;
 | |
| 			/* Idle cpu can't have misfit task */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Overload indicator is only updated at root domain */
 | |
| 		if (balancing_at_rd && nr_running > 1)
 | |
| 			*sg_overloaded = 1;
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 		/* Only fbq_classify_group() uses this to classify NUMA groups */
 | |
| 		if (sd_flags & SD_NUMA) {
 | |
| 			sgs->nr_numa_running += rq->nr_numa_running;
 | |
| 			sgs->nr_preferred_running += rq->nr_preferred_running;
 | |
| 		}
 | |
| #endif
 | |
| 		if (local_group)
 | |
| 			continue;
 | |
| 
 | |
| 		if (sd_flags & SD_ASYM_CPUCAPACITY) {
 | |
| 			/* Check for a misfit task on the cpu */
 | |
| 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
 | |
| 				sgs->group_misfit_task_load = rq->misfit_task_load;
 | |
| 				*sg_overloaded = 1;
 | |
| 			}
 | |
| 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
 | |
| 			/* Check for a task running on a CPU with reduced capacity */
 | |
| 			if (sgs->group_misfit_task_load < load)
 | |
| 				sgs->group_misfit_task_load = load;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sgs->group_capacity = group->sgc->capacity;
 | |
| 
 | |
| 	sgs->group_weight = group->group_weight;
 | |
| 
 | |
| 	/* Check if dst CPU is idle and preferred to this group */
 | |
| 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
 | |
| 	    sched_group_asym(env, sgs, group))
 | |
| 		sgs->group_asym_packing = 1;
 | |
| 
 | |
| 	/* Check for loaded SMT group to be balanced to dst CPU */
 | |
| 	if (!local_group && smt_balance(env, sgs, group))
 | |
| 		sgs->group_smt_balance = 1;
 | |
| 
 | |
| 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
 | |
| 
 | |
| 	/* Computing avg_load makes sense only when group is overloaded */
 | |
| 	if (sgs->group_type == group_overloaded)
 | |
| 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
 | |
| 				sgs->group_capacity;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sd_pick_busiest - return 1 on busiest group
 | |
|  * @env: The load balancing environment.
 | |
|  * @sds: sched_domain statistics
 | |
|  * @sg: sched_group candidate to be checked for being the busiest
 | |
|  * @sgs: sched_group statistics
 | |
|  *
 | |
|  * Determine if @sg is a busier group than the previously selected
 | |
|  * busiest group.
 | |
|  *
 | |
|  * Return: %true if @sg is a busier group than the previously selected
 | |
|  * busiest group. %false otherwise.
 | |
|  */
 | |
| static bool update_sd_pick_busiest(struct lb_env *env,
 | |
| 				   struct sd_lb_stats *sds,
 | |
| 				   struct sched_group *sg,
 | |
| 				   struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	struct sg_lb_stats *busiest = &sds->busiest_stat;
 | |
| 
 | |
| 	/* Make sure that there is at least one task to pull */
 | |
| 	if (!sgs->sum_h_nr_running)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't try to pull misfit tasks we can't help.
 | |
| 	 * We can use max_capacity here as reduction in capacity on some
 | |
| 	 * CPUs in the group should either be possible to resolve
 | |
| 	 * internally or be covered by avg_load imbalance (eventually).
 | |
| 	 */
 | |
| 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
 | |
| 	    (sgs->group_type == group_misfit_task) &&
 | |
| 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
 | |
| 	     sds->local_stat.group_type != group_has_spare))
 | |
| 		return false;
 | |
| 
 | |
| 	if (sgs->group_type > busiest->group_type)
 | |
| 		return true;
 | |
| 
 | |
| 	if (sgs->group_type < busiest->group_type)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The candidate and the current busiest group are the same type of
 | |
| 	 * group. Let check which one is the busiest according to the type.
 | |
| 	 */
 | |
| 
 | |
| 	switch (sgs->group_type) {
 | |
| 	case group_overloaded:
 | |
| 		/* Select the overloaded group with highest avg_load. */
 | |
| 		return sgs->avg_load > busiest->avg_load;
 | |
| 
 | |
| 	case group_imbalanced:
 | |
| 		/*
 | |
| 		 * Select the 1st imbalanced group as we don't have any way to
 | |
| 		 * choose one more than another.
 | |
| 		 */
 | |
| 		return false;
 | |
| 
 | |
| 	case group_asym_packing:
 | |
| 		/* Prefer to move from lowest priority CPU's work */
 | |
| 		return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
 | |
| 					 READ_ONCE(sg->asym_prefer_cpu));
 | |
| 
 | |
| 	case group_misfit_task:
 | |
| 		/*
 | |
| 		 * If we have more than one misfit sg go with the biggest
 | |
| 		 * misfit.
 | |
| 		 */
 | |
| 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
 | |
| 
 | |
| 	case group_smt_balance:
 | |
| 		/*
 | |
| 		 * Check if we have spare CPUs on either SMT group to
 | |
| 		 * choose has spare or fully busy handling.
 | |
| 		 */
 | |
| 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
 | |
| 			goto has_spare;
 | |
| 
 | |
| 		fallthrough;
 | |
| 
 | |
| 	case group_fully_busy:
 | |
| 		/*
 | |
| 		 * Select the fully busy group with highest avg_load. In
 | |
| 		 * theory, there is no need to pull task from such kind of
 | |
| 		 * group because tasks have all compute capacity that they need
 | |
| 		 * but we can still improve the overall throughput by reducing
 | |
| 		 * contention when accessing shared HW resources.
 | |
| 		 *
 | |
| 		 * XXX for now avg_load is not computed and always 0 so we
 | |
| 		 * select the 1st one, except if @sg is composed of SMT
 | |
| 		 * siblings.
 | |
| 		 */
 | |
| 
 | |
| 		if (sgs->avg_load < busiest->avg_load)
 | |
| 			return false;
 | |
| 
 | |
| 		if (sgs->avg_load == busiest->avg_load) {
 | |
| 			/*
 | |
| 			 * SMT sched groups need more help than non-SMT groups.
 | |
| 			 * If @sg happens to also be SMT, either choice is good.
 | |
| 			 */
 | |
| 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
 | |
| 				return false;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case group_has_spare:
 | |
| 		/*
 | |
| 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
 | |
| 		 * as we do not want to pull task off SMT core with one task
 | |
| 		 * and make the core idle.
 | |
| 		 */
 | |
| 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
 | |
| 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
 | |
| 				return false;
 | |
| 			else
 | |
| 				return true;
 | |
| 		}
 | |
| has_spare:
 | |
| 
 | |
| 		/*
 | |
| 		 * Select not overloaded group with lowest number of idle CPUs
 | |
| 		 * and highest number of running tasks. We could also compare
 | |
| 		 * the spare capacity which is more stable but it can end up
 | |
| 		 * that the group has less spare capacity but finally more idle
 | |
| 		 * CPUs which means less opportunity to pull tasks.
 | |
| 		 */
 | |
| 		if (sgs->idle_cpus > busiest->idle_cpus)
 | |
| 			return false;
 | |
| 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
 | |
| 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
 | |
| 			return false;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Candidate sg has no more than one task per CPU and has higher
 | |
| 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
 | |
| 	 * throughput. Maximize throughput, power/energy consequences are not
 | |
| 	 * considered.
 | |
| 	 */
 | |
| 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
 | |
| 	    (sgs->group_type <= group_fully_busy) &&
 | |
| 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
 | |
| 		return regular;
 | |
| 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
 | |
| 		return remote;
 | |
| 	return all;
 | |
| }
 | |
| 
 | |
| static inline enum fbq_type fbq_classify_rq(struct rq *rq)
 | |
| {
 | |
| 	if (rq->nr_running > rq->nr_numa_running)
 | |
| 		return regular;
 | |
| 	if (rq->nr_running > rq->nr_preferred_running)
 | |
| 		return remote;
 | |
| 	return all;
 | |
| }
 | |
| #else
 | |
| static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	return all;
 | |
| }
 | |
| 
 | |
| static inline enum fbq_type fbq_classify_rq(struct rq *rq)
 | |
| {
 | |
| 	return regular;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| 
 | |
| struct sg_lb_stats;
 | |
| 
 | |
| /*
 | |
|  * task_running_on_cpu - return 1 if @p is running on @cpu.
 | |
|  */
 | |
| 
 | |
| static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	/* Task has no contribution or is new */
 | |
| 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (task_on_rq_queued(p))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idle_cpu_without - would a given CPU be idle without p ?
 | |
|  * @cpu: the processor on which idleness is tested.
 | |
|  * @p: task which should be ignored.
 | |
|  *
 | |
|  * Return: 1 if the CPU would be idle. 0 otherwise.
 | |
|  */
 | |
| static int idle_cpu_without(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	if (rq->curr != rq->idle && rq->curr != p)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * rq->nr_running can't be used but an updated version without the
 | |
| 	 * impact of p on cpu must be used instead. The updated nr_running
 | |
| 	 * be computed and tested before calling idle_cpu_without().
 | |
| 	 */
 | |
| 
 | |
| 	if (rq->ttwu_pending)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
 | |
|  * @sd: The sched_domain level to look for idlest group.
 | |
|  * @group: sched_group whose statistics are to be updated.
 | |
|  * @sgs: variable to hold the statistics for this group.
 | |
|  * @p: The task for which we look for the idlest group/CPU.
 | |
|  */
 | |
| static inline void update_sg_wakeup_stats(struct sched_domain *sd,
 | |
| 					  struct sched_group *group,
 | |
| 					  struct sg_lb_stats *sgs,
 | |
| 					  struct task_struct *p)
 | |
| {
 | |
| 	int i, nr_running;
 | |
| 
 | |
| 	memset(sgs, 0, sizeof(*sgs));
 | |
| 
 | |
| 	/* Assume that task can't fit any CPU of the group */
 | |
| 	if (sd->flags & SD_ASYM_CPUCAPACITY)
 | |
| 		sgs->group_misfit_task_load = 1;
 | |
| 
 | |
| 	for_each_cpu(i, sched_group_span(group)) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 		unsigned int local;
 | |
| 
 | |
| 		sgs->group_load += cpu_load_without(rq, p);
 | |
| 		sgs->group_util += cpu_util_without(i, p);
 | |
| 		sgs->group_runnable += cpu_runnable_without(rq, p);
 | |
| 		local = task_running_on_cpu(i, p);
 | |
| 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
 | |
| 
 | |
| 		nr_running = rq->nr_running - local;
 | |
| 		sgs->sum_nr_running += nr_running;
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to call idle_cpu_without() if nr_running is not 0
 | |
| 		 */
 | |
| 		if (!nr_running && idle_cpu_without(i, p))
 | |
| 			sgs->idle_cpus++;
 | |
| 
 | |
| 		/* Check if task fits in the CPU */
 | |
| 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
 | |
| 		    sgs->group_misfit_task_load &&
 | |
| 		    task_fits_cpu(p, i))
 | |
| 			sgs->group_misfit_task_load = 0;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	sgs->group_capacity = group->sgc->capacity;
 | |
| 
 | |
| 	sgs->group_weight = group->group_weight;
 | |
| 
 | |
| 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Computing avg_load makes sense only when group is fully busy or
 | |
| 	 * overloaded
 | |
| 	 */
 | |
| 	if (sgs->group_type == group_fully_busy ||
 | |
| 		sgs->group_type == group_overloaded)
 | |
| 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
 | |
| 				sgs->group_capacity;
 | |
| }
 | |
| 
 | |
| static bool update_pick_idlest(struct sched_group *idlest,
 | |
| 			       struct sg_lb_stats *idlest_sgs,
 | |
| 			       struct sched_group *group,
 | |
| 			       struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	if (sgs->group_type < idlest_sgs->group_type)
 | |
| 		return true;
 | |
| 
 | |
| 	if (sgs->group_type > idlest_sgs->group_type)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The candidate and the current idlest group are the same type of
 | |
| 	 * group. Let check which one is the idlest according to the type.
 | |
| 	 */
 | |
| 
 | |
| 	switch (sgs->group_type) {
 | |
| 	case group_overloaded:
 | |
| 	case group_fully_busy:
 | |
| 		/* Select the group with lowest avg_load. */
 | |
| 		if (idlest_sgs->avg_load <= sgs->avg_load)
 | |
| 			return false;
 | |
| 		break;
 | |
| 
 | |
| 	case group_imbalanced:
 | |
| 	case group_asym_packing:
 | |
| 	case group_smt_balance:
 | |
| 		/* Those types are not used in the slow wakeup path */
 | |
| 		return false;
 | |
| 
 | |
| 	case group_misfit_task:
 | |
| 		/* Select group with the highest max capacity */
 | |
| 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
 | |
| 			return false;
 | |
| 		break;
 | |
| 
 | |
| 	case group_has_spare:
 | |
| 		/* Select group with most idle CPUs */
 | |
| 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
 | |
| 			return false;
 | |
| 
 | |
| 		/* Select group with lowest group_util */
 | |
| 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
 | |
| 			idlest_sgs->group_util <= sgs->group_util)
 | |
| 			return false;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
 | |
|  * domain.
 | |
|  *
 | |
|  * Assumes p is allowed on at least one CPU in sd.
 | |
|  */
 | |
| static struct sched_group *
 | |
| sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
 | |
| {
 | |
| 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
 | |
| 	struct sg_lb_stats local_sgs, tmp_sgs;
 | |
| 	struct sg_lb_stats *sgs;
 | |
| 	unsigned long imbalance;
 | |
| 	struct sg_lb_stats idlest_sgs = {
 | |
| 			.avg_load = UINT_MAX,
 | |
| 			.group_type = group_overloaded,
 | |
| 	};
 | |
| 
 | |
| 	do {
 | |
| 		int local_group;
 | |
| 
 | |
| 		/* Skip over this group if it has no CPUs allowed */
 | |
| 		if (!cpumask_intersects(sched_group_span(group),
 | |
| 					p->cpus_ptr))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Skip over this group if no cookie matched */
 | |
| 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
 | |
| 			continue;
 | |
| 
 | |
| 		local_group = cpumask_test_cpu(this_cpu,
 | |
| 					       sched_group_span(group));
 | |
| 
 | |
| 		if (local_group) {
 | |
| 			sgs = &local_sgs;
 | |
| 			local = group;
 | |
| 		} else {
 | |
| 			sgs = &tmp_sgs;
 | |
| 		}
 | |
| 
 | |
| 		update_sg_wakeup_stats(sd, group, sgs, p);
 | |
| 
 | |
| 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
 | |
| 			idlest = group;
 | |
| 			idlest_sgs = *sgs;
 | |
| 		}
 | |
| 
 | |
| 	} while (group = group->next, group != sd->groups);
 | |
| 
 | |
| 
 | |
| 	/* There is no idlest group to push tasks to */
 | |
| 	if (!idlest)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* The local group has been skipped because of CPU affinity */
 | |
| 	if (!local)
 | |
| 		return idlest;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the local group is idler than the selected idlest group
 | |
| 	 * don't try and push the task.
 | |
| 	 */
 | |
| 	if (local_sgs.group_type < idlest_sgs.group_type)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the local group is busier than the selected idlest group
 | |
| 	 * try and push the task.
 | |
| 	 */
 | |
| 	if (local_sgs.group_type > idlest_sgs.group_type)
 | |
| 		return idlest;
 | |
| 
 | |
| 	switch (local_sgs.group_type) {
 | |
| 	case group_overloaded:
 | |
| 	case group_fully_busy:
 | |
| 
 | |
| 		/* Calculate allowed imbalance based on load */
 | |
| 		imbalance = scale_load_down(NICE_0_LOAD) *
 | |
| 				(sd->imbalance_pct-100) / 100;
 | |
| 
 | |
| 		/*
 | |
| 		 * When comparing groups across NUMA domains, it's possible for
 | |
| 		 * the local domain to be very lightly loaded relative to the
 | |
| 		 * remote domains but "imbalance" skews the comparison making
 | |
| 		 * remote CPUs look much more favourable. When considering
 | |
| 		 * cross-domain, add imbalance to the load on the remote node
 | |
| 		 * and consider staying local.
 | |
| 		 */
 | |
| 
 | |
| 		if ((sd->flags & SD_NUMA) &&
 | |
| 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
 | |
| 			return NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the local group is less loaded than the selected
 | |
| 		 * idlest group don't try and push any tasks.
 | |
| 		 */
 | |
| 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
 | |
| 			return NULL;
 | |
| 		break;
 | |
| 
 | |
| 	case group_imbalanced:
 | |
| 	case group_asym_packing:
 | |
| 	case group_smt_balance:
 | |
| 		/* Those type are not used in the slow wakeup path */
 | |
| 		return NULL;
 | |
| 
 | |
| 	case group_misfit_task:
 | |
| 		/* Select group with the highest max capacity */
 | |
| 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
 | |
| 			return NULL;
 | |
| 		break;
 | |
| 
 | |
| 	case group_has_spare:
 | |
| #ifdef CONFIG_NUMA
 | |
| 		if (sd->flags & SD_NUMA) {
 | |
| 			int imb_numa_nr = sd->imb_numa_nr;
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 			int idlest_cpu;
 | |
| 			/*
 | |
| 			 * If there is spare capacity at NUMA, try to select
 | |
| 			 * the preferred node
 | |
| 			 */
 | |
| 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
 | |
| 				return NULL;
 | |
| 
 | |
| 			idlest_cpu = cpumask_first(sched_group_span(idlest));
 | |
| 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
 | |
| 				return idlest;
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 			/*
 | |
| 			 * Otherwise, keep the task close to the wakeup source
 | |
| 			 * and improve locality if the number of running tasks
 | |
| 			 * would remain below threshold where an imbalance is
 | |
| 			 * allowed while accounting for the possibility the
 | |
| 			 * task is pinned to a subset of CPUs. If there is a
 | |
| 			 * real need of migration, periodic load balance will
 | |
| 			 * take care of it.
 | |
| 			 */
 | |
| 			if (p->nr_cpus_allowed != NR_CPUS) {
 | |
| 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
 | |
| 
 | |
| 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
 | |
| 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
 | |
| 			}
 | |
| 
 | |
| 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
 | |
| 			if (!adjust_numa_imbalance(imbalance,
 | |
| 						   local_sgs.sum_nr_running + 1,
 | |
| 						   imb_numa_nr)) {
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| 		/*
 | |
| 		 * Select group with highest number of idle CPUs. We could also
 | |
| 		 * compare the utilization which is more stable but it can end
 | |
| 		 * up that the group has less spare capacity but finally more
 | |
| 		 * idle CPUs which means more opportunity to run task.
 | |
| 		 */
 | |
| 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
 | |
| 			return NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return idlest;
 | |
| }
 | |
| 
 | |
| static void update_idle_cpu_scan(struct lb_env *env,
 | |
| 				 unsigned long sum_util)
 | |
| {
 | |
| 	struct sched_domain_shared *sd_share;
 | |
| 	int llc_weight, pct;
 | |
| 	u64 x, y, tmp;
 | |
| 	/*
 | |
| 	 * Update the number of CPUs to scan in LLC domain, which could
 | |
| 	 * be used as a hint in select_idle_cpu(). The update of sd_share
 | |
| 	 * could be expensive because it is within a shared cache line.
 | |
| 	 * So the write of this hint only occurs during periodic load
 | |
| 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
 | |
| 	 * can fire way more frequently than the former.
 | |
| 	 */
 | |
| 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
 | |
| 		return;
 | |
| 
 | |
| 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
 | |
| 	if (env->sd->span_weight != llc_weight)
 | |
| 		return;
 | |
| 
 | |
| 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
 | |
| 	if (!sd_share)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The number of CPUs to search drops as sum_util increases, when
 | |
| 	 * sum_util hits 85% or above, the scan stops.
 | |
| 	 * The reason to choose 85% as the threshold is because this is the
 | |
| 	 * imbalance_pct(117) when a LLC sched group is overloaded.
 | |
| 	 *
 | |
| 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
 | |
| 	 * and y'= y / SCHED_CAPACITY_SCALE
 | |
| 	 *
 | |
| 	 * x is the ratio of sum_util compared to the CPU capacity:
 | |
| 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
 | |
| 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
 | |
| 	 * and the number of CPUs to scan is calculated by:
 | |
| 	 *
 | |
| 	 * nr_scan = llc_weight * y'                                    [2]
 | |
| 	 *
 | |
| 	 * When x hits the threshold of overloaded, AKA, when
 | |
| 	 * x = 100 / pct, y drops to 0. According to [1],
 | |
| 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
 | |
| 	 *
 | |
| 	 * Scale x by SCHED_CAPACITY_SCALE:
 | |
| 	 * x' = sum_util / llc_weight;                                  [3]
 | |
| 	 *
 | |
| 	 * and finally [1] becomes:
 | |
| 	 * y = SCHED_CAPACITY_SCALE -
 | |
| 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
 | |
| 	 *
 | |
| 	 */
 | |
| 	/* equation [3] */
 | |
| 	x = sum_util;
 | |
| 	do_div(x, llc_weight);
 | |
| 
 | |
| 	/* equation [4] */
 | |
| 	pct = env->sd->imbalance_pct;
 | |
| 	tmp = x * x * pct * pct;
 | |
| 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
 | |
| 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
 | |
| 	y = SCHED_CAPACITY_SCALE - tmp;
 | |
| 
 | |
| 	/* equation [2] */
 | |
| 	y *= llc_weight;
 | |
| 	do_div(y, SCHED_CAPACITY_SCALE);
 | |
| 	if ((int)y != sd_share->nr_idle_scan)
 | |
| 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
 | |
|  * @env: The load balancing environment.
 | |
|  * @sds: variable to hold the statistics for this sched_domain.
 | |
|  */
 | |
| 
 | |
| static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
 | |
| {
 | |
| 	struct sched_group *sg = env->sd->groups;
 | |
| 	struct sg_lb_stats *local = &sds->local_stat;
 | |
| 	struct sg_lb_stats tmp_sgs;
 | |
| 	unsigned long sum_util = 0;
 | |
| 	bool sg_overloaded = 0, sg_overutilized = 0;
 | |
| 
 | |
| 	do {
 | |
| 		struct sg_lb_stats *sgs = &tmp_sgs;
 | |
| 		int local_group;
 | |
| 
 | |
| 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
 | |
| 		if (local_group) {
 | |
| 			sds->local = sg;
 | |
| 			sgs = local;
 | |
| 
 | |
| 			if (env->idle != CPU_NEWLY_IDLE ||
 | |
| 			    time_after_eq(jiffies, sg->sgc->next_update))
 | |
| 				update_group_capacity(env->sd, env->dst_cpu);
 | |
| 		}
 | |
| 
 | |
| 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
 | |
| 
 | |
| 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
 | |
| 			sds->busiest = sg;
 | |
| 			sds->busiest_stat = *sgs;
 | |
| 		}
 | |
| 
 | |
| 		/* Now, start updating sd_lb_stats */
 | |
| 		sds->total_load += sgs->group_load;
 | |
| 		sds->total_capacity += sgs->group_capacity;
 | |
| 
 | |
| 		sum_util += sgs->group_util;
 | |
| 		sg = sg->next;
 | |
| 	} while (sg != env->sd->groups);
 | |
| 
 | |
| 	/*
 | |
| 	 * Indicate that the child domain of the busiest group prefers tasks
 | |
| 	 * go to a child's sibling domains first. NB the flags of a sched group
 | |
| 	 * are those of the child domain.
 | |
| 	 */
 | |
| 	if (sds->busiest)
 | |
| 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
 | |
| 
 | |
| 
 | |
| 	if (env->sd->flags & SD_NUMA)
 | |
| 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
 | |
| 
 | |
| 	if (!env->sd->parent) {
 | |
| 		/* update overload indicator if we are at root domain */
 | |
| 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
 | |
| 
 | |
| 		/* Update over-utilization (tipping point, U >= 0) indicator */
 | |
| 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
 | |
| 	} else if (sg_overutilized) {
 | |
| 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
 | |
| 	}
 | |
| 
 | |
| 	update_idle_cpu_scan(env, sum_util);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * calculate_imbalance - Calculate the amount of imbalance present within the
 | |
|  *			 groups of a given sched_domain during load balance.
 | |
|  * @env: load balance environment
 | |
|  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 | |
|  */
 | |
| static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
 | |
| {
 | |
| 	struct sg_lb_stats *local, *busiest;
 | |
| 
 | |
| 	local = &sds->local_stat;
 | |
| 	busiest = &sds->busiest_stat;
 | |
| 
 | |
| 	if (busiest->group_type == group_misfit_task) {
 | |
| 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
 | |
| 			/* Set imbalance to allow misfit tasks to be balanced. */
 | |
| 			env->migration_type = migrate_misfit;
 | |
| 			env->imbalance = 1;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Set load imbalance to allow moving task from cpu
 | |
| 			 * with reduced capacity.
 | |
| 			 */
 | |
| 			env->migration_type = migrate_load;
 | |
| 			env->imbalance = busiest->group_misfit_task_load;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (busiest->group_type == group_asym_packing) {
 | |
| 		/*
 | |
| 		 * In case of asym capacity, we will try to migrate all load to
 | |
| 		 * the preferred CPU.
 | |
| 		 */
 | |
| 		env->migration_type = migrate_task;
 | |
| 		env->imbalance = busiest->sum_h_nr_running;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (busiest->group_type == group_smt_balance) {
 | |
| 		/* Reduce number of tasks sharing CPU capacity */
 | |
| 		env->migration_type = migrate_task;
 | |
| 		env->imbalance = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (busiest->group_type == group_imbalanced) {
 | |
| 		/*
 | |
| 		 * In the group_imb case we cannot rely on group-wide averages
 | |
| 		 * to ensure CPU-load equilibrium, try to move any task to fix
 | |
| 		 * the imbalance. The next load balance will take care of
 | |
| 		 * balancing back the system.
 | |
| 		 */
 | |
| 		env->migration_type = migrate_task;
 | |
| 		env->imbalance = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to use spare capacity of local group without overloading it or
 | |
| 	 * emptying busiest.
 | |
| 	 */
 | |
| 	if (local->group_type == group_has_spare) {
 | |
| 		if ((busiest->group_type > group_fully_busy) &&
 | |
| 		    !(env->sd->flags & SD_SHARE_LLC)) {
 | |
| 			/*
 | |
| 			 * If busiest is overloaded, try to fill spare
 | |
| 			 * capacity. This might end up creating spare capacity
 | |
| 			 * in busiest or busiest still being overloaded but
 | |
| 			 * there is no simple way to directly compute the
 | |
| 			 * amount of load to migrate in order to balance the
 | |
| 			 * system.
 | |
| 			 */
 | |
| 			env->migration_type = migrate_util;
 | |
| 			env->imbalance = max(local->group_capacity, local->group_util) -
 | |
| 					 local->group_util;
 | |
| 
 | |
| 			/*
 | |
| 			 * In some cases, the group's utilization is max or even
 | |
| 			 * higher than capacity because of migrations but the
 | |
| 			 * local CPU is (newly) idle. There is at least one
 | |
| 			 * waiting task in this overloaded busiest group. Let's
 | |
| 			 * try to pull it.
 | |
| 			 */
 | |
| 			if (env->idle && env->imbalance == 0) {
 | |
| 				env->migration_type = migrate_task;
 | |
| 				env->imbalance = 1;
 | |
| 			}
 | |
| 
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
 | |
| 			/*
 | |
| 			 * When prefer sibling, evenly spread running tasks on
 | |
| 			 * groups.
 | |
| 			 */
 | |
| 			env->migration_type = migrate_task;
 | |
| 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
 | |
| 		} else {
 | |
| 
 | |
| 			/*
 | |
| 			 * If there is no overload, we just want to even the number of
 | |
| 			 * idle CPUs.
 | |
| 			 */
 | |
| 			env->migration_type = migrate_task;
 | |
| 			env->imbalance = max_t(long, 0,
 | |
| 					       (local->idle_cpus - busiest->idle_cpus));
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 		/* Consider allowing a small imbalance between NUMA groups */
 | |
| 		if (env->sd->flags & SD_NUMA) {
 | |
| 			env->imbalance = adjust_numa_imbalance(env->imbalance,
 | |
| 							       local->sum_nr_running + 1,
 | |
| 							       env->sd->imb_numa_nr);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/* Number of tasks to move to restore balance */
 | |
| 		env->imbalance >>= 1;
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Local is fully busy but has to take more load to relieve the
 | |
| 	 * busiest group
 | |
| 	 */
 | |
| 	if (local->group_type < group_overloaded) {
 | |
| 		/*
 | |
| 		 * Local will become overloaded so the avg_load metrics are
 | |
| 		 * finally needed.
 | |
| 		 */
 | |
| 
 | |
| 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
 | |
| 				  local->group_capacity;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the local group is more loaded than the selected
 | |
| 		 * busiest group don't try to pull any tasks.
 | |
| 		 */
 | |
| 		if (local->avg_load >= busiest->avg_load) {
 | |
| 			env->imbalance = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
 | |
| 				sds->total_capacity;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the local group is more loaded than the average system
 | |
| 		 * load, don't try to pull any tasks.
 | |
| 		 */
 | |
| 		if (local->avg_load >= sds->avg_load) {
 | |
| 			env->imbalance = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Both group are or will become overloaded and we're trying to get all
 | |
| 	 * the CPUs to the average_load, so we don't want to push ourselves
 | |
| 	 * above the average load, nor do we wish to reduce the max loaded CPU
 | |
| 	 * below the average load. At the same time, we also don't want to
 | |
| 	 * reduce the group load below the group capacity. Thus we look for
 | |
| 	 * the minimum possible imbalance.
 | |
| 	 */
 | |
| 	env->migration_type = migrate_load;
 | |
| 	env->imbalance = min(
 | |
| 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
 | |
| 		(sds->avg_load - local->avg_load) * local->group_capacity
 | |
| 	) / SCHED_CAPACITY_SCALE;
 | |
| }
 | |
| 
 | |
| /******* sched_balance_find_src_group() helpers end here *********************/
 | |
| 
 | |
| /*
 | |
|  * Decision matrix according to the local and busiest group type:
 | |
|  *
 | |
|  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
 | |
|  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
 | |
|  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
 | |
|  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
 | |
|  * asym_packing     force     force      N/A    N/A  force      force
 | |
|  * imbalanced       force     force      N/A    N/A  force      force
 | |
|  * overloaded       force     force      N/A    N/A  force      avg_load
 | |
|  *
 | |
|  * N/A :      Not Applicable because already filtered while updating
 | |
|  *            statistics.
 | |
|  * balanced : The system is balanced for these 2 groups.
 | |
|  * force :    Calculate the imbalance as load migration is probably needed.
 | |
|  * avg_load : Only if imbalance is significant enough.
 | |
|  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
 | |
|  *            different in groups.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
 | |
|  * if there is an imbalance.
 | |
|  * @env: The load balancing environment.
 | |
|  *
 | |
|  * Also calculates the amount of runnable load which should be moved
 | |
|  * to restore balance.
 | |
|  *
 | |
|  * Return:	- The busiest group if imbalance exists.
 | |
|  */
 | |
| static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
 | |
| {
 | |
| 	struct sg_lb_stats *local, *busiest;
 | |
| 	struct sd_lb_stats sds;
 | |
| 
 | |
| 	init_sd_lb_stats(&sds);
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the various statistics relevant for load balancing at
 | |
| 	 * this level.
 | |
| 	 */
 | |
| 	update_sd_lb_stats(env, &sds);
 | |
| 
 | |
| 	/* There is no busy sibling group to pull tasks from */
 | |
| 	if (!sds.busiest)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	busiest = &sds.busiest_stat;
 | |
| 
 | |
| 	/* Misfit tasks should be dealt with regardless of the avg load */
 | |
| 	if (busiest->group_type == group_misfit_task)
 | |
| 		goto force_balance;
 | |
| 
 | |
| 	if (!is_rd_overutilized(env->dst_rq->rd) &&
 | |
| 	    rcu_dereference(env->dst_rq->rd->pd))
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	/* ASYM feature bypasses nice load balance check */
 | |
| 	if (busiest->group_type == group_asym_packing)
 | |
| 		goto force_balance;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the busiest group is imbalanced the below checks don't
 | |
| 	 * work because they assume all things are equal, which typically
 | |
| 	 * isn't true due to cpus_ptr constraints and the like.
 | |
| 	 */
 | |
| 	if (busiest->group_type == group_imbalanced)
 | |
| 		goto force_balance;
 | |
| 
 | |
| 	local = &sds.local_stat;
 | |
| 	/*
 | |
| 	 * If the local group is busier than the selected busiest group
 | |
| 	 * don't try and pull any tasks.
 | |
| 	 */
 | |
| 	if (local->group_type > busiest->group_type)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	/*
 | |
| 	 * When groups are overloaded, use the avg_load to ensure fairness
 | |
| 	 * between tasks.
 | |
| 	 */
 | |
| 	if (local->group_type == group_overloaded) {
 | |
| 		/*
 | |
| 		 * If the local group is more loaded than the selected
 | |
| 		 * busiest group don't try to pull any tasks.
 | |
| 		 */
 | |
| 		if (local->avg_load >= busiest->avg_load)
 | |
| 			goto out_balanced;
 | |
| 
 | |
| 		/* XXX broken for overlapping NUMA groups */
 | |
| 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
 | |
| 				sds.total_capacity;
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't pull any tasks if this group is already above the
 | |
| 		 * domain average load.
 | |
| 		 */
 | |
| 		if (local->avg_load >= sds.avg_load)
 | |
| 			goto out_balanced;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the busiest group is more loaded, use imbalance_pct to be
 | |
| 		 * conservative.
 | |
| 		 */
 | |
| 		if (100 * busiest->avg_load <=
 | |
| 				env->sd->imbalance_pct * local->avg_load)
 | |
| 			goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to move all excess tasks to a sibling domain of the busiest
 | |
| 	 * group's child domain.
 | |
| 	 */
 | |
| 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
 | |
| 	    sibling_imbalance(env, &sds, busiest, local) > 1)
 | |
| 		goto force_balance;
 | |
| 
 | |
| 	if (busiest->group_type != group_overloaded) {
 | |
| 		if (!env->idle) {
 | |
| 			/*
 | |
| 			 * If the busiest group is not overloaded (and as a
 | |
| 			 * result the local one too) but this CPU is already
 | |
| 			 * busy, let another idle CPU try to pull task.
 | |
| 			 */
 | |
| 			goto out_balanced;
 | |
| 		}
 | |
| 
 | |
| 		if (busiest->group_type == group_smt_balance &&
 | |
| 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
 | |
| 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
 | |
| 			goto force_balance;
 | |
| 		}
 | |
| 
 | |
| 		if (busiest->group_weight > 1 &&
 | |
| 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
 | |
| 			/*
 | |
| 			 * If the busiest group is not overloaded
 | |
| 			 * and there is no imbalance between this and busiest
 | |
| 			 * group wrt idle CPUs, it is balanced. The imbalance
 | |
| 			 * becomes significant if the diff is greater than 1
 | |
| 			 * otherwise we might end up to just move the imbalance
 | |
| 			 * on another group. Of course this applies only if
 | |
| 			 * there is more than 1 CPU per group.
 | |
| 			 */
 | |
| 			goto out_balanced;
 | |
| 		}
 | |
| 
 | |
| 		if (busiest->sum_h_nr_running == 1) {
 | |
| 			/*
 | |
| 			 * busiest doesn't have any tasks waiting to run
 | |
| 			 */
 | |
| 			goto out_balanced;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| force_balance:
 | |
| 	/* Looks like there is an imbalance. Compute it */
 | |
| 	calculate_imbalance(env, &sds);
 | |
| 	return env->imbalance ? sds.busiest : NULL;
 | |
| 
 | |
| out_balanced:
 | |
| 	env->imbalance = 0;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
 | |
|  */
 | |
| static struct rq *sched_balance_find_src_rq(struct lb_env *env,
 | |
| 				     struct sched_group *group)
 | |
| {
 | |
| 	struct rq *busiest = NULL, *rq;
 | |
| 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
 | |
| 	unsigned int busiest_nr = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
 | |
| 		unsigned long capacity, load, util;
 | |
| 		unsigned int nr_running;
 | |
| 		enum fbq_type rt;
 | |
| 
 | |
| 		rq = cpu_rq(i);
 | |
| 		rt = fbq_classify_rq(rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * We classify groups/runqueues into three groups:
 | |
| 		 *  - regular: there are !numa tasks
 | |
| 		 *  - remote:  there are numa tasks that run on the 'wrong' node
 | |
| 		 *  - all:     there is no distinction
 | |
| 		 *
 | |
| 		 * In order to avoid migrating ideally placed numa tasks,
 | |
| 		 * ignore those when there's better options.
 | |
| 		 *
 | |
| 		 * If we ignore the actual busiest queue to migrate another
 | |
| 		 * task, the next balance pass can still reduce the busiest
 | |
| 		 * queue by moving tasks around inside the node.
 | |
| 		 *
 | |
| 		 * If we cannot move enough load due to this classification
 | |
| 		 * the next pass will adjust the group classification and
 | |
| 		 * allow migration of more tasks.
 | |
| 		 *
 | |
| 		 * Both cases only affect the total convergence complexity.
 | |
| 		 */
 | |
| 		if (rt > env->fbq_type)
 | |
| 			continue;
 | |
| 
 | |
| 		nr_running = rq->cfs.h_nr_runnable;
 | |
| 		if (!nr_running)
 | |
| 			continue;
 | |
| 
 | |
| 		capacity = capacity_of(i);
 | |
| 
 | |
| 		/*
 | |
| 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
 | |
| 		 * eventually lead to active_balancing high->low capacity.
 | |
| 		 * Higher per-CPU capacity is considered better than balancing
 | |
| 		 * average load.
 | |
| 		 */
 | |
| 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
 | |
| 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
 | |
| 		    nr_running == 1)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure we only pull tasks from a CPU of lower priority
 | |
| 		 * when balancing between SMT siblings.
 | |
| 		 *
 | |
| 		 * If balancing between cores, let lower priority CPUs help
 | |
| 		 * SMT cores with more than one busy sibling.
 | |
| 		 */
 | |
| 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (env->migration_type) {
 | |
| 		case migrate_load:
 | |
| 			/*
 | |
| 			 * When comparing with load imbalance, use cpu_load()
 | |
| 			 * which is not scaled with the CPU capacity.
 | |
| 			 */
 | |
| 			load = cpu_load(rq);
 | |
| 
 | |
| 			if (nr_running == 1 && load > env->imbalance &&
 | |
| 			    !check_cpu_capacity(rq, env->sd))
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * For the load comparisons with the other CPUs,
 | |
| 			 * consider the cpu_load() scaled with the CPU
 | |
| 			 * capacity, so that the load can be moved away
 | |
| 			 * from the CPU that is potentially running at a
 | |
| 			 * lower capacity.
 | |
| 			 *
 | |
| 			 * Thus we're looking for max(load_i / capacity_i),
 | |
| 			 * crosswise multiplication to rid ourselves of the
 | |
| 			 * division works out to:
 | |
| 			 * load_i * capacity_j > load_j * capacity_i;
 | |
| 			 * where j is our previous maximum.
 | |
| 			 */
 | |
| 			if (load * busiest_capacity > busiest_load * capacity) {
 | |
| 				busiest_load = load;
 | |
| 				busiest_capacity = capacity;
 | |
| 				busiest = rq;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case migrate_util:
 | |
| 			util = cpu_util_cfs_boost(i);
 | |
| 
 | |
| 			/*
 | |
| 			 * Don't try to pull utilization from a CPU with one
 | |
| 			 * running task. Whatever its utilization, we will fail
 | |
| 			 * detach the task.
 | |
| 			 */
 | |
| 			if (nr_running <= 1)
 | |
| 				continue;
 | |
| 
 | |
| 			if (busiest_util < util) {
 | |
| 				busiest_util = util;
 | |
| 				busiest = rq;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case migrate_task:
 | |
| 			if (busiest_nr < nr_running) {
 | |
| 				busiest_nr = nr_running;
 | |
| 				busiest = rq;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case migrate_misfit:
 | |
| 			/*
 | |
| 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
 | |
| 			 * simply seek the "biggest" misfit task.
 | |
| 			 */
 | |
| 			if (rq->misfit_task_load > busiest_load) {
 | |
| 				busiest_load = rq->misfit_task_load;
 | |
| 				busiest = rq;
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return busiest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 | |
|  * so long as it is large enough.
 | |
|  */
 | |
| #define MAX_PINNED_INTERVAL	512
 | |
| 
 | |
| static inline bool
 | |
| asym_active_balance(struct lb_env *env)
 | |
| {
 | |
| 	/*
 | |
| 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
 | |
| 	 * priority CPUs in order to pack all tasks in the highest priority
 | |
| 	 * CPUs. When done between cores, do it only if the whole core if the
 | |
| 	 * whole core is idle.
 | |
| 	 *
 | |
| 	 * If @env::src_cpu is an SMT core with busy siblings, let
 | |
| 	 * the lower priority @env::dst_cpu help it. Do not follow
 | |
| 	 * CPU priority.
 | |
| 	 */
 | |
| 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
 | |
| 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
 | |
| 		!sched_use_asym_prio(env->sd, env->src_cpu));
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| imbalanced_active_balance(struct lb_env *env)
 | |
| {
 | |
| 	struct sched_domain *sd = env->sd;
 | |
| 
 | |
| 	/*
 | |
| 	 * The imbalanced case includes the case of pinned tasks preventing a fair
 | |
| 	 * distribution of the load on the system but also the even distribution of the
 | |
| 	 * threads on a system with spare capacity
 | |
| 	 */
 | |
| 	if ((env->migration_type == migrate_task) &&
 | |
| 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int need_active_balance(struct lb_env *env)
 | |
| {
 | |
| 	struct sched_domain *sd = env->sd;
 | |
| 
 | |
| 	if (asym_active_balance(env))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (imbalanced_active_balance(env))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
 | |
| 	 * It's worth migrating the task if the src_cpu's capacity is reduced
 | |
| 	 * because of other sched_class or IRQs if more capacity stays
 | |
| 	 * available on dst_cpu.
 | |
| 	 */
 | |
| 	if (env->idle &&
 | |
| 	    (env->src_rq->cfs.h_nr_runnable == 1)) {
 | |
| 		if ((check_cpu_capacity(env->src_rq, sd)) &&
 | |
| 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (env->migration_type == migrate_misfit)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int active_load_balance_cpu_stop(void *data);
 | |
| 
 | |
| static int should_we_balance(struct lb_env *env)
 | |
| {
 | |
| 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
 | |
| 	struct sched_group *sg = env->sd->groups;
 | |
| 	int cpu, idle_smt = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure the balancing environment is consistent; can happen
 | |
| 	 * when the softirq triggers 'during' hotplug.
 | |
| 	 */
 | |
| 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the newly idle case, we will allow all the CPUs
 | |
| 	 * to do the newly idle load balance.
 | |
| 	 *
 | |
| 	 * However, we bail out if we already have tasks or a wakeup pending,
 | |
| 	 * to optimize wakeup latency.
 | |
| 	 */
 | |
| 	if (env->idle == CPU_NEWLY_IDLE) {
 | |
| 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
 | |
| 			return 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	cpumask_copy(swb_cpus, group_balance_mask(sg));
 | |
| 	/* Try to find first idle CPU */
 | |
| 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
 | |
| 		if (!idle_cpu(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't balance to idle SMT in busy core right away when
 | |
| 		 * balancing cores, but remember the first idle SMT CPU for
 | |
| 		 * later consideration.  Find CPU on an idle core first.
 | |
| 		 */
 | |
| 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
 | |
| 			if (idle_smt == -1)
 | |
| 				idle_smt = cpu;
 | |
| 			/*
 | |
| 			 * If the core is not idle, and first SMT sibling which is
 | |
| 			 * idle has been found, then its not needed to check other
 | |
| 			 * SMT siblings for idleness:
 | |
| 			 */
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
 | |
| #endif
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Are we the first idle core in a non-SMT domain or higher,
 | |
| 		 * or the first idle CPU in a SMT domain?
 | |
| 		 */
 | |
| 		return cpu == env->dst_cpu;
 | |
| 	}
 | |
| 
 | |
| 	/* Are we the first idle CPU with busy siblings? */
 | |
| 	if (idle_smt != -1)
 | |
| 		return idle_smt == env->dst_cpu;
 | |
| 
 | |
| 	/* Are we the first CPU of this group ? */
 | |
| 	return group_balance_cpu(sg) == env->dst_cpu;
 | |
| }
 | |
| 
 | |
| static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
 | |
| 				     enum cpu_idle_type idle)
 | |
| {
 | |
| 	if (!schedstat_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	switch (env->migration_type) {
 | |
| 	case migrate_load:
 | |
| 		__schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
 | |
| 		break;
 | |
| 	case migrate_util:
 | |
| 		__schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
 | |
| 		break;
 | |
| 	case migrate_task:
 | |
| 		__schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
 | |
| 		break;
 | |
| 	case migrate_misfit:
 | |
| 		__schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check this_cpu to ensure it is balanced within domain. Attempt to move
 | |
|  * tasks if there is an imbalance.
 | |
|  */
 | |
| static int sched_balance_rq(int this_cpu, struct rq *this_rq,
 | |
| 			struct sched_domain *sd, enum cpu_idle_type idle,
 | |
| 			int *continue_balancing)
 | |
| {
 | |
| 	int ld_moved, cur_ld_moved, active_balance = 0;
 | |
| 	struct sched_domain *sd_parent = sd->parent;
 | |
| 	struct sched_group *group;
 | |
| 	struct rq *busiest;
 | |
| 	struct rq_flags rf;
 | |
| 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
 | |
| 	struct lb_env env = {
 | |
| 		.sd		= sd,
 | |
| 		.dst_cpu	= this_cpu,
 | |
| 		.dst_rq		= this_rq,
 | |
| 		.dst_grpmask    = group_balance_mask(sd->groups),
 | |
| 		.idle		= idle,
 | |
| 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
 | |
| 		.cpus		= cpus,
 | |
| 		.fbq_type	= all,
 | |
| 		.tasks		= LIST_HEAD_INIT(env.tasks),
 | |
| 	};
 | |
| 
 | |
| 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
 | |
| 
 | |
| 	schedstat_inc(sd->lb_count[idle]);
 | |
| 
 | |
| redo:
 | |
| 	if (!should_we_balance(&env)) {
 | |
| 		*continue_balancing = 0;
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	group = sched_balance_find_src_group(&env);
 | |
| 	if (!group) {
 | |
| 		schedstat_inc(sd->lb_nobusyg[idle]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	busiest = sched_balance_find_src_rq(&env, group);
 | |
| 	if (!busiest) {
 | |
| 		schedstat_inc(sd->lb_nobusyq[idle]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(busiest == env.dst_rq);
 | |
| 
 | |
| 	update_lb_imbalance_stat(&env, sd, idle);
 | |
| 
 | |
| 	env.src_cpu = busiest->cpu;
 | |
| 	env.src_rq = busiest;
 | |
| 
 | |
| 	ld_moved = 0;
 | |
| 	/* Clear this flag as soon as we find a pullable task */
 | |
| 	env.flags |= LBF_ALL_PINNED;
 | |
| 	if (busiest->nr_running > 1) {
 | |
| 		/*
 | |
| 		 * Attempt to move tasks. If sched_balance_find_src_group has found
 | |
| 		 * an imbalance but busiest->nr_running <= 1, the group is
 | |
| 		 * still unbalanced. ld_moved simply stays zero, so it is
 | |
| 		 * correctly treated as an imbalance.
 | |
| 		 */
 | |
| 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
 | |
| 
 | |
| more_balance:
 | |
| 		rq_lock_irqsave(busiest, &rf);
 | |
| 		update_rq_clock(busiest);
 | |
| 
 | |
| 		/*
 | |
| 		 * cur_ld_moved - load moved in current iteration
 | |
| 		 * ld_moved     - cumulative load moved across iterations
 | |
| 		 */
 | |
| 		cur_ld_moved = detach_tasks(&env);
 | |
| 
 | |
| 		/*
 | |
| 		 * We've detached some tasks from busiest_rq. Every
 | |
| 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
 | |
| 		 * unlock busiest->lock, and we are able to be sure
 | |
| 		 * that nobody can manipulate the tasks in parallel.
 | |
| 		 * See task_rq_lock() family for the details.
 | |
| 		 */
 | |
| 
 | |
| 		rq_unlock(busiest, &rf);
 | |
| 
 | |
| 		if (cur_ld_moved) {
 | |
| 			attach_tasks(&env);
 | |
| 			ld_moved += cur_ld_moved;
 | |
| 		}
 | |
| 
 | |
| 		local_irq_restore(rf.flags);
 | |
| 
 | |
| 		if (env.flags & LBF_NEED_BREAK) {
 | |
| 			env.flags &= ~LBF_NEED_BREAK;
 | |
| 			goto more_balance;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
 | |
| 		 * us and move them to an alternate dst_cpu in our sched_group
 | |
| 		 * where they can run. The upper limit on how many times we
 | |
| 		 * iterate on same src_cpu is dependent on number of CPUs in our
 | |
| 		 * sched_group.
 | |
| 		 *
 | |
| 		 * This changes load balance semantics a bit on who can move
 | |
| 		 * load to a given_cpu. In addition to the given_cpu itself
 | |
| 		 * (or a ilb_cpu acting on its behalf where given_cpu is
 | |
| 		 * nohz-idle), we now have balance_cpu in a position to move
 | |
| 		 * load to given_cpu. In rare situations, this may cause
 | |
| 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
 | |
| 		 * _independently_ and at _same_ time to move some load to
 | |
| 		 * given_cpu) causing excess load to be moved to given_cpu.
 | |
| 		 * This however should not happen so much in practice and
 | |
| 		 * moreover subsequent load balance cycles should correct the
 | |
| 		 * excess load moved.
 | |
| 		 */
 | |
| 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
 | |
| 
 | |
| 			/* Prevent to re-select dst_cpu via env's CPUs */
 | |
| 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
 | |
| 
 | |
| 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
 | |
| 			env.dst_cpu	 = env.new_dst_cpu;
 | |
| 			env.flags	&= ~LBF_DST_PINNED;
 | |
| 			env.loop	 = 0;
 | |
| 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
 | |
| 
 | |
| 			/*
 | |
| 			 * Go back to "more_balance" rather than "redo" since we
 | |
| 			 * need to continue with same src_cpu.
 | |
| 			 */
 | |
| 			goto more_balance;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We failed to reach balance because of affinity.
 | |
| 		 */
 | |
| 		if (sd_parent) {
 | |
| 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
 | |
| 
 | |
| 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
 | |
| 				*group_imbalance = 1;
 | |
| 		}
 | |
| 
 | |
| 		/* All tasks on this runqueue were pinned by CPU affinity */
 | |
| 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
 | |
| 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
 | |
| 			/*
 | |
| 			 * Attempting to continue load balancing at the current
 | |
| 			 * sched_domain level only makes sense if there are
 | |
| 			 * active CPUs remaining as possible busiest CPUs to
 | |
| 			 * pull load from which are not contained within the
 | |
| 			 * destination group that is receiving any migrated
 | |
| 			 * load.
 | |
| 			 */
 | |
| 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
 | |
| 				env.loop = 0;
 | |
| 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
 | |
| 				goto redo;
 | |
| 			}
 | |
| 			goto out_all_pinned;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!ld_moved) {
 | |
| 		schedstat_inc(sd->lb_failed[idle]);
 | |
| 		/*
 | |
| 		 * Increment the failure counter only on periodic balance.
 | |
| 		 * We do not want newidle balance, which can be very
 | |
| 		 * frequent, pollute the failure counter causing
 | |
| 		 * excessive cache_hot migrations and active balances.
 | |
| 		 *
 | |
| 		 * Similarly for migration_misfit which is not related to
 | |
| 		 * load/util migration, don't pollute nr_balance_failed.
 | |
| 		 */
 | |
| 		if (idle != CPU_NEWLY_IDLE &&
 | |
| 		    env.migration_type != migrate_misfit)
 | |
| 			sd->nr_balance_failed++;
 | |
| 
 | |
| 		if (need_active_balance(&env)) {
 | |
| 			unsigned long flags;
 | |
| 
 | |
| 			raw_spin_rq_lock_irqsave(busiest, flags);
 | |
| 
 | |
| 			/*
 | |
| 			 * Don't kick the active_load_balance_cpu_stop,
 | |
| 			 * if the curr task on busiest CPU can't be
 | |
| 			 * moved to this_cpu:
 | |
| 			 */
 | |
| 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
 | |
| 				raw_spin_rq_unlock_irqrestore(busiest, flags);
 | |
| 				goto out_one_pinned;
 | |
| 			}
 | |
| 
 | |
| 			/* Record that we found at least one task that could run on this_cpu */
 | |
| 			env.flags &= ~LBF_ALL_PINNED;
 | |
| 
 | |
| 			/*
 | |
| 			 * ->active_balance synchronizes accesses to
 | |
| 			 * ->active_balance_work.  Once set, it's cleared
 | |
| 			 * only after active load balance is finished.
 | |
| 			 */
 | |
| 			if (!busiest->active_balance) {
 | |
| 				busiest->active_balance = 1;
 | |
| 				busiest->push_cpu = this_cpu;
 | |
| 				active_balance = 1;
 | |
| 			}
 | |
| 
 | |
| 			preempt_disable();
 | |
| 			raw_spin_rq_unlock_irqrestore(busiest, flags);
 | |
| 			if (active_balance) {
 | |
| 				stop_one_cpu_nowait(cpu_of(busiest),
 | |
| 					active_load_balance_cpu_stop, busiest,
 | |
| 					&busiest->active_balance_work);
 | |
| 			}
 | |
| 			preempt_enable();
 | |
| 		}
 | |
| 	} else {
 | |
| 		sd->nr_balance_failed = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!active_balance) || need_active_balance(&env)) {
 | |
| 		/* We were unbalanced, so reset the balancing interval */
 | |
| 		sd->balance_interval = sd->min_interval;
 | |
| 	}
 | |
| 
 | |
| 	goto out;
 | |
| 
 | |
| out_balanced:
 | |
| 	/*
 | |
| 	 * We reach balance although we may have faced some affinity
 | |
| 	 * constraints. Clear the imbalance flag only if other tasks got
 | |
| 	 * a chance to move and fix the imbalance.
 | |
| 	 */
 | |
| 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
 | |
| 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
 | |
| 
 | |
| 		if (*group_imbalance)
 | |
| 			*group_imbalance = 0;
 | |
| 	}
 | |
| 
 | |
| out_all_pinned:
 | |
| 	/*
 | |
| 	 * We reach balance because all tasks are pinned at this level so
 | |
| 	 * we can't migrate them. Let the imbalance flag set so parent level
 | |
| 	 * can try to migrate them.
 | |
| 	 */
 | |
| 	schedstat_inc(sd->lb_balanced[idle]);
 | |
| 
 | |
| 	sd->nr_balance_failed = 0;
 | |
| 
 | |
| out_one_pinned:
 | |
| 	ld_moved = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * sched_balance_newidle() disregards balance intervals, so we could
 | |
| 	 * repeatedly reach this code, which would lead to balance_interval
 | |
| 	 * skyrocketing in a short amount of time. Skip the balance_interval
 | |
| 	 * increase logic to avoid that.
 | |
| 	 *
 | |
| 	 * Similarly misfit migration which is not necessarily an indication of
 | |
| 	 * the system being busy and requires lb to backoff to let it settle
 | |
| 	 * down.
 | |
| 	 */
 | |
| 	if (env.idle == CPU_NEWLY_IDLE ||
 | |
| 	    env.migration_type == migrate_misfit)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* tune up the balancing interval */
 | |
| 	if ((env.flags & LBF_ALL_PINNED &&
 | |
| 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
 | |
| 	    sd->balance_interval < sd->max_interval)
 | |
| 		sd->balance_interval *= 2;
 | |
| out:
 | |
| 	return ld_moved;
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
 | |
| {
 | |
| 	unsigned long interval = sd->balance_interval;
 | |
| 
 | |
| 	if (cpu_busy)
 | |
| 		interval *= sd->busy_factor;
 | |
| 
 | |
| 	/* scale ms to jiffies */
 | |
| 	interval = msecs_to_jiffies(interval);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reduce likelihood of busy balancing at higher domains racing with
 | |
| 	 * balancing at lower domains by preventing their balancing periods
 | |
| 	 * from being multiples of each other.
 | |
| 	 */
 | |
| 	if (cpu_busy)
 | |
| 		interval -= 1;
 | |
| 
 | |
| 	interval = clamp(interval, 1UL, max_load_balance_interval);
 | |
| 
 | |
| 	return interval;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
 | |
| {
 | |
| 	unsigned long interval, next;
 | |
| 
 | |
| 	/* used by idle balance, so cpu_busy = 0 */
 | |
| 	interval = get_sd_balance_interval(sd, 0);
 | |
| 	next = sd->last_balance + interval;
 | |
| 
 | |
| 	if (time_after(*next_balance, next))
 | |
| 		*next_balance = next;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
 | |
|  * running tasks off the busiest CPU onto idle CPUs. It requires at
 | |
|  * least 1 task to be running on each physical CPU where possible, and
 | |
|  * avoids physical / logical imbalances.
 | |
|  */
 | |
| static int active_load_balance_cpu_stop(void *data)
 | |
| {
 | |
| 	struct rq *busiest_rq = data;
 | |
| 	int busiest_cpu = cpu_of(busiest_rq);
 | |
| 	int target_cpu = busiest_rq->push_cpu;
 | |
| 	struct rq *target_rq = cpu_rq(target_cpu);
 | |
| 	struct sched_domain *sd;
 | |
| 	struct task_struct *p = NULL;
 | |
| 	struct rq_flags rf;
 | |
| 
 | |
| 	rq_lock_irq(busiest_rq, &rf);
 | |
| 	/*
 | |
| 	 * Between queueing the stop-work and running it is a hole in which
 | |
| 	 * CPUs can become inactive. We should not move tasks from or to
 | |
| 	 * inactive CPUs.
 | |
| 	 */
 | |
| 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Make sure the requested CPU hasn't gone down in the meantime: */
 | |
| 	if (unlikely(busiest_cpu != smp_processor_id() ||
 | |
| 		     !busiest_rq->active_balance))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Is there any task to move? */
 | |
| 	if (busiest_rq->nr_running <= 1)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * This condition is "impossible", if it occurs
 | |
| 	 * we need to fix it. Originally reported by
 | |
| 	 * Bjorn Helgaas on a 128-CPU setup.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(busiest_rq == target_rq);
 | |
| 
 | |
| 	/* Search for an sd spanning us and the target CPU. */
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(target_cpu, sd) {
 | |
| 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(sd)) {
 | |
| 		struct lb_env env = {
 | |
| 			.sd		= sd,
 | |
| 			.dst_cpu	= target_cpu,
 | |
| 			.dst_rq		= target_rq,
 | |
| 			.src_cpu	= busiest_rq->cpu,
 | |
| 			.src_rq		= busiest_rq,
 | |
| 			.idle		= CPU_IDLE,
 | |
| 			.flags		= LBF_ACTIVE_LB,
 | |
| 		};
 | |
| 
 | |
| 		schedstat_inc(sd->alb_count);
 | |
| 		update_rq_clock(busiest_rq);
 | |
| 
 | |
| 		p = detach_one_task(&env);
 | |
| 		if (p) {
 | |
| 			schedstat_inc(sd->alb_pushed);
 | |
| 			/* Active balancing done, reset the failure counter. */
 | |
| 			sd->nr_balance_failed = 0;
 | |
| 		} else {
 | |
| 			schedstat_inc(sd->alb_failed);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| out_unlock:
 | |
| 	busiest_rq->active_balance = 0;
 | |
| 	rq_unlock(busiest_rq, &rf);
 | |
| 
 | |
| 	if (p)
 | |
| 		attach_one_task(target_rq, p);
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This flag serializes load-balancing passes over large domains
 | |
|  * (above the NODE topology level) - only one load-balancing instance
 | |
|  * may run at a time, to reduce overhead on very large systems with
 | |
|  * lots of CPUs and large NUMA distances.
 | |
|  *
 | |
|  * - Note that load-balancing passes triggered while another one
 | |
|  *   is executing are skipped and not re-tried.
 | |
|  *
 | |
|  * - Also note that this does not serialize rebalance_domains()
 | |
|  *   execution, as non-SD_SERIALIZE domains will still be
 | |
|  *   load-balanced in parallel.
 | |
|  */
 | |
| static atomic_t sched_balance_running = ATOMIC_INIT(0);
 | |
| 
 | |
| /*
 | |
|  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
 | |
|  * This trades load-balance latency on larger machines for less cross talk.
 | |
|  */
 | |
| void update_max_interval(void)
 | |
| {
 | |
| 	max_load_balance_interval = HZ*num_online_cpus()/10;
 | |
| }
 | |
| 
 | |
| static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
 | |
| {
 | |
| 	if (cost > sd->max_newidle_lb_cost) {
 | |
| 		/*
 | |
| 		 * Track max cost of a domain to make sure to not delay the
 | |
| 		 * next wakeup on the CPU.
 | |
| 		 */
 | |
| 		sd->max_newidle_lb_cost = cost;
 | |
| 		sd->last_decay_max_lb_cost = jiffies;
 | |
| 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
 | |
| 		/*
 | |
| 		 * Decay the newidle max times by ~1% per second to ensure that
 | |
| 		 * it is not outdated and the current max cost is actually
 | |
| 		 * shorter.
 | |
| 		 */
 | |
| 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
 | |
| 		sd->last_decay_max_lb_cost = jiffies;
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It checks each scheduling domain to see if it is due to be balanced,
 | |
|  * and initiates a balancing operation if so.
 | |
|  *
 | |
|  * Balancing parameters are set up in init_sched_domains.
 | |
|  */
 | |
| static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
 | |
| {
 | |
| 	int continue_balancing = 1;
 | |
| 	int cpu = rq->cpu;
 | |
| 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
 | |
| 	unsigned long interval;
 | |
| 	struct sched_domain *sd;
 | |
| 	/* Earliest time when we have to do rebalance again */
 | |
| 	unsigned long next_balance = jiffies + 60*HZ;
 | |
| 	int update_next_balance = 0;
 | |
| 	int need_serialize, need_decay = 0;
 | |
| 	u64 max_cost = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		/*
 | |
| 		 * Decay the newidle max times here because this is a regular
 | |
| 		 * visit to all the domains.
 | |
| 		 */
 | |
| 		need_decay = update_newidle_cost(sd, 0);
 | |
| 		max_cost += sd->max_newidle_lb_cost;
 | |
| 
 | |
| 		/*
 | |
| 		 * Stop the load balance at this level. There is another
 | |
| 		 * CPU in our sched group which is doing load balancing more
 | |
| 		 * actively.
 | |
| 		 */
 | |
| 		if (!continue_balancing) {
 | |
| 			if (need_decay)
 | |
| 				continue;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		interval = get_sd_balance_interval(sd, busy);
 | |
| 
 | |
| 		need_serialize = sd->flags & SD_SERIALIZE;
 | |
| 		if (need_serialize) {
 | |
| 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
 | |
| 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
 | |
| 				/*
 | |
| 				 * The LBF_DST_PINNED logic could have changed
 | |
| 				 * env->dst_cpu, so we can't know our idle
 | |
| 				 * state even if we migrated tasks. Update it.
 | |
| 				 */
 | |
| 				idle = idle_cpu(cpu);
 | |
| 				busy = !idle && !sched_idle_cpu(cpu);
 | |
| 			}
 | |
| 			sd->last_balance = jiffies;
 | |
| 			interval = get_sd_balance_interval(sd, busy);
 | |
| 		}
 | |
| 		if (need_serialize)
 | |
| 			atomic_set_release(&sched_balance_running, 0);
 | |
| out:
 | |
| 		if (time_after(next_balance, sd->last_balance + interval)) {
 | |
| 			next_balance = sd->last_balance + interval;
 | |
| 			update_next_balance = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (need_decay) {
 | |
| 		/*
 | |
| 		 * Ensure the rq-wide value also decays but keep it at a
 | |
| 		 * reasonable floor to avoid funnies with rq->avg_idle.
 | |
| 		 */
 | |
| 		rq->max_idle_balance_cost =
 | |
| 			max((u64)sysctl_sched_migration_cost, max_cost);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * next_balance will be updated only when there is a need.
 | |
| 	 * When the cpu is attached to null domain for ex, it will not be
 | |
| 	 * updated.
 | |
| 	 */
 | |
| 	if (likely(update_next_balance))
 | |
| 		rq->next_balance = next_balance;
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline int on_null_domain(struct rq *rq)
 | |
| {
 | |
| 	return unlikely(!rcu_dereference_sched(rq->sd));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| /*
 | |
|  * NOHZ idle load balancing (ILB) details:
 | |
|  *
 | |
|  * - When one of the busy CPUs notices that there may be an idle rebalancing
 | |
|  *   needed, they will kick the idle load balancer, which then does idle
 | |
|  *   load balancing for all the idle CPUs.
 | |
|  */
 | |
| static inline int find_new_ilb(void)
 | |
| {
 | |
| 	const struct cpumask *hk_mask;
 | |
| 	int ilb_cpu;
 | |
| 
 | |
| 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
 | |
| 
 | |
| 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
 | |
| 
 | |
| 		if (ilb_cpu == smp_processor_id())
 | |
| 			continue;
 | |
| 
 | |
| 		if (idle_cpu(ilb_cpu))
 | |
| 			return ilb_cpu;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
 | |
|  * SMP function call (IPI).
 | |
|  *
 | |
|  * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
 | |
|  * (if there is one).
 | |
|  */
 | |
| static void kick_ilb(unsigned int flags)
 | |
| {
 | |
| 	int ilb_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Increase nohz.next_balance only when if full ilb is triggered but
 | |
| 	 * not if we only update stats.
 | |
| 	 */
 | |
| 	if (flags & NOHZ_BALANCE_KICK)
 | |
| 		nohz.next_balance = jiffies+1;
 | |
| 
 | |
| 	ilb_cpu = find_new_ilb();
 | |
| 	if (ilb_cpu < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
 | |
| 	 * i.e. all bits in flags are already set in ilb_cpu.
 | |
| 	 */
 | |
| 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
 | |
| 	 * the first flag owns it; cleared by nohz_csd_func().
 | |
| 	 */
 | |
| 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
 | |
| 	if (flags & NOHZ_KICK_MASK)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This way we generate an IPI on the target CPU which
 | |
| 	 * is idle, and the softirq performing NOHZ idle load balancing
 | |
| 	 * will be run before returning from the IPI.
 | |
| 	 */
 | |
| 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Current decision point for kicking the idle load balancer in the presence
 | |
|  * of idle CPUs in the system.
 | |
|  */
 | |
| static void nohz_balancer_kick(struct rq *rq)
 | |
| {
 | |
| 	unsigned long now = jiffies;
 | |
| 	struct sched_domain_shared *sds;
 | |
| 	struct sched_domain *sd;
 | |
| 	int nr_busy, i, cpu = rq->cpu;
 | |
| 	unsigned int flags = 0;
 | |
| 
 | |
| 	if (unlikely(rq->idle_balance))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may be recently in ticked or tickless idle mode. At the first
 | |
| 	 * busy tick after returning from idle, we will update the busy stats.
 | |
| 	 */
 | |
| 	nohz_balance_exit_idle(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * None are in tickless mode and hence no need for NOHZ idle load
 | |
| 	 * balancing:
 | |
| 	 */
 | |
| 	if (likely(!atomic_read(&nohz.nr_cpus)))
 | |
| 		return;
 | |
| 
 | |
| 	if (READ_ONCE(nohz.has_blocked) &&
 | |
| 	    time_after(now, READ_ONCE(nohz.next_blocked)))
 | |
| 		flags = NOHZ_STATS_KICK;
 | |
| 
 | |
| 	if (time_before(now, nohz.next_balance))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (rq->nr_running >= 2) {
 | |
| 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	sd = rcu_dereference(rq->sd);
 | |
| 	if (sd) {
 | |
| 		/*
 | |
| 		 * If there's a runnable CFS task and the current CPU has reduced
 | |
| 		 * capacity, kick the ILB to see if there's a better CPU to run on:
 | |
| 		 */
 | |
| 		if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
 | |
| 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
 | |
| 	if (sd) {
 | |
| 		/*
 | |
| 		 * When ASYM_PACKING; see if there's a more preferred CPU
 | |
| 		 * currently idle; in which case, kick the ILB to move tasks
 | |
| 		 * around.
 | |
| 		 *
 | |
| 		 * When balancing between cores, all the SMT siblings of the
 | |
| 		 * preferred CPU must be idle.
 | |
| 		 */
 | |
| 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
 | |
| 			if (sched_asym(sd, i, cpu)) {
 | |
| 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
 | |
| 				goto unlock;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
 | |
| 	if (sd) {
 | |
| 		/*
 | |
| 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
 | |
| 		 * to run the misfit task on.
 | |
| 		 */
 | |
| 		if (check_misfit_status(rq)) {
 | |
| 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * For asymmetric systems, we do not want to nicely balance
 | |
| 		 * cache use, instead we want to embrace asymmetry and only
 | |
| 		 * ensure tasks have enough CPU capacity.
 | |
| 		 *
 | |
| 		 * Skip the LLC logic because it's not relevant in that case.
 | |
| 		 */
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
 | |
| 	if (sds) {
 | |
| 		/*
 | |
| 		 * If there is an imbalance between LLC domains (IOW we could
 | |
| 		 * increase the overall cache utilization), we need a less-loaded LLC
 | |
| 		 * domain to pull some load from. Likewise, we may need to spread
 | |
| 		 * load within the current LLC domain (e.g. packed SMT cores but
 | |
| 		 * other CPUs are idle). We can't really know from here how busy
 | |
| 		 * the others are - so just get a NOHZ balance going if it looks
 | |
| 		 * like this LLC domain has tasks we could move.
 | |
| 		 */
 | |
| 		nr_busy = atomic_read(&sds->nr_busy_cpus);
 | |
| 		if (nr_busy > 1) {
 | |
| 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 	}
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| out:
 | |
| 	if (READ_ONCE(nohz.needs_update))
 | |
| 		flags |= NOHZ_NEXT_KICK;
 | |
| 
 | |
| 	if (flags)
 | |
| 		kick_ilb(flags);
 | |
| }
 | |
| 
 | |
| static void set_cpu_sd_state_busy(int cpu)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
 | |
| 
 | |
| 	if (!sd || !sd->nohz_idle)
 | |
| 		goto unlock;
 | |
| 	sd->nohz_idle = 0;
 | |
| 
 | |
| 	atomic_inc(&sd->shared->nr_busy_cpus);
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void nohz_balance_exit_idle(struct rq *rq)
 | |
| {
 | |
| 	WARN_ON_ONCE(rq != this_rq());
 | |
| 
 | |
| 	if (likely(!rq->nohz_tick_stopped))
 | |
| 		return;
 | |
| 
 | |
| 	rq->nohz_tick_stopped = 0;
 | |
| 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
 | |
| 	atomic_dec(&nohz.nr_cpus);
 | |
| 
 | |
| 	set_cpu_sd_state_busy(rq->cpu);
 | |
| }
 | |
| 
 | |
| static void set_cpu_sd_state_idle(int cpu)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
 | |
| 
 | |
| 	if (!sd || sd->nohz_idle)
 | |
| 		goto unlock;
 | |
| 	sd->nohz_idle = 1;
 | |
| 
 | |
| 	atomic_dec(&sd->shared->nr_busy_cpus);
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine will record that the CPU is going idle with tick stopped.
 | |
|  * This info will be used in performing idle load balancing in the future.
 | |
|  */
 | |
| void nohz_balance_enter_idle(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	WARN_ON_ONCE(cpu != smp_processor_id());
 | |
| 
 | |
| 	/* If this CPU is going down, then nothing needs to be done: */
 | |
| 	if (!cpu_active(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Can be set safely without rq->lock held
 | |
| 	 * If a clear happens, it will have evaluated last additions because
 | |
| 	 * rq->lock is held during the check and the clear
 | |
| 	 */
 | |
| 	rq->has_blocked_load = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The tick is still stopped but load could have been added in the
 | |
| 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
 | |
| 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
 | |
| 	 * of nohz.has_blocked can only happen after checking the new load
 | |
| 	 */
 | |
| 	if (rq->nohz_tick_stopped)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* If we're a completely isolated CPU, we don't play: */
 | |
| 	if (on_null_domain(rq))
 | |
| 		return;
 | |
| 
 | |
| 	rq->nohz_tick_stopped = 1;
 | |
| 
 | |
| 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
 | |
| 	atomic_inc(&nohz.nr_cpus);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensures that if nohz_idle_balance() fails to observe our
 | |
| 	 * @idle_cpus_mask store, it must observe the @has_blocked
 | |
| 	 * and @needs_update stores.
 | |
| 	 */
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	set_cpu_sd_state_idle(cpu);
 | |
| 
 | |
| 	WRITE_ONCE(nohz.needs_update, 1);
 | |
| out:
 | |
| 	/*
 | |
| 	 * Each time a cpu enter idle, we assume that it has blocked load and
 | |
| 	 * enable the periodic update of the load of idle CPUs
 | |
| 	 */
 | |
| 	WRITE_ONCE(nohz.has_blocked, 1);
 | |
| }
 | |
| 
 | |
| static bool update_nohz_stats(struct rq *rq)
 | |
| {
 | |
| 	unsigned int cpu = rq->cpu;
 | |
| 
 | |
| 	if (!rq->has_blocked_load)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
 | |
| 		return true;
 | |
| 
 | |
| 	sched_balance_update_blocked_averages(cpu);
 | |
| 
 | |
| 	return rq->has_blocked_load;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Internal function that runs load balance for all idle CPUs. The load balance
 | |
|  * can be a simple update of blocked load or a complete load balance with
 | |
|  * tasks movement depending of flags.
 | |
|  */
 | |
| static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
 | |
| {
 | |
| 	/* Earliest time when we have to do rebalance again */
 | |
| 	unsigned long now = jiffies;
 | |
| 	unsigned long next_balance = now + 60*HZ;
 | |
| 	bool has_blocked_load = false;
 | |
| 	int update_next_balance = 0;
 | |
| 	int this_cpu = this_rq->cpu;
 | |
| 	int balance_cpu;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
 | |
| 
 | |
| 	/*
 | |
| 	 * We assume there will be no idle load after this update and clear
 | |
| 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
 | |
| 	 * set the has_blocked flag and trigger another update of idle load.
 | |
| 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
 | |
| 	 * setting the flag, we are sure to not clear the state and not
 | |
| 	 * check the load of an idle cpu.
 | |
| 	 *
 | |
| 	 * Same applies to idle_cpus_mask vs needs_update.
 | |
| 	 */
 | |
| 	if (flags & NOHZ_STATS_KICK)
 | |
| 		WRITE_ONCE(nohz.has_blocked, 0);
 | |
| 	if (flags & NOHZ_NEXT_KICK)
 | |
| 		WRITE_ONCE(nohz.needs_update, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensures that if we miss the CPU, we must see the has_blocked
 | |
| 	 * store from nohz_balance_enter_idle().
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
 | |
| 	 * chance for other idle cpu to pull load.
 | |
| 	 */
 | |
| 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
 | |
| 		if (!idle_cpu(balance_cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this CPU gets work to do, stop the load balancing
 | |
| 		 * work being done for other CPUs. Next load
 | |
| 		 * balancing owner will pick it up.
 | |
| 		 */
 | |
| 		if (!idle_cpu(this_cpu) && need_resched()) {
 | |
| 			if (flags & NOHZ_STATS_KICK)
 | |
| 				has_blocked_load = true;
 | |
| 			if (flags & NOHZ_NEXT_KICK)
 | |
| 				WRITE_ONCE(nohz.needs_update, 1);
 | |
| 			goto abort;
 | |
| 		}
 | |
| 
 | |
| 		rq = cpu_rq(balance_cpu);
 | |
| 
 | |
| 		if (flags & NOHZ_STATS_KICK)
 | |
| 			has_blocked_load |= update_nohz_stats(rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * If time for next balance is due,
 | |
| 		 * do the balance.
 | |
| 		 */
 | |
| 		if (time_after_eq(jiffies, rq->next_balance)) {
 | |
| 			struct rq_flags rf;
 | |
| 
 | |
| 			rq_lock_irqsave(rq, &rf);
 | |
| 			update_rq_clock(rq);
 | |
| 			rq_unlock_irqrestore(rq, &rf);
 | |
| 
 | |
| 			if (flags & NOHZ_BALANCE_KICK)
 | |
| 				sched_balance_domains(rq, CPU_IDLE);
 | |
| 		}
 | |
| 
 | |
| 		if (time_after(next_balance, rq->next_balance)) {
 | |
| 			next_balance = rq->next_balance;
 | |
| 			update_next_balance = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * next_balance will be updated only when there is a need.
 | |
| 	 * When the CPU is attached to null domain for ex, it will not be
 | |
| 	 * updated.
 | |
| 	 */
 | |
| 	if (likely(update_next_balance))
 | |
| 		nohz.next_balance = next_balance;
 | |
| 
 | |
| 	if (flags & NOHZ_STATS_KICK)
 | |
| 		WRITE_ONCE(nohz.next_blocked,
 | |
| 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
 | |
| 
 | |
| abort:
 | |
| 	/* There is still blocked load, enable periodic update */
 | |
| 	if (has_blocked_load)
 | |
| 		WRITE_ONCE(nohz.has_blocked, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 | |
|  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
 | |
|  */
 | |
| static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 | |
| {
 | |
| 	unsigned int flags = this_rq->nohz_idle_balance;
 | |
| 
 | |
| 	if (!flags)
 | |
| 		return false;
 | |
| 
 | |
| 	this_rq->nohz_idle_balance = 0;
 | |
| 
 | |
| 	if (idle != CPU_IDLE)
 | |
| 		return false;
 | |
| 
 | |
| 	_nohz_idle_balance(this_rq, flags);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if we need to directly run the ILB for updating blocked load before
 | |
|  * entering idle state. Here we run ILB directly without issuing IPIs.
 | |
|  *
 | |
|  * Note that when this function is called, the tick may not yet be stopped on
 | |
|  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
 | |
|  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
 | |
|  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
 | |
|  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
 | |
|  * called from this function on (this) CPU that's not yet in the mask. That's
 | |
|  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
 | |
|  * updating the blocked load of already idle CPUs without waking up one of
 | |
|  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
 | |
|  * cpu about to enter idle, because it can take a long time.
 | |
|  */
 | |
| void nohz_run_idle_balance(int cpu)
 | |
| {
 | |
| 	unsigned int flags;
 | |
| 
 | |
| 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
 | |
| 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
 | |
| 	 */
 | |
| 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
 | |
| 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
 | |
| }
 | |
| 
 | |
| static void nohz_newidle_balance(struct rq *this_rq)
 | |
| {
 | |
| 	int this_cpu = this_rq->cpu;
 | |
| 
 | |
| 	/* Will wake up very soon. No time for doing anything else*/
 | |
| 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
 | |
| 		return;
 | |
| 
 | |
| 	/* Don't need to update blocked load of idle CPUs*/
 | |
| 	if (!READ_ONCE(nohz.has_blocked) ||
 | |
| 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the need to trigger ILB in order to update blocked load
 | |
| 	 * before entering idle state.
 | |
| 	 */
 | |
| 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_NO_HZ_COMMON */
 | |
| static inline void nohz_balancer_kick(struct rq *rq) { }
 | |
| 
 | |
| static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void nohz_newidle_balance(struct rq *this_rq) { }
 | |
| #endif /* CONFIG_NO_HZ_COMMON */
 | |
| 
 | |
| /*
 | |
|  * sched_balance_newidle is called by schedule() if this_cpu is about to become
 | |
|  * idle. Attempts to pull tasks from other CPUs.
 | |
|  *
 | |
|  * Returns:
 | |
|  *   < 0 - we released the lock and there are !fair tasks present
 | |
|  *     0 - failed, no new tasks
 | |
|  *   > 0 - success, new (fair) tasks present
 | |
|  */
 | |
| static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
 | |
| {
 | |
| 	unsigned long next_balance = jiffies + HZ;
 | |
| 	int this_cpu = this_rq->cpu;
 | |
| 	int continue_balancing = 1;
 | |
| 	u64 t0, t1, curr_cost = 0;
 | |
| 	struct sched_domain *sd;
 | |
| 	int pulled_task = 0;
 | |
| 
 | |
| 	update_misfit_status(NULL, this_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * There is a task waiting to run. No need to search for one.
 | |
| 	 * Return 0; the task will be enqueued when switching to idle.
 | |
| 	 */
 | |
| 	if (this_rq->ttwu_pending)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must set idle_stamp _before_ calling sched_balance_rq()
 | |
| 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
 | |
| 	 * as idle time.
 | |
| 	 */
 | |
| 	this_rq->idle_stamp = rq_clock(this_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not pull tasks towards !active CPUs...
 | |
| 	 */
 | |
| 	if (!cpu_active(this_cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is OK, because current is on_cpu, which avoids it being picked
 | |
| 	 * for load-balance and preemption/IRQs are still disabled avoiding
 | |
| 	 * further scheduler activity on it and we're being very careful to
 | |
| 	 * re-start the picking loop.
 | |
| 	 */
 | |
| 	rq_unpin_lock(this_rq, rf);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
 | |
| 
 | |
| 	if (!get_rd_overloaded(this_rq->rd) ||
 | |
| 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
 | |
| 
 | |
| 		if (sd)
 | |
| 			update_next_balance(sd, &next_balance);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	raw_spin_rq_unlock(this_rq);
 | |
| 
 | |
| 	t0 = sched_clock_cpu(this_cpu);
 | |
| 	sched_balance_update_blocked_averages(this_cpu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(this_cpu, sd) {
 | |
| 		u64 domain_cost;
 | |
| 
 | |
| 		update_next_balance(sd, &next_balance);
 | |
| 
 | |
| 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
 | |
| 			break;
 | |
| 
 | |
| 		if (sd->flags & SD_BALANCE_NEWIDLE) {
 | |
| 
 | |
| 			pulled_task = sched_balance_rq(this_cpu, this_rq,
 | |
| 						   sd, CPU_NEWLY_IDLE,
 | |
| 						   &continue_balancing);
 | |
| 
 | |
| 			t1 = sched_clock_cpu(this_cpu);
 | |
| 			domain_cost = t1 - t0;
 | |
| 			update_newidle_cost(sd, domain_cost);
 | |
| 
 | |
| 			curr_cost += domain_cost;
 | |
| 			t0 = t1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Stop searching for tasks to pull if there are
 | |
| 		 * now runnable tasks on this rq.
 | |
| 		 */
 | |
| 		if (pulled_task || !continue_balancing)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	raw_spin_rq_lock(this_rq);
 | |
| 
 | |
| 	if (curr_cost > this_rq->max_idle_balance_cost)
 | |
| 		this_rq->max_idle_balance_cost = curr_cost;
 | |
| 
 | |
| 	/*
 | |
| 	 * While browsing the domains, we released the rq lock, a task could
 | |
| 	 * have been enqueued in the meantime. Since we're not going idle,
 | |
| 	 * pretend we pulled a task.
 | |
| 	 */
 | |
| 	if (this_rq->cfs.h_nr_queued && !pulled_task)
 | |
| 		pulled_task = 1;
 | |
| 
 | |
| 	/* Is there a task of a high priority class? */
 | |
| 	if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
 | |
| 		pulled_task = -1;
 | |
| 
 | |
| out:
 | |
| 	/* Move the next balance forward */
 | |
| 	if (time_after(this_rq->next_balance, next_balance))
 | |
| 		this_rq->next_balance = next_balance;
 | |
| 
 | |
| 	if (pulled_task)
 | |
| 		this_rq->idle_stamp = 0;
 | |
| 	else
 | |
| 		nohz_newidle_balance(this_rq);
 | |
| 
 | |
| 	rq_repin_lock(this_rq, rf);
 | |
| 
 | |
| 	return pulled_task;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
 | |
|  *
 | |
|  * - directly from the local sched_tick() for periodic load balancing
 | |
|  *
 | |
|  * - indirectly from a remote sched_tick() for NOHZ idle balancing
 | |
|  *   through the SMP cross-call nohz_csd_func()
 | |
|  */
 | |
| static __latent_entropy void sched_balance_softirq(void)
 | |
| {
 | |
| 	struct rq *this_rq = this_rq();
 | |
| 	enum cpu_idle_type idle = this_rq->idle_balance;
 | |
| 	/*
 | |
| 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
 | |
| 	 * balancing on behalf of the other idle CPUs whose ticks are
 | |
| 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
 | |
| 	 * give the idle CPUs a chance to load balance. Else we may
 | |
| 	 * load balance only within the local sched_domain hierarchy
 | |
| 	 * and abort nohz_idle_balance altogether if we pull some load.
 | |
| 	 */
 | |
| 	if (nohz_idle_balance(this_rq, idle))
 | |
| 		return;
 | |
| 
 | |
| 	/* normal load balance */
 | |
| 	sched_balance_update_blocked_averages(this_rq->cpu);
 | |
| 	sched_balance_domains(this_rq, idle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 | |
|  */
 | |
| void sched_balance_trigger(struct rq *rq)
 | |
| {
 | |
| 	/*
 | |
| 	 * Don't need to rebalance while attached to NULL domain or
 | |
| 	 * runqueue CPU is not active
 | |
| 	 */
 | |
| 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
 | |
| 		return;
 | |
| 
 | |
| 	if (time_after_eq(jiffies, rq->next_balance))
 | |
| 		raise_softirq(SCHED_SOFTIRQ);
 | |
| 
 | |
| 	nohz_balancer_kick(rq);
 | |
| }
 | |
| 
 | |
| static void rq_online_fair(struct rq *rq)
 | |
| {
 | |
| 	update_sysctl();
 | |
| 
 | |
| 	update_runtime_enabled(rq);
 | |
| }
 | |
| 
 | |
| static void rq_offline_fair(struct rq *rq)
 | |
| {
 | |
| 	update_sysctl();
 | |
| 
 | |
| 	/* Ensure any throttled groups are reachable by pick_next_task */
 | |
| 	unthrottle_offline_cfs_rqs(rq);
 | |
| 
 | |
| 	/* Ensure that we remove rq contribution to group share: */
 | |
| 	clear_tg_offline_cfs_rqs(rq);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| static inline bool
 | |
| __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
 | |
| {
 | |
| 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
 | |
| 	u64 slice = se->slice;
 | |
| 
 | |
| 	return (rtime * min_nr_tasks > slice);
 | |
| }
 | |
| 
 | |
| #define MIN_NR_TASKS_DURING_FORCEIDLE	2
 | |
| static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
 | |
| {
 | |
| 	if (!sched_core_enabled(rq))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If runqueue has only one task which used up its slice and
 | |
| 	 * if the sibling is forced idle, then trigger schedule to
 | |
| 	 * give forced idle task a chance.
 | |
| 	 *
 | |
| 	 * sched_slice() considers only this active rq and it gets the
 | |
| 	 * whole slice. But during force idle, we have siblings acting
 | |
| 	 * like a single runqueue and hence we need to consider runnable
 | |
| 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
 | |
| 	 * go through the forced idle rq, but that would be a perf hit.
 | |
| 	 * We can assume that the forced idle CPU has at least
 | |
| 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
 | |
| 	 * if we need to give up the CPU.
 | |
| 	 */
 | |
| 	if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
 | |
| 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
 | |
| 		resched_curr(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
 | |
|  */
 | |
| static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
 | |
| 			 bool forceidle)
 | |
| {
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		if (forceidle) {
 | |
| 			if (cfs_rq->forceidle_seq == fi_seq)
 | |
| 				break;
 | |
| 			cfs_rq->forceidle_seq = fi_seq;
 | |
| 		}
 | |
| 
 | |
| 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	if (p->sched_class != &fair_sched_class)
 | |
| 		return;
 | |
| 
 | |
| 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
 | |
| }
 | |
| 
 | |
| bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
 | |
| 			bool in_fi)
 | |
| {
 | |
| 	struct rq *rq = task_rq(a);
 | |
| 	const struct sched_entity *sea = &a->se;
 | |
| 	const struct sched_entity *seb = &b->se;
 | |
| 	struct cfs_rq *cfs_rqa;
 | |
| 	struct cfs_rq *cfs_rqb;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	WARN_ON_ONCE(task_rq(b)->core != rq->core);
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	/*
 | |
| 	 * Find an se in the hierarchy for tasks a and b, such that the se's
 | |
| 	 * are immediate siblings.
 | |
| 	 */
 | |
| 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
 | |
| 		int sea_depth = sea->depth;
 | |
| 		int seb_depth = seb->depth;
 | |
| 
 | |
| 		if (sea_depth >= seb_depth)
 | |
| 			sea = parent_entity(sea);
 | |
| 		if (sea_depth <= seb_depth)
 | |
| 			seb = parent_entity(seb);
 | |
| 	}
 | |
| 
 | |
| 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
 | |
| 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
 | |
| 
 | |
| 	cfs_rqa = sea->cfs_rq;
 | |
| 	cfs_rqb = seb->cfs_rq;
 | |
| #else
 | |
| 	cfs_rqa = &task_rq(a)->cfs;
 | |
| 	cfs_rqb = &task_rq(b)->cfs;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Find delta after normalizing se's vruntime with its cfs_rq's
 | |
| 	 * min_vruntime_fi, which would have been updated in prior calls
 | |
| 	 * to se_fi_update().
 | |
| 	 */
 | |
| 	delta = (s64)(sea->vruntime - seb->vruntime) +
 | |
| 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
 | |
| 
 | |
| 	return delta > 0;
 | |
| }
 | |
| 
 | |
| static int task_is_throttled_fair(struct task_struct *p, int cpu)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	cfs_rq = task_group(p)->cfs_rq[cpu];
 | |
| #else
 | |
| 	cfs_rq = &cpu_rq(cpu)->cfs;
 | |
| #endif
 | |
| 	return throttled_hierarchy(cfs_rq);
 | |
| }
 | |
| #else
 | |
| static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * scheduler tick hitting a task of our scheduling class.
 | |
|  *
 | |
|  * NOTE: This function can be called remotely by the tick offload that
 | |
|  * goes along full dynticks. Therefore no local assumption can be made
 | |
|  * and everything must be accessed through the @rq and @curr passed in
 | |
|  * parameters.
 | |
|  */
 | |
| static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &curr->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		entity_tick(cfs_rq, se, queued);
 | |
| 	}
 | |
| 
 | |
| 	if (static_branch_unlikely(&sched_numa_balancing))
 | |
| 		task_tick_numa(rq, curr);
 | |
| 
 | |
| 	update_misfit_status(curr, rq);
 | |
| 	check_update_overutilized_status(task_rq(curr));
 | |
| 
 | |
| 	task_tick_core(rq, curr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called on fork with the child task as argument from the parent's context
 | |
|  *  - child not yet on the tasklist
 | |
|  *  - preemption disabled
 | |
|  */
 | |
| static void task_fork_fair(struct task_struct *p)
 | |
| {
 | |
| 	set_task_max_allowed_capacity(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Priority of the task has changed. Check to see if we preempt
 | |
|  * the current task.
 | |
|  */
 | |
| static void
 | |
| prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
 | |
| {
 | |
| 	if (!task_on_rq_queued(p))
 | |
| 		return;
 | |
| 
 | |
| 	if (rq->cfs.nr_queued == 1)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reschedule if we are currently running on this runqueue and
 | |
| 	 * our priority decreased, or if we are not currently running on
 | |
| 	 * this runqueue and our priority is higher than the current's
 | |
| 	 */
 | |
| 	if (task_current_donor(rq, p)) {
 | |
| 		if (p->prio > oldprio)
 | |
| 			resched_curr(rq);
 | |
| 	} else
 | |
| 		wakeup_preempt(rq, p, 0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| /*
 | |
|  * Propagate the changes of the sched_entity across the tg tree to make it
 | |
|  * visible to the root
 | |
|  */
 | |
| static void propagate_entity_cfs_rq(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	if (cfs_rq_throttled(cfs_rq))
 | |
| 		return;
 | |
| 
 | |
| 	if (!throttled_hierarchy(cfs_rq))
 | |
| 		list_add_leaf_cfs_rq(cfs_rq);
 | |
| 
 | |
| 	/* Start to propagate at parent */
 | |
| 	se = se->parent;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		update_load_avg(cfs_rq, se, UPDATE_TG);
 | |
| 
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			break;
 | |
| 
 | |
| 		if (!throttled_hierarchy(cfs_rq))
 | |
| 			list_add_leaf_cfs_rq(cfs_rq);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void propagate_entity_cfs_rq(struct sched_entity *se) { }
 | |
| #endif
 | |
| 
 | |
| static void detach_entity_cfs_rq(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * In case the task sched_avg hasn't been attached:
 | |
| 	 * - A forked task which hasn't been woken up by wake_up_new_task().
 | |
| 	 * - A task which has been woken up by try_to_wake_up() but is
 | |
| 	 *   waiting for actually being woken up by sched_ttwu_pending().
 | |
| 	 */
 | |
| 	if (!se->avg.last_update_time)
 | |
| 		return;
 | |
| #endif
 | |
| 
 | |
| 	/* Catch up with the cfs_rq and remove our load when we leave */
 | |
| 	update_load_avg(cfs_rq, se, 0);
 | |
| 	detach_entity_load_avg(cfs_rq, se);
 | |
| 	update_tg_load_avg(cfs_rq);
 | |
| 	propagate_entity_cfs_rq(se);
 | |
| }
 | |
| 
 | |
| static void attach_entity_cfs_rq(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	/* Synchronize entity with its cfs_rq */
 | |
| 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
 | |
| 	attach_entity_load_avg(cfs_rq, se);
 | |
| 	update_tg_load_avg(cfs_rq);
 | |
| 	propagate_entity_cfs_rq(se);
 | |
| }
 | |
| 
 | |
| static void detach_task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	detach_entity_cfs_rq(se);
 | |
| }
 | |
| 
 | |
| static void attach_task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	attach_entity_cfs_rq(se);
 | |
| }
 | |
| 
 | |
| static void switched_from_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	detach_task_cfs_rq(p);
 | |
| }
 | |
| 
 | |
| static void switched_to_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	WARN_ON_ONCE(p->se.sched_delayed);
 | |
| 
 | |
| 	attach_task_cfs_rq(p);
 | |
| 
 | |
| 	set_task_max_allowed_capacity(p);
 | |
| 
 | |
| 	if (task_on_rq_queued(p)) {
 | |
| 		/*
 | |
| 		 * We were most likely switched from sched_rt, so
 | |
| 		 * kick off the schedule if running, otherwise just see
 | |
| 		 * if we can still preempt the current task.
 | |
| 		 */
 | |
| 		if (task_current_donor(rq, p))
 | |
| 			resched_curr(rq);
 | |
| 		else
 | |
| 			wakeup_preempt(rq, p, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (task_on_rq_queued(p)) {
 | |
| 		/*
 | |
| 		 * Move the next running task to the front of the list, so our
 | |
| 		 * cfs_tasks list becomes MRU one.
 | |
| 		 */
 | |
| 		list_move(&se->group_node, &rq->cfs_tasks);
 | |
| 	}
 | |
| #endif
 | |
| 	if (!first)
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON_ONCE(se->sched_delayed);
 | |
| 
 | |
| 	if (hrtick_enabled_fair(rq))
 | |
| 		hrtick_start_fair(rq, p);
 | |
| 
 | |
| 	update_misfit_status(p, rq);
 | |
| 	sched_fair_update_stop_tick(rq, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for a task changing its policy or group.
 | |
|  *
 | |
|  * This routine is mostly called to set cfs_rq->curr field when a task
 | |
|  * migrates between groups/classes.
 | |
|  */
 | |
| static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		set_next_entity(cfs_rq, se);
 | |
| 		/* ensure bandwidth has been allocated on our new cfs_rq */
 | |
| 		account_cfs_rq_runtime(cfs_rq, 0);
 | |
| 	}
 | |
| 
 | |
| 	__set_next_task_fair(rq, p, first);
 | |
| }
 | |
| 
 | |
| void init_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
 | |
| 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
 | |
| #ifdef CONFIG_SMP
 | |
| 	raw_spin_lock_init(&cfs_rq->removed.lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static void task_change_group_fair(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * We couldn't detach or attach a forked task which
 | |
| 	 * hasn't been woken up by wake_up_new_task().
 | |
| 	 */
 | |
| 	if (READ_ONCE(p->__state) == TASK_NEW)
 | |
| 		return;
 | |
| 
 | |
| 	detach_task_cfs_rq(p);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* Tell se's cfs_rq has been changed -- migrated */
 | |
| 	p->se.avg.last_update_time = 0;
 | |
| #endif
 | |
| 	set_task_rq(p, task_cpu(p));
 | |
| 	attach_task_cfs_rq(p);
 | |
| }
 | |
| 
 | |
| void free_fair_sched_group(struct task_group *tg)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		if (tg->cfs_rq)
 | |
| 			kfree(tg->cfs_rq[i]);
 | |
| 		if (tg->se)
 | |
| 			kfree(tg->se[i]);
 | |
| 	}
 | |
| 
 | |
| 	kfree(tg->cfs_rq);
 | |
| 	kfree(tg->se);
 | |
| }
 | |
| 
 | |
| int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 | |
| {
 | |
| 	struct sched_entity *se;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	int i;
 | |
| 
 | |
| 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
 | |
| 	if (!tg->cfs_rq)
 | |
| 		goto err;
 | |
| 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
 | |
| 	if (!tg->se)
 | |
| 		goto err;
 | |
| 
 | |
| 	tg->shares = NICE_0_LOAD;
 | |
| 
 | |
| 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
 | |
| 				      GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!cfs_rq)
 | |
| 			goto err;
 | |
| 
 | |
| 		se = kzalloc_node(sizeof(struct sched_entity_stats),
 | |
| 				  GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!se)
 | |
| 			goto err_free_rq;
 | |
| 
 | |
| 		init_cfs_rq(cfs_rq);
 | |
| 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
 | |
| 		init_entity_runnable_average(se);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| err_free_rq:
 | |
| 	kfree(cfs_rq);
 | |
| err:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void online_fair_sched_group(struct task_group *tg)
 | |
| {
 | |
| 	struct sched_entity *se;
 | |
| 	struct rq_flags rf;
 | |
| 	struct rq *rq;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		rq = cpu_rq(i);
 | |
| 		se = tg->se[i];
 | |
| 		rq_lock_irq(rq, &rf);
 | |
| 		update_rq_clock(rq);
 | |
| 		attach_entity_cfs_rq(se);
 | |
| 		sync_throttle(tg, i);
 | |
| 		rq_unlock_irq(rq, &rf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void unregister_fair_sched_group(struct task_group *tg)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
 | |
| 		struct sched_entity *se = tg->se[cpu];
 | |
| 		struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 		if (se) {
 | |
| 			if (se->sched_delayed) {
 | |
| 				guard(rq_lock_irqsave)(rq);
 | |
| 				if (se->sched_delayed) {
 | |
| 					update_rq_clock(rq);
 | |
| 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
 | |
| 				}
 | |
| 				list_del_leaf_cfs_rq(cfs_rq);
 | |
| 			}
 | |
| 			remove_entity_load_avg(se);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Only empty task groups can be destroyed; so we can speculatively
 | |
| 		 * check on_list without danger of it being re-added.
 | |
| 		 */
 | |
| 		if (cfs_rq->on_list) {
 | |
| 			guard(rq_lock_irqsave)(rq);
 | |
| 			list_del_leaf_cfs_rq(cfs_rq);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 | |
| 			struct sched_entity *se, int cpu,
 | |
| 			struct sched_entity *parent)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	cfs_rq->tg = tg;
 | |
| 	cfs_rq->rq = rq;
 | |
| 	init_cfs_rq_runtime(cfs_rq);
 | |
| 
 | |
| 	tg->cfs_rq[cpu] = cfs_rq;
 | |
| 	tg->se[cpu] = se;
 | |
| 
 | |
| 	/* se could be NULL for root_task_group */
 | |
| 	if (!se)
 | |
| 		return;
 | |
| 
 | |
| 	if (!parent) {
 | |
| 		se->cfs_rq = &rq->cfs;
 | |
| 		se->depth = 0;
 | |
| 	} else {
 | |
| 		se->cfs_rq = parent->my_q;
 | |
| 		se->depth = parent->depth + 1;
 | |
| 	}
 | |
| 
 | |
| 	se->my_q = cfs_rq;
 | |
| 	/* guarantee group entities always have weight */
 | |
| 	update_load_set(&se->load, NICE_0_LOAD);
 | |
| 	se->parent = parent;
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(shares_mutex);
 | |
| 
 | |
| static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	lockdep_assert_held(&shares_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't change the weight of the root cgroup.
 | |
| 	 */
 | |
| 	if (!tg->se[0])
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
 | |
| 
 | |
| 	if (tg->shares == shares)
 | |
| 		return 0;
 | |
| 
 | |
| 	tg->shares = shares;
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 		struct sched_entity *se = tg->se[i];
 | |
| 		struct rq_flags rf;
 | |
| 
 | |
| 		/* Propagate contribution to hierarchy */
 | |
| 		rq_lock_irqsave(rq, &rf);
 | |
| 		update_rq_clock(rq);
 | |
| 		for_each_sched_entity(se) {
 | |
| 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
 | |
| 			update_cfs_group(se);
 | |
| 		}
 | |
| 		rq_unlock_irqrestore(rq, &rf);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sched_group_set_shares(struct task_group *tg, unsigned long shares)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&shares_mutex);
 | |
| 	if (tg_is_idle(tg))
 | |
| 		ret = -EINVAL;
 | |
| 	else
 | |
| 		ret = __sched_group_set_shares(tg, shares);
 | |
| 	mutex_unlock(&shares_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int sched_group_set_idle(struct task_group *tg, long idle)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (tg == &root_task_group)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (idle < 0 || idle > 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&shares_mutex);
 | |
| 
 | |
| 	if (tg->idle == idle) {
 | |
| 		mutex_unlock(&shares_mutex);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	tg->idle = idle;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 		struct sched_entity *se = tg->se[i];
 | |
| 		struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
 | |
| 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
 | |
| 		long idle_task_delta;
 | |
| 		struct rq_flags rf;
 | |
| 
 | |
| 		rq_lock_irqsave(rq, &rf);
 | |
| 
 | |
| 		grp_cfs_rq->idle = idle;
 | |
| 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
 | |
| 			goto next_cpu;
 | |
| 
 | |
| 		idle_task_delta = grp_cfs_rq->h_nr_queued -
 | |
| 				  grp_cfs_rq->h_nr_idle;
 | |
| 		if (!cfs_rq_is_idle(grp_cfs_rq))
 | |
| 			idle_task_delta *= -1;
 | |
| 
 | |
| 		for_each_sched_entity(se) {
 | |
| 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 			if (!se->on_rq)
 | |
| 				break;
 | |
| 
 | |
| 			cfs_rq->h_nr_idle += idle_task_delta;
 | |
| 
 | |
| 			/* Already accounted at parent level and above. */
 | |
| 			if (cfs_rq_is_idle(cfs_rq))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| next_cpu:
 | |
| 		rq_unlock_irqrestore(rq, &rf);
 | |
| 	}
 | |
| 
 | |
| 	/* Idle groups have minimum weight. */
 | |
| 	if (tg_is_idle(tg))
 | |
| 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
 | |
| 	else
 | |
| 		__sched_group_set_shares(tg, NICE_0_LOAD);
 | |
| 
 | |
| 	mutex_unlock(&shares_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| 
 | |
| static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
 | |
| {
 | |
| 	struct sched_entity *se = &task->se;
 | |
| 	unsigned int rr_interval = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
 | |
| 	 * idle runqueue:
 | |
| 	 */
 | |
| 	if (rq->cfs.load.weight)
 | |
| 		rr_interval = NS_TO_JIFFIES(se->slice);
 | |
| 
 | |
| 	return rr_interval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * All the scheduling class methods:
 | |
|  */
 | |
| DEFINE_SCHED_CLASS(fair) = {
 | |
| 
 | |
| 	.enqueue_task		= enqueue_task_fair,
 | |
| 	.dequeue_task		= dequeue_task_fair,
 | |
| 	.yield_task		= yield_task_fair,
 | |
| 	.yield_to_task		= yield_to_task_fair,
 | |
| 
 | |
| 	.wakeup_preempt		= check_preempt_wakeup_fair,
 | |
| 
 | |
| 	.pick_task		= pick_task_fair,
 | |
| 	.pick_next_task		= __pick_next_task_fair,
 | |
| 	.put_prev_task		= put_prev_task_fair,
 | |
| 	.set_next_task          = set_next_task_fair,
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	.balance		= balance_fair,
 | |
| 	.select_task_rq		= select_task_rq_fair,
 | |
| 	.migrate_task_rq	= migrate_task_rq_fair,
 | |
| 
 | |
| 	.rq_online		= rq_online_fair,
 | |
| 	.rq_offline		= rq_offline_fair,
 | |
| 
 | |
| 	.task_dead		= task_dead_fair,
 | |
| 	.set_cpus_allowed	= set_cpus_allowed_fair,
 | |
| #endif
 | |
| 
 | |
| 	.task_tick		= task_tick_fair,
 | |
| 	.task_fork		= task_fork_fair,
 | |
| 
 | |
| 	.reweight_task		= reweight_task_fair,
 | |
| 	.prio_changed		= prio_changed_fair,
 | |
| 	.switched_from		= switched_from_fair,
 | |
| 	.switched_to		= switched_to_fair,
 | |
| 
 | |
| 	.get_rr_interval	= get_rr_interval_fair,
 | |
| 
 | |
| 	.update_curr		= update_curr_fair,
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	.task_change_group	= task_change_group_fair,
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| 	.task_is_throttled	= task_is_throttled_fair,
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| 	.uclamp_enabled		= 1,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| void print_cfs_stats(struct seq_file *m, int cpu)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq, *pos;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
 | |
| 		print_cfs_rq(m, cpu, cfs_rq);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| void show_numa_stats(struct task_struct *p, struct seq_file *m)
 | |
| {
 | |
| 	int node;
 | |
| 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
 | |
| 	struct numa_group *ng;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ng = rcu_dereference(p->numa_group);
 | |
| 	for_each_online_node(node) {
 | |
| 		if (p->numa_faults) {
 | |
| 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
 | |
| 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
 | |
| 		}
 | |
| 		if (ng) {
 | |
| 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
 | |
| 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
 | |
| 		}
 | |
| 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| __init void init_sched_fair_class(void)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
 | |
| 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
 | |
| 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
 | |
| 					GFP_KERNEL, cpu_to_node(i));
 | |
| 
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
 | |
| 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| 	nohz.next_balance = jiffies;
 | |
| 	nohz.next_blocked = jiffies;
 | |
| 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
 | |
| #endif
 | |
| #endif /* SMP */
 | |
| 
 | |
| }
 |