mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 277e090975
			
		
	
	
		277e090975
		
	
	
	
	
		
			
			When RT_GROUPs are compiled but not exposed, their bandwidth cannot be configured (and it is not initialized for non-root task_groups neither). Therefore bypass any checks of task vs task_group bandwidth. This will achieve behavior very similar to setups that have !CONFIG_RT_GROUP_SCHED and attach cpu controller to cgroup v2 hierarchy. (On a related note, this may allow having RT tasks with CONFIG_RT_GROUP_SCHED and cgroup v2 hierarchy.) Signed-off-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250310170442.504716-7-mkoutny@suse.com
		
			
				
	
	
		
			1595 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1595 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  kernel/sched/syscalls.c
 | |
|  *
 | |
|  *  Core kernel scheduler syscalls related code
 | |
|  *
 | |
|  *  Copyright (C) 1991-2002  Linus Torvalds
 | |
|  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
 | |
|  */
 | |
| #include <linux/sched.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/sched/debug.h>
 | |
| 
 | |
| #include <uapi/linux/sched/types.h>
 | |
| 
 | |
| #include "sched.h"
 | |
| #include "autogroup.h"
 | |
| 
 | |
| static inline int __normal_prio(int policy, int rt_prio, int nice)
 | |
| {
 | |
| 	int prio;
 | |
| 
 | |
| 	if (dl_policy(policy))
 | |
| 		prio = MAX_DL_PRIO - 1;
 | |
| 	else if (rt_policy(policy))
 | |
| 		prio = MAX_RT_PRIO - 1 - rt_prio;
 | |
| 	else
 | |
| 		prio = NICE_TO_PRIO(nice);
 | |
| 
 | |
| 	return prio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the expected normal priority: i.e. priority
 | |
|  * without taking RT-inheritance into account. Might be
 | |
|  * boosted by interactivity modifiers. Changes upon fork,
 | |
|  * setprio syscalls, and whenever the interactivity
 | |
|  * estimator recalculates.
 | |
|  */
 | |
| static inline int normal_prio(struct task_struct *p)
 | |
| {
 | |
| 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the current priority, i.e. the priority
 | |
|  * taken into account by the scheduler. This value might
 | |
|  * be boosted by RT tasks, or might be boosted by
 | |
|  * interactivity modifiers. Will be RT if the task got
 | |
|  * RT-boosted. If not then it returns p->normal_prio.
 | |
|  */
 | |
| static int effective_prio(struct task_struct *p)
 | |
| {
 | |
| 	p->normal_prio = normal_prio(p);
 | |
| 	/*
 | |
| 	 * If we are RT tasks or we were boosted to RT priority,
 | |
| 	 * keep the priority unchanged. Otherwise, update priority
 | |
| 	 * to the normal priority:
 | |
| 	 */
 | |
| 	if (!rt_or_dl_prio(p->prio))
 | |
| 		return p->normal_prio;
 | |
| 	return p->prio;
 | |
| }
 | |
| 
 | |
| void set_user_nice(struct task_struct *p, long nice)
 | |
| {
 | |
| 	bool queued, running;
 | |
| 	struct rq *rq;
 | |
| 	int old_prio;
 | |
| 
 | |
| 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We have to be careful, if called from sys_setpriority(),
 | |
| 	 * the task might be in the middle of scheduling on another CPU.
 | |
| 	 */
 | |
| 	CLASS(task_rq_lock, rq_guard)(p);
 | |
| 	rq = rq_guard.rq;
 | |
| 
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * The RT priorities are set via sched_setscheduler(), but we still
 | |
| 	 * allow the 'normal' nice value to be set - but as expected
 | |
| 	 * it won't have any effect on scheduling until the task is
 | |
| 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
 | |
| 	 */
 | |
| 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 | |
| 		p->static_prio = NICE_TO_PRIO(nice);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	queued = task_on_rq_queued(p);
 | |
| 	running = task_current_donor(rq, p);
 | |
| 	if (queued)
 | |
| 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 | |
| 	if (running)
 | |
| 		put_prev_task(rq, p);
 | |
| 
 | |
| 	p->static_prio = NICE_TO_PRIO(nice);
 | |
| 	set_load_weight(p, true);
 | |
| 	old_prio = p->prio;
 | |
| 	p->prio = effective_prio(p);
 | |
| 
 | |
| 	if (queued)
 | |
| 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 | |
| 	if (running)
 | |
| 		set_next_task(rq, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the task increased its priority or is running and
 | |
| 	 * lowered its priority, then reschedule its CPU:
 | |
| 	 */
 | |
| 	p->sched_class->prio_changed(rq, p, old_prio);
 | |
| }
 | |
| EXPORT_SYMBOL(set_user_nice);
 | |
| 
 | |
| /*
 | |
|  * is_nice_reduction - check if nice value is an actual reduction
 | |
|  *
 | |
|  * Similar to can_nice() but does not perform a capability check.
 | |
|  *
 | |
|  * @p: task
 | |
|  * @nice: nice value
 | |
|  */
 | |
| static bool is_nice_reduction(const struct task_struct *p, const int nice)
 | |
| {
 | |
| 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
 | |
| 	int nice_rlim = nice_to_rlimit(nice);
 | |
| 
 | |
| 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * can_nice - check if a task can reduce its nice value
 | |
|  * @p: task
 | |
|  * @nice: nice value
 | |
|  */
 | |
| int can_nice(const struct task_struct *p, const int nice)
 | |
| {
 | |
| 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_NICE
 | |
| 
 | |
| /*
 | |
|  * sys_nice - change the priority of the current process.
 | |
|  * @increment: priority increment
 | |
|  *
 | |
|  * sys_setpriority is a more generic, but much slower function that
 | |
|  * does similar things.
 | |
|  */
 | |
| SYSCALL_DEFINE1(nice, int, increment)
 | |
| {
 | |
| 	long nice, retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Setpriority might change our priority at the same moment.
 | |
| 	 * We don't have to worry. Conceptually one call occurs first
 | |
| 	 * and we have a single winner.
 | |
| 	 */
 | |
| 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
 | |
| 	nice = task_nice(current) + increment;
 | |
| 
 | |
| 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
 | |
| 	if (increment < 0 && !can_nice(current, nice))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	retval = security_task_setnice(current, nice);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	set_user_nice(current, nice);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * task_prio - return the priority value of a given task.
 | |
|  * @p: the task in question.
 | |
|  *
 | |
|  * Return: The priority value as seen by users in /proc.
 | |
|  *
 | |
|  * sched policy         return value   kernel prio    user prio/nice
 | |
|  *
 | |
|  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
 | |
|  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
 | |
|  * deadline                     -101             -1           0
 | |
|  */
 | |
| int task_prio(const struct task_struct *p)
 | |
| {
 | |
| 	return p->prio - MAX_RT_PRIO;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idle_cpu - is a given CPU idle currently?
 | |
|  * @cpu: the processor in question.
 | |
|  *
 | |
|  * Return: 1 if the CPU is currently idle. 0 otherwise.
 | |
|  */
 | |
| int idle_cpu(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	if (rq->curr != rq->idle)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (rq->nr_running)
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (rq->ttwu_pending)
 | |
| 		return 0;
 | |
| #endif
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * available_idle_cpu - is a given CPU idle for enqueuing work.
 | |
|  * @cpu: the CPU in question.
 | |
|  *
 | |
|  * Return: 1 if the CPU is currently idle. 0 otherwise.
 | |
|  */
 | |
| int available_idle_cpu(int cpu)
 | |
| {
 | |
| 	if (!idle_cpu(cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (vcpu_is_preempted(cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idle_task - return the idle task for a given CPU.
 | |
|  * @cpu: the processor in question.
 | |
|  *
 | |
|  * Return: The idle task for the CPU @cpu.
 | |
|  */
 | |
| struct task_struct *idle_task(int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->idle;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| int sched_core_idle_cpu(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
 | |
| 		return 1;
 | |
| 
 | |
| 	return idle_cpu(cpu);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * find_process_by_pid - find a process with a matching PID value.
 | |
|  * @pid: the pid in question.
 | |
|  *
 | |
|  * The task of @pid, if found. %NULL otherwise.
 | |
|  */
 | |
| static struct task_struct *find_process_by_pid(pid_t pid)
 | |
| {
 | |
| 	return pid ? find_task_by_vpid(pid) : current;
 | |
| }
 | |
| 
 | |
| static struct task_struct *find_get_task(pid_t pid)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	guard(rcu)();
 | |
| 
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (likely(p))
 | |
| 		get_task_struct(p);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
 | |
| 	     find_get_task(pid), pid_t pid)
 | |
| 
 | |
| /*
 | |
|  * sched_setparam() passes in -1 for its policy, to let the functions
 | |
|  * it calls know not to change it.
 | |
|  */
 | |
| #define SETPARAM_POLICY	-1
 | |
| 
 | |
| static void __setscheduler_params(struct task_struct *p,
 | |
| 		const struct sched_attr *attr)
 | |
| {
 | |
| 	int policy = attr->sched_policy;
 | |
| 
 | |
| 	if (policy == SETPARAM_POLICY)
 | |
| 		policy = p->policy;
 | |
| 
 | |
| 	p->policy = policy;
 | |
| 
 | |
| 	if (dl_policy(policy))
 | |
| 		__setparam_dl(p, attr);
 | |
| 	else if (fair_policy(policy))
 | |
| 		__setparam_fair(p, attr);
 | |
| 
 | |
| 	/* rt-policy tasks do not have a timerslack */
 | |
| 	if (rt_or_dl_task_policy(p)) {
 | |
| 		p->timer_slack_ns = 0;
 | |
| 	} else if (p->timer_slack_ns == 0) {
 | |
| 		/* when switching back to non-rt policy, restore timerslack */
 | |
| 		p->timer_slack_ns = p->default_timer_slack_ns;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
 | |
| 	 * !rt_policy. Always setting this ensures that things like
 | |
| 	 * getparam()/getattr() don't report silly values for !rt tasks.
 | |
| 	 */
 | |
| 	p->rt_priority = attr->sched_priority;
 | |
| 	p->normal_prio = normal_prio(p);
 | |
| 	set_load_weight(p, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the target process has a UID that matches the current process's:
 | |
|  */
 | |
| static bool check_same_owner(struct task_struct *p)
 | |
| {
 | |
| 	const struct cred *cred = current_cred(), *pcred;
 | |
| 	guard(rcu)();
 | |
| 
 | |
| 	pcred = __task_cred(p);
 | |
| 	return (uid_eq(cred->euid, pcred->euid) ||
 | |
| 		uid_eq(cred->euid, pcred->uid));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| 
 | |
| static int uclamp_validate(struct task_struct *p,
 | |
| 			   const struct sched_attr *attr)
 | |
| {
 | |
| 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
 | |
| 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
 | |
| 
 | |
| 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
 | |
| 		util_min = attr->sched_util_min;
 | |
| 
 | |
| 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
 | |
| 		util_max = attr->sched_util_max;
 | |
| 
 | |
| 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (util_min != -1 && util_max != -1 && util_min > util_max)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have valid uclamp attributes; make sure uclamp is enabled.
 | |
| 	 *
 | |
| 	 * We need to do that here, because enabling static branches is a
 | |
| 	 * blocking operation which obviously cannot be done while holding
 | |
| 	 * scheduler locks.
 | |
| 	 */
 | |
| 	sched_uclamp_enable();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool uclamp_reset(const struct sched_attr *attr,
 | |
| 			 enum uclamp_id clamp_id,
 | |
| 			 struct uclamp_se *uc_se)
 | |
| {
 | |
| 	/* Reset on sched class change for a non user-defined clamp value. */
 | |
| 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
 | |
| 	    !uc_se->user_defined)
 | |
| 		return true;
 | |
| 
 | |
| 	/* Reset on sched_util_{min,max} == -1. */
 | |
| 	if (clamp_id == UCLAMP_MIN &&
 | |
| 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 | |
| 	    attr->sched_util_min == -1) {
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (clamp_id == UCLAMP_MAX &&
 | |
| 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 | |
| 	    attr->sched_util_max == -1) {
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __setscheduler_uclamp(struct task_struct *p,
 | |
| 				  const struct sched_attr *attr)
 | |
| {
 | |
| 	enum uclamp_id clamp_id;
 | |
| 
 | |
| 	for_each_clamp_id(clamp_id) {
 | |
| 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
 | |
| 		unsigned int value;
 | |
| 
 | |
| 		if (!uclamp_reset(attr, clamp_id, uc_se))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * RT by default have a 100% boost value that could be modified
 | |
| 		 * at runtime.
 | |
| 		 */
 | |
| 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
 | |
| 			value = sysctl_sched_uclamp_util_min_rt_default;
 | |
| 		else
 | |
| 			value = uclamp_none(clamp_id);
 | |
| 
 | |
| 		uclamp_se_set(uc_se, value, false);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
 | |
| 		return;
 | |
| 
 | |
| 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 | |
| 	    attr->sched_util_min != -1) {
 | |
| 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
 | |
| 			      attr->sched_util_min, true);
 | |
| 	}
 | |
| 
 | |
| 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 | |
| 	    attr->sched_util_max != -1) {
 | |
| 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
 | |
| 			      attr->sched_util_max, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_UCLAMP_TASK: */
 | |
| 
 | |
| static inline int uclamp_validate(struct task_struct *p,
 | |
| 				  const struct sched_attr *attr)
 | |
| {
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| static void __setscheduler_uclamp(struct task_struct *p,
 | |
| 				  const struct sched_attr *attr) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Allow unprivileged RT tasks to decrease priority.
 | |
|  * Only issue a capable test if needed and only once to avoid an audit
 | |
|  * event on permitted non-privileged operations:
 | |
|  */
 | |
| static int user_check_sched_setscheduler(struct task_struct *p,
 | |
| 					 const struct sched_attr *attr,
 | |
| 					 int policy, int reset_on_fork)
 | |
| {
 | |
| 	if (fair_policy(policy)) {
 | |
| 		if (attr->sched_nice < task_nice(p) &&
 | |
| 		    !is_nice_reduction(p, attr->sched_nice))
 | |
| 			goto req_priv;
 | |
| 	}
 | |
| 
 | |
| 	if (rt_policy(policy)) {
 | |
| 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
 | |
| 
 | |
| 		/* Can't set/change the rt policy: */
 | |
| 		if (policy != p->policy && !rlim_rtprio)
 | |
| 			goto req_priv;
 | |
| 
 | |
| 		/* Can't increase priority: */
 | |
| 		if (attr->sched_priority > p->rt_priority &&
 | |
| 		    attr->sched_priority > rlim_rtprio)
 | |
| 			goto req_priv;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't set/change SCHED_DEADLINE policy at all for now
 | |
| 	 * (safest behavior); in the future we would like to allow
 | |
| 	 * unprivileged DL tasks to increase their relative deadline
 | |
| 	 * or reduce their runtime (both ways reducing utilization)
 | |
| 	 */
 | |
| 	if (dl_policy(policy))
 | |
| 		goto req_priv;
 | |
| 
 | |
| 	/*
 | |
| 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
 | |
| 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
 | |
| 	 */
 | |
| 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
 | |
| 		if (!is_nice_reduction(p, task_nice(p)))
 | |
| 			goto req_priv;
 | |
| 	}
 | |
| 
 | |
| 	/* Can't change other user's priorities: */
 | |
| 	if (!check_same_owner(p))
 | |
| 		goto req_priv;
 | |
| 
 | |
| 	/* Normal users shall not reset the sched_reset_on_fork flag: */
 | |
| 	if (p->sched_reset_on_fork && !reset_on_fork)
 | |
| 		goto req_priv;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| req_priv:
 | |
| 	if (!capable(CAP_SYS_NICE))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __sched_setscheduler(struct task_struct *p,
 | |
| 			 const struct sched_attr *attr,
 | |
| 			 bool user, bool pi)
 | |
| {
 | |
| 	int oldpolicy = -1, policy = attr->sched_policy;
 | |
| 	int retval, oldprio, newprio, queued, running;
 | |
| 	const struct sched_class *prev_class, *next_class;
 | |
| 	struct balance_callback *head;
 | |
| 	struct rq_flags rf;
 | |
| 	int reset_on_fork;
 | |
| 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 | |
| 	struct rq *rq;
 | |
| 	bool cpuset_locked = false;
 | |
| 
 | |
| 	/* The pi code expects interrupts enabled */
 | |
| 	BUG_ON(pi && in_interrupt());
 | |
| recheck:
 | |
| 	/* Double check policy once rq lock held: */
 | |
| 	if (policy < 0) {
 | |
| 		reset_on_fork = p->sched_reset_on_fork;
 | |
| 		policy = oldpolicy = p->policy;
 | |
| 	} else {
 | |
| 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
 | |
| 
 | |
| 		if (!valid_policy(policy))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 | |
| 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
 | |
| 	 * SCHED_BATCH and SCHED_IDLE is 0.
 | |
| 	 */
 | |
| 	if (attr->sched_priority > MAX_RT_PRIO-1)
 | |
| 		return -EINVAL;
 | |
| 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
 | |
| 	    (rt_policy(policy) != (attr->sched_priority != 0)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (user) {
 | |
| 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 
 | |
| 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		retval = security_task_setscheduler(p);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 	}
 | |
| 
 | |
| 	/* Update task specific "requested" clamps */
 | |
| 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
 | |
| 		retval = uclamp_validate(p, attr);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
 | |
| 	 * information.
 | |
| 	 */
 | |
| 	if (dl_policy(policy) || dl_policy(p->policy)) {
 | |
| 		cpuset_locked = true;
 | |
| 		cpuset_lock();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure no PI-waiters arrive (or leave) while we are
 | |
| 	 * changing the priority of the task:
 | |
| 	 *
 | |
| 	 * To be able to change p->policy safely, the appropriate
 | |
| 	 * runqueue lock must be held.
 | |
| 	 */
 | |
| 	rq = task_rq_lock(p, &rf);
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Changing the policy of the stop threads its a very bad idea:
 | |
| 	 */
 | |
| 	if (p == rq->stop) {
 | |
| 		retval = -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	retval = scx_check_setscheduler(p, policy);
 | |
| 	if (retval)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * If not changing anything there's no need to proceed further,
 | |
| 	 * but store a possible modification of reset_on_fork.
 | |
| 	 */
 | |
| 	if (unlikely(policy == p->policy)) {
 | |
| 		if (fair_policy(policy) &&
 | |
| 		    (attr->sched_nice != task_nice(p) ||
 | |
| 		     (attr->sched_runtime != p->se.slice)))
 | |
| 			goto change;
 | |
| 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
 | |
| 			goto change;
 | |
| 		if (dl_policy(policy) && dl_param_changed(p, attr))
 | |
| 			goto change;
 | |
| 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
 | |
| 			goto change;
 | |
| 
 | |
| 		p->sched_reset_on_fork = reset_on_fork;
 | |
| 		retval = 0;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| change:
 | |
| 
 | |
| 	if (user) {
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 		/*
 | |
| 		 * Do not allow real-time tasks into groups that have no runtime
 | |
| 		 * assigned.
 | |
| 		 */
 | |
| 		if (rt_group_sched_enabled() &&
 | |
| 				rt_bandwidth_enabled() && rt_policy(policy) &&
 | |
| 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
 | |
| 				!task_group_is_autogroup(task_group(p))) {
 | |
| 			retval = -EPERM;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| #ifdef CONFIG_SMP
 | |
| 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
 | |
| 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
 | |
| 			cpumask_t *span = rq->rd->span;
 | |
| 
 | |
| 			/*
 | |
| 			 * Don't allow tasks with an affinity mask smaller than
 | |
| 			 * the entire root_domain to become SCHED_DEADLINE. We
 | |
| 			 * will also fail if there's no bandwidth available.
 | |
| 			 */
 | |
| 			if (!cpumask_subset(span, p->cpus_ptr) ||
 | |
| 			    rq->rd->dl_bw.bw == 0) {
 | |
| 				retval = -EPERM;
 | |
| 				goto unlock;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Re-check policy now with rq lock held: */
 | |
| 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
 | |
| 		policy = oldpolicy = -1;
 | |
| 		task_rq_unlock(rq, p, &rf);
 | |
| 		if (cpuset_locked)
 | |
| 			cpuset_unlock();
 | |
| 		goto recheck;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
 | |
| 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
 | |
| 	 * is available.
 | |
| 	 */
 | |
| 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
 | |
| 		retval = -EBUSY;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	p->sched_reset_on_fork = reset_on_fork;
 | |
| 	oldprio = p->prio;
 | |
| 
 | |
| 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
 | |
| 	if (pi) {
 | |
| 		/*
 | |
| 		 * Take priority boosted tasks into account. If the new
 | |
| 		 * effective priority is unchanged, we just store the new
 | |
| 		 * normal parameters and do not touch the scheduler class and
 | |
| 		 * the runqueue. This will be done when the task deboost
 | |
| 		 * itself.
 | |
| 		 */
 | |
| 		newprio = rt_effective_prio(p, newprio);
 | |
| 		if (newprio == oldprio)
 | |
| 			queue_flags &= ~DEQUEUE_MOVE;
 | |
| 	}
 | |
| 
 | |
| 	prev_class = p->sched_class;
 | |
| 	next_class = __setscheduler_class(policy, newprio);
 | |
| 
 | |
| 	if (prev_class != next_class && p->se.sched_delayed)
 | |
| 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
 | |
| 
 | |
| 	queued = task_on_rq_queued(p);
 | |
| 	running = task_current_donor(rq, p);
 | |
| 	if (queued)
 | |
| 		dequeue_task(rq, p, queue_flags);
 | |
| 	if (running)
 | |
| 		put_prev_task(rq, p);
 | |
| 
 | |
| 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
 | |
| 		__setscheduler_params(p, attr);
 | |
| 		p->sched_class = next_class;
 | |
| 		p->prio = newprio;
 | |
| 	}
 | |
| 	__setscheduler_uclamp(p, attr);
 | |
| 	check_class_changing(rq, p, prev_class);
 | |
| 
 | |
| 	if (queued) {
 | |
| 		/*
 | |
| 		 * We enqueue to tail when the priority of a task is
 | |
| 		 * increased (user space view).
 | |
| 		 */
 | |
| 		if (oldprio < p->prio)
 | |
| 			queue_flags |= ENQUEUE_HEAD;
 | |
| 
 | |
| 		enqueue_task(rq, p, queue_flags);
 | |
| 	}
 | |
| 	if (running)
 | |
| 		set_next_task(rq, p);
 | |
| 
 | |
| 	check_class_changed(rq, p, prev_class, oldprio);
 | |
| 
 | |
| 	/* Avoid rq from going away on us: */
 | |
| 	preempt_disable();
 | |
| 	head = splice_balance_callbacks(rq);
 | |
| 	task_rq_unlock(rq, p, &rf);
 | |
| 
 | |
| 	if (pi) {
 | |
| 		if (cpuset_locked)
 | |
| 			cpuset_unlock();
 | |
| 		rt_mutex_adjust_pi(p);
 | |
| 	}
 | |
| 
 | |
| 	/* Run balance callbacks after we've adjusted the PI chain: */
 | |
| 	balance_callbacks(rq, head);
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| unlock:
 | |
| 	task_rq_unlock(rq, p, &rf);
 | |
| 	if (cpuset_locked)
 | |
| 		cpuset_unlock();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int _sched_setscheduler(struct task_struct *p, int policy,
 | |
| 			       const struct sched_param *param, bool check)
 | |
| {
 | |
| 	struct sched_attr attr = {
 | |
| 		.sched_policy   = policy,
 | |
| 		.sched_priority = param->sched_priority,
 | |
| 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
 | |
| 	};
 | |
| 
 | |
| 	if (p->se.custom_slice)
 | |
| 		attr.sched_runtime = p->se.slice;
 | |
| 
 | |
| 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
 | |
| 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
 | |
| 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 | |
| 		policy &= ~SCHED_RESET_ON_FORK;
 | |
| 		attr.sched_policy = policy;
 | |
| 	}
 | |
| 
 | |
| 	return __sched_setscheduler(p, &attr, check, true);
 | |
| }
 | |
| /**
 | |
|  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 | |
|  * @p: the task in question.
 | |
|  * @policy: new policy.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  *
 | |
|  * Use sched_set_fifo(), read its comment.
 | |
|  *
 | |
|  * Return: 0 on success. An error code otherwise.
 | |
|  *
 | |
|  * NOTE that the task may be already dead.
 | |
|  */
 | |
| int sched_setscheduler(struct task_struct *p, int policy,
 | |
| 		       const struct sched_param *param)
 | |
| {
 | |
| 	return _sched_setscheduler(p, policy, param, true);
 | |
| }
 | |
| 
 | |
| int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
 | |
| {
 | |
| 	return __sched_setscheduler(p, attr, true, true);
 | |
| }
 | |
| 
 | |
| int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
 | |
| {
 | |
| 	return __sched_setscheduler(p, attr, false, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
 | |
| 
 | |
| /**
 | |
|  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
 | |
|  * @p: the task in question.
 | |
|  * @policy: new policy.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  *
 | |
|  * Just like sched_setscheduler, only don't bother checking if the
 | |
|  * current context has permission.  For example, this is needed in
 | |
|  * stop_machine(): we create temporary high priority worker threads,
 | |
|  * but our caller might not have that capability.
 | |
|  *
 | |
|  * Return: 0 on success. An error code otherwise.
 | |
|  */
 | |
| int sched_setscheduler_nocheck(struct task_struct *p, int policy,
 | |
| 			       const struct sched_param *param)
 | |
| {
 | |
| 	return _sched_setscheduler(p, policy, param, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
 | |
|  * incapable of resource management, which is the one thing an OS really should
 | |
|  * be doing.
 | |
|  *
 | |
|  * This is of course the reason it is limited to privileged users only.
 | |
|  *
 | |
|  * Worse still; it is fundamentally impossible to compose static priority
 | |
|  * workloads. You cannot take two correctly working static prio workloads
 | |
|  * and smash them together and still expect them to work.
 | |
|  *
 | |
|  * For this reason 'all' FIFO tasks the kernel creates are basically at:
 | |
|  *
 | |
|  *   MAX_RT_PRIO / 2
 | |
|  *
 | |
|  * The administrator _MUST_ configure the system, the kernel simply doesn't
 | |
|  * know enough information to make a sensible choice.
 | |
|  */
 | |
| void sched_set_fifo(struct task_struct *p)
 | |
| {
 | |
| 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
 | |
| 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_set_fifo);
 | |
| 
 | |
| /*
 | |
|  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
 | |
|  */
 | |
| void sched_set_fifo_low(struct task_struct *p)
 | |
| {
 | |
| 	struct sched_param sp = { .sched_priority = 1 };
 | |
| 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_set_fifo_low);
 | |
| 
 | |
| void sched_set_normal(struct task_struct *p, int nice)
 | |
| {
 | |
| 	struct sched_attr attr = {
 | |
| 		.sched_policy = SCHED_NORMAL,
 | |
| 		.sched_nice = nice,
 | |
| 	};
 | |
| 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_set_normal);
 | |
| 
 | |
| static int
 | |
| do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 | |
| {
 | |
| 	struct sched_param lparam;
 | |
| 
 | |
| 	if (unlikely(!param || pid < 0))
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	CLASS(find_get_task, p)(pid);
 | |
| 	if (!p)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	return sched_setscheduler(p, policy, &lparam);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mimics kernel/events/core.c perf_copy_attr().
 | |
|  */
 | |
| static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
 | |
| {
 | |
| 	u32 size;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Zero the full structure, so that a short copy will be nice: */
 | |
| 	memset(attr, 0, sizeof(*attr));
 | |
| 
 | |
| 	ret = get_user(size, &uattr->size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* ABI compatibility quirk: */
 | |
| 	if (!size)
 | |
| 		size = SCHED_ATTR_SIZE_VER0;
 | |
| 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
 | |
| 		goto err_size;
 | |
| 
 | |
| 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
 | |
| 	if (ret) {
 | |
| 		if (ret == -E2BIG)
 | |
| 			goto err_size;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
 | |
| 	    size < SCHED_ATTR_SIZE_VER1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
 | |
| 	 * to be strict and return an error on out-of-bounds values?
 | |
| 	 */
 | |
| 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_size:
 | |
| 	put_user(sizeof(*attr), &uattr->size);
 | |
| 	return -E2BIG;
 | |
| }
 | |
| 
 | |
| static void get_params(struct task_struct *p, struct sched_attr *attr)
 | |
| {
 | |
| 	if (task_has_dl_policy(p)) {
 | |
| 		__getparam_dl(p, attr);
 | |
| 	} else if (task_has_rt_policy(p)) {
 | |
| 		attr->sched_priority = p->rt_priority;
 | |
| 	} else {
 | |
| 		attr->sched_nice = task_nice(p);
 | |
| 		attr->sched_runtime = p->se.slice;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 | |
|  * @pid: the pid in question.
 | |
|  * @policy: new policy.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  *
 | |
|  * Return: 0 on success. An error code otherwise.
 | |
|  */
 | |
| SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
 | |
| {
 | |
| 	if (policy < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_sched_setscheduler(pid, policy, param);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setparam - set/change the RT priority of a thread
 | |
|  * @pid: the pid in question.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  *
 | |
|  * Return: 0 on success. An error code otherwise.
 | |
|  */
 | |
| SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
 | |
| {
 | |
| 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setattr - same as above, but with extended sched_attr
 | |
|  * @pid: the pid in question.
 | |
|  * @uattr: structure containing the extended parameters.
 | |
|  * @flags: for future extension.
 | |
|  */
 | |
| SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
 | |
| 			       unsigned int, flags)
 | |
| {
 | |
| 	struct sched_attr attr;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (unlikely(!uattr || pid < 0 || flags))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	retval = sched_copy_attr(uattr, &attr);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	if ((int)attr.sched_policy < 0)
 | |
| 		return -EINVAL;
 | |
| 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
 | |
| 		attr.sched_policy = SETPARAM_POLICY;
 | |
| 
 | |
| 	CLASS(find_get_task, p)(pid);
 | |
| 	if (!p)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
 | |
| 		get_params(p, &attr);
 | |
| 
 | |
| 	return sched_setattr(p, &attr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 | |
|  * @pid: the pid in question.
 | |
|  *
 | |
|  * Return: On success, the policy of the thread. Otherwise, a negative error
 | |
|  * code.
 | |
|  */
 | |
| SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (pid < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	guard(rcu)();
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (!p)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	retval = security_task_getscheduler(p);
 | |
| 	if (!retval) {
 | |
| 		retval = p->policy;
 | |
| 		if (p->sched_reset_on_fork)
 | |
| 			retval |= SCHED_RESET_ON_FORK;
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getparam - get the RT priority of a thread
 | |
|  * @pid: the pid in question.
 | |
|  * @param: structure containing the RT priority.
 | |
|  *
 | |
|  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 | |
|  * code.
 | |
|  */
 | |
| SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
 | |
| {
 | |
| 	struct sched_param lp = { .sched_priority = 0 };
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (unlikely(!param || pid < 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	scoped_guard (rcu) {
 | |
| 		p = find_process_by_pid(pid);
 | |
| 		if (!p)
 | |
| 			return -ESRCH;
 | |
| 
 | |
| 		retval = security_task_getscheduler(p);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 
 | |
| 		if (task_has_rt_policy(p))
 | |
| 			lp.sched_priority = p->rt_priority;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This one might sleep, we cannot do it with a spinlock held ...
 | |
| 	 */
 | |
| 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
 | |
|  * @pid: the pid in question.
 | |
|  * @uattr: structure containing the extended parameters.
 | |
|  * @usize: sizeof(attr) for fwd/bwd comp.
 | |
|  * @flags: for future extension.
 | |
|  */
 | |
| SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
 | |
| 		unsigned int, usize, unsigned int, flags)
 | |
| {
 | |
| 	struct sched_attr kattr = { };
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (unlikely(!uattr || pid < 0 || usize > PAGE_SIZE ||
 | |
| 		      usize < SCHED_ATTR_SIZE_VER0 || flags))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	scoped_guard (rcu) {
 | |
| 		p = find_process_by_pid(pid);
 | |
| 		if (!p)
 | |
| 			return -ESRCH;
 | |
| 
 | |
| 		retval = security_task_getscheduler(p);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 
 | |
| 		kattr.sched_policy = p->policy;
 | |
| 		if (p->sched_reset_on_fork)
 | |
| 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 | |
| 		get_params(p, &kattr);
 | |
| 		kattr.sched_flags &= SCHED_FLAG_ALL;
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| 		/*
 | |
| 		 * This could race with another potential updater, but this is fine
 | |
| 		 * because it'll correctly read the old or the new value. We don't need
 | |
| 		 * to guarantee who wins the race as long as it doesn't return garbage.
 | |
| 		 */
 | |
| 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
 | |
| 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	kattr.size = min(usize, sizeof(kattr));
 | |
| 	return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the task isn't a deadline task or admission control is
 | |
| 	 * disabled then we don't care about affinity changes.
 | |
| 	 */
 | |
| 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The special/sugov task isn't part of regular bandwidth/admission
 | |
| 	 * control so let userspace change affinities.
 | |
| 	 */
 | |
| 	if (dl_entity_is_special(&p->dl))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since bandwidth control happens on root_domain basis,
 | |
| 	 * if admission test is enabled, we only admit -deadline
 | |
| 	 * tasks allowed to run on all the CPUs in the task's
 | |
| 	 * root_domain.
 | |
| 	 */
 | |
| 	guard(rcu)();
 | |
| 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
 | |
| {
 | |
| 	int retval;
 | |
| 	cpumask_var_t cpus_allowed, new_mask;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
 | |
| 		retval = -ENOMEM;
 | |
| 		goto out_free_cpus_allowed;
 | |
| 	}
 | |
| 
 | |
| 	cpuset_cpus_allowed(p, cpus_allowed);
 | |
| 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
 | |
| 
 | |
| 	ctx->new_mask = new_mask;
 | |
| 	ctx->flags |= SCA_CHECK;
 | |
| 
 | |
| 	retval = dl_task_check_affinity(p, new_mask);
 | |
| 	if (retval)
 | |
| 		goto out_free_new_mask;
 | |
| 
 | |
| 	retval = __set_cpus_allowed_ptr(p, ctx);
 | |
| 	if (retval)
 | |
| 		goto out_free_new_mask;
 | |
| 
 | |
| 	cpuset_cpus_allowed(p, cpus_allowed);
 | |
| 	if (!cpumask_subset(new_mask, cpus_allowed)) {
 | |
| 		/*
 | |
| 		 * We must have raced with a concurrent cpuset update.
 | |
| 		 * Just reset the cpumask to the cpuset's cpus_allowed.
 | |
| 		 */
 | |
| 		cpumask_copy(new_mask, cpus_allowed);
 | |
| 
 | |
| 		/*
 | |
| 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
 | |
| 		 * will restore the previous user_cpus_ptr value.
 | |
| 		 *
 | |
| 		 * In the unlikely event a previous user_cpus_ptr exists,
 | |
| 		 * we need to further restrict the mask to what is allowed
 | |
| 		 * by that old user_cpus_ptr.
 | |
| 		 */
 | |
| 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
 | |
| 			bool empty = !cpumask_and(new_mask, new_mask,
 | |
| 						  ctx->user_mask);
 | |
| 
 | |
| 			if (empty)
 | |
| 				cpumask_copy(new_mask, cpus_allowed);
 | |
| 		}
 | |
| 		__set_cpus_allowed_ptr(p, ctx);
 | |
| 		retval = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| out_free_new_mask:
 | |
| 	free_cpumask_var(new_mask);
 | |
| out_free_cpus_allowed:
 | |
| 	free_cpumask_var(cpus_allowed);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 | |
| {
 | |
| 	struct affinity_context ac;
 | |
| 	struct cpumask *user_mask;
 | |
| 	int retval;
 | |
| 
 | |
| 	CLASS(find_get_task, p)(pid);
 | |
| 	if (!p)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	if (p->flags & PF_NO_SETAFFINITY)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!check_same_owner(p)) {
 | |
| 		guard(rcu)();
 | |
| 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
 | |
| 			return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	retval = security_task_setscheduler(p);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
 | |
| 	 * alloc_user_cpus_ptr() returns NULL.
 | |
| 	 */
 | |
| 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
 | |
| 	if (user_mask) {
 | |
| 		cpumask_copy(user_mask, in_mask);
 | |
| 	} else if (IS_ENABLED(CONFIG_SMP)) {
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ac = (struct affinity_context){
 | |
| 		.new_mask  = in_mask,
 | |
| 		.user_mask = user_mask,
 | |
| 		.flags     = SCA_USER,
 | |
| 	};
 | |
| 
 | |
| 	retval = __sched_setaffinity(p, &ac);
 | |
| 	kfree(ac.user_mask);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 | |
| 			     struct cpumask *new_mask)
 | |
| {
 | |
| 	if (len < cpumask_size())
 | |
| 		cpumask_clear(new_mask);
 | |
| 	else if (len > cpumask_size())
 | |
| 		len = cpumask_size();
 | |
| 
 | |
| 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setaffinity - set the CPU affinity of a process
 | |
|  * @pid: pid of the process
 | |
|  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 | |
|  * @user_mask_ptr: user-space pointer to the new CPU mask
 | |
|  *
 | |
|  * Return: 0 on success. An error code otherwise.
 | |
|  */
 | |
| SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
 | |
| 		unsigned long __user *, user_mask_ptr)
 | |
| {
 | |
| 	cpumask_var_t new_mask;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
 | |
| 	if (retval == 0)
 | |
| 		retval = sched_setaffinity(pid, new_mask);
 | |
| 	free_cpumask_var(new_mask);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| long sched_getaffinity(pid_t pid, struct cpumask *mask)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	guard(rcu)();
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (!p)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	retval = security_task_getscheduler(p);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	guard(raw_spinlock_irqsave)(&p->pi_lock);
 | |
| 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getaffinity - get the CPU affinity of a process
 | |
|  * @pid: pid of the process
 | |
|  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 | |
|  * @user_mask_ptr: user-space pointer to hold the current CPU mask
 | |
|  *
 | |
|  * Return: size of CPU mask copied to user_mask_ptr on success. An
 | |
|  * error code otherwise.
 | |
|  */
 | |
| SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
 | |
| 		unsigned long __user *, user_mask_ptr)
 | |
| {
 | |
| 	int ret;
 | |
| 	cpumask_var_t mask;
 | |
| 
 | |
| 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
 | |
| 		return -EINVAL;
 | |
| 	if (len & (sizeof(unsigned long)-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = sched_getaffinity(pid, mask);
 | |
| 	if (ret == 0) {
 | |
| 		unsigned int retlen = min(len, cpumask_size());
 | |
| 
 | |
| 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
 | |
| 			ret = -EFAULT;
 | |
| 		else
 | |
| 			ret = retlen;
 | |
| 	}
 | |
| 	free_cpumask_var(mask);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void do_sched_yield(void)
 | |
| {
 | |
| 	struct rq_flags rf;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	rq = this_rq_lock_irq(&rf);
 | |
| 
 | |
| 	schedstat_inc(rq->yld_count);
 | |
| 	current->sched_class->yield_task(rq);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	rq_unlock_irq(rq, &rf);
 | |
| 	sched_preempt_enable_no_resched();
 | |
| 
 | |
| 	schedule();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_yield - yield the current processor to other threads.
 | |
|  *
 | |
|  * This function yields the current CPU to other tasks. If there are no
 | |
|  * other threads running on this CPU then this function will return.
 | |
|  *
 | |
|  * Return: 0.
 | |
|  */
 | |
| SYSCALL_DEFINE0(sched_yield)
 | |
| {
 | |
| 	do_sched_yield();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * yield - yield the current processor to other threads.
 | |
|  *
 | |
|  * Do not ever use this function, there's a 99% chance you're doing it wrong.
 | |
|  *
 | |
|  * The scheduler is at all times free to pick the calling task as the most
 | |
|  * eligible task to run, if removing the yield() call from your code breaks
 | |
|  * it, it's already broken.
 | |
|  *
 | |
|  * Typical broken usage is:
 | |
|  *
 | |
|  * while (!event)
 | |
|  *	yield();
 | |
|  *
 | |
|  * where one assumes that yield() will let 'the other' process run that will
 | |
|  * make event true. If the current task is a SCHED_FIFO task that will never
 | |
|  * happen. Never use yield() as a progress guarantee!!
 | |
|  *
 | |
|  * If you want to use yield() to wait for something, use wait_event().
 | |
|  * If you want to use yield() to be 'nice' for others, use cond_resched().
 | |
|  * If you still want to use yield(), do not!
 | |
|  */
 | |
| void __sched yield(void)
 | |
| {
 | |
| 	set_current_state(TASK_RUNNING);
 | |
| 	do_sched_yield();
 | |
| }
 | |
| EXPORT_SYMBOL(yield);
 | |
| 
 | |
| /**
 | |
|  * yield_to - yield the current processor to another thread in
 | |
|  * your thread group, or accelerate that thread toward the
 | |
|  * processor it's on.
 | |
|  * @p: target task
 | |
|  * @preempt: whether task preemption is allowed or not
 | |
|  *
 | |
|  * It's the caller's job to ensure that the target task struct
 | |
|  * can't go away on us before we can do any checks.
 | |
|  *
 | |
|  * Return:
 | |
|  *	true (>0) if we indeed boosted the target task.
 | |
|  *	false (0) if we failed to boost the target.
 | |
|  *	-ESRCH if there's no task to yield to.
 | |
|  */
 | |
| int __sched yield_to(struct task_struct *p, bool preempt)
 | |
| {
 | |
| 	struct task_struct *curr = current;
 | |
| 	struct rq *rq, *p_rq;
 | |
| 	int yielded = 0;
 | |
| 
 | |
| 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
 | |
| 		rq = this_rq();
 | |
| 
 | |
| again:
 | |
| 		p_rq = task_rq(p);
 | |
| 		/*
 | |
| 		 * If we're the only runnable task on the rq and target rq also
 | |
| 		 * has only one task, there's absolutely no point in yielding.
 | |
| 		 */
 | |
| 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
 | |
| 			return -ESRCH;
 | |
| 
 | |
| 		guard(double_rq_lock)(rq, p_rq);
 | |
| 		if (task_rq(p) != p_rq)
 | |
| 			goto again;
 | |
| 
 | |
| 		if (!curr->sched_class->yield_to_task)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (curr->sched_class != p->sched_class)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
 | |
| 			return 0;
 | |
| 
 | |
| 		yielded = curr->sched_class->yield_to_task(rq, p);
 | |
| 		if (yielded) {
 | |
| 			schedstat_inc(rq->yld_count);
 | |
| 			/*
 | |
| 			 * Make p's CPU reschedule; pick_next_entity
 | |
| 			 * takes care of fairness.
 | |
| 			 */
 | |
| 			if (preempt && rq != p_rq)
 | |
| 				resched_curr(p_rq);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (yielded)
 | |
| 		schedule();
 | |
| 
 | |
| 	return yielded;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(yield_to);
 | |
| 
 | |
| /**
 | |
|  * sys_sched_get_priority_max - return maximum RT priority.
 | |
|  * @policy: scheduling class.
 | |
|  *
 | |
|  * Return: On success, this syscall returns the maximum
 | |
|  * rt_priority that can be used by a given scheduling class.
 | |
|  * On failure, a negative error code is returned.
 | |
|  */
 | |
| SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	switch (policy) {
 | |
| 	case SCHED_FIFO:
 | |
| 	case SCHED_RR:
 | |
| 		ret = MAX_RT_PRIO-1;
 | |
| 		break;
 | |
| 	case SCHED_DEADLINE:
 | |
| 	case SCHED_NORMAL:
 | |
| 	case SCHED_BATCH:
 | |
| 	case SCHED_IDLE:
 | |
| 	case SCHED_EXT:
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_get_priority_min - return minimum RT priority.
 | |
|  * @policy: scheduling class.
 | |
|  *
 | |
|  * Return: On success, this syscall returns the minimum
 | |
|  * rt_priority that can be used by a given scheduling class.
 | |
|  * On failure, a negative error code is returned.
 | |
|  */
 | |
| SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	switch (policy) {
 | |
| 	case SCHED_FIFO:
 | |
| 	case SCHED_RR:
 | |
| 		ret = 1;
 | |
| 		break;
 | |
| 	case SCHED_DEADLINE:
 | |
| 	case SCHED_NORMAL:
 | |
| 	case SCHED_BATCH:
 | |
| 	case SCHED_IDLE:
 | |
| 	case SCHED_EXT:
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
 | |
| {
 | |
| 	unsigned int time_slice = 0;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (pid < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	scoped_guard (rcu) {
 | |
| 		struct task_struct *p = find_process_by_pid(pid);
 | |
| 		if (!p)
 | |
| 			return -ESRCH;
 | |
| 
 | |
| 		retval = security_task_getscheduler(p);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 
 | |
| 		scoped_guard (task_rq_lock, p) {
 | |
| 			struct rq *rq = scope.rq;
 | |
| 			if (p->sched_class->get_rr_interval)
 | |
| 				time_slice = p->sched_class->get_rr_interval(rq, p);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	jiffies_to_timespec64(time_slice, t);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_rr_get_interval - return the default time-slice of a process.
 | |
|  * @pid: pid of the process.
 | |
|  * @interval: userspace pointer to the time-slice value.
 | |
|  *
 | |
|  * this syscall writes the default time-slice value of a given process
 | |
|  * into the user-space timespec buffer. A value of '0' means infinity.
 | |
|  *
 | |
|  * Return: On success, 0 and the time-slice is in @interval. Otherwise,
 | |
|  * an error code.
 | |
|  */
 | |
| SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
 | |
| 		struct __kernel_timespec __user *, interval)
 | |
| {
 | |
| 	struct timespec64 t;
 | |
| 	int retval = sched_rr_get_interval(pid, &t);
 | |
| 
 | |
| 	if (retval == 0)
 | |
| 		retval = put_timespec64(&t, interval);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT_32BIT_TIME
 | |
| SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
 | |
| 		struct old_timespec32 __user *, interval)
 | |
| {
 | |
| 	struct timespec64 t;
 | |
| 	int retval = sched_rr_get_interval(pid, &t);
 | |
| 
 | |
| 	if (retval == 0)
 | |
| 		retval = put_old_timespec32(&t, interval);
 | |
| 	return retval;
 | |
| }
 | |
| #endif
 |