mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 f66b0acf39
			
		
	
	
		f66b0acf39
		
	
	
	
	
		
			
			hrtimer_setup() takes the callback function pointer as argument and initializes the timer completely. Replace hrtimer_init() and the open coded initialization of hrtimer::function with the new setup mechanism. Signed-off-by: Nam Cao <namcao@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/170bb691a0d59917c8268a98c80b607128fc9f7f.1738746821.git.namcao@linutronix.de
		
			
				
	
	
		
			1100 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1100 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * NTP state machine interfaces and logic.
 | |
|  *
 | |
|  * This code was mainly moved from kernel/timer.c and kernel/time.c
 | |
|  * Please see those files for relevant copyright info and historical
 | |
|  * changelogs.
 | |
|  */
 | |
| #include <linux/capability.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/rtc.h>
 | |
| #include <linux/audit.h>
 | |
| 
 | |
| #include "ntp_internal.h"
 | |
| #include "timekeeping_internal.h"
 | |
| 
 | |
| /**
 | |
|  * struct ntp_data - Structure holding all NTP related state
 | |
|  * @tick_usec:		USER_HZ period in microseconds
 | |
|  * @tick_length:	Adjusted tick length
 | |
|  * @tick_length_base:	Base value for @tick_length
 | |
|  * @time_state:		State of the clock synchronization
 | |
|  * @time_status:	Clock status bits
 | |
|  * @time_offset:	Time adjustment in nanoseconds
 | |
|  * @time_constant:	PLL time constant
 | |
|  * @time_maxerror:	Maximum error in microseconds holding the NTP sync distance
 | |
|  *			(NTP dispersion + delay / 2)
 | |
|  * @time_esterror:	Estimated error in microseconds holding NTP dispersion
 | |
|  * @time_freq:		Frequency offset scaled nsecs/secs
 | |
|  * @time_reftime:	Time at last adjustment in seconds
 | |
|  * @time_adjust:	Adjustment value
 | |
|  * @ntp_tick_adj:	Constant boot-param configurable NTP tick adjustment (upscaled)
 | |
|  * @ntp_next_leap_sec:	Second value of the next pending leapsecond, or TIME64_MAX if no leap
 | |
|  *
 | |
|  * @pps_valid:		PPS signal watchdog counter
 | |
|  * @pps_tf:		PPS phase median filter
 | |
|  * @pps_jitter:		PPS current jitter in nanoseconds
 | |
|  * @pps_fbase:		PPS beginning of the last freq interval
 | |
|  * @pps_shift:		PPS current interval duration in seconds (shift value)
 | |
|  * @pps_intcnt:		PPS interval counter
 | |
|  * @pps_freq:		PPS frequency offset in scaled ns/s
 | |
|  * @pps_stabil:		PPS current stability in scaled ns/s
 | |
|  * @pps_calcnt:		PPS monitor: calibration intervals
 | |
|  * @pps_jitcnt:		PPS monitor: jitter limit exceeded
 | |
|  * @pps_stbcnt:		PPS monitor: stability limit exceeded
 | |
|  * @pps_errcnt:		PPS monitor: calibration errors
 | |
|  *
 | |
|  * Protected by the timekeeping locks.
 | |
|  */
 | |
| struct ntp_data {
 | |
| 	unsigned long		tick_usec;
 | |
| 	u64			tick_length;
 | |
| 	u64			tick_length_base;
 | |
| 	int			time_state;
 | |
| 	int			time_status;
 | |
| 	s64			time_offset;
 | |
| 	long			time_constant;
 | |
| 	long			time_maxerror;
 | |
| 	long			time_esterror;
 | |
| 	s64			time_freq;
 | |
| 	time64_t		time_reftime;
 | |
| 	long			time_adjust;
 | |
| 	s64			ntp_tick_adj;
 | |
| 	time64_t		ntp_next_leap_sec;
 | |
| #ifdef CONFIG_NTP_PPS
 | |
| 	int			pps_valid;
 | |
| 	long			pps_tf[3];
 | |
| 	long			pps_jitter;
 | |
| 	struct timespec64	pps_fbase;
 | |
| 	int			pps_shift;
 | |
| 	int			pps_intcnt;
 | |
| 	s64			pps_freq;
 | |
| 	long			pps_stabil;
 | |
| 	long			pps_calcnt;
 | |
| 	long			pps_jitcnt;
 | |
| 	long			pps_stbcnt;
 | |
| 	long			pps_errcnt;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static struct ntp_data tk_ntp_data = {
 | |
| 	.tick_usec		= USER_TICK_USEC,
 | |
| 	.time_state		= TIME_OK,
 | |
| 	.time_status		= STA_UNSYNC,
 | |
| 	.time_constant		= 2,
 | |
| 	.time_maxerror		= NTP_PHASE_LIMIT,
 | |
| 	.time_esterror		= NTP_PHASE_LIMIT,
 | |
| 	.ntp_next_leap_sec	= TIME64_MAX,
 | |
| };
 | |
| 
 | |
| #define SECS_PER_DAY		86400
 | |
| #define MAX_TICKADJ		500LL		/* usecs */
 | |
| #define MAX_TICKADJ_SCALED \
 | |
| 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 | |
| #define MAX_TAI_OFFSET		100000
 | |
| 
 | |
| #ifdef CONFIG_NTP_PPS
 | |
| 
 | |
| /*
 | |
|  * The following variables are used when a pulse-per-second (PPS) signal
 | |
|  * is available. They establish the engineering parameters of the clock
 | |
|  * discipline loop when controlled by the PPS signal.
 | |
|  */
 | |
| #define PPS_VALID	10	/* PPS signal watchdog max (s) */
 | |
| #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
 | |
| #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
 | |
| #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
 | |
| #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
 | |
| 				   increase pps_shift or consecutive bad
 | |
| 				   intervals to decrease it */
 | |
| #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 | |
| 
 | |
| /*
 | |
|  * PPS kernel consumer compensates the whole phase error immediately.
 | |
|  * Otherwise, reduce the offset by a fixed factor times the time constant.
 | |
|  */
 | |
| static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
 | |
| {
 | |
| 	if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
 | |
| 		return offset;
 | |
| 	else
 | |
| 		return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
 | |
| }
 | |
| 
 | |
| static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
 | |
| {
 | |
| 	/* The PPS calibration interval may end surprisingly early */
 | |
| 	ntpdata->pps_shift = PPS_INTMIN;
 | |
| 	ntpdata->pps_intcnt = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pps_clear - Clears the PPS state variables
 | |
|  * @ntpdata:	Pointer to ntp data
 | |
|  */
 | |
| static inline void pps_clear(struct ntp_data *ntpdata)
 | |
| {
 | |
| 	pps_reset_freq_interval(ntpdata);
 | |
| 	ntpdata->pps_tf[0] = 0;
 | |
| 	ntpdata->pps_tf[1] = 0;
 | |
| 	ntpdata->pps_tf[2] = 0;
 | |
| 	ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
 | |
| 	ntpdata->pps_freq = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrease pps_valid to indicate that another second has passed since the
 | |
|  * last PPS signal. When it reaches 0, indicate that PPS signal is missing.
 | |
|  */
 | |
| static inline void pps_dec_valid(struct ntp_data *ntpdata)
 | |
| {
 | |
| 	if (ntpdata->pps_valid > 0) {
 | |
| 		ntpdata->pps_valid--;
 | |
| 	} else {
 | |
| 		ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 | |
| 					  STA_PPSWANDER | STA_PPSERROR);
 | |
| 		pps_clear(ntpdata);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void pps_set_freq(struct ntp_data *ntpdata)
 | |
| {
 | |
| 	ntpdata->pps_freq = ntpdata->time_freq;
 | |
| }
 | |
| 
 | |
| static inline bool is_error_status(int status)
 | |
| {
 | |
| 	return (status & (STA_UNSYNC|STA_CLOCKERR))
 | |
| 		/*
 | |
| 		 * PPS signal lost when either PPS time or PPS frequency
 | |
| 		 * synchronization requested
 | |
| 		 */
 | |
| 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
 | |
| 			&& !(status & STA_PPSSIGNAL))
 | |
| 		/*
 | |
| 		 * PPS jitter exceeded when PPS time synchronization
 | |
| 		 * requested
 | |
| 		 */
 | |
| 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
 | |
| 			== (STA_PPSTIME|STA_PPSJITTER))
 | |
| 		/*
 | |
| 		 * PPS wander exceeded or calibration error when PPS
 | |
| 		 * frequency synchronization requested
 | |
| 		 */
 | |
| 		|| ((status & STA_PPSFREQ)
 | |
| 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
 | |
| }
 | |
| 
 | |
| static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
 | |
| {
 | |
| 	txc->ppsfreq	   = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
 | |
| 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 | |
| 	txc->jitter	   = ntpdata->pps_jitter;
 | |
| 	if (!(ntpdata->time_status & STA_NANO))
 | |
| 		txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
 | |
| 	txc->shift	   = ntpdata->pps_shift;
 | |
| 	txc->stabil	   = ntpdata->pps_stabil;
 | |
| 	txc->jitcnt	   = ntpdata->pps_jitcnt;
 | |
| 	txc->calcnt	   = ntpdata->pps_calcnt;
 | |
| 	txc->errcnt	   = ntpdata->pps_errcnt;
 | |
| 	txc->stbcnt	   = ntpdata->pps_stbcnt;
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_NTP_PPS */
 | |
| 
 | |
| static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
 | |
| {
 | |
| 	return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
 | |
| }
 | |
| 
 | |
| static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
 | |
| static inline void pps_clear(struct ntp_data *ntpdata) {}
 | |
| static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
 | |
| static inline void pps_set_freq(struct ntp_data *ntpdata) {}
 | |
| 
 | |
| static inline bool is_error_status(int status)
 | |
| {
 | |
| 	return status & (STA_UNSYNC|STA_CLOCKERR);
 | |
| }
 | |
| 
 | |
| static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
 | |
| {
 | |
| 	/* PPS is not implemented, so these are zero */
 | |
| 	txc->ppsfreq	   = 0;
 | |
| 	txc->jitter	   = 0;
 | |
| 	txc->shift	   = 0;
 | |
| 	txc->stabil	   = 0;
 | |
| 	txc->jitcnt	   = 0;
 | |
| 	txc->calcnt	   = 0;
 | |
| 	txc->errcnt	   = 0;
 | |
| 	txc->stbcnt	   = 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_NTP_PPS */
 | |
| 
 | |
| /*
 | |
|  * Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
 | |
|  * time_freq:
 | |
|  */
 | |
| static void ntp_update_frequency(struct ntp_data *ntpdata)
 | |
| {
 | |
| 	u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
 | |
| 
 | |
| 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
 | |
| 
 | |
| 	second_length		+= ntpdata->ntp_tick_adj;
 | |
| 	second_length		+= ntpdata->time_freq;
 | |
| 
 | |
| 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't wait for the next second_overflow, apply the change to the
 | |
| 	 * tick length immediately:
 | |
| 	 */
 | |
| 	ntpdata->tick_length		+= new_base - ntpdata->tick_length_base;
 | |
| 	ntpdata->tick_length_base	 = new_base;
 | |
| }
 | |
| 
 | |
| static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
 | |
| {
 | |
| 	ntpdata->time_status &= ~STA_MODE;
 | |
| 
 | |
| 	if (secs < MINSEC)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
 | |
| 		return 0;
 | |
| 
 | |
| 	ntpdata->time_status |= STA_MODE;
 | |
| 
 | |
| 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 | |
| }
 | |
| 
 | |
| static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
 | |
| {
 | |
| 	s64 freq_adj, offset64;
 | |
| 	long secs, real_secs;
 | |
| 
 | |
| 	if (!(ntpdata->time_status & STA_PLL))
 | |
| 		return;
 | |
| 
 | |
| 	if (!(ntpdata->time_status & STA_NANO)) {
 | |
| 		/* Make sure the multiplication below won't overflow */
 | |
| 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 | |
| 		offset *= NSEC_PER_USEC;
 | |
| 	}
 | |
| 
 | |
| 	/* Scale the phase adjustment and clamp to the operating range. */
 | |
| 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Select how the frequency is to be controlled
 | |
| 	 * and in which mode (PLL or FLL).
 | |
| 	 */
 | |
| 	real_secs = __ktime_get_real_seconds();
 | |
| 	secs = (long)(real_secs - ntpdata->time_reftime);
 | |
| 	if (unlikely(ntpdata->time_status & STA_FREQHOLD))
 | |
| 		secs = 0;
 | |
| 
 | |
| 	ntpdata->time_reftime = real_secs;
 | |
| 
 | |
| 	offset64    = offset;
 | |
| 	freq_adj    = ntp_update_offset_fll(ntpdata, offset64, secs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clamp update interval to reduce PLL gain with low
 | |
| 	 * sampling rate (e.g. intermittent network connection)
 | |
| 	 * to avoid instability.
 | |
| 	 */
 | |
| 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
 | |
| 		secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
 | |
| 
 | |
| 	freq_adj    += (offset64 * secs) <<
 | |
| 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
 | |
| 
 | |
| 	freq_adj    = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
 | |
| 
 | |
| 	ntpdata->time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 | |
| 
 | |
| 	ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 | |
| }
 | |
| 
 | |
| static void __ntp_clear(struct ntp_data *ntpdata)
 | |
| {
 | |
| 	/* Stop active adjtime() */
 | |
| 	ntpdata->time_adjust	= 0;
 | |
| 	ntpdata->time_status	|= STA_UNSYNC;
 | |
| 	ntpdata->time_maxerror	= NTP_PHASE_LIMIT;
 | |
| 	ntpdata->time_esterror	= NTP_PHASE_LIMIT;
 | |
| 
 | |
| 	ntp_update_frequency(ntpdata);
 | |
| 
 | |
| 	ntpdata->tick_length	= ntpdata->tick_length_base;
 | |
| 	ntpdata->time_offset	= 0;
 | |
| 
 | |
| 	ntpdata->ntp_next_leap_sec = TIME64_MAX;
 | |
| 	/* Clear PPS state variables */
 | |
| 	pps_clear(ntpdata);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ntp_clear - Clears the NTP state variables
 | |
|  */
 | |
| void ntp_clear(void)
 | |
| {
 | |
| 	__ntp_clear(&tk_ntp_data);
 | |
| }
 | |
| 
 | |
| 
 | |
| u64 ntp_tick_length(void)
 | |
| {
 | |
| 	return tk_ntp_data.tick_length;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 | |
|  *
 | |
|  * Provides the time of the next leapsecond against CLOCK_REALTIME in
 | |
|  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 | |
|  */
 | |
| ktime_t ntp_get_next_leap(void)
 | |
| {
 | |
| 	struct ntp_data *ntpdata = &tk_ntp_data;
 | |
| 	ktime_t ret;
 | |
| 
 | |
| 	if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
 | |
| 		return ktime_set(ntpdata->ntp_next_leap_sec, 0);
 | |
| 	ret = KTIME_MAX;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine handles the overflow of the microsecond field
 | |
|  *
 | |
|  * The tricky bits of code to handle the accurate clock support
 | |
|  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 | |
|  * They were originally developed for SUN and DEC kernels.
 | |
|  * All the kudos should go to Dave for this stuff.
 | |
|  *
 | |
|  * Also handles leap second processing, and returns leap offset
 | |
|  */
 | |
| int second_overflow(time64_t secs)
 | |
| {
 | |
| 	struct ntp_data *ntpdata = &tk_ntp_data;
 | |
| 	s64 delta;
 | |
| 	int leap = 0;
 | |
| 	s32 rem;
 | |
| 
 | |
| 	/*
 | |
| 	 * Leap second processing. If in leap-insert state at the end of the
 | |
| 	 * day, the system clock is set back one second; if in leap-delete
 | |
| 	 * state, the system clock is set ahead one second.
 | |
| 	 */
 | |
| 	switch (ntpdata->time_state) {
 | |
| 	case TIME_OK:
 | |
| 		if (ntpdata->time_status & STA_INS) {
 | |
| 			ntpdata->time_state = TIME_INS;
 | |
| 			div_s64_rem(secs, SECS_PER_DAY, &rem);
 | |
| 			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 | |
| 		} else if (ntpdata->time_status & STA_DEL) {
 | |
| 			ntpdata->time_state = TIME_DEL;
 | |
| 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 | |
| 			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 | |
| 		}
 | |
| 		break;
 | |
| 	case TIME_INS:
 | |
| 		if (!(ntpdata->time_status & STA_INS)) {
 | |
| 			ntpdata->ntp_next_leap_sec = TIME64_MAX;
 | |
| 			ntpdata->time_state = TIME_OK;
 | |
| 		} else if (secs == ntpdata->ntp_next_leap_sec) {
 | |
| 			leap = -1;
 | |
| 			ntpdata->time_state = TIME_OOP;
 | |
| 			pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
 | |
| 		}
 | |
| 		break;
 | |
| 	case TIME_DEL:
 | |
| 		if (!(ntpdata->time_status & STA_DEL)) {
 | |
| 			ntpdata->ntp_next_leap_sec = TIME64_MAX;
 | |
| 			ntpdata->time_state = TIME_OK;
 | |
| 		} else if (secs == ntpdata->ntp_next_leap_sec) {
 | |
| 			leap = 1;
 | |
| 			ntpdata->ntp_next_leap_sec = TIME64_MAX;
 | |
| 			ntpdata->time_state = TIME_WAIT;
 | |
| 			pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
 | |
| 		}
 | |
| 		break;
 | |
| 	case TIME_OOP:
 | |
| 		ntpdata->ntp_next_leap_sec = TIME64_MAX;
 | |
| 		ntpdata->time_state = TIME_WAIT;
 | |
| 		break;
 | |
| 	case TIME_WAIT:
 | |
| 		if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
 | |
| 			ntpdata->time_state = TIME_OK;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Bump the maxerror field */
 | |
| 	ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
 | |
| 	if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
 | |
| 		ntpdata->time_maxerror = NTP_PHASE_LIMIT;
 | |
| 		ntpdata->time_status |= STA_UNSYNC;
 | |
| 	}
 | |
| 
 | |
| 	/* Compute the phase adjustment for the next second */
 | |
| 	ntpdata->tick_length	 = ntpdata->tick_length_base;
 | |
| 
 | |
| 	delta			 = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
 | |
| 	ntpdata->time_offset	-= delta;
 | |
| 	ntpdata->tick_length	+= delta;
 | |
| 
 | |
| 	/* Check PPS signal */
 | |
| 	pps_dec_valid(ntpdata);
 | |
| 
 | |
| 	if (!ntpdata->time_adjust)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (ntpdata->time_adjust > MAX_TICKADJ) {
 | |
| 		ntpdata->time_adjust -= MAX_TICKADJ;
 | |
| 		ntpdata->tick_length += MAX_TICKADJ_SCALED;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (ntpdata->time_adjust < -MAX_TICKADJ) {
 | |
| 		ntpdata->time_adjust += MAX_TICKADJ;
 | |
| 		ntpdata->tick_length -= MAX_TICKADJ_SCALED;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 | |
| 				<< NTP_SCALE_SHIFT;
 | |
| 	ntpdata->time_adjust = 0;
 | |
| 
 | |
| out:
 | |
| 	return leap;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
 | |
| static void sync_hw_clock(struct work_struct *work);
 | |
| static DECLARE_WORK(sync_work, sync_hw_clock);
 | |
| static struct hrtimer sync_hrtimer;
 | |
| #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
 | |
| 
 | |
| static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
 | |
| {
 | |
| 	queue_work(system_freezable_power_efficient_wq, &sync_work);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
 | |
| {
 | |
| 	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
 | |
| 
 | |
| 	if (retry)
 | |
| 		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
 | |
| 	else
 | |
| 		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
 | |
| 
 | |
| 	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether @now is correct versus the required time to update the RTC
 | |
|  * and calculate the value which needs to be written to the RTC so that the
 | |
|  * next seconds increment of the RTC after the write is aligned with the next
 | |
|  * seconds increment of clock REALTIME.
 | |
|  *
 | |
|  * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
 | |
|  *
 | |
|  * t2.tv_nsec == 0
 | |
|  * tsched = t2 - set_offset_nsec
 | |
|  * newval = t2 - NSEC_PER_SEC
 | |
|  *
 | |
|  * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
 | |
|  *
 | |
|  * As the execution of this code is not guaranteed to happen exactly at
 | |
|  * tsched this allows it to happen within a fuzzy region:
 | |
|  *
 | |
|  *	abs(now - tsched) < FUZZ
 | |
|  *
 | |
|  * If @now is not inside the allowed window the function returns false.
 | |
|  */
 | |
| static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
 | |
| 				  struct timespec64 *to_set,
 | |
| 				  const struct timespec64 *now)
 | |
| {
 | |
| 	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
 | |
| 	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
 | |
| 	struct timespec64 delay = {.tv_sec = -1,
 | |
| 				   .tv_nsec = set_offset_nsec};
 | |
| 
 | |
| 	*to_set = timespec64_add(*now, delay);
 | |
| 
 | |
| 	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
 | |
| 		to_set->tv_nsec = 0;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
 | |
| 		to_set->tv_sec++;
 | |
| 		to_set->tv_nsec = 0;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_CMOS_UPDATE
 | |
| int __weak update_persistent_clock64(struct timespec64 now64)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| #else
 | |
| static inline int update_persistent_clock64(struct timespec64 now64)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RTC_SYSTOHC
 | |
| /* Save NTP synchronized time to the RTC */
 | |
| static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 | |
| {
 | |
| 	struct rtc_device *rtc;
 | |
| 	struct rtc_time tm;
 | |
| 	int err = -ENODEV;
 | |
| 
 | |
| 	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
 | |
| 	if (!rtc)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!rtc->ops || !rtc->ops->set_time)
 | |
| 		goto out_close;
 | |
| 
 | |
| 	/* First call might not have the correct offset */
 | |
| 	if (*offset_nsec == rtc->set_offset_nsec) {
 | |
| 		rtc_time64_to_tm(to_set->tv_sec, &tm);
 | |
| 		err = rtc_set_time(rtc, &tm);
 | |
| 	} else {
 | |
| 		/* Store the update offset and let the caller try again */
 | |
| 		*offset_nsec = rtc->set_offset_nsec;
 | |
| 		err = -EAGAIN;
 | |
| 	}
 | |
| out_close:
 | |
| 	rtc_class_close(rtc);
 | |
| 	return err;
 | |
| }
 | |
| #else
 | |
| static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * ntp_synced - Tells whether the NTP status is not UNSYNC
 | |
|  * Returns:	true if not UNSYNC, false otherwise
 | |
|  */
 | |
| static inline bool ntp_synced(void)
 | |
| {
 | |
| 	return !(tk_ntp_data.time_status & STA_UNSYNC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we have an externally synchronized Linux clock, then update RTC clock
 | |
|  * accordingly every ~11 minutes. Generally RTCs can only store second
 | |
|  * precision, but many RTCs will adjust the phase of their second tick to
 | |
|  * match the moment of update. This infrastructure arranges to call to the RTC
 | |
|  * set at the correct moment to phase synchronize the RTC second tick over
 | |
|  * with the kernel clock.
 | |
|  */
 | |
| static void sync_hw_clock(struct work_struct *work)
 | |
| {
 | |
| 	/*
 | |
| 	 * The default synchronization offset is 500ms for the deprecated
 | |
| 	 * update_persistent_clock64() under the assumption that it uses
 | |
| 	 * the infamous CMOS clock (MC146818).
 | |
| 	 */
 | |
| 	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
 | |
| 	struct timespec64 now, to_set;
 | |
| 	int res = -EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
 | |
| 	 * managed to schedule the work between the timer firing and the
 | |
| 	 * work being able to rearm the timer. Wait for the timer to expire.
 | |
| 	 */
 | |
| 	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
 | |
| 		return;
 | |
| 
 | |
| 	ktime_get_real_ts64(&now);
 | |
| 	/* If @now is not in the allowed window, try again */
 | |
| 	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
 | |
| 		goto rearm;
 | |
| 
 | |
| 	/* Take timezone adjusted RTCs into account */
 | |
| 	if (persistent_clock_is_local)
 | |
| 		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
 | |
| 
 | |
| 	/* Try the legacy RTC first. */
 | |
| 	res = update_persistent_clock64(to_set);
 | |
| 	if (res != -ENODEV)
 | |
| 		goto rearm;
 | |
| 
 | |
| 	/* Try the RTC class */
 | |
| 	res = update_rtc(&to_set, &offset_nsec);
 | |
| 	if (res == -ENODEV)
 | |
| 		return;
 | |
| rearm:
 | |
| 	sched_sync_hw_clock(offset_nsec, res != 0);
 | |
| }
 | |
| 
 | |
| void ntp_notify_cmos_timer(bool offset_set)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
 | |
| 	 * which may have been running if the time was synchronized
 | |
| 	 * prior to the ADJ_SETOFFSET call.
 | |
| 	 */
 | |
| 	if (offset_set)
 | |
| 		hrtimer_cancel(&sync_hrtimer);
 | |
| 
 | |
| 	/*
 | |
| 	 * When the work is currently executed but has not yet the timer
 | |
| 	 * rearmed this queues the work immediately again. No big issue,
 | |
| 	 * just a pointless work scheduled.
 | |
| 	 */
 | |
| 	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
 | |
| 		queue_work(system_freezable_power_efficient_wq, &sync_work);
 | |
| }
 | |
| 
 | |
| static void __init ntp_init_cmos_sync(void)
 | |
| {
 | |
| 	hrtimer_setup(&sync_hrtimer, sync_timer_callback, CLOCK_REALTIME, HRTIMER_MODE_ABS);
 | |
| }
 | |
| #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 | |
| static inline void __init ntp_init_cmos_sync(void) { }
 | |
| #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 | |
| 
 | |
| /*
 | |
|  * Propagate a new txc->status value into the NTP state:
 | |
|  */
 | |
| static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
 | |
| {
 | |
| 	if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 | |
| 		ntpdata->time_state = TIME_OK;
 | |
| 		ntpdata->time_status = STA_UNSYNC;
 | |
| 		ntpdata->ntp_next_leap_sec = TIME64_MAX;
 | |
| 		/* Restart PPS frequency calibration */
 | |
| 		pps_reset_freq_interval(ntpdata);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we turn on PLL adjustments then reset the
 | |
| 	 * reference time to current time.
 | |
| 	 */
 | |
| 	if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
 | |
| 		ntpdata->time_reftime = __ktime_get_real_seconds();
 | |
| 
 | |
| 	/* only set allowed bits */
 | |
| 	ntpdata->time_status &= STA_RONLY;
 | |
| 	ntpdata->time_status |= txc->status & ~STA_RONLY;
 | |
| }
 | |
| 
 | |
| static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
 | |
| 					  s32 *time_tai)
 | |
| {
 | |
| 	if (txc->modes & ADJ_STATUS)
 | |
| 		process_adj_status(ntpdata, txc);
 | |
| 
 | |
| 	if (txc->modes & ADJ_NANO)
 | |
| 		ntpdata->time_status |= STA_NANO;
 | |
| 
 | |
| 	if (txc->modes & ADJ_MICRO)
 | |
| 		ntpdata->time_status &= ~STA_NANO;
 | |
| 
 | |
| 	if (txc->modes & ADJ_FREQUENCY) {
 | |
| 		ntpdata->time_freq = txc->freq * PPM_SCALE;
 | |
| 		ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
 | |
| 		ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
 | |
| 		/* Update pps_freq */
 | |
| 		pps_set_freq(ntpdata);
 | |
| 	}
 | |
| 
 | |
| 	if (txc->modes & ADJ_MAXERROR)
 | |
| 		ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
 | |
| 
 | |
| 	if (txc->modes & ADJ_ESTERROR)
 | |
| 		ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
 | |
| 
 | |
| 	if (txc->modes & ADJ_TIMECONST) {
 | |
| 		ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
 | |
| 		if (!(ntpdata->time_status & STA_NANO))
 | |
| 			ntpdata->time_constant += 4;
 | |
| 		ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
 | |
| 	}
 | |
| 
 | |
| 	if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
 | |
| 		*time_tai = txc->constant;
 | |
| 
 | |
| 	if (txc->modes & ADJ_OFFSET)
 | |
| 		ntp_update_offset(ntpdata, txc->offset);
 | |
| 
 | |
| 	if (txc->modes & ADJ_TICK)
 | |
| 		ntpdata->tick_usec = txc->tick;
 | |
| 
 | |
| 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 | |
| 		ntp_update_frequency(ntpdata);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * adjtimex() mainly allows reading (and writing, if superuser) of
 | |
|  * kernel time-keeping variables. used by xntpd.
 | |
|  */
 | |
| int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
 | |
| 		  s32 *time_tai, struct audit_ntp_data *ad)
 | |
| {
 | |
| 	struct ntp_data *ntpdata = &tk_ntp_data;
 | |
| 	int result;
 | |
| 
 | |
| 	if (txc->modes & ADJ_ADJTIME) {
 | |
| 		long save_adjust = ntpdata->time_adjust;
 | |
| 
 | |
| 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 | |
| 			/* adjtime() is independent from ntp_adjtime() */
 | |
| 			ntpdata->time_adjust = txc->offset;
 | |
| 			ntp_update_frequency(ntpdata);
 | |
| 
 | |
| 			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
 | |
| 			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	ntpdata->time_adjust);
 | |
| 		}
 | |
| 		txc->offset = save_adjust;
 | |
| 	} else {
 | |
| 		/* If there are input parameters, then process them: */
 | |
| 		if (txc->modes) {
 | |
| 			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
 | |
| 			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
 | |
| 			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
 | |
| 			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
 | |
| 			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
 | |
| 
 | |
| 			process_adjtimex_modes(ntpdata, txc, time_tai);
 | |
| 
 | |
| 			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
 | |
| 			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
 | |
| 			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
 | |
| 			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
 | |
| 			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
 | |
| 		}
 | |
| 
 | |
| 		txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
 | |
| 		if (!(ntpdata->time_status & STA_NANO))
 | |
| 			txc->offset = div_s64(txc->offset, NSEC_PER_USEC);
 | |
| 	}
 | |
| 
 | |
| 	result = ntpdata->time_state;
 | |
| 	if (is_error_status(ntpdata->time_status))
 | |
| 		result = TIME_ERROR;
 | |
| 
 | |
| 	txc->freq	   = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
 | |
| 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 | |
| 	txc->maxerror	   = ntpdata->time_maxerror;
 | |
| 	txc->esterror	   = ntpdata->time_esterror;
 | |
| 	txc->status	   = ntpdata->time_status;
 | |
| 	txc->constant	   = ntpdata->time_constant;
 | |
| 	txc->precision	   = 1;
 | |
| 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
 | |
| 	txc->tick	   = ntpdata->tick_usec;
 | |
| 	txc->tai	   = *time_tai;
 | |
| 
 | |
| 	/* Fill PPS status fields */
 | |
| 	pps_fill_timex(ntpdata, txc);
 | |
| 
 | |
| 	txc->time.tv_sec = ts->tv_sec;
 | |
| 	txc->time.tv_usec = ts->tv_nsec;
 | |
| 	if (!(ntpdata->time_status & STA_NANO))
 | |
| 		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
 | |
| 
 | |
| 	/* Handle leapsec adjustments */
 | |
| 	if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
 | |
| 		if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
 | |
| 			result = TIME_OOP;
 | |
| 			txc->tai++;
 | |
| 			txc->time.tv_sec--;
 | |
| 		}
 | |
| 		if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
 | |
| 			result = TIME_WAIT;
 | |
| 			txc->tai--;
 | |
| 			txc->time.tv_sec++;
 | |
| 		}
 | |
| 		if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
 | |
| 			result = TIME_WAIT;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| #ifdef	CONFIG_NTP_PPS
 | |
| 
 | |
| /*
 | |
|  * struct pps_normtime is basically a struct timespec, but it is
 | |
|  * semantically different (and it is the reason why it was invented):
 | |
|  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 | |
|  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
 | |
|  */
 | |
| struct pps_normtime {
 | |
| 	s64		sec;	/* seconds */
 | |
| 	long		nsec;	/* nanoseconds */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Normalize the timestamp so that nsec is in the
 | |
|  * [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
 | |
|  */
 | |
| static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 | |
| {
 | |
| 	struct pps_normtime norm = {
 | |
| 		.sec = ts.tv_sec,
 | |
| 		.nsec = ts.tv_nsec
 | |
| 	};
 | |
| 
 | |
| 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 | |
| 		norm.nsec -= NSEC_PER_SEC;
 | |
| 		norm.sec++;
 | |
| 	}
 | |
| 
 | |
| 	return norm;
 | |
| }
 | |
| 
 | |
| /* Get current phase correction and jitter */
 | |
| static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
 | |
| {
 | |
| 	*jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
 | |
| 	if (*jitter < 0)
 | |
| 		*jitter = -*jitter;
 | |
| 
 | |
| 	/* TODO: test various filters */
 | |
| 	return ntpdata->pps_tf[0];
 | |
| }
 | |
| 
 | |
| /* Add the sample to the phase filter */
 | |
| static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
 | |
| {
 | |
| 	ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
 | |
| 	ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
 | |
| 	ntpdata->pps_tf[0] = err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrease frequency calibration interval length. It is halved after four
 | |
|  * consecutive unstable intervals.
 | |
|  */
 | |
| static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
 | |
| {
 | |
| 	if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
 | |
| 		ntpdata->pps_intcnt = -PPS_INTCOUNT;
 | |
| 		if (ntpdata->pps_shift > PPS_INTMIN) {
 | |
| 			ntpdata->pps_shift--;
 | |
| 			ntpdata->pps_intcnt = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increase frequency calibration interval length. It is doubled after
 | |
|  * four consecutive stable intervals.
 | |
|  */
 | |
| static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
 | |
| {
 | |
| 	if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
 | |
| 		ntpdata->pps_intcnt = PPS_INTCOUNT;
 | |
| 		if (ntpdata->pps_shift < PPS_INTMAX) {
 | |
| 			ntpdata->pps_shift++;
 | |
| 			ntpdata->pps_intcnt = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update clock frequency based on MONOTONIC_RAW clock PPS signal
 | |
|  * timestamps
 | |
|  *
 | |
|  * At the end of the calibration interval the difference between the
 | |
|  * first and last MONOTONIC_RAW clock timestamps divided by the length
 | |
|  * of the interval becomes the frequency update. If the interval was
 | |
|  * too long, the data are discarded.
 | |
|  * Returns the difference between old and new frequency values.
 | |
|  */
 | |
| static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
 | |
| {
 | |
| 	long delta, delta_mod;
 | |
| 	s64 ftemp;
 | |
| 
 | |
| 	/* Check if the frequency interval was too long */
 | |
| 	if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
 | |
| 		ntpdata->time_status |= STA_PPSERROR;
 | |
| 		ntpdata->pps_errcnt++;
 | |
| 		pps_dec_freq_interval(ntpdata);
 | |
| 		printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
 | |
| 				freq_norm.sec);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Here the raw frequency offset and wander (stability) is
 | |
| 	 * calculated. If the wander is less than the wander threshold the
 | |
| 	 * interval is increased; otherwise it is decreased.
 | |
| 	 */
 | |
| 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 | |
| 			freq_norm.sec);
 | |
| 	delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
 | |
| 	ntpdata->pps_freq = ftemp;
 | |
| 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 | |
| 		printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
 | |
| 		ntpdata->time_status |= STA_PPSWANDER;
 | |
| 		ntpdata->pps_stbcnt++;
 | |
| 		pps_dec_freq_interval(ntpdata);
 | |
| 	} else {
 | |
| 		/* Good sample */
 | |
| 		pps_inc_freq_interval(ntpdata);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The stability metric is calculated as the average of recent
 | |
| 	 * frequency changes, but is used only for performance monitoring
 | |
| 	 */
 | |
| 	delta_mod = delta;
 | |
| 	if (delta_mod < 0)
 | |
| 		delta_mod = -delta_mod;
 | |
| 	ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
 | |
| 				     NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
 | |
| 
 | |
| 	/* If enabled, the system clock frequency is updated */
 | |
| 	if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
 | |
| 		ntpdata->time_freq = ntpdata->pps_freq;
 | |
| 		ntp_update_frequency(ntpdata);
 | |
| 	}
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| /* Correct REALTIME clock phase error against PPS signal */
 | |
| static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
 | |
| {
 | |
| 	long correction = -error;
 | |
| 	long jitter;
 | |
| 
 | |
| 	/* Add the sample to the median filter */
 | |
| 	pps_phase_filter_add(ntpdata, correction);
 | |
| 	correction = pps_phase_filter_get(ntpdata, &jitter);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nominal jitter is due to PPS signal noise. If it exceeds the
 | |
| 	 * threshold, the sample is discarded; otherwise, if so enabled,
 | |
| 	 * the time offset is updated.
 | |
| 	 */
 | |
| 	if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
 | |
| 		printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
 | |
| 				jitter, (ntpdata->pps_jitter << PPS_POPCORN));
 | |
| 		ntpdata->time_status |= STA_PPSJITTER;
 | |
| 		ntpdata->pps_jitcnt++;
 | |
| 	} else if (ntpdata->time_status & STA_PPSTIME) {
 | |
| 		/* Correct the time using the phase offset */
 | |
| 		ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
 | |
| 					       NTP_INTERVAL_FREQ);
 | |
| 		/* Cancel running adjtime() */
 | |
| 		ntpdata->time_adjust = 0;
 | |
| 	}
 | |
| 	/* Update jitter */
 | |
| 	ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __hardpps() - discipline CPU clock oscillator to external PPS signal
 | |
|  *
 | |
|  * This routine is called at each PPS signal arrival in order to
 | |
|  * discipline the CPU clock oscillator to the PPS signal. It takes two
 | |
|  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 | |
|  * is used to correct clock phase error and the latter is used to
 | |
|  * correct the frequency.
 | |
|  *
 | |
|  * This code is based on David Mills's reference nanokernel
 | |
|  * implementation. It was mostly rewritten but keeps the same idea.
 | |
|  */
 | |
| void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
 | |
| {
 | |
| 	struct pps_normtime pts_norm, freq_norm;
 | |
| 	struct ntp_data *ntpdata = &tk_ntp_data;
 | |
| 
 | |
| 	pts_norm = pps_normalize_ts(*phase_ts);
 | |
| 
 | |
| 	/* Clear the error bits, they will be set again if needed */
 | |
| 	ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
 | |
| 
 | |
| 	/* indicate signal presence */
 | |
| 	ntpdata->time_status |= STA_PPSSIGNAL;
 | |
| 	ntpdata->pps_valid = PPS_VALID;
 | |
| 
 | |
| 	/*
 | |
| 	 * When called for the first time, just start the frequency
 | |
| 	 * interval
 | |
| 	 */
 | |
| 	if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
 | |
| 		ntpdata->pps_fbase = *raw_ts;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Ok, now we have a base for frequency calculation */
 | |
| 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that the signal is in the range
 | |
| 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
 | |
| 	 */
 | |
| 	if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
 | |
| 	    (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
 | |
| 		ntpdata->time_status |= STA_PPSJITTER;
 | |
| 		/* Restart the frequency calibration interval */
 | |
| 		ntpdata->pps_fbase = *raw_ts;
 | |
| 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Signal is ok. Check if the current frequency interval is finished */
 | |
| 	if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
 | |
| 		ntpdata->pps_calcnt++;
 | |
| 		/* Restart the frequency calibration interval */
 | |
| 		ntpdata->pps_fbase = *raw_ts;
 | |
| 		hardpps_update_freq(ntpdata, freq_norm);
 | |
| 	}
 | |
| 
 | |
| 	hardpps_update_phase(ntpdata, pts_norm.nsec);
 | |
| 
 | |
| }
 | |
| #endif	/* CONFIG_NTP_PPS */
 | |
| 
 | |
| static int __init ntp_tick_adj_setup(char *str)
 | |
| {
 | |
| 	int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("ntp_tick_adj=", ntp_tick_adj_setup);
 | |
| 
 | |
| void __init ntp_init(void)
 | |
| {
 | |
| 	ntp_clear();
 | |
| 	ntp_init_cmos_sync();
 | |
| }
 |