mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 f90fff1e15
			
		
	
	
		f90fff1e15
		
	
	
	
	
		
			
			If an exiting non-autoreaping task has already passed exit_notify() and
calls handle_posix_cpu_timers() from IRQ, it can be reaped by its parent
or debugger right after unlock_task_sighand().
If a concurrent posix_cpu_timer_del() runs at that moment, it won't be
able to detect timer->it.cpu.firing != 0: cpu_timer_task_rcu() and/or
lock_task_sighand() will fail.
Add the tsk->exit_state check into run_posix_cpu_timers() to fix this.
This fix is not needed if CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, because
exit_task_work() is called before exit_notify(). But the check still
makes sense, task_work_add(&tsk->posix_cputimers_work.work) will fail
anyway in this case.
Cc: stable@vger.kernel.org
Reported-by: BenoƮt Sevens <bsevens@google.com>
Fixes: 0bdd2ed413 ("sched: run_posix_cpu_timers: Don't check ->exit_state, use lock_task_sighand()")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1670 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1670 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Implement CPU time clocks for the POSIX clock interface.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/cputime.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <trace/events/timer.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/sched/deadline.h>
 | |
| #include <linux/task_work.h>
 | |
| 
 | |
| #include "posix-timers.h"
 | |
| 
 | |
| static void posix_cpu_timer_rearm(struct k_itimer *timer);
 | |
| 
 | |
| void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
 | |
| {
 | |
| 	posix_cputimers_init(pct);
 | |
| 	if (cpu_limit != RLIM_INFINITY) {
 | |
| 		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
 | |
| 		pct->timers_active = true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after updating RLIMIT_CPU to run cpu timer and update
 | |
|  * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
 | |
|  * necessary. Needs siglock protection since other code may update the
 | |
|  * expiration cache as well.
 | |
|  *
 | |
|  * Returns 0 on success, -ESRCH on failure.  Can fail if the task is exiting and
 | |
|  * we cannot lock_task_sighand.  Cannot fail if task is current.
 | |
|  */
 | |
| int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
 | |
| {
 | |
| 	u64 nsecs = rlim_new * NSEC_PER_SEC;
 | |
| 	unsigned long irq_fl;
 | |
| 
 | |
| 	if (!lock_task_sighand(task, &irq_fl))
 | |
| 		return -ESRCH;
 | |
| 	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
 | |
| 	unlock_task_sighand(task, &irq_fl);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Functions for validating access to tasks.
 | |
|  */
 | |
| static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
 | |
| {
 | |
| 	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
 | |
| 	const pid_t upid = CPUCLOCK_PID(clock);
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the encoded PID is 0, then the timer is targeted at current
 | |
| 	 * or the process to which current belongs.
 | |
| 	 */
 | |
| 	if (upid == 0)
 | |
| 		return thread ? task_pid(current) : task_tgid(current);
 | |
| 
 | |
| 	pid = find_vpid(upid);
 | |
| 	if (!pid)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (thread) {
 | |
| 		struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
 | |
| 		return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For clock_gettime(PROCESS) allow finding the process by
 | |
| 	 * with the pid of the current task.  The code needs the tgid
 | |
| 	 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
 | |
| 	 * used to find the process.
 | |
| 	 */
 | |
| 	if (gettime && (pid == task_pid(current)))
 | |
| 		return task_tgid(current);
 | |
| 
 | |
| 	/*
 | |
| 	 * For processes require that pid identifies a process.
 | |
| 	 */
 | |
| 	return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
 | |
| }
 | |
| 
 | |
| static inline int validate_clock_permissions(const clockid_t clock)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline enum pid_type clock_pid_type(const clockid_t clock)
 | |
| {
 | |
| 	return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
 | |
| }
 | |
| 
 | |
| static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
 | |
| {
 | |
| 	return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update expiry time from increment, and increase overrun count,
 | |
|  * given the current clock sample.
 | |
|  */
 | |
| static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
 | |
| {
 | |
| 	u64 delta, incr, expires = timer->it.cpu.node.expires;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!timer->it_interval)
 | |
| 		return expires;
 | |
| 
 | |
| 	if (now < expires)
 | |
| 		return expires;
 | |
| 
 | |
| 	incr = timer->it_interval;
 | |
| 	delta = now + incr - expires;
 | |
| 
 | |
| 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
 | |
| 	for (i = 0; incr < delta - incr; i++)
 | |
| 		incr = incr << 1;
 | |
| 
 | |
| 	for (; i >= 0; incr >>= 1, i--) {
 | |
| 		if (delta < incr)
 | |
| 			continue;
 | |
| 
 | |
| 		timer->it.cpu.node.expires += incr;
 | |
| 		timer->it_overrun += 1LL << i;
 | |
| 		delta -= incr;
 | |
| 	}
 | |
| 	return timer->it.cpu.node.expires;
 | |
| }
 | |
| 
 | |
| /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
 | |
| static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
 | |
| {
 | |
| 	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
 | |
| 		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
 | |
| 		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
 | |
| }
 | |
| 
 | |
| static int
 | |
| posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 | |
| {
 | |
| 	int error = validate_clock_permissions(which_clock);
 | |
| 
 | |
| 	if (!error) {
 | |
| 		tp->tv_sec = 0;
 | |
| 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 | |
| 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 			/*
 | |
| 			 * If sched_clock is using a cycle counter, we
 | |
| 			 * don't have any idea of its true resolution
 | |
| 			 * exported, but it is much more than 1s/HZ.
 | |
| 			 */
 | |
| 			tp->tv_nsec = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int
 | |
| posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
 | |
| {
 | |
| 	int error = validate_clock_permissions(clock);
 | |
| 
 | |
| 	/*
 | |
| 	 * You can never reset a CPU clock, but we check for other errors
 | |
| 	 * in the call before failing with EPERM.
 | |
| 	 */
 | |
| 	return error ? : -EPERM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sample a per-thread clock for the given task. clkid is validated.
 | |
|  */
 | |
| static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
 | |
| {
 | |
| 	u64 utime, stime;
 | |
| 
 | |
| 	if (clkid == CPUCLOCK_SCHED)
 | |
| 		return task_sched_runtime(p);
 | |
| 
 | |
| 	task_cputime(p, &utime, &stime);
 | |
| 
 | |
| 	switch (clkid) {
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		return utime + stime;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		return utime;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
 | |
| {
 | |
| 	samples[CPUCLOCK_PROF] = stime + utime;
 | |
| 	samples[CPUCLOCK_VIRT] = utime;
 | |
| 	samples[CPUCLOCK_SCHED] = rtime;
 | |
| }
 | |
| 
 | |
| static void task_sample_cputime(struct task_struct *p, u64 *samples)
 | |
| {
 | |
| 	u64 stime, utime;
 | |
| 
 | |
| 	task_cputime(p, &utime, &stime);
 | |
| 	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
 | |
| }
 | |
| 
 | |
| static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
 | |
| 				       u64 *samples)
 | |
| {
 | |
| 	u64 stime, utime, rtime;
 | |
| 
 | |
| 	utime = atomic64_read(&at->utime);
 | |
| 	stime = atomic64_read(&at->stime);
 | |
| 	rtime = atomic64_read(&at->sum_exec_runtime);
 | |
| 	store_samples(samples, stime, utime, rtime);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 | |
|  * to avoid race conditions with concurrent updates to cputime.
 | |
|  */
 | |
| static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 | |
| {
 | |
| 	u64 curr_cputime = atomic64_read(cputime);
 | |
| 
 | |
| 	do {
 | |
| 		if (sum_cputime <= curr_cputime)
 | |
| 			return;
 | |
| 	} while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime));
 | |
| }
 | |
| 
 | |
| static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
 | |
| 			      struct task_cputime *sum)
 | |
| {
 | |
| 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 | |
| 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 | |
| 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * thread_group_sample_cputime - Sample cputime for a given task
 | |
|  * @tsk:	Task for which cputime needs to be started
 | |
|  * @samples:	Storage for time samples
 | |
|  *
 | |
|  * Called from sys_getitimer() to calculate the expiry time of an active
 | |
|  * timer. That means group cputime accounting is already active. Called
 | |
|  * with task sighand lock held.
 | |
|  *
 | |
|  * Updates @times with an uptodate sample of the thread group cputimes.
 | |
|  */
 | |
| void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
 | |
| {
 | |
| 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 | |
| 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 | |
| 
 | |
| 	WARN_ON_ONCE(!pct->timers_active);
 | |
| 
 | |
| 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * thread_group_start_cputime - Start cputime and return a sample
 | |
|  * @tsk:	Task for which cputime needs to be started
 | |
|  * @samples:	Storage for time samples
 | |
|  *
 | |
|  * The thread group cputime accounting is avoided when there are no posix
 | |
|  * CPU timers armed. Before starting a timer it's required to check whether
 | |
|  * the time accounting is active. If not, a full update of the atomic
 | |
|  * accounting store needs to be done and the accounting enabled.
 | |
|  *
 | |
|  * Updates @times with an uptodate sample of the thread group cputimes.
 | |
|  */
 | |
| static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
 | |
| {
 | |
| 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 | |
| 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 | |
| 
 | |
| 	lockdep_assert_task_sighand_held(tsk);
 | |
| 
 | |
| 	/* Check if cputimer isn't running. This is accessed without locking. */
 | |
| 	if (!READ_ONCE(pct->timers_active)) {
 | |
| 		struct task_cputime sum;
 | |
| 
 | |
| 		/*
 | |
| 		 * The POSIX timer interface allows for absolute time expiry
 | |
| 		 * values through the TIMER_ABSTIME flag, therefore we have
 | |
| 		 * to synchronize the timer to the clock every time we start it.
 | |
| 		 */
 | |
| 		thread_group_cputime(tsk, &sum);
 | |
| 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 | |
| 
 | |
| 		/*
 | |
| 		 * We're setting timers_active without a lock. Ensure this
 | |
| 		 * only gets written to in one operation. We set it after
 | |
| 		 * update_gt_cputime() as a small optimization, but
 | |
| 		 * barriers are not required because update_gt_cputime()
 | |
| 		 * can handle concurrent updates.
 | |
| 		 */
 | |
| 		WRITE_ONCE(pct->timers_active, true);
 | |
| 	}
 | |
| 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 | |
| }
 | |
| 
 | |
| static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
 | |
| {
 | |
| 	struct task_cputime ct;
 | |
| 
 | |
| 	thread_group_cputime(tsk, &ct);
 | |
| 	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sample a process (thread group) clock for the given task clkid. If the
 | |
|  * group's cputime accounting is already enabled, read the atomic
 | |
|  * store. Otherwise a full update is required.  clkid is already validated.
 | |
|  */
 | |
| static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
 | |
| 				  bool start)
 | |
| {
 | |
| 	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
 | |
| 	struct posix_cputimers *pct = &p->signal->posix_cputimers;
 | |
| 	u64 samples[CPUCLOCK_MAX];
 | |
| 
 | |
| 	if (!READ_ONCE(pct->timers_active)) {
 | |
| 		if (start)
 | |
| 			thread_group_start_cputime(p, samples);
 | |
| 		else
 | |
| 			__thread_group_cputime(p, samples);
 | |
| 	} else {
 | |
| 		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 | |
| 	}
 | |
| 
 | |
| 	return samples[clkid];
 | |
| }
 | |
| 
 | |
| static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
 | |
| {
 | |
| 	const clockid_t clkid = CPUCLOCK_WHICH(clock);
 | |
| 	struct task_struct *tsk;
 | |
| 	u64 t;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
 | |
| 	if (!tsk) {
 | |
| 		rcu_read_unlock();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (CPUCLOCK_PERTHREAD(clock))
 | |
| 		t = cpu_clock_sample(clkid, tsk);
 | |
| 	else
 | |
| 		t = cpu_clock_sample_group(clkid, tsk, false);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	*tp = ns_to_timespec64(t);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 | |
|  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 | |
|  * new timer already all-zeros initialized.
 | |
|  */
 | |
| static int posix_cpu_timer_create(struct k_itimer *new_timer)
 | |
| {
 | |
| 	static struct lock_class_key posix_cpu_timers_key;
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	pid = pid_for_clock(new_timer->it_clock, false);
 | |
| 	if (!pid) {
 | |
| 		rcu_read_unlock();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If posix timer expiry is handled in task work context then
 | |
| 	 * timer::it_lock can be taken without disabling interrupts as all
 | |
| 	 * other locking happens in task context. This requires a separate
 | |
| 	 * lock class key otherwise regular posix timer expiry would record
 | |
| 	 * the lock class being taken in interrupt context and generate a
 | |
| 	 * false positive warning.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
 | |
| 		lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
 | |
| 
 | |
| 	new_timer->kclock = &clock_posix_cpu;
 | |
| 	timerqueue_init(&new_timer->it.cpu.node);
 | |
| 	new_timer->it.cpu.pid = get_pid(pid);
 | |
| 	rcu_read_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
 | |
| 					      struct task_struct *tsk)
 | |
| {
 | |
| 	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
 | |
| 
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | |
| 		return tsk->posix_cputimers.bases + clkidx;
 | |
| 	else
 | |
| 		return tsk->signal->posix_cputimers.bases + clkidx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Force recalculating the base earliest expiration on the next tick.
 | |
|  * This will also re-evaluate the need to keep around the process wide
 | |
|  * cputime counter and tick dependency and eventually shut these down
 | |
|  * if necessary.
 | |
|  */
 | |
| static void trigger_base_recalc_expires(struct k_itimer *timer,
 | |
| 					struct task_struct *tsk)
 | |
| {
 | |
| 	struct posix_cputimer_base *base = timer_base(timer, tsk);
 | |
| 
 | |
| 	base->nextevt = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dequeue the timer and reset the base if it was its earliest expiration.
 | |
|  * It makes sure the next tick recalculates the base next expiration so we
 | |
|  * don't keep the costly process wide cputime counter around for a random
 | |
|  * amount of time, along with the tick dependency.
 | |
|  *
 | |
|  * If another timer gets queued between this and the next tick, its
 | |
|  * expiration will update the base next event if necessary on the next
 | |
|  * tick.
 | |
|  */
 | |
| static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
 | |
| {
 | |
| 	struct cpu_timer *ctmr = &timer->it.cpu;
 | |
| 	struct posix_cputimer_base *base;
 | |
| 
 | |
| 	if (!cpu_timer_dequeue(ctmr))
 | |
| 		return;
 | |
| 
 | |
| 	base = timer_base(timer, p);
 | |
| 	if (cpu_timer_getexpires(ctmr) == base->nextevt)
 | |
| 		trigger_base_recalc_expires(timer, p);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Clean up a CPU-clock timer that is about to be destroyed.
 | |
|  * This is called from timer deletion with the timer already locked.
 | |
|  * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | |
|  * and try again.  (This happens when the timer is in the middle of firing.)
 | |
|  */
 | |
| static int posix_cpu_timer_del(struct k_itimer *timer)
 | |
| {
 | |
| 	struct cpu_timer *ctmr = &timer->it.cpu;
 | |
| 	struct sighand_struct *sighand;
 | |
| 	struct task_struct *p;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = cpu_timer_task_rcu(timer);
 | |
| 	if (!p)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect against sighand release/switch in exit/exec and process/
 | |
| 	 * thread timer list entry concurrent read/writes.
 | |
| 	 */
 | |
| 	sighand = lock_task_sighand(p, &flags);
 | |
| 	if (unlikely(sighand == NULL)) {
 | |
| 		/*
 | |
| 		 * This raced with the reaping of the task. The exit cleanup
 | |
| 		 * should have removed this timer from the timer queue.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
 | |
| 	} else {
 | |
| 		if (timer->it.cpu.firing) {
 | |
| 			/*
 | |
| 			 * Prevent signal delivery. The timer cannot be dequeued
 | |
| 			 * because it is on the firing list which is not protected
 | |
| 			 * by sighand->lock. The delivery path is waiting for
 | |
| 			 * the timer lock. So go back, unlock and retry.
 | |
| 			 */
 | |
| 			timer->it.cpu.firing = false;
 | |
| 			ret = TIMER_RETRY;
 | |
| 		} else {
 | |
| 			disarm_timer(timer, p);
 | |
| 		}
 | |
| 		unlock_task_sighand(p, &flags);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		put_pid(ctmr->pid);
 | |
| 		timer->it_status = POSIX_TIMER_DISARMED;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cleanup_timerqueue(struct timerqueue_head *head)
 | |
| {
 | |
| 	struct timerqueue_node *node;
 | |
| 	struct cpu_timer *ctmr;
 | |
| 
 | |
| 	while ((node = timerqueue_getnext(head))) {
 | |
| 		timerqueue_del(head, node);
 | |
| 		ctmr = container_of(node, struct cpu_timer, node);
 | |
| 		ctmr->head = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean out CPU timers which are still armed when a thread exits. The
 | |
|  * timers are only removed from the list. No other updates are done. The
 | |
|  * corresponding posix timers are still accessible, but cannot be rearmed.
 | |
|  *
 | |
|  * This must be called with the siglock held.
 | |
|  */
 | |
| static void cleanup_timers(struct posix_cputimers *pct)
 | |
| {
 | |
| 	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
 | |
| 	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
 | |
| 	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are both called with the siglock held, when the current thread
 | |
|  * is being reaped.  When the final (leader) thread in the group is reaped,
 | |
|  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 | |
|  */
 | |
| void posix_cpu_timers_exit(struct task_struct *tsk)
 | |
| {
 | |
| 	cleanup_timers(&tsk->posix_cputimers);
 | |
| }
 | |
| void posix_cpu_timers_exit_group(struct task_struct *tsk)
 | |
| {
 | |
| 	cleanup_timers(&tsk->signal->posix_cputimers);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert the timer on the appropriate list before any timers that
 | |
|  * expire later.  This must be called with the sighand lock held.
 | |
|  */
 | |
| static void arm_timer(struct k_itimer *timer, struct task_struct *p)
 | |
| {
 | |
| 	struct posix_cputimer_base *base = timer_base(timer, p);
 | |
| 	struct cpu_timer *ctmr = &timer->it.cpu;
 | |
| 	u64 newexp = cpu_timer_getexpires(ctmr);
 | |
| 
 | |
| 	timer->it_status = POSIX_TIMER_ARMED;
 | |
| 	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are the new earliest-expiring POSIX 1.b timer, hence
 | |
| 	 * need to update expiration cache. Take into account that
 | |
| 	 * for process timers we share expiration cache with itimers
 | |
| 	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 | |
| 	 */
 | |
| 	if (newexp < base->nextevt)
 | |
| 		base->nextevt = newexp;
 | |
| 
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | |
| 		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 | |
| 	else
 | |
| 		tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The timer is locked, fire it and arrange for its reload.
 | |
|  */
 | |
| static void cpu_timer_fire(struct k_itimer *timer)
 | |
| {
 | |
| 	struct cpu_timer *ctmr = &timer->it.cpu;
 | |
| 
 | |
| 	timer->it_status = POSIX_TIMER_DISARMED;
 | |
| 
 | |
| 	if (unlikely(ctmr->nanosleep)) {
 | |
| 		/*
 | |
| 		 * This a special case for clock_nanosleep,
 | |
| 		 * not a normal timer from sys_timer_create.
 | |
| 		 */
 | |
| 		wake_up_process(timer->it_process);
 | |
| 		cpu_timer_setexpires(ctmr, 0);
 | |
| 	} else {
 | |
| 		posix_timer_queue_signal(timer);
 | |
| 		/* Disable oneshot timers */
 | |
| 		if (!timer->it_interval)
 | |
| 			cpu_timer_setexpires(ctmr, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now);
 | |
| 
 | |
| /*
 | |
|  * Guts of sys_timer_settime for CPU timers.
 | |
|  * This is called with the timer locked and interrupts disabled.
 | |
|  * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | |
|  * and try again.  (This happens when the timer is in the middle of firing.)
 | |
|  */
 | |
| static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 | |
| 			       struct itimerspec64 *new, struct itimerspec64 *old)
 | |
| {
 | |
| 	bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
 | |
| 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 | |
| 	struct cpu_timer *ctmr = &timer->it.cpu;
 | |
| 	u64 old_expires, new_expires, now;
 | |
| 	struct sighand_struct *sighand;
 | |
| 	struct task_struct *p;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = cpu_timer_task_rcu(timer);
 | |
| 	if (!p) {
 | |
| 		/*
 | |
| 		 * If p has just been reaped, we can no
 | |
| 		 * longer get any information about it at all.
 | |
| 		 */
 | |
| 		rcu_read_unlock();
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the to_ktime conversion because that clamps the maximum
 | |
| 	 * value to KTIME_MAX and avoid multiplication overflows.
 | |
| 	 */
 | |
| 	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 | |
| 	 * and p->signal->cpu_timers read/write in arm_timer()
 | |
| 	 */
 | |
| 	sighand = lock_task_sighand(p, &flags);
 | |
| 	/*
 | |
| 	 * If p has just been reaped, we can no
 | |
| 	 * longer get any information about it at all.
 | |
| 	 */
 | |
| 	if (unlikely(sighand == NULL)) {
 | |
| 		rcu_read_unlock();
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	/* Retrieve the current expiry time before disarming the timer */
 | |
| 	old_expires = cpu_timer_getexpires(ctmr);
 | |
| 
 | |
| 	if (unlikely(timer->it.cpu.firing)) {
 | |
| 		/*
 | |
| 		 * Prevent signal delivery. The timer cannot be dequeued
 | |
| 		 * because it is on the firing list which is not protected
 | |
| 		 * by sighand->lock. The delivery path is waiting for
 | |
| 		 * the timer lock. So go back, unlock and retry.
 | |
| 		 */
 | |
| 		timer->it.cpu.firing = false;
 | |
| 		ret = TIMER_RETRY;
 | |
| 	} else {
 | |
| 		cpu_timer_dequeue(ctmr);
 | |
| 		timer->it_status = POSIX_TIMER_DISARMED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sample the current clock for saving the previous setting
 | |
| 	 * and for rearming the timer.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | |
| 		now = cpu_clock_sample(clkid, p);
 | |
| 	else
 | |
| 		now = cpu_clock_sample_group(clkid, p, !sigev_none);
 | |
| 
 | |
| 	/* Retrieve the previous expiry value if requested. */
 | |
| 	if (old) {
 | |
| 		old->it_value = (struct timespec64){ };
 | |
| 		if (old_expires)
 | |
| 			__posix_cpu_timer_get(timer, old, now);
 | |
| 	}
 | |
| 
 | |
| 	/* Retry if the timer expiry is running concurrently */
 | |
| 	if (unlikely(ret)) {
 | |
| 		unlock_task_sighand(p, &flags);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Convert relative expiry time to absolute */
 | |
| 	if (new_expires && !(timer_flags & TIMER_ABSTIME))
 | |
| 		new_expires += now;
 | |
| 
 | |
| 	/* Set the new expiry time (might be 0) */
 | |
| 	cpu_timer_setexpires(ctmr, new_expires);
 | |
| 
 | |
| 	/*
 | |
| 	 * Arm the timer if it is not disabled, the new expiry value has
 | |
| 	 * not yet expired and the timer requires signal delivery.
 | |
| 	 * SIGEV_NONE timers are never armed. In case the timer is not
 | |
| 	 * armed, enforce the reevaluation of the timer base so that the
 | |
| 	 * process wide cputime counter can be disabled eventually.
 | |
| 	 */
 | |
| 	if (likely(!sigev_none)) {
 | |
| 		if (new_expires && now < new_expires)
 | |
| 			arm_timer(timer, p);
 | |
| 		else
 | |
| 			trigger_base_recalc_expires(timer, p);
 | |
| 	}
 | |
| 
 | |
| 	unlock_task_sighand(p, &flags);
 | |
| 
 | |
| 	posix_timer_set_common(timer, new);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new expiry time was already in the past the timer was not
 | |
| 	 * queued. Fire it immediately even if the thread never runs to
 | |
| 	 * accumulate more time on this clock.
 | |
| 	 */
 | |
| 	if (!sigev_none && new_expires && now >= new_expires)
 | |
| 		cpu_timer_fire(timer);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now)
 | |
| {
 | |
| 	bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
 | |
| 	u64 expires, iv = timer->it_interval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that interval timers are moved forward for the
 | |
| 	 * following cases:
 | |
| 	 *  - SIGEV_NONE timers which are never armed
 | |
| 	 *  - Timers which expired, but the signal has not yet been
 | |
| 	 *    delivered
 | |
| 	 */
 | |
| 	if (iv && timer->it_status != POSIX_TIMER_ARMED)
 | |
| 		expires = bump_cpu_timer(timer, now);
 | |
| 	else
 | |
| 		expires = cpu_timer_getexpires(&timer->it.cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Expired interval timers cannot have a remaining time <= 0.
 | |
| 	 * The kernel has to move them forward so that the next
 | |
| 	 * timer expiry is > @now.
 | |
| 	 */
 | |
| 	if (now < expires) {
 | |
| 		itp->it_value = ns_to_timespec64(expires - now);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * A single shot SIGEV_NONE timer must return 0, when it is
 | |
| 		 * expired! Timers which have a real signal delivery mode
 | |
| 		 * must return a remaining time greater than 0 because the
 | |
| 		 * signal has not yet been delivered.
 | |
| 		 */
 | |
| 		if (!sigev_none)
 | |
| 			itp->it_value.tv_nsec = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 | |
| {
 | |
| 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 | |
| 	struct task_struct *p;
 | |
| 	u64 now;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = cpu_timer_task_rcu(timer);
 | |
| 	if (p && cpu_timer_getexpires(&timer->it.cpu)) {
 | |
| 		itp->it_interval = ktime_to_timespec64(timer->it_interval);
 | |
| 
 | |
| 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | |
| 			now = cpu_clock_sample(clkid, p);
 | |
| 		else
 | |
| 			now = cpu_clock_sample_group(clkid, p, false);
 | |
| 
 | |
| 		__posix_cpu_timer_get(timer, itp, now);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| #define MAX_COLLECTED	20
 | |
| 
 | |
| static u64 collect_timerqueue(struct timerqueue_head *head,
 | |
| 			      struct list_head *firing, u64 now)
 | |
| {
 | |
| 	struct timerqueue_node *next;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	while ((next = timerqueue_getnext(head))) {
 | |
| 		struct cpu_timer *ctmr;
 | |
| 		u64 expires;
 | |
| 
 | |
| 		ctmr = container_of(next, struct cpu_timer, node);
 | |
| 		expires = cpu_timer_getexpires(ctmr);
 | |
| 		/* Limit the number of timers to expire at once */
 | |
| 		if (++i == MAX_COLLECTED || now < expires)
 | |
| 			return expires;
 | |
| 
 | |
| 		ctmr->firing = true;
 | |
| 		/* See posix_cpu_timer_wait_running() */
 | |
| 		rcu_assign_pointer(ctmr->handling, current);
 | |
| 		cpu_timer_dequeue(ctmr);
 | |
| 		list_add_tail(&ctmr->elist, firing);
 | |
| 	}
 | |
| 
 | |
| 	return U64_MAX;
 | |
| }
 | |
| 
 | |
| static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
 | |
| 				    struct list_head *firing)
 | |
| {
 | |
| 	struct posix_cputimer_base *base = pct->bases;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
 | |
| 		base->nextevt = collect_timerqueue(&base->tqhead, firing,
 | |
| 						    samples[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void check_dl_overrun(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->dl.dl_overrun) {
 | |
| 		tsk->dl.dl_overrun = 0;
 | |
| 		send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
 | |
| {
 | |
| 	if (time < limit)
 | |
| 		return false;
 | |
| 
 | |
| 	if (print_fatal_signals) {
 | |
| 		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
 | |
| 			rt ? "RT" : "CPU", hard ? "hard" : "soft",
 | |
| 			current->comm, task_pid_nr(current));
 | |
| 	}
 | |
| 	send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for any per-thread CPU timers that have fired and move them off
 | |
|  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 | |
|  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 | |
|  */
 | |
| static void check_thread_timers(struct task_struct *tsk,
 | |
| 				struct list_head *firing)
 | |
| {
 | |
| 	struct posix_cputimers *pct = &tsk->posix_cputimers;
 | |
| 	u64 samples[CPUCLOCK_MAX];
 | |
| 	unsigned long soft;
 | |
| 
 | |
| 	if (dl_task(tsk))
 | |
| 		check_dl_overrun(tsk);
 | |
| 
 | |
| 	if (expiry_cache_is_inactive(pct))
 | |
| 		return;
 | |
| 
 | |
| 	task_sample_cputime(tsk, samples);
 | |
| 	collect_posix_cputimers(pct, samples, firing);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for the special case thread timers.
 | |
| 	 */
 | |
| 	soft = task_rlimit(tsk, RLIMIT_RTTIME);
 | |
| 	if (soft != RLIM_INFINITY) {
 | |
| 		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
 | |
| 		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
 | |
| 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
 | |
| 
 | |
| 		/* At the hard limit, send SIGKILL. No further action. */
 | |
| 		if (hard != RLIM_INFINITY &&
 | |
| 		    check_rlimit(rttime, hard, SIGKILL, true, true))
 | |
| 			return;
 | |
| 
 | |
| 		/* At the soft limit, send a SIGXCPU every second */
 | |
| 		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
 | |
| 			soft += USEC_PER_SEC;
 | |
| 			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (expiry_cache_is_inactive(pct))
 | |
| 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 | |
| }
 | |
| 
 | |
| static inline void stop_process_timers(struct signal_struct *sig)
 | |
| {
 | |
| 	struct posix_cputimers *pct = &sig->posix_cputimers;
 | |
| 
 | |
| 	/* Turn off the active flag. This is done without locking. */
 | |
| 	WRITE_ONCE(pct->timers_active, false);
 | |
| 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 | |
| }
 | |
| 
 | |
| static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 | |
| 			     u64 *expires, u64 cur_time, int signo)
 | |
| {
 | |
| 	if (!it->expires)
 | |
| 		return;
 | |
| 
 | |
| 	if (cur_time >= it->expires) {
 | |
| 		if (it->incr)
 | |
| 			it->expires += it->incr;
 | |
| 		else
 | |
| 			it->expires = 0;
 | |
| 
 | |
| 		trace_itimer_expire(signo == SIGPROF ?
 | |
| 				    ITIMER_PROF : ITIMER_VIRTUAL,
 | |
| 				    task_tgid(tsk), cur_time);
 | |
| 		send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
 | |
| 	}
 | |
| 
 | |
| 	if (it->expires && it->expires < *expires)
 | |
| 		*expires = it->expires;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for any per-thread CPU timers that have fired and move them
 | |
|  * off the tsk->*_timers list onto the firing list.  Per-thread timers
 | |
|  * have already been taken off.
 | |
|  */
 | |
| static void check_process_timers(struct task_struct *tsk,
 | |
| 				 struct list_head *firing)
 | |
| {
 | |
| 	struct signal_struct *const sig = tsk->signal;
 | |
| 	struct posix_cputimers *pct = &sig->posix_cputimers;
 | |
| 	u64 samples[CPUCLOCK_MAX];
 | |
| 	unsigned long soft;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are no active process wide timers (POSIX 1.b, itimers,
 | |
| 	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
 | |
| 	 * processing when there is already another task handling them.
 | |
| 	 */
 | |
| 	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Signify that a thread is checking for process timers.
 | |
| 	 * Write access to this field is protected by the sighand lock.
 | |
| 	 */
 | |
| 	pct->expiry_active = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect the current process totals. Group accounting is active
 | |
| 	 * so the sample can be taken directly.
 | |
| 	 */
 | |
| 	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
 | |
| 	collect_posix_cputimers(pct, samples, firing);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for the special case process timers.
 | |
| 	 */
 | |
| 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
 | |
| 			 &pct->bases[CPUCLOCK_PROF].nextevt,
 | |
| 			 samples[CPUCLOCK_PROF], SIGPROF);
 | |
| 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
 | |
| 			 &pct->bases[CPUCLOCK_VIRT].nextevt,
 | |
| 			 samples[CPUCLOCK_VIRT], SIGVTALRM);
 | |
| 
 | |
| 	soft = task_rlimit(tsk, RLIMIT_CPU);
 | |
| 	if (soft != RLIM_INFINITY) {
 | |
| 		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
 | |
| 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
 | |
| 		u64 ptime = samples[CPUCLOCK_PROF];
 | |
| 		u64 softns = (u64)soft * NSEC_PER_SEC;
 | |
| 		u64 hardns = (u64)hard * NSEC_PER_SEC;
 | |
| 
 | |
| 		/* At the hard limit, send SIGKILL. No further action. */
 | |
| 		if (hard != RLIM_INFINITY &&
 | |
| 		    check_rlimit(ptime, hardns, SIGKILL, false, true))
 | |
| 			return;
 | |
| 
 | |
| 		/* At the soft limit, send a SIGXCPU every second */
 | |
| 		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
 | |
| 			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
 | |
| 			softns += NSEC_PER_SEC;
 | |
| 		}
 | |
| 
 | |
| 		/* Update the expiry cache */
 | |
| 		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
 | |
| 			pct->bases[CPUCLOCK_PROF].nextevt = softns;
 | |
| 	}
 | |
| 
 | |
| 	if (expiry_cache_is_inactive(pct))
 | |
| 		stop_process_timers(sig);
 | |
| 
 | |
| 	pct->expiry_active = false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the signal code (via posixtimer_rearm)
 | |
|  * when the last timer signal was delivered and we have to reload the timer.
 | |
|  */
 | |
| static void posix_cpu_timer_rearm(struct k_itimer *timer)
 | |
| {
 | |
| 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 | |
| 	struct task_struct *p;
 | |
| 	struct sighand_struct *sighand;
 | |
| 	unsigned long flags;
 | |
| 	u64 now;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = cpu_timer_task_rcu(timer);
 | |
| 	if (!p)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Protect timer list r/w in arm_timer() */
 | |
| 	sighand = lock_task_sighand(p, &flags);
 | |
| 	if (unlikely(sighand == NULL))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fetch the current sample and update the timer's expiry time.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | |
| 		now = cpu_clock_sample(clkid, p);
 | |
| 	else
 | |
| 		now = cpu_clock_sample_group(clkid, p, true);
 | |
| 
 | |
| 	bump_cpu_timer(timer, now);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now re-arm for the new expiry time.
 | |
| 	 */
 | |
| 	arm_timer(timer, p);
 | |
| 	unlock_task_sighand(p, &flags);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_cputimers_expired - Check whether posix CPU timers are expired
 | |
|  *
 | |
|  * @samples:	Array of current samples for the CPUCLOCK clocks
 | |
|  * @pct:	Pointer to a posix_cputimers container
 | |
|  *
 | |
|  * Returns true if any member of @samples is greater than the corresponding
 | |
|  * member of @pct->bases[CLK].nextevt. False otherwise
 | |
|  */
 | |
| static inline bool
 | |
| task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < CPUCLOCK_MAX; i++) {
 | |
| 		if (samples[i] >= pct->bases[i].nextevt)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fastpath_timer_check - POSIX CPU timers fast path.
 | |
|  *
 | |
|  * @tsk:	The task (thread) being checked.
 | |
|  *
 | |
|  * Check the task and thread group timers.  If both are zero (there are no
 | |
|  * timers set) return false.  Otherwise snapshot the task and thread group
 | |
|  * timers and compare them with the corresponding expiration times.  Return
 | |
|  * true if a timer has expired, else return false.
 | |
|  */
 | |
| static inline bool fastpath_timer_check(struct task_struct *tsk)
 | |
| {
 | |
| 	struct posix_cputimers *pct = &tsk->posix_cputimers;
 | |
| 	struct signal_struct *sig;
 | |
| 
 | |
| 	if (!expiry_cache_is_inactive(pct)) {
 | |
| 		u64 samples[CPUCLOCK_MAX];
 | |
| 
 | |
| 		task_sample_cputime(tsk, samples);
 | |
| 		if (task_cputimers_expired(samples, pct))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	sig = tsk->signal;
 | |
| 	pct = &sig->posix_cputimers;
 | |
| 	/*
 | |
| 	 * Check if thread group timers expired when timers are active and
 | |
| 	 * no other thread in the group is already handling expiry for
 | |
| 	 * thread group cputimers. These fields are read without the
 | |
| 	 * sighand lock. However, this is fine because this is meant to be
 | |
| 	 * a fastpath heuristic to determine whether we should try to
 | |
| 	 * acquire the sighand lock to handle timer expiry.
 | |
| 	 *
 | |
| 	 * In the worst case scenario, if concurrently timers_active is set
 | |
| 	 * or expiry_active is cleared, but the current thread doesn't see
 | |
| 	 * the change yet, the timer checks are delayed until the next
 | |
| 	 * thread in the group gets a scheduler interrupt to handle the
 | |
| 	 * timer. This isn't an issue in practice because these types of
 | |
| 	 * delays with signals actually getting sent are expected.
 | |
| 	 */
 | |
| 	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
 | |
| 		u64 samples[CPUCLOCK_MAX];
 | |
| 
 | |
| 		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
 | |
| 					   samples);
 | |
| 
 | |
| 		if (task_cputimers_expired(samples, pct))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	if (dl_task(tsk) && tsk->dl.dl_overrun)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void handle_posix_cpu_timers(struct task_struct *tsk);
 | |
| 
 | |
| #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
 | |
| static void posix_cpu_timers_work(struct callback_head *work)
 | |
| {
 | |
| 	struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work);
 | |
| 
 | |
| 	mutex_lock(&cw->mutex);
 | |
| 	handle_posix_cpu_timers(current);
 | |
| 	mutex_unlock(&cw->mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoked from the posix-timer core when a cancel operation failed because
 | |
|  * the timer is marked firing. The caller holds rcu_read_lock(), which
 | |
|  * protects the timer and the task which is expiring it from being freed.
 | |
|  */
 | |
| static void posix_cpu_timer_wait_running(struct k_itimer *timr)
 | |
| {
 | |
| 	struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling);
 | |
| 
 | |
| 	/* Has the handling task completed expiry already? */
 | |
| 	if (!tsk)
 | |
| 		return;
 | |
| 
 | |
| 	/* Ensure that the task cannot go away */
 | |
| 	get_task_struct(tsk);
 | |
| 	/* Now drop the RCU protection so the mutex can be locked */
 | |
| 	rcu_read_unlock();
 | |
| 	/* Wait on the expiry mutex */
 | |
| 	mutex_lock(&tsk->posix_cputimers_work.mutex);
 | |
| 	/* Release it immediately again. */
 | |
| 	mutex_unlock(&tsk->posix_cputimers_work.mutex);
 | |
| 	/* Drop the task reference. */
 | |
| 	put_task_struct(tsk);
 | |
| 	/* Relock RCU so the callsite is balanced */
 | |
| 	rcu_read_lock();
 | |
| }
 | |
| 
 | |
| static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
 | |
| {
 | |
| 	/* Ensure that timr->it.cpu.handling task cannot go away */
 | |
| 	rcu_read_lock();
 | |
| 	spin_unlock_irq(&timr->it_lock);
 | |
| 	posix_cpu_timer_wait_running(timr);
 | |
| 	rcu_read_unlock();
 | |
| 	/* @timr is on stack and is valid */
 | |
| 	spin_lock_irq(&timr->it_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear existing posix CPU timers task work.
 | |
|  */
 | |
| void clear_posix_cputimers_work(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * A copied work entry from the old task is not meaningful, clear it.
 | |
| 	 * N.B. init_task_work will not do this.
 | |
| 	 */
 | |
| 	memset(&p->posix_cputimers_work.work, 0,
 | |
| 	       sizeof(p->posix_cputimers_work.work));
 | |
| 	init_task_work(&p->posix_cputimers_work.work,
 | |
| 		       posix_cpu_timers_work);
 | |
| 	mutex_init(&p->posix_cputimers_work.mutex);
 | |
| 	p->posix_cputimers_work.scheduled = false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize posix CPU timers task work in init task. Out of line to
 | |
|  * keep the callback static and to avoid header recursion hell.
 | |
|  */
 | |
| void __init posix_cputimers_init_work(void)
 | |
| {
 | |
| 	clear_posix_cputimers_work(current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
 | |
|  * in hard interrupt context or in task context with interrupts
 | |
|  * disabled. Aside of that the writer/reader interaction is always in the
 | |
|  * context of the current task, which means they are strict per CPU.
 | |
|  */
 | |
| static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
 | |
| {
 | |
| 	return tsk->posix_cputimers_work.scheduled;
 | |
| }
 | |
| 
 | |
| static inline void __run_posix_cpu_timers(struct task_struct *tsk)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
 | |
| 		return;
 | |
| 
 | |
| 	/* Schedule task work to actually expire the timers */
 | |
| 	tsk->posix_cputimers_work.scheduled = true;
 | |
| 	task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
 | |
| }
 | |
| 
 | |
| static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
 | |
| 						unsigned long start)
 | |
| {
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * On !RT kernels interrupts are disabled while collecting expired
 | |
| 	 * timers, so no tick can happen and the fast path check can be
 | |
| 	 * reenabled without further checks.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
 | |
| 		tsk->posix_cputimers_work.scheduled = false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * On RT enabled kernels ticks can happen while the expired timers
 | |
| 	 * are collected under sighand lock. But any tick which observes
 | |
| 	 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
 | |
| 	 * checks. So reenabling the tick work has do be done carefully:
 | |
| 	 *
 | |
| 	 * Disable interrupts and run the fast path check if jiffies have
 | |
| 	 * advanced since the collecting of expired timers started. If
 | |
| 	 * jiffies have not advanced or the fast path check did not find
 | |
| 	 * newly expired timers, reenable the fast path check in the timer
 | |
| 	 * interrupt. If there are newly expired timers, return false and
 | |
| 	 * let the collection loop repeat.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	if (start != jiffies && fastpath_timer_check(tsk))
 | |
| 		ret = false;
 | |
| 	else
 | |
| 		tsk->posix_cputimers_work.scheduled = false;
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
 | |
| static inline void __run_posix_cpu_timers(struct task_struct *tsk)
 | |
| {
 | |
| 	lockdep_posixtimer_enter();
 | |
| 	handle_posix_cpu_timers(tsk);
 | |
| 	lockdep_posixtimer_exit();
 | |
| }
 | |
| 
 | |
| static void posix_cpu_timer_wait_running(struct k_itimer *timr)
 | |
| {
 | |
| 	cpu_relax();
 | |
| }
 | |
| 
 | |
| static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
 | |
| {
 | |
| 	spin_unlock_irq(&timr->it_lock);
 | |
| 	cpu_relax();
 | |
| 	spin_lock_irq(&timr->it_lock);
 | |
| }
 | |
| 
 | |
| static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
 | |
| 						unsigned long start)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
 | |
| 
 | |
| static void handle_posix_cpu_timers(struct task_struct *tsk)
 | |
| {
 | |
| 	struct k_itimer *timer, *next;
 | |
| 	unsigned long flags, start;
 | |
| 	LIST_HEAD(firing);
 | |
| 
 | |
| 	if (!lock_task_sighand(tsk, &flags))
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * On RT locking sighand lock does not disable interrupts,
 | |
| 		 * so this needs to be careful vs. ticks. Store the current
 | |
| 		 * jiffies value.
 | |
| 		 */
 | |
| 		start = READ_ONCE(jiffies);
 | |
| 		barrier();
 | |
| 
 | |
| 		/*
 | |
| 		 * Here we take off tsk->signal->cpu_timers[N] and
 | |
| 		 * tsk->cpu_timers[N] all the timers that are firing, and
 | |
| 		 * put them on the firing list.
 | |
| 		 */
 | |
| 		check_thread_timers(tsk, &firing);
 | |
| 
 | |
| 		check_process_timers(tsk, &firing);
 | |
| 
 | |
| 		/*
 | |
| 		 * The above timer checks have updated the expiry cache and
 | |
| 		 * because nothing can have queued or modified timers after
 | |
| 		 * sighand lock was taken above it is guaranteed to be
 | |
| 		 * consistent. So the next timer interrupt fastpath check
 | |
| 		 * will find valid data.
 | |
| 		 *
 | |
| 		 * If timer expiry runs in the timer interrupt context then
 | |
| 		 * the loop is not relevant as timers will be directly
 | |
| 		 * expired in interrupt context. The stub function below
 | |
| 		 * returns always true which allows the compiler to
 | |
| 		 * optimize the loop out.
 | |
| 		 *
 | |
| 		 * If timer expiry is deferred to task work context then
 | |
| 		 * the following rules apply:
 | |
| 		 *
 | |
| 		 * - On !RT kernels no tick can have happened on this CPU
 | |
| 		 *   after sighand lock was acquired because interrupts are
 | |
| 		 *   disabled. So reenabling task work before dropping
 | |
| 		 *   sighand lock and reenabling interrupts is race free.
 | |
| 		 *
 | |
| 		 * - On RT kernels ticks might have happened but the tick
 | |
| 		 *   work ignored posix CPU timer handling because the
 | |
| 		 *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
 | |
| 		 *   must be done very carefully including a check whether
 | |
| 		 *   ticks have happened since the start of the timer
 | |
| 		 *   expiry checks. posix_cpu_timers_enable_work() takes
 | |
| 		 *   care of that and eventually lets the expiry checks
 | |
| 		 *   run again.
 | |
| 		 */
 | |
| 	} while (!posix_cpu_timers_enable_work(tsk, start));
 | |
| 
 | |
| 	/*
 | |
| 	 * We must release sighand lock before taking any timer's lock.
 | |
| 	 * There is a potential race with timer deletion here, as the
 | |
| 	 * siglock now protects our private firing list.  We have set
 | |
| 	 * the firing flag in each timer, so that a deletion attempt
 | |
| 	 * that gets the timer lock before we do will give it up and
 | |
| 	 * spin until we've taken care of that timer below.
 | |
| 	 */
 | |
| 	unlock_task_sighand(tsk, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that all the timers on our list have the firing flag,
 | |
| 	 * no one will touch their list entries but us.  We'll take
 | |
| 	 * each timer's lock before clearing its firing flag, so no
 | |
| 	 * timer call will interfere.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
 | |
| 		bool cpu_firing;
 | |
| 
 | |
| 		/*
 | |
| 		 * spin_lock() is sufficient here even independent of the
 | |
| 		 * expiry context. If expiry happens in hard interrupt
 | |
| 		 * context it's obvious. For task work context it's safe
 | |
| 		 * because all other operations on timer::it_lock happen in
 | |
| 		 * task context (syscall or exit).
 | |
| 		 */
 | |
| 		spin_lock(&timer->it_lock);
 | |
| 		list_del_init(&timer->it.cpu.elist);
 | |
| 		cpu_firing = timer->it.cpu.firing;
 | |
| 		timer->it.cpu.firing = false;
 | |
| 		/*
 | |
| 		 * If the firing flag is cleared then this raced with a
 | |
| 		 * timer rearm/delete operation. So don't generate an
 | |
| 		 * event.
 | |
| 		 */
 | |
| 		if (likely(cpu_firing))
 | |
| 			cpu_timer_fire(timer);
 | |
| 		/* See posix_cpu_timer_wait_running() */
 | |
| 		rcu_assign_pointer(timer->it.cpu.handling, NULL);
 | |
| 		spin_unlock(&timer->it_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the timer interrupt handler.  The irq handler has
 | |
|  * already updated our counts.  We need to check if any timers fire now.
 | |
|  * Interrupts are disabled.
 | |
|  */
 | |
| void run_posix_cpu_timers(void)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that release_task(tsk) can't happen while
 | |
| 	 * handle_posix_cpu_timers() is running. Otherwise, a concurrent
 | |
| 	 * posix_cpu_timer_del() may fail to lock_task_sighand(tsk) and
 | |
| 	 * miss timer->it.cpu.firing != 0.
 | |
| 	 */
 | |
| 	if (tsk->exit_state)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the actual expiry is deferred to task work context and the
 | |
| 	 * work is already scheduled there is no point to do anything here.
 | |
| 	 */
 | |
| 	if (posix_cpu_timers_work_scheduled(tsk))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The fast path checks that there are no expired thread or thread
 | |
| 	 * group timers.  If that's so, just return.
 | |
| 	 */
 | |
| 	if (!fastpath_timer_check(tsk))
 | |
| 		return;
 | |
| 
 | |
| 	__run_posix_cpu_timers(tsk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
 | |
|  * The tsk->sighand->siglock must be held by the caller.
 | |
|  */
 | |
| void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
 | |
| 			   u64 *newval, u64 *oldval)
 | |
| {
 | |
| 	u64 now, *nextevt;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
 | |
| 		return;
 | |
| 
 | |
| 	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
 | |
| 	now = cpu_clock_sample_group(clkid, tsk, true);
 | |
| 
 | |
| 	if (oldval) {
 | |
| 		/*
 | |
| 		 * We are setting itimer. The *oldval is absolute and we update
 | |
| 		 * it to be relative, *newval argument is relative and we update
 | |
| 		 * it to be absolute.
 | |
| 		 */
 | |
| 		if (*oldval) {
 | |
| 			if (*oldval <= now) {
 | |
| 				/* Just about to fire. */
 | |
| 				*oldval = TICK_NSEC;
 | |
| 			} else {
 | |
| 				*oldval -= now;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (*newval)
 | |
| 			*newval += now;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
 | |
| 	 * expiry cache is also used by RLIMIT_CPU!.
 | |
| 	 */
 | |
| 	if (*newval < *nextevt)
 | |
| 		*nextevt = *newval;
 | |
| 
 | |
| 	tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
 | |
| }
 | |
| 
 | |
| static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
 | |
| 			    const struct timespec64 *rqtp)
 | |
| {
 | |
| 	struct itimerspec64 it;
 | |
| 	struct k_itimer timer;
 | |
| 	u64 expires;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up a temporary timer and then wait for it to go off.
 | |
| 	 */
 | |
| 	memset(&timer, 0, sizeof timer);
 | |
| 	spin_lock_init(&timer.it_lock);
 | |
| 	timer.it_clock = which_clock;
 | |
| 	timer.it_overrun = -1;
 | |
| 	error = posix_cpu_timer_create(&timer);
 | |
| 	timer.it_process = current;
 | |
| 	timer.it.cpu.nanosleep = true;
 | |
| 
 | |
| 	if (!error) {
 | |
| 		static struct itimerspec64 zero_it;
 | |
| 		struct restart_block *restart;
 | |
| 
 | |
| 		memset(&it, 0, sizeof(it));
 | |
| 		it.it_value = *rqtp;
 | |
| 
 | |
| 		spin_lock_irq(&timer.it_lock);
 | |
| 		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
 | |
| 		if (error) {
 | |
| 			spin_unlock_irq(&timer.it_lock);
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		while (!signal_pending(current)) {
 | |
| 			if (!cpu_timer_getexpires(&timer.it.cpu)) {
 | |
| 				/*
 | |
| 				 * Our timer fired and was reset, below
 | |
| 				 * deletion can not fail.
 | |
| 				 */
 | |
| 				posix_cpu_timer_del(&timer);
 | |
| 				spin_unlock_irq(&timer.it_lock);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Block until cpu_timer_fire (or a signal) wakes us.
 | |
| 			 */
 | |
| 			__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			spin_unlock_irq(&timer.it_lock);
 | |
| 			schedule();
 | |
| 			spin_lock_irq(&timer.it_lock);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We were interrupted by a signal.
 | |
| 		 */
 | |
| 		expires = cpu_timer_getexpires(&timer.it.cpu);
 | |
| 		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
 | |
| 		if (!error) {
 | |
| 			/* Timer is now unarmed, deletion can not fail. */
 | |
| 			posix_cpu_timer_del(&timer);
 | |
| 		} else {
 | |
| 			while (error == TIMER_RETRY) {
 | |
| 				posix_cpu_timer_wait_running_nsleep(&timer);
 | |
| 				error = posix_cpu_timer_del(&timer);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock_irq(&timer.it_lock);
 | |
| 
 | |
| 		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
 | |
| 			/*
 | |
| 			 * It actually did fire already.
 | |
| 			 */
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		error = -ERESTART_RESTARTBLOCK;
 | |
| 		/*
 | |
| 		 * Report back to the user the time still remaining.
 | |
| 		 */
 | |
| 		restart = ¤t->restart_block;
 | |
| 		restart->nanosleep.expires = expires;
 | |
| 		if (restart->nanosleep.type != TT_NONE)
 | |
| 			error = nanosleep_copyout(restart, &it.it_value);
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
 | |
| 
 | |
| static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 			    const struct timespec64 *rqtp)
 | |
| {
 | |
| 	struct restart_block *restart_block = ¤t->restart_block;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Diagnose required errors first.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(which_clock) &&
 | |
| 	    (CPUCLOCK_PID(which_clock) == 0 ||
 | |
| 	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = do_cpu_nanosleep(which_clock, flags, rqtp);
 | |
| 
 | |
| 	if (error == -ERESTART_RESTARTBLOCK) {
 | |
| 
 | |
| 		if (flags & TIMER_ABSTIME)
 | |
| 			return -ERESTARTNOHAND;
 | |
| 
 | |
| 		restart_block->nanosleep.clockid = which_clock;
 | |
| 		set_restart_fn(restart_block, posix_cpu_nsleep_restart);
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	clockid_t which_clock = restart_block->nanosleep.clockid;
 | |
| 	struct timespec64 t;
 | |
| 
 | |
| 	t = ns_to_timespec64(restart_block->nanosleep.expires);
 | |
| 
 | |
| 	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
 | |
| }
 | |
| 
 | |
| #define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
 | |
| #define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
 | |
| 
 | |
| static int process_cpu_clock_getres(const clockid_t which_clock,
 | |
| 				    struct timespec64 *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
 | |
| }
 | |
| static int process_cpu_clock_get(const clockid_t which_clock,
 | |
| 				 struct timespec64 *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
 | |
| }
 | |
| static int process_cpu_timer_create(struct k_itimer *timer)
 | |
| {
 | |
| 	timer->it_clock = PROCESS_CLOCK;
 | |
| 	return posix_cpu_timer_create(timer);
 | |
| }
 | |
| static int process_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 			      const struct timespec64 *rqtp)
 | |
| {
 | |
| 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
 | |
| }
 | |
| static int thread_cpu_clock_getres(const clockid_t which_clock,
 | |
| 				   struct timespec64 *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
 | |
| }
 | |
| static int thread_cpu_clock_get(const clockid_t which_clock,
 | |
| 				struct timespec64 *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
 | |
| }
 | |
| static int thread_cpu_timer_create(struct k_itimer *timer)
 | |
| {
 | |
| 	timer->it_clock = THREAD_CLOCK;
 | |
| 	return posix_cpu_timer_create(timer);
 | |
| }
 | |
| 
 | |
| const struct k_clock clock_posix_cpu = {
 | |
| 	.clock_getres		= posix_cpu_clock_getres,
 | |
| 	.clock_set		= posix_cpu_clock_set,
 | |
| 	.clock_get_timespec	= posix_cpu_clock_get,
 | |
| 	.timer_create		= posix_cpu_timer_create,
 | |
| 	.nsleep			= posix_cpu_nsleep,
 | |
| 	.timer_set		= posix_cpu_timer_set,
 | |
| 	.timer_del		= posix_cpu_timer_del,
 | |
| 	.timer_get		= posix_cpu_timer_get,
 | |
| 	.timer_rearm		= posix_cpu_timer_rearm,
 | |
| 	.timer_wait_running	= posix_cpu_timer_wait_running,
 | |
| };
 | |
| 
 | |
| const struct k_clock clock_process = {
 | |
| 	.clock_getres		= process_cpu_clock_getres,
 | |
| 	.clock_get_timespec	= process_cpu_clock_get,
 | |
| 	.timer_create		= process_cpu_timer_create,
 | |
| 	.nsleep			= process_cpu_nsleep,
 | |
| };
 | |
| 
 | |
| const struct k_clock clock_thread = {
 | |
| 	.clock_getres		= thread_cpu_clock_getres,
 | |
| 	.clock_get_timespec	= thread_cpu_clock_get,
 | |
| 	.timer_create		= thread_cpu_timer_create,
 | |
| };
 |