mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 0df6db767a
			
		
	
	
		0df6db767a
		
	
	
	
	
		
			
			Move posix_timers_cache initialization to posixtimer_init(). At that point the memory subsystem is already up and running. Also move the cache pointer to the __timer_data variable to avoid potential false sharing, since it never was marked as __ro_after_init. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20250402133114.253901-1-edumazet@google.com
		
			
				
	
	
		
			1572 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1572 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * 2002-10-15  Posix Clocks & timers
 | |
|  *                           by George Anzinger george@mvista.com
 | |
|  *			     Copyright (C) 2002 2003 by MontaVista Software.
 | |
|  *
 | |
|  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 | |
|  *			     Copyright (C) 2004 Boris Hu
 | |
|  *
 | |
|  * These are all the functions necessary to implement POSIX clocks & timers
 | |
|  */
 | |
| #include <linux/compat.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/nospec.h>
 | |
| #include <linux/posix-clock.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/time_namespace.h>
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include "timekeeping.h"
 | |
| #include "posix-timers.h"
 | |
| 
 | |
| /*
 | |
|  * Timers are managed in a hash table for lockless lookup. The hash key is
 | |
|  * constructed from current::signal and the timer ID and the timer is
 | |
|  * matched against current::signal and the timer ID when walking the hash
 | |
|  * bucket list.
 | |
|  *
 | |
|  * This allows checkpoint/restore to reconstruct the exact timer IDs for
 | |
|  * a process.
 | |
|  */
 | |
| struct timer_hash_bucket {
 | |
| 	spinlock_t		lock;
 | |
| 	struct hlist_head	head;
 | |
| };
 | |
| 
 | |
| static struct {
 | |
| 	struct timer_hash_bucket	*buckets;
 | |
| 	unsigned long			mask;
 | |
| 	struct kmem_cache		*cache;
 | |
| } __timer_data __ro_after_init __aligned(4*sizeof(long));
 | |
| 
 | |
| #define timer_buckets		(__timer_data.buckets)
 | |
| #define timer_hashmask		(__timer_data.mask)
 | |
| #define posix_timers_cache	(__timer_data.cache)
 | |
| 
 | |
| static const struct k_clock * const posix_clocks[];
 | |
| static const struct k_clock *clockid_to_kclock(const clockid_t id);
 | |
| static const struct k_clock clock_realtime, clock_monotonic;
 | |
| 
 | |
| #define TIMER_ANY_ID		INT_MIN
 | |
| 
 | |
| /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
 | |
| #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
 | |
| 			~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
 | |
| #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
 | |
| #endif
 | |
| 
 | |
| static struct k_itimer *__lock_timer(timer_t timer_id);
 | |
| 
 | |
| #define lock_timer(tid)							\
 | |
| ({	struct k_itimer *__timr;					\
 | |
| 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid));	\
 | |
| 	__timr;								\
 | |
| })
 | |
| 
 | |
| static inline void unlock_timer(struct k_itimer *timr)
 | |
| {
 | |
| 	if (likely((timr)))
 | |
| 		spin_unlock_irq(&timr->it_lock);
 | |
| }
 | |
| 
 | |
| #define scoped_timer_get_or_fail(_id)					\
 | |
| 	scoped_cond_guard(lock_timer, return -EINVAL, _id)
 | |
| 
 | |
| #define scoped_timer				(scope)
 | |
| 
 | |
| DEFINE_CLASS(lock_timer, struct k_itimer *, unlock_timer(_T), __lock_timer(id), timer_t id);
 | |
| DEFINE_CLASS_IS_COND_GUARD(lock_timer);
 | |
| 
 | |
| static struct timer_hash_bucket *hash_bucket(struct signal_struct *sig, unsigned int nr)
 | |
| {
 | |
| 	return &timer_buckets[jhash2((u32 *)&sig, sizeof(sig) / sizeof(u32), nr) & timer_hashmask];
 | |
| }
 | |
| 
 | |
| static struct k_itimer *posix_timer_by_id(timer_t id)
 | |
| {
 | |
| 	struct signal_struct *sig = current->signal;
 | |
| 	struct timer_hash_bucket *bucket = hash_bucket(sig, id);
 | |
| 	struct k_itimer *timer;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(timer, &bucket->head, t_hash) {
 | |
| 		/* timer->it_signal can be set concurrently */
 | |
| 		if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
 | |
| 			return timer;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct signal_struct *posix_sig_owner(const struct k_itimer *timer)
 | |
| {
 | |
| 	unsigned long val = (unsigned long)timer->it_signal;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask out bit 0, which acts as invalid marker to prevent
 | |
| 	 * posix_timer_by_id() detecting it as valid.
 | |
| 	 */
 | |
| 	return (struct signal_struct *)(val & ~1UL);
 | |
| }
 | |
| 
 | |
| static bool posix_timer_hashed(struct timer_hash_bucket *bucket, struct signal_struct *sig,
 | |
| 			       timer_t id)
 | |
| {
 | |
| 	struct hlist_head *head = &bucket->head;
 | |
| 	struct k_itimer *timer;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&bucket->lock)) {
 | |
| 		if ((posix_sig_owner(timer) == sig) && (timer->it_id == id))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool posix_timer_add_at(struct k_itimer *timer, struct signal_struct *sig, unsigned int id)
 | |
| {
 | |
| 	struct timer_hash_bucket *bucket = hash_bucket(sig, id);
 | |
| 
 | |
| 	scoped_guard (spinlock, &bucket->lock) {
 | |
| 		/*
 | |
| 		 * Validate under the lock as this could have raced against
 | |
| 		 * another thread ending up with the same ID, which is
 | |
| 		 * highly unlikely, but possible.
 | |
| 		 */
 | |
| 		if (!posix_timer_hashed(bucket, sig, id)) {
 | |
| 			/*
 | |
| 			 * Set the timer ID and the signal pointer to make
 | |
| 			 * it identifiable in the hash table. The signal
 | |
| 			 * pointer has bit 0 set to indicate that it is not
 | |
| 			 * yet fully initialized. posix_timer_hashed()
 | |
| 			 * masks this bit out, but the syscall lookup fails
 | |
| 			 * to match due to it being set. This guarantees
 | |
| 			 * that there can't be duplicate timer IDs handed
 | |
| 			 * out.
 | |
| 			 */
 | |
| 			timer->it_id = (timer_t)id;
 | |
| 			timer->it_signal = (struct signal_struct *)((unsigned long)sig | 1UL);
 | |
| 			hlist_add_head_rcu(&timer->t_hash, &bucket->head);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int posix_timer_add(struct k_itimer *timer, int req_id)
 | |
| {
 | |
| 	struct signal_struct *sig = current->signal;
 | |
| 
 | |
| 	if (unlikely(req_id != TIMER_ANY_ID)) {
 | |
| 		if (!posix_timer_add_at(timer, sig, req_id))
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		/*
 | |
| 		 * Move the ID counter past the requested ID, so that after
 | |
| 		 * switching back to normal mode the IDs are outside of the
 | |
| 		 * exact allocated region. That avoids ID collisions on the
 | |
| 		 * next regular timer_create() invocations.
 | |
| 		 */
 | |
| 		atomic_set(&sig->next_posix_timer_id, req_id + 1);
 | |
| 		return req_id;
 | |
| 	}
 | |
| 
 | |
| 	for (unsigned int cnt = 0; cnt <= INT_MAX; cnt++) {
 | |
| 		/* Get the next timer ID and clamp it to positive space */
 | |
| 		unsigned int id = atomic_fetch_inc(&sig->next_posix_timer_id) & INT_MAX;
 | |
| 
 | |
| 		if (posix_timer_add_at(timer, sig, id))
 | |
| 			return id;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	/* POSIX return code when no timer ID could be allocated */
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
 | |
| {
 | |
| 	ktime_get_real_ts64(tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
 | |
| {
 | |
| 	return ktime_get_real();
 | |
| }
 | |
| 
 | |
| static int posix_clock_realtime_set(const clockid_t which_clock,
 | |
| 				    const struct timespec64 *tp)
 | |
| {
 | |
| 	return do_sys_settimeofday64(tp, NULL);
 | |
| }
 | |
| 
 | |
| static int posix_clock_realtime_adj(const clockid_t which_clock,
 | |
| 				    struct __kernel_timex *t)
 | |
| {
 | |
| 	return do_adjtimex(t);
 | |
| }
 | |
| 
 | |
| static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
 | |
| {
 | |
| 	ktime_get_ts64(tp);
 | |
| 	timens_add_monotonic(tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
 | |
| {
 | |
| 	return ktime_get();
 | |
| }
 | |
| 
 | |
| static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
 | |
| {
 | |
| 	ktime_get_raw_ts64(tp);
 | |
| 	timens_add_monotonic(tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
 | |
| {
 | |
| 	ktime_get_coarse_real_ts64(tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int posix_get_monotonic_coarse(clockid_t which_clock,
 | |
| 						struct timespec64 *tp)
 | |
| {
 | |
| 	ktime_get_coarse_ts64(tp);
 | |
| 	timens_add_monotonic(tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
 | |
| {
 | |
| 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
 | |
| {
 | |
| 	ktime_get_boottime_ts64(tp);
 | |
| 	timens_add_boottime(tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
 | |
| {
 | |
| 	return ktime_get_boottime();
 | |
| }
 | |
| 
 | |
| static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
 | |
| {
 | |
| 	ktime_get_clocktai_ts64(tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ktime_t posix_get_tai_ktime(clockid_t which_clock)
 | |
| {
 | |
| 	return ktime_get_clocktai();
 | |
| }
 | |
| 
 | |
| static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
 | |
| {
 | |
| 	tp->tv_sec = 0;
 | |
| 	tp->tv_nsec = hrtimer_resolution;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
 | |
|  * are of type int. Clamp the overrun value to INT_MAX
 | |
|  */
 | |
| static inline int timer_overrun_to_int(struct k_itimer *timr)
 | |
| {
 | |
| 	if (timr->it_overrun_last > (s64)INT_MAX)
 | |
| 		return INT_MAX;
 | |
| 
 | |
| 	return (int)timr->it_overrun_last;
 | |
| }
 | |
| 
 | |
| static void common_hrtimer_rearm(struct k_itimer *timr)
 | |
| {
 | |
| 	struct hrtimer *timer = &timr->it.real.timer;
 | |
| 
 | |
| 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 | |
| 					    timr->it_interval);
 | |
| 	hrtimer_restart(timer);
 | |
| }
 | |
| 
 | |
| static bool __posixtimer_deliver_signal(struct kernel_siginfo *info, struct k_itimer *timr)
 | |
| {
 | |
| 	guard(spinlock)(&timr->it_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the timer is still alive or whether it got modified
 | |
| 	 * since the signal was queued. In either case, don't rearm and
 | |
| 	 * drop the signal.
 | |
| 	 */
 | |
| 	if (timr->it_signal_seq != timr->it_sigqueue_seq || WARN_ON_ONCE(!posixtimer_valid(timr)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!timr->it_interval || WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING))
 | |
| 		return true;
 | |
| 
 | |
| 	timr->kclock->timer_rearm(timr);
 | |
| 	timr->it_status = POSIX_TIMER_ARMED;
 | |
| 	timr->it_overrun_last = timr->it_overrun;
 | |
| 	timr->it_overrun = -1LL;
 | |
| 	++timr->it_signal_seq;
 | |
| 	info->si_overrun = timer_overrun_to_int(timr);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called from the signal delivery code. It decides
 | |
|  * whether the signal should be dropped and rearms interval timers.  The
 | |
|  * timer can be unconditionally accessed as there is a reference held on
 | |
|  * it.
 | |
|  */
 | |
| bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *timer_sigq)
 | |
| {
 | |
| 	struct k_itimer *timr = container_of(timer_sigq, struct k_itimer, sigq);
 | |
| 	bool ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Release siglock to ensure proper locking order versus
 | |
| 	 * timr::it_lock. Keep interrupts disabled.
 | |
| 	 */
 | |
| 	spin_unlock(¤t->sighand->siglock);
 | |
| 
 | |
| 	ret = __posixtimer_deliver_signal(info, timr);
 | |
| 
 | |
| 	/* Drop the reference which was acquired when the signal was queued */
 | |
| 	posixtimer_putref(timr);
 | |
| 
 | |
| 	spin_lock(¤t->sighand->siglock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void posix_timer_queue_signal(struct k_itimer *timr)
 | |
| {
 | |
| 	lockdep_assert_held(&timr->it_lock);
 | |
| 
 | |
| 	if (!posixtimer_valid(timr))
 | |
| 		return;
 | |
| 
 | |
| 	timr->it_status = timr->it_interval ? POSIX_TIMER_REQUEUE_PENDING : POSIX_TIMER_DISARMED;
 | |
| 	posixtimer_send_sigqueue(timr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function gets called when a POSIX.1b interval timer expires from
 | |
|  * the HRTIMER interrupt (soft interrupt on RT kernels).
 | |
|  *
 | |
|  * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
 | |
|  * based timers.
 | |
|  */
 | |
| static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 | |
| {
 | |
| 	struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
 | |
| 
 | |
| 	guard(spinlock_irqsave)(&timr->it_lock);
 | |
| 	posix_timer_queue_signal(timr);
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| long posixtimer_create_prctl(unsigned long ctrl)
 | |
| {
 | |
| 	switch (ctrl) {
 | |
| 	case PR_TIMER_CREATE_RESTORE_IDS_OFF:
 | |
| 		current->signal->timer_create_restore_ids = 0;
 | |
| 		return 0;
 | |
| 	case PR_TIMER_CREATE_RESTORE_IDS_ON:
 | |
| 		current->signal->timer_create_restore_ids = 1;
 | |
| 		return 0;
 | |
| 	case PR_TIMER_CREATE_RESTORE_IDS_GET:
 | |
| 		return current->signal->timer_create_restore_ids;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static struct pid *good_sigevent(sigevent_t * event)
 | |
| {
 | |
| 	struct pid *pid = task_tgid(current);
 | |
| 	struct task_struct *rtn;
 | |
| 
 | |
| 	switch (event->sigev_notify) {
 | |
| 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
 | |
| 		pid = find_vpid(event->sigev_notify_thread_id);
 | |
| 		rtn = pid_task(pid, PIDTYPE_PID);
 | |
| 		if (!rtn || !same_thread_group(rtn, current))
 | |
| 			return NULL;
 | |
| 		fallthrough;
 | |
| 	case SIGEV_SIGNAL:
 | |
| 	case SIGEV_THREAD:
 | |
| 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
 | |
| 			return NULL;
 | |
| 		fallthrough;
 | |
| 	case SIGEV_NONE:
 | |
| 		return pid;
 | |
| 	default:
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct k_itimer *alloc_posix_timer(void)
 | |
| {
 | |
| 	struct k_itimer *tmr;
 | |
| 
 | |
| 	if (unlikely(!posix_timers_cache))
 | |
| 		return NULL;
 | |
| 
 | |
| 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 | |
| 	if (!tmr)
 | |
| 		return tmr;
 | |
| 
 | |
| 	if (unlikely(!posixtimer_init_sigqueue(&tmr->sigq))) {
 | |
| 		kmem_cache_free(posix_timers_cache, tmr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	rcuref_init(&tmr->rcuref, 1);
 | |
| 	return tmr;
 | |
| }
 | |
| 
 | |
| void posixtimer_free_timer(struct k_itimer *tmr)
 | |
| {
 | |
| 	put_pid(tmr->it_pid);
 | |
| 	if (tmr->sigq.ucounts)
 | |
| 		dec_rlimit_put_ucounts(tmr->sigq.ucounts, UCOUNT_RLIMIT_SIGPENDING);
 | |
| 	kfree_rcu(tmr, rcu);
 | |
| }
 | |
| 
 | |
| static void posix_timer_unhash_and_free(struct k_itimer *tmr)
 | |
| {
 | |
| 	struct timer_hash_bucket *bucket = hash_bucket(posix_sig_owner(tmr), tmr->it_id);
 | |
| 
 | |
| 	scoped_guard (spinlock, &bucket->lock)
 | |
| 		hlist_del_rcu(&tmr->t_hash);
 | |
| 	posixtimer_putref(tmr);
 | |
| }
 | |
| 
 | |
| static int common_timer_create(struct k_itimer *new_timer)
 | |
| {
 | |
| 	hrtimer_setup(&new_timer->it.real.timer, posix_timer_fn, new_timer->it_clock, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Create a POSIX.1b interval timer. */
 | |
| static int do_timer_create(clockid_t which_clock, struct sigevent *event,
 | |
| 			   timer_t __user *created_timer_id)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 	timer_t req_id = TIMER_ANY_ID;
 | |
| 	struct k_itimer *new_timer;
 | |
| 	int error, new_timer_id;
 | |
| 
 | |
| 	if (!kc)
 | |
| 		return -EINVAL;
 | |
| 	if (!kc->timer_create)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	new_timer = alloc_posix_timer();
 | |
| 	if (unlikely(!new_timer))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	spin_lock_init(&new_timer->it_lock);
 | |
| 
 | |
| 	/* Special case for CRIU to restore timers with a given timer ID. */
 | |
| 	if (unlikely(current->signal->timer_create_restore_ids)) {
 | |
| 		if (copy_from_user(&req_id, created_timer_id, sizeof(req_id)))
 | |
| 			return -EFAULT;
 | |
| 		/* Valid IDs are 0..INT_MAX */
 | |
| 		if ((unsigned int)req_id > INT_MAX)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Add the timer to the hash table. The timer is not yet valid
 | |
| 	 * after insertion, but has a unique ID allocated.
 | |
| 	 */
 | |
| 	new_timer_id = posix_timer_add(new_timer, req_id);
 | |
| 	if (new_timer_id < 0) {
 | |
| 		posixtimer_free_timer(new_timer);
 | |
| 		return new_timer_id;
 | |
| 	}
 | |
| 
 | |
| 	new_timer->it_clock = which_clock;
 | |
| 	new_timer->kclock = kc;
 | |
| 	new_timer->it_overrun = -1LL;
 | |
| 
 | |
| 	if (event) {
 | |
| 		scoped_guard (rcu)
 | |
| 			new_timer->it_pid = get_pid(good_sigevent(event));
 | |
| 		if (!new_timer->it_pid) {
 | |
| 			error = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		new_timer->it_sigev_notify     = event->sigev_notify;
 | |
| 		new_timer->sigq.info.si_signo = event->sigev_signo;
 | |
| 		new_timer->sigq.info.si_value = event->sigev_value;
 | |
| 	} else {
 | |
| 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
 | |
| 		new_timer->sigq.info.si_signo = SIGALRM;
 | |
| 		new_timer->sigq.info.si_value.sival_int = new_timer->it_id;
 | |
| 		new_timer->it_pid = get_pid(task_tgid(current));
 | |
| 	}
 | |
| 
 | |
| 	if (new_timer->it_sigev_notify & SIGEV_THREAD_ID)
 | |
| 		new_timer->it_pid_type = PIDTYPE_PID;
 | |
| 	else
 | |
| 		new_timer->it_pid_type = PIDTYPE_TGID;
 | |
| 
 | |
| 	new_timer->sigq.info.si_tid = new_timer->it_id;
 | |
| 	new_timer->sigq.info.si_code = SI_TIMER;
 | |
| 
 | |
| 	if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
 | |
| 		error = -EFAULT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * After succesful copy out, the timer ID is visible to user space
 | |
| 	 * now but not yet valid because new_timer::signal low order bit is 1.
 | |
| 	 *
 | |
| 	 * Complete the initialization with the clock specific create
 | |
| 	 * callback.
 | |
| 	 */
 | |
| 	error = kc->timer_create(new_timer);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * timer::it_lock ensures that __lock_timer() observes a fully
 | |
| 	 * initialized timer when it observes a valid timer::it_signal.
 | |
| 	 *
 | |
| 	 * sighand::siglock is required to protect signal::posix_timers.
 | |
| 	 */
 | |
| 	scoped_guard (spinlock_irq, &new_timer->it_lock) {
 | |
| 		guard(spinlock)(¤t->sighand->siglock);
 | |
| 		/*
 | |
| 		 * new_timer::it_signal contains the signal pointer with
 | |
| 		 * bit 0 set, which makes it invalid for syscall operations.
 | |
| 		 * Store the unmodified signal pointer to make it valid.
 | |
| 		 */
 | |
| 		WRITE_ONCE(new_timer->it_signal, current->signal);
 | |
| 		hlist_add_head_rcu(&new_timer->list, ¤t->signal->posix_timers);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * After unlocking @new_timer is subject to concurrent removal and
 | |
| 	 * cannot be touched anymore
 | |
| 	 */
 | |
| 	return 0;
 | |
| out:
 | |
| 	posix_timer_unhash_and_free(new_timer);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 | |
| 		struct sigevent __user *, timer_event_spec,
 | |
| 		timer_t __user *, created_timer_id)
 | |
| {
 | |
| 	if (timer_event_spec) {
 | |
| 		sigevent_t event;
 | |
| 
 | |
| 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
 | |
| 			return -EFAULT;
 | |
| 		return do_timer_create(which_clock, &event, created_timer_id);
 | |
| 	}
 | |
| 	return do_timer_create(which_clock, NULL, created_timer_id);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
 | |
| 		       struct compat_sigevent __user *, timer_event_spec,
 | |
| 		       timer_t __user *, created_timer_id)
 | |
| {
 | |
| 	if (timer_event_spec) {
 | |
| 		sigevent_t event;
 | |
| 
 | |
| 		if (get_compat_sigevent(&event, timer_event_spec))
 | |
| 			return -EFAULT;
 | |
| 		return do_timer_create(which_clock, &event, created_timer_id);
 | |
| 	}
 | |
| 	return do_timer_create(which_clock, NULL, created_timer_id);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct k_itimer *__lock_timer(timer_t timer_id)
 | |
| {
 | |
| 	struct k_itimer *timr;
 | |
| 
 | |
| 	/*
 | |
| 	 * timer_t could be any type >= int and we want to make sure any
 | |
| 	 * @timer_id outside positive int range fails lookup.
 | |
| 	 */
 | |
| 	if ((unsigned long long)timer_id > INT_MAX)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The hash lookup and the timers are RCU protected.
 | |
| 	 *
 | |
| 	 * Timers are added to the hash in invalid state where
 | |
| 	 * timr::it_signal is marked invalid. timer::it_signal is only set
 | |
| 	 * after the rest of the initialization succeeded.
 | |
| 	 *
 | |
| 	 * Timer destruction happens in steps:
 | |
| 	 *  1) Set timr::it_signal marked invalid with timr::it_lock held
 | |
| 	 *  2) Release timr::it_lock
 | |
| 	 *  3) Remove from the hash under hash_lock
 | |
| 	 *  4) Put the reference count.
 | |
| 	 *
 | |
| 	 * The reference count might not drop to zero if timr::sigq is
 | |
| 	 * queued. In that case the signal delivery or flush will put the
 | |
| 	 * last reference count.
 | |
| 	 *
 | |
| 	 * When the reference count reaches zero, the timer is scheduled
 | |
| 	 * for RCU removal after the grace period.
 | |
| 	 *
 | |
| 	 * Holding rcu_read_lock() across the lookup ensures that
 | |
| 	 * the timer cannot be freed.
 | |
| 	 *
 | |
| 	 * The lookup validates locklessly that timr::it_signal ==
 | |
| 	 * current::it_signal and timr::it_id == @timer_id. timr::it_id
 | |
| 	 * can't change, but timr::it_signal can become invalid during
 | |
| 	 * destruction, which makes the locked check fail.
 | |
| 	 */
 | |
| 	guard(rcu)();
 | |
| 	timr = posix_timer_by_id(timer_id);
 | |
| 	if (timr) {
 | |
| 		spin_lock_irq(&timr->it_lock);
 | |
| 		/*
 | |
| 		 * Validate under timr::it_lock that timr::it_signal is
 | |
| 		 * still valid. Pairs with #1 above.
 | |
| 		 */
 | |
| 		if (timr->it_signal == current->signal)
 | |
| 			return timr;
 | |
| 		spin_unlock_irq(&timr->it_lock);
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
 | |
| {
 | |
| 	struct hrtimer *timer = &timr->it.real.timer;
 | |
| 
 | |
| 	return __hrtimer_expires_remaining_adjusted(timer, now);
 | |
| }
 | |
| 
 | |
| static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
 | |
| {
 | |
| 	struct hrtimer *timer = &timr->it.real.timer;
 | |
| 
 | |
| 	return hrtimer_forward(timer, now, timr->it_interval);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the time remaining on a POSIX.1b interval timer.
 | |
|  *
 | |
|  * Two issues to handle here:
 | |
|  *
 | |
|  *  1) The timer has a requeue pending. The return value must appear as
 | |
|  *     if the timer has been requeued right now.
 | |
|  *
 | |
|  *  2) The timer is a SIGEV_NONE timer. These timers are never enqueued
 | |
|  *     into the hrtimer queue and therefore never expired. Emulate expiry
 | |
|  *     here taking #1 into account.
 | |
|  */
 | |
| void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
 | |
| {
 | |
| 	const struct k_clock *kc = timr->kclock;
 | |
| 	ktime_t now, remaining, iv;
 | |
| 	bool sig_none;
 | |
| 
 | |
| 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
 | |
| 	iv = timr->it_interval;
 | |
| 
 | |
| 	/* interval timer ? */
 | |
| 	if (iv) {
 | |
| 		cur_setting->it_interval = ktime_to_timespec64(iv);
 | |
| 	} else if (timr->it_status == POSIX_TIMER_DISARMED) {
 | |
| 		/*
 | |
| 		 * SIGEV_NONE oneshot timers are never queued and therefore
 | |
| 		 * timr->it_status is always DISARMED. The check below
 | |
| 		 * vs. remaining time will handle this case.
 | |
| 		 *
 | |
| 		 * For all other timers there is nothing to update here, so
 | |
| 		 * return.
 | |
| 		 */
 | |
| 		if (!sig_none)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	now = kc->clock_get_ktime(timr->it_clock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is an interval timer and either has requeue pending or
 | |
| 	 * is a SIGEV_NONE timer move the expiry time forward by intervals,
 | |
| 	 * so expiry is > now.
 | |
| 	 */
 | |
| 	if (iv && timr->it_status != POSIX_TIMER_ARMED)
 | |
| 		timr->it_overrun += kc->timer_forward(timr, now);
 | |
| 
 | |
| 	remaining = kc->timer_remaining(timr, now);
 | |
| 	/*
 | |
| 	 * As @now is retrieved before a possible timer_forward() and
 | |
| 	 * cannot be reevaluated by the compiler @remaining is based on the
 | |
| 	 * same @now value. Therefore @remaining is consistent vs. @now.
 | |
| 	 *
 | |
| 	 * Consequently all interval timers, i.e. @iv > 0, cannot have a
 | |
| 	 * remaining time <= 0 because timer_forward() guarantees to move
 | |
| 	 * them forward so that the next timer expiry is > @now.
 | |
| 	 */
 | |
| 	if (remaining <= 0) {
 | |
| 		/*
 | |
| 		 * A single shot SIGEV_NONE timer must return 0, when it is
 | |
| 		 * expired! Timers which have a real signal delivery mode
 | |
| 		 * must return a remaining time greater than 0 because the
 | |
| 		 * signal has not yet been delivered.
 | |
| 		 */
 | |
| 		if (!sig_none)
 | |
| 			cur_setting->it_value.tv_nsec = 1;
 | |
| 	} else {
 | |
| 		cur_setting->it_value = ktime_to_timespec64(remaining);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
 | |
| {
 | |
| 	memset(setting, 0, sizeof(*setting));
 | |
| 	scoped_timer_get_or_fail(timer_id)
 | |
| 		scoped_timer->kclock->timer_get(scoped_timer, setting);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Get the time remaining on a POSIX.1b interval timer. */
 | |
| SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 | |
| 		struct __kernel_itimerspec __user *, setting)
 | |
| {
 | |
| 	struct itimerspec64 cur_setting;
 | |
| 
 | |
| 	int ret = do_timer_gettime(timer_id, &cur_setting);
 | |
| 	if (!ret) {
 | |
| 		if (put_itimerspec64(&cur_setting, setting))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT_32BIT_TIME
 | |
| 
 | |
| SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
 | |
| 		struct old_itimerspec32 __user *, setting)
 | |
| {
 | |
| 	struct itimerspec64 cur_setting;
 | |
| 
 | |
| 	int ret = do_timer_gettime(timer_id, &cur_setting);
 | |
| 	if (!ret) {
 | |
| 		if (put_old_itimerspec32(&cur_setting, setting))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
 | |
|  * @timer_id:	The timer ID which identifies the timer
 | |
|  *
 | |
|  * The "overrun count" of a timer is one plus the number of expiration
 | |
|  * intervals which have elapsed between the first expiry, which queues the
 | |
|  * signal and the actual signal delivery. On signal delivery the "overrun
 | |
|  * count" is calculated and cached, so it can be returned directly here.
 | |
|  *
 | |
|  * As this is relative to the last queued signal the returned overrun count
 | |
|  * is meaningless outside of the signal delivery path and even there it
 | |
|  * does not accurately reflect the current state when user space evaluates
 | |
|  * it.
 | |
|  *
 | |
|  * Returns:
 | |
|  *	-EINVAL		@timer_id is invalid
 | |
|  *	1..INT_MAX	The number of overruns related to the last delivered signal
 | |
|  */
 | |
| SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 | |
| {
 | |
| 	scoped_timer_get_or_fail(timer_id)
 | |
| 		return timer_overrun_to_int(scoped_timer);
 | |
| }
 | |
| 
 | |
| static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
 | |
| 			       bool absolute, bool sigev_none)
 | |
| {
 | |
| 	struct hrtimer *timer = &timr->it.real.timer;
 | |
| 	enum hrtimer_mode mode;
 | |
| 
 | |
| 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 | |
| 	/*
 | |
| 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
 | |
| 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
 | |
| 	 * hood. See hrtimer_setup(). Update timr->kclock, so the generic
 | |
| 	 * functions which use timr->kclock->clock_get_*() work.
 | |
| 	 *
 | |
| 	 * Note: it_clock stays unmodified, because the next timer_set() might
 | |
| 	 * use ABSTIME, so it needs to switch back.
 | |
| 	 */
 | |
| 	if (timr->it_clock == CLOCK_REALTIME)
 | |
| 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
 | |
| 
 | |
| 	hrtimer_setup(&timr->it.real.timer, posix_timer_fn, timr->it_clock, mode);
 | |
| 
 | |
| 	if (!absolute)
 | |
| 		expires = ktime_add_safe(expires, timer->base->get_time());
 | |
| 	hrtimer_set_expires(timer, expires);
 | |
| 
 | |
| 	if (!sigev_none)
 | |
| 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 | |
| }
 | |
| 
 | |
| static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
 | |
| {
 | |
| 	return hrtimer_try_to_cancel(&timr->it.real.timer);
 | |
| }
 | |
| 
 | |
| static void common_timer_wait_running(struct k_itimer *timer)
 | |
| {
 | |
| 	hrtimer_cancel_wait_running(&timer->it.real.timer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On PREEMPT_RT this prevents priority inversion and a potential livelock
 | |
|  * against the ksoftirqd thread in case that ksoftirqd gets preempted while
 | |
|  * executing a hrtimer callback.
 | |
|  *
 | |
|  * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
 | |
|  * just results in a cpu_relax().
 | |
|  *
 | |
|  * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
 | |
|  * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
 | |
|  * prevents spinning on an eventually scheduled out task and a livelock
 | |
|  * when the task which tries to delete or disarm the timer has preempted
 | |
|  * the task which runs the expiry in task work context.
 | |
|  */
 | |
| static void timer_wait_running(struct k_itimer *timer)
 | |
| {
 | |
| 	/*
 | |
| 	 * kc->timer_wait_running() might drop RCU lock. So @timer
 | |
| 	 * cannot be touched anymore after the function returns!
 | |
| 	 */
 | |
| 	timer->kclock->timer_wait_running(timer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the new interval and reset the signal delivery data
 | |
|  */
 | |
| void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting)
 | |
| {
 | |
| 	if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec)
 | |
| 		timer->it_interval = timespec64_to_ktime(new_setting->it_interval);
 | |
| 	else
 | |
| 		timer->it_interval = 0;
 | |
| 
 | |
| 	/* Reset overrun accounting */
 | |
| 	timer->it_overrun_last = 0;
 | |
| 	timer->it_overrun = -1LL;
 | |
| }
 | |
| 
 | |
| /* Set a POSIX.1b interval timer. */
 | |
| int common_timer_set(struct k_itimer *timr, int flags,
 | |
| 		     struct itimerspec64 *new_setting,
 | |
| 		     struct itimerspec64 *old_setting)
 | |
| {
 | |
| 	const struct k_clock *kc = timr->kclock;
 | |
| 	bool sigev_none;
 | |
| 	ktime_t expires;
 | |
| 
 | |
| 	if (old_setting)
 | |
| 		common_timer_get(timr, old_setting);
 | |
| 
 | |
| 	/*
 | |
| 	 * Careful here. On SMP systems the timer expiry function could be
 | |
| 	 * active and spinning on timr->it_lock.
 | |
| 	 */
 | |
| 	if (kc->timer_try_to_cancel(timr) < 0)
 | |
| 		return TIMER_RETRY;
 | |
| 
 | |
| 	timr->it_status = POSIX_TIMER_DISARMED;
 | |
| 	posix_timer_set_common(timr, new_setting);
 | |
| 
 | |
| 	/* Keep timer disarmed when it_value is zero */
 | |
| 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 | |
| 		return 0;
 | |
| 
 | |
| 	expires = timespec64_to_ktime(new_setting->it_value);
 | |
| 	if (flags & TIMER_ABSTIME)
 | |
| 		expires = timens_ktime_to_host(timr->it_clock, expires);
 | |
| 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
 | |
| 
 | |
| 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
 | |
| 	if (!sigev_none)
 | |
| 		timr->it_status = POSIX_TIMER_ARMED;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_timer_settime(timer_t timer_id, int tmr_flags, struct itimerspec64 *new_spec64,
 | |
| 			    struct itimerspec64 *old_spec64)
 | |
| {
 | |
| 	if (!timespec64_valid(&new_spec64->it_interval) ||
 | |
| 	    !timespec64_valid(&new_spec64->it_value))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (old_spec64)
 | |
| 		memset(old_spec64, 0, sizeof(*old_spec64));
 | |
| 
 | |
| 	for (; ; old_spec64 = NULL) {
 | |
| 		struct k_itimer *timr;
 | |
| 
 | |
| 		scoped_timer_get_or_fail(timer_id) {
 | |
| 			timr = scoped_timer;
 | |
| 
 | |
| 			if (old_spec64)
 | |
| 				old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
 | |
| 
 | |
| 			/* Prevent signal delivery and rearming. */
 | |
| 			timr->it_signal_seq++;
 | |
| 
 | |
| 			int ret = timr->kclock->timer_set(timr, tmr_flags, new_spec64, old_spec64);
 | |
| 			if (ret != TIMER_RETRY)
 | |
| 				return ret;
 | |
| 
 | |
| 			/* Protect the timer from being freed when leaving the lock scope */
 | |
| 			rcu_read_lock();
 | |
| 		}
 | |
| 		timer_wait_running(timr);
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Set a POSIX.1b interval timer */
 | |
| SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 | |
| 		const struct __kernel_itimerspec __user *, new_setting,
 | |
| 		struct __kernel_itimerspec __user *, old_setting)
 | |
| {
 | |
| 	struct itimerspec64 new_spec, old_spec, *rtn;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (!new_setting)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (get_itimerspec64(&new_spec, new_setting))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	rtn = old_setting ? &old_spec : NULL;
 | |
| 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 | |
| 	if (!error && old_setting) {
 | |
| 		if (put_itimerspec64(&old_spec, old_setting))
 | |
| 			error = -EFAULT;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT_32BIT_TIME
 | |
| SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
 | |
| 		struct old_itimerspec32 __user *, new,
 | |
| 		struct old_itimerspec32 __user *, old)
 | |
| {
 | |
| 	struct itimerspec64 new_spec, old_spec;
 | |
| 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (!new)
 | |
| 		return -EINVAL;
 | |
| 	if (get_old_itimerspec32(&new_spec, new))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 | |
| 	if (!error && old) {
 | |
| 		if (put_old_itimerspec32(&old_spec, old))
 | |
| 			error = -EFAULT;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int common_timer_del(struct k_itimer *timer)
 | |
| {
 | |
| 	const struct k_clock *kc = timer->kclock;
 | |
| 
 | |
| 	if (kc->timer_try_to_cancel(timer) < 0)
 | |
| 		return TIMER_RETRY;
 | |
| 	timer->it_status = POSIX_TIMER_DISARMED;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the deleted timer is on the ignored list, remove it and
 | |
|  * drop the associated reference.
 | |
|  */
 | |
| static inline void posix_timer_cleanup_ignored(struct k_itimer *tmr)
 | |
| {
 | |
| 	if (!hlist_unhashed(&tmr->ignored_list)) {
 | |
| 		hlist_del_init(&tmr->ignored_list);
 | |
| 		posixtimer_putref(tmr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void posix_timer_delete(struct k_itimer *timer)
 | |
| {
 | |
| 	/*
 | |
| 	 * Invalidate the timer, remove it from the linked list and remove
 | |
| 	 * it from the ignored list if pending.
 | |
| 	 *
 | |
| 	 * The invalidation must be written with siglock held so that the
 | |
| 	 * signal code observes the invalidated timer::it_signal in
 | |
| 	 * do_sigaction(), which prevents it from moving a pending signal
 | |
| 	 * of a deleted timer to the ignore list.
 | |
| 	 *
 | |
| 	 * The invalidation also prevents signal queueing, signal delivery
 | |
| 	 * and therefore rearming from the signal delivery path.
 | |
| 	 *
 | |
| 	 * A concurrent lookup can still find the timer in the hash, but it
 | |
| 	 * will check timer::it_signal with timer::it_lock held and observe
 | |
| 	 * bit 0 set, which invalidates it. That also prevents the timer ID
 | |
| 	 * from being handed out before this timer is completely gone.
 | |
| 	 */
 | |
| 	timer->it_signal_seq++;
 | |
| 
 | |
| 	scoped_guard (spinlock, ¤t->sighand->siglock) {
 | |
| 		unsigned long sig = (unsigned long)timer->it_signal | 1UL;
 | |
| 
 | |
| 		WRITE_ONCE(timer->it_signal, (struct signal_struct *)sig);
 | |
| 		hlist_del_rcu(&timer->list);
 | |
| 		posix_timer_cleanup_ignored(timer);
 | |
| 	}
 | |
| 
 | |
| 	while (timer->kclock->timer_del(timer) == TIMER_RETRY) {
 | |
| 		guard(rcu)();
 | |
| 		spin_unlock_irq(&timer->it_lock);
 | |
| 		timer_wait_running(timer);
 | |
| 		spin_lock_irq(&timer->it_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Delete a POSIX.1b interval timer. */
 | |
| SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 | |
| {
 | |
| 	struct k_itimer *timer;
 | |
| 
 | |
| 	scoped_timer_get_or_fail(timer_id) {
 | |
| 		timer = scoped_timer;
 | |
| 		posix_timer_delete(timer);
 | |
| 	}
 | |
| 	/* Remove it from the hash, which frees up the timer ID */
 | |
| 	posix_timer_unhash_and_free(timer);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoked from do_exit() when the last thread of a thread group exits.
 | |
|  * At that point no other task can access the timers of the dying
 | |
|  * task anymore.
 | |
|  */
 | |
| void exit_itimers(struct task_struct *tsk)
 | |
| {
 | |
| 	struct hlist_head timers;
 | |
| 	struct hlist_node *next;
 | |
| 	struct k_itimer *timer;
 | |
| 
 | |
| 	/* Clear restore mode for exec() */
 | |
| 	tsk->signal->timer_create_restore_ids = 0;
 | |
| 
 | |
| 	if (hlist_empty(&tsk->signal->posix_timers))
 | |
| 		return;
 | |
| 
 | |
| 	/* Protect against concurrent read via /proc/$PID/timers */
 | |
| 	scoped_guard (spinlock_irq, &tsk->sighand->siglock)
 | |
| 		hlist_move_list(&tsk->signal->posix_timers, &timers);
 | |
| 
 | |
| 	/* The timers are not longer accessible via tsk::signal */
 | |
| 	hlist_for_each_entry_safe(timer, next, &timers, list) {
 | |
| 		scoped_guard (spinlock_irq, &timer->it_lock)
 | |
| 			posix_timer_delete(timer);
 | |
| 		posix_timer_unhash_and_free(timer);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There should be no timers on the ignored list. itimer_delete() has
 | |
| 	 * mopped them up.
 | |
| 	 */
 | |
| 	if (!WARN_ON_ONCE(!hlist_empty(&tsk->signal->ignored_posix_timers)))
 | |
| 		return;
 | |
| 
 | |
| 	hlist_move_list(&tsk->signal->ignored_posix_timers, &timers);
 | |
| 	while (!hlist_empty(&timers)) {
 | |
| 		posix_timer_cleanup_ignored(hlist_entry(timers.first, struct k_itimer,
 | |
| 							ignored_list));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
 | |
| 		const struct __kernel_timespec __user *, tp)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 	struct timespec64 new_tp;
 | |
| 
 | |
| 	if (!kc || !kc->clock_set)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (get_timespec64(&new_tp, tp))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Permission checks have to be done inside the clock specific
 | |
| 	 * setter callback.
 | |
| 	 */
 | |
| 	return kc->clock_set(which_clock, &new_tp);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
 | |
| 		struct __kernel_timespec __user *, tp)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 	struct timespec64 kernel_tp;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!kc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = kc->clock_get_timespec(which_clock, &kernel_tp);
 | |
| 
 | |
| 	if (!error && put_timespec64(&kernel_tp, tp))
 | |
| 		error = -EFAULT;
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 
 | |
| 	if (!kc)
 | |
| 		return -EINVAL;
 | |
| 	if (!kc->clock_adj)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	return kc->clock_adj(which_clock, ktx);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
 | |
| 		struct __kernel_timex __user *, utx)
 | |
| {
 | |
| 	struct __kernel_timex ktx;
 | |
| 	int err;
 | |
| 
 | |
| 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	err = do_clock_adjtime(which_clock, &ktx);
 | |
| 
 | |
| 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_clock_getres - Get the resolution of a clock
 | |
|  * @which_clock:	The clock to get the resolution for
 | |
|  * @tp:			Pointer to a a user space timespec64 for storage
 | |
|  *
 | |
|  * POSIX defines:
 | |
|  *
 | |
|  * "The clock_getres() function shall return the resolution of any
 | |
|  * clock. Clock resolutions are implementation-defined and cannot be set by
 | |
|  * a process. If the argument res is not NULL, the resolution of the
 | |
|  * specified clock shall be stored in the location pointed to by res. If
 | |
|  * res is NULL, the clock resolution is not returned. If the time argument
 | |
|  * of clock_settime() is not a multiple of res, then the value is truncated
 | |
|  * to a multiple of res."
 | |
|  *
 | |
|  * Due to the various hardware constraints the real resolution can vary
 | |
|  * wildly and even change during runtime when the underlying devices are
 | |
|  * replaced. The kernel also can use hardware devices with different
 | |
|  * resolutions for reading the time and for arming timers.
 | |
|  *
 | |
|  * The kernel therefore deviates from the POSIX spec in various aspects:
 | |
|  *
 | |
|  * 1) The resolution returned to user space
 | |
|  *
 | |
|  *    For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
 | |
|  *    CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
 | |
|  *    the kernel differentiates only two cases:
 | |
|  *
 | |
|  *    I)  Low resolution mode:
 | |
|  *
 | |
|  *	  When high resolution timers are disabled at compile or runtime
 | |
|  *	  the resolution returned is nanoseconds per tick, which represents
 | |
|  *	  the precision at which timers expire.
 | |
|  *
 | |
|  *    II) High resolution mode:
 | |
|  *
 | |
|  *	  When high resolution timers are enabled the resolution returned
 | |
|  *	  is always one nanosecond independent of the actual resolution of
 | |
|  *	  the underlying hardware devices.
 | |
|  *
 | |
|  *	  For CLOCK_*_ALARM the actual resolution depends on system
 | |
|  *	  state. When system is running the resolution is the same as the
 | |
|  *	  resolution of the other clocks. During suspend the actual
 | |
|  *	  resolution is the resolution of the underlying RTC device which
 | |
|  *	  might be way less precise than the clockevent device used during
 | |
|  *	  running state.
 | |
|  *
 | |
|  *   For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
 | |
|  *   returned is always nanoseconds per tick.
 | |
|  *
 | |
|  *   For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
 | |
|  *   returned is always one nanosecond under the assumption that the
 | |
|  *   underlying scheduler clock has a better resolution than nanoseconds
 | |
|  *   per tick.
 | |
|  *
 | |
|  *   For dynamic POSIX clocks (PTP devices) the resolution returned is
 | |
|  *   always one nanosecond.
 | |
|  *
 | |
|  * 2) Affect on sys_clock_settime()
 | |
|  *
 | |
|  *    The kernel does not truncate the time which is handed in to
 | |
|  *    sys_clock_settime(). The kernel internal timekeeping is always using
 | |
|  *    nanoseconds precision independent of the clocksource device which is
 | |
|  *    used to read the time from. The resolution of that device only
 | |
|  *    affects the presicion of the time returned by sys_clock_gettime().
 | |
|  *
 | |
|  * Returns:
 | |
|  *	0		Success. @tp contains the resolution
 | |
|  *	-EINVAL		@which_clock is not a valid clock ID
 | |
|  *	-EFAULT		Copying the resolution to @tp faulted
 | |
|  *	-ENODEV		Dynamic POSIX clock is not backed by a device
 | |
|  *	-EOPNOTSUPP	Dynamic POSIX clock does not support getres()
 | |
|  */
 | |
| SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
 | |
| 		struct __kernel_timespec __user *, tp)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 	struct timespec64 rtn_tp;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!kc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = kc->clock_getres(which_clock, &rtn_tp);
 | |
| 
 | |
| 	if (!error && tp && put_timespec64(&rtn_tp, tp))
 | |
| 		error = -EFAULT;
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT_32BIT_TIME
 | |
| 
 | |
| SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
 | |
| 		struct old_timespec32 __user *, tp)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 	struct timespec64 ts;
 | |
| 
 | |
| 	if (!kc || !kc->clock_set)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (get_old_timespec32(&ts, tp))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return kc->clock_set(which_clock, &ts);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
 | |
| 		struct old_timespec32 __user *, tp)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 	struct timespec64 ts;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!kc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = kc->clock_get_timespec(which_clock, &ts);
 | |
| 
 | |
| 	if (!err && put_old_timespec32(&ts, tp))
 | |
| 		err = -EFAULT;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
 | |
| 		struct old_timex32 __user *, utp)
 | |
| {
 | |
| 	struct __kernel_timex ktx;
 | |
| 	int err;
 | |
| 
 | |
| 	err = get_old_timex32(&ktx, utp);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = do_clock_adjtime(which_clock, &ktx);
 | |
| 
 | |
| 	if (err >= 0 && put_old_timex32(utp, &ktx))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
 | |
| 		struct old_timespec32 __user *, tp)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 	struct timespec64 ts;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!kc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = kc->clock_getres(which_clock, &ts);
 | |
| 	if (!err && tp && put_old_timespec32(&ts, tp))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
 | |
|  */
 | |
| static int common_nsleep(const clockid_t which_clock, int flags,
 | |
| 			 const struct timespec64 *rqtp)
 | |
| {
 | |
| 	ktime_t texp = timespec64_to_ktime(*rqtp);
 | |
| 
 | |
| 	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
 | |
| 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
 | |
| 				 which_clock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
 | |
|  *
 | |
|  * Absolute nanosleeps for these clocks are time-namespace adjusted.
 | |
|  */
 | |
| static int common_nsleep_timens(const clockid_t which_clock, int flags,
 | |
| 				const struct timespec64 *rqtp)
 | |
| {
 | |
| 	ktime_t texp = timespec64_to_ktime(*rqtp);
 | |
| 
 | |
| 	if (flags & TIMER_ABSTIME)
 | |
| 		texp = timens_ktime_to_host(which_clock, texp);
 | |
| 
 | |
| 	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
 | |
| 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
 | |
| 				 which_clock);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
 | |
| 		const struct __kernel_timespec __user *, rqtp,
 | |
| 		struct __kernel_timespec __user *, rmtp)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 	struct timespec64 t;
 | |
| 
 | |
| 	if (!kc)
 | |
| 		return -EINVAL;
 | |
| 	if (!kc->nsleep)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (get_timespec64(&t, rqtp))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!timespec64_valid(&t))
 | |
| 		return -EINVAL;
 | |
| 	if (flags & TIMER_ABSTIME)
 | |
| 		rmtp = NULL;
 | |
| 	current->restart_block.fn = do_no_restart_syscall;
 | |
| 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
 | |
| 	current->restart_block.nanosleep.rmtp = rmtp;
 | |
| 
 | |
| 	return kc->nsleep(which_clock, flags, &t);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT_32BIT_TIME
 | |
| 
 | |
| SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
 | |
| 		struct old_timespec32 __user *, rqtp,
 | |
| 		struct old_timespec32 __user *, rmtp)
 | |
| {
 | |
| 	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | |
| 	struct timespec64 t;
 | |
| 
 | |
| 	if (!kc)
 | |
| 		return -EINVAL;
 | |
| 	if (!kc->nsleep)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (get_old_timespec32(&t, rqtp))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!timespec64_valid(&t))
 | |
| 		return -EINVAL;
 | |
| 	if (flags & TIMER_ABSTIME)
 | |
| 		rmtp = NULL;
 | |
| 	current->restart_block.fn = do_no_restart_syscall;
 | |
| 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
 | |
| 	current->restart_block.nanosleep.compat_rmtp = rmtp;
 | |
| 
 | |
| 	return kc->nsleep(which_clock, flags, &t);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static const struct k_clock clock_realtime = {
 | |
| 	.clock_getres		= posix_get_hrtimer_res,
 | |
| 	.clock_get_timespec	= posix_get_realtime_timespec,
 | |
| 	.clock_get_ktime	= posix_get_realtime_ktime,
 | |
| 	.clock_set		= posix_clock_realtime_set,
 | |
| 	.clock_adj		= posix_clock_realtime_adj,
 | |
| 	.nsleep			= common_nsleep,
 | |
| 	.timer_create		= common_timer_create,
 | |
| 	.timer_set		= common_timer_set,
 | |
| 	.timer_get		= common_timer_get,
 | |
| 	.timer_del		= common_timer_del,
 | |
| 	.timer_rearm		= common_hrtimer_rearm,
 | |
| 	.timer_forward		= common_hrtimer_forward,
 | |
| 	.timer_remaining	= common_hrtimer_remaining,
 | |
| 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | |
| 	.timer_wait_running	= common_timer_wait_running,
 | |
| 	.timer_arm		= common_hrtimer_arm,
 | |
| };
 | |
| 
 | |
| static const struct k_clock clock_monotonic = {
 | |
| 	.clock_getres		= posix_get_hrtimer_res,
 | |
| 	.clock_get_timespec	= posix_get_monotonic_timespec,
 | |
| 	.clock_get_ktime	= posix_get_monotonic_ktime,
 | |
| 	.nsleep			= common_nsleep_timens,
 | |
| 	.timer_create		= common_timer_create,
 | |
| 	.timer_set		= common_timer_set,
 | |
| 	.timer_get		= common_timer_get,
 | |
| 	.timer_del		= common_timer_del,
 | |
| 	.timer_rearm		= common_hrtimer_rearm,
 | |
| 	.timer_forward		= common_hrtimer_forward,
 | |
| 	.timer_remaining	= common_hrtimer_remaining,
 | |
| 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | |
| 	.timer_wait_running	= common_timer_wait_running,
 | |
| 	.timer_arm		= common_hrtimer_arm,
 | |
| };
 | |
| 
 | |
| static const struct k_clock clock_monotonic_raw = {
 | |
| 	.clock_getres		= posix_get_hrtimer_res,
 | |
| 	.clock_get_timespec	= posix_get_monotonic_raw,
 | |
| };
 | |
| 
 | |
| static const struct k_clock clock_realtime_coarse = {
 | |
| 	.clock_getres		= posix_get_coarse_res,
 | |
| 	.clock_get_timespec	= posix_get_realtime_coarse,
 | |
| };
 | |
| 
 | |
| static const struct k_clock clock_monotonic_coarse = {
 | |
| 	.clock_getres		= posix_get_coarse_res,
 | |
| 	.clock_get_timespec	= posix_get_monotonic_coarse,
 | |
| };
 | |
| 
 | |
| static const struct k_clock clock_tai = {
 | |
| 	.clock_getres		= posix_get_hrtimer_res,
 | |
| 	.clock_get_ktime	= posix_get_tai_ktime,
 | |
| 	.clock_get_timespec	= posix_get_tai_timespec,
 | |
| 	.nsleep			= common_nsleep,
 | |
| 	.timer_create		= common_timer_create,
 | |
| 	.timer_set		= common_timer_set,
 | |
| 	.timer_get		= common_timer_get,
 | |
| 	.timer_del		= common_timer_del,
 | |
| 	.timer_rearm		= common_hrtimer_rearm,
 | |
| 	.timer_forward		= common_hrtimer_forward,
 | |
| 	.timer_remaining	= common_hrtimer_remaining,
 | |
| 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | |
| 	.timer_wait_running	= common_timer_wait_running,
 | |
| 	.timer_arm		= common_hrtimer_arm,
 | |
| };
 | |
| 
 | |
| static const struct k_clock clock_boottime = {
 | |
| 	.clock_getres		= posix_get_hrtimer_res,
 | |
| 	.clock_get_ktime	= posix_get_boottime_ktime,
 | |
| 	.clock_get_timespec	= posix_get_boottime_timespec,
 | |
| 	.nsleep			= common_nsleep_timens,
 | |
| 	.timer_create		= common_timer_create,
 | |
| 	.timer_set		= common_timer_set,
 | |
| 	.timer_get		= common_timer_get,
 | |
| 	.timer_del		= common_timer_del,
 | |
| 	.timer_rearm		= common_hrtimer_rearm,
 | |
| 	.timer_forward		= common_hrtimer_forward,
 | |
| 	.timer_remaining	= common_hrtimer_remaining,
 | |
| 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | |
| 	.timer_wait_running	= common_timer_wait_running,
 | |
| 	.timer_arm		= common_hrtimer_arm,
 | |
| };
 | |
| 
 | |
| static const struct k_clock * const posix_clocks[] = {
 | |
| 	[CLOCK_REALTIME]		= &clock_realtime,
 | |
| 	[CLOCK_MONOTONIC]		= &clock_monotonic,
 | |
| 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
 | |
| 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
 | |
| 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
 | |
| 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
 | |
| 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
 | |
| 	[CLOCK_BOOTTIME]		= &clock_boottime,
 | |
| 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
 | |
| 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
 | |
| 	[CLOCK_TAI]			= &clock_tai,
 | |
| };
 | |
| 
 | |
| static const struct k_clock *clockid_to_kclock(const clockid_t id)
 | |
| {
 | |
| 	clockid_t idx = id;
 | |
| 
 | |
| 	if (id < 0) {
 | |
| 		return (id & CLOCKFD_MASK) == CLOCKFD ?
 | |
| 			&clock_posix_dynamic : &clock_posix_cpu;
 | |
| 	}
 | |
| 
 | |
| 	if (id >= ARRAY_SIZE(posix_clocks))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
 | |
| }
 | |
| 
 | |
| static int __init posixtimer_init(void)
 | |
| {
 | |
| 	unsigned long i, size;
 | |
| 	unsigned int shift;
 | |
| 
 | |
| 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
 | |
| 					       sizeof(struct k_itimer),
 | |
| 					       __alignof__(struct k_itimer),
 | |
| 					       SLAB_ACCOUNT, NULL);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_BASE_SMALL))
 | |
| 		size = 512;
 | |
| 	else
 | |
| 		size = roundup_pow_of_two(512 * num_possible_cpus());
 | |
| 
 | |
| 	timer_buckets = alloc_large_system_hash("posixtimers", sizeof(*timer_buckets),
 | |
| 						size, 0, 0, &shift, NULL, size, size);
 | |
| 	size = 1UL << shift;
 | |
| 	timer_hashmask = size - 1;
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		spin_lock_init(&timer_buckets[i].lock);
 | |
| 		INIT_HLIST_HEAD(&timer_buckets[i].head);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(posixtimer_init);
 |