mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	![Yury Norov [NVIDIA]](/assets/img/avatar_default.png) 13f0a02bf4
			
		
	
	
		13f0a02bf4
		
	
	
	
	
		
			
			The function helps to implement cpumask_andnot() APIs. Signed-off-by: Yury Norov [NVIDIA] <yury.norov@gmail.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: James Morse <james.morse@arm.com> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Fenghua Yu <fenghuay@nvidia.com> Tested-by: James Morse <james.morse@arm.com> Tested-by: Tony Luck <tony.luck@intel.com> Tested-by: Fenghua Yu <fenghuay@nvidia.com> Link: https://lore.kernel.org/20250515165855.31452-3-james.morse@arm.com
		
			
				
	
	
		
			293 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			293 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /* bit search implementation
 | |
|  *
 | |
|  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
 | |
|  * Written by David Howells (dhowells@redhat.com)
 | |
|  *
 | |
|  * Copyright (C) 2008 IBM Corporation
 | |
|  * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
 | |
|  * (Inspired by David Howell's find_next_bit implementation)
 | |
|  *
 | |
|  * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
 | |
|  * size and improve performance, 2015.
 | |
|  */
 | |
| 
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/math.h>
 | |
| #include <linux/minmax.h>
 | |
| #include <linux/swab.h>
 | |
| 
 | |
| /*
 | |
|  * Common helper for find_bit() function family
 | |
|  * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
 | |
|  * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
 | |
|  * @size: The bitmap size in bits
 | |
|  */
 | |
| #define FIND_FIRST_BIT(FETCH, MUNGE, size)					\
 | |
| ({										\
 | |
| 	unsigned long idx, val, sz = (size);					\
 | |
| 										\
 | |
| 	for (idx = 0; idx * BITS_PER_LONG < sz; idx++) {			\
 | |
| 		val = (FETCH);							\
 | |
| 		if (val) {							\
 | |
| 			sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(val)), sz);	\
 | |
| 			break;							\
 | |
| 		}								\
 | |
| 	}									\
 | |
| 										\
 | |
| 	sz;									\
 | |
| })
 | |
| 
 | |
| /*
 | |
|  * Common helper for find_next_bit() function family
 | |
|  * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
 | |
|  * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
 | |
|  * @size: The bitmap size in bits
 | |
|  * @start: The bitnumber to start searching at
 | |
|  */
 | |
| #define FIND_NEXT_BIT(FETCH, MUNGE, size, start)				\
 | |
| ({										\
 | |
| 	unsigned long mask, idx, tmp, sz = (size), __start = (start);		\
 | |
| 										\
 | |
| 	if (unlikely(__start >= sz))						\
 | |
| 		goto out;							\
 | |
| 										\
 | |
| 	mask = MUNGE(BITMAP_FIRST_WORD_MASK(__start));				\
 | |
| 	idx = __start / BITS_PER_LONG;						\
 | |
| 										\
 | |
| 	for (tmp = (FETCH) & mask; !tmp; tmp = (FETCH)) {			\
 | |
| 		if ((idx + 1) * BITS_PER_LONG >= sz)				\
 | |
| 			goto out;						\
 | |
| 		idx++;								\
 | |
| 	}									\
 | |
| 										\
 | |
| 	sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(tmp)), sz);			\
 | |
| out:										\
 | |
| 	sz;									\
 | |
| })
 | |
| 
 | |
| #define FIND_NTH_BIT(FETCH, size, num)						\
 | |
| ({										\
 | |
| 	unsigned long sz = (size), nr = (num), idx, w, tmp;			\
 | |
| 										\
 | |
| 	for (idx = 0; (idx + 1) * BITS_PER_LONG <= sz; idx++) {			\
 | |
| 		if (idx * BITS_PER_LONG + nr >= sz)				\
 | |
| 			goto out;						\
 | |
| 										\
 | |
| 		tmp = (FETCH);							\
 | |
| 		w = hweight_long(tmp);						\
 | |
| 		if (w > nr)							\
 | |
| 			goto found;						\
 | |
| 										\
 | |
| 		nr -= w;							\
 | |
| 	}									\
 | |
| 										\
 | |
| 	if (sz % BITS_PER_LONG)							\
 | |
| 		tmp = (FETCH) & BITMAP_LAST_WORD_MASK(sz);			\
 | |
| found:										\
 | |
| 	sz = idx * BITS_PER_LONG + fns(tmp, nr);				\
 | |
| out:										\
 | |
| 	sz;									\
 | |
| })
 | |
| 
 | |
| #ifndef find_first_bit
 | |
| /*
 | |
|  * Find the first set bit in a memory region.
 | |
|  */
 | |
| unsigned long _find_first_bit(const unsigned long *addr, unsigned long size)
 | |
| {
 | |
| 	return FIND_FIRST_BIT(addr[idx], /* nop */, size);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_first_bit);
 | |
| #endif
 | |
| 
 | |
| #ifndef find_first_and_bit
 | |
| /*
 | |
|  * Find the first set bit in two memory regions.
 | |
|  */
 | |
| unsigned long _find_first_and_bit(const unsigned long *addr1,
 | |
| 				  const unsigned long *addr2,
 | |
| 				  unsigned long size)
 | |
| {
 | |
| 	return FIND_FIRST_BIT(addr1[idx] & addr2[idx], /* nop */, size);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_first_and_bit);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Find the first bit set in 1st memory region and unset in 2nd.
 | |
|  */
 | |
| unsigned long _find_first_andnot_bit(const unsigned long *addr1,
 | |
| 				  const unsigned long *addr2,
 | |
| 				  unsigned long size)
 | |
| {
 | |
| 	return FIND_FIRST_BIT(addr1[idx] & ~addr2[idx], /* nop */, size);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_first_andnot_bit);
 | |
| 
 | |
| /*
 | |
|  * Find the first set bit in three memory regions.
 | |
|  */
 | |
| unsigned long _find_first_and_and_bit(const unsigned long *addr1,
 | |
| 				      const unsigned long *addr2,
 | |
| 				      const unsigned long *addr3,
 | |
| 				      unsigned long size)
 | |
| {
 | |
| 	return FIND_FIRST_BIT(addr1[idx] & addr2[idx] & addr3[idx], /* nop */, size);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_first_and_and_bit);
 | |
| 
 | |
| #ifndef find_first_zero_bit
 | |
| /*
 | |
|  * Find the first cleared bit in a memory region.
 | |
|  */
 | |
| unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size)
 | |
| {
 | |
| 	return FIND_FIRST_BIT(~addr[idx], /* nop */, size);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_first_zero_bit);
 | |
| #endif
 | |
| 
 | |
| #ifndef find_next_bit
 | |
| unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start)
 | |
| {
 | |
| 	return FIND_NEXT_BIT(addr[idx], /* nop */, nbits, start);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_next_bit);
 | |
| #endif
 | |
| 
 | |
| unsigned long __find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n)
 | |
| {
 | |
| 	return FIND_NTH_BIT(addr[idx], size, n);
 | |
| }
 | |
| EXPORT_SYMBOL(__find_nth_bit);
 | |
| 
 | |
| unsigned long __find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2,
 | |
| 				 unsigned long size, unsigned long n)
 | |
| {
 | |
| 	return FIND_NTH_BIT(addr1[idx] & addr2[idx], size, n);
 | |
| }
 | |
| EXPORT_SYMBOL(__find_nth_and_bit);
 | |
| 
 | |
| unsigned long __find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
 | |
| 				 unsigned long size, unsigned long n)
 | |
| {
 | |
| 	return FIND_NTH_BIT(addr1[idx] & ~addr2[idx], size, n);
 | |
| }
 | |
| EXPORT_SYMBOL(__find_nth_andnot_bit);
 | |
| 
 | |
| unsigned long __find_nth_and_andnot_bit(const unsigned long *addr1,
 | |
| 					const unsigned long *addr2,
 | |
| 					const unsigned long *addr3,
 | |
| 					unsigned long size, unsigned long n)
 | |
| {
 | |
| 	return FIND_NTH_BIT(addr1[idx] & addr2[idx] & ~addr3[idx], size, n);
 | |
| }
 | |
| EXPORT_SYMBOL(__find_nth_and_andnot_bit);
 | |
| 
 | |
| #ifndef find_next_and_bit
 | |
| unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2,
 | |
| 					unsigned long nbits, unsigned long start)
 | |
| {
 | |
| 	return FIND_NEXT_BIT(addr1[idx] & addr2[idx], /* nop */, nbits, start);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_next_and_bit);
 | |
| #endif
 | |
| 
 | |
| #ifndef find_next_andnot_bit
 | |
| unsigned long _find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
 | |
| 					unsigned long nbits, unsigned long start)
 | |
| {
 | |
| 	return FIND_NEXT_BIT(addr1[idx] & ~addr2[idx], /* nop */, nbits, start);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_next_andnot_bit);
 | |
| #endif
 | |
| 
 | |
| #ifndef find_next_or_bit
 | |
| unsigned long _find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2,
 | |
| 					unsigned long nbits, unsigned long start)
 | |
| {
 | |
| 	return FIND_NEXT_BIT(addr1[idx] | addr2[idx], /* nop */, nbits, start);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_next_or_bit);
 | |
| #endif
 | |
| 
 | |
| #ifndef find_next_zero_bit
 | |
| unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits,
 | |
| 					 unsigned long start)
 | |
| {
 | |
| 	return FIND_NEXT_BIT(~addr[idx], /* nop */, nbits, start);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_next_zero_bit);
 | |
| #endif
 | |
| 
 | |
| #ifndef find_last_bit
 | |
| unsigned long _find_last_bit(const unsigned long *addr, unsigned long size)
 | |
| {
 | |
| 	if (size) {
 | |
| 		unsigned long val = BITMAP_LAST_WORD_MASK(size);
 | |
| 		unsigned long idx = (size-1) / BITS_PER_LONG;
 | |
| 
 | |
| 		do {
 | |
| 			val &= addr[idx];
 | |
| 			if (val)
 | |
| 				return idx * BITS_PER_LONG + __fls(val);
 | |
| 
 | |
| 			val = ~0ul;
 | |
| 		} while (idx--);
 | |
| 	}
 | |
| 	return size;
 | |
| }
 | |
| EXPORT_SYMBOL(_find_last_bit);
 | |
| #endif
 | |
| 
 | |
| unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr,
 | |
| 			       unsigned long size, unsigned long offset)
 | |
| {
 | |
| 	offset = find_next_bit(addr, size, offset);
 | |
| 	if (offset == size)
 | |
| 		return size;
 | |
| 
 | |
| 	offset = round_down(offset, 8);
 | |
| 	*clump = bitmap_get_value8(addr, offset);
 | |
| 
 | |
| 	return offset;
 | |
| }
 | |
| EXPORT_SYMBOL(find_next_clump8);
 | |
| 
 | |
| #ifdef __BIG_ENDIAN
 | |
| 
 | |
| #ifndef find_first_zero_bit_le
 | |
| /*
 | |
|  * Find the first cleared bit in an LE memory region.
 | |
|  */
 | |
| unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size)
 | |
| {
 | |
| 	return FIND_FIRST_BIT(~addr[idx], swab, size);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_first_zero_bit_le);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifndef find_next_zero_bit_le
 | |
| unsigned long _find_next_zero_bit_le(const unsigned long *addr,
 | |
| 					unsigned long size, unsigned long offset)
 | |
| {
 | |
| 	return FIND_NEXT_BIT(~addr[idx], swab, size, offset);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_next_zero_bit_le);
 | |
| #endif
 | |
| 
 | |
| #ifndef find_next_bit_le
 | |
| unsigned long _find_next_bit_le(const unsigned long *addr,
 | |
| 				unsigned long size, unsigned long offset)
 | |
| {
 | |
| 	return FIND_NEXT_BIT(addr[idx], swab, size, offset);
 | |
| }
 | |
| EXPORT_SYMBOL(_find_next_bit_le);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif /* __BIG_ENDIAN */
 |