mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 52084f258e
			
		
	
	
		52084f258e
		
	
	
	
	
		
			
			The current comment in gup_fast() talks about "IPIs that come from THPs
splitting", which is outdated and refers to the old THP splitting
implementation that was removed in commit ad0bed24e9 ("thp: drop all
split_huge_page()-related code"), which landed in v4.5.  Before then, THP
splitting involved a pmdp_splitting_flush(), which sent an IPI to
serialize against gup_fast().
Nowadays, we use tlb_remove_table_sync_one() to send IPIs that serialize
against gup_fast(); this is used, for example, in THP *collapsing* to stop
gup_fast() walks of a page table before depositing it.
Link: https://lkml.kernel.org/r/20250528-gup-irq-comment-fix-v1-1-b9d83c345333@google.com
Signed-off-by: Jann Horn <jannh@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			3705 lines
		
	
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3705 lines
		
	
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/memfd.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/secretmem.h>
 | |
| 
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/rwsem.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| 
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "swap.h"
 | |
| 
 | |
| struct follow_page_context {
 | |
| 	struct dev_pagemap *pgmap;
 | |
| 	unsigned int page_mask;
 | |
| };
 | |
| 
 | |
| static inline void sanity_check_pinned_pages(struct page **pages,
 | |
| 					     unsigned long npages)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
 | |
| 	 * can no longer turn them possibly shared and PageAnonExclusive() will
 | |
| 	 * stick around until the page is freed.
 | |
| 	 *
 | |
| 	 * We'd like to verify that our pinned anonymous pages are still mapped
 | |
| 	 * exclusively. The issue with anon THP is that we don't know how
 | |
| 	 * they are/were mapped when pinning them. However, for anon
 | |
| 	 * THP we can assume that either the given page (PTE-mapped THP) or
 | |
| 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
 | |
| 	 * neither is the case, there is certainly something wrong.
 | |
| 	 */
 | |
| 	for (; npages; npages--, pages++) {
 | |
| 		struct page *page = *pages;
 | |
| 		struct folio *folio;
 | |
| 
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 
 | |
| 		folio = page_folio(page);
 | |
| 
 | |
| 		if (is_zero_page(page) ||
 | |
| 		    !folio_test_anon(folio))
 | |
| 			continue;
 | |
| 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
 | |
| 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
 | |
| 		else
 | |
| 			/* Either a PTE-mapped or a PMD-mapped THP. */
 | |
| 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
 | |
| 				       !PageAnonExclusive(page), page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the folio with ref appropriately incremented,
 | |
|  * or NULL if that failed.
 | |
|  */
 | |
| static inline struct folio *try_get_folio(struct page *page, int refs)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 
 | |
| retry:
 | |
| 	folio = page_folio(page);
 | |
| 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
 | |
| 		return NULL;
 | |
| 	if (unlikely(!folio_ref_try_add(folio, refs)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we have a stable reference to the folio; but it
 | |
| 	 * could be that between calling page_folio() and the refcount
 | |
| 	 * increment, the folio was split, in which case we'd end up
 | |
| 	 * holding a reference on a folio that has nothing to do with the page
 | |
| 	 * we were given anymore.
 | |
| 	 * So now that the folio is stable, recheck that the page still
 | |
| 	 * belongs to this folio.
 | |
| 	 */
 | |
| 	if (unlikely(page_folio(page) != folio)) {
 | |
| 		folio_put_refs(folio, refs);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
 | |
| {
 | |
| 	if (flags & FOLL_PIN) {
 | |
| 		if (is_zero_folio(folio))
 | |
| 			return;
 | |
| 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
 | |
| 		if (folio_has_pincount(folio))
 | |
| 			atomic_sub(refs, &folio->_pincount);
 | |
| 		else
 | |
| 			refs *= GUP_PIN_COUNTING_BIAS;
 | |
| 	}
 | |
| 
 | |
| 	folio_put_refs(folio, refs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
 | |
|  * @folio:    pointer to folio to be grabbed
 | |
|  * @refs:     the value to (effectively) add to the folio's refcount
 | |
|  * @flags:    gup flags: these are the FOLL_* flag values
 | |
|  *
 | |
|  * This might not do anything at all, depending on the flags argument.
 | |
|  *
 | |
|  * "grab" names in this file mean, "look at flags to decide whether to use
 | |
|  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
 | |
|  *
 | |
|  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 | |
|  * time.
 | |
|  *
 | |
|  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
 | |
|  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
 | |
|  *
 | |
|  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
 | |
|  *			be grabbed.
 | |
|  *
 | |
|  * It is called when we have a stable reference for the folio, typically in
 | |
|  * GUP slow path.
 | |
|  */
 | |
| int __must_check try_grab_folio(struct folio *folio, int refs,
 | |
| 				unsigned int flags)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
 | |
| 		return -EREMOTEIO;
 | |
| 
 | |
| 	if (flags & FOLL_GET)
 | |
| 		folio_ref_add(folio, refs);
 | |
| 	else if (flags & FOLL_PIN) {
 | |
| 		/*
 | |
| 		 * Don't take a pin on the zero page - it's not going anywhere
 | |
| 		 * and it is used in a *lot* of places.
 | |
| 		 */
 | |
| 		if (is_zero_folio(folio))
 | |
| 			return 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Increment the normal page refcount field at least once,
 | |
| 		 * so that the page really is pinned.
 | |
| 		 */
 | |
| 		if (folio_has_pincount(folio)) {
 | |
| 			folio_ref_add(folio, refs);
 | |
| 			atomic_add(refs, &folio->_pincount);
 | |
| 		} else {
 | |
| 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
 | |
| 		}
 | |
| 
 | |
| 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unpin_user_page() - release a dma-pinned page
 | |
|  * @page:            pointer to page to be released
 | |
|  *
 | |
|  * Pages that were pinned via pin_user_pages*() must be released via either
 | |
|  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 | |
|  * that such pages can be separately tracked and uniquely handled. In
 | |
|  * particular, interactions with RDMA and filesystems need special handling.
 | |
|  */
 | |
| void unpin_user_page(struct page *page)
 | |
| {
 | |
| 	sanity_check_pinned_pages(&page, 1);
 | |
| 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
 | |
| }
 | |
| EXPORT_SYMBOL(unpin_user_page);
 | |
| 
 | |
| /**
 | |
|  * unpin_folio() - release a dma-pinned folio
 | |
|  * @folio:         pointer to folio to be released
 | |
|  *
 | |
|  * Folios that were pinned via memfd_pin_folios() or other similar routines
 | |
|  * must be released either using unpin_folio() or unpin_folios().
 | |
|  */
 | |
| void unpin_folio(struct folio *folio)
 | |
| {
 | |
| 	gup_put_folio(folio, 1, FOLL_PIN);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(unpin_folio);
 | |
| 
 | |
| /**
 | |
|  * folio_add_pin - Try to get an additional pin on a pinned folio
 | |
|  * @folio: The folio to be pinned
 | |
|  *
 | |
|  * Get an additional pin on a folio we already have a pin on.  Makes no change
 | |
|  * if the folio is a zero_page.
 | |
|  */
 | |
| void folio_add_pin(struct folio *folio)
 | |
| {
 | |
| 	if (is_zero_folio(folio))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
 | |
| 	 * page refcount field at least once, so that the page really is
 | |
| 	 * pinned.
 | |
| 	 */
 | |
| 	if (folio_has_pincount(folio)) {
 | |
| 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
 | |
| 		folio_ref_inc(folio);
 | |
| 		atomic_inc(&folio->_pincount);
 | |
| 	} else {
 | |
| 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
 | |
| 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline struct folio *gup_folio_range_next(struct page *start,
 | |
| 		unsigned long npages, unsigned long i, unsigned int *ntails)
 | |
| {
 | |
| 	struct page *next = nth_page(start, i);
 | |
| 	struct folio *folio = page_folio(next);
 | |
| 	unsigned int nr = 1;
 | |
| 
 | |
| 	if (folio_test_large(folio))
 | |
| 		nr = min_t(unsigned int, npages - i,
 | |
| 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
 | |
| 
 | |
| 	*ntails = nr;
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| static inline struct folio *gup_folio_next(struct page **list,
 | |
| 		unsigned long npages, unsigned long i, unsigned int *ntails)
 | |
| {
 | |
| 	struct folio *folio = page_folio(list[i]);
 | |
| 	unsigned int nr;
 | |
| 
 | |
| 	for (nr = i + 1; nr < npages; nr++) {
 | |
| 		if (page_folio(list[nr]) != folio)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	*ntails = nr - i;
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 | |
|  * @pages:  array of pages to be maybe marked dirty, and definitely released.
 | |
|  * @npages: number of pages in the @pages array.
 | |
|  * @make_dirty: whether to mark the pages dirty
 | |
|  *
 | |
|  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 | |
|  * variants called on that page.
 | |
|  *
 | |
|  * For each page in the @pages array, make that page (or its head page, if a
 | |
|  * compound page) dirty, if @make_dirty is true, and if the page was previously
 | |
|  * listed as clean. In any case, releases all pages using unpin_user_page(),
 | |
|  * possibly via unpin_user_pages(), for the non-dirty case.
 | |
|  *
 | |
|  * Please see the unpin_user_page() documentation for details.
 | |
|  *
 | |
|  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 | |
|  * required, then the caller should a) verify that this is really correct,
 | |
|  * because _lock() is usually required, and b) hand code it:
 | |
|  * set_page_dirty_lock(), unpin_user_page().
 | |
|  *
 | |
|  */
 | |
| void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 | |
| 				 bool make_dirty)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct folio *folio;
 | |
| 	unsigned int nr;
 | |
| 
 | |
| 	if (!make_dirty) {
 | |
| 		unpin_user_pages(pages, npages);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	sanity_check_pinned_pages(pages, npages);
 | |
| 	for (i = 0; i < npages; i += nr) {
 | |
| 		folio = gup_folio_next(pages, npages, i, &nr);
 | |
| 		/*
 | |
| 		 * Checking PageDirty at this point may race with
 | |
| 		 * clear_page_dirty_for_io(), but that's OK. Two key
 | |
| 		 * cases:
 | |
| 		 *
 | |
| 		 * 1) This code sees the page as already dirty, so it
 | |
| 		 * skips the call to set_page_dirty(). That could happen
 | |
| 		 * because clear_page_dirty_for_io() called
 | |
| 		 * folio_mkclean(), followed by set_page_dirty().
 | |
| 		 * However, now the page is going to get written back,
 | |
| 		 * which meets the original intention of setting it
 | |
| 		 * dirty, so all is well: clear_page_dirty_for_io() goes
 | |
| 		 * on to call TestClearPageDirty(), and write the page
 | |
| 		 * back.
 | |
| 		 *
 | |
| 		 * 2) This code sees the page as clean, so it calls
 | |
| 		 * set_page_dirty(). The page stays dirty, despite being
 | |
| 		 * written back, so it gets written back again in the
 | |
| 		 * next writeback cycle. This is harmless.
 | |
| 		 */
 | |
| 		if (!folio_test_dirty(folio)) {
 | |
| 			folio_lock(folio);
 | |
| 			folio_mark_dirty(folio);
 | |
| 			folio_unlock(folio);
 | |
| 		}
 | |
| 		gup_put_folio(folio, nr, FOLL_PIN);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
 | |
| 
 | |
| /**
 | |
|  * unpin_user_page_range_dirty_lock() - release and optionally dirty
 | |
|  * gup-pinned page range
 | |
|  *
 | |
|  * @page:  the starting page of a range maybe marked dirty, and definitely released.
 | |
|  * @npages: number of consecutive pages to release.
 | |
|  * @make_dirty: whether to mark the pages dirty
 | |
|  *
 | |
|  * "gup-pinned page range" refers to a range of pages that has had one of the
 | |
|  * pin_user_pages() variants called on that page.
 | |
|  *
 | |
|  * For the page ranges defined by [page .. page+npages], make that range (or
 | |
|  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
 | |
|  * page range was previously listed as clean.
 | |
|  *
 | |
|  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 | |
|  * required, then the caller should a) verify that this is really correct,
 | |
|  * because _lock() is usually required, and b) hand code it:
 | |
|  * set_page_dirty_lock(), unpin_user_page().
 | |
|  *
 | |
|  */
 | |
| void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
 | |
| 				      bool make_dirty)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct folio *folio;
 | |
| 	unsigned int nr;
 | |
| 
 | |
| 	for (i = 0; i < npages; i += nr) {
 | |
| 		folio = gup_folio_range_next(page, npages, i, &nr);
 | |
| 		if (make_dirty && !folio_test_dirty(folio)) {
 | |
| 			folio_lock(folio);
 | |
| 			folio_mark_dirty(folio);
 | |
| 			folio_unlock(folio);
 | |
| 		}
 | |
| 		gup_put_folio(folio, nr, FOLL_PIN);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
 | |
| 
 | |
| static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct folio *folio;
 | |
| 	unsigned int nr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't perform any sanity checks because we might have raced with
 | |
| 	 * fork() and some anonymous pages might now actually be shared --
 | |
| 	 * which is why we're unpinning after all.
 | |
| 	 */
 | |
| 	for (i = 0; i < npages; i += nr) {
 | |
| 		folio = gup_folio_next(pages, npages, i, &nr);
 | |
| 		gup_put_folio(folio, nr, FOLL_PIN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unpin_user_pages() - release an array of gup-pinned pages.
 | |
|  * @pages:  array of pages to be marked dirty and released.
 | |
|  * @npages: number of pages in the @pages array.
 | |
|  *
 | |
|  * For each page in the @pages array, release the page using unpin_user_page().
 | |
|  *
 | |
|  * Please see the unpin_user_page() documentation for details.
 | |
|  */
 | |
| void unpin_user_pages(struct page **pages, unsigned long npages)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct folio *folio;
 | |
| 	unsigned int nr;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
 | |
| 	 * leaving them pinned), but probably not. More likely, gup/pup returned
 | |
| 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
 | |
| 	 */
 | |
| 	if (WARN_ON(IS_ERR_VALUE(npages)))
 | |
| 		return;
 | |
| 
 | |
| 	sanity_check_pinned_pages(pages, npages);
 | |
| 	for (i = 0; i < npages; i += nr) {
 | |
| 		if (!pages[i]) {
 | |
| 			nr = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		folio = gup_folio_next(pages, npages, i, &nr);
 | |
| 		gup_put_folio(folio, nr, FOLL_PIN);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(unpin_user_pages);
 | |
| 
 | |
| /**
 | |
|  * unpin_user_folio() - release pages of a folio
 | |
|  * @folio:  pointer to folio to be released
 | |
|  * @npages: number of pages of same folio
 | |
|  *
 | |
|  * Release npages of the folio
 | |
|  */
 | |
| void unpin_user_folio(struct folio *folio, unsigned long npages)
 | |
| {
 | |
| 	gup_put_folio(folio, npages, FOLL_PIN);
 | |
| }
 | |
| EXPORT_SYMBOL(unpin_user_folio);
 | |
| 
 | |
| /**
 | |
|  * unpin_folios() - release an array of gup-pinned folios.
 | |
|  * @folios:  array of folios to be marked dirty and released.
 | |
|  * @nfolios: number of folios in the @folios array.
 | |
|  *
 | |
|  * For each folio in the @folios array, release the folio using gup_put_folio.
 | |
|  *
 | |
|  * Please see the unpin_folio() documentation for details.
 | |
|  */
 | |
| void unpin_folios(struct folio **folios, unsigned long nfolios)
 | |
| {
 | |
| 	unsigned long i = 0, j;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this WARN_ON() fires, then the system *might* be leaking folios
 | |
| 	 * (by leaving them pinned), but probably not. More likely, gup/pup
 | |
| 	 * returned a hard -ERRNO error to the caller, who erroneously passed
 | |
| 	 * it here.
 | |
| 	 */
 | |
| 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
 | |
| 		return;
 | |
| 
 | |
| 	while (i < nfolios) {
 | |
| 		for (j = i + 1; j < nfolios; j++)
 | |
| 			if (folios[i] != folios[j])
 | |
| 				break;
 | |
| 
 | |
| 		if (folios[i])
 | |
| 			gup_put_folio(folios[i], j - i, FOLL_PIN);
 | |
| 		i = j;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(unpin_folios);
 | |
| 
 | |
| /*
 | |
|  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
 | |
|  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
 | |
|  * cache bouncing on large SMP machines for concurrent pinned gups.
 | |
|  */
 | |
| static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
 | |
| {
 | |
| 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
 | |
| 		set_bit(MMF_HAS_PINNED, mm_flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| #ifdef CONFIG_HAVE_GUP_FAST
 | |
| static int record_subpages(struct page *page, unsigned long sz,
 | |
| 			   unsigned long addr, unsigned long end,
 | |
| 			   struct page **pages)
 | |
| {
 | |
| 	struct page *start_page;
 | |
| 	int nr;
 | |
| 
 | |
| 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
 | |
| 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
 | |
| 		pages[nr] = nth_page(start_page, nr);
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
 | |
|  * @page:  pointer to page to be grabbed
 | |
|  * @refs:  the value to (effectively) add to the folio's refcount
 | |
|  * @flags: gup flags: these are the FOLL_* flag values.
 | |
|  *
 | |
|  * "grab" names in this file mean, "look at flags to decide whether to use
 | |
|  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
 | |
|  *
 | |
|  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 | |
|  * same time. (That's true throughout the get_user_pages*() and
 | |
|  * pin_user_pages*() APIs.) Cases:
 | |
|  *
 | |
|  *    FOLL_GET: folio's refcount will be incremented by @refs.
 | |
|  *
 | |
|  *    FOLL_PIN on large folios: folio's refcount will be incremented by
 | |
|  *    @refs, and its pincount will be incremented by @refs.
 | |
|  *
 | |
|  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
 | |
|  *    @refs * GUP_PIN_COUNTING_BIAS.
 | |
|  *
 | |
|  * Return: The folio containing @page (with refcount appropriately
 | |
|  * incremented) for success, or NULL upon failure. If neither FOLL_GET
 | |
|  * nor FOLL_PIN was set, that's considered failure, and furthermore,
 | |
|  * a likely bug in the caller, so a warning is also emitted.
 | |
|  *
 | |
|  * It uses add ref unless zero to elevate the folio refcount and must be called
 | |
|  * in fast path only.
 | |
|  */
 | |
| static struct folio *try_grab_folio_fast(struct page *page, int refs,
 | |
| 					 unsigned int flags)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	/* Raise warn if it is not called in fast GUP */
 | |
| 	VM_WARN_ON_ONCE(!irqs_disabled());
 | |
| 
 | |
| 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (flags & FOLL_GET)
 | |
| 		return try_get_folio(page, refs);
 | |
| 
 | |
| 	/* FOLL_PIN is set */
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't take a pin on the zero page - it's not going anywhere
 | |
| 	 * and it is used in a *lot* of places.
 | |
| 	 */
 | |
| 	if (is_zero_page(page))
 | |
| 		return page_folio(page);
 | |
| 
 | |
| 	folio = try_get_folio(page, refs);
 | |
| 	if (!folio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
 | |
| 	 * right zone, so fail and let the caller fall back to the slow
 | |
| 	 * path.
 | |
| 	 */
 | |
| 	if (unlikely((flags & FOLL_LONGTERM) &&
 | |
| 		     !folio_is_longterm_pinnable(folio))) {
 | |
| 		folio_put_refs(folio, refs);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When pinning a large folio, use an exact count to track it.
 | |
| 	 *
 | |
| 	 * However, be sure to *also* increment the normal folio
 | |
| 	 * refcount field at least once, so that the folio really
 | |
| 	 * is pinned.  That's why the refcount from the earlier
 | |
| 	 * try_get_folio() is left intact.
 | |
| 	 */
 | |
| 	if (folio_has_pincount(folio))
 | |
| 		atomic_add(refs, &folio->_pincount);
 | |
| 	else
 | |
| 		folio_ref_add(folio,
 | |
| 				refs * (GUP_PIN_COUNTING_BIAS - 1));
 | |
| 	/*
 | |
| 	 * Adjust the pincount before re-checking the PTE for changes.
 | |
| 	 * This is essentially a smp_mb() and is paired with a memory
 | |
| 	 * barrier in folio_try_share_anon_rmap_*().
 | |
| 	 */
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
 | |
| 
 | |
| 	return folio;
 | |
| }
 | |
| #endif	/* CONFIG_HAVE_GUP_FAST */
 | |
| 
 | |
| /* Common code for can_follow_write_* */
 | |
| static inline bool can_follow_write_common(struct page *page,
 | |
| 		struct vm_area_struct *vma, unsigned int flags)
 | |
| {
 | |
| 	/* Maybe FOLL_FORCE is set to override it? */
 | |
| 	if (!(flags & FOLL_FORCE))
 | |
| 		return false;
 | |
| 
 | |
| 	/* But FOLL_FORCE has no effect on shared mappings */
 | |
| 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
 | |
| 		return false;
 | |
| 
 | |
| 	/* ... or read-only private ones */
 | |
| 	if (!(vma->vm_flags & VM_MAYWRITE))
 | |
| 		return false;
 | |
| 
 | |
| 	/* ... or already writable ones that just need to take a write fault */
 | |
| 	if (vma->vm_flags & VM_WRITE)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * See can_change_pte_writable(): we broke COW and could map the page
 | |
| 	 * writable if we have an exclusive anonymous page ...
 | |
| 	 */
 | |
| 	return page && PageAnon(page) && PageAnonExclusive(page);
 | |
| }
 | |
| 
 | |
| static struct page *no_page_table(struct vm_area_struct *vma,
 | |
| 				  unsigned int flags, unsigned long address)
 | |
| {
 | |
| 	if (!(flags & FOLL_DUMP))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * When core dumping, we don't want to allocate unnecessary pages or
 | |
| 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
 | |
| 	 * then get_dump_page() will return NULL to leave a hole in the dump.
 | |
| 	 * But we can only make this optimization where a hole would surely
 | |
| 	 * be zero-filled if handle_mm_fault() actually did handle it.
 | |
| 	 */
 | |
| 	if (is_vm_hugetlb_page(vma)) {
 | |
| 		struct hstate *h = hstate_vma(vma);
 | |
| 
 | |
| 		if (!hugetlbfs_pagecache_present(h, vma, address))
 | |
| 			return ERR_PTR(-EFAULT);
 | |
| 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
 | |
| /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
 | |
| static inline bool can_follow_write_pud(pud_t pud, struct page *page,
 | |
| 					struct vm_area_struct *vma,
 | |
| 					unsigned int flags)
 | |
| {
 | |
| 	/* If the pud is writable, we can write to the page. */
 | |
| 	if (pud_write(pud))
 | |
| 		return true;
 | |
| 
 | |
| 	return can_follow_write_common(page, vma, flags);
 | |
| }
 | |
| 
 | |
| static struct page *follow_huge_pud(struct vm_area_struct *vma,
 | |
| 				    unsigned long addr, pud_t *pudp,
 | |
| 				    int flags, struct follow_page_context *ctx)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page;
 | |
| 	pud_t pud = *pudp;
 | |
| 	unsigned long pfn = pud_pfn(pud);
 | |
| 	int ret;
 | |
| 
 | |
| 	assert_spin_locked(pud_lockptr(mm, pudp));
 | |
| 
 | |
| 	if (!pud_present(pud))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if ((flags & FOLL_WRITE) &&
 | |
| 	    !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
 | |
| 	    pud_devmap(pud)) {
 | |
| 		/*
 | |
| 		 * device mapped pages can only be returned if the caller
 | |
| 		 * will manage the page reference count.
 | |
| 		 *
 | |
| 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
 | |
| 		 * assert that here:
 | |
| 		 */
 | |
| 		if (!(flags & (FOLL_GET | FOLL_PIN)))
 | |
| 			return ERR_PTR(-EEXIST);
 | |
| 
 | |
| 		if (flags & FOLL_TOUCH)
 | |
| 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
 | |
| 
 | |
| 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
 | |
| 		if (!ctx->pgmap)
 | |
| 			return ERR_PTR(-EFAULT);
 | |
| 	}
 | |
| 
 | |
| 	page = pfn_to_page(pfn);
 | |
| 
 | |
| 	if (!pud_devmap(pud) && !pud_write(pud) &&
 | |
| 	    gup_must_unshare(vma, flags, page))
 | |
| 		return ERR_PTR(-EMLINK);
 | |
| 
 | |
| 	ret = try_grab_folio(page_folio(page), 1, flags);
 | |
| 	if (ret)
 | |
| 		page = ERR_PTR(ret);
 | |
| 	else
 | |
| 		ctx->page_mask = HPAGE_PUD_NR - 1;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
 | |
| static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
 | |
| 					struct vm_area_struct *vma,
 | |
| 					unsigned int flags)
 | |
| {
 | |
| 	/* If the pmd is writable, we can write to the page. */
 | |
| 	if (pmd_write(pmd))
 | |
| 		return true;
 | |
| 
 | |
| 	if (!can_follow_write_common(page, vma, flags))
 | |
| 		return false;
 | |
| 
 | |
| 	/* ... and a write-fault isn't required for other reasons. */
 | |
| 	if (pmd_needs_soft_dirty_wp(vma, pmd))
 | |
| 		return false;
 | |
| 	return !userfaultfd_huge_pmd_wp(vma, pmd);
 | |
| }
 | |
| 
 | |
| static struct page *follow_huge_pmd(struct vm_area_struct *vma,
 | |
| 				    unsigned long addr, pmd_t *pmd,
 | |
| 				    unsigned int flags,
 | |
| 				    struct follow_page_context *ctx)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	pmd_t pmdval = *pmd;
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmd));
 | |
| 
 | |
| 	page = pmd_page(pmdval);
 | |
| 	if ((flags & FOLL_WRITE) &&
 | |
| 	    !can_follow_write_pmd(pmdval, page, vma, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Avoid dumping huge zero page */
 | |
| 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
 | |
| 		return ERR_PTR(-EMLINK);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
 | |
| 			!PageAnonExclusive(page), page);
 | |
| 
 | |
| 	ret = try_grab_folio(page_folio(page), 1, flags);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
 | |
| 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
 | |
| #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 | |
| 	ctx->page_mask = HPAGE_PMD_NR - 1;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
 | |
| static struct page *follow_huge_pud(struct vm_area_struct *vma,
 | |
| 				    unsigned long addr, pud_t *pudp,
 | |
| 				    int flags, struct follow_page_context *ctx)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct page *follow_huge_pmd(struct vm_area_struct *vma,
 | |
| 				    unsigned long addr, pmd_t *pmd,
 | |
| 				    unsigned int flags,
 | |
| 				    struct follow_page_context *ctx)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
 | |
| 
 | |
| static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 | |
| 		pte_t *pte, unsigned int flags)
 | |
| {
 | |
| 	if (flags & FOLL_TOUCH) {
 | |
| 		pte_t orig_entry = ptep_get(pte);
 | |
| 		pte_t entry = orig_entry;
 | |
| 
 | |
| 		if (flags & FOLL_WRITE)
 | |
| 			entry = pte_mkdirty(entry);
 | |
| 		entry = pte_mkyoung(entry);
 | |
| 
 | |
| 		if (!pte_same(orig_entry, entry)) {
 | |
| 			set_pte_at(vma->vm_mm, address, pte, entry);
 | |
| 			update_mmu_cache(vma, address, pte);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Proper page table entry exists, but no corresponding struct page */
 | |
| 	return -EEXIST;
 | |
| }
 | |
| 
 | |
| /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
 | |
| static inline bool can_follow_write_pte(pte_t pte, struct page *page,
 | |
| 					struct vm_area_struct *vma,
 | |
| 					unsigned int flags)
 | |
| {
 | |
| 	/* If the pte is writable, we can write to the page. */
 | |
| 	if (pte_write(pte))
 | |
| 		return true;
 | |
| 
 | |
| 	if (!can_follow_write_common(page, vma, flags))
 | |
| 		return false;
 | |
| 
 | |
| 	/* ... and a write-fault isn't required for other reasons. */
 | |
| 	if (pte_needs_soft_dirty_wp(vma, pte))
 | |
| 		return false;
 | |
| 	return !userfaultfd_pte_wp(vma, pte);
 | |
| }
 | |
| 
 | |
| static struct page *follow_page_pte(struct vm_area_struct *vma,
 | |
| 		unsigned long address, pmd_t *pmd, unsigned int flags,
 | |
| 		struct dev_pagemap **pgmap)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct folio *folio;
 | |
| 	struct page *page;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t *ptep, pte;
 | |
| 	int ret;
 | |
| 
 | |
| 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 | |
| 	if (!ptep)
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 	pte = ptep_get(ptep);
 | |
| 	if (!pte_present(pte))
 | |
| 		goto no_page;
 | |
| 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
 | |
| 		goto no_page;
 | |
| 
 | |
| 	page = vm_normal_page(vma, address, pte);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only care about anon pages in can_follow_write_pte() and don't
 | |
| 	 * have to worry about pte_devmap() because they are never anon.
 | |
| 	 */
 | |
| 	if ((flags & FOLL_WRITE) &&
 | |
| 	    !can_follow_write_pte(pte, page, vma, flags)) {
 | |
| 		page = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
 | |
| 		/*
 | |
| 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
 | |
| 		 * case since they are only valid while holding the pgmap
 | |
| 		 * reference.
 | |
| 		 */
 | |
| 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 | |
| 		if (*pgmap)
 | |
| 			page = pte_page(pte);
 | |
| 		else
 | |
| 			goto no_page;
 | |
| 	} else if (unlikely(!page)) {
 | |
| 		if (flags & FOLL_DUMP) {
 | |
| 			/* Avoid special (like zero) pages in core dumps */
 | |
| 			page = ERR_PTR(-EFAULT);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (is_zero_pfn(pte_pfn(pte))) {
 | |
| 			page = pte_page(pte);
 | |
| 		} else {
 | |
| 			ret = follow_pfn_pte(vma, address, ptep, flags);
 | |
| 			page = ERR_PTR(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	folio = page_folio(page);
 | |
| 
 | |
| 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
 | |
| 		page = ERR_PTR(-EMLINK);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
 | |
| 		       !PageAnonExclusive(page), page);
 | |
| 
 | |
| 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
 | |
| 	ret = try_grab_folio(folio, 1, flags);
 | |
| 	if (unlikely(ret)) {
 | |
| 		page = ERR_PTR(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to make the page accessible if and only if we are going
 | |
| 	 * to access its content (the FOLL_PIN case).  Please see
 | |
| 	 * Documentation/core-api/pin_user_pages.rst for details.
 | |
| 	 */
 | |
| 	if (flags & FOLL_PIN) {
 | |
| 		ret = arch_make_folio_accessible(folio);
 | |
| 		if (ret) {
 | |
| 			unpin_user_page(page);
 | |
| 			page = ERR_PTR(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	if (flags & FOLL_TOUCH) {
 | |
| 		if ((flags & FOLL_WRITE) &&
 | |
| 		    !pte_dirty(pte) && !folio_test_dirty(folio))
 | |
| 			folio_mark_dirty(folio);
 | |
| 		/*
 | |
| 		 * pte_mkyoung() would be more correct here, but atomic care
 | |
| 		 * is needed to avoid losing the dirty bit: it is easier to use
 | |
| 		 * folio_mark_accessed().
 | |
| 		 */
 | |
| 		folio_mark_accessed(folio);
 | |
| 	}
 | |
| out:
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| 	return page;
 | |
| no_page:
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| 	if (!pte_none(pte))
 | |
| 		return NULL;
 | |
| 	return no_page_table(vma, flags, address);
 | |
| }
 | |
| 
 | |
| static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 | |
| 				    unsigned long address, pud_t *pudp,
 | |
| 				    unsigned int flags,
 | |
| 				    struct follow_page_context *ctx)
 | |
| {
 | |
| 	pmd_t *pmd, pmdval;
 | |
| 	spinlock_t *ptl;
 | |
| 	struct page *page;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 
 | |
| 	pmd = pmd_offset(pudp, address);
 | |
| 	pmdval = pmdp_get_lockless(pmd);
 | |
| 	if (pmd_none(pmdval))
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 	if (!pmd_present(pmdval))
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 	if (pmd_devmap(pmdval)) {
 | |
| 		ptl = pmd_lock(mm, pmd);
 | |
| 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 | |
| 		spin_unlock(ptl);
 | |
| 		if (page)
 | |
| 			return page;
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 	}
 | |
| 	if (likely(!pmd_leaf(pmdval)))
 | |
| 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 | |
| 
 | |
| 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	pmdval = *pmd;
 | |
| 	if (unlikely(!pmd_present(pmdval))) {
 | |
| 		spin_unlock(ptl);
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 	}
 | |
| 	if (unlikely(!pmd_leaf(pmdval))) {
 | |
| 		spin_unlock(ptl);
 | |
| 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 | |
| 	}
 | |
| 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
 | |
| 		spin_unlock(ptl);
 | |
| 		split_huge_pmd(vma, pmd, address);
 | |
| 		/* If pmd was left empty, stuff a page table in there quickly */
 | |
| 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
 | |
| 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 | |
| 	}
 | |
| 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
 | |
| 	spin_unlock(ptl);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *follow_pud_mask(struct vm_area_struct *vma,
 | |
| 				    unsigned long address, p4d_t *p4dp,
 | |
| 				    unsigned int flags,
 | |
| 				    struct follow_page_context *ctx)
 | |
| {
 | |
| 	pud_t *pudp, pud;
 | |
| 	spinlock_t *ptl;
 | |
| 	struct page *page;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 
 | |
| 	pudp = pud_offset(p4dp, address);
 | |
| 	pud = READ_ONCE(*pudp);
 | |
| 	if (!pud_present(pud))
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 	if (pud_leaf(pud)) {
 | |
| 		ptl = pud_lock(mm, pudp);
 | |
| 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
 | |
| 		spin_unlock(ptl);
 | |
| 		if (page)
 | |
| 			return page;
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 	}
 | |
| 	if (unlikely(pud_bad(pud)))
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 
 | |
| 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
 | |
| }
 | |
| 
 | |
| static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 | |
| 				    unsigned long address, pgd_t *pgdp,
 | |
| 				    unsigned int flags,
 | |
| 				    struct follow_page_context *ctx)
 | |
| {
 | |
| 	p4d_t *p4dp, p4d;
 | |
| 
 | |
| 	p4dp = p4d_offset(pgdp, address);
 | |
| 	p4d = READ_ONCE(*p4dp);
 | |
| 	BUILD_BUG_ON(p4d_leaf(p4d));
 | |
| 
 | |
| 	if (!p4d_present(p4d) || p4d_bad(p4d))
 | |
| 		return no_page_table(vma, flags, address);
 | |
| 
 | |
| 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * follow_page_mask - look up a page descriptor from a user-virtual address
 | |
|  * @vma: vm_area_struct mapping @address
 | |
|  * @address: virtual address to look up
 | |
|  * @flags: flags modifying lookup behaviour
 | |
|  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 | |
|  *       pointer to output page_mask
 | |
|  *
 | |
|  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 | |
|  *
 | |
|  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 | |
|  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 | |
|  *
 | |
|  * When getting an anonymous page and the caller has to trigger unsharing
 | |
|  * of a shared anonymous page first, -EMLINK is returned. The caller should
 | |
|  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
 | |
|  * relevant with FOLL_PIN and !FOLL_WRITE.
 | |
|  *
 | |
|  * On output, the @ctx->page_mask is set according to the size of the page.
 | |
|  *
 | |
|  * Return: the mapped (struct page *), %NULL if no mapping exists, or
 | |
|  * an error pointer if there is a mapping to something not represented
 | |
|  * by a page descriptor (see also vm_normal_page()).
 | |
|  */
 | |
| static struct page *follow_page_mask(struct vm_area_struct *vma,
 | |
| 			      unsigned long address, unsigned int flags,
 | |
| 			      struct follow_page_context *ctx)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	vma_pgtable_walk_begin(vma);
 | |
| 
 | |
| 	ctx->page_mask = 0;
 | |
| 	pgd = pgd_offset(mm, address);
 | |
| 
 | |
| 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 | |
| 		page = no_page_table(vma, flags, address);
 | |
| 	else
 | |
| 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
 | |
| 
 | |
| 	vma_pgtable_walk_end(vma);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static int get_gate_page(struct mm_struct *mm, unsigned long address,
 | |
| 		unsigned int gup_flags, struct vm_area_struct **vma,
 | |
| 		struct page **page)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	pte_t entry;
 | |
| 	int ret = -EFAULT;
 | |
| 
 | |
| 	/* user gate pages are read-only */
 | |
| 	if (gup_flags & FOLL_WRITE)
 | |
| 		return -EFAULT;
 | |
| 	pgd = pgd_offset(mm, address);
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return -EFAULT;
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (p4d_none(*p4d))
 | |
| 		return -EFAULT;
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (pud_none(*pud))
 | |
| 		return -EFAULT;
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (!pmd_present(*pmd))
 | |
| 		return -EFAULT;
 | |
| 	pte = pte_offset_map(pmd, address);
 | |
| 	if (!pte)
 | |
| 		return -EFAULT;
 | |
| 	entry = ptep_get(pte);
 | |
| 	if (pte_none(entry))
 | |
| 		goto unmap;
 | |
| 	*vma = get_gate_vma(mm);
 | |
| 	if (!page)
 | |
| 		goto out;
 | |
| 	*page = vm_normal_page(*vma, address, entry);
 | |
| 	if (!*page) {
 | |
| 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
 | |
| 			goto unmap;
 | |
| 		*page = pte_page(entry);
 | |
| 	}
 | |
| 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
 | |
| 	if (unlikely(ret))
 | |
| 		goto unmap;
 | |
| out:
 | |
| 	ret = 0;
 | |
| unmap:
 | |
| 	pte_unmap(pte);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
 | |
|  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
 | |
|  * to 0 and -EBUSY returned.
 | |
|  */
 | |
| static int faultin_page(struct vm_area_struct *vma,
 | |
| 		unsigned long address, unsigned int flags, bool unshare,
 | |
| 		int *locked)
 | |
| {
 | |
| 	unsigned int fault_flags = 0;
 | |
| 	vm_fault_t ret;
 | |
| 
 | |
| 	if (flags & FOLL_NOFAULT)
 | |
| 		return -EFAULT;
 | |
| 	if (flags & FOLL_WRITE)
 | |
| 		fault_flags |= FAULT_FLAG_WRITE;
 | |
| 	if (flags & FOLL_REMOTE)
 | |
| 		fault_flags |= FAULT_FLAG_REMOTE;
 | |
| 	if (flags & FOLL_UNLOCKABLE) {
 | |
| 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 | |
| 		/*
 | |
| 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
 | |
| 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
 | |
| 		 * That's because some callers may not be prepared to
 | |
| 		 * handle early exits caused by non-fatal signals.
 | |
| 		 */
 | |
| 		if (flags & FOLL_INTERRUPTIBLE)
 | |
| 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
 | |
| 	}
 | |
| 	if (flags & FOLL_NOWAIT)
 | |
| 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 | |
| 	if (flags & FOLL_TRIED) {
 | |
| 		/*
 | |
| 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
 | |
| 		 * can co-exist
 | |
| 		 */
 | |
| 		fault_flags |= FAULT_FLAG_TRIED;
 | |
| 	}
 | |
| 	if (unshare) {
 | |
| 		fault_flags |= FAULT_FLAG_UNSHARE;
 | |
| 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
 | |
| 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
 | |
| 	}
 | |
| 
 | |
| 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
 | |
| 
 | |
| 	if (ret & VM_FAULT_COMPLETED) {
 | |
| 		/*
 | |
| 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
 | |
| 		 * mmap lock in the page fault handler. Sanity check this.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
 | |
| 		*locked = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * We should do the same as VM_FAULT_RETRY, but let's not
 | |
| 		 * return -EBUSY since that's not reflecting the reality of
 | |
| 		 * what has happened - we've just fully completed a page
 | |
| 		 * fault, with the mmap lock released.  Use -EAGAIN to show
 | |
| 		 * that we want to take the mmap lock _again_.
 | |
| 		 */
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	if (ret & VM_FAULT_ERROR) {
 | |
| 		int err = vm_fault_to_errno(ret, flags);
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (ret & VM_FAULT_RETRY) {
 | |
| 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 | |
| 			*locked = 0;
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Writing to file-backed mappings which require folio dirty tracking using GUP
 | |
|  * is a fundamentally broken operation, as kernel write access to GUP mappings
 | |
|  * do not adhere to the semantics expected by a file system.
 | |
|  *
 | |
|  * Consider the following scenario:-
 | |
|  *
 | |
|  * 1. A folio is written to via GUP which write-faults the memory, notifying
 | |
|  *    the file system and dirtying the folio.
 | |
|  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
 | |
|  *    the PTE being marked read-only.
 | |
|  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
 | |
|  *    direct mapping.
 | |
|  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
 | |
|  *    (though it does not have to).
 | |
|  *
 | |
|  * This results in both data being written to a folio without writenotify, and
 | |
|  * the folio being dirtied unexpectedly (if the caller decides to do so).
 | |
|  */
 | |
| static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
 | |
| 					  unsigned long gup_flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we aren't pinning then no problematic write can occur. A long term
 | |
| 	 * pin is the most egregious case so this is the case we disallow.
 | |
| 	 */
 | |
| 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
 | |
| 	    (FOLL_PIN | FOLL_LONGTERM))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the VMA does not require dirty tracking then no problematic write
 | |
| 	 * can occur either.
 | |
| 	 */
 | |
| 	return !vma_needs_dirty_tracking(vma);
 | |
| }
 | |
| 
 | |
| static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 | |
| {
 | |
| 	vm_flags_t vm_flags = vma->vm_flags;
 | |
| 	int write = (gup_flags & FOLL_WRITE);
 | |
| 	int foreign = (gup_flags & FOLL_REMOTE);
 | |
| 	bool vma_anon = vma_is_anonymous(vma);
 | |
| 
 | |
| 	if (vm_flags & (VM_IO | VM_PFNMAP))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if ((gup_flags & FOLL_ANON) && !vma_anon)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (vma_is_secretmem(vma))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (write) {
 | |
| 		if (!vma_anon &&
 | |
| 		    !writable_file_mapping_allowed(vma, gup_flags))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
 | |
| 			if (!(gup_flags & FOLL_FORCE))
 | |
| 				return -EFAULT;
 | |
| 			/*
 | |
| 			 * We used to let the write,force case do COW in a
 | |
| 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 | |
| 			 * set a breakpoint in a read-only mapping of an
 | |
| 			 * executable, without corrupting the file (yet only
 | |
| 			 * when that file had been opened for writing!).
 | |
| 			 * Anon pages in shared mappings are surprising: now
 | |
| 			 * just reject it.
 | |
| 			 */
 | |
| 			if (!is_cow_mapping(vm_flags))
 | |
| 				return -EFAULT;
 | |
| 		}
 | |
| 	} else if (!(vm_flags & VM_READ)) {
 | |
| 		if (!(gup_flags & FOLL_FORCE))
 | |
| 			return -EFAULT;
 | |
| 		/*
 | |
| 		 * Is there actually any vma we can reach here which does not
 | |
| 		 * have VM_MAYREAD set?
 | |
| 		 */
 | |
| 		if (!(vm_flags & VM_MAYREAD))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * gups are always data accesses, not instruction
 | |
| 	 * fetches, so execute=false here
 | |
| 	 */
 | |
| 	if (!arch_vma_access_permitted(vma, write, false, foreign))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is "vma_lookup()", but with a warning if we would have
 | |
|  * historically expanded the stack in the GUP code.
 | |
|  */
 | |
| static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
 | |
| 	 unsigned long addr)
 | |
| {
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	return vma_lookup(mm, addr);
 | |
| #else
 | |
| 	static volatile unsigned long next_warn;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long now, next;
 | |
| 
 | |
| 	vma = find_vma(mm, addr);
 | |
| 	if (!vma || (addr >= vma->vm_start))
 | |
| 		return vma;
 | |
| 
 | |
| 	/* Only warn for half-way relevant accesses */
 | |
| 	if (!(vma->vm_flags & VM_GROWSDOWN))
 | |
| 		return NULL;
 | |
| 	if (vma->vm_start - addr > 65536)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Let's not warn more than once an hour.. */
 | |
| 	now = jiffies; next = next_warn;
 | |
| 	if (next && time_before(now, next))
 | |
| 		return NULL;
 | |
| 	next_warn = now + 60*60*HZ;
 | |
| 
 | |
| 	/* Let people know things may have changed. */
 | |
| 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
 | |
| 		current->comm, task_pid_nr(current),
 | |
| 		vma->vm_start, vma->vm_end, addr);
 | |
| 	dump_stack();
 | |
| 	return NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __get_user_pages() - pin user pages in memory
 | |
|  * @mm:		mm_struct of target mm
 | |
|  * @start:	starting user address
 | |
|  * @nr_pages:	number of pages from start to pin
 | |
|  * @gup_flags:	flags modifying pin behaviour
 | |
|  * @pages:	array that receives pointers to the pages pinned.
 | |
|  *		Should be at least nr_pages long. Or NULL, if caller
 | |
|  *		only intends to ensure the pages are faulted in.
 | |
|  * @locked:     whether we're still with the mmap_lock held
 | |
|  *
 | |
|  * Returns either number of pages pinned (which may be less than the
 | |
|  * number requested), or an error. Details about the return value:
 | |
|  *
 | |
|  * -- If nr_pages is 0, returns 0.
 | |
|  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 | |
|  * -- If nr_pages is >0, and some pages were pinned, returns the number of
 | |
|  *    pages pinned. Again, this may be less than nr_pages.
 | |
|  * -- 0 return value is possible when the fault would need to be retried.
 | |
|  *
 | |
|  * The caller is responsible for releasing returned @pages, via put_page().
 | |
|  *
 | |
|  * Must be called with mmap_lock held.  It may be released.  See below.
 | |
|  *
 | |
|  * __get_user_pages walks a process's page tables and takes a reference to
 | |
|  * each struct page that each user address corresponds to at a given
 | |
|  * instant. That is, it takes the page that would be accessed if a user
 | |
|  * thread accesses the given user virtual address at that instant.
 | |
|  *
 | |
|  * This does not guarantee that the page exists in the user mappings when
 | |
|  * __get_user_pages returns, and there may even be a completely different
 | |
|  * page there in some cases (eg. if mmapped pagecache has been invalidated
 | |
|  * and subsequently re-faulted). However it does guarantee that the page
 | |
|  * won't be freed completely. And mostly callers simply care that the page
 | |
|  * contains data that was valid *at some point in time*. Typically, an IO
 | |
|  * or similar operation cannot guarantee anything stronger anyway because
 | |
|  * locks can't be held over the syscall boundary.
 | |
|  *
 | |
|  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 | |
|  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 | |
|  * appropriate) must be called after the page is finished with, and
 | |
|  * before put_page is called.
 | |
|  *
 | |
|  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
 | |
|  * be released. If this happens *@locked will be set to 0 on return.
 | |
|  *
 | |
|  * A caller using such a combination of @gup_flags must therefore hold the
 | |
|  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
 | |
|  * it must be held for either reading or writing and will not be released.
 | |
|  *
 | |
|  * In most cases, get_user_pages or get_user_pages_fast should be used
 | |
|  * instead of __get_user_pages. __get_user_pages should be used only if
 | |
|  * you need some special @gup_flags.
 | |
|  */
 | |
| static long __get_user_pages(struct mm_struct *mm,
 | |
| 		unsigned long start, unsigned long nr_pages,
 | |
| 		unsigned int gup_flags, struct page **pages,
 | |
| 		int *locked)
 | |
| {
 | |
| 	long ret = 0, i = 0;
 | |
| 	struct vm_area_struct *vma = NULL;
 | |
| 	struct follow_page_context ctx = { NULL };
 | |
| 
 | |
| 	if (!nr_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	start = untagged_addr_remote(mm, start);
 | |
| 
 | |
| 	VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
 | |
| 
 | |
| 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 | |
| 	VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
 | |
| 			(FOLL_PIN | FOLL_GET));
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		unsigned int page_increm;
 | |
| 
 | |
| 		/* first iteration or cross vma bound */
 | |
| 		if (!vma || start >= vma->vm_end) {
 | |
| 			/*
 | |
| 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
 | |
| 			 * lookups+error reporting differently.
 | |
| 			 */
 | |
| 			if (gup_flags & FOLL_MADV_POPULATE) {
 | |
| 				vma = vma_lookup(mm, start);
 | |
| 				if (!vma) {
 | |
| 					ret = -ENOMEM;
 | |
| 					goto out;
 | |
| 				}
 | |
| 				if (check_vma_flags(vma, gup_flags)) {
 | |
| 					ret = -EINVAL;
 | |
| 					goto out;
 | |
| 				}
 | |
| 				goto retry;
 | |
| 			}
 | |
| 			vma = gup_vma_lookup(mm, start);
 | |
| 			if (!vma && in_gate_area(mm, start)) {
 | |
| 				ret = get_gate_page(mm, start & PAGE_MASK,
 | |
| 						gup_flags, &vma,
 | |
| 						pages ? &page : NULL);
 | |
| 				if (ret)
 | |
| 					goto out;
 | |
| 				ctx.page_mask = 0;
 | |
| 				goto next_page;
 | |
| 			}
 | |
| 
 | |
| 			if (!vma) {
 | |
| 				ret = -EFAULT;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			ret = check_vma_flags(vma, gup_flags);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| retry:
 | |
| 		/*
 | |
| 		 * If we have a pending SIGKILL, don't keep faulting pages and
 | |
| 		 * potentially allocating memory.
 | |
| 		 */
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 
 | |
| 		page = follow_page_mask(vma, start, gup_flags, &ctx);
 | |
| 		if (!page || PTR_ERR(page) == -EMLINK) {
 | |
| 			ret = faultin_page(vma, start, gup_flags,
 | |
| 					   PTR_ERR(page) == -EMLINK, locked);
 | |
| 			switch (ret) {
 | |
| 			case 0:
 | |
| 				goto retry;
 | |
| 			case -EBUSY:
 | |
| 			case -EAGAIN:
 | |
| 				ret = 0;
 | |
| 				fallthrough;
 | |
| 			case -EFAULT:
 | |
| 			case -ENOMEM:
 | |
| 			case -EHWPOISON:
 | |
| 				goto out;
 | |
| 			}
 | |
| 			BUG();
 | |
| 		} else if (PTR_ERR(page) == -EEXIST) {
 | |
| 			/*
 | |
| 			 * Proper page table entry exists, but no corresponding
 | |
| 			 * struct page. If the caller expects **pages to be
 | |
| 			 * filled in, bail out now, because that can't be done
 | |
| 			 * for this page.
 | |
| 			 */
 | |
| 			if (pages) {
 | |
| 				ret = PTR_ERR(page);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} else if (IS_ERR(page)) {
 | |
| 			ret = PTR_ERR(page);
 | |
| 			goto out;
 | |
| 		}
 | |
| next_page:
 | |
| 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
 | |
| 		if (page_increm > nr_pages)
 | |
| 			page_increm = nr_pages;
 | |
| 
 | |
| 		if (pages) {
 | |
| 			struct page *subpage;
 | |
| 			unsigned int j;
 | |
| 
 | |
| 			/*
 | |
| 			 * This must be a large folio (and doesn't need to
 | |
| 			 * be the whole folio; it can be part of it), do
 | |
| 			 * the refcount work for all the subpages too.
 | |
| 			 *
 | |
| 			 * NOTE: here the page may not be the head page
 | |
| 			 * e.g. when start addr is not thp-size aligned.
 | |
| 			 * try_grab_folio() should have taken care of tail
 | |
| 			 * pages.
 | |
| 			 */
 | |
| 			if (page_increm > 1) {
 | |
| 				struct folio *folio = page_folio(page);
 | |
| 
 | |
| 				/*
 | |
| 				 * Since we already hold refcount on the
 | |
| 				 * large folio, this should never fail.
 | |
| 				 */
 | |
| 				if (try_grab_folio(folio, page_increm - 1,
 | |
| 						   gup_flags)) {
 | |
| 					/*
 | |
| 					 * Release the 1st page ref if the
 | |
| 					 * folio is problematic, fail hard.
 | |
| 					 */
 | |
| 					gup_put_folio(folio, 1, gup_flags);
 | |
| 					ret = -EFAULT;
 | |
| 					goto out;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			for (j = 0; j < page_increm; j++) {
 | |
| 				subpage = nth_page(page, j);
 | |
| 				pages[i + j] = subpage;
 | |
| 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
 | |
| 				flush_dcache_page(subpage);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		i += page_increm;
 | |
| 		start += page_increm * PAGE_SIZE;
 | |
| 		nr_pages -= page_increm;
 | |
| 	} while (nr_pages);
 | |
| out:
 | |
| 	if (ctx.pgmap)
 | |
| 		put_dev_pagemap(ctx.pgmap);
 | |
| 	return i ? i : ret;
 | |
| }
 | |
| 
 | |
| static bool vma_permits_fault(struct vm_area_struct *vma,
 | |
| 			      unsigned int fault_flags)
 | |
| {
 | |
| 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
 | |
| 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
 | |
| 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
 | |
| 
 | |
| 	if (!(vm_flags & vma->vm_flags))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The architecture might have a hardware protection
 | |
| 	 * mechanism other than read/write that can deny access.
 | |
| 	 *
 | |
| 	 * gup always represents data access, not instruction
 | |
| 	 * fetches, so execute=false here:
 | |
| 	 */
 | |
| 	if (!arch_vma_access_permitted(vma, write, false, foreign))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fixup_user_fault() - manually resolve a user page fault
 | |
|  * @mm:		mm_struct of target mm
 | |
|  * @address:	user address
 | |
|  * @fault_flags:flags to pass down to handle_mm_fault()
 | |
|  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
 | |
|  *		does not allow retry. If NULL, the caller must guarantee
 | |
|  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
 | |
|  *
 | |
|  * This is meant to be called in the specific scenario where for locking reasons
 | |
|  * we try to access user memory in atomic context (within a pagefault_disable()
 | |
|  * section), this returns -EFAULT, and we want to resolve the user fault before
 | |
|  * trying again.
 | |
|  *
 | |
|  * Typically this is meant to be used by the futex code.
 | |
|  *
 | |
|  * The main difference with get_user_pages() is that this function will
 | |
|  * unconditionally call handle_mm_fault() which will in turn perform all the
 | |
|  * necessary SW fixup of the dirty and young bits in the PTE, while
 | |
|  * get_user_pages() only guarantees to update these in the struct page.
 | |
|  *
 | |
|  * This is important for some architectures where those bits also gate the
 | |
|  * access permission to the page because they are maintained in software.  On
 | |
|  * such architectures, gup() will not be enough to make a subsequent access
 | |
|  * succeed.
 | |
|  *
 | |
|  * This function will not return with an unlocked mmap_lock. So it has not the
 | |
|  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
 | |
|  */
 | |
| int fixup_user_fault(struct mm_struct *mm,
 | |
| 		     unsigned long address, unsigned int fault_flags,
 | |
| 		     bool *unlocked)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	vm_fault_t ret;
 | |
| 
 | |
| 	address = untagged_addr_remote(mm, address);
 | |
| 
 | |
| 	if (unlocked)
 | |
| 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 | |
| 
 | |
| retry:
 | |
| 	vma = gup_vma_lookup(mm, address);
 | |
| 	if (!vma)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!vma_permits_fault(vma, fault_flags))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
 | |
| 	    fatal_signal_pending(current))
 | |
| 		return -EINTR;
 | |
| 
 | |
| 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
 | |
| 
 | |
| 	if (ret & VM_FAULT_COMPLETED) {
 | |
| 		/*
 | |
| 		 * NOTE: it's a pity that we need to retake the lock here
 | |
| 		 * to pair with the unlock() in the callers. Ideally we
 | |
| 		 * could tell the callers so they do not need to unlock.
 | |
| 		 */
 | |
| 		mmap_read_lock(mm);
 | |
| 		*unlocked = true;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ret & VM_FAULT_ERROR) {
 | |
| 		int err = vm_fault_to_errno(ret, 0);
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (ret & VM_FAULT_RETRY) {
 | |
| 		mmap_read_lock(mm);
 | |
| 		*unlocked = true;
 | |
| 		fault_flags |= FAULT_FLAG_TRIED;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(fixup_user_fault);
 | |
| 
 | |
| /*
 | |
|  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
 | |
|  * specified, it'll also respond to generic signals.  The caller of GUP
 | |
|  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
 | |
|  */
 | |
| static bool gup_signal_pending(unsigned int flags)
 | |
| {
 | |
| 	if (fatal_signal_pending(current))
 | |
| 		return true;
 | |
| 
 | |
| 	if (!(flags & FOLL_INTERRUPTIBLE))
 | |
| 		return false;
 | |
| 
 | |
| 	return signal_pending(current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
 | |
|  * the caller. This function may drop the mmap_lock. If it does so, then it will
 | |
|  * set (*locked = 0).
 | |
|  *
 | |
|  * (*locked == 0) means that the caller expects this function to acquire and
 | |
|  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
 | |
|  * the function returns, even though it may have changed temporarily during
 | |
|  * function execution.
 | |
|  *
 | |
|  * Please note that this function, unlike __get_user_pages(), will not return 0
 | |
|  * for nr_pages > 0, unless FOLL_NOWAIT is used.
 | |
|  */
 | |
| static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
 | |
| 						unsigned long start,
 | |
| 						unsigned long nr_pages,
 | |
| 						struct page **pages,
 | |
| 						int *locked,
 | |
| 						unsigned int flags)
 | |
| {
 | |
| 	long ret, pages_done;
 | |
| 	bool must_unlock = false;
 | |
| 
 | |
| 	if (!nr_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The internal caller expects GUP to manage the lock internally and the
 | |
| 	 * lock must be released when this returns.
 | |
| 	 */
 | |
| 	if (!*locked) {
 | |
| 		if (mmap_read_lock_killable(mm))
 | |
| 			return -EAGAIN;
 | |
| 		must_unlock = true;
 | |
| 		*locked = 1;
 | |
| 	}
 | |
| 	else
 | |
| 		mmap_assert_locked(mm);
 | |
| 
 | |
| 	if (flags & FOLL_PIN)
 | |
| 		mm_set_has_pinned_flag(&mm->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
 | |
| 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
 | |
| 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
 | |
| 	 * for FOLL_GET, not for the newer FOLL_PIN.
 | |
| 	 *
 | |
| 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
 | |
| 	 * that here, as any failures will be obvious enough.
 | |
| 	 */
 | |
| 	if (pages && !(flags & FOLL_PIN))
 | |
| 		flags |= FOLL_GET;
 | |
| 
 | |
| 	pages_done = 0;
 | |
| 	for (;;) {
 | |
| 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
 | |
| 				       locked);
 | |
| 		if (!(flags & FOLL_UNLOCKABLE)) {
 | |
| 			/* VM_FAULT_RETRY couldn't trigger, bypass */
 | |
| 			pages_done = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
 | |
| 		if (!*locked) {
 | |
| 			BUG_ON(ret < 0);
 | |
| 			BUG_ON(ret >= nr_pages);
 | |
| 		}
 | |
| 
 | |
| 		if (ret > 0) {
 | |
| 			nr_pages -= ret;
 | |
| 			pages_done += ret;
 | |
| 			if (!nr_pages)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (*locked) {
 | |
| 			/*
 | |
| 			 * VM_FAULT_RETRY didn't trigger or it was a
 | |
| 			 * FOLL_NOWAIT.
 | |
| 			 */
 | |
| 			if (!pages_done)
 | |
| 				pages_done = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
 | |
| 		 * For the prefault case (!pages) we only update counts.
 | |
| 		 */
 | |
| 		if (likely(pages))
 | |
| 			pages += ret;
 | |
| 		start += ret << PAGE_SHIFT;
 | |
| 
 | |
| 		/* The lock was temporarily dropped, so we must unlock later */
 | |
| 		must_unlock = true;
 | |
| 
 | |
| retry:
 | |
| 		/*
 | |
| 		 * Repeat on the address that fired VM_FAULT_RETRY
 | |
| 		 * with both FAULT_FLAG_ALLOW_RETRY and
 | |
| 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
 | |
| 		 * by fatal signals of even common signals, depending on
 | |
| 		 * the caller's request. So we need to check it before we
 | |
| 		 * start trying again otherwise it can loop forever.
 | |
| 		 */
 | |
| 		if (gup_signal_pending(flags)) {
 | |
| 			if (!pages_done)
 | |
| 				pages_done = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = mmap_read_lock_killable(mm);
 | |
| 		if (ret) {
 | |
| 			BUG_ON(ret > 0);
 | |
| 			if (!pages_done)
 | |
| 				pages_done = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		*locked = 1;
 | |
| 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
 | |
| 				       pages, locked);
 | |
| 		if (!*locked) {
 | |
| 			/* Continue to retry until we succeeded */
 | |
| 			BUG_ON(ret != 0);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		if (ret != 1) {
 | |
| 			BUG_ON(ret > 1);
 | |
| 			if (!pages_done)
 | |
| 				pages_done = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 		nr_pages--;
 | |
| 		pages_done++;
 | |
| 		if (!nr_pages)
 | |
| 			break;
 | |
| 		if (likely(pages))
 | |
| 			pages++;
 | |
| 		start += PAGE_SIZE;
 | |
| 	}
 | |
| 	if (must_unlock && *locked) {
 | |
| 		/*
 | |
| 		 * We either temporarily dropped the lock, or the caller
 | |
| 		 * requested that we both acquire and drop the lock. Either way,
 | |
| 		 * we must now unlock, and notify the caller of that state.
 | |
| 		 */
 | |
| 		mmap_read_unlock(mm);
 | |
| 		*locked = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Failing to pin anything implies something has gone wrong (except when
 | |
| 	 * FOLL_NOWAIT is specified).
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return pages_done;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * populate_vma_page_range() -  populate a range of pages in the vma.
 | |
|  * @vma:   target vma
 | |
|  * @start: start address
 | |
|  * @end:   end address
 | |
|  * @locked: whether the mmap_lock is still held
 | |
|  *
 | |
|  * This takes care of mlocking the pages too if VM_LOCKED is set.
 | |
|  *
 | |
|  * Return either number of pages pinned in the vma, or a negative error
 | |
|  * code on error.
 | |
|  *
 | |
|  * vma->vm_mm->mmap_lock must be held.
 | |
|  *
 | |
|  * If @locked is NULL, it may be held for read or write and will
 | |
|  * be unperturbed.
 | |
|  *
 | |
|  * If @locked is non-NULL, it must held for read only and may be
 | |
|  * released.  If it's released, *@locked will be set to 0.
 | |
|  */
 | |
| long populate_vma_page_range(struct vm_area_struct *vma,
 | |
| 		unsigned long start, unsigned long end, int *locked)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
 | |
| 	int local_locked = 1;
 | |
| 	int gup_flags;
 | |
| 	long ret;
 | |
| 
 | |
| 	VM_BUG_ON(!PAGE_ALIGNED(start));
 | |
| 	VM_BUG_ON(!PAGE_ALIGNED(end));
 | |
| 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
 | |
| 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
 | |
| 	mmap_assert_locked(mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
 | |
| 	 * faultin_page() to break COW, so it has no work to do here.
 | |
| 	 */
 | |
| 	if (vma->vm_flags & VM_LOCKONFAULT)
 | |
| 		return nr_pages;
 | |
| 
 | |
| 	/* ... similarly, we've never faulted in PROT_NONE pages */
 | |
| 	if (!vma_is_accessible(vma))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	gup_flags = FOLL_TOUCH;
 | |
| 	/*
 | |
| 	 * We want to touch writable mappings with a write fault in order
 | |
| 	 * to break COW, except for shared mappings because these don't COW
 | |
| 	 * and we would not want to dirty them for nothing.
 | |
| 	 *
 | |
| 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
 | |
| 	 * readable (ie write-only or executable).
 | |
| 	 */
 | |
| 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
 | |
| 		gup_flags |= FOLL_WRITE;
 | |
| 	else
 | |
| 		gup_flags |= FOLL_FORCE;
 | |
| 
 | |
| 	if (locked)
 | |
| 		gup_flags |= FOLL_UNLOCKABLE;
 | |
| 
 | |
| 	/*
 | |
| 	 * We made sure addr is within a VMA, so the following will
 | |
| 	 * not result in a stack expansion that recurses back here.
 | |
| 	 */
 | |
| 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
 | |
| 			       NULL, locked ? locked : &local_locked);
 | |
| 	lru_add_drain();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * faultin_page_range() - populate (prefault) page tables inside the
 | |
|  *			  given range readable/writable
 | |
|  *
 | |
|  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
 | |
|  *
 | |
|  * @mm: the mm to populate page tables in
 | |
|  * @start: start address
 | |
|  * @end: end address
 | |
|  * @write: whether to prefault readable or writable
 | |
|  * @locked: whether the mmap_lock is still held
 | |
|  *
 | |
|  * Returns either number of processed pages in the MM, or a negative error
 | |
|  * code on error (see __get_user_pages()). Note that this function reports
 | |
|  * errors related to VMAs, such as incompatible mappings, as expected by
 | |
|  * MADV_POPULATE_(READ|WRITE).
 | |
|  *
 | |
|  * The range must be page-aligned.
 | |
|  *
 | |
|  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
 | |
|  */
 | |
| long faultin_page_range(struct mm_struct *mm, unsigned long start,
 | |
| 			unsigned long end, bool write, int *locked)
 | |
| {
 | |
| 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
 | |
| 	int gup_flags;
 | |
| 	long ret;
 | |
| 
 | |
| 	VM_BUG_ON(!PAGE_ALIGNED(start));
 | |
| 	VM_BUG_ON(!PAGE_ALIGNED(end));
 | |
| 	mmap_assert_locked(mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
 | |
| 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
 | |
| 	 *	       difference with !FOLL_FORCE, because the page is writable
 | |
| 	 *	       in the page table.
 | |
| 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
 | |
| 	 *		  a poisoned page.
 | |
| 	 * !FOLL_FORCE: Require proper access permissions.
 | |
| 	 */
 | |
| 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
 | |
| 		    FOLL_MADV_POPULATE;
 | |
| 	if (write)
 | |
| 		gup_flags |= FOLL_WRITE;
 | |
| 
 | |
| 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
 | |
| 				      gup_flags);
 | |
| 	lru_add_drain();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __mm_populate - populate and/or mlock pages within a range of address space.
 | |
|  *
 | |
|  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 | |
|  * flags. VMAs must be already marked with the desired vm_flags, and
 | |
|  * mmap_lock must not be held.
 | |
|  */
 | |
| int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned long end, nstart, nend;
 | |
| 	struct vm_area_struct *vma = NULL;
 | |
| 	int locked = 0;
 | |
| 	long ret = 0;
 | |
| 
 | |
| 	end = start + len;
 | |
| 
 | |
| 	for (nstart = start; nstart < end; nstart = nend) {
 | |
| 		/*
 | |
| 		 * We want to fault in pages for [nstart; end) address range.
 | |
| 		 * Find first corresponding VMA.
 | |
| 		 */
 | |
| 		if (!locked) {
 | |
| 			locked = 1;
 | |
| 			mmap_read_lock(mm);
 | |
| 			vma = find_vma_intersection(mm, nstart, end);
 | |
| 		} else if (nstart >= vma->vm_end)
 | |
| 			vma = find_vma_intersection(mm, vma->vm_end, end);
 | |
| 
 | |
| 		if (!vma)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * Set [nstart; nend) to intersection of desired address
 | |
| 		 * range with the first VMA. Also, skip undesirable VMA types.
 | |
| 		 */
 | |
| 		nend = min(end, vma->vm_end);
 | |
| 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
 | |
| 			continue;
 | |
| 		if (nstart < vma->vm_start)
 | |
| 			nstart = vma->vm_start;
 | |
| 		/*
 | |
| 		 * Now fault in a range of pages. populate_vma_page_range()
 | |
| 		 * double checks the vma flags, so that it won't mlock pages
 | |
| 		 * if the vma was already munlocked.
 | |
| 		 */
 | |
| 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
 | |
| 		if (ret < 0) {
 | |
| 			if (ignore_errors) {
 | |
| 				ret = 0;
 | |
| 				continue;	/* continue at next VMA */
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		nend = nstart + ret * PAGE_SIZE;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	if (locked)
 | |
| 		mmap_read_unlock(mm);
 | |
| 	return ret;	/* 0 or negative error code */
 | |
| }
 | |
| #else /* CONFIG_MMU */
 | |
| static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
 | |
| 		unsigned long nr_pages, struct page **pages,
 | |
| 		int *locked, unsigned int foll_flags)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	bool must_unlock = false;
 | |
| 	unsigned long vm_flags;
 | |
| 	long i;
 | |
| 
 | |
| 	if (!nr_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The internal caller expects GUP to manage the lock internally and the
 | |
| 	 * lock must be released when this returns.
 | |
| 	 */
 | |
| 	if (!*locked) {
 | |
| 		if (mmap_read_lock_killable(mm))
 | |
| 			return -EAGAIN;
 | |
| 		must_unlock = true;
 | |
| 		*locked = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate required read or write permissions.
 | |
| 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
 | |
| 	 */
 | |
| 	vm_flags  = (foll_flags & FOLL_WRITE) ?
 | |
| 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 | |
| 	vm_flags &= (foll_flags & FOLL_FORCE) ?
 | |
| 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		vma = find_vma(mm, start);
 | |
| 		if (!vma)
 | |
| 			break;
 | |
| 
 | |
| 		/* protect what we can, including chardevs */
 | |
| 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 | |
| 		    !(vm_flags & vma->vm_flags))
 | |
| 			break;
 | |
| 
 | |
| 		if (pages) {
 | |
| 			pages[i] = virt_to_page((void *)start);
 | |
| 			if (pages[i])
 | |
| 				get_page(pages[i]);
 | |
| 		}
 | |
| 
 | |
| 		start = (start + PAGE_SIZE) & PAGE_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (must_unlock && *locked) {
 | |
| 		mmap_read_unlock(mm);
 | |
| 		*locked = 0;
 | |
| 	}
 | |
| 
 | |
| 	return i ? : -EFAULT;
 | |
| }
 | |
| #endif /* !CONFIG_MMU */
 | |
| 
 | |
| /**
 | |
|  * fault_in_writeable - fault in userspace address range for writing
 | |
|  * @uaddr: start of address range
 | |
|  * @size: size of address range
 | |
|  *
 | |
|  * Returns the number of bytes not faulted in (like copy_to_user() and
 | |
|  * copy_from_user()).
 | |
|  */
 | |
| size_t fault_in_writeable(char __user *uaddr, size_t size)
 | |
| {
 | |
| 	const unsigned long start = (unsigned long)uaddr;
 | |
| 	const unsigned long end = start + size;
 | |
| 	unsigned long cur;
 | |
| 
 | |
| 	if (unlikely(size == 0))
 | |
| 		return 0;
 | |
| 	if (!user_write_access_begin(uaddr, size))
 | |
| 		return size;
 | |
| 
 | |
| 	/* Stop once we overflow to 0. */
 | |
| 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
 | |
| 		unsafe_put_user(0, (char __user *)cur, out);
 | |
| out:
 | |
| 	user_write_access_end();
 | |
| 	if (size > cur - start)
 | |
| 		return size - (cur - start);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(fault_in_writeable);
 | |
| 
 | |
| /**
 | |
|  * fault_in_subpage_writeable - fault in an address range for writing
 | |
|  * @uaddr: start of address range
 | |
|  * @size: size of address range
 | |
|  *
 | |
|  * Fault in a user address range for writing while checking for permissions at
 | |
|  * sub-page granularity (e.g. arm64 MTE). This function should be used when
 | |
|  * the caller cannot guarantee forward progress of a copy_to_user() loop.
 | |
|  *
 | |
|  * Returns the number of bytes not faulted in (like copy_to_user() and
 | |
|  * copy_from_user()).
 | |
|  */
 | |
| size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
 | |
| {
 | |
| 	size_t faulted_in;
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt faulting in at page granularity first for page table
 | |
| 	 * permission checking. The arch-specific probe_subpage_writeable()
 | |
| 	 * functions may not check for this.
 | |
| 	 */
 | |
| 	faulted_in = size - fault_in_writeable(uaddr, size);
 | |
| 	if (faulted_in)
 | |
| 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
 | |
| 
 | |
| 	return size - faulted_in;
 | |
| }
 | |
| EXPORT_SYMBOL(fault_in_subpage_writeable);
 | |
| 
 | |
| /*
 | |
|  * fault_in_safe_writeable - fault in an address range for writing
 | |
|  * @uaddr: start of address range
 | |
|  * @size: length of address range
 | |
|  *
 | |
|  * Faults in an address range for writing.  This is primarily useful when we
 | |
|  * already know that some or all of the pages in the address range aren't in
 | |
|  * memory.
 | |
|  *
 | |
|  * Unlike fault_in_writeable(), this function is non-destructive.
 | |
|  *
 | |
|  * Note that we don't pin or otherwise hold the pages referenced that we fault
 | |
|  * in.  There's no guarantee that they'll stay in memory for any duration of
 | |
|  * time.
 | |
|  *
 | |
|  * Returns the number of bytes not faulted in, like copy_to_user() and
 | |
|  * copy_from_user().
 | |
|  */
 | |
| size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
 | |
| {
 | |
| 	const unsigned long start = (unsigned long)uaddr;
 | |
| 	const unsigned long end = start + size;
 | |
| 	unsigned long cur;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	bool unlocked = false;
 | |
| 
 | |
| 	if (unlikely(size == 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	/* Stop once we overflow to 0. */
 | |
| 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
 | |
| 		if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
 | |
| 			break;
 | |
| 	mmap_read_unlock(mm);
 | |
| 
 | |
| 	if (size > cur - start)
 | |
| 		return size - (cur - start);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(fault_in_safe_writeable);
 | |
| 
 | |
| /**
 | |
|  * fault_in_readable - fault in userspace address range for reading
 | |
|  * @uaddr: start of user address range
 | |
|  * @size: size of user address range
 | |
|  *
 | |
|  * Returns the number of bytes not faulted in (like copy_to_user() and
 | |
|  * copy_from_user()).
 | |
|  */
 | |
| size_t fault_in_readable(const char __user *uaddr, size_t size)
 | |
| {
 | |
| 	const unsigned long start = (unsigned long)uaddr;
 | |
| 	const unsigned long end = start + size;
 | |
| 	unsigned long cur;
 | |
| 	volatile char c;
 | |
| 
 | |
| 	if (unlikely(size == 0))
 | |
| 		return 0;
 | |
| 	if (!user_read_access_begin(uaddr, size))
 | |
| 		return size;
 | |
| 
 | |
| 	/* Stop once we overflow to 0. */
 | |
| 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
 | |
| 		unsafe_get_user(c, (const char __user *)cur, out);
 | |
| out:
 | |
| 	user_read_access_end();
 | |
| 	(void)c;
 | |
| 	if (size > cur - start)
 | |
| 		return size - (cur - start);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(fault_in_readable);
 | |
| 
 | |
| /**
 | |
|  * get_dump_page() - pin user page in memory while writing it to core dump
 | |
|  * @addr: user address
 | |
|  * @locked: a pointer to an int denoting whether the mmap sem is held
 | |
|  *
 | |
|  * Returns struct page pointer of user page pinned for dump,
 | |
|  * to be freed afterwards by put_page().
 | |
|  *
 | |
|  * Returns NULL on any kind of failure - a hole must then be inserted into
 | |
|  * the corefile, to preserve alignment with its headers; and also returns
 | |
|  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 | |
|  * allowing a hole to be left in the corefile to save disk space.
 | |
|  *
 | |
|  * Called without mmap_lock (takes and releases the mmap_lock by itself).
 | |
|  */
 | |
| #ifdef CONFIG_ELF_CORE
 | |
| struct page *get_dump_page(unsigned long addr, int *locked)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
 | |
| 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
 | |
| 	return (ret == 1) ? page : NULL;
 | |
| }
 | |
| #endif /* CONFIG_ELF_CORE */
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| 
 | |
| /*
 | |
|  * An array of either pages or folios ("pofs"). Although it may seem tempting to
 | |
|  * avoid this complication, by simply interpreting a list of folios as a list of
 | |
|  * pages, that approach won't work in the longer term, because eventually the
 | |
|  * layouts of struct page and struct folio will become completely different.
 | |
|  * Furthermore, this pof approach avoids excessive page_folio() calls.
 | |
|  */
 | |
| struct pages_or_folios {
 | |
| 	union {
 | |
| 		struct page **pages;
 | |
| 		struct folio **folios;
 | |
| 		void **entries;
 | |
| 	};
 | |
| 	bool has_folios;
 | |
| 	long nr_entries;
 | |
| };
 | |
| 
 | |
| static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
 | |
| {
 | |
| 	if (pofs->has_folios)
 | |
| 		return pofs->folios[i];
 | |
| 	return page_folio(pofs->pages[i]);
 | |
| }
 | |
| 
 | |
| static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
 | |
| {
 | |
| 	pofs->entries[i] = NULL;
 | |
| }
 | |
| 
 | |
| static void pofs_unpin(struct pages_or_folios *pofs)
 | |
| {
 | |
| 	if (pofs->has_folios)
 | |
| 		unpin_folios(pofs->folios, pofs->nr_entries);
 | |
| 	else
 | |
| 		unpin_user_pages(pofs->pages, pofs->nr_entries);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the number of collected folios. Return value is always >= 0.
 | |
|  */
 | |
| static void collect_longterm_unpinnable_folios(
 | |
| 		struct list_head *movable_folio_list,
 | |
| 		struct pages_or_folios *pofs)
 | |
| {
 | |
| 	struct folio *prev_folio = NULL;
 | |
| 	bool drain_allow = true;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < pofs->nr_entries; i++) {
 | |
| 		struct folio *folio = pofs_get_folio(pofs, i);
 | |
| 
 | |
| 		if (folio == prev_folio)
 | |
| 			continue;
 | |
| 		prev_folio = folio;
 | |
| 
 | |
| 		if (folio_is_longterm_pinnable(folio))
 | |
| 			continue;
 | |
| 
 | |
| 		if (folio_is_device_coherent(folio))
 | |
| 			continue;
 | |
| 
 | |
| 		if (folio_test_hugetlb(folio)) {
 | |
| 			folio_isolate_hugetlb(folio, movable_folio_list);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!folio_test_lru(folio) && drain_allow) {
 | |
| 			lru_add_drain_all();
 | |
| 			drain_allow = false;
 | |
| 		}
 | |
| 
 | |
| 		if (!folio_isolate_lru(folio))
 | |
| 			continue;
 | |
| 
 | |
| 		list_add_tail(&folio->lru, movable_folio_list);
 | |
| 		node_stat_mod_folio(folio,
 | |
| 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
 | |
| 				    folio_nr_pages(folio));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unpins all folios and migrates device coherent folios and movable_folio_list.
 | |
|  * Returns -EAGAIN if all folios were successfully migrated or -errno for
 | |
|  * failure (or partial success).
 | |
|  */
 | |
| static int
 | |
| migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
 | |
| 				   struct pages_or_folios *pofs)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < pofs->nr_entries; i++) {
 | |
| 		struct folio *folio = pofs_get_folio(pofs, i);
 | |
| 
 | |
| 		if (folio_is_device_coherent(folio)) {
 | |
| 			/*
 | |
| 			 * Migration will fail if the folio is pinned, so
 | |
| 			 * convert the pin on the source folio to a normal
 | |
| 			 * reference.
 | |
| 			 */
 | |
| 			pofs_clear_entry(pofs, i);
 | |
| 			folio_get(folio);
 | |
| 			gup_put_folio(folio, 1, FOLL_PIN);
 | |
| 
 | |
| 			if (migrate_device_coherent_folio(folio)) {
 | |
| 				ret = -EBUSY;
 | |
| 				goto err;
 | |
| 			}
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't migrate folios with unexpected references, so drop
 | |
| 		 * the reference obtained by __get_user_pages_locked().
 | |
| 		 * Migrating folios have been added to movable_folio_list after
 | |
| 		 * calling folio_isolate_lru() which takes a reference so the
 | |
| 		 * folio won't be freed if it's migrating.
 | |
| 		 */
 | |
| 		unpin_folio(folio);
 | |
| 		pofs_clear_entry(pofs, i);
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(movable_folio_list)) {
 | |
| 		struct migration_target_control mtc = {
 | |
| 			.nid = NUMA_NO_NODE,
 | |
| 			.gfp_mask = GFP_USER | __GFP_NOWARN,
 | |
| 			.reason = MR_LONGTERM_PIN,
 | |
| 		};
 | |
| 
 | |
| 		if (migrate_pages(movable_folio_list, alloc_migration_target,
 | |
| 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
 | |
| 				  MR_LONGTERM_PIN, NULL)) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	putback_movable_pages(movable_folio_list);
 | |
| 
 | |
| 	return -EAGAIN;
 | |
| 
 | |
| err:
 | |
| 	pofs_unpin(pofs);
 | |
| 	putback_movable_pages(movable_folio_list);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static long
 | |
| check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
 | |
| {
 | |
| 	LIST_HEAD(movable_folio_list);
 | |
| 
 | |
| 	collect_longterm_unpinnable_folios(&movable_folio_list, pofs);
 | |
| 	if (list_empty(&movable_folio_list))
 | |
| 		return 0;
 | |
| 
 | |
| 	return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether all folios are *allowed* to be pinned indefinitely (long term).
 | |
|  * Rather confusingly, all folios in the range are required to be pinned via
 | |
|  * FOLL_PIN, before calling this routine.
 | |
|  *
 | |
|  * Return values:
 | |
|  *
 | |
|  * 0: if everything is OK and all folios in the range are allowed to be pinned,
 | |
|  * then this routine leaves all folios pinned and returns zero for success.
 | |
|  *
 | |
|  * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
 | |
|  * routine will migrate those folios away, unpin all the folios in the range. If
 | |
|  * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
 | |
|  * caller should re-pin the entire range with FOLL_PIN and then call this
 | |
|  * routine again.
 | |
|  *
 | |
|  * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
 | |
|  * indicates a migration failure. The caller should give up, and propagate the
 | |
|  * error back up the call stack. The caller does not need to unpin any folios in
 | |
|  * that case, because this routine will do the unpinning.
 | |
|  */
 | |
| static long check_and_migrate_movable_folios(unsigned long nr_folios,
 | |
| 					     struct folio **folios)
 | |
| {
 | |
| 	struct pages_or_folios pofs = {
 | |
| 		.folios = folios,
 | |
| 		.has_folios = true,
 | |
| 		.nr_entries = nr_folios,
 | |
| 	};
 | |
| 
 | |
| 	return check_and_migrate_movable_pages_or_folios(&pofs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return values and behavior are the same as those for
 | |
|  * check_and_migrate_movable_folios().
 | |
|  */
 | |
| static long check_and_migrate_movable_pages(unsigned long nr_pages,
 | |
| 					    struct page **pages)
 | |
| {
 | |
| 	struct pages_or_folios pofs = {
 | |
| 		.pages = pages,
 | |
| 		.has_folios = false,
 | |
| 		.nr_entries = nr_pages,
 | |
| 	};
 | |
| 
 | |
| 	return check_and_migrate_movable_pages_or_folios(&pofs);
 | |
| }
 | |
| #else
 | |
| static long check_and_migrate_movable_pages(unsigned long nr_pages,
 | |
| 					    struct page **pages)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long check_and_migrate_movable_folios(unsigned long nr_folios,
 | |
| 					     struct folio **folios)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_MIGRATION */
 | |
| 
 | |
| /*
 | |
|  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 | |
|  * allows us to process the FOLL_LONGTERM flag.
 | |
|  */
 | |
| static long __gup_longterm_locked(struct mm_struct *mm,
 | |
| 				  unsigned long start,
 | |
| 				  unsigned long nr_pages,
 | |
| 				  struct page **pages,
 | |
| 				  int *locked,
 | |
| 				  unsigned int gup_flags)
 | |
| {
 | |
| 	unsigned int flags;
 | |
| 	long rc, nr_pinned_pages;
 | |
| 
 | |
| 	if (!(gup_flags & FOLL_LONGTERM))
 | |
| 		return __get_user_pages_locked(mm, start, nr_pages, pages,
 | |
| 					       locked, gup_flags);
 | |
| 
 | |
| 	flags = memalloc_pin_save();
 | |
| 	do {
 | |
| 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
 | |
| 							  pages, locked,
 | |
| 							  gup_flags);
 | |
| 		if (nr_pinned_pages <= 0) {
 | |
| 			rc = nr_pinned_pages;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* FOLL_LONGTERM implies FOLL_PIN */
 | |
| 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
 | |
| 	} while (rc == -EAGAIN);
 | |
| 	memalloc_pin_restore(flags);
 | |
| 	return rc ? rc : nr_pinned_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the given flags are valid for the exported gup/pup interface, and
 | |
|  * update them with the required flags that the caller must have set.
 | |
|  */
 | |
| static bool is_valid_gup_args(struct page **pages, int *locked,
 | |
| 			      unsigned int *gup_flags_p, unsigned int to_set)
 | |
| {
 | |
| 	unsigned int gup_flags = *gup_flags_p;
 | |
| 
 | |
| 	/*
 | |
| 	 * These flags not allowed to be specified externally to the gup
 | |
| 	 * interfaces:
 | |
| 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
 | |
| 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
 | |
| 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
 | |
| 		return false;
 | |
| 
 | |
| 	gup_flags |= to_set;
 | |
| 	if (locked) {
 | |
| 		/* At the external interface locked must be set */
 | |
| 		if (WARN_ON_ONCE(*locked != 1))
 | |
| 			return false;
 | |
| 
 | |
| 		gup_flags |= FOLL_UNLOCKABLE;
 | |
| 	}
 | |
| 
 | |
| 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 | |
| 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
 | |
| 			 (FOLL_PIN | FOLL_GET)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* LONGTERM can only be specified when pinning */
 | |
| 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Pages input must be given if using GET/PIN */
 | |
| 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
 | |
| 		return false;
 | |
| 
 | |
| 	/* We want to allow the pgmap to be hot-unplugged at all times */
 | |
| 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
 | |
| 			 (gup_flags & FOLL_PCI_P2PDMA)))
 | |
| 		return false;
 | |
| 
 | |
| 	*gup_flags_p = gup_flags;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /**
 | |
|  * get_user_pages_remote() - pin user pages in memory
 | |
|  * @mm:		mm_struct of target mm
 | |
|  * @start:	starting user address
 | |
|  * @nr_pages:	number of pages from start to pin
 | |
|  * @gup_flags:	flags modifying lookup behaviour
 | |
|  * @pages:	array that receives pointers to the pages pinned.
 | |
|  *		Should be at least nr_pages long. Or NULL, if caller
 | |
|  *		only intends to ensure the pages are faulted in.
 | |
|  * @locked:	pointer to lock flag indicating whether lock is held and
 | |
|  *		subsequently whether VM_FAULT_RETRY functionality can be
 | |
|  *		utilised. Lock must initially be held.
 | |
|  *
 | |
|  * Returns either number of pages pinned (which may be less than the
 | |
|  * number requested), or an error. Details about the return value:
 | |
|  *
 | |
|  * -- If nr_pages is 0, returns 0.
 | |
|  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 | |
|  * -- If nr_pages is >0, and some pages were pinned, returns the number of
 | |
|  *    pages pinned. Again, this may be less than nr_pages.
 | |
|  *
 | |
|  * The caller is responsible for releasing returned @pages, via put_page().
 | |
|  *
 | |
|  * Must be called with mmap_lock held for read or write.
 | |
|  *
 | |
|  * get_user_pages_remote walks a process's page tables and takes a reference
 | |
|  * to each struct page that each user address corresponds to at a given
 | |
|  * instant. That is, it takes the page that would be accessed if a user
 | |
|  * thread accesses the given user virtual address at that instant.
 | |
|  *
 | |
|  * This does not guarantee that the page exists in the user mappings when
 | |
|  * get_user_pages_remote returns, and there may even be a completely different
 | |
|  * page there in some cases (eg. if mmapped pagecache has been invalidated
 | |
|  * and subsequently re-faulted). However it does guarantee that the page
 | |
|  * won't be freed completely. And mostly callers simply care that the page
 | |
|  * contains data that was valid *at some point in time*. Typically, an IO
 | |
|  * or similar operation cannot guarantee anything stronger anyway because
 | |
|  * locks can't be held over the syscall boundary.
 | |
|  *
 | |
|  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 | |
|  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 | |
|  * be called after the page is finished with, and before put_page is called.
 | |
|  *
 | |
|  * get_user_pages_remote is typically used for fewer-copy IO operations,
 | |
|  * to get a handle on the memory by some means other than accesses
 | |
|  * via the user virtual addresses. The pages may be submitted for
 | |
|  * DMA to devices or accessed via their kernel linear mapping (via the
 | |
|  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
 | |
|  *
 | |
|  * See also get_user_pages_fast, for performance critical applications.
 | |
|  *
 | |
|  * get_user_pages_remote should be phased out in favor of
 | |
|  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 | |
|  * should use get_user_pages_remote because it cannot pass
 | |
|  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 | |
|  */
 | |
| long get_user_pages_remote(struct mm_struct *mm,
 | |
| 		unsigned long start, unsigned long nr_pages,
 | |
| 		unsigned int gup_flags, struct page **pages,
 | |
| 		int *locked)
 | |
| {
 | |
| 	int local_locked = 1;
 | |
| 
 | |
| 	if (!is_valid_gup_args(pages, locked, &gup_flags,
 | |
| 			       FOLL_TOUCH | FOLL_REMOTE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return __get_user_pages_locked(mm, start, nr_pages, pages,
 | |
| 				       locked ? locked : &local_locked,
 | |
| 				       gup_flags);
 | |
| }
 | |
| EXPORT_SYMBOL(get_user_pages_remote);
 | |
| 
 | |
| #else /* CONFIG_MMU */
 | |
| long get_user_pages_remote(struct mm_struct *mm,
 | |
| 			   unsigned long start, unsigned long nr_pages,
 | |
| 			   unsigned int gup_flags, struct page **pages,
 | |
| 			   int *locked)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* !CONFIG_MMU */
 | |
| 
 | |
| /**
 | |
|  * get_user_pages() - pin user pages in memory
 | |
|  * @start:      starting user address
 | |
|  * @nr_pages:   number of pages from start to pin
 | |
|  * @gup_flags:  flags modifying lookup behaviour
 | |
|  * @pages:      array that receives pointers to the pages pinned.
 | |
|  *              Should be at least nr_pages long. Or NULL, if caller
 | |
|  *              only intends to ensure the pages are faulted in.
 | |
|  *
 | |
|  * This is the same as get_user_pages_remote(), just with a less-flexible
 | |
|  * calling convention where we assume that the mm being operated on belongs to
 | |
|  * the current task, and doesn't allow passing of a locked parameter.  We also
 | |
|  * obviously don't pass FOLL_REMOTE in here.
 | |
|  */
 | |
| long get_user_pages(unsigned long start, unsigned long nr_pages,
 | |
| 		    unsigned int gup_flags, struct page **pages)
 | |
| {
 | |
| 	int locked = 1;
 | |
| 
 | |
| 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
 | |
| 				       &locked, gup_flags);
 | |
| }
 | |
| EXPORT_SYMBOL(get_user_pages);
 | |
| 
 | |
| /*
 | |
|  * get_user_pages_unlocked() is suitable to replace the form:
 | |
|  *
 | |
|  *      mmap_read_lock(mm);
 | |
|  *      get_user_pages(mm, ..., pages, NULL);
 | |
|  *      mmap_read_unlock(mm);
 | |
|  *
 | |
|  *  with:
 | |
|  *
 | |
|  *      get_user_pages_unlocked(mm, ..., pages);
 | |
|  *
 | |
|  * It is functionally equivalent to get_user_pages_fast so
 | |
|  * get_user_pages_fast should be used instead if specific gup_flags
 | |
|  * (e.g. FOLL_FORCE) are not required.
 | |
|  */
 | |
| long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 | |
| 			     struct page **pages, unsigned int gup_flags)
 | |
| {
 | |
| 	int locked = 0;
 | |
| 
 | |
| 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
 | |
| 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
 | |
| 				       &locked, gup_flags);
 | |
| }
 | |
| EXPORT_SYMBOL(get_user_pages_unlocked);
 | |
| 
 | |
| /*
 | |
|  * GUP-fast
 | |
|  *
 | |
|  * get_user_pages_fast attempts to pin user pages by walking the page
 | |
|  * tables directly and avoids taking locks. Thus the walker needs to be
 | |
|  * protected from page table pages being freed from under it, and should
 | |
|  * block any THP splits.
 | |
|  *
 | |
|  * One way to achieve this is to have the walker disable interrupts, and
 | |
|  * rely on IPIs from the TLB flushing code blocking before the page table
 | |
|  * pages are freed. This is unsuitable for architectures that do not need
 | |
|  * to broadcast an IPI when invalidating TLBs.
 | |
|  *
 | |
|  * Another way to achieve this is to batch up page table containing pages
 | |
|  * belonging to more than one mm_user, then rcu_sched a callback to free those
 | |
|  * pages. Disabling interrupts will allow the gup_fast() walker to both block
 | |
|  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 | |
|  * (which is a relatively rare event). The code below adopts this strategy.
 | |
|  *
 | |
|  * Before activating this code, please be aware that the following assumptions
 | |
|  * are currently made:
 | |
|  *
 | |
|  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
 | |
|  *  free pages containing page tables or TLB flushing requires IPI broadcast.
 | |
|  *
 | |
|  *  *) ptes can be read atomically by the architecture.
 | |
|  *
 | |
|  *  *) valid user addesses are below TASK_MAX_SIZE
 | |
|  *
 | |
|  * The last two assumptions can be relaxed by the addition of helper functions.
 | |
|  *
 | |
|  * This code is based heavily on the PowerPC implementation by Nick Piggin.
 | |
|  */
 | |
| #ifdef CONFIG_HAVE_GUP_FAST
 | |
| /*
 | |
|  * Used in the GUP-fast path to determine whether GUP is permitted to work on
 | |
|  * a specific folio.
 | |
|  *
 | |
|  * This call assumes the caller has pinned the folio, that the lowest page table
 | |
|  * level still points to this folio, and that interrupts have been disabled.
 | |
|  *
 | |
|  * GUP-fast must reject all secretmem folios.
 | |
|  *
 | |
|  * Writing to pinned file-backed dirty tracked folios is inherently problematic
 | |
|  * (see comment describing the writable_file_mapping_allowed() function). We
 | |
|  * therefore try to avoid the most egregious case of a long-term mapping doing
 | |
|  * so.
 | |
|  *
 | |
|  * This function cannot be as thorough as that one as the VMA is not available
 | |
|  * in the fast path, so instead we whitelist known good cases and if in doubt,
 | |
|  * fall back to the slow path.
 | |
|  */
 | |
| static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
 | |
| {
 | |
| 	bool reject_file_backed = false;
 | |
| 	struct address_space *mapping;
 | |
| 	bool check_secretmem = false;
 | |
| 	unsigned long mapping_flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we aren't pinning then no problematic write can occur. A long term
 | |
| 	 * pin is the most egregious case so this is the one we disallow.
 | |
| 	 */
 | |
| 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
 | |
| 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
 | |
| 		reject_file_backed = true;
 | |
| 
 | |
| 	/* We hold a folio reference, so we can safely access folio fields. */
 | |
| 
 | |
| 	/* secretmem folios are always order-0 folios. */
 | |
| 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
 | |
| 		check_secretmem = true;
 | |
| 
 | |
| 	if (!reject_file_backed && !check_secretmem)
 | |
| 		return true;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(folio_test_slab(folio)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
 | |
| 	if (folio_test_hugetlb(folio))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
 | |
| 	 * cannot proceed, which means no actions performed under RCU can
 | |
| 	 * proceed either.
 | |
| 	 *
 | |
| 	 * inodes and thus their mappings are freed under RCU, which means the
 | |
| 	 * mapping cannot be freed beneath us and thus we can safely dereference
 | |
| 	 * it.
 | |
| 	 */
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	/*
 | |
| 	 * However, there may be operations which _alter_ the mapping, so ensure
 | |
| 	 * we read it once and only once.
 | |
| 	 */
 | |
| 	mapping = READ_ONCE(folio->mapping);
 | |
| 
 | |
| 	/*
 | |
| 	 * The mapping may have been truncated, in any case we cannot determine
 | |
| 	 * if this mapping is safe - fall back to slow path to determine how to
 | |
| 	 * proceed.
 | |
| 	 */
 | |
| 	if (!mapping)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Anonymous folios pose no problem. */
 | |
| 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
 | |
| 	if (mapping_flags)
 | |
| 		return mapping_flags & PAGE_MAPPING_ANON;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, we know the mapping is non-null and points to an
 | |
| 	 * address_space object.
 | |
| 	 */
 | |
| 	if (check_secretmem && secretmem_mapping(mapping))
 | |
| 		return false;
 | |
| 	/* The only remaining allowed file system is shmem. */
 | |
| 	return !reject_file_backed || shmem_mapping(mapping);
 | |
| }
 | |
| 
 | |
| static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
 | |
| 		unsigned int flags, struct page **pages)
 | |
| {
 | |
| 	while ((*nr) - nr_start) {
 | |
| 		struct folio *folio = page_folio(pages[--(*nr)]);
 | |
| 
 | |
| 		folio_clear_referenced(folio);
 | |
| 		gup_put_folio(folio, 1, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
 | |
| /*
 | |
|  * GUP-fast relies on pte change detection to avoid concurrent pgtable
 | |
|  * operations.
 | |
|  *
 | |
|  * To pin the page, GUP-fast needs to do below in order:
 | |
|  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
 | |
|  *
 | |
|  * For the rest of pgtable operations where pgtable updates can be racy
 | |
|  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
 | |
|  * is pinned.
 | |
|  *
 | |
|  * Above will work for all pte-level operations, including THP split.
 | |
|  *
 | |
|  * For THP collapse, it's a bit more complicated because GUP-fast may be
 | |
|  * walking a pgtable page that is being freed (pte is still valid but pmd
 | |
|  * can be cleared already).  To avoid race in such condition, we need to
 | |
|  * also check pmd here to make sure pmd doesn't change (corresponds to
 | |
|  * pmdp_collapse_flush() in the THP collapse code path).
 | |
|  */
 | |
| static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	struct dev_pagemap *pgmap = NULL;
 | |
| 	int nr_start = *nr, ret = 0;
 | |
| 	pte_t *ptep, *ptem;
 | |
| 
 | |
| 	ptem = ptep = pte_offset_map(&pmd, addr);
 | |
| 	if (!ptep)
 | |
| 		return 0;
 | |
| 	do {
 | |
| 		pte_t pte = ptep_get_lockless(ptep);
 | |
| 		struct page *page;
 | |
| 		struct folio *folio;
 | |
| 
 | |
| 		/*
 | |
| 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
 | |
| 		 * pte_access_permitted() better should reject these pages
 | |
| 		 * either way: otherwise, GUP-fast might succeed in
 | |
| 		 * cases where ordinary GUP would fail due to VMA access
 | |
| 		 * permissions.
 | |
| 		 */
 | |
| 		if (pte_protnone(pte))
 | |
| 			goto pte_unmap;
 | |
| 
 | |
| 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
 | |
| 			goto pte_unmap;
 | |
| 
 | |
| 		if (pte_devmap(pte)) {
 | |
| 			if (unlikely(flags & FOLL_LONGTERM))
 | |
| 				goto pte_unmap;
 | |
| 
 | |
| 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
 | |
| 			if (unlikely(!pgmap)) {
 | |
| 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
 | |
| 				goto pte_unmap;
 | |
| 			}
 | |
| 		} else if (pte_special(pte))
 | |
| 			goto pte_unmap;
 | |
| 
 | |
| 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
 | |
| 		page = pte_page(pte);
 | |
| 
 | |
| 		folio = try_grab_folio_fast(page, 1, flags);
 | |
| 		if (!folio)
 | |
| 			goto pte_unmap;
 | |
| 
 | |
| 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
 | |
| 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
 | |
| 			gup_put_folio(folio, 1, flags);
 | |
| 			goto pte_unmap;
 | |
| 		}
 | |
| 
 | |
| 		if (!gup_fast_folio_allowed(folio, flags)) {
 | |
| 			gup_put_folio(folio, 1, flags);
 | |
| 			goto pte_unmap;
 | |
| 		}
 | |
| 
 | |
| 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
 | |
| 			gup_put_folio(folio, 1, flags);
 | |
| 			goto pte_unmap;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to make the page accessible if and only if we are
 | |
| 		 * going to access its content (the FOLL_PIN case).  Please
 | |
| 		 * see Documentation/core-api/pin_user_pages.rst for
 | |
| 		 * details.
 | |
| 		 */
 | |
| 		if (flags & FOLL_PIN) {
 | |
| 			ret = arch_make_folio_accessible(folio);
 | |
| 			if (ret) {
 | |
| 				gup_put_folio(folio, 1, flags);
 | |
| 				goto pte_unmap;
 | |
| 			}
 | |
| 		}
 | |
| 		folio_set_referenced(folio);
 | |
| 		pages[*nr] = page;
 | |
| 		(*nr)++;
 | |
| 	} while (ptep++, addr += PAGE_SIZE, addr != end);
 | |
| 
 | |
| 	ret = 1;
 | |
| 
 | |
| pte_unmap:
 | |
| 	if (pgmap)
 | |
| 		put_dev_pagemap(pgmap);
 | |
| 	pte_unmap(ptem);
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| 
 | |
| /*
 | |
|  * If we can't determine whether or not a pte is special, then fail immediately
 | |
|  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 | |
|  * to be special.
 | |
|  *
 | |
|  * For a futex to be placed on a THP tail page, get_futex_key requires a
 | |
|  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
 | |
|  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
 | |
|  */
 | |
| static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
 | |
| 
 | |
| #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
 | |
| 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
 | |
| {
 | |
| 	int nr_start = *nr;
 | |
| 	struct dev_pagemap *pgmap = NULL;
 | |
| 
 | |
| 	do {
 | |
| 		struct folio *folio;
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		pgmap = get_dev_pagemap(pfn, pgmap);
 | |
| 		if (unlikely(!pgmap)) {
 | |
| 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		folio = try_grab_folio_fast(page, 1, flags);
 | |
| 		if (!folio) {
 | |
| 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
 | |
| 			break;
 | |
| 		}
 | |
| 		folio_set_referenced(folio);
 | |
| 		pages[*nr] = page;
 | |
| 		(*nr)++;
 | |
| 		pfn++;
 | |
| 	} while (addr += PAGE_SIZE, addr != end);
 | |
| 
 | |
| 	put_dev_pagemap(pgmap);
 | |
| 	return addr == end;
 | |
| }
 | |
| 
 | |
| static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	unsigned long fault_pfn;
 | |
| 	int nr_start = *nr;
 | |
| 
 | |
| 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 | |
| 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
 | |
| 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	unsigned long fault_pfn;
 | |
| 	int nr_start = *nr;
 | |
| 
 | |
| 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 | |
| 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
 | |
| 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| #else
 | |
| static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct folio *folio;
 | |
| 	int refs;
 | |
| 
 | |
| 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_special(orig))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_devmap(orig)) {
 | |
| 		if (unlikely(flags & FOLL_LONGTERM))
 | |
| 			return 0;
 | |
| 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
 | |
| 					        pages, nr);
 | |
| 	}
 | |
| 
 | |
| 	page = pmd_page(orig);
 | |
| 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
 | |
| 
 | |
| 	folio = try_grab_folio_fast(page, refs, flags);
 | |
| 	if (!folio)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
 | |
| 		gup_put_folio(folio, refs, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!gup_fast_folio_allowed(folio, flags)) {
 | |
| 		gup_put_folio(folio, refs, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
 | |
| 		gup_put_folio(folio, refs, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	*nr += refs;
 | |
| 	folio_set_referenced(folio);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct folio *folio;
 | |
| 	int refs;
 | |
| 
 | |
| 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pud_special(orig))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pud_devmap(orig)) {
 | |
| 		if (unlikely(flags & FOLL_LONGTERM))
 | |
| 			return 0;
 | |
| 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
 | |
| 					        pages, nr);
 | |
| 	}
 | |
| 
 | |
| 	page = pud_page(orig);
 | |
| 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
 | |
| 
 | |
| 	folio = try_grab_folio_fast(page, refs, flags);
 | |
| 	if (!folio)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
 | |
| 		gup_put_folio(folio, refs, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!gup_fast_folio_allowed(folio, flags)) {
 | |
| 		gup_put_folio(folio, refs, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
 | |
| 		gup_put_folio(folio, refs, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	*nr += refs;
 | |
| 	folio_set_referenced(folio);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	unsigned long next;
 | |
| 	pmd_t *pmdp;
 | |
| 
 | |
| 	pmdp = pmd_offset_lockless(pudp, pud, addr);
 | |
| 	do {
 | |
| 		pmd_t pmd = pmdp_get_lockless(pmdp);
 | |
| 
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (!pmd_present(pmd))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (unlikely(pmd_leaf(pmd))) {
 | |
| 			/* See gup_fast_pte_range() */
 | |
| 			if (pmd_protnone(pmd))
 | |
| 				return 0;
 | |
| 
 | |
| 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
 | |
| 				pages, nr))
 | |
| 				return 0;
 | |
| 
 | |
| 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
 | |
| 					       pages, nr))
 | |
| 			return 0;
 | |
| 	} while (pmdp++, addr = next, addr != end);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	unsigned long next;
 | |
| 	pud_t *pudp;
 | |
| 
 | |
| 	pudp = pud_offset_lockless(p4dp, p4d, addr);
 | |
| 	do {
 | |
| 		pud_t pud = READ_ONCE(*pudp);
 | |
| 
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (unlikely(!pud_present(pud)))
 | |
| 			return 0;
 | |
| 		if (unlikely(pud_leaf(pud))) {
 | |
| 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
 | |
| 					       pages, nr))
 | |
| 				return 0;
 | |
| 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
 | |
| 					       pages, nr))
 | |
| 			return 0;
 | |
| 	} while (pudp++, addr = next, addr != end);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
 | |
| 		unsigned long end, unsigned int flags, struct page **pages,
 | |
| 		int *nr)
 | |
| {
 | |
| 	unsigned long next;
 | |
| 	p4d_t *p4dp;
 | |
| 
 | |
| 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
 | |
| 	do {
 | |
| 		p4d_t p4d = READ_ONCE(*p4dp);
 | |
| 
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 		if (!p4d_present(p4d))
 | |
| 			return 0;
 | |
| 		BUILD_BUG_ON(p4d_leaf(p4d));
 | |
| 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
 | |
| 					pages, nr))
 | |
| 			return 0;
 | |
| 	} while (p4dp++, addr = next, addr != end);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
 | |
| 		unsigned int flags, struct page **pages, int *nr)
 | |
| {
 | |
| 	unsigned long next;
 | |
| 	pgd_t *pgdp;
 | |
| 
 | |
| 	pgdp = pgd_offset(current->mm, addr);
 | |
| 	do {
 | |
| 		pgd_t pgd = READ_ONCE(*pgdp);
 | |
| 
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none(pgd))
 | |
| 			return;
 | |
| 		BUILD_BUG_ON(pgd_leaf(pgd));
 | |
| 		if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
 | |
| 					pages, nr))
 | |
| 			return;
 | |
| 	} while (pgdp++, addr = next, addr != end);
 | |
| }
 | |
| #else
 | |
| static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
 | |
| 		unsigned int flags, struct page **pages, int *nr)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_HAVE_GUP_FAST */
 | |
| 
 | |
| #ifndef gup_fast_permitted
 | |
| /*
 | |
|  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
 | |
|  * we need to fall back to the slow version:
 | |
|  */
 | |
| static bool gup_fast_permitted(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static unsigned long gup_fast(unsigned long start, unsigned long end,
 | |
| 		unsigned int gup_flags, struct page **pages)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int nr_pinned = 0;
 | |
| 	unsigned seq;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
 | |
| 	    !gup_fast_permitted(start, end))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (gup_flags & FOLL_PIN) {
 | |
| 		if (!raw_seqcount_try_begin(¤t->mm->write_protect_seq, seq))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable interrupts. The nested form is used, in order to allow full,
 | |
| 	 * general purpose use of this routine.
 | |
| 	 *
 | |
| 	 * With interrupts disabled, we block page table pages from being freed
 | |
| 	 * from under us. See struct mmu_table_batch comments in
 | |
| 	 * include/asm-generic/tlb.h for more details.
 | |
| 	 *
 | |
| 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
 | |
| 	 * that come from callers of tlb_remove_table_sync_one().
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * When pinning pages for DMA there could be a concurrent write protect
 | |
| 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
 | |
| 	 */
 | |
| 	if (gup_flags & FOLL_PIN) {
 | |
| 		if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
 | |
| 			gup_fast_unpin_user_pages(pages, nr_pinned);
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			sanity_check_pinned_pages(pages, nr_pinned);
 | |
| 		}
 | |
| 	}
 | |
| 	return nr_pinned;
 | |
| }
 | |
| 
 | |
| static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
 | |
| 		unsigned int gup_flags, struct page **pages)
 | |
| {
 | |
| 	unsigned long len, end;
 | |
| 	unsigned long nr_pinned;
 | |
| 	int locked = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
 | |
| 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
 | |
| 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
 | |
| 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (gup_flags & FOLL_PIN)
 | |
| 		mm_set_has_pinned_flag(¤t->mm->flags);
 | |
| 
 | |
| 	if (!(gup_flags & FOLL_FAST_ONLY))
 | |
| 		might_lock_read(¤t->mm->mmap_lock);
 | |
| 
 | |
| 	start = untagged_addr(start) & PAGE_MASK;
 | |
| 	len = nr_pages << PAGE_SHIFT;
 | |
| 	if (check_add_overflow(start, len, &end))
 | |
| 		return -EOVERFLOW;
 | |
| 	if (end > TASK_SIZE_MAX)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	nr_pinned = gup_fast(start, end, gup_flags, pages);
 | |
| 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
 | |
| 		return nr_pinned;
 | |
| 
 | |
| 	/* Slow path: try to get the remaining pages with get_user_pages */
 | |
| 	start += nr_pinned << PAGE_SHIFT;
 | |
| 	pages += nr_pinned;
 | |
| 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
 | |
| 				    pages, &locked,
 | |
| 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
 | |
| 	if (ret < 0) {
 | |
| 		/*
 | |
| 		 * The caller has to unpin the pages we already pinned so
 | |
| 		 * returning -errno is not an option
 | |
| 		 */
 | |
| 		if (nr_pinned)
 | |
| 			return nr_pinned;
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return ret + nr_pinned;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_user_pages_fast_only() - pin user pages in memory
 | |
|  * @start:      starting user address
 | |
|  * @nr_pages:   number of pages from start to pin
 | |
|  * @gup_flags:  flags modifying pin behaviour
 | |
|  * @pages:      array that receives pointers to the pages pinned.
 | |
|  *              Should be at least nr_pages long.
 | |
|  *
 | |
|  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 | |
|  * the regular GUP.
 | |
|  *
 | |
|  * If the architecture does not support this function, simply return with no
 | |
|  * pages pinned.
 | |
|  *
 | |
|  * Careful, careful! COW breaking can go either way, so a non-write
 | |
|  * access can get ambiguous page results. If you call this function without
 | |
|  * 'write' set, you'd better be sure that you're ok with that ambiguity.
 | |
|  */
 | |
| int get_user_pages_fast_only(unsigned long start, int nr_pages,
 | |
| 			     unsigned int gup_flags, struct page **pages)
 | |
| {
 | |
| 	/*
 | |
| 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
 | |
| 	 * because gup fast is always a "pin with a +1 page refcount" request.
 | |
| 	 *
 | |
| 	 * FOLL_FAST_ONLY is required in order to match the API description of
 | |
| 	 * this routine: no fall back to regular ("slow") GUP.
 | |
| 	 */
 | |
| 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
 | |
| 			       FOLL_GET | FOLL_FAST_ONLY))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
 | |
| 
 | |
| /**
 | |
|  * get_user_pages_fast() - pin user pages in memory
 | |
|  * @start:      starting user address
 | |
|  * @nr_pages:   number of pages from start to pin
 | |
|  * @gup_flags:  flags modifying pin behaviour
 | |
|  * @pages:      array that receives pointers to the pages pinned.
 | |
|  *              Should be at least nr_pages long.
 | |
|  *
 | |
|  * Attempt to pin user pages in memory without taking mm->mmap_lock.
 | |
|  * If not successful, it will fall back to taking the lock and
 | |
|  * calling get_user_pages().
 | |
|  *
 | |
|  * Returns number of pages pinned. This may be fewer than the number requested.
 | |
|  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 | |
|  * -errno.
 | |
|  */
 | |
| int get_user_pages_fast(unsigned long start, int nr_pages,
 | |
| 			unsigned int gup_flags, struct page **pages)
 | |
| {
 | |
| 	/*
 | |
| 	 * The caller may or may not have explicitly set FOLL_GET; either way is
 | |
| 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
 | |
| 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
 | |
| 	 * request.
 | |
| 	 */
 | |
| 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
 | |
| 		return -EINVAL;
 | |
| 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_user_pages_fast);
 | |
| 
 | |
| /**
 | |
|  * pin_user_pages_fast() - pin user pages in memory without taking locks
 | |
|  *
 | |
|  * @start:      starting user address
 | |
|  * @nr_pages:   number of pages from start to pin
 | |
|  * @gup_flags:  flags modifying pin behaviour
 | |
|  * @pages:      array that receives pointers to the pages pinned.
 | |
|  *              Should be at least nr_pages long.
 | |
|  *
 | |
|  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 | |
|  * get_user_pages_fast() for documentation on the function arguments, because
 | |
|  * the arguments here are identical.
 | |
|  *
 | |
|  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
 | |
|  * see Documentation/core-api/pin_user_pages.rst for further details.
 | |
|  *
 | |
|  * Note that if a zero_page is amongst the returned pages, it will not have
 | |
|  * pins in it and unpin_user_page() will not remove pins from it.
 | |
|  */
 | |
| int pin_user_pages_fast(unsigned long start, int nr_pages,
 | |
| 			unsigned int gup_flags, struct page **pages)
 | |
| {
 | |
| 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
 | |
| 		return -EINVAL;
 | |
| 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pin_user_pages_fast);
 | |
| 
 | |
| /**
 | |
|  * pin_user_pages_remote() - pin pages of a remote process
 | |
|  *
 | |
|  * @mm:		mm_struct of target mm
 | |
|  * @start:	starting user address
 | |
|  * @nr_pages:	number of pages from start to pin
 | |
|  * @gup_flags:	flags modifying lookup behaviour
 | |
|  * @pages:	array that receives pointers to the pages pinned.
 | |
|  *		Should be at least nr_pages long.
 | |
|  * @locked:	pointer to lock flag indicating whether lock is held and
 | |
|  *		subsequently whether VM_FAULT_RETRY functionality can be
 | |
|  *		utilised. Lock must initially be held.
 | |
|  *
 | |
|  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 | |
|  * get_user_pages_remote() for documentation on the function arguments, because
 | |
|  * the arguments here are identical.
 | |
|  *
 | |
|  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
 | |
|  * see Documentation/core-api/pin_user_pages.rst for details.
 | |
|  *
 | |
|  * Note that if a zero_page is amongst the returned pages, it will not have
 | |
|  * pins in it and unpin_user_page*() will not remove pins from it.
 | |
|  */
 | |
| long pin_user_pages_remote(struct mm_struct *mm,
 | |
| 			   unsigned long start, unsigned long nr_pages,
 | |
| 			   unsigned int gup_flags, struct page **pages,
 | |
| 			   int *locked)
 | |
| {
 | |
| 	int local_locked = 1;
 | |
| 
 | |
| 	if (!is_valid_gup_args(pages, locked, &gup_flags,
 | |
| 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
 | |
| 		return 0;
 | |
| 	return __gup_longterm_locked(mm, start, nr_pages, pages,
 | |
| 				     locked ? locked : &local_locked,
 | |
| 				     gup_flags);
 | |
| }
 | |
| EXPORT_SYMBOL(pin_user_pages_remote);
 | |
| 
 | |
| /**
 | |
|  * pin_user_pages() - pin user pages in memory for use by other devices
 | |
|  *
 | |
|  * @start:	starting user address
 | |
|  * @nr_pages:	number of pages from start to pin
 | |
|  * @gup_flags:	flags modifying lookup behaviour
 | |
|  * @pages:	array that receives pointers to the pages pinned.
 | |
|  *		Should be at least nr_pages long.
 | |
|  *
 | |
|  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 | |
|  * FOLL_PIN is set.
 | |
|  *
 | |
|  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
 | |
|  * see Documentation/core-api/pin_user_pages.rst for details.
 | |
|  *
 | |
|  * Note that if a zero_page is amongst the returned pages, it will not have
 | |
|  * pins in it and unpin_user_page*() will not remove pins from it.
 | |
|  */
 | |
| long pin_user_pages(unsigned long start, unsigned long nr_pages,
 | |
| 		    unsigned int gup_flags, struct page **pages)
 | |
| {
 | |
| 	int locked = 1;
 | |
| 
 | |
| 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
 | |
| 		return 0;
 | |
| 	return __gup_longterm_locked(current->mm, start, nr_pages,
 | |
| 				     pages, &locked, gup_flags);
 | |
| }
 | |
| EXPORT_SYMBOL(pin_user_pages);
 | |
| 
 | |
| /*
 | |
|  * pin_user_pages_unlocked() is the FOLL_PIN variant of
 | |
|  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 | |
|  * FOLL_PIN and rejects FOLL_GET.
 | |
|  *
 | |
|  * Note that if a zero_page is amongst the returned pages, it will not have
 | |
|  * pins in it and unpin_user_page*() will not remove pins from it.
 | |
|  */
 | |
| long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 | |
| 			     struct page **pages, unsigned int gup_flags)
 | |
| {
 | |
| 	int locked = 0;
 | |
| 
 | |
| 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
 | |
| 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
 | |
| 				     &locked, gup_flags);
 | |
| }
 | |
| EXPORT_SYMBOL(pin_user_pages_unlocked);
 | |
| 
 | |
| /**
 | |
|  * memfd_pin_folios() - pin folios associated with a memfd
 | |
|  * @memfd:      the memfd whose folios are to be pinned
 | |
|  * @start:      the first memfd offset
 | |
|  * @end:        the last memfd offset (inclusive)
 | |
|  * @folios:     array that receives pointers to the folios pinned
 | |
|  * @max_folios: maximum number of entries in @folios
 | |
|  * @offset:     the offset into the first folio
 | |
|  *
 | |
|  * Attempt to pin folios associated with a memfd in the contiguous range
 | |
|  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
 | |
|  * the folios can either be found in the page cache or need to be allocated
 | |
|  * if necessary. Once the folios are located, they are all pinned via
 | |
|  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
 | |
|  * And, eventually, these pinned folios must be released either using
 | |
|  * unpin_folios() or unpin_folio().
 | |
|  *
 | |
|  * It must be noted that the folios may be pinned for an indefinite amount
 | |
|  * of time. And, in most cases, the duration of time they may stay pinned
 | |
|  * would be controlled by the userspace. This behavior is effectively the
 | |
|  * same as using FOLL_LONGTERM with other GUP APIs.
 | |
|  *
 | |
|  * Returns number of folios pinned, which could be less than @max_folios
 | |
|  * as it depends on the folio sizes that cover the range [start, end].
 | |
|  * If no folios were pinned, it returns -errno.
 | |
|  */
 | |
| long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
 | |
| 		      struct folio **folios, unsigned int max_folios,
 | |
| 		      pgoff_t *offset)
 | |
| {
 | |
| 	unsigned int flags, nr_folios, nr_found;
 | |
| 	unsigned int i, pgshift = PAGE_SHIFT;
 | |
| 	pgoff_t start_idx, end_idx;
 | |
| 	struct folio *folio = NULL;
 | |
| 	struct folio_batch fbatch;
 | |
| 	struct hstate *h;
 | |
| 	long ret = -EINVAL;
 | |
| 
 | |
| 	if (start < 0 || start > end || !max_folios)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!memfd)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (end >= i_size_read(file_inode(memfd)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (is_file_hugepages(memfd)) {
 | |
| 		h = hstate_file(memfd);
 | |
| 		pgshift = huge_page_shift(h);
 | |
| 	}
 | |
| 
 | |
| 	flags = memalloc_pin_save();
 | |
| 	do {
 | |
| 		nr_folios = 0;
 | |
| 		start_idx = start >> pgshift;
 | |
| 		end_idx = end >> pgshift;
 | |
| 		if (is_file_hugepages(memfd)) {
 | |
| 			start_idx <<= huge_page_order(h);
 | |
| 			end_idx <<= huge_page_order(h);
 | |
| 		}
 | |
| 
 | |
| 		folio_batch_init(&fbatch);
 | |
| 		while (start_idx <= end_idx && nr_folios < max_folios) {
 | |
| 			/*
 | |
| 			 * In most cases, we should be able to find the folios
 | |
| 			 * in the page cache. If we cannot find them for some
 | |
| 			 * reason, we try to allocate them and add them to the
 | |
| 			 * page cache.
 | |
| 			 */
 | |
| 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
 | |
| 							     &start_idx,
 | |
| 							     end_idx,
 | |
| 							     &fbatch);
 | |
| 			if (folio) {
 | |
| 				folio_put(folio);
 | |
| 				folio = NULL;
 | |
| 			}
 | |
| 
 | |
| 			for (i = 0; i < nr_found; i++) {
 | |
| 				folio = fbatch.folios[i];
 | |
| 
 | |
| 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
 | |
| 					folio_batch_release(&fbatch);
 | |
| 					ret = -EINVAL;
 | |
| 					goto err;
 | |
| 				}
 | |
| 
 | |
| 				if (nr_folios == 0)
 | |
| 					*offset = offset_in_folio(folio, start);
 | |
| 
 | |
| 				folios[nr_folios] = folio;
 | |
| 				if (++nr_folios == max_folios)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 			folio = NULL;
 | |
| 			folio_batch_release(&fbatch);
 | |
| 			if (!nr_found) {
 | |
| 				folio = memfd_alloc_folio(memfd, start_idx);
 | |
| 				if (IS_ERR(folio)) {
 | |
| 					ret = PTR_ERR(folio);
 | |
| 					if (ret != -EEXIST)
 | |
| 						goto err;
 | |
| 					folio = NULL;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ret = check_and_migrate_movable_folios(nr_folios, folios);
 | |
| 	} while (ret == -EAGAIN);
 | |
| 
 | |
| 	memalloc_pin_restore(flags);
 | |
| 	return ret ? ret : nr_folios;
 | |
| err:
 | |
| 	memalloc_pin_restore(flags);
 | |
| 	unpin_folios(folios, nr_folios);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(memfd_pin_folios);
 | |
| 
 | |
| /**
 | |
|  * folio_add_pins() - add pins to an already-pinned folio
 | |
|  * @folio: the folio to add more pins to
 | |
|  * @pins: number of pins to add
 | |
|  *
 | |
|  * Try to add more pins to an already-pinned folio. The semantics
 | |
|  * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
 | |
|  * be changed.
 | |
|  *
 | |
|  * This function is helpful when having obtained a pin on a large folio
 | |
|  * using memfd_pin_folios(), but wanting to logically unpin parts
 | |
|  * (e.g., individual pages) of the folio later, for example, using
 | |
|  * unpin_user_page_range_dirty_lock().
 | |
|  *
 | |
|  * This is not the right interface to initially pin a folio.
 | |
|  */
 | |
| int folio_add_pins(struct folio *folio, unsigned int pins)
 | |
| {
 | |
| 	VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
 | |
| 
 | |
| 	return try_grab_folio(folio, pins, FOLL_PIN);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(folio_add_pins);
 |