mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 274fe92de2
			
		
	
	
		274fe92de2
		
	
	
	
	
		
			
			commit4eeec8c89a("mm: move hugetlb specific things in folio to page[3]") shifted hugetlb specific stuff, and now mapping overlaps _hugetlb_cgroup field. Upon restoring the vmemmap for HVO, only the first two tail pages are reset, and this causes the check in free_tail_page_prepare() to fail as it finds an unexpected mapping value in some tails. Increment the number of pages to be reset to 4 (head + 3 tail pages) Link: https://lkml.kernel.org/r/20250415111859.376302-1-osalvador@suse.de Fixes:4eeec8c89a("mm: move hugetlb specific things in folio to page[3]") Signed-off-by: Oscar Salvador <osalvador@suse.de> Suggested-by: David Hildenbrand <david@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			914 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			914 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * HugeTLB Vmemmap Optimization (HVO)
 | |
|  *
 | |
|  * Copyright (c) 2020, ByteDance. All rights reserved.
 | |
|  *
 | |
|  *     Author: Muchun Song <songmuchun@bytedance.com>
 | |
|  *
 | |
|  * See Documentation/mm/vmemmap_dedup.rst
 | |
|  */
 | |
| #define pr_fmt(fmt)	"HugeTLB: " fmt
 | |
| 
 | |
| #include <linux/pgtable.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/bootmem_info.h>
 | |
| #include <linux/mmdebug.h>
 | |
| #include <linux/pagewalk.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include "hugetlb_vmemmap.h"
 | |
| 
 | |
| /**
 | |
|  * struct vmemmap_remap_walk - walk vmemmap page table
 | |
|  *
 | |
|  * @remap_pte:		called for each lowest-level entry (PTE).
 | |
|  * @nr_walked:		the number of walked pte.
 | |
|  * @reuse_page:		the page which is reused for the tail vmemmap pages.
 | |
|  * @reuse_addr:		the virtual address of the @reuse_page page.
 | |
|  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
 | |
|  *			or is mapped from.
 | |
|  * @flags:		used to modify behavior in vmemmap page table walking
 | |
|  *			operations.
 | |
|  */
 | |
| struct vmemmap_remap_walk {
 | |
| 	void			(*remap_pte)(pte_t *pte, unsigned long addr,
 | |
| 					     struct vmemmap_remap_walk *walk);
 | |
| 	unsigned long		nr_walked;
 | |
| 	struct page		*reuse_page;
 | |
| 	unsigned long		reuse_addr;
 | |
| 	struct list_head	*vmemmap_pages;
 | |
| 
 | |
| /* Skip the TLB flush when we split the PMD */
 | |
| #define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0)
 | |
| /* Skip the TLB flush when we remap the PTE */
 | |
| #define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1)
 | |
| /* synchronize_rcu() to avoid writes from page_ref_add_unless() */
 | |
| #define VMEMMAP_SYNCHRONIZE_RCU		BIT(2)
 | |
| 	unsigned long		flags;
 | |
| };
 | |
| 
 | |
| static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
 | |
| 			     struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	pmd_t __pmd;
 | |
| 	int i;
 | |
| 	unsigned long addr = start;
 | |
| 	pte_t *pgtable;
 | |
| 
 | |
| 	pgtable = pte_alloc_one_kernel(&init_mm);
 | |
| 	if (!pgtable)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
 | |
| 		pte_t entry, *pte;
 | |
| 		pgprot_t pgprot = PAGE_KERNEL;
 | |
| 
 | |
| 		entry = mk_pte(head + i, pgprot);
 | |
| 		pte = pte_offset_kernel(&__pmd, addr);
 | |
| 		set_pte_at(&init_mm, addr, pte, entry);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 	if (likely(pmd_leaf(*pmd))) {
 | |
| 		/*
 | |
| 		 * Higher order allocations from buddy allocator must be able to
 | |
| 		 * be treated as indepdenent small pages (as they can be freed
 | |
| 		 * individually).
 | |
| 		 */
 | |
| 		if (!PageReserved(head))
 | |
| 			split_page(head, get_order(PMD_SIZE));
 | |
| 
 | |
| 		/* Make pte visible before pmd. See comment in pmd_install(). */
 | |
| 		smp_wmb();
 | |
| 		pmd_populate_kernel(&init_mm, pmd, pgtable);
 | |
| 		if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
 | |
| 			flush_tlb_kernel_range(start, start + PMD_SIZE);
 | |
| 	} else {
 | |
| 		pte_free_kernel(&init_mm, pgtable);
 | |
| 	}
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
 | |
| 			     unsigned long next, struct mm_walk *walk)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct page *head;
 | |
| 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
 | |
| 
 | |
| 	/* Only splitting, not remapping the vmemmap pages. */
 | |
| 	if (!vmemmap_walk->remap_pte)
 | |
| 		walk->action = ACTION_CONTINUE;
 | |
| 
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
 | |
| 	/*
 | |
| 	 * Due to HugeTLB alignment requirements and the vmemmap
 | |
| 	 * pages being at the start of the hotplugged memory
 | |
| 	 * region in memory_hotplug.memmap_on_memory case. Checking
 | |
| 	 * the vmemmap page associated with the first vmemmap page
 | |
| 	 * if it is self-hosted is sufficient.
 | |
| 	 *
 | |
| 	 * [                  hotplugged memory                  ]
 | |
| 	 * [        section        ][...][        section        ]
 | |
| 	 * [ vmemmap ][              usable memory               ]
 | |
| 	 *   ^  | ^                        |
 | |
| 	 *   +--+ |                        |
 | |
| 	 *        +------------------------+
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
 | |
| 		struct page *page = head ? head + pte_index(addr) :
 | |
| 				    pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
 | |
| 
 | |
| 		if (PageVmemmapSelfHosted(page))
 | |
| 			ret = -ENOTSUPP;
 | |
| 	}
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| 	if (!head || ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
 | |
| }
 | |
| 
 | |
| static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
 | |
| 			     unsigned long next, struct mm_walk *walk)
 | |
| {
 | |
| 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
 | |
| 
 | |
| 	/*
 | |
| 	 * The reuse_page is found 'first' in page table walking before
 | |
| 	 * starting remapping.
 | |
| 	 */
 | |
| 	if (!vmemmap_walk->reuse_page)
 | |
| 		vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
 | |
| 	else
 | |
| 		vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
 | |
| 	vmemmap_walk->nr_walked++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct mm_walk_ops vmemmap_remap_ops = {
 | |
| 	.pmd_entry	= vmemmap_pmd_entry,
 | |
| 	.pte_entry	= vmemmap_pte_entry,
 | |
| };
 | |
| 
 | |
| static int vmemmap_remap_range(unsigned long start, unsigned long end,
 | |
| 			       struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	VM_BUG_ON(!PAGE_ALIGNED(start | end));
 | |
| 
 | |
| 	mmap_read_lock(&init_mm);
 | |
| 	ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
 | |
| 				    NULL, walk);
 | |
| 	mmap_read_unlock(&init_mm);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
 | |
| 		flush_tlb_kernel_range(start, end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
 | |
|  * allocator or buddy allocator. If the PG_reserved flag is set, it means
 | |
|  * that it allocated from the memblock allocator, just free it via the
 | |
|  * free_bootmem_page(). Otherwise, use __free_page().
 | |
|  */
 | |
| static inline void free_vmemmap_page(struct page *page)
 | |
| {
 | |
| 	if (PageReserved(page)) {
 | |
| 		memmap_boot_pages_add(-1);
 | |
| 		free_bootmem_page(page);
 | |
| 	} else {
 | |
| 		memmap_pages_add(-1);
 | |
| 		__free_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Free a list of the vmemmap pages */
 | |
| static void free_vmemmap_page_list(struct list_head *list)
 | |
| {
 | |
| 	struct page *page, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(page, next, list, lru)
 | |
| 		free_vmemmap_page(page);
 | |
| }
 | |
| 
 | |
| static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
 | |
| 			      struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	/*
 | |
| 	 * Remap the tail pages as read-only to catch illegal write operation
 | |
| 	 * to the tail pages.
 | |
| 	 */
 | |
| 	pgprot_t pgprot = PAGE_KERNEL_RO;
 | |
| 	struct page *page = pte_page(ptep_get(pte));
 | |
| 	pte_t entry;
 | |
| 
 | |
| 	/* Remapping the head page requires r/w */
 | |
| 	if (unlikely(addr == walk->reuse_addr)) {
 | |
| 		pgprot = PAGE_KERNEL;
 | |
| 		list_del(&walk->reuse_page->lru);
 | |
| 
 | |
| 		/*
 | |
| 		 * Makes sure that preceding stores to the page contents from
 | |
| 		 * vmemmap_remap_free() become visible before the set_pte_at()
 | |
| 		 * write.
 | |
| 		 */
 | |
| 		smp_wmb();
 | |
| 	}
 | |
| 
 | |
| 	entry = mk_pte(walk->reuse_page, pgprot);
 | |
| 	list_add(&page->lru, walk->vmemmap_pages);
 | |
| 	set_pte_at(&init_mm, addr, pte, entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many struct page structs need to be reset. When we reuse the head
 | |
|  * struct page, the special metadata (e.g. page->flags or page->mapping)
 | |
|  * cannot copy to the tail struct page structs. The invalid value will be
 | |
|  * checked in the free_tail_page_prepare(). In order to avoid the message
 | |
|  * of "corrupted mapping in tail page". We need to reset at least 4 (one
 | |
|  * head struct page struct and three tail struct page structs) struct page
 | |
|  * structs.
 | |
|  */
 | |
| #define NR_RESET_STRUCT_PAGE		4
 | |
| 
 | |
| static inline void reset_struct_pages(struct page *start)
 | |
| {
 | |
| 	struct page *from = start + NR_RESET_STRUCT_PAGE;
 | |
| 
 | |
| 	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
 | |
| 	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
 | |
| }
 | |
| 
 | |
| static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
 | |
| 				struct vmemmap_remap_walk *walk)
 | |
| {
 | |
| 	pgprot_t pgprot = PAGE_KERNEL;
 | |
| 	struct page *page;
 | |
| 	void *to;
 | |
| 
 | |
| 	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
 | |
| 
 | |
| 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
 | |
| 	list_del(&page->lru);
 | |
| 	to = page_to_virt(page);
 | |
| 	copy_page(to, (void *)walk->reuse_addr);
 | |
| 	reset_struct_pages(to);
 | |
| 
 | |
| 	/*
 | |
| 	 * Makes sure that preceding stores to the page contents become visible
 | |
| 	 * before the set_pte_at() write.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
 | |
|  *                      backing PMDs of the directmap into PTEs
 | |
|  * @start:     start address of the vmemmap virtual address range that we want
 | |
|  *             to remap.
 | |
|  * @end:       end address of the vmemmap virtual address range that we want to
 | |
|  *             remap.
 | |
|  * @reuse:     reuse address.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| static int vmemmap_remap_split(unsigned long start, unsigned long end,
 | |
| 			       unsigned long reuse)
 | |
| {
 | |
| 	struct vmemmap_remap_walk walk = {
 | |
| 		.remap_pte	= NULL,
 | |
| 		.flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH,
 | |
| 	};
 | |
| 
 | |
| 	/* See the comment in the vmemmap_remap_free(). */
 | |
| 	BUG_ON(start - reuse != PAGE_SIZE);
 | |
| 
 | |
| 	return vmemmap_remap_range(reuse, end, &walk);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
 | |
|  *			to the page which @reuse is mapped to, then free vmemmap
 | |
|  *			which the range are mapped to.
 | |
|  * @start:	start address of the vmemmap virtual address range that we want
 | |
|  *		to remap.
 | |
|  * @end:	end address of the vmemmap virtual address range that we want to
 | |
|  *		remap.
 | |
|  * @reuse:	reuse address.
 | |
|  * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers
 | |
|  *		responsibility to free pages.
 | |
|  * @flags:	modifications to vmemmap_remap_walk flags
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| static int vmemmap_remap_free(unsigned long start, unsigned long end,
 | |
| 			      unsigned long reuse,
 | |
| 			      struct list_head *vmemmap_pages,
 | |
| 			      unsigned long flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct vmemmap_remap_walk walk = {
 | |
| 		.remap_pte	= vmemmap_remap_pte,
 | |
| 		.reuse_addr	= reuse,
 | |
| 		.vmemmap_pages	= vmemmap_pages,
 | |
| 		.flags		= flags,
 | |
| 	};
 | |
| 	int nid = page_to_nid((struct page *)reuse);
 | |
| 	gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a new head vmemmap page to avoid breaking a contiguous
 | |
| 	 * block of struct page memory when freeing it back to page allocator
 | |
| 	 * in free_vmemmap_page_list(). This will allow the likely contiguous
 | |
| 	 * struct page backing memory to be kept contiguous and allowing for
 | |
| 	 * more allocations of hugepages. Fallback to the currently
 | |
| 	 * mapped head page in case should it fail to allocate.
 | |
| 	 */
 | |
| 	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
 | |
| 	if (walk.reuse_page) {
 | |
| 		copy_page(page_to_virt(walk.reuse_page),
 | |
| 			  (void *)walk.reuse_addr);
 | |
| 		list_add(&walk.reuse_page->lru, vmemmap_pages);
 | |
| 		memmap_pages_add(1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to make remapping routine most efficient for the huge pages,
 | |
| 	 * the routine of vmemmap page table walking has the following rules
 | |
| 	 * (see more details from the vmemmap_pte_range()):
 | |
| 	 *
 | |
| 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
 | |
| 	 *   should be continuous.
 | |
| 	 * - The @reuse address is part of the range [@reuse, @end) that we are
 | |
| 	 *   walking which is passed to vmemmap_remap_range().
 | |
| 	 * - The @reuse address is the first in the complete range.
 | |
| 	 *
 | |
| 	 * So we need to make sure that @start and @reuse meet the above rules.
 | |
| 	 */
 | |
| 	BUG_ON(start - reuse != PAGE_SIZE);
 | |
| 
 | |
| 	ret = vmemmap_remap_range(reuse, end, &walk);
 | |
| 	if (ret && walk.nr_walked) {
 | |
| 		end = reuse + walk.nr_walked * PAGE_SIZE;
 | |
| 		/*
 | |
| 		 * vmemmap_pages contains pages from the previous
 | |
| 		 * vmemmap_remap_range call which failed.  These
 | |
| 		 * are pages which were removed from the vmemmap.
 | |
| 		 * They will be restored in the following call.
 | |
| 		 */
 | |
| 		walk = (struct vmemmap_remap_walk) {
 | |
| 			.remap_pte	= vmemmap_restore_pte,
 | |
| 			.reuse_addr	= reuse,
 | |
| 			.vmemmap_pages	= vmemmap_pages,
 | |
| 			.flags		= 0,
 | |
| 		};
 | |
| 
 | |
| 		vmemmap_remap_range(reuse, end, &walk);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
 | |
| 				   struct list_head *list)
 | |
| {
 | |
| 	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
 | |
| 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
 | |
| 	int nid = page_to_nid((struct page *)start);
 | |
| 	struct page *page, *next;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		page = alloc_pages_node(nid, gfp_mask, 0);
 | |
| 		if (!page)
 | |
| 			goto out;
 | |
| 		list_add(&page->lru, list);
 | |
| 	}
 | |
| 	memmap_pages_add(nr_pages);
 | |
| 
 | |
| 	return 0;
 | |
| out:
 | |
| 	list_for_each_entry_safe(page, next, list, lru)
 | |
| 		__free_page(page);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
 | |
|  *			 to the page which is from the @vmemmap_pages
 | |
|  *			 respectively.
 | |
|  * @start:	start address of the vmemmap virtual address range that we want
 | |
|  *		to remap.
 | |
|  * @end:	end address of the vmemmap virtual address range that we want to
 | |
|  *		remap.
 | |
|  * @reuse:	reuse address.
 | |
|  * @flags:	modifications to vmemmap_remap_walk flags
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
 | |
| 			       unsigned long reuse, unsigned long flags)
 | |
| {
 | |
| 	LIST_HEAD(vmemmap_pages);
 | |
| 	struct vmemmap_remap_walk walk = {
 | |
| 		.remap_pte	= vmemmap_restore_pte,
 | |
| 		.reuse_addr	= reuse,
 | |
| 		.vmemmap_pages	= &vmemmap_pages,
 | |
| 		.flags		= flags,
 | |
| 	};
 | |
| 
 | |
| 	/* See the comment in the vmemmap_remap_free(). */
 | |
| 	BUG_ON(start - reuse != PAGE_SIZE);
 | |
| 
 | |
| 	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return vmemmap_remap_range(reuse, end, &walk);
 | |
| }
 | |
| 
 | |
| DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
 | |
| EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
 | |
| 
 | |
| static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
 | |
| static int __init hugetlb_vmemmap_optimize_param(char *buf)
 | |
| {
 | |
| 	return kstrtobool(buf, &vmemmap_optimize_enabled);
 | |
| }
 | |
| early_param("hugetlb_free_vmemmap", hugetlb_vmemmap_optimize_param);
 | |
| 
 | |
| static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
 | |
| 					   struct folio *folio, unsigned long flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
 | |
| 	unsigned long vmemmap_reuse;
 | |
| 
 | |
| 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
 | |
| 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
 | |
| 
 | |
| 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
 | |
| 		synchronize_rcu();
 | |
| 
 | |
| 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
 | |
| 	vmemmap_reuse	= vmemmap_start;
 | |
| 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * The pages which the vmemmap virtual address range [@vmemmap_start,
 | |
| 	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
 | |
| 	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
 | |
| 	 * When a HugeTLB page is freed to the buddy allocator, previously
 | |
| 	 * discarded vmemmap pages must be allocated and remapping.
 | |
| 	 */
 | |
| 	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
 | |
| 	if (!ret) {
 | |
| 		folio_clear_hugetlb_vmemmap_optimized(folio);
 | |
| 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hugetlb_vmemmap_restore_folio - restore previously optimized (by
 | |
|  *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which
 | |
|  *				will be reallocated and remapped.
 | |
|  * @h:		struct hstate.
 | |
|  * @folio:     the folio whose vmemmap pages will be restored.
 | |
|  *
 | |
|  * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
 | |
|  * negative error code otherwise.
 | |
|  */
 | |
| int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
 | |
| {
 | |
| 	return __hugetlb_vmemmap_restore_folio(h, folio, VMEMMAP_SYNCHRONIZE_RCU);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
 | |
|  * @h:			hstate.
 | |
|  * @folio_list:		list of folios.
 | |
|  * @non_hvo_folios:	Output list of folios for which vmemmap exists.
 | |
|  *
 | |
|  * Return: number of folios for which vmemmap was restored, or an error code
 | |
|  *		if an error was encountered restoring vmemmap for a folio.
 | |
|  *		Folios that have vmemmap are moved to the non_hvo_folios
 | |
|  *		list.  Processing of entries stops when the first error is
 | |
|  *		encountered. The folio that experienced the error and all
 | |
|  *		non-processed folios will remain on folio_list.
 | |
|  */
 | |
| long hugetlb_vmemmap_restore_folios(const struct hstate *h,
 | |
| 					struct list_head *folio_list,
 | |
| 					struct list_head *non_hvo_folios)
 | |
| {
 | |
| 	struct folio *folio, *t_folio;
 | |
| 	long restored = 0;
 | |
| 	long ret = 0;
 | |
| 	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
 | |
| 
 | |
| 	list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
 | |
| 		if (folio_test_hugetlb_vmemmap_optimized(folio)) {
 | |
| 			ret = __hugetlb_vmemmap_restore_folio(h, folio, flags);
 | |
| 			/* only need to synchronize_rcu() once for each batch */
 | |
| 			flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
 | |
| 
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			restored++;
 | |
| 		}
 | |
| 
 | |
| 		/* Add non-optimized folios to output list */
 | |
| 		list_move(&folio->lru, non_hvo_folios);
 | |
| 	}
 | |
| 
 | |
| 	if (restored)
 | |
| 		flush_tlb_all();
 | |
| 	if (!ret)
 | |
| 		ret = restored;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
 | |
| static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
 | |
| {
 | |
| 	if (folio_test_hugetlb_vmemmap_optimized(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!READ_ONCE(vmemmap_optimize_enabled))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!hugetlb_vmemmap_optimizable(h))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
 | |
| 					    struct folio *folio,
 | |
| 					    struct list_head *vmemmap_pages,
 | |
| 					    unsigned long flags)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
 | |
| 	unsigned long vmemmap_reuse;
 | |
| 
 | |
| 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
 | |
| 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
 | |
| 
 | |
| 	if (!vmemmap_should_optimize_folio(h, folio))
 | |
| 		return ret;
 | |
| 
 | |
| 	static_branch_inc(&hugetlb_optimize_vmemmap_key);
 | |
| 
 | |
| 	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
 | |
| 		synchronize_rcu();
 | |
| 	/*
 | |
| 	 * Very Subtle
 | |
| 	 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
 | |
| 	 * immediately after remapping.  As a result, subsequent accesses
 | |
| 	 * and modifications to struct pages associated with the hugetlb
 | |
| 	 * page could be to the OLD struct pages.  Set the vmemmap optimized
 | |
| 	 * flag here so that it is copied to the new head page.  This keeps
 | |
| 	 * the old and new struct pages in sync.
 | |
| 	 * If there is an error during optimization, we will immediately FLUSH
 | |
| 	 * the TLB and clear the flag below.
 | |
| 	 */
 | |
| 	folio_set_hugetlb_vmemmap_optimized(folio);
 | |
| 
 | |
| 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
 | |
| 	vmemmap_reuse	= vmemmap_start;
 | |
| 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
 | |
| 	 * to the page which @vmemmap_reuse is mapped to.  Add pages previously
 | |
| 	 * mapping the range to vmemmap_pages list so that they can be freed by
 | |
| 	 * the caller.
 | |
| 	 */
 | |
| 	ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
 | |
| 				 vmemmap_pages, flags);
 | |
| 	if (ret) {
 | |
| 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
 | |
| 		folio_clear_hugetlb_vmemmap_optimized(folio);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
 | |
|  * @h:		struct hstate.
 | |
|  * @folio:     the folio whose vmemmap pages will be optimized.
 | |
|  *
 | |
|  * This function only tries to optimize @folio's vmemmap pages and does not
 | |
|  * guarantee that the optimization will succeed after it returns. The caller
 | |
|  * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
 | |
|  * vmemmap pages have been optimized.
 | |
|  */
 | |
| void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
 | |
| {
 | |
| 	LIST_HEAD(vmemmap_pages);
 | |
| 
 | |
| 	__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, VMEMMAP_SYNCHRONIZE_RCU);
 | |
| 	free_vmemmap_page_list(&vmemmap_pages);
 | |
| }
 | |
| 
 | |
| static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
 | |
| {
 | |
| 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
 | |
| 	unsigned long vmemmap_reuse;
 | |
| 
 | |
| 	if (!vmemmap_should_optimize_folio(h, folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
 | |
| 	vmemmap_reuse	= vmemmap_start;
 | |
| 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
 | |
| 	 * @vmemmap_end]
 | |
| 	 */
 | |
| 	return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
 | |
| }
 | |
| 
 | |
| static void __hugetlb_vmemmap_optimize_folios(struct hstate *h,
 | |
| 					      struct list_head *folio_list,
 | |
| 					      bool boot)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	int nr_to_optimize;
 | |
| 	LIST_HEAD(vmemmap_pages);
 | |
| 	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
 | |
| 
 | |
| 	nr_to_optimize = 0;
 | |
| 	list_for_each_entry(folio, folio_list, lru) {
 | |
| 		int ret;
 | |
| 		unsigned long spfn, epfn;
 | |
| 
 | |
| 		if (boot && folio_test_hugetlb_vmemmap_optimized(folio)) {
 | |
| 			/*
 | |
| 			 * Already optimized by pre-HVO, just map the
 | |
| 			 * mirrored tail page structs RO.
 | |
| 			 */
 | |
| 			spfn = (unsigned long)&folio->page;
 | |
| 			epfn = spfn + pages_per_huge_page(h);
 | |
| 			vmemmap_wrprotect_hvo(spfn, epfn, folio_nid(folio),
 | |
| 					HUGETLB_VMEMMAP_RESERVE_SIZE);
 | |
| 			register_page_bootmem_memmap(pfn_to_section_nr(spfn),
 | |
| 					&folio->page,
 | |
| 					HUGETLB_VMEMMAP_RESERVE_SIZE);
 | |
| 			static_branch_inc(&hugetlb_optimize_vmemmap_key);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		nr_to_optimize++;
 | |
| 
 | |
| 		ret = hugetlb_vmemmap_split_folio(h, folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * Spliting the PMD requires allocating a page, thus lets fail
 | |
| 		 * early once we encounter the first OOM. No point in retrying
 | |
| 		 * as it can be dynamically done on remap with the memory
 | |
| 		 * we get back from the vmemmap deduplication.
 | |
| 		 */
 | |
| 		if (ret == -ENOMEM)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_to_optimize)
 | |
| 		/*
 | |
| 		 * All pre-HVO folios, nothing left to do. It's ok if
 | |
| 		 * there is a mix of pre-HVO and not yet HVO-ed folios
 | |
| 		 * here, as __hugetlb_vmemmap_optimize_folio() will
 | |
| 		 * skip any folios that already have the optimized flag
 | |
| 		 * set, see vmemmap_should_optimize_folio().
 | |
| 		 */
 | |
| 		goto out;
 | |
| 
 | |
| 	flush_tlb_all();
 | |
| 
 | |
| 	list_for_each_entry(folio, folio_list, lru) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
 | |
| 		/* only need to synchronize_rcu() once for each batch */
 | |
| 		flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
 | |
| 
 | |
| 		/*
 | |
| 		 * Pages to be freed may have been accumulated.  If we
 | |
| 		 * encounter an ENOMEM,  free what we have and try again.
 | |
| 		 * This can occur in the case that both spliting fails
 | |
| 		 * halfway and head page allocation also failed. In this
 | |
| 		 * case __hugetlb_vmemmap_optimize_folio() would free memory
 | |
| 		 * allowing more vmemmap remaps to occur.
 | |
| 		 */
 | |
| 		if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
 | |
| 			flush_tlb_all();
 | |
| 			free_vmemmap_page_list(&vmemmap_pages);
 | |
| 			INIT_LIST_HEAD(&vmemmap_pages);
 | |
| 			__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	flush_tlb_all();
 | |
| 	free_vmemmap_page_list(&vmemmap_pages);
 | |
| }
 | |
| 
 | |
| void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
 | |
| {
 | |
| 	__hugetlb_vmemmap_optimize_folios(h, folio_list, false);
 | |
| }
 | |
| 
 | |
| void hugetlb_vmemmap_optimize_bootmem_folios(struct hstate *h, struct list_head *folio_list)
 | |
| {
 | |
| 	__hugetlb_vmemmap_optimize_folios(h, folio_list, true);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
 | |
| 
 | |
| /* Return true of a bootmem allocated HugeTLB page should be pre-HVO-ed */
 | |
| static bool vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page *m)
 | |
| {
 | |
| 	unsigned long section_size, psize, pmd_vmemmap_size;
 | |
| 	phys_addr_t paddr;
 | |
| 
 | |
| 	if (!READ_ONCE(vmemmap_optimize_enabled))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!hugetlb_vmemmap_optimizable(m->hstate))
 | |
| 		return false;
 | |
| 
 | |
| 	psize = huge_page_size(m->hstate);
 | |
| 	paddr = virt_to_phys(m);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pre-HVO only works if the bootmem huge page
 | |
| 	 * is aligned to the section size.
 | |
| 	 */
 | |
| 	section_size = (1UL << PA_SECTION_SHIFT);
 | |
| 	if (!IS_ALIGNED(paddr, section_size) ||
 | |
| 	    !IS_ALIGNED(psize, section_size))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The pre-HVO code does not deal with splitting PMDS,
 | |
| 	 * so the bootmem page must be aligned to the number
 | |
| 	 * of base pages that can be mapped with one vmemmap PMD.
 | |
| 	 */
 | |
| 	pmd_vmemmap_size = (PMD_SIZE / (sizeof(struct page))) << PAGE_SHIFT;
 | |
| 	if (!IS_ALIGNED(paddr, pmd_vmemmap_size) ||
 | |
| 	    !IS_ALIGNED(psize, pmd_vmemmap_size))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize memmap section for a gigantic page, HVO-style.
 | |
|  */
 | |
| void __init hugetlb_vmemmap_init_early(int nid)
 | |
| {
 | |
| 	unsigned long psize, paddr, section_size;
 | |
| 	unsigned long ns, i, pnum, pfn, nr_pages;
 | |
| 	unsigned long start, end;
 | |
| 	struct huge_bootmem_page *m = NULL;
 | |
| 	void *map;
 | |
| 
 | |
| 	/*
 | |
| 	 * Noting to do if bootmem pages were not allocated
 | |
| 	 * early in boot, or if HVO wasn't enabled in the
 | |
| 	 * first place.
 | |
| 	 */
 | |
| 	if (!hugetlb_bootmem_allocated())
 | |
| 		return;
 | |
| 
 | |
| 	if (!READ_ONCE(vmemmap_optimize_enabled))
 | |
| 		return;
 | |
| 
 | |
| 	section_size = (1UL << PA_SECTION_SHIFT);
 | |
| 
 | |
| 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
 | |
| 		if (!vmemmap_should_optimize_bootmem_page(m))
 | |
| 			continue;
 | |
| 
 | |
| 		nr_pages = pages_per_huge_page(m->hstate);
 | |
| 		psize = nr_pages << PAGE_SHIFT;
 | |
| 		paddr = virt_to_phys(m);
 | |
| 		pfn = PHYS_PFN(paddr);
 | |
| 		map = pfn_to_page(pfn);
 | |
| 		start = (unsigned long)map;
 | |
| 		end = start + nr_pages * sizeof(struct page);
 | |
| 
 | |
| 		if (vmemmap_populate_hvo(start, end, nid,
 | |
| 					HUGETLB_VMEMMAP_RESERVE_SIZE) < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		memmap_boot_pages_add(HUGETLB_VMEMMAP_RESERVE_SIZE / PAGE_SIZE);
 | |
| 
 | |
| 		pnum = pfn_to_section_nr(pfn);
 | |
| 		ns = psize / section_size;
 | |
| 
 | |
| 		for (i = 0; i < ns; i++) {
 | |
| 			sparse_init_early_section(nid, map, pnum,
 | |
| 					SECTION_IS_VMEMMAP_PREINIT);
 | |
| 			map += section_map_size();
 | |
| 			pnum++;
 | |
| 		}
 | |
| 
 | |
| 		m->flags |= HUGE_BOOTMEM_HVO;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init hugetlb_vmemmap_init_late(int nid)
 | |
| {
 | |
| 	struct huge_bootmem_page *m, *tm;
 | |
| 	unsigned long phys, nr_pages, start, end;
 | |
| 	unsigned long pfn, nr_mmap;
 | |
| 	struct hstate *h;
 | |
| 	void *map;
 | |
| 
 | |
| 	if (!hugetlb_bootmem_allocated())
 | |
| 		return;
 | |
| 
 | |
| 	if (!READ_ONCE(vmemmap_optimize_enabled))
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
 | |
| 		if (!(m->flags & HUGE_BOOTMEM_HVO))
 | |
| 			continue;
 | |
| 
 | |
| 		phys = virt_to_phys(m);
 | |
| 		h = m->hstate;
 | |
| 		pfn = PHYS_PFN(phys);
 | |
| 		nr_pages = pages_per_huge_page(h);
 | |
| 
 | |
| 		if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
 | |
| 			/*
 | |
| 			 * Oops, the hugetlb page spans multiple zones.
 | |
| 			 * Remove it from the list, and undo HVO.
 | |
| 			 */
 | |
| 			list_del(&m->list);
 | |
| 
 | |
| 			map = pfn_to_page(pfn);
 | |
| 
 | |
| 			start = (unsigned long)map;
 | |
| 			end = start + nr_pages * sizeof(struct page);
 | |
| 
 | |
| 			vmemmap_undo_hvo(start, end, nid,
 | |
| 					 HUGETLB_VMEMMAP_RESERVE_SIZE);
 | |
| 			nr_mmap = end - start - HUGETLB_VMEMMAP_RESERVE_SIZE;
 | |
| 			memmap_boot_pages_add(DIV_ROUND_UP(nr_mmap, PAGE_SIZE));
 | |
| 
 | |
| 			memblock_phys_free(phys, huge_page_size(h));
 | |
| 			continue;
 | |
| 		} else
 | |
| 			m->flags |= HUGE_BOOTMEM_ZONES_VALID;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct ctl_table hugetlb_vmemmap_sysctls[] = {
 | |
| 	{
 | |
| 		.procname	= "hugetlb_optimize_vmemmap",
 | |
| 		.data		= &vmemmap_optimize_enabled,
 | |
| 		.maxlen		= sizeof(vmemmap_optimize_enabled),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dobool,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init hugetlb_vmemmap_init(void)
 | |
| {
 | |
| 	const struct hstate *h;
 | |
| 
 | |
| 	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
 | |
| 	BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
 | |
| 
 | |
| 	for_each_hstate(h) {
 | |
| 		if (hugetlb_vmemmap_optimizable(h)) {
 | |
| 			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(hugetlb_vmemmap_init);
 |