mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 fd1f847350
			
		
	
	
		fd1f847350
		
	
	
	
	
		
			
			Sergey Senozhatsky adds infrastructure for passing algorithm-specific parameters into zram. A single parameter `winbits' is implemented at this time. - The 5 patch series "memcg: nmi-safe kmem charging" from Shakeel Butt makes memcg charging nmi-safe, which is required by BFP, which can operate in NMI context. - The 5 patch series "Some random fixes and cleanup to shmem" from Kemeng Shi implements small fixes and cleanups in the shmem code. - The 2 patch series "Skip mm selftests instead when kernel features are not present" from Zi Yan fixes some issues in the MM selftest code. - The 2 patch series "mm/damon: build-enable essential DAMON components by default" from SeongJae Park reworks DAMON Kconfig to make it easier to enable CONFIG_DAMON. - The 2 patch series "sched/numa: add statistics of numa balance task migration" from Libo Chen adds more info into sysfs and procfs files to improve visibility into the NUMA balancer's task migration activity. - The 4 patch series "selftests/mm: cow and gup_longterm cleanups" from Mark Brown provides various updates to some of the MM selftests to make them play better with the overall containing framework. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaDzA9wAKCRDdBJ7gKXxA js8sAP9V3COg+vzTmimzP3ocTkkbbIJzDfM6nXpE2EQ4BR3ejwD+NsIT2ZLtTF6O LqAZpgO7ju6wMjR/lM30ebCq5qFbZAw= =oruw -----END PGP SIGNATURE----- Merge tag 'mm-stable-2025-06-01-14-06' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull more MM updates from Andrew Morton: - "zram: support algorithm-specific parameters" from Sergey Senozhatsky adds infrastructure for passing algorithm-specific parameters into zram. A single parameter `winbits' is implemented at this time. - "memcg: nmi-safe kmem charging" from Shakeel Butt makes memcg charging nmi-safe, which is required by BFP, which can operate in NMI context. - "Some random fixes and cleanup to shmem" from Kemeng Shi implements small fixes and cleanups in the shmem code. - "Skip mm selftests instead when kernel features are not present" from Zi Yan fixes some issues in the MM selftest code. - "mm/damon: build-enable essential DAMON components by default" from SeongJae Park reworks DAMON Kconfig to make it easier to enable CONFIG_DAMON. - "sched/numa: add statistics of numa balance task migration" from Libo Chen adds more info into sysfs and procfs files to improve visibility into the NUMA balancer's task migration activity. - "selftests/mm: cow and gup_longterm cleanups" from Mark Brown provides various updates to some of the MM selftests to make them play better with the overall containing framework. * tag 'mm-stable-2025-06-01-14-06' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (43 commits) mm/khugepaged: clean up refcount check using folio_expected_ref_count() selftests/mm: fix test result reporting in gup_longterm selftests/mm: report unique test names for each cow test selftests/mm: add helper for logging test start and results selftests/mm: use standard ksft_finished() in cow and gup_longterm selftests/damon/_damon_sysfs: skip testcases if CONFIG_DAMON_SYSFS is disabled sched/numa: add statistics of numa balance task sched/numa: fix task swap by skipping kernel threads tools/testing: check correct variable in open_procmap() tools/testing/vma: add missing function stub mm/gup: update comment explaining why gup_fast() disables IRQs selftests/mm: two fixes for the pfnmap test mm/khugepaged: fix race with folio split/free using temporary reference mm: add CONFIG_PAGE_BLOCK_ORDER to select page block order mmu_notifiers: remove leftover stub macros selftests/mm: deduplicate test names in madv_populate kcov: rust: add flags for KCOV with Rust mm: rust: make CONFIG_MMU ifdefs more narrow mmu_gather: move tlb flush for VM_PFNMAP/VM_MIXEDMAP vmas into free_pgtables() mm/damon/Kconfig: enable CONFIG_DAMON by default ...
		
			
				
	
	
		
			5650 lines
		
	
	
	
		
			145 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5650 lines
		
	
	
	
		
			145 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /* memcontrol.c - Memory Controller
 | |
|  *
 | |
|  * Copyright IBM Corporation, 2007
 | |
|  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 | |
|  *
 | |
|  * Copyright 2007 OpenVZ SWsoft Inc
 | |
|  * Author: Pavel Emelianov <xemul@openvz.org>
 | |
|  *
 | |
|  * Memory thresholds
 | |
|  * Copyright (C) 2009 Nokia Corporation
 | |
|  * Author: Kirill A. Shutemov
 | |
|  *
 | |
|  * Kernel Memory Controller
 | |
|  * Copyright (C) 2012 Parallels Inc. and Google Inc.
 | |
|  * Authors: Glauber Costa and Suleiman Souhlal
 | |
|  *
 | |
|  * Native page reclaim
 | |
|  * Charge lifetime sanitation
 | |
|  * Lockless page tracking & accounting
 | |
|  * Unified hierarchy configuration model
 | |
|  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 | |
|  *
 | |
|  * Per memcg lru locking
 | |
|  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
 | |
|  */
 | |
| 
 | |
| #include <linux/cgroup-defs.h>
 | |
| #include <linux/page_counter.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/vm_event_item.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/limits.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/parser.h>
 | |
| #include <linux/vmpressure.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/swap_cgroup.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/resume_user_mode.h>
 | |
| #include <linux/psi.h>
 | |
| #include <linux/seq_buf.h>
 | |
| #include <linux/sched/isolation.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include "internal.h"
 | |
| #include <net/sock.h>
 | |
| #include <net/ip.h>
 | |
| #include "slab.h"
 | |
| #include "memcontrol-v1.h"
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/memcg.h>
 | |
| #undef CREATE_TRACE_POINTS
 | |
| 
 | |
| #include <trace/events/vmscan.h>
 | |
| 
 | |
| struct cgroup_subsys memory_cgrp_subsys __read_mostly;
 | |
| EXPORT_SYMBOL(memory_cgrp_subsys);
 | |
| 
 | |
| struct mem_cgroup *root_mem_cgroup __read_mostly;
 | |
| 
 | |
| /* Active memory cgroup to use from an interrupt context */
 | |
| DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
 | |
| EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
 | |
| 
 | |
| /* Socket memory accounting disabled? */
 | |
| static bool cgroup_memory_nosocket __ro_after_init;
 | |
| 
 | |
| /* Kernel memory accounting disabled? */
 | |
| static bool cgroup_memory_nokmem __ro_after_init;
 | |
| 
 | |
| /* BPF memory accounting disabled? */
 | |
| static bool cgroup_memory_nobpf __ro_after_init;
 | |
| 
 | |
| static struct kmem_cache *memcg_cachep;
 | |
| static struct kmem_cache *memcg_pn_cachep;
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
 | |
| #endif
 | |
| 
 | |
| static inline bool task_is_dying(void)
 | |
| {
 | |
| 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 | |
| 		(current->flags & PF_EXITING);
 | |
| }
 | |
| 
 | |
| /* Some nice accessors for the vmpressure. */
 | |
| struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	if (!memcg)
 | |
| 		memcg = root_mem_cgroup;
 | |
| 	return &memcg->vmpressure;
 | |
| }
 | |
| 
 | |
| struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
 | |
| {
 | |
| 	return container_of(vmpr, struct mem_cgroup, vmpressure);
 | |
| }
 | |
| 
 | |
| #define SEQ_BUF_SIZE SZ_4K
 | |
| #define CURRENT_OBJCG_UPDATE_BIT 0
 | |
| #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
 | |
| 
 | |
| static DEFINE_SPINLOCK(objcg_lock);
 | |
| 
 | |
| bool mem_cgroup_kmem_disabled(void)
 | |
| {
 | |
| 	return cgroup_memory_nokmem;
 | |
| }
 | |
| 
 | |
| static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
 | |
| 
 | |
| static void obj_cgroup_release(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 | |
| 	unsigned int nr_bytes;
 | |
| 	unsigned int nr_pages;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point all allocated objects are freed, and
 | |
| 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 | |
| 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 | |
| 	 *
 | |
| 	 * The following sequence can lead to it:
 | |
| 	 * 1) CPU0: objcg == stock->cached_objcg
 | |
| 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 | |
| 	 *          PAGE_SIZE bytes are charged
 | |
| 	 * 3) CPU1: a process from another memcg is allocating something,
 | |
| 	 *          the stock if flushed,
 | |
| 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 | |
| 	 * 5) CPU0: we do release this object,
 | |
| 	 *          92 bytes are added to stock->nr_bytes
 | |
| 	 * 6) CPU0: stock is flushed,
 | |
| 	 *          92 bytes are added to objcg->nr_charged_bytes
 | |
| 	 *
 | |
| 	 * In the result, nr_charged_bytes == PAGE_SIZE.
 | |
| 	 * This page will be uncharged in obj_cgroup_release().
 | |
| 	 */
 | |
| 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 | |
| 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 | |
| 	nr_pages = nr_bytes >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (nr_pages) {
 | |
| 		struct mem_cgroup *memcg;
 | |
| 
 | |
| 		memcg = get_mem_cgroup_from_objcg(objcg);
 | |
| 		mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
 | |
| 		memcg1_account_kmem(memcg, -nr_pages);
 | |
| 		if (!mem_cgroup_is_root(memcg))
 | |
| 			memcg_uncharge(memcg, nr_pages);
 | |
| 		mem_cgroup_put(memcg);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&objcg_lock, flags);
 | |
| 	list_del(&objcg->list);
 | |
| 	spin_unlock_irqrestore(&objcg_lock, flags);
 | |
| 
 | |
| 	percpu_ref_exit(ref);
 | |
| 	kfree_rcu(objcg, rcu);
 | |
| }
 | |
| 
 | |
| static struct obj_cgroup *obj_cgroup_alloc(void)
 | |
| {
 | |
| 	struct obj_cgroup *objcg;
 | |
| 	int ret;
 | |
| 
 | |
| 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 | |
| 	if (!objcg)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 | |
| 			      GFP_KERNEL);
 | |
| 	if (ret) {
 | |
| 		kfree(objcg);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	INIT_LIST_HEAD(&objcg->list);
 | |
| 	return objcg;
 | |
| }
 | |
| 
 | |
| static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 | |
| 				  struct mem_cgroup *parent)
 | |
| {
 | |
| 	struct obj_cgroup *objcg, *iter;
 | |
| 
 | |
| 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 | |
| 
 | |
| 	spin_lock_irq(&objcg_lock);
 | |
| 
 | |
| 	/* 1) Ready to reparent active objcg. */
 | |
| 	list_add(&objcg->list, &memcg->objcg_list);
 | |
| 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 | |
| 	list_for_each_entry(iter, &memcg->objcg_list, list)
 | |
| 		WRITE_ONCE(iter->memcg, parent);
 | |
| 	/* 3) Move already reparented objcgs to the parent's list */
 | |
| 	list_splice(&memcg->objcg_list, &parent->objcg_list);
 | |
| 
 | |
| 	spin_unlock_irq(&objcg_lock);
 | |
| 
 | |
| 	percpu_ref_kill(&objcg->refcnt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A lot of the calls to the cache allocation functions are expected to be
 | |
|  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
 | |
|  * conditional to this static branch, we'll have to allow modules that does
 | |
|  * kmem_cache_alloc and the such to see this symbol as well
 | |
|  */
 | |
| DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
 | |
| EXPORT_SYMBOL(memcg_kmem_online_key);
 | |
| 
 | |
| DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
 | |
| EXPORT_SYMBOL(memcg_bpf_enabled_key);
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
 | |
|  * @folio: folio of interest
 | |
|  *
 | |
|  * If memcg is bound to the default hierarchy, css of the memcg associated
 | |
|  * with @folio is returned.  The returned css remains associated with @folio
 | |
|  * until it is released.
 | |
|  *
 | |
|  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 | |
|  * is returned.
 | |
|  */
 | |
| struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = folio_memcg(folio);
 | |
| 
 | |
| 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		memcg = root_mem_cgroup;
 | |
| 
 | |
| 	return &memcg->css;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_cgroup_ino - return inode number of the memcg a page is charged to
 | |
|  * @page: the page
 | |
|  *
 | |
|  * Look up the closest online ancestor of the memory cgroup @page is charged to
 | |
|  * and return its inode number or 0 if @page is not charged to any cgroup. It
 | |
|  * is safe to call this function without holding a reference to @page.
 | |
|  *
 | |
|  * Note, this function is inherently racy, because there is nothing to prevent
 | |
|  * the cgroup inode from getting torn down and potentially reallocated a moment
 | |
|  * after page_cgroup_ino() returns, so it only should be used by callers that
 | |
|  * do not care (such as procfs interfaces).
 | |
|  */
 | |
| ino_t page_cgroup_ino(struct page *page)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned long ino = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/* page_folio() is racy here, but the entire function is racy anyway */
 | |
| 	memcg = folio_memcg_check(page_folio(page));
 | |
| 
 | |
| 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 | |
| 		memcg = parent_mem_cgroup(memcg);
 | |
| 	if (memcg)
 | |
| 		ino = cgroup_ino(memcg->css.cgroup);
 | |
| 	rcu_read_unlock();
 | |
| 	return ino;
 | |
| }
 | |
| 
 | |
| /* Subset of node_stat_item for memcg stats */
 | |
| static const unsigned int memcg_node_stat_items[] = {
 | |
| 	NR_INACTIVE_ANON,
 | |
| 	NR_ACTIVE_ANON,
 | |
| 	NR_INACTIVE_FILE,
 | |
| 	NR_ACTIVE_FILE,
 | |
| 	NR_UNEVICTABLE,
 | |
| 	NR_SLAB_RECLAIMABLE_B,
 | |
| 	NR_SLAB_UNRECLAIMABLE_B,
 | |
| 	WORKINGSET_REFAULT_ANON,
 | |
| 	WORKINGSET_REFAULT_FILE,
 | |
| 	WORKINGSET_ACTIVATE_ANON,
 | |
| 	WORKINGSET_ACTIVATE_FILE,
 | |
| 	WORKINGSET_RESTORE_ANON,
 | |
| 	WORKINGSET_RESTORE_FILE,
 | |
| 	WORKINGSET_NODERECLAIM,
 | |
| 	NR_ANON_MAPPED,
 | |
| 	NR_FILE_MAPPED,
 | |
| 	NR_FILE_PAGES,
 | |
| 	NR_FILE_DIRTY,
 | |
| 	NR_WRITEBACK,
 | |
| 	NR_SHMEM,
 | |
| 	NR_SHMEM_THPS,
 | |
| 	NR_FILE_THPS,
 | |
| 	NR_ANON_THPS,
 | |
| 	NR_KERNEL_STACK_KB,
 | |
| 	NR_PAGETABLE,
 | |
| 	NR_SECONDARY_PAGETABLE,
 | |
| #ifdef CONFIG_SWAP
 | |
| 	NR_SWAPCACHE,
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	PGPROMOTE_SUCCESS,
 | |
| #endif
 | |
| 	PGDEMOTE_KSWAPD,
 | |
| 	PGDEMOTE_DIRECT,
 | |
| 	PGDEMOTE_KHUGEPAGED,
 | |
| 	PGDEMOTE_PROACTIVE,
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 	NR_HUGETLB,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static const unsigned int memcg_stat_items[] = {
 | |
| 	MEMCG_SWAP,
 | |
| 	MEMCG_SOCK,
 | |
| 	MEMCG_PERCPU_B,
 | |
| 	MEMCG_VMALLOC,
 | |
| 	MEMCG_KMEM,
 | |
| 	MEMCG_ZSWAP_B,
 | |
| 	MEMCG_ZSWAPPED,
 | |
| };
 | |
| 
 | |
| #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
 | |
| #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
 | |
| 			   ARRAY_SIZE(memcg_stat_items))
 | |
| #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
 | |
| static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
 | |
| 
 | |
| static void init_memcg_stats(void)
 | |
| {
 | |
| 	u8 i, j = 0;
 | |
| 
 | |
| 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
 | |
| 
 | |
| 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
 | |
| 
 | |
| 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
 | |
| 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
 | |
| 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
 | |
| }
 | |
| 
 | |
| static inline int memcg_stats_index(int idx)
 | |
| {
 | |
| 	return mem_cgroup_stats_index[idx];
 | |
| }
 | |
| 
 | |
| struct lruvec_stats_percpu {
 | |
| 	/* Local (CPU and cgroup) state */
 | |
| 	long state[NR_MEMCG_NODE_STAT_ITEMS];
 | |
| 
 | |
| 	/* Delta calculation for lockless upward propagation */
 | |
| 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
 | |
| };
 | |
| 
 | |
| struct lruvec_stats {
 | |
| 	/* Aggregated (CPU and subtree) state */
 | |
| 	long state[NR_MEMCG_NODE_STAT_ITEMS];
 | |
| 
 | |
| 	/* Non-hierarchical (CPU aggregated) state */
 | |
| 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
 | |
| 
 | |
| 	/* Pending child counts during tree propagation */
 | |
| 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
 | |
| };
 | |
| 
 | |
| unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 	long x;
 | |
| 	int i;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return node_page_state(lruvec_pgdat(lruvec), idx);
 | |
| 
 | |
| 	i = memcg_stats_index(idx);
 | |
| 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 | |
| 		return 0;
 | |
| 
 | |
| 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 | |
| 	x = READ_ONCE(pn->lruvec_stats->state[i]);
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (x < 0)
 | |
| 		x = 0;
 | |
| #endif
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| unsigned long lruvec_page_state_local(struct lruvec *lruvec,
 | |
| 				      enum node_stat_item idx)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 	long x;
 | |
| 	int i;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return node_page_state(lruvec_pgdat(lruvec), idx);
 | |
| 
 | |
| 	i = memcg_stats_index(idx);
 | |
| 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 | |
| 		return 0;
 | |
| 
 | |
| 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 | |
| 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (x < 0)
 | |
| 		x = 0;
 | |
| #endif
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| /* Subset of vm_event_item to report for memcg event stats */
 | |
| static const unsigned int memcg_vm_event_stat[] = {
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| 	PGPGIN,
 | |
| 	PGPGOUT,
 | |
| #endif
 | |
| 	PSWPIN,
 | |
| 	PSWPOUT,
 | |
| 	PGSCAN_KSWAPD,
 | |
| 	PGSCAN_DIRECT,
 | |
| 	PGSCAN_KHUGEPAGED,
 | |
| 	PGSCAN_PROACTIVE,
 | |
| 	PGSTEAL_KSWAPD,
 | |
| 	PGSTEAL_DIRECT,
 | |
| 	PGSTEAL_KHUGEPAGED,
 | |
| 	PGSTEAL_PROACTIVE,
 | |
| 	PGFAULT,
 | |
| 	PGMAJFAULT,
 | |
| 	PGREFILL,
 | |
| 	PGACTIVATE,
 | |
| 	PGDEACTIVATE,
 | |
| 	PGLAZYFREE,
 | |
| 	PGLAZYFREED,
 | |
| #ifdef CONFIG_SWAP
 | |
| 	SWPIN_ZERO,
 | |
| 	SWPOUT_ZERO,
 | |
| #endif
 | |
| #ifdef CONFIG_ZSWAP
 | |
| 	ZSWPIN,
 | |
| 	ZSWPOUT,
 | |
| 	ZSWPWB,
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	THP_FAULT_ALLOC,
 | |
| 	THP_COLLAPSE_ALLOC,
 | |
| 	THP_SWPOUT,
 | |
| 	THP_SWPOUT_FALLBACK,
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	NUMA_PAGE_MIGRATE,
 | |
| 	NUMA_PTE_UPDATES,
 | |
| 	NUMA_HINT_FAULTS,
 | |
| 	NUMA_TASK_MIGRATE,
 | |
| 	NUMA_TASK_SWAP,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
 | |
| static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
 | |
| 
 | |
| static void init_memcg_events(void)
 | |
| {
 | |
| 	u8 i;
 | |
| 
 | |
| 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
 | |
| 
 | |
| 	memset(mem_cgroup_events_index, U8_MAX,
 | |
| 	       sizeof(mem_cgroup_events_index));
 | |
| 
 | |
| 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
 | |
| 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
 | |
| }
 | |
| 
 | |
| static inline int memcg_events_index(enum vm_event_item idx)
 | |
| {
 | |
| 	return mem_cgroup_events_index[idx];
 | |
| }
 | |
| 
 | |
| struct memcg_vmstats_percpu {
 | |
| 	/* Stats updates since the last flush */
 | |
| 	unsigned int			stats_updates;
 | |
| 
 | |
| 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
 | |
| 	struct memcg_vmstats_percpu __percpu	*parent_pcpu;
 | |
| 	struct memcg_vmstats			*vmstats;
 | |
| 
 | |
| 	/* The above should fit a single cacheline for memcg_rstat_updated() */
 | |
| 
 | |
| 	/* Local (CPU and cgroup) page state & events */
 | |
| 	long			state[MEMCG_VMSTAT_SIZE];
 | |
| 	unsigned long		events[NR_MEMCG_EVENTS];
 | |
| 
 | |
| 	/* Delta calculation for lockless upward propagation */
 | |
| 	long			state_prev[MEMCG_VMSTAT_SIZE];
 | |
| 	unsigned long		events_prev[NR_MEMCG_EVENTS];
 | |
| } ____cacheline_aligned;
 | |
| 
 | |
| struct memcg_vmstats {
 | |
| 	/* Aggregated (CPU and subtree) page state & events */
 | |
| 	long			state[MEMCG_VMSTAT_SIZE];
 | |
| 	unsigned long		events[NR_MEMCG_EVENTS];
 | |
| 
 | |
| 	/* Non-hierarchical (CPU aggregated) page state & events */
 | |
| 	long			state_local[MEMCG_VMSTAT_SIZE];
 | |
| 	unsigned long		events_local[NR_MEMCG_EVENTS];
 | |
| 
 | |
| 	/* Pending child counts during tree propagation */
 | |
| 	long			state_pending[MEMCG_VMSTAT_SIZE];
 | |
| 	unsigned long		events_pending[NR_MEMCG_EVENTS];
 | |
| 
 | |
| 	/* Stats updates since the last flush */
 | |
| 	atomic_t		stats_updates;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * memcg and lruvec stats flushing
 | |
|  *
 | |
|  * Many codepaths leading to stats update or read are performance sensitive and
 | |
|  * adding stats flushing in such codepaths is not desirable. So, to optimize the
 | |
|  * flushing the kernel does:
 | |
|  *
 | |
|  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
 | |
|  *    rstat update tree grow unbounded.
 | |
|  *
 | |
|  * 2) Flush the stats synchronously on reader side only when there are more than
 | |
|  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
 | |
|  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
 | |
|  *    only for 2 seconds due to (1).
 | |
|  */
 | |
| static void flush_memcg_stats_dwork(struct work_struct *w);
 | |
| static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
 | |
| static u64 flush_last_time;
 | |
| 
 | |
| #define FLUSH_TIME (2UL*HZ)
 | |
| 
 | |
| static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
 | |
| {
 | |
| 	return atomic_read(&vmstats->stats_updates) >
 | |
| 		MEMCG_CHARGE_BATCH * num_online_cpus();
 | |
| }
 | |
| 
 | |
| static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
 | |
| 				       int cpu)
 | |
| {
 | |
| 	struct memcg_vmstats_percpu __percpu *statc_pcpu;
 | |
| 	struct memcg_vmstats_percpu *statc;
 | |
| 	unsigned int stats_updates;
 | |
| 
 | |
| 	if (!val)
 | |
| 		return;
 | |
| 
 | |
| 	/* TODO: add to cgroup update tree once it is nmi-safe. */
 | |
| 	if (!in_nmi())
 | |
| 		css_rstat_updated(&memcg->css, cpu);
 | |
| 	statc_pcpu = memcg->vmstats_percpu;
 | |
| 	for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
 | |
| 		statc = this_cpu_ptr(statc_pcpu);
 | |
| 		/*
 | |
| 		 * If @memcg is already flushable then all its ancestors are
 | |
| 		 * flushable as well and also there is no need to increase
 | |
| 		 * stats_updates.
 | |
| 		 */
 | |
| 		if (memcg_vmstats_needs_flush(statc->vmstats))
 | |
| 			break;
 | |
| 
 | |
| 		stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
 | |
| 						    abs(val));
 | |
| 		if (stats_updates < MEMCG_CHARGE_BATCH)
 | |
| 			continue;
 | |
| 
 | |
| 		stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
 | |
| 		atomic_add(stats_updates, &statc->vmstats->stats_updates);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
 | |
| {
 | |
| 	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
 | |
| 
 | |
| 	trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
 | |
| 		force, needs_flush);
 | |
| 
 | |
| 	if (!force && !needs_flush)
 | |
| 		return;
 | |
| 
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		WRITE_ONCE(flush_last_time, jiffies_64);
 | |
| 
 | |
| 	css_rstat_flush(&memcg->css);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
 | |
|  * @memcg: root of the subtree to flush
 | |
|  *
 | |
|  * Flushing is serialized by the underlying global rstat lock. There is also a
 | |
|  * minimum amount of work to be done even if there are no stat updates to flush.
 | |
|  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
 | |
|  * avoids unnecessary work and contention on the underlying lock.
 | |
|  */
 | |
| void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (!memcg)
 | |
| 		memcg = root_mem_cgroup;
 | |
| 
 | |
| 	__mem_cgroup_flush_stats(memcg, false);
 | |
| }
 | |
| 
 | |
| void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	/* Only flush if the periodic flusher is one full cycle late */
 | |
| 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
 | |
| 		mem_cgroup_flush_stats(memcg);
 | |
| }
 | |
| 
 | |
| static void flush_memcg_stats_dwork(struct work_struct *w)
 | |
| {
 | |
| 	/*
 | |
| 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
 | |
| 	 * in latency-sensitive paths is as cheap as possible.
 | |
| 	 */
 | |
| 	__mem_cgroup_flush_stats(root_mem_cgroup, true);
 | |
| 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
 | |
| }
 | |
| 
 | |
| unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 | |
| {
 | |
| 	long x;
 | |
| 	int i = memcg_stats_index(idx);
 | |
| 
 | |
| 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 | |
| 		return 0;
 | |
| 
 | |
| 	x = READ_ONCE(memcg->vmstats->state[i]);
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (x < 0)
 | |
| 		x = 0;
 | |
| #endif
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| static int memcg_page_state_unit(int item);
 | |
| 
 | |
| /*
 | |
|  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
 | |
|  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
 | |
|  */
 | |
| static int memcg_state_val_in_pages(int idx, int val)
 | |
| {
 | |
| 	int unit = memcg_page_state_unit(idx);
 | |
| 
 | |
| 	if (!val || unit == PAGE_SIZE)
 | |
| 		return val;
 | |
| 	else
 | |
| 		return max(val * unit / PAGE_SIZE, 1UL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mod_memcg_state - update cgroup memory statistics
 | |
|  * @memcg: the memory cgroup
 | |
|  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 | |
|  * @val: delta to add to the counter, can be negative
 | |
|  */
 | |
| void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
 | |
| 		       int val)
 | |
| {
 | |
| 	int i = memcg_stats_index(idx);
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 | |
| 		return;
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 
 | |
| 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
 | |
| 	val = memcg_state_val_in_pages(idx, val);
 | |
| 	memcg_rstat_updated(memcg, val, cpu);
 | |
| 	trace_mod_memcg_state(memcg, idx, val);
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| /* idx can be of type enum memcg_stat_item or node_stat_item. */
 | |
| unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 | |
| {
 | |
| 	long x;
 | |
| 	int i = memcg_stats_index(idx);
 | |
| 
 | |
| 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 | |
| 		return 0;
 | |
| 
 | |
| 	x = READ_ONCE(memcg->vmstats->state_local[i]);
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (x < 0)
 | |
| 		x = 0;
 | |
| #endif
 | |
| 	return x;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void mod_memcg_lruvec_state(struct lruvec *lruvec,
 | |
| 				     enum node_stat_item idx,
 | |
| 				     int val)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	int i = memcg_stats_index(idx);
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 | |
| 		return;
 | |
| 
 | |
| 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 | |
| 	memcg = pn->memcg;
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 
 | |
| 	/* Update memcg */
 | |
| 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
 | |
| 
 | |
| 	/* Update lruvec */
 | |
| 	this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
 | |
| 
 | |
| 	val = memcg_state_val_in_pages(idx, val);
 | |
| 	memcg_rstat_updated(memcg, val, cpu);
 | |
| 	trace_mod_memcg_lruvec_state(memcg, idx, val);
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __mod_lruvec_state - update lruvec memory statistics
 | |
|  * @lruvec: the lruvec
 | |
|  * @idx: the stat item
 | |
|  * @val: delta to add to the counter, can be negative
 | |
|  *
 | |
|  * The lruvec is the intersection of the NUMA node and a cgroup. This
 | |
|  * function updates the all three counters that are affected by a
 | |
|  * change of state at this level: per-node, per-cgroup, per-lruvec.
 | |
|  */
 | |
| void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 | |
| 			int val)
 | |
| {
 | |
| 	/* Update node */
 | |
| 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 | |
| 
 | |
| 	/* Update memcg and lruvec */
 | |
| 	if (!mem_cgroup_disabled())
 | |
| 		mod_memcg_lruvec_state(lruvec, idx, val);
 | |
| }
 | |
| 
 | |
| void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
 | |
| 			     int val)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	pg_data_t *pgdat = folio_pgdat(folio);
 | |
| 	struct lruvec *lruvec;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = folio_memcg(folio);
 | |
| 	/* Untracked pages have no memcg, no lruvec. Update only the node */
 | |
| 	if (!memcg) {
 | |
| 		rcu_read_unlock();
 | |
| 		__mod_node_page_state(pgdat, idx, val);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | |
| 	__mod_lruvec_state(lruvec, idx, val);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| EXPORT_SYMBOL(__lruvec_stat_mod_folio);
 | |
| 
 | |
| void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 | |
| {
 | |
| 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct lruvec *lruvec;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = mem_cgroup_from_slab_obj(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Untracked pages have no memcg, no lruvec. Update only the
 | |
| 	 * node. If we reparent the slab objects to the root memcg,
 | |
| 	 * when we free the slab object, we need to update the per-memcg
 | |
| 	 * vmstats to keep it correct for the root memcg.
 | |
| 	 */
 | |
| 	if (!memcg) {
 | |
| 		__mod_node_page_state(pgdat, idx, val);
 | |
| 	} else {
 | |
| 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | |
| 		__mod_lruvec_state(lruvec, idx, val);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * count_memcg_events - account VM events in a cgroup
 | |
|  * @memcg: the memory cgroup
 | |
|  * @idx: the event item
 | |
|  * @count: the number of events that occurred
 | |
|  */
 | |
| void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 | |
| 			  unsigned long count)
 | |
| {
 | |
| 	int i = memcg_events_index(idx);
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 | |
| 		return;
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 
 | |
| 	this_cpu_add(memcg->vmstats_percpu->events[i], count);
 | |
| 	memcg_rstat_updated(memcg, count, cpu);
 | |
| 	trace_count_memcg_events(memcg, idx, count);
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 | |
| {
 | |
| 	int i = memcg_events_index(event);
 | |
| 
 | |
| 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
 | |
| 		return 0;
 | |
| 
 | |
| 	return READ_ONCE(memcg->vmstats->events[i]);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 | |
| {
 | |
| 	int i = memcg_events_index(event);
 | |
| 
 | |
| 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
 | |
| 		return 0;
 | |
| 
 | |
| 	return READ_ONCE(memcg->vmstats->events_local[i]);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * mm_update_next_owner() may clear mm->owner to NULL
 | |
| 	 * if it races with swapoff, page migration, etc.
 | |
| 	 * So this can be called with p == NULL.
 | |
| 	 */
 | |
| 	if (unlikely(!p))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 | |
| }
 | |
| EXPORT_SYMBOL(mem_cgroup_from_task);
 | |
| 
 | |
| static __always_inline struct mem_cgroup *active_memcg(void)
 | |
| {
 | |
| 	if (!in_task())
 | |
| 		return this_cpu_read(int_active_memcg);
 | |
| 	else
 | |
| 		return current->active_memcg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 | |
|  * @mm: mm from which memcg should be extracted. It can be NULL.
 | |
|  *
 | |
|  * Obtain a reference on mm->memcg and returns it if successful. If mm
 | |
|  * is NULL, then the memcg is chosen as follows:
 | |
|  * 1) The active memcg, if set.
 | |
|  * 2) current->mm->memcg, if available
 | |
|  * 3) root memcg
 | |
|  * If mem_cgroup is disabled, NULL is returned.
 | |
|  */
 | |
| struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Page cache insertions can happen without an
 | |
| 	 * actual mm context, e.g. during disk probing
 | |
| 	 * on boot, loopback IO, acct() writes etc.
 | |
| 	 *
 | |
| 	 * No need to css_get on root memcg as the reference
 | |
| 	 * counting is disabled on the root level in the
 | |
| 	 * cgroup core. See CSS_NO_REF.
 | |
| 	 */
 | |
| 	if (unlikely(!mm)) {
 | |
| 		memcg = active_memcg();
 | |
| 		if (unlikely(memcg)) {
 | |
| 			/* remote memcg must hold a ref */
 | |
| 			css_get(&memcg->css);
 | |
| 			return memcg;
 | |
| 		}
 | |
| 		mm = current->mm;
 | |
| 		if (unlikely(!mm))
 | |
| 			return root_mem_cgroup;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	do {
 | |
| 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | |
| 		if (unlikely(!memcg))
 | |
| 			memcg = root_mem_cgroup;
 | |
| 	} while (!css_tryget(&memcg->css));
 | |
| 	rcu_read_unlock();
 | |
| 	return memcg;
 | |
| }
 | |
| EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 | |
| 
 | |
| /**
 | |
|  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
 | |
|  */
 | |
| struct mem_cgroup *get_mem_cgroup_from_current(void)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| again:
 | |
| 	rcu_read_lock();
 | |
| 	memcg = mem_cgroup_from_task(current);
 | |
| 	if (!css_tryget(&memcg->css)) {
 | |
| 		rcu_read_unlock();
 | |
| 		goto again;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return memcg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
 | |
|  * @folio: folio from which memcg should be extracted.
 | |
|  */
 | |
| struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = folio_memcg(folio);
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
 | |
| 		memcg = root_mem_cgroup;
 | |
| 	rcu_read_unlock();
 | |
| 	return memcg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_iter - iterate over memory cgroup hierarchy
 | |
|  * @root: hierarchy root
 | |
|  * @prev: previously returned memcg, NULL on first invocation
 | |
|  * @reclaim: cookie for shared reclaim walks, NULL for full walks
 | |
|  *
 | |
|  * Returns references to children of the hierarchy below @root, or
 | |
|  * @root itself, or %NULL after a full round-trip.
 | |
|  *
 | |
|  * Caller must pass the return value in @prev on subsequent
 | |
|  * invocations for reference counting, or use mem_cgroup_iter_break()
 | |
|  * to cancel a hierarchy walk before the round-trip is complete.
 | |
|  *
 | |
|  * Reclaimers can specify a node in @reclaim to divide up the memcgs
 | |
|  * in the hierarchy among all concurrent reclaimers operating on the
 | |
|  * same node.
 | |
|  */
 | |
| struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 | |
| 				   struct mem_cgroup *prev,
 | |
| 				   struct mem_cgroup_reclaim_cookie *reclaim)
 | |
| {
 | |
| 	struct mem_cgroup_reclaim_iter *iter;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct mem_cgroup *pos;
 | |
| 	struct mem_cgroup *next;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!root)
 | |
| 		root = root_mem_cgroup;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| restart:
 | |
| 	next = NULL;
 | |
| 
 | |
| 	if (reclaim) {
 | |
| 		int gen;
 | |
| 		int nid = reclaim->pgdat->node_id;
 | |
| 
 | |
| 		iter = &root->nodeinfo[nid]->iter;
 | |
| 		gen = atomic_read(&iter->generation);
 | |
| 
 | |
| 		/*
 | |
| 		 * On start, join the current reclaim iteration cycle.
 | |
| 		 * Exit when a concurrent walker completes it.
 | |
| 		 */
 | |
| 		if (!prev)
 | |
| 			reclaim->generation = gen;
 | |
| 		else if (reclaim->generation != gen)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		pos = READ_ONCE(iter->position);
 | |
| 	} else
 | |
| 		pos = prev;
 | |
| 
 | |
| 	css = pos ? &pos->css : NULL;
 | |
| 
 | |
| 	while ((css = css_next_descendant_pre(css, &root->css))) {
 | |
| 		/*
 | |
| 		 * Verify the css and acquire a reference.  The root
 | |
| 		 * is provided by the caller, so we know it's alive
 | |
| 		 * and kicking, and don't take an extra reference.
 | |
| 		 */
 | |
| 		if (css == &root->css || css_tryget(css))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	next = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	if (reclaim) {
 | |
| 		/*
 | |
| 		 * The position could have already been updated by a competing
 | |
| 		 * thread, so check that the value hasn't changed since we read
 | |
| 		 * it to avoid reclaiming from the same cgroup twice.
 | |
| 		 */
 | |
| 		if (cmpxchg(&iter->position, pos, next) != pos) {
 | |
| 			if (css && css != &root->css)
 | |
| 				css_put(css);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 
 | |
| 		if (!next) {
 | |
| 			atomic_inc(&iter->generation);
 | |
| 
 | |
| 			/*
 | |
| 			 * Reclaimers share the hierarchy walk, and a
 | |
| 			 * new one might jump in right at the end of
 | |
| 			 * the hierarchy - make sure they see at least
 | |
| 			 * one group and restart from the beginning.
 | |
| 			 */
 | |
| 			if (!prev)
 | |
| 				goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	if (prev && prev != root)
 | |
| 		css_put(&prev->css);
 | |
| 
 | |
| 	return next;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 | |
|  * @root: hierarchy root
 | |
|  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 | |
|  */
 | |
| void mem_cgroup_iter_break(struct mem_cgroup *root,
 | |
| 			   struct mem_cgroup *prev)
 | |
| {
 | |
| 	if (!root)
 | |
| 		root = root_mem_cgroup;
 | |
| 	if (prev && prev != root)
 | |
| 		css_put(&prev->css);
 | |
| }
 | |
| 
 | |
| static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
 | |
| 					struct mem_cgroup *dead_memcg)
 | |
| {
 | |
| 	struct mem_cgroup_reclaim_iter *iter;
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 	int nid;
 | |
| 
 | |
| 	for_each_node(nid) {
 | |
| 		mz = from->nodeinfo[nid];
 | |
| 		iter = &mz->iter;
 | |
| 		cmpxchg(&iter->position, dead_memcg, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = dead_memcg;
 | |
| 	struct mem_cgroup *last;
 | |
| 
 | |
| 	do {
 | |
| 		__invalidate_reclaim_iterators(memcg, dead_memcg);
 | |
| 		last = memcg;
 | |
| 	} while ((memcg = parent_mem_cgroup(memcg)));
 | |
| 
 | |
| 	/*
 | |
| 	 * When cgroup1 non-hierarchy mode is used,
 | |
| 	 * parent_mem_cgroup() does not walk all the way up to the
 | |
| 	 * cgroup root (root_mem_cgroup). So we have to handle
 | |
| 	 * dead_memcg from cgroup root separately.
 | |
| 	 */
 | |
| 	if (!mem_cgroup_is_root(last))
 | |
| 		__invalidate_reclaim_iterators(root_mem_cgroup,
 | |
| 						dead_memcg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 | |
|  * @memcg: hierarchy root
 | |
|  * @fn: function to call for each task
 | |
|  * @arg: argument passed to @fn
 | |
|  *
 | |
|  * This function iterates over tasks attached to @memcg or to any of its
 | |
|  * descendants and calls @fn for each task. If @fn returns a non-zero
 | |
|  * value, the function breaks the iteration loop. Otherwise, it will iterate
 | |
|  * over all tasks and return 0.
 | |
|  *
 | |
|  * This function must not be called for the root memory cgroup.
 | |
|  */
 | |
| void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
 | |
| 			   int (*fn)(struct task_struct *, void *), void *arg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(mem_cgroup_is_root(memcg));
 | |
| 
 | |
| 	for_each_mem_cgroup_tree(iter, memcg) {
 | |
| 		struct css_task_iter it;
 | |
| 		struct task_struct *task;
 | |
| 
 | |
| 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
 | |
| 		while (!ret && (task = css_task_iter_next(&it))) {
 | |
| 			ret = fn(task, arg);
 | |
| 			/* Avoid potential softlockup warning */
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 		css_task_iter_end(&it);
 | |
| 		if (ret) {
 | |
| 			mem_cgroup_iter_break(memcg, iter);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	memcg = folio_memcg(folio);
 | |
| 
 | |
| 	if (!memcg)
 | |
| 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
 | |
| 	else
 | |
| 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * folio_lruvec_lock - Lock the lruvec for a folio.
 | |
|  * @folio: Pointer to the folio.
 | |
|  *
 | |
|  * These functions are safe to use under any of the following conditions:
 | |
|  * - folio locked
 | |
|  * - folio_test_lru false
 | |
|  * - folio frozen (refcount of 0)
 | |
|  *
 | |
|  * Return: The lruvec this folio is on with its lock held.
 | |
|  */
 | |
| struct lruvec *folio_lruvec_lock(struct folio *folio)
 | |
| {
 | |
| 	struct lruvec *lruvec = folio_lruvec(folio);
 | |
| 
 | |
| 	spin_lock(&lruvec->lru_lock);
 | |
| 	lruvec_memcg_debug(lruvec, folio);
 | |
| 
 | |
| 	return lruvec;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
 | |
|  * @folio: Pointer to the folio.
 | |
|  *
 | |
|  * These functions are safe to use under any of the following conditions:
 | |
|  * - folio locked
 | |
|  * - folio_test_lru false
 | |
|  * - folio frozen (refcount of 0)
 | |
|  *
 | |
|  * Return: The lruvec this folio is on with its lock held and interrupts
 | |
|  * disabled.
 | |
|  */
 | |
| struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
 | |
| {
 | |
| 	struct lruvec *lruvec = folio_lruvec(folio);
 | |
| 
 | |
| 	spin_lock_irq(&lruvec->lru_lock);
 | |
| 	lruvec_memcg_debug(lruvec, folio);
 | |
| 
 | |
| 	return lruvec;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
 | |
|  * @folio: Pointer to the folio.
 | |
|  * @flags: Pointer to irqsave flags.
 | |
|  *
 | |
|  * These functions are safe to use under any of the following conditions:
 | |
|  * - folio locked
 | |
|  * - folio_test_lru false
 | |
|  * - folio frozen (refcount of 0)
 | |
|  *
 | |
|  * Return: The lruvec this folio is on with its lock held and interrupts
 | |
|  * disabled.
 | |
|  */
 | |
| struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
 | |
| 		unsigned long *flags)
 | |
| {
 | |
| 	struct lruvec *lruvec = folio_lruvec(folio);
 | |
| 
 | |
| 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
 | |
| 	lruvec_memcg_debug(lruvec, folio);
 | |
| 
 | |
| 	return lruvec;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_update_lru_size - account for adding or removing an lru page
 | |
|  * @lruvec: mem_cgroup per zone lru vector
 | |
|  * @lru: index of lru list the page is sitting on
 | |
|  * @zid: zone id of the accounted pages
 | |
|  * @nr_pages: positive when adding or negative when removing
 | |
|  *
 | |
|  * This function must be called under lru_lock, just before a page is added
 | |
|  * to or just after a page is removed from an lru list.
 | |
|  */
 | |
| void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 | |
| 				int zid, int nr_pages)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 	unsigned long *lru_size;
 | |
| 	long size;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 | |
| 	lru_size = &mz->lru_zone_size[zid][lru];
 | |
| 
 | |
| 	if (nr_pages < 0)
 | |
| 		*lru_size += nr_pages;
 | |
| 
 | |
| 	size = *lru_size;
 | |
| 	if (WARN_ONCE(size < 0,
 | |
| 		"%s(%p, %d, %d): lru_size %ld\n",
 | |
| 		__func__, lruvec, lru, nr_pages, size)) {
 | |
| 		VM_BUG_ON(1);
 | |
| 		*lru_size = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (nr_pages > 0)
 | |
| 		*lru_size += nr_pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 | |
|  * @memcg: the memory cgroup
 | |
|  *
 | |
|  * Returns the maximum amount of memory @mem can be charged with, in
 | |
|  * pages.
 | |
|  */
 | |
| static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long margin = 0;
 | |
| 	unsigned long count;
 | |
| 	unsigned long limit;
 | |
| 
 | |
| 	count = page_counter_read(&memcg->memory);
 | |
| 	limit = READ_ONCE(memcg->memory.max);
 | |
| 	if (count < limit)
 | |
| 		margin = limit - count;
 | |
| 
 | |
| 	if (do_memsw_account()) {
 | |
| 		count = page_counter_read(&memcg->memsw);
 | |
| 		limit = READ_ONCE(memcg->memsw.max);
 | |
| 		if (count < limit)
 | |
| 			margin = min(margin, limit - count);
 | |
| 		else
 | |
| 			margin = 0;
 | |
| 	}
 | |
| 
 | |
| 	return margin;
 | |
| }
 | |
| 
 | |
| struct memory_stat {
 | |
| 	const char *name;
 | |
| 	unsigned int idx;
 | |
| };
 | |
| 
 | |
| static const struct memory_stat memory_stats[] = {
 | |
| 	{ "anon",			NR_ANON_MAPPED			},
 | |
| 	{ "file",			NR_FILE_PAGES			},
 | |
| 	{ "kernel",			MEMCG_KMEM			},
 | |
| 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
 | |
| 	{ "pagetables",			NR_PAGETABLE			},
 | |
| 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
 | |
| 	{ "percpu",			MEMCG_PERCPU_B			},
 | |
| 	{ "sock",			MEMCG_SOCK			},
 | |
| 	{ "vmalloc",			MEMCG_VMALLOC			},
 | |
| 	{ "shmem",			NR_SHMEM			},
 | |
| #ifdef CONFIG_ZSWAP
 | |
| 	{ "zswap",			MEMCG_ZSWAP_B			},
 | |
| 	{ "zswapped",			MEMCG_ZSWAPPED			},
 | |
| #endif
 | |
| 	{ "file_mapped",		NR_FILE_MAPPED			},
 | |
| 	{ "file_dirty",			NR_FILE_DIRTY			},
 | |
| 	{ "file_writeback",		NR_WRITEBACK			},
 | |
| #ifdef CONFIG_SWAP
 | |
| 	{ "swapcached",			NR_SWAPCACHE			},
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	{ "anon_thp",			NR_ANON_THPS			},
 | |
| 	{ "file_thp",			NR_FILE_THPS			},
 | |
| 	{ "shmem_thp",			NR_SHMEM_THPS			},
 | |
| #endif
 | |
| 	{ "inactive_anon",		NR_INACTIVE_ANON		},
 | |
| 	{ "active_anon",		NR_ACTIVE_ANON			},
 | |
| 	{ "inactive_file",		NR_INACTIVE_FILE		},
 | |
| 	{ "active_file",		NR_ACTIVE_FILE			},
 | |
| 	{ "unevictable",		NR_UNEVICTABLE			},
 | |
| 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
 | |
| 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 	{ "hugetlb",			NR_HUGETLB			},
 | |
| #endif
 | |
| 
 | |
| 	/* The memory events */
 | |
| 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
 | |
| 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
 | |
| 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
 | |
| 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
 | |
| 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
 | |
| 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
 | |
| 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
 | |
| 
 | |
| 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
 | |
| 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
 | |
| 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
 | |
| 	{ "pgdemote_proactive",		PGDEMOTE_PROACTIVE	},
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* The actual unit of the state item, not the same as the output unit */
 | |
| static int memcg_page_state_unit(int item)
 | |
| {
 | |
| 	switch (item) {
 | |
| 	case MEMCG_PERCPU_B:
 | |
| 	case MEMCG_ZSWAP_B:
 | |
| 	case NR_SLAB_RECLAIMABLE_B:
 | |
| 	case NR_SLAB_UNRECLAIMABLE_B:
 | |
| 		return 1;
 | |
| 	case NR_KERNEL_STACK_KB:
 | |
| 		return SZ_1K;
 | |
| 	default:
 | |
| 		return PAGE_SIZE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Translate stat items to the correct unit for memory.stat output */
 | |
| static int memcg_page_state_output_unit(int item)
 | |
| {
 | |
| 	/*
 | |
| 	 * Workingset state is actually in pages, but we export it to userspace
 | |
| 	 * as a scalar count of events, so special case it here.
 | |
| 	 *
 | |
| 	 * Demotion and promotion activities are exported in pages, consistent
 | |
| 	 * with their global counterparts.
 | |
| 	 */
 | |
| 	switch (item) {
 | |
| 	case WORKINGSET_REFAULT_ANON:
 | |
| 	case WORKINGSET_REFAULT_FILE:
 | |
| 	case WORKINGSET_ACTIVATE_ANON:
 | |
| 	case WORKINGSET_ACTIVATE_FILE:
 | |
| 	case WORKINGSET_RESTORE_ANON:
 | |
| 	case WORKINGSET_RESTORE_FILE:
 | |
| 	case WORKINGSET_NODERECLAIM:
 | |
| 	case PGDEMOTE_KSWAPD:
 | |
| 	case PGDEMOTE_DIRECT:
 | |
| 	case PGDEMOTE_KHUGEPAGED:
 | |
| 	case PGDEMOTE_PROACTIVE:
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	case PGPROMOTE_SUCCESS:
 | |
| #endif
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		return memcg_page_state_unit(item);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
 | |
| {
 | |
| 	return memcg_page_state(memcg, item) *
 | |
| 		memcg_page_state_output_unit(item);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
 | |
| {
 | |
| 	return memcg_page_state_local(memcg, item) *
 | |
| 		memcg_page_state_output_unit(item);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| static bool memcg_accounts_hugetlb(void)
 | |
| {
 | |
| 	return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
 | |
| }
 | |
| #else /* CONFIG_HUGETLB_PAGE */
 | |
| static bool memcg_accounts_hugetlb(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Provide statistics on the state of the memory subsystem as
 | |
| 	 * well as cumulative event counters that show past behavior.
 | |
| 	 *
 | |
| 	 * This list is ordered following a combination of these gradients:
 | |
| 	 * 1) generic big picture -> specifics and details
 | |
| 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
 | |
| 	 *
 | |
| 	 * Current memory state:
 | |
| 	 */
 | |
| 	mem_cgroup_flush_stats(memcg);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
 | |
| 		u64 size;
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
 | |
| 			!memcg_accounts_hugetlb())
 | |
| 			continue;
 | |
| #endif
 | |
| 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
 | |
| 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
 | |
| 
 | |
| 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
 | |
| 			size += memcg_page_state_output(memcg,
 | |
| 							NR_SLAB_RECLAIMABLE_B);
 | |
| 			seq_buf_printf(s, "slab %llu\n", size);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Accumulated memory events */
 | |
| 	seq_buf_printf(s, "pgscan %lu\n",
 | |
| 		       memcg_events(memcg, PGSCAN_KSWAPD) +
 | |
| 		       memcg_events(memcg, PGSCAN_DIRECT) +
 | |
| 		       memcg_events(memcg, PGSCAN_PROACTIVE) +
 | |
| 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
 | |
| 	seq_buf_printf(s, "pgsteal %lu\n",
 | |
| 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
 | |
| 		       memcg_events(memcg, PGSTEAL_DIRECT) +
 | |
| 		       memcg_events(memcg, PGSTEAL_PROACTIVE) +
 | |
| 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| 		if (memcg_vm_event_stat[i] == PGPGIN ||
 | |
| 		    memcg_vm_event_stat[i] == PGPGOUT)
 | |
| 			continue;
 | |
| #endif
 | |
| 		seq_buf_printf(s, "%s %lu\n",
 | |
| 			       vm_event_name(memcg_vm_event_stat[i]),
 | |
| 			       memcg_events(memcg, memcg_vm_event_stat[i]));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
 | |
| {
 | |
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		memcg_stat_format(memcg, s);
 | |
| 	else
 | |
| 		memcg1_stat_format(memcg, s);
 | |
| 	if (seq_buf_has_overflowed(s))
 | |
| 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_print_oom_context: Print OOM information relevant to
 | |
|  * memory controller.
 | |
|  * @memcg: The memory cgroup that went over limit
 | |
|  * @p: Task that is going to be killed
 | |
|  *
 | |
|  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 | |
|  * enabled
 | |
|  */
 | |
| void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
 | |
| {
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	if (memcg) {
 | |
| 		pr_cont(",oom_memcg=");
 | |
| 		pr_cont_cgroup_path(memcg->css.cgroup);
 | |
| 	} else
 | |
| 		pr_cont(",global_oom");
 | |
| 	if (p) {
 | |
| 		pr_cont(",task_memcg=");
 | |
| 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 | |
|  * memory controller.
 | |
|  * @memcg: The memory cgroup that went over limit
 | |
|  */
 | |
| void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	/* Use static buffer, for the caller is holding oom_lock. */
 | |
| 	static char buf[SEQ_BUF_SIZE];
 | |
| 	struct seq_buf s;
 | |
| 	unsigned long memory_failcnt;
 | |
| 
 | |
| 	lockdep_assert_held(&oom_lock);
 | |
| 
 | |
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
 | |
| 	else
 | |
| 		memory_failcnt = memcg->memory.failcnt;
 | |
| 
 | |
| 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
 | |
| 		K((u64)page_counter_read(&memcg->memory)),
 | |
| 		K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
 | |
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
 | |
| 			K((u64)page_counter_read(&memcg->swap)),
 | |
| 			K((u64)READ_ONCE(memcg->swap.max)),
 | |
| 			atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| 	else {
 | |
| 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
 | |
| 			K((u64)page_counter_read(&memcg->memsw)),
 | |
| 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
 | |
| 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
 | |
| 			K((u64)page_counter_read(&memcg->kmem)),
 | |
| 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	pr_info("Memory cgroup stats for ");
 | |
| 	pr_cont_cgroup_path(memcg->css.cgroup);
 | |
| 	pr_cont(":");
 | |
| 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
 | |
| 	memory_stat_format(memcg, &s);
 | |
| 	seq_buf_do_printk(&s, KERN_INFO);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the memory (and swap, if configured) limit for a memcg.
 | |
|  */
 | |
| unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long max = READ_ONCE(memcg->memory.max);
 | |
| 
 | |
| 	if (do_memsw_account()) {
 | |
| 		if (mem_cgroup_swappiness(memcg)) {
 | |
| 			/* Calculate swap excess capacity from memsw limit */
 | |
| 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
 | |
| 
 | |
| 			max += min(swap, (unsigned long)total_swap_pages);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (mem_cgroup_swappiness(memcg))
 | |
| 			max += min(READ_ONCE(memcg->swap.max),
 | |
| 				   (unsigned long)total_swap_pages);
 | |
| 	}
 | |
| 	return max;
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	return page_counter_read(&memcg->memory);
 | |
| }
 | |
| 
 | |
| static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
 | |
| 				     int order)
 | |
| {
 | |
| 	struct oom_control oc = {
 | |
| 		.zonelist = NULL,
 | |
| 		.nodemask = NULL,
 | |
| 		.memcg = memcg,
 | |
| 		.gfp_mask = gfp_mask,
 | |
| 		.order = order,
 | |
| 	};
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	if (mutex_lock_killable(&oom_lock))
 | |
| 		return true;
 | |
| 
 | |
| 	if (mem_cgroup_margin(memcg) >= (1 << order))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * A few threads which were not waiting at mutex_lock_killable() can
 | |
| 	 * fail to bail out. Therefore, check again after holding oom_lock.
 | |
| 	 */
 | |
| 	ret = out_of_memory(&oc);
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&oom_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if successfully killed one or more processes. Though in some
 | |
|  * corner cases it can return true even without killing any process.
 | |
|  */
 | |
| static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
 | |
| {
 | |
| 	bool locked, ret;
 | |
| 
 | |
| 	if (order > PAGE_ALLOC_COSTLY_ORDER)
 | |
| 		return false;
 | |
| 
 | |
| 	memcg_memory_event(memcg, MEMCG_OOM);
 | |
| 
 | |
| 	if (!memcg1_oom_prepare(memcg, &locked))
 | |
| 		return false;
 | |
| 
 | |
| 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
 | |
| 
 | |
| 	memcg1_oom_finish(memcg, locked);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 | |
|  * @victim: task to be killed by the OOM killer
 | |
|  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 | |
|  *
 | |
|  * Returns a pointer to a memory cgroup, which has to be cleaned up
 | |
|  * by killing all belonging OOM-killable tasks.
 | |
|  *
 | |
|  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 | |
|  */
 | |
| struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
 | |
| 					    struct mem_cgroup *oom_domain)
 | |
| {
 | |
| 	struct mem_cgroup *oom_group = NULL;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!oom_domain)
 | |
| 		oom_domain = root_mem_cgroup;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	memcg = mem_cgroup_from_task(victim);
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the victim task has been asynchronously moved to a different
 | |
| 	 * memory cgroup, we might end up killing tasks outside oom_domain.
 | |
| 	 * In this case it's better to ignore memory.group.oom.
 | |
| 	 */
 | |
| 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Traverse the memory cgroup hierarchy from the victim task's
 | |
| 	 * cgroup up to the OOMing cgroup (or root) to find the
 | |
| 	 * highest-level memory cgroup with oom.group set.
 | |
| 	 */
 | |
| 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 | |
| 		if (READ_ONCE(memcg->oom_group))
 | |
| 			oom_group = memcg;
 | |
| 
 | |
| 		if (memcg == oom_domain)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (oom_group)
 | |
| 		css_get(&oom_group->css);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return oom_group;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	pr_info("Tasks in ");
 | |
| 	pr_cont_cgroup_path(memcg->css.cgroup);
 | |
| 	pr_cont(" are going to be killed due to memory.oom.group set\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
 | |
|  * nr_pages in a single cacheline. This may change in future.
 | |
|  */
 | |
| #define NR_MEMCG_STOCK 7
 | |
| #define FLUSHING_CACHED_CHARGE	0
 | |
| struct memcg_stock_pcp {
 | |
| 	local_trylock_t lock;
 | |
| 	uint8_t nr_pages[NR_MEMCG_STOCK];
 | |
| 	struct mem_cgroup *cached[NR_MEMCG_STOCK];
 | |
| 
 | |
| 	struct work_struct work;
 | |
| 	unsigned long flags;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
 | |
| 	.lock = INIT_LOCAL_TRYLOCK(lock),
 | |
| };
 | |
| 
 | |
| struct obj_stock_pcp {
 | |
| 	local_trylock_t lock;
 | |
| 	unsigned int nr_bytes;
 | |
| 	struct obj_cgroup *cached_objcg;
 | |
| 	struct pglist_data *cached_pgdat;
 | |
| 	int nr_slab_reclaimable_b;
 | |
| 	int nr_slab_unreclaimable_b;
 | |
| 
 | |
| 	struct work_struct work;
 | |
| 	unsigned long flags;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
 | |
| 	.lock = INIT_LOCAL_TRYLOCK(lock),
 | |
| };
 | |
| 
 | |
| static DEFINE_MUTEX(percpu_charge_mutex);
 | |
| 
 | |
| static void drain_obj_stock(struct obj_stock_pcp *stock);
 | |
| static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
 | |
| 				     struct mem_cgroup *root_memcg);
 | |
| 
 | |
| /**
 | |
|  * consume_stock: Try to consume stocked charge on this cpu.
 | |
|  * @memcg: memcg to consume from.
 | |
|  * @nr_pages: how many pages to charge.
 | |
|  *
 | |
|  * Consume the cached charge if enough nr_pages are present otherwise return
 | |
|  * failure. Also return failure for charge request larger than
 | |
|  * MEMCG_CHARGE_BATCH or if the local lock is already taken.
 | |
|  *
 | |
|  * returns true if successful, false otherwise.
 | |
|  */
 | |
| static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock;
 | |
| 	uint8_t stock_pages;
 | |
| 	bool ret = false;
 | |
| 	int i;
 | |
| 
 | |
| 	if (nr_pages > MEMCG_CHARGE_BATCH ||
 | |
| 	    !local_trylock(&memcg_stock.lock))
 | |
| 		return ret;
 | |
| 
 | |
| 	stock = this_cpu_ptr(&memcg_stock);
 | |
| 
 | |
| 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
 | |
| 		if (memcg != READ_ONCE(stock->cached[i]))
 | |
| 			continue;
 | |
| 
 | |
| 		stock_pages = READ_ONCE(stock->nr_pages[i]);
 | |
| 		if (stock_pages >= nr_pages) {
 | |
| 			WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
 | |
| 			ret = true;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	local_unlock(&memcg_stock.lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
 | |
| {
 | |
| 	page_counter_uncharge(&memcg->memory, nr_pages);
 | |
| 	if (do_memsw_account())
 | |
| 		page_counter_uncharge(&memcg->memsw, nr_pages);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns stocks cached in percpu and reset cached information.
 | |
|  */
 | |
| static void drain_stock(struct memcg_stock_pcp *stock, int i)
 | |
| {
 | |
| 	struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
 | |
| 	uint8_t stock_pages;
 | |
| 
 | |
| 	if (!old)
 | |
| 		return;
 | |
| 
 | |
| 	stock_pages = READ_ONCE(stock->nr_pages[i]);
 | |
| 	if (stock_pages) {
 | |
| 		memcg_uncharge(old, stock_pages);
 | |
| 		WRITE_ONCE(stock->nr_pages[i], 0);
 | |
| 	}
 | |
| 
 | |
| 	css_put(&old->css);
 | |
| 	WRITE_ONCE(stock->cached[i], NULL);
 | |
| }
 | |
| 
 | |
| static void drain_stock_fully(struct memcg_stock_pcp *stock)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_MEMCG_STOCK; ++i)
 | |
| 		drain_stock(stock, i);
 | |
| }
 | |
| 
 | |
| static void drain_local_memcg_stock(struct work_struct *dummy)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock;
 | |
| 
 | |
| 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
 | |
| 		return;
 | |
| 
 | |
| 	local_lock(&memcg_stock.lock);
 | |
| 
 | |
| 	stock = this_cpu_ptr(&memcg_stock);
 | |
| 	drain_stock_fully(stock);
 | |
| 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 | |
| 
 | |
| 	local_unlock(&memcg_stock.lock);
 | |
| }
 | |
| 
 | |
| static void drain_local_obj_stock(struct work_struct *dummy)
 | |
| {
 | |
| 	struct obj_stock_pcp *stock;
 | |
| 
 | |
| 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
 | |
| 		return;
 | |
| 
 | |
| 	local_lock(&obj_stock.lock);
 | |
| 
 | |
| 	stock = this_cpu_ptr(&obj_stock);
 | |
| 	drain_obj_stock(stock);
 | |
| 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 | |
| 
 | |
| 	local_unlock(&obj_stock.lock);
 | |
| }
 | |
| 
 | |
| static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock;
 | |
| 	struct mem_cgroup *cached;
 | |
| 	uint8_t stock_pages;
 | |
| 	bool success = false;
 | |
| 	int empty_slot = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
 | |
| 	 * decide to increase it more than 127 then we will need more careful
 | |
| 	 * handling of nr_pages[] in struct memcg_stock_pcp.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
 | |
| 
 | |
| 	VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
 | |
| 
 | |
| 	if (nr_pages > MEMCG_CHARGE_BATCH ||
 | |
| 	    !local_trylock(&memcg_stock.lock)) {
 | |
| 		/*
 | |
| 		 * In case of larger than batch refill or unlikely failure to
 | |
| 		 * lock the percpu memcg_stock.lock, uncharge memcg directly.
 | |
| 		 */
 | |
| 		memcg_uncharge(memcg, nr_pages);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	stock = this_cpu_ptr(&memcg_stock);
 | |
| 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
 | |
| 		cached = READ_ONCE(stock->cached[i]);
 | |
| 		if (!cached && empty_slot == -1)
 | |
| 			empty_slot = i;
 | |
| 		if (memcg == READ_ONCE(stock->cached[i])) {
 | |
| 			stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
 | |
| 			WRITE_ONCE(stock->nr_pages[i], stock_pages);
 | |
| 			if (stock_pages > MEMCG_CHARGE_BATCH)
 | |
| 				drain_stock(stock, i);
 | |
| 			success = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!success) {
 | |
| 		i = empty_slot;
 | |
| 		if (i == -1) {
 | |
| 			i = get_random_u32_below(NR_MEMCG_STOCK);
 | |
| 			drain_stock(stock, i);
 | |
| 		}
 | |
| 		css_get(&memcg->css);
 | |
| 		WRITE_ONCE(stock->cached[i], memcg);
 | |
| 		WRITE_ONCE(stock->nr_pages[i], nr_pages);
 | |
| 	}
 | |
| 
 | |
| 	local_unlock(&memcg_stock.lock);
 | |
| }
 | |
| 
 | |
| static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
 | |
| 				  struct mem_cgroup *root_memcg)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	bool flush = false;
 | |
| 	int i;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
 | |
| 		memcg = READ_ONCE(stock->cached[i]);
 | |
| 		if (!memcg)
 | |
| 			continue;
 | |
| 
 | |
| 		if (READ_ONCE(stock->nr_pages[i]) &&
 | |
| 		    mem_cgroup_is_descendant(memcg, root_memcg)) {
 | |
| 			flush = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drains all per-CPU charge caches for given root_memcg resp. subtree
 | |
|  * of the hierarchy under it.
 | |
|  */
 | |
| void drain_all_stock(struct mem_cgroup *root_memcg)
 | |
| {
 | |
| 	int cpu, curcpu;
 | |
| 
 | |
| 	/* If someone's already draining, avoid adding running more workers. */
 | |
| 	if (!mutex_trylock(&percpu_charge_mutex))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Notify other cpus that system-wide "drain" is running
 | |
| 	 * We do not care about races with the cpu hotplug because cpu down
 | |
| 	 * as well as workers from this path always operate on the local
 | |
| 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
 | |
| 	 */
 | |
| 	migrate_disable();
 | |
| 	curcpu = smp_processor_id();
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
 | |
| 		struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
 | |
| 
 | |
| 		if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
 | |
| 		    is_memcg_drain_needed(memcg_st, root_memcg) &&
 | |
| 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
 | |
| 				      &memcg_st->flags)) {
 | |
| 			if (cpu == curcpu)
 | |
| 				drain_local_memcg_stock(&memcg_st->work);
 | |
| 			else if (!cpu_is_isolated(cpu))
 | |
| 				schedule_work_on(cpu, &memcg_st->work);
 | |
| 		}
 | |
| 
 | |
| 		if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
 | |
| 		    obj_stock_flush_required(obj_st, root_memcg) &&
 | |
| 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
 | |
| 				      &obj_st->flags)) {
 | |
| 			if (cpu == curcpu)
 | |
| 				drain_local_obj_stock(&obj_st->work);
 | |
| 			else if (!cpu_is_isolated(cpu))
 | |
| 				schedule_work_on(cpu, &obj_st->work);
 | |
| 		}
 | |
| 	}
 | |
| 	migrate_enable();
 | |
| 	mutex_unlock(&percpu_charge_mutex);
 | |
| }
 | |
| 
 | |
| static int memcg_hotplug_cpu_dead(unsigned int cpu)
 | |
| {
 | |
| 	/* no need for the local lock */
 | |
| 	drain_obj_stock(&per_cpu(obj_stock, cpu));
 | |
| 	drain_stock_fully(&per_cpu(memcg_stock, cpu));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long reclaim_high(struct mem_cgroup *memcg,
 | |
| 				  unsigned int nr_pages,
 | |
| 				  gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned long nr_reclaimed = 0;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned long pflags;
 | |
| 
 | |
| 		if (page_counter_read(&memcg->memory) <=
 | |
| 		    READ_ONCE(memcg->memory.high))
 | |
| 			continue;
 | |
| 
 | |
| 		memcg_memory_event(memcg, MEMCG_HIGH);
 | |
| 
 | |
| 		psi_memstall_enter(&pflags);
 | |
| 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
 | |
| 							gfp_mask,
 | |
| 							MEMCG_RECLAIM_MAY_SWAP,
 | |
| 							NULL);
 | |
| 		psi_memstall_leave(&pflags);
 | |
| 	} while ((memcg = parent_mem_cgroup(memcg)) &&
 | |
| 		 !mem_cgroup_is_root(memcg));
 | |
| 
 | |
| 	return nr_reclaimed;
 | |
| }
 | |
| 
 | |
| static void high_work_func(struct work_struct *work)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	memcg = container_of(work, struct mem_cgroup, high_work);
 | |
| 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 | |
|  * enough to still cause a significant slowdown in most cases, while still
 | |
|  * allowing diagnostics and tracing to proceed without becoming stuck.
 | |
|  */
 | |
| #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
 | |
| 
 | |
| /*
 | |
|  * When calculating the delay, we use these either side of the exponentiation to
 | |
|  * maintain precision and scale to a reasonable number of jiffies (see the table
 | |
|  * below.
 | |
|  *
 | |
|  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 | |
|  *   overage ratio to a delay.
 | |
|  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
 | |
|  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 | |
|  *   to produce a reasonable delay curve.
 | |
|  *
 | |
|  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 | |
|  * reasonable delay curve compared to precision-adjusted overage, not
 | |
|  * penalising heavily at first, but still making sure that growth beyond the
 | |
|  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 | |
|  * example, with a high of 100 megabytes:
 | |
|  *
 | |
|  *  +-------+------------------------+
 | |
|  *  | usage | time to allocate in ms |
 | |
|  *  +-------+------------------------+
 | |
|  *  | 100M  |                      0 |
 | |
|  *  | 101M  |                      6 |
 | |
|  *  | 102M  |                     25 |
 | |
|  *  | 103M  |                     57 |
 | |
|  *  | 104M  |                    102 |
 | |
|  *  | 105M  |                    159 |
 | |
|  *  | 106M  |                    230 |
 | |
|  *  | 107M  |                    313 |
 | |
|  *  | 108M  |                    409 |
 | |
|  *  | 109M  |                    518 |
 | |
|  *  | 110M  |                    639 |
 | |
|  *  | 111M  |                    774 |
 | |
|  *  | 112M  |                    921 |
 | |
|  *  | 113M  |                   1081 |
 | |
|  *  | 114M  |                   1254 |
 | |
|  *  | 115M  |                   1439 |
 | |
|  *  | 116M  |                   1638 |
 | |
|  *  | 117M  |                   1849 |
 | |
|  *  | 118M  |                   2000 |
 | |
|  *  | 119M  |                   2000 |
 | |
|  *  | 120M  |                   2000 |
 | |
|  *  +-------+------------------------+
 | |
|  */
 | |
|  #define MEMCG_DELAY_PRECISION_SHIFT 20
 | |
|  #define MEMCG_DELAY_SCALING_SHIFT 14
 | |
| 
 | |
| static u64 calculate_overage(unsigned long usage, unsigned long high)
 | |
| {
 | |
| 	u64 overage;
 | |
| 
 | |
| 	if (usage <= high)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent division by 0 in overage calculation by acting as if
 | |
| 	 * it was a threshold of 1 page
 | |
| 	 */
 | |
| 	high = max(high, 1UL);
 | |
| 
 | |
| 	overage = usage - high;
 | |
| 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
 | |
| 	return div64_u64(overage, high);
 | |
| }
 | |
| 
 | |
| static u64 mem_find_max_overage(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	u64 overage, max_overage = 0;
 | |
| 
 | |
| 	do {
 | |
| 		overage = calculate_overage(page_counter_read(&memcg->memory),
 | |
| 					    READ_ONCE(memcg->memory.high));
 | |
| 		max_overage = max(overage, max_overage);
 | |
| 	} while ((memcg = parent_mem_cgroup(memcg)) &&
 | |
| 		 !mem_cgroup_is_root(memcg));
 | |
| 
 | |
| 	return max_overage;
 | |
| }
 | |
| 
 | |
| static u64 swap_find_max_overage(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	u64 overage, max_overage = 0;
 | |
| 
 | |
| 	do {
 | |
| 		overage = calculate_overage(page_counter_read(&memcg->swap),
 | |
| 					    READ_ONCE(memcg->swap.high));
 | |
| 		if (overage)
 | |
| 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
 | |
| 		max_overage = max(overage, max_overage);
 | |
| 	} while ((memcg = parent_mem_cgroup(memcg)) &&
 | |
| 		 !mem_cgroup_is_root(memcg));
 | |
| 
 | |
| 	return max_overage;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the number of jiffies that we should penalise a mischievous cgroup which
 | |
|  * is exceeding its memory.high by checking both it and its ancestors.
 | |
|  */
 | |
| static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
 | |
| 					  unsigned int nr_pages,
 | |
| 					  u64 max_overage)
 | |
| {
 | |
| 	unsigned long penalty_jiffies;
 | |
| 
 | |
| 	if (!max_overage)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use overage compared to memory.high to calculate the number of
 | |
| 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
 | |
| 	 * fairly lenient on small overages, and increasingly harsh when the
 | |
| 	 * memcg in question makes it clear that it has no intention of stopping
 | |
| 	 * its crazy behaviour, so we exponentially increase the delay based on
 | |
| 	 * overage amount.
 | |
| 	 */
 | |
| 	penalty_jiffies = max_overage * max_overage * HZ;
 | |
| 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
 | |
| 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Factor in the task's own contribution to the overage, such that four
 | |
| 	 * N-sized allocations are throttled approximately the same as one
 | |
| 	 * 4N-sized allocation.
 | |
| 	 *
 | |
| 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
 | |
| 	 * larger the current charge patch is than that.
 | |
| 	 */
 | |
| 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reclaims memory over the high limit. Called directly from
 | |
|  * try_charge() (context permitting), as well as from the userland
 | |
|  * return path where reclaim is always able to block.
 | |
|  */
 | |
| void mem_cgroup_handle_over_high(gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned long penalty_jiffies;
 | |
| 	unsigned long pflags;
 | |
| 	unsigned long nr_reclaimed;
 | |
| 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
 | |
| 	int nr_retries = MAX_RECLAIM_RETRIES;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	bool in_retry = false;
 | |
| 
 | |
| 	if (likely(!nr_pages))
 | |
| 		return;
 | |
| 
 | |
| 	memcg = get_mem_cgroup_from_mm(current->mm);
 | |
| 	current->memcg_nr_pages_over_high = 0;
 | |
| 
 | |
| retry_reclaim:
 | |
| 	/*
 | |
| 	 * Bail if the task is already exiting. Unlike memory.max,
 | |
| 	 * memory.high enforcement isn't as strict, and there is no
 | |
| 	 * OOM killer involved, which means the excess could already
 | |
| 	 * be much bigger (and still growing) than it could for
 | |
| 	 * memory.max; the dying task could get stuck in fruitless
 | |
| 	 * reclaim for a long time, which isn't desirable.
 | |
| 	 */
 | |
| 	if (task_is_dying())
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * The allocating task should reclaim at least the batch size, but for
 | |
| 	 * subsequent retries we only want to do what's necessary to prevent oom
 | |
| 	 * or breaching resource isolation.
 | |
| 	 *
 | |
| 	 * This is distinct from memory.max or page allocator behaviour because
 | |
| 	 * memory.high is currently batched, whereas memory.max and the page
 | |
| 	 * allocator run every time an allocation is made.
 | |
| 	 */
 | |
| 	nr_reclaimed = reclaim_high(memcg,
 | |
| 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
 | |
| 				    gfp_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * memory.high is breached and reclaim is unable to keep up. Throttle
 | |
| 	 * allocators proactively to slow down excessive growth.
 | |
| 	 */
 | |
| 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
 | |
| 					       mem_find_max_overage(memcg));
 | |
| 
 | |
| 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
 | |
| 						swap_find_max_overage(memcg));
 | |
| 
 | |
| 	/*
 | |
| 	 * Clamp the max delay per usermode return so as to still keep the
 | |
| 	 * application moving forwards and also permit diagnostics, albeit
 | |
| 	 * extremely slowly.
 | |
| 	 */
 | |
| 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
 | |
| 	 * that it's not even worth doing, in an attempt to be nice to those who
 | |
| 	 * go only a small amount over their memory.high value and maybe haven't
 | |
| 	 * been aggressively reclaimed enough yet.
 | |
| 	 */
 | |
| 	if (penalty_jiffies <= HZ / 100)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If reclaim is making forward progress but we're still over
 | |
| 	 * memory.high, we want to encourage that rather than doing allocator
 | |
| 	 * throttling.
 | |
| 	 */
 | |
| 	if (nr_reclaimed || nr_retries--) {
 | |
| 		in_retry = true;
 | |
| 		goto retry_reclaim;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Reclaim didn't manage to push usage below the limit, slow
 | |
| 	 * this allocating task down.
 | |
| 	 *
 | |
| 	 * If we exit early, we're guaranteed to die (since
 | |
| 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
 | |
| 	 * need to account for any ill-begotten jiffies to pay them off later.
 | |
| 	 */
 | |
| 	psi_memstall_enter(&pflags);
 | |
| 	schedule_timeout_killable(penalty_jiffies);
 | |
| 	psi_memstall_leave(&pflags);
 | |
| 
 | |
| out:
 | |
| 	css_put(&memcg->css);
 | |
| }
 | |
| 
 | |
| static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
 | |
| 			    unsigned int nr_pages)
 | |
| {
 | |
| 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
 | |
| 	int nr_retries = MAX_RECLAIM_RETRIES;
 | |
| 	struct mem_cgroup *mem_over_limit;
 | |
| 	struct page_counter *counter;
 | |
| 	unsigned long nr_reclaimed;
 | |
| 	bool passed_oom = false;
 | |
| 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
 | |
| 	bool drained = false;
 | |
| 	bool raised_max_event = false;
 | |
| 	unsigned long pflags;
 | |
| 
 | |
| retry:
 | |
| 	if (consume_stock(memcg, nr_pages))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!gfpflags_allow_spinning(gfp_mask))
 | |
| 		/* Avoid the refill and flush of the older stock */
 | |
| 		batch = nr_pages;
 | |
| 
 | |
| 	if (!do_memsw_account() ||
 | |
| 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
 | |
| 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
 | |
| 			goto done_restock;
 | |
| 		if (do_memsw_account())
 | |
| 			page_counter_uncharge(&memcg->memsw, batch);
 | |
| 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
 | |
| 	} else {
 | |
| 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
 | |
| 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
 | |
| 	}
 | |
| 
 | |
| 	if (batch > nr_pages) {
 | |
| 		batch = nr_pages;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent unbounded recursion when reclaim operations need to
 | |
| 	 * allocate memory. This might exceed the limits temporarily,
 | |
| 	 * but we prefer facilitating memory reclaim and getting back
 | |
| 	 * under the limit over triggering OOM kills in these cases.
 | |
| 	 */
 | |
| 	if (unlikely(current->flags & PF_MEMALLOC))
 | |
| 		goto force;
 | |
| 
 | |
| 	if (unlikely(task_in_memcg_oom(current)))
 | |
| 		goto nomem;
 | |
| 
 | |
| 	if (!gfpflags_allow_blocking(gfp_mask))
 | |
| 		goto nomem;
 | |
| 
 | |
| 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
 | |
| 	raised_max_event = true;
 | |
| 
 | |
| 	psi_memstall_enter(&pflags);
 | |
| 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
 | |
| 						    gfp_mask, reclaim_options, NULL);
 | |
| 	psi_memstall_leave(&pflags);
 | |
| 
 | |
| 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
 | |
| 		goto retry;
 | |
| 
 | |
| 	if (!drained) {
 | |
| 		drain_all_stock(mem_over_limit);
 | |
| 		drained = true;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (gfp_mask & __GFP_NORETRY)
 | |
| 		goto nomem;
 | |
| 	/*
 | |
| 	 * Even though the limit is exceeded at this point, reclaim
 | |
| 	 * may have been able to free some pages.  Retry the charge
 | |
| 	 * before killing the task.
 | |
| 	 *
 | |
| 	 * Only for regular pages, though: huge pages are rather
 | |
| 	 * unlikely to succeed so close to the limit, and we fall back
 | |
| 	 * to regular pages anyway in case of failure.
 | |
| 	 */
 | |
| 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
 | |
| 		goto retry;
 | |
| 
 | |
| 	if (nr_retries--)
 | |
| 		goto retry;
 | |
| 
 | |
| 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	/* Avoid endless loop for tasks bypassed by the oom killer */
 | |
| 	if (passed_oom && task_is_dying())
 | |
| 		goto nomem;
 | |
| 
 | |
| 	/*
 | |
| 	 * keep retrying as long as the memcg oom killer is able to make
 | |
| 	 * a forward progress or bypass the charge if the oom killer
 | |
| 	 * couldn't make any progress.
 | |
| 	 */
 | |
| 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
 | |
| 			   get_order(nr_pages * PAGE_SIZE))) {
 | |
| 		passed_oom = true;
 | |
| 		nr_retries = MAX_RECLAIM_RETRIES;
 | |
| 		goto retry;
 | |
| 	}
 | |
| nomem:
 | |
| 	/*
 | |
| 	 * Memcg doesn't have a dedicated reserve for atomic
 | |
| 	 * allocations. But like the global atomic pool, we need to
 | |
| 	 * put the burden of reclaim on regular allocation requests
 | |
| 	 * and let these go through as privileged allocations.
 | |
| 	 */
 | |
| 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
 | |
| 		return -ENOMEM;
 | |
| force:
 | |
| 	/*
 | |
| 	 * If the allocation has to be enforced, don't forget to raise
 | |
| 	 * a MEMCG_MAX event.
 | |
| 	 */
 | |
| 	if (!raised_max_event)
 | |
| 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
 | |
| 
 | |
| 	/*
 | |
| 	 * The allocation either can't fail or will lead to more memory
 | |
| 	 * being freed very soon.  Allow memory usage go over the limit
 | |
| 	 * temporarily by force charging it.
 | |
| 	 */
 | |
| 	page_counter_charge(&memcg->memory, nr_pages);
 | |
| 	if (do_memsw_account())
 | |
| 		page_counter_charge(&memcg->memsw, nr_pages);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| done_restock:
 | |
| 	if (batch > nr_pages)
 | |
| 		refill_stock(memcg, batch - nr_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the hierarchy is above the normal consumption range, schedule
 | |
| 	 * reclaim on returning to userland.  We can perform reclaim here
 | |
| 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
 | |
| 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
 | |
| 	 * not recorded as it most likely matches current's and won't
 | |
| 	 * change in the meantime.  As high limit is checked again before
 | |
| 	 * reclaim, the cost of mismatch is negligible.
 | |
| 	 */
 | |
| 	do {
 | |
| 		bool mem_high, swap_high;
 | |
| 
 | |
| 		mem_high = page_counter_read(&memcg->memory) >
 | |
| 			READ_ONCE(memcg->memory.high);
 | |
| 		swap_high = page_counter_read(&memcg->swap) >
 | |
| 			READ_ONCE(memcg->swap.high);
 | |
| 
 | |
| 		/* Don't bother a random interrupted task */
 | |
| 		if (!in_task()) {
 | |
| 			if (mem_high) {
 | |
| 				schedule_work(&memcg->high_work);
 | |
| 				break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (mem_high || swap_high) {
 | |
| 			/*
 | |
| 			 * The allocating tasks in this cgroup will need to do
 | |
| 			 * reclaim or be throttled to prevent further growth
 | |
| 			 * of the memory or swap footprints.
 | |
| 			 *
 | |
| 			 * Target some best-effort fairness between the tasks,
 | |
| 			 * and distribute reclaim work and delay penalties
 | |
| 			 * based on how much each task is actually allocating.
 | |
| 			 */
 | |
| 			current->memcg_nr_pages_over_high += batch;
 | |
| 			set_notify_resume(current);
 | |
| 			break;
 | |
| 		}
 | |
| 	} while ((memcg = parent_mem_cgroup(memcg)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Reclaim is set up above to be called from the userland
 | |
| 	 * return path. But also attempt synchronous reclaim to avoid
 | |
| 	 * excessive overrun while the task is still inside the
 | |
| 	 * kernel. If this is successful, the return path will see it
 | |
| 	 * when it rechecks the overage and simply bail out.
 | |
| 	 */
 | |
| 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
 | |
| 	    !(current->flags & PF_MEMALLOC) &&
 | |
| 	    gfpflags_allow_blocking(gfp_mask))
 | |
| 		mem_cgroup_handle_over_high(gfp_mask);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
 | |
| 			     unsigned int nr_pages)
 | |
| {
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		return 0;
 | |
| 
 | |
| 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
 | |
| }
 | |
| 
 | |
| static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
 | |
| {
 | |
| 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
 | |
| 	/*
 | |
| 	 * Any of the following ensures page's memcg stability:
 | |
| 	 *
 | |
| 	 * - the page lock
 | |
| 	 * - LRU isolation
 | |
| 	 * - exclusive reference
 | |
| 	 */
 | |
| 	folio->memcg_data = (unsigned long)memcg;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
 | |
| static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
 | |
| 					 struct pglist_data *pgdat,
 | |
| 					 enum node_stat_item idx, int nr)
 | |
| {
 | |
| 	struct lruvec *lruvec;
 | |
| 
 | |
| 	if (likely(!in_nmi())) {
 | |
| 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | |
| 		mod_memcg_lruvec_state(lruvec, idx, nr);
 | |
| 	} else {
 | |
| 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
 | |
| 
 | |
| 		/* TODO: add to cgroup update tree once it is nmi-safe. */
 | |
| 		if (idx == NR_SLAB_RECLAIMABLE_B)
 | |
| 			atomic_add(nr, &pn->slab_reclaimable);
 | |
| 		else
 | |
| 			atomic_add(nr, &pn->slab_unreclaimable);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
 | |
| 					 struct pglist_data *pgdat,
 | |
| 					 enum node_stat_item idx, int nr)
 | |
| {
 | |
| 	struct lruvec *lruvec;
 | |
| 
 | |
| 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | |
| 	mod_memcg_lruvec_state(lruvec, idx, nr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
 | |
| 				       struct pglist_data *pgdat,
 | |
| 				       enum node_stat_item idx, int nr)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = obj_cgroup_memcg(objcg);
 | |
| 	account_slab_nmi_safe(memcg, pgdat, idx, nr);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Slab objects are accounted individually, not per-page.
 | |
| 	 * Memcg membership data for each individual object is saved in
 | |
| 	 * slab->obj_exts.
 | |
| 	 */
 | |
| 	if (folio_test_slab(folio)) {
 | |
| 		struct slabobj_ext *obj_exts;
 | |
| 		struct slab *slab;
 | |
| 		unsigned int off;
 | |
| 
 | |
| 		slab = folio_slab(folio);
 | |
| 		obj_exts = slab_obj_exts(slab);
 | |
| 		if (!obj_exts)
 | |
| 			return NULL;
 | |
| 
 | |
| 		off = obj_to_index(slab->slab_cache, slab, p);
 | |
| 		if (obj_exts[off].objcg)
 | |
| 			return obj_cgroup_memcg(obj_exts[off].objcg);
 | |
| 
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * folio_memcg_check() is used here, because in theory we can encounter
 | |
| 	 * a folio where the slab flag has been cleared already, but
 | |
| 	 * slab->obj_exts has not been freed yet
 | |
| 	 * folio_memcg_check() will guarantee that a proper memory
 | |
| 	 * cgroup pointer or NULL will be returned.
 | |
| 	 */
 | |
| 	return folio_memcg_check(folio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a pointer to the memory cgroup to which the kernel object is charged.
 | |
|  * It is not suitable for objects allocated using vmalloc().
 | |
|  *
 | |
|  * A passed kernel object must be a slab object or a generic kernel page.
 | |
|  *
 | |
|  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 | |
|  * cgroup_mutex, etc.
 | |
|  */
 | |
| struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
 | |
| }
 | |
| 
 | |
| static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct obj_cgroup *objcg = NULL;
 | |
| 
 | |
| 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
 | |
| 		objcg = rcu_dereference(memcg->objcg);
 | |
| 		if (likely(objcg && obj_cgroup_tryget(objcg)))
 | |
| 			break;
 | |
| 		objcg = NULL;
 | |
| 	}
 | |
| 	return objcg;
 | |
| }
 | |
| 
 | |
| static struct obj_cgroup *current_objcg_update(void)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct obj_cgroup *old, *objcg = NULL;
 | |
| 
 | |
| 	do {
 | |
| 		/* Atomically drop the update bit. */
 | |
| 		old = xchg(¤t->objcg, NULL);
 | |
| 		if (old) {
 | |
| 			old = (struct obj_cgroup *)
 | |
| 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
 | |
| 			obj_cgroup_put(old);
 | |
| 
 | |
| 			old = NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* If new objcg is NULL, no reason for the second atomic update. */
 | |
| 		if (!current->mm || (current->flags & PF_KTHREAD))
 | |
| 			return NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Release the objcg pointer from the previous iteration,
 | |
| 		 * if try_cmpxcg() below fails.
 | |
| 		 */
 | |
| 		if (unlikely(objcg)) {
 | |
| 			obj_cgroup_put(objcg);
 | |
| 			objcg = NULL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Obtain the new objcg pointer. The current task can be
 | |
| 		 * asynchronously moved to another memcg and the previous
 | |
| 		 * memcg can be offlined. So let's get the memcg pointer
 | |
| 		 * and try get a reference to objcg under a rcu read lock.
 | |
| 		 */
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		memcg = mem_cgroup_from_task(current);
 | |
| 		objcg = __get_obj_cgroup_from_memcg(memcg);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		/*
 | |
| 		 * Try set up a new objcg pointer atomically. If it
 | |
| 		 * fails, it means the update flag was set concurrently, so
 | |
| 		 * the whole procedure should be repeated.
 | |
| 		 */
 | |
| 	} while (!try_cmpxchg(¤t->objcg, &old, objcg));
 | |
| 
 | |
| 	return objcg;
 | |
| }
 | |
| 
 | |
| __always_inline struct obj_cgroup *current_obj_cgroup(void)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct obj_cgroup *objcg;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (in_task()) {
 | |
| 		memcg = current->active_memcg;
 | |
| 		if (unlikely(memcg))
 | |
| 			goto from_memcg;
 | |
| 
 | |
| 		objcg = READ_ONCE(current->objcg);
 | |
| 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
 | |
| 			objcg = current_objcg_update();
 | |
| 		/*
 | |
| 		 * Objcg reference is kept by the task, so it's safe
 | |
| 		 * to use the objcg by the current task.
 | |
| 		 */
 | |
| 		return objcg;
 | |
| 	}
 | |
| 
 | |
| 	memcg = this_cpu_read(int_active_memcg);
 | |
| 	if (unlikely(memcg))
 | |
| 		goto from_memcg;
 | |
| 
 | |
| 	return NULL;
 | |
| 
 | |
| from_memcg:
 | |
| 	objcg = NULL;
 | |
| 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
 | |
| 		/*
 | |
| 		 * Memcg pointer is protected by scope (see set_active_memcg())
 | |
| 		 * and is pinning the corresponding objcg, so objcg can't go
 | |
| 		 * away and can be used within the scope without any additional
 | |
| 		 * protection.
 | |
| 		 */
 | |
| 		objcg = rcu_dereference_check(memcg->objcg, 1);
 | |
| 		if (likely(objcg))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return objcg;
 | |
| }
 | |
| 
 | |
| struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
 | |
| {
 | |
| 	struct obj_cgroup *objcg;
 | |
| 
 | |
| 	if (!memcg_kmem_online())
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (folio_memcg_kmem(folio)) {
 | |
| 		objcg = __folio_objcg(folio);
 | |
| 		obj_cgroup_get(objcg);
 | |
| 	} else {
 | |
| 		struct mem_cgroup *memcg;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		memcg = __folio_memcg(folio);
 | |
| 		if (memcg)
 | |
| 			objcg = __get_obj_cgroup_from_memcg(memcg);
 | |
| 		else
 | |
| 			objcg = NULL;
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	return objcg;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
 | |
| static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
 | |
| {
 | |
| 	if (likely(!in_nmi())) {
 | |
| 		mod_memcg_state(memcg, MEMCG_KMEM, val);
 | |
| 	} else {
 | |
| 		/* TODO: add to cgroup update tree once it is nmi-safe. */
 | |
| 		atomic_add(val, &memcg->kmem_stat);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
 | |
| {
 | |
| 	mod_memcg_state(memcg, MEMCG_KMEM, val);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
 | |
|  * @objcg: object cgroup to uncharge
 | |
|  * @nr_pages: number of pages to uncharge
 | |
|  */
 | |
| static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 | |
| 				      unsigned int nr_pages)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	memcg = get_mem_cgroup_from_objcg(objcg);
 | |
| 
 | |
| 	account_kmem_nmi_safe(memcg, -nr_pages);
 | |
| 	memcg1_account_kmem(memcg, -nr_pages);
 | |
| 	if (!mem_cgroup_is_root(memcg))
 | |
| 		refill_stock(memcg, nr_pages);
 | |
| 
 | |
| 	css_put(&memcg->css);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
 | |
|  * @objcg: object cgroup to charge
 | |
|  * @gfp: reclaim mode
 | |
|  * @nr_pages: number of pages to charge
 | |
|  *
 | |
|  * Returns 0 on success, an error code on failure.
 | |
|  */
 | |
| static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
 | |
| 				   unsigned int nr_pages)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	int ret;
 | |
| 
 | |
| 	memcg = get_mem_cgroup_from_objcg(objcg);
 | |
| 
 | |
| 	ret = try_charge_memcg(memcg, gfp, nr_pages);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	account_kmem_nmi_safe(memcg, nr_pages);
 | |
| 	memcg1_account_kmem(memcg, nr_pages);
 | |
| out:
 | |
| 	css_put(&memcg->css);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct obj_cgroup *page_objcg(const struct page *page)
 | |
| {
 | |
| 	unsigned long memcg_data = page->memcg_data;
 | |
| 
 | |
| 	if (mem_cgroup_disabled() || !memcg_data)
 | |
| 		return NULL;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
 | |
| 			page);
 | |
| 	return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
 | |
| }
 | |
| 
 | |
| static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
 | |
| {
 | |
| 	page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
 | |
|  * @page: page to charge
 | |
|  * @gfp: reclaim mode
 | |
|  * @order: allocation order
 | |
|  *
 | |
|  * Returns 0 on success, an error code on failure.
 | |
|  */
 | |
| int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
 | |
| {
 | |
| 	struct obj_cgroup *objcg;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	objcg = current_obj_cgroup();
 | |
| 	if (objcg) {
 | |
| 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
 | |
| 		if (!ret) {
 | |
| 			obj_cgroup_get(objcg);
 | |
| 			page_set_objcg(page, objcg);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memcg_kmem_uncharge_page: uncharge a kmem page
 | |
|  * @page: page to uncharge
 | |
|  * @order: allocation order
 | |
|  */
 | |
| void __memcg_kmem_uncharge_page(struct page *page, int order)
 | |
| {
 | |
| 	struct obj_cgroup *objcg = page_objcg(page);
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 
 | |
| 	if (!objcg)
 | |
| 		return;
 | |
| 
 | |
| 	obj_cgroup_uncharge_pages(objcg, nr_pages);
 | |
| 	page->memcg_data = 0;
 | |
| 	obj_cgroup_put(objcg);
 | |
| }
 | |
| 
 | |
| static void __account_obj_stock(struct obj_cgroup *objcg,
 | |
| 				struct obj_stock_pcp *stock, int nr,
 | |
| 				struct pglist_data *pgdat, enum node_stat_item idx)
 | |
| {
 | |
| 	int *bytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Save vmstat data in stock and skip vmstat array update unless
 | |
| 	 * accumulating over a page of vmstat data or when pgdat changes.
 | |
| 	 */
 | |
| 	if (stock->cached_pgdat != pgdat) {
 | |
| 		/* Flush the existing cached vmstat data */
 | |
| 		struct pglist_data *oldpg = stock->cached_pgdat;
 | |
| 
 | |
| 		if (stock->nr_slab_reclaimable_b) {
 | |
| 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
 | |
| 					  stock->nr_slab_reclaimable_b);
 | |
| 			stock->nr_slab_reclaimable_b = 0;
 | |
| 		}
 | |
| 		if (stock->nr_slab_unreclaimable_b) {
 | |
| 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
 | |
| 					  stock->nr_slab_unreclaimable_b);
 | |
| 			stock->nr_slab_unreclaimable_b = 0;
 | |
| 		}
 | |
| 		stock->cached_pgdat = pgdat;
 | |
| 	}
 | |
| 
 | |
| 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
 | |
| 					       : &stock->nr_slab_unreclaimable_b;
 | |
| 	/*
 | |
| 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
 | |
| 	 * cached locally at least once before pushing it out.
 | |
| 	 */
 | |
| 	if (!*bytes) {
 | |
| 		*bytes = nr;
 | |
| 		nr = 0;
 | |
| 	} else {
 | |
| 		*bytes += nr;
 | |
| 		if (abs(*bytes) > PAGE_SIZE) {
 | |
| 			nr = *bytes;
 | |
| 			*bytes = 0;
 | |
| 		} else {
 | |
| 			nr = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	if (nr)
 | |
| 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
 | |
| }
 | |
| 
 | |
| static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
 | |
| 			      struct pglist_data *pgdat, enum node_stat_item idx)
 | |
| {
 | |
| 	struct obj_stock_pcp *stock;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if (!local_trylock(&obj_stock.lock))
 | |
| 		return ret;
 | |
| 
 | |
| 	stock = this_cpu_ptr(&obj_stock);
 | |
| 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
 | |
| 		stock->nr_bytes -= nr_bytes;
 | |
| 		ret = true;
 | |
| 
 | |
| 		if (pgdat)
 | |
| 			__account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
 | |
| 	}
 | |
| 
 | |
| 	local_unlock(&obj_stock.lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void drain_obj_stock(struct obj_stock_pcp *stock)
 | |
| {
 | |
| 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
 | |
| 
 | |
| 	if (!old)
 | |
| 		return;
 | |
| 
 | |
| 	if (stock->nr_bytes) {
 | |
| 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
 | |
| 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
 | |
| 
 | |
| 		if (nr_pages) {
 | |
| 			struct mem_cgroup *memcg;
 | |
| 
 | |
| 			memcg = get_mem_cgroup_from_objcg(old);
 | |
| 
 | |
| 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
 | |
| 			memcg1_account_kmem(memcg, -nr_pages);
 | |
| 			if (!mem_cgroup_is_root(memcg))
 | |
| 				memcg_uncharge(memcg, nr_pages);
 | |
| 
 | |
| 			css_put(&memcg->css);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The leftover is flushed to the centralized per-memcg value.
 | |
| 		 * On the next attempt to refill obj stock it will be moved
 | |
| 		 * to a per-cpu stock (probably, on an other CPU), see
 | |
| 		 * refill_obj_stock().
 | |
| 		 *
 | |
| 		 * How often it's flushed is a trade-off between the memory
 | |
| 		 * limit enforcement accuracy and potential CPU contention,
 | |
| 		 * so it might be changed in the future.
 | |
| 		 */
 | |
| 		atomic_add(nr_bytes, &old->nr_charged_bytes);
 | |
| 		stock->nr_bytes = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush the vmstat data in current stock
 | |
| 	 */
 | |
| 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
 | |
| 		if (stock->nr_slab_reclaimable_b) {
 | |
| 			mod_objcg_mlstate(old, stock->cached_pgdat,
 | |
| 					  NR_SLAB_RECLAIMABLE_B,
 | |
| 					  stock->nr_slab_reclaimable_b);
 | |
| 			stock->nr_slab_reclaimable_b = 0;
 | |
| 		}
 | |
| 		if (stock->nr_slab_unreclaimable_b) {
 | |
| 			mod_objcg_mlstate(old, stock->cached_pgdat,
 | |
| 					  NR_SLAB_UNRECLAIMABLE_B,
 | |
| 					  stock->nr_slab_unreclaimable_b);
 | |
| 			stock->nr_slab_unreclaimable_b = 0;
 | |
| 		}
 | |
| 		stock->cached_pgdat = NULL;
 | |
| 	}
 | |
| 
 | |
| 	WRITE_ONCE(stock->cached_objcg, NULL);
 | |
| 	obj_cgroup_put(old);
 | |
| }
 | |
| 
 | |
| static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
 | |
| 				     struct mem_cgroup *root_memcg)
 | |
| {
 | |
| 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (objcg) {
 | |
| 		memcg = obj_cgroup_memcg(objcg);
 | |
| 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
 | |
| 			flush = true;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
 | |
| 		bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
 | |
| 		enum node_stat_item idx)
 | |
| {
 | |
| 	struct obj_stock_pcp *stock;
 | |
| 	unsigned int nr_pages = 0;
 | |
| 
 | |
| 	if (!local_trylock(&obj_stock.lock)) {
 | |
| 		if (pgdat)
 | |
| 			mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
 | |
| 		nr_pages = nr_bytes >> PAGE_SHIFT;
 | |
| 		nr_bytes = nr_bytes & (PAGE_SIZE - 1);
 | |
| 		atomic_add(nr_bytes, &objcg->nr_charged_bytes);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	stock = this_cpu_ptr(&obj_stock);
 | |
| 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
 | |
| 		drain_obj_stock(stock);
 | |
| 		obj_cgroup_get(objcg);
 | |
| 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
 | |
| 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
 | |
| 		WRITE_ONCE(stock->cached_objcg, objcg);
 | |
| 
 | |
| 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
 | |
| 	}
 | |
| 	stock->nr_bytes += nr_bytes;
 | |
| 
 | |
| 	if (pgdat)
 | |
| 		__account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
 | |
| 
 | |
| 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
 | |
| 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
 | |
| 		stock->nr_bytes &= (PAGE_SIZE - 1);
 | |
| 	}
 | |
| 
 | |
| 	local_unlock(&obj_stock.lock);
 | |
| out:
 | |
| 	if (nr_pages)
 | |
| 		obj_cgroup_uncharge_pages(objcg, nr_pages);
 | |
| }
 | |
| 
 | |
| static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
 | |
| 				     struct pglist_data *pgdat, enum node_stat_item idx)
 | |
| {
 | |
| 	unsigned int nr_pages, nr_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In theory, objcg->nr_charged_bytes can have enough
 | |
| 	 * pre-charged bytes to satisfy the allocation. However,
 | |
| 	 * flushing objcg->nr_charged_bytes requires two atomic
 | |
| 	 * operations, and objcg->nr_charged_bytes can't be big.
 | |
| 	 * The shared objcg->nr_charged_bytes can also become a
 | |
| 	 * performance bottleneck if all tasks of the same memcg are
 | |
| 	 * trying to update it. So it's better to ignore it and try
 | |
| 	 * grab some new pages. The stock's nr_bytes will be flushed to
 | |
| 	 * objcg->nr_charged_bytes later on when objcg changes.
 | |
| 	 *
 | |
| 	 * The stock's nr_bytes may contain enough pre-charged bytes
 | |
| 	 * to allow one less page from being charged, but we can't rely
 | |
| 	 * on the pre-charged bytes not being changed outside of
 | |
| 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
 | |
| 	 * pre-charged bytes as well when charging pages. To avoid a
 | |
| 	 * page uncharge right after a page charge, we set the
 | |
| 	 * allow_uncharge flag to false when calling refill_obj_stock()
 | |
| 	 * to temporarily allow the pre-charged bytes to exceed the page
 | |
| 	 * size limit. The maximum reachable value of the pre-charged
 | |
| 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
 | |
| 	 * race.
 | |
| 	 */
 | |
| 	nr_pages = size >> PAGE_SHIFT;
 | |
| 	nr_bytes = size & (PAGE_SIZE - 1);
 | |
| 
 | |
| 	if (nr_bytes)
 | |
| 		nr_pages += 1;
 | |
| 
 | |
| 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
 | |
| 	if (!ret && (nr_bytes || pgdat))
 | |
| 		refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
 | |
| 					 false, size, pgdat, idx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
 | |
| {
 | |
| 	return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
 | |
| }
 | |
| 
 | |
| void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
 | |
| {
 | |
| 	refill_obj_stock(objcg, size, true, 0, NULL, 0);
 | |
| }
 | |
| 
 | |
| static inline size_t obj_full_size(struct kmem_cache *s)
 | |
| {
 | |
| 	/*
 | |
| 	 * For each accounted object there is an extra space which is used
 | |
| 	 * to store obj_cgroup membership. Charge it too.
 | |
| 	 */
 | |
| 	return s->size + sizeof(struct obj_cgroup *);
 | |
| }
 | |
| 
 | |
| bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
 | |
| 				  gfp_t flags, size_t size, void **p)
 | |
| {
 | |
| 	struct obj_cgroup *objcg;
 | |
| 	struct slab *slab;
 | |
| 	unsigned long off;
 | |
| 	size_t i;
 | |
| 
 | |
| 	/*
 | |
| 	 * The obtained objcg pointer is safe to use within the current scope,
 | |
| 	 * defined by current task or set_active_memcg() pair.
 | |
| 	 * obj_cgroup_get() is used to get a permanent reference.
 | |
| 	 */
 | |
| 	objcg = current_obj_cgroup();
 | |
| 	if (!objcg)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
 | |
| 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
 | |
| 	 * the whole requested size.
 | |
| 	 * return success as there's nothing to free back
 | |
| 	 */
 | |
| 	if (unlikely(*p == NULL))
 | |
| 		return true;
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	if (lru) {
 | |
| 		int ret;
 | |
| 		struct mem_cgroup *memcg;
 | |
| 
 | |
| 		memcg = get_mem_cgroup_from_objcg(objcg);
 | |
| 		ret = memcg_list_lru_alloc(memcg, lru, flags);
 | |
| 		css_put(&memcg->css);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		slab = virt_to_slab(p[i]);
 | |
| 
 | |
| 		if (!slab_obj_exts(slab) &&
 | |
| 		    alloc_slab_obj_exts(slab, s, flags, false)) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * if we fail and size is 1, memcg_alloc_abort_single() will
 | |
| 		 * just free the object, which is ok as we have not assigned
 | |
| 		 * objcg to its obj_ext yet
 | |
| 		 *
 | |
| 		 * for larger sizes, kmem_cache_free_bulk() will uncharge
 | |
| 		 * any objects that were already charged and obj_ext assigned
 | |
| 		 *
 | |
| 		 * TODO: we could batch this until slab_pgdat(slab) changes
 | |
| 		 * between iterations, with a more complicated undo
 | |
| 		 */
 | |
| 		if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
 | |
| 					slab_pgdat(slab), cache_vmstat_idx(s)))
 | |
| 			return false;
 | |
| 
 | |
| 		off = obj_to_index(s, slab, p[i]);
 | |
| 		obj_cgroup_get(objcg);
 | |
| 		slab_obj_exts(slab)[off].objcg = objcg;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
 | |
| 			    void **p, int objects, struct slabobj_ext *obj_exts)
 | |
| {
 | |
| 	size_t obj_size = obj_full_size(s);
 | |
| 
 | |
| 	for (int i = 0; i < objects; i++) {
 | |
| 		struct obj_cgroup *objcg;
 | |
| 		unsigned int off;
 | |
| 
 | |
| 		off = obj_to_index(s, slab, p[i]);
 | |
| 		objcg = obj_exts[off].objcg;
 | |
| 		if (!objcg)
 | |
| 			continue;
 | |
| 
 | |
| 		obj_exts[off].objcg = NULL;
 | |
| 		refill_obj_stock(objcg, obj_size, true, -obj_size,
 | |
| 				 slab_pgdat(slab), cache_vmstat_idx(s));
 | |
| 		obj_cgroup_put(objcg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The objcg is only set on the first page, so transfer it to all the
 | |
|  * other pages.
 | |
|  */
 | |
| void split_page_memcg(struct page *page, unsigned order)
 | |
| {
 | |
| 	struct obj_cgroup *objcg = page_objcg(page);
 | |
| 	unsigned int i, nr = 1 << order;
 | |
| 
 | |
| 	if (!objcg)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 1; i < nr; i++)
 | |
| 		page_set_objcg(&page[i], objcg);
 | |
| 
 | |
| 	obj_cgroup_get_many(objcg, nr - 1);
 | |
| }
 | |
| 
 | |
| void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
 | |
| 		unsigned new_order)
 | |
| {
 | |
| 	unsigned new_refs;
 | |
| 
 | |
| 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
 | |
| 		return;
 | |
| 
 | |
| 	new_refs = (1 << (old_order - new_order)) - 1;
 | |
| 	css_get_many(&__folio_memcg(folio)->css, new_refs);
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	if (mem_cgroup_is_root(memcg)) {
 | |
| 		/*
 | |
| 		 * Approximate root's usage from global state. This isn't
 | |
| 		 * perfect, but the root usage was always an approximation.
 | |
| 		 */
 | |
| 		val = global_node_page_state(NR_FILE_PAGES) +
 | |
| 			global_node_page_state(NR_ANON_MAPPED);
 | |
| 		if (swap)
 | |
| 			val += total_swap_pages - get_nr_swap_pages();
 | |
| 	} else {
 | |
| 		if (!swap)
 | |
| 			val = page_counter_read(&memcg->memory);
 | |
| 		else
 | |
| 			val = page_counter_read(&memcg->memsw);
 | |
| 	}
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static int memcg_online_kmem(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct obj_cgroup *objcg;
 | |
| 
 | |
| 	if (mem_cgroup_kmem_disabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(mem_cgroup_is_root(memcg)))
 | |
| 		return 0;
 | |
| 
 | |
| 	objcg = obj_cgroup_alloc();
 | |
| 	if (!objcg)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	objcg->memcg = memcg;
 | |
| 	rcu_assign_pointer(memcg->objcg, objcg);
 | |
| 	obj_cgroup_get(objcg);
 | |
| 	memcg->orig_objcg = objcg;
 | |
| 
 | |
| 	static_branch_enable(&memcg_kmem_online_key);
 | |
| 
 | |
| 	memcg->kmemcg_id = memcg->id.id;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void memcg_offline_kmem(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *parent;
 | |
| 
 | |
| 	if (mem_cgroup_kmem_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(mem_cgroup_is_root(memcg)))
 | |
| 		return;
 | |
| 
 | |
| 	parent = parent_mem_cgroup(memcg);
 | |
| 	if (!parent)
 | |
| 		parent = root_mem_cgroup;
 | |
| 
 | |
| 	memcg_reparent_list_lrus(memcg, parent);
 | |
| 
 | |
| 	/*
 | |
| 	 * Objcg's reparenting must be after list_lru's, make sure list_lru
 | |
| 	 * helpers won't use parent's list_lru until child is drained.
 | |
| 	 */
 | |
| 	memcg_reparent_objcgs(memcg, parent);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| 
 | |
| #include <trace/events/writeback.h>
 | |
| 
 | |
| static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
 | |
| {
 | |
| 	return wb_domain_init(&memcg->cgwb_domain, gfp);
 | |
| }
 | |
| 
 | |
| static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	wb_domain_exit(&memcg->cgwb_domain);
 | |
| }
 | |
| 
 | |
| static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	wb_domain_size_changed(&memcg->cgwb_domain);
 | |
| }
 | |
| 
 | |
| struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
 | |
| 
 | |
| 	if (!memcg->css.parent)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &memcg->cgwb_domain;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 | |
|  * @wb: bdi_writeback in question
 | |
|  * @pfilepages: out parameter for number of file pages
 | |
|  * @pheadroom: out parameter for number of allocatable pages according to memcg
 | |
|  * @pdirty: out parameter for number of dirty pages
 | |
|  * @pwriteback: out parameter for number of pages under writeback
 | |
|  *
 | |
|  * Determine the numbers of file, headroom, dirty, and writeback pages in
 | |
|  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 | |
|  * is a bit more involved.
 | |
|  *
 | |
|  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 | |
|  * headroom is calculated as the lowest headroom of itself and the
 | |
|  * ancestors.  Note that this doesn't consider the actual amount of
 | |
|  * available memory in the system.  The caller should further cap
 | |
|  * *@pheadroom accordingly.
 | |
|  */
 | |
| void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
 | |
| 			 unsigned long *pheadroom, unsigned long *pdirty,
 | |
| 			 unsigned long *pwriteback)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
 | |
| 	struct mem_cgroup *parent;
 | |
| 
 | |
| 	mem_cgroup_flush_stats_ratelimited(memcg);
 | |
| 
 | |
| 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
 | |
| 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
 | |
| 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
 | |
| 			memcg_page_state(memcg, NR_ACTIVE_FILE);
 | |
| 
 | |
| 	*pheadroom = PAGE_COUNTER_MAX;
 | |
| 	while ((parent = parent_mem_cgroup(memcg))) {
 | |
| 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
 | |
| 					    READ_ONCE(memcg->memory.high));
 | |
| 		unsigned long used = page_counter_read(&memcg->memory);
 | |
| 
 | |
| 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
 | |
| 		memcg = parent;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Foreign dirty flushing
 | |
|  *
 | |
|  * There's an inherent mismatch between memcg and writeback.  The former
 | |
|  * tracks ownership per-page while the latter per-inode.  This was a
 | |
|  * deliberate design decision because honoring per-page ownership in the
 | |
|  * writeback path is complicated, may lead to higher CPU and IO overheads
 | |
|  * and deemed unnecessary given that write-sharing an inode across
 | |
|  * different cgroups isn't a common use-case.
 | |
|  *
 | |
|  * Combined with inode majority-writer ownership switching, this works well
 | |
|  * enough in most cases but there are some pathological cases.  For
 | |
|  * example, let's say there are two cgroups A and B which keep writing to
 | |
|  * different but confined parts of the same inode.  B owns the inode and
 | |
|  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 | |
|  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 | |
|  * triggering background writeback.  A will be slowed down without a way to
 | |
|  * make writeback of the dirty pages happen.
 | |
|  *
 | |
|  * Conditions like the above can lead to a cgroup getting repeatedly and
 | |
|  * severely throttled after making some progress after each
 | |
|  * dirty_expire_interval while the underlying IO device is almost
 | |
|  * completely idle.
 | |
|  *
 | |
|  * Solving this problem completely requires matching the ownership tracking
 | |
|  * granularities between memcg and writeback in either direction.  However,
 | |
|  * the more egregious behaviors can be avoided by simply remembering the
 | |
|  * most recent foreign dirtying events and initiating remote flushes on
 | |
|  * them when local writeback isn't enough to keep the memory clean enough.
 | |
|  *
 | |
|  * The following two functions implement such mechanism.  When a foreign
 | |
|  * page - a page whose memcg and writeback ownerships don't match - is
 | |
|  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 | |
|  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 | |
|  * decides that the memcg needs to sleep due to high dirty ratio, it calls
 | |
|  * mem_cgroup_flush_foreign() which queues writeback on the recorded
 | |
|  * foreign bdi_writebacks which haven't expired.  Both the numbers of
 | |
|  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 | |
|  * limited to MEMCG_CGWB_FRN_CNT.
 | |
|  *
 | |
|  * The mechanism only remembers IDs and doesn't hold any object references.
 | |
|  * As being wrong occasionally doesn't matter, updates and accesses to the
 | |
|  * records are lockless and racy.
 | |
|  */
 | |
| void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
 | |
| 					     struct bdi_writeback *wb)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = folio_memcg(folio);
 | |
| 	struct memcg_cgwb_frn *frn;
 | |
| 	u64 now = get_jiffies_64();
 | |
| 	u64 oldest_at = now;
 | |
| 	int oldest = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	trace_track_foreign_dirty(folio, wb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pick the slot to use.  If there is already a slot for @wb, keep
 | |
| 	 * using it.  If not replace the oldest one which isn't being
 | |
| 	 * written out.
 | |
| 	 */
 | |
| 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
 | |
| 		frn = &memcg->cgwb_frn[i];
 | |
| 		if (frn->bdi_id == wb->bdi->id &&
 | |
| 		    frn->memcg_id == wb->memcg_css->id)
 | |
| 			break;
 | |
| 		if (time_before64(frn->at, oldest_at) &&
 | |
| 		    atomic_read(&frn->done.cnt) == 1) {
 | |
| 			oldest = i;
 | |
| 			oldest_at = frn->at;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (i < MEMCG_CGWB_FRN_CNT) {
 | |
| 		/*
 | |
| 		 * Re-using an existing one.  Update timestamp lazily to
 | |
| 		 * avoid making the cacheline hot.  We want them to be
 | |
| 		 * reasonably up-to-date and significantly shorter than
 | |
| 		 * dirty_expire_interval as that's what expires the record.
 | |
| 		 * Use the shorter of 1s and dirty_expire_interval / 8.
 | |
| 		 */
 | |
| 		unsigned long update_intv =
 | |
| 			min_t(unsigned long, HZ,
 | |
| 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
 | |
| 
 | |
| 		if (time_before64(frn->at, now - update_intv))
 | |
| 			frn->at = now;
 | |
| 	} else if (oldest >= 0) {
 | |
| 		/* replace the oldest free one */
 | |
| 		frn = &memcg->cgwb_frn[oldest];
 | |
| 		frn->bdi_id = wb->bdi->id;
 | |
| 		frn->memcg_id = wb->memcg_css->id;
 | |
| 		frn->at = now;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* issue foreign writeback flushes for recorded foreign dirtying events */
 | |
| void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
 | |
| 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
 | |
| 	u64 now = jiffies_64;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
 | |
| 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * If the record is older than dirty_expire_interval,
 | |
| 		 * writeback on it has already started.  No need to kick it
 | |
| 		 * off again.  Also, don't start a new one if there's
 | |
| 		 * already one in flight.
 | |
| 		 */
 | |
| 		if (time_after64(frn->at, now - intv) &&
 | |
| 		    atomic_read(&frn->done.cnt) == 1) {
 | |
| 			frn->at = 0;
 | |
| 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
 | |
| 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
 | |
| 					       WB_REASON_FOREIGN_FLUSH,
 | |
| 					       &frn->done);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_CGROUP_WRITEBACK */
 | |
| 
 | |
| static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_CGROUP_WRITEBACK */
 | |
| 
 | |
| /*
 | |
|  * Private memory cgroup IDR
 | |
|  *
 | |
|  * Swap-out records and page cache shadow entries need to store memcg
 | |
|  * references in constrained space, so we maintain an ID space that is
 | |
|  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 | |
|  * memory-controlled cgroups to 64k.
 | |
|  *
 | |
|  * However, there usually are many references to the offline CSS after
 | |
|  * the cgroup has been destroyed, such as page cache or reclaimable
 | |
|  * slab objects, that don't need to hang on to the ID. We want to keep
 | |
|  * those dead CSS from occupying IDs, or we might quickly exhaust the
 | |
|  * relatively small ID space and prevent the creation of new cgroups
 | |
|  * even when there are much fewer than 64k cgroups - possibly none.
 | |
|  *
 | |
|  * Maintain a private 16-bit ID space for memcg, and allow the ID to
 | |
|  * be freed and recycled when it's no longer needed, which is usually
 | |
|  * when the CSS is offlined.
 | |
|  *
 | |
|  * The only exception to that are records of swapped out tmpfs/shmem
 | |
|  * pages that need to be attributed to live ancestors on swapin. But
 | |
|  * those references are manageable from userspace.
 | |
|  */
 | |
| 
 | |
| #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
 | |
| static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
 | |
| 
 | |
| static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	if (memcg->id.id > 0) {
 | |
| 		xa_erase(&mem_cgroup_ids, memcg->id.id);
 | |
| 		memcg->id.id = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
 | |
| 					   unsigned int n)
 | |
| {
 | |
| 	refcount_add(n, &memcg->id.ref);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
 | |
| {
 | |
| 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
 | |
| 		mem_cgroup_id_remove(memcg);
 | |
| 
 | |
| 		/* Memcg ID pins CSS */
 | |
| 		css_put(&memcg->css);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	mem_cgroup_id_put_many(memcg, 1);
 | |
| }
 | |
| 
 | |
| struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
 | |
| 		/*
 | |
| 		 * The root cgroup cannot be destroyed, so it's refcount must
 | |
| 		 * always be >= 1.
 | |
| 		 */
 | |
| 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
 | |
| 			VM_BUG_ON(1);
 | |
| 			break;
 | |
| 		}
 | |
| 		memcg = parent_mem_cgroup(memcg);
 | |
| 		if (!memcg)
 | |
| 			memcg = root_mem_cgroup;
 | |
| 	}
 | |
| 	return memcg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_from_id - look up a memcg from a memcg id
 | |
|  * @id: the memcg id to look up
 | |
|  *
 | |
|  * Caller must hold rcu_read_lock().
 | |
|  */
 | |
| struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 | |
| {
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held());
 | |
| 	return xa_load(&mem_cgroup_ids, id);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SHRINKER_DEBUG
 | |
| struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	cgrp = cgroup_get_from_id(ino);
 | |
| 	if (IS_ERR(cgrp))
 | |
| 		return ERR_CAST(cgrp);
 | |
| 
 | |
| 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
 | |
| 	if (css)
 | |
| 		memcg = container_of(css, struct mem_cgroup, css);
 | |
| 	else
 | |
| 		memcg = ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	cgroup_put(cgrp);
 | |
| 
 | |
| 	return memcg;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
 | |
| {
 | |
| 	if (!pn)
 | |
| 		return;
 | |
| 
 | |
| 	free_percpu(pn->lruvec_stats_percpu);
 | |
| 	kfree(pn->lruvec_stats);
 | |
| 	kfree(pn);
 | |
| }
 | |
| 
 | |
| static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 
 | |
| 	pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
 | |
| 				   node);
 | |
| 	if (!pn)
 | |
| 		return false;
 | |
| 
 | |
| 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
 | |
| 					GFP_KERNEL_ACCOUNT, node);
 | |
| 	if (!pn->lruvec_stats)
 | |
| 		goto fail;
 | |
| 
 | |
| 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
 | |
| 						   GFP_KERNEL_ACCOUNT);
 | |
| 	if (!pn->lruvec_stats_percpu)
 | |
| 		goto fail;
 | |
| 
 | |
| 	lruvec_init(&pn->lruvec);
 | |
| 	pn->memcg = memcg;
 | |
| 
 | |
| 	memcg->nodeinfo[node] = pn;
 | |
| 	return true;
 | |
| fail:
 | |
| 	free_mem_cgroup_per_node_info(pn);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_free(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	obj_cgroup_put(memcg->orig_objcg);
 | |
| 
 | |
| 	for_each_node(node)
 | |
| 		free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
 | |
| 	memcg1_free_events(memcg);
 | |
| 	kfree(memcg->vmstats);
 | |
| 	free_percpu(memcg->vmstats_percpu);
 | |
| 	kfree(memcg);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_free(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	lru_gen_exit_memcg(memcg);
 | |
| 	memcg_wb_domain_exit(memcg);
 | |
| 	__mem_cgroup_free(memcg);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
 | |
| {
 | |
| 	struct memcg_vmstats_percpu *statc;
 | |
| 	struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	int node, cpu;
 | |
| 	int __maybe_unused i;
 | |
| 	long error;
 | |
| 
 | |
| 	memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
 | |
| 	if (!memcg)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
 | |
| 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
 | |
| 	if (error)
 | |
| 		goto fail;
 | |
| 	error = -ENOMEM;
 | |
| 
 | |
| 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
 | |
| 				 GFP_KERNEL_ACCOUNT);
 | |
| 	if (!memcg->vmstats)
 | |
| 		goto fail;
 | |
| 
 | |
| 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
 | |
| 						 GFP_KERNEL_ACCOUNT);
 | |
| 	if (!memcg->vmstats_percpu)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (!memcg1_alloc_events(memcg))
 | |
| 		goto fail;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (parent)
 | |
| 			pstatc_pcpu = parent->vmstats_percpu;
 | |
| 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
 | |
| 		statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
 | |
| 		statc->vmstats = memcg->vmstats;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node(node)
 | |
| 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
 | |
| 			goto fail;
 | |
| 
 | |
| 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
 | |
| 		goto fail;
 | |
| 
 | |
| 	INIT_WORK(&memcg->high_work, high_work_func);
 | |
| 	vmpressure_init(&memcg->vmpressure);
 | |
| 	INIT_LIST_HEAD(&memcg->memory_peaks);
 | |
| 	INIT_LIST_HEAD(&memcg->swap_peaks);
 | |
| 	spin_lock_init(&memcg->peaks_lock);
 | |
| 	memcg->socket_pressure = jiffies;
 | |
| 	memcg1_memcg_init(memcg);
 | |
| 	memcg->kmemcg_id = -1;
 | |
| 	INIT_LIST_HEAD(&memcg->objcg_list);
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| 	INIT_LIST_HEAD(&memcg->cgwb_list);
 | |
| 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
 | |
| 		memcg->cgwb_frn[i].done =
 | |
| 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
 | |
| 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
 | |
| 	memcg->deferred_split_queue.split_queue_len = 0;
 | |
| #endif
 | |
| 	lru_gen_init_memcg(memcg);
 | |
| 	return memcg;
 | |
| fail:
 | |
| 	mem_cgroup_id_remove(memcg);
 | |
| 	__mem_cgroup_free(memcg);
 | |
| 	return ERR_PTR(error);
 | |
| }
 | |
| 
 | |
| static struct cgroup_subsys_state * __ref
 | |
| mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 | |
| {
 | |
| 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
 | |
| 	struct mem_cgroup *memcg, *old_memcg;
 | |
| 	bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
 | |
| 
 | |
| 	old_memcg = set_active_memcg(parent);
 | |
| 	memcg = mem_cgroup_alloc(parent);
 | |
| 	set_active_memcg(old_memcg);
 | |
| 	if (IS_ERR(memcg))
 | |
| 		return ERR_CAST(memcg);
 | |
| 
 | |
| 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
 | |
| 	memcg1_soft_limit_reset(memcg);
 | |
| #ifdef CONFIG_ZSWAP
 | |
| 	memcg->zswap_max = PAGE_COUNTER_MAX;
 | |
| 	WRITE_ONCE(memcg->zswap_writeback, true);
 | |
| #endif
 | |
| 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
 | |
| 	if (parent) {
 | |
| 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
 | |
| 
 | |
| 		page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
 | |
| 		page_counter_init(&memcg->swap, &parent->swap, false);
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| 		memcg->memory.track_failcnt = !memcg_on_dfl;
 | |
| 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
 | |
| 		page_counter_init(&memcg->kmem, &parent->kmem, false);
 | |
| 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
 | |
| #endif
 | |
| 	} else {
 | |
| 		init_memcg_stats();
 | |
| 		init_memcg_events();
 | |
| 		page_counter_init(&memcg->memory, NULL, true);
 | |
| 		page_counter_init(&memcg->swap, NULL, false);
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| 		page_counter_init(&memcg->kmem, NULL, false);
 | |
| 		page_counter_init(&memcg->tcpmem, NULL, false);
 | |
| #endif
 | |
| 		root_mem_cgroup = memcg;
 | |
| 		return &memcg->css;
 | |
| 	}
 | |
| 
 | |
| 	if (memcg_on_dfl && !cgroup_memory_nosocket)
 | |
| 		static_branch_inc(&memcg_sockets_enabled_key);
 | |
| 
 | |
| 	if (!cgroup_memory_nobpf)
 | |
| 		static_branch_inc(&memcg_bpf_enabled_key);
 | |
| 
 | |
| 	return &memcg->css;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	if (memcg_online_kmem(memcg))
 | |
| 		goto remove_id;
 | |
| 
 | |
| 	/*
 | |
| 	 * A memcg must be visible for expand_shrinker_info()
 | |
| 	 * by the time the maps are allocated. So, we allocate maps
 | |
| 	 * here, when for_each_mem_cgroup() can't skip it.
 | |
| 	 */
 | |
| 	if (alloc_shrinker_info(memcg))
 | |
| 		goto offline_kmem;
 | |
| 
 | |
| 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
 | |
| 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
 | |
| 				   FLUSH_TIME);
 | |
| 	lru_gen_online_memcg(memcg);
 | |
| 
 | |
| 	/* Online state pins memcg ID, memcg ID pins CSS */
 | |
| 	refcount_set(&memcg->id.ref, 1);
 | |
| 	css_get(css);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure mem_cgroup_from_id() works once we're fully online.
 | |
| 	 *
 | |
| 	 * We could do this earlier and require callers to filter with
 | |
| 	 * css_tryget_online(). But right now there are no users that
 | |
| 	 * need earlier access, and the workingset code relies on the
 | |
| 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
 | |
| 	 * publish it here at the end of onlining. This matches the
 | |
| 	 * regular ID destruction during offlining.
 | |
| 	 */
 | |
| 	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
 | |
| 
 | |
| 	return 0;
 | |
| offline_kmem:
 | |
| 	memcg_offline_kmem(memcg);
 | |
| remove_id:
 | |
| 	mem_cgroup_id_remove(memcg);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	memcg1_css_offline(memcg);
 | |
| 
 | |
| 	page_counter_set_min(&memcg->memory, 0);
 | |
| 	page_counter_set_low(&memcg->memory, 0);
 | |
| 
 | |
| 	zswap_memcg_offline_cleanup(memcg);
 | |
| 
 | |
| 	memcg_offline_kmem(memcg);
 | |
| 	reparent_shrinker_deferred(memcg);
 | |
| 	wb_memcg_offline(memcg);
 | |
| 	lru_gen_offline_memcg(memcg);
 | |
| 
 | |
| 	drain_all_stock(memcg);
 | |
| 
 | |
| 	mem_cgroup_id_put(memcg);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	invalidate_reclaim_iterators(memcg);
 | |
| 	lru_gen_release_memcg(memcg);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 	int __maybe_unused i;
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
 | |
| 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
 | |
| #endif
 | |
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
 | |
| 		static_branch_dec(&memcg_sockets_enabled_key);
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
 | |
| 		static_branch_dec(&memcg_sockets_enabled_key);
 | |
| 
 | |
| 	if (!cgroup_memory_nobpf)
 | |
| 		static_branch_dec(&memcg_bpf_enabled_key);
 | |
| 
 | |
| 	vmpressure_cleanup(&memcg->vmpressure);
 | |
| 	cancel_work_sync(&memcg->high_work);
 | |
| 	memcg1_remove_from_trees(memcg);
 | |
| 	free_shrinker_info(memcg);
 | |
| 	mem_cgroup_free(memcg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_css_reset - reset the states of a mem_cgroup
 | |
|  * @css: the target css
 | |
|  *
 | |
|  * Reset the states of the mem_cgroup associated with @css.  This is
 | |
|  * invoked when the userland requests disabling on the default hierarchy
 | |
|  * but the memcg is pinned through dependency.  The memcg should stop
 | |
|  * applying policies and should revert to the vanilla state as it may be
 | |
|  * made visible again.
 | |
|  *
 | |
|  * The current implementation only resets the essential configurations.
 | |
|  * This needs to be expanded to cover all the visible parts.
 | |
|  */
 | |
| static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
 | |
| 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
 | |
| 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
 | |
| #endif
 | |
| 	page_counter_set_min(&memcg->memory, 0);
 | |
| 	page_counter_set_low(&memcg->memory, 0);
 | |
| 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
 | |
| 	memcg1_soft_limit_reset(memcg);
 | |
| 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
 | |
| 	memcg_wb_domain_size_changed(memcg);
 | |
| }
 | |
| 
 | |
| struct aggregate_control {
 | |
| 	/* pointer to the aggregated (CPU and subtree aggregated) counters */
 | |
| 	long *aggregate;
 | |
| 	/* pointer to the non-hierarchichal (CPU aggregated) counters */
 | |
| 	long *local;
 | |
| 	/* pointer to the pending child counters during tree propagation */
 | |
| 	long *pending;
 | |
| 	/* pointer to the parent's pending counters, could be NULL */
 | |
| 	long *ppending;
 | |
| 	/* pointer to the percpu counters to be aggregated */
 | |
| 	long *cstat;
 | |
| 	/* pointer to the percpu counters of the last aggregation*/
 | |
| 	long *cstat_prev;
 | |
| 	/* size of the above counters */
 | |
| 	int size;
 | |
| };
 | |
| 
 | |
| static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
 | |
| {
 | |
| 	int i;
 | |
| 	long delta, delta_cpu, v;
 | |
| 
 | |
| 	for (i = 0; i < ac->size; i++) {
 | |
| 		/*
 | |
| 		 * Collect the aggregated propagation counts of groups
 | |
| 		 * below us. We're in a per-cpu loop here and this is
 | |
| 		 * a global counter, so the first cycle will get them.
 | |
| 		 */
 | |
| 		delta = ac->pending[i];
 | |
| 		if (delta)
 | |
| 			ac->pending[i] = 0;
 | |
| 
 | |
| 		/* Add CPU changes on this level since the last flush */
 | |
| 		delta_cpu = 0;
 | |
| 		v = READ_ONCE(ac->cstat[i]);
 | |
| 		if (v != ac->cstat_prev[i]) {
 | |
| 			delta_cpu = v - ac->cstat_prev[i];
 | |
| 			delta += delta_cpu;
 | |
| 			ac->cstat_prev[i] = v;
 | |
| 		}
 | |
| 
 | |
| 		/* Aggregate counts on this level and propagate upwards */
 | |
| 		if (delta_cpu)
 | |
| 			ac->local[i] += delta_cpu;
 | |
| 
 | |
| 		if (delta) {
 | |
| 			ac->aggregate[i] += delta;
 | |
| 			if (ac->ppending)
 | |
| 				ac->ppending[i] += delta;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
 | |
| static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
 | |
| 			    int cpu)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	if (atomic_read(&memcg->kmem_stat)) {
 | |
| 		int kmem = atomic_xchg(&memcg->kmem_stat, 0);
 | |
| 		int index = memcg_stats_index(MEMCG_KMEM);
 | |
| 
 | |
| 		memcg->vmstats->state[index] += kmem;
 | |
| 		if (parent)
 | |
| 			parent->vmstats->state_pending[index] += kmem;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
 | |
| 		struct lruvec_stats *lstats = pn->lruvec_stats;
 | |
| 		struct lruvec_stats *plstats = NULL;
 | |
| 
 | |
| 		if (parent)
 | |
| 			plstats = parent->nodeinfo[nid]->lruvec_stats;
 | |
| 
 | |
| 		if (atomic_read(&pn->slab_reclaimable)) {
 | |
| 			int slab = atomic_xchg(&pn->slab_reclaimable, 0);
 | |
| 			int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
 | |
| 
 | |
| 			lstats->state[index] += slab;
 | |
| 			if (plstats)
 | |
| 				plstats->state_pending[index] += slab;
 | |
| 		}
 | |
| 		if (atomic_read(&pn->slab_unreclaimable)) {
 | |
| 			int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
 | |
| 			int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
 | |
| 
 | |
| 			lstats->state[index] += slab;
 | |
| 			if (plstats)
 | |
| 				plstats->state_pending[index] += slab;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
 | |
| 			    int cpu)
 | |
| {}
 | |
| #endif
 | |
| 
 | |
| static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
 | |
| 	struct memcg_vmstats_percpu *statc;
 | |
| 	struct aggregate_control ac;
 | |
| 	int nid;
 | |
| 
 | |
| 	flush_nmi_stats(memcg, parent, cpu);
 | |
| 
 | |
| 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
 | |
| 
 | |
| 	ac = (struct aggregate_control) {
 | |
| 		.aggregate = memcg->vmstats->state,
 | |
| 		.local = memcg->vmstats->state_local,
 | |
| 		.pending = memcg->vmstats->state_pending,
 | |
| 		.ppending = parent ? parent->vmstats->state_pending : NULL,
 | |
| 		.cstat = statc->state,
 | |
| 		.cstat_prev = statc->state_prev,
 | |
| 		.size = MEMCG_VMSTAT_SIZE,
 | |
| 	};
 | |
| 	mem_cgroup_stat_aggregate(&ac);
 | |
| 
 | |
| 	ac = (struct aggregate_control) {
 | |
| 		.aggregate = memcg->vmstats->events,
 | |
| 		.local = memcg->vmstats->events_local,
 | |
| 		.pending = memcg->vmstats->events_pending,
 | |
| 		.ppending = parent ? parent->vmstats->events_pending : NULL,
 | |
| 		.cstat = statc->events,
 | |
| 		.cstat_prev = statc->events_prev,
 | |
| 		.size = NR_MEMCG_EVENTS,
 | |
| 	};
 | |
| 	mem_cgroup_stat_aggregate(&ac);
 | |
| 
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
 | |
| 		struct lruvec_stats *lstats = pn->lruvec_stats;
 | |
| 		struct lruvec_stats *plstats = NULL;
 | |
| 		struct lruvec_stats_percpu *lstatc;
 | |
| 
 | |
| 		if (parent)
 | |
| 			plstats = parent->nodeinfo[nid]->lruvec_stats;
 | |
| 
 | |
| 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
 | |
| 
 | |
| 		ac = (struct aggregate_control) {
 | |
| 			.aggregate = lstats->state,
 | |
| 			.local = lstats->state_local,
 | |
| 			.pending = lstats->state_pending,
 | |
| 			.ppending = plstats ? plstats->state_pending : NULL,
 | |
| 			.cstat = lstatc->state,
 | |
| 			.cstat_prev = lstatc->state_prev,
 | |
| 			.size = NR_MEMCG_NODE_STAT_ITEMS,
 | |
| 		};
 | |
| 		mem_cgroup_stat_aggregate(&ac);
 | |
| 
 | |
| 	}
 | |
| 	WRITE_ONCE(statc->stats_updates, 0);
 | |
| 	/* We are in a per-cpu loop here, only do the atomic write once */
 | |
| 	if (atomic_read(&memcg->vmstats->stats_updates))
 | |
| 		atomic_set(&memcg->vmstats->stats_updates, 0);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_fork(struct task_struct *task)
 | |
| {
 | |
| 	/*
 | |
| 	 * Set the update flag to cause task->objcg to be initialized lazily
 | |
| 	 * on the first allocation. It can be done without any synchronization
 | |
| 	 * because it's always performed on the current task, so does
 | |
| 	 * current_objcg_update().
 | |
| 	 */
 | |
| 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_exit(struct task_struct *task)
 | |
| {
 | |
| 	struct obj_cgroup *objcg = task->objcg;
 | |
| 
 | |
| 	objcg = (struct obj_cgroup *)
 | |
| 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
 | |
| 	obj_cgroup_put(objcg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some kernel allocations can happen after this point,
 | |
| 	 * but let's ignore them. It can be done without any synchronization
 | |
| 	 * because it's always performed on the current task, so does
 | |
| 	 * current_objcg_update().
 | |
| 	 */
 | |
| 	task->objcg = NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_LRU_GEN
 | |
| static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	/* find the first leader if there is any */
 | |
| 	cgroup_taskset_for_each_leader(task, css, tset)
 | |
| 		break;
 | |
| 
 | |
| 	if (!task)
 | |
| 		return;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	if (task->mm && READ_ONCE(task->mm->owner) == task)
 | |
| 		lru_gen_migrate_mm(task->mm);
 | |
| 	task_unlock(task);
 | |
| }
 | |
| #else
 | |
| static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
 | |
| #endif /* CONFIG_LRU_GEN */
 | |
| 
 | |
| static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	cgroup_taskset_for_each(task, css, tset) {
 | |
| 		/* atomically set the update bit */
 | |
| 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	mem_cgroup_lru_gen_attach(tset);
 | |
| 	mem_cgroup_kmem_attach(tset);
 | |
| }
 | |
| 
 | |
| static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
 | |
| {
 | |
| 	if (value == PAGE_COUNTER_MAX)
 | |
| 		seq_puts(m, "max\n");
 | |
| 	else
 | |
| 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 memory_current_read(struct cgroup_subsys_state *css,
 | |
| 			       struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| #define OFP_PEAK_UNSET (((-1UL)))
 | |
| 
 | |
| static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
 | |
| {
 | |
| 	struct cgroup_of_peak *ofp = of_peak(sf->private);
 | |
| 	u64 fd_peak = READ_ONCE(ofp->value), peak;
 | |
| 
 | |
| 	/* User wants global or local peak? */
 | |
| 	if (fd_peak == OFP_PEAK_UNSET)
 | |
| 		peak = pc->watermark;
 | |
| 	else
 | |
| 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
 | |
| 
 | |
| 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int memory_peak_show(struct seq_file *sf, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
 | |
| 
 | |
| 	return peak_show(sf, v, &memcg->memory);
 | |
| }
 | |
| 
 | |
| static int peak_open(struct kernfs_open_file *of)
 | |
| {
 | |
| 	struct cgroup_of_peak *ofp = of_peak(of);
 | |
| 
 | |
| 	ofp->value = OFP_PEAK_UNSET;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void peak_release(struct kernfs_open_file *of)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	struct cgroup_of_peak *ofp = of_peak(of);
 | |
| 
 | |
| 	if (ofp->value == OFP_PEAK_UNSET) {
 | |
| 		/* fast path (no writes on this fd) */
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_lock(&memcg->peaks_lock);
 | |
| 	list_del(&ofp->list);
 | |
| 	spin_unlock(&memcg->peaks_lock);
 | |
| }
 | |
| 
 | |
| static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
 | |
| 			  loff_t off, struct page_counter *pc,
 | |
| 			  struct list_head *watchers)
 | |
| {
 | |
| 	unsigned long usage;
 | |
| 	struct cgroup_of_peak *peer_ctx;
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	struct cgroup_of_peak *ofp = of_peak(of);
 | |
| 
 | |
| 	spin_lock(&memcg->peaks_lock);
 | |
| 
 | |
| 	usage = page_counter_read(pc);
 | |
| 	WRITE_ONCE(pc->local_watermark, usage);
 | |
| 
 | |
| 	list_for_each_entry(peer_ctx, watchers, list)
 | |
| 		if (usage > peer_ctx->value)
 | |
| 			WRITE_ONCE(peer_ctx->value, usage);
 | |
| 
 | |
| 	/* initial write, register watcher */
 | |
| 	if (ofp->value == OFP_PEAK_UNSET)
 | |
| 		list_add(&ofp->list, watchers);
 | |
| 
 | |
| 	WRITE_ONCE(ofp->value, usage);
 | |
| 	spin_unlock(&memcg->peaks_lock);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
 | |
| 				 size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 
 | |
| 	return peak_write(of, buf, nbytes, off, &memcg->memory,
 | |
| 			  &memcg->memory_peaks);
 | |
| }
 | |
| 
 | |
| #undef OFP_PEAK_UNSET
 | |
| 
 | |
| static int memory_min_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
 | |
| }
 | |
| 
 | |
| static ssize_t memory_min_write(struct kernfs_open_file *of,
 | |
| 				char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long min;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &min);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	page_counter_set_min(&memcg->memory, min);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int memory_low_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
 | |
| }
 | |
| 
 | |
| static ssize_t memory_low_write(struct kernfs_open_file *of,
 | |
| 				char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long low;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &low);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	page_counter_set_low(&memcg->memory, low);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int memory_high_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
 | |
| }
 | |
| 
 | |
| static ssize_t memory_high_write(struct kernfs_open_file *of,
 | |
| 				 char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
 | |
| 	bool drained = false;
 | |
| 	unsigned long high;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &high);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	page_counter_set_high(&memcg->memory, high);
 | |
| 
 | |
| 	if (of->file->f_flags & O_NONBLOCK)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		unsigned long nr_pages = page_counter_read(&memcg->memory);
 | |
| 		unsigned long reclaimed;
 | |
| 
 | |
| 		if (nr_pages <= high)
 | |
| 			break;
 | |
| 
 | |
| 		if (signal_pending(current))
 | |
| 			break;
 | |
| 
 | |
| 		if (!drained) {
 | |
| 			drain_all_stock(memcg);
 | |
| 			drained = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
 | |
| 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
 | |
| 
 | |
| 		if (!reclaimed && !nr_retries--)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	memcg_wb_domain_size_changed(memcg);
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int memory_max_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
 | |
| }
 | |
| 
 | |
| static ssize_t memory_max_write(struct kernfs_open_file *of,
 | |
| 				char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
 | |
| 	bool drained = false;
 | |
| 	unsigned long max;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &max);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	xchg(&memcg->memory.max, max);
 | |
| 
 | |
| 	if (of->file->f_flags & O_NONBLOCK)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		unsigned long nr_pages = page_counter_read(&memcg->memory);
 | |
| 
 | |
| 		if (nr_pages <= max)
 | |
| 			break;
 | |
| 
 | |
| 		if (signal_pending(current))
 | |
| 			break;
 | |
| 
 | |
| 		if (!drained) {
 | |
| 			drain_all_stock(memcg);
 | |
| 			drained = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (nr_reclaims) {
 | |
| 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
 | |
| 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
 | |
| 				nr_reclaims--;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		memcg_memory_event(memcg, MEMCG_OOM);
 | |
| 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
 | |
| 			break;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| out:
 | |
| 	memcg_wb_domain_size_changed(memcg);
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
 | |
|  * if any new events become available.
 | |
|  */
 | |
| static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
 | |
| {
 | |
| 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
 | |
| 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
 | |
| 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
 | |
| 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
 | |
| 	seq_printf(m, "oom_kill %lu\n",
 | |
| 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
 | |
| 	seq_printf(m, "oom_group_kill %lu\n",
 | |
| 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
 | |
| }
 | |
| 
 | |
| static int memory_events_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	__memory_events_show(m, memcg->memory_events);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int memory_events_local_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	__memory_events_show(m, memcg->memory_events_local);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int memory_stat_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
 | |
| 	struct seq_buf s;
 | |
| 
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
 | |
| 	memory_stat_format(memcg, &s);
 | |
| 	seq_puts(m, buf);
 | |
| 	kfree(buf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
 | |
| 						     int item)
 | |
| {
 | |
| 	return lruvec_page_state(lruvec, item) *
 | |
| 		memcg_page_state_output_unit(item);
 | |
| }
 | |
| 
 | |
| static int memory_numa_stat_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	int i;
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	mem_cgroup_flush_stats(memcg);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
 | |
| 		int nid;
 | |
| 
 | |
| 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
 | |
| 			continue;
 | |
| 
 | |
| 		seq_printf(m, "%s", memory_stats[i].name);
 | |
| 		for_each_node_state(nid, N_MEMORY) {
 | |
| 			u64 size;
 | |
| 			struct lruvec *lruvec;
 | |
| 
 | |
| 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
 | |
| 			size = lruvec_page_state_output(lruvec,
 | |
| 							memory_stats[i].idx);
 | |
| 			seq_printf(m, " N%d=%llu", nid, size);
 | |
| 		}
 | |
| 		seq_putc(m, '\n');
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int memory_oom_group_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
 | |
| 				      char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	int ret, oom_group;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	if (!buf)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = kstrtoint(buf, 0, &oom_group);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (oom_group != 0 && oom_group != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WRITE_ONCE(memcg->oom_group, oom_group);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	MEMORY_RECLAIM_SWAPPINESS = 0,
 | |
| 	MEMORY_RECLAIM_SWAPPINESS_MAX,
 | |
| 	MEMORY_RECLAIM_NULL,
 | |
| };
 | |
| 
 | |
| static const match_table_t tokens = {
 | |
| 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
 | |
| 	{ MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
 | |
| 	{ MEMORY_RECLAIM_NULL, NULL },
 | |
| };
 | |
| 
 | |
| static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
 | |
| 			      size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
 | |
| 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
 | |
| 	int swappiness = -1;
 | |
| 	unsigned int reclaim_options;
 | |
| 	char *old_buf, *start;
 | |
| 	substring_t args[MAX_OPT_ARGS];
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 
 | |
| 	old_buf = buf;
 | |
| 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
 | |
| 	if (buf == old_buf)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 
 | |
| 	while ((start = strsep(&buf, " ")) != NULL) {
 | |
| 		if (!strlen(start))
 | |
| 			continue;
 | |
| 		switch (match_token(start, tokens, args)) {
 | |
| 		case MEMORY_RECLAIM_SWAPPINESS:
 | |
| 			if (match_int(&args[0], &swappiness))
 | |
| 				return -EINVAL;
 | |
| 			if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
 | |
| 				return -EINVAL;
 | |
| 			break;
 | |
| 		case MEMORY_RECLAIM_SWAPPINESS_MAX:
 | |
| 			swappiness = SWAPPINESS_ANON_ONLY;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
 | |
| 	while (nr_reclaimed < nr_to_reclaim) {
 | |
| 		/* Will converge on zero, but reclaim enforces a minimum */
 | |
| 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
 | |
| 		unsigned long reclaimed;
 | |
| 
 | |
| 		if (signal_pending(current))
 | |
| 			return -EINTR;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is the final attempt, drain percpu lru caches in the
 | |
| 		 * hope of introducing more evictable pages for
 | |
| 		 * try_to_free_mem_cgroup_pages().
 | |
| 		 */
 | |
| 		if (!nr_retries)
 | |
| 			lru_add_drain_all();
 | |
| 
 | |
| 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
 | |
| 					batch_size, GFP_KERNEL,
 | |
| 					reclaim_options,
 | |
| 					swappiness == -1 ? NULL : &swappiness);
 | |
| 
 | |
| 		if (!reclaimed && !nr_retries--)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		nr_reclaimed += reclaimed;
 | |
| 	}
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static struct cftype memory_files[] = {
 | |
| 	{
 | |
| 		.name = "current",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.read_u64 = memory_current_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "peak",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.open = peak_open,
 | |
| 		.release = peak_release,
 | |
| 		.seq_show = memory_peak_show,
 | |
| 		.write = memory_peak_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "min",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = memory_min_show,
 | |
| 		.write = memory_min_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "low",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = memory_low_show,
 | |
| 		.write = memory_low_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "high",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = memory_high_show,
 | |
| 		.write = memory_high_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "max",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = memory_max_show,
 | |
| 		.write = memory_max_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "events",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.file_offset = offsetof(struct mem_cgroup, events_file),
 | |
| 		.seq_show = memory_events_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "events.local",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
 | |
| 		.seq_show = memory_events_local_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "stat",
 | |
| 		.seq_show = memory_stat_show,
 | |
| 	},
 | |
| #ifdef CONFIG_NUMA
 | |
| 	{
 | |
| 		.name = "numa_stat",
 | |
| 		.seq_show = memory_numa_stat_show,
 | |
| 	},
 | |
| #endif
 | |
| 	{
 | |
| 		.name = "oom.group",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
 | |
| 		.seq_show = memory_oom_group_show,
 | |
| 		.write = memory_oom_group_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "reclaim",
 | |
| 		.flags = CFTYPE_NS_DELEGATABLE,
 | |
| 		.write = memory_reclaim,
 | |
| 	},
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| 
 | |
| struct cgroup_subsys memory_cgrp_subsys = {
 | |
| 	.css_alloc = mem_cgroup_css_alloc,
 | |
| 	.css_online = mem_cgroup_css_online,
 | |
| 	.css_offline = mem_cgroup_css_offline,
 | |
| 	.css_released = mem_cgroup_css_released,
 | |
| 	.css_free = mem_cgroup_css_free,
 | |
| 	.css_reset = mem_cgroup_css_reset,
 | |
| 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
 | |
| 	.attach = mem_cgroup_attach,
 | |
| 	.fork = mem_cgroup_fork,
 | |
| 	.exit = mem_cgroup_exit,
 | |
| 	.dfl_cftypes = memory_files,
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| 	.legacy_cftypes = mem_cgroup_legacy_files,
 | |
| #endif
 | |
| 	.early_init = 0,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
 | |
|  * @root: the top ancestor of the sub-tree being checked
 | |
|  * @memcg: the memory cgroup to check
 | |
|  *
 | |
|  * WARNING: This function is not stateless! It can only be used as part
 | |
|  *          of a top-down tree iteration, not for isolated queries.
 | |
|  */
 | |
| void mem_cgroup_calculate_protection(struct mem_cgroup *root,
 | |
| 				     struct mem_cgroup *memcg)
 | |
| {
 | |
| 	bool recursive_protection =
 | |
| 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (!root)
 | |
| 		root = root_mem_cgroup;
 | |
| 
 | |
| 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
 | |
| }
 | |
| 
 | |
| static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
 | |
| 			gfp_t gfp)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	css_get(&memcg->css);
 | |
| 	commit_charge(folio, memcg);
 | |
| 	memcg1_commit_charge(folio, memcg);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	int ret;
 | |
| 
 | |
| 	memcg = get_mem_cgroup_from_mm(mm);
 | |
| 	ret = charge_memcg(folio, memcg, gfp);
 | |
| 	css_put(&memcg->css);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
 | |
|  * @folio: folio being charged
 | |
|  * @gfp: reclaim mode
 | |
|  *
 | |
|  * This function is called when allocating a huge page folio, after the page has
 | |
|  * already been obtained and charged to the appropriate hugetlb cgroup
 | |
|  * controller (if it is enabled).
 | |
|  *
 | |
|  * Returns ENOMEM if the memcg is already full.
 | |
|  * Returns 0 if either the charge was successful, or if we skip the charging.
 | |
|  */
 | |
| int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = get_mem_cgroup_from_current();
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Even memcg does not account for hugetlb, we still want to update
 | |
| 	 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
 | |
| 	 * charging the memcg.
 | |
| 	 */
 | |
| 	if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
 | |
| 		!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (charge_memcg(folio, memcg, gfp))
 | |
| 		ret = -ENOMEM;
 | |
| 
 | |
| out:
 | |
| 	mem_cgroup_put(memcg);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
 | |
|  * @folio: folio to charge.
 | |
|  * @mm: mm context of the victim
 | |
|  * @gfp: reclaim mode
 | |
|  * @entry: swap entry for which the folio is allocated
 | |
|  *
 | |
|  * This function charges a folio allocated for swapin. Please call this before
 | |
|  * adding the folio to the swapcache.
 | |
|  *
 | |
|  * Returns 0 on success. Otherwise, an error code is returned.
 | |
|  */
 | |
| int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
 | |
| 				  gfp_t gfp, swp_entry_t entry)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned short id;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	id = lookup_swap_cgroup_id(entry);
 | |
| 	rcu_read_lock();
 | |
| 	memcg = mem_cgroup_from_id(id);
 | |
| 	if (!memcg || !css_tryget_online(&memcg->css))
 | |
| 		memcg = get_mem_cgroup_from_mm(mm);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	ret = charge_memcg(folio, memcg, gfp);
 | |
| 
 | |
| 	css_put(&memcg->css);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct uncharge_gather {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned long nr_memory;
 | |
| 	unsigned long pgpgout;
 | |
| 	unsigned long nr_kmem;
 | |
| 	int nid;
 | |
| };
 | |
| 
 | |
| static inline void uncharge_gather_clear(struct uncharge_gather *ug)
 | |
| {
 | |
| 	memset(ug, 0, sizeof(*ug));
 | |
| }
 | |
| 
 | |
| static void uncharge_batch(const struct uncharge_gather *ug)
 | |
| {
 | |
| 	if (ug->nr_memory) {
 | |
| 		memcg_uncharge(ug->memcg, ug->nr_memory);
 | |
| 		if (ug->nr_kmem) {
 | |
| 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
 | |
| 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
 | |
| 		}
 | |
| 		memcg1_oom_recover(ug->memcg);
 | |
| 	}
 | |
| 
 | |
| 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
 | |
| 
 | |
| 	/* drop reference from uncharge_folio */
 | |
| 	css_put(&ug->memcg->css);
 | |
| }
 | |
| 
 | |
| static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
 | |
| {
 | |
| 	long nr_pages;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct obj_cgroup *objcg;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nobody should be changing or seriously looking at
 | |
| 	 * folio memcg or objcg at this point, we have fully
 | |
| 	 * exclusive access to the folio.
 | |
| 	 */
 | |
| 	if (folio_memcg_kmem(folio)) {
 | |
| 		objcg = __folio_objcg(folio);
 | |
| 		/*
 | |
| 		 * This get matches the put at the end of the function and
 | |
| 		 * kmem pages do not hold memcg references anymore.
 | |
| 		 */
 | |
| 		memcg = get_mem_cgroup_from_objcg(objcg);
 | |
| 	} else {
 | |
| 		memcg = __folio_memcg(folio);
 | |
| 	}
 | |
| 
 | |
| 	if (!memcg)
 | |
| 		return;
 | |
| 
 | |
| 	if (ug->memcg != memcg) {
 | |
| 		if (ug->memcg) {
 | |
| 			uncharge_batch(ug);
 | |
| 			uncharge_gather_clear(ug);
 | |
| 		}
 | |
| 		ug->memcg = memcg;
 | |
| 		ug->nid = folio_nid(folio);
 | |
| 
 | |
| 		/* pairs with css_put in uncharge_batch */
 | |
| 		css_get(&memcg->css);
 | |
| 	}
 | |
| 
 | |
| 	nr_pages = folio_nr_pages(folio);
 | |
| 
 | |
| 	if (folio_memcg_kmem(folio)) {
 | |
| 		ug->nr_memory += nr_pages;
 | |
| 		ug->nr_kmem += nr_pages;
 | |
| 
 | |
| 		folio->memcg_data = 0;
 | |
| 		obj_cgroup_put(objcg);
 | |
| 	} else {
 | |
| 		/* LRU pages aren't accounted at the root level */
 | |
| 		if (!mem_cgroup_is_root(memcg))
 | |
| 			ug->nr_memory += nr_pages;
 | |
| 		ug->pgpgout++;
 | |
| 
 | |
| 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
 | |
| 		folio->memcg_data = 0;
 | |
| 	}
 | |
| 
 | |
| 	css_put(&memcg->css);
 | |
| }
 | |
| 
 | |
| void __mem_cgroup_uncharge(struct folio *folio)
 | |
| {
 | |
| 	struct uncharge_gather ug;
 | |
| 
 | |
| 	/* Don't touch folio->lru of any random page, pre-check: */
 | |
| 	if (!folio_memcg_charged(folio))
 | |
| 		return;
 | |
| 
 | |
| 	uncharge_gather_clear(&ug);
 | |
| 	uncharge_folio(folio, &ug);
 | |
| 	uncharge_batch(&ug);
 | |
| }
 | |
| 
 | |
| void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
 | |
| {
 | |
| 	struct uncharge_gather ug;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	uncharge_gather_clear(&ug);
 | |
| 	for (i = 0; i < folios->nr; i++)
 | |
| 		uncharge_folio(folios->folios[i], &ug);
 | |
| 	if (ug.memcg)
 | |
| 		uncharge_batch(&ug);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_replace_folio - Charge a folio's replacement.
 | |
|  * @old: Currently circulating folio.
 | |
|  * @new: Replacement folio.
 | |
|  *
 | |
|  * Charge @new as a replacement folio for @old. @old will
 | |
|  * be uncharged upon free.
 | |
|  *
 | |
|  * Both folios must be locked, @new->mapping must be set up.
 | |
|  */
 | |
| void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	long nr_pages = folio_nr_pages(new);
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 | |
| 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
 | |
| 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	/* Page cache replacement: new folio already charged? */
 | |
| 	if (folio_memcg_charged(new))
 | |
| 		return;
 | |
| 
 | |
| 	memcg = folio_memcg(old);
 | |
| 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
 | |
| 	if (!memcg)
 | |
| 		return;
 | |
| 
 | |
| 	/* Force-charge the new page. The old one will be freed soon */
 | |
| 	if (!mem_cgroup_is_root(memcg)) {
 | |
| 		page_counter_charge(&memcg->memory, nr_pages);
 | |
| 		if (do_memsw_account())
 | |
| 			page_counter_charge(&memcg->memsw, nr_pages);
 | |
| 	}
 | |
| 
 | |
| 	css_get(&memcg->css);
 | |
| 	commit_charge(new, memcg);
 | |
| 	memcg1_commit_charge(new, memcg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
 | |
|  * @old: Currently circulating folio.
 | |
|  * @new: Replacement folio.
 | |
|  *
 | |
|  * Transfer the memcg data from the old folio to the new folio for migration.
 | |
|  * The old folio's data info will be cleared. Note that the memory counters
 | |
|  * will remain unchanged throughout the process.
 | |
|  *
 | |
|  * Both folios must be locked, @new->mapping must be set up.
 | |
|  */
 | |
| void mem_cgroup_migrate(struct folio *old, struct folio *new)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 | |
| 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
 | |
| 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
 | |
| 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	memcg = folio_memcg(old);
 | |
| 	/*
 | |
| 	 * Note that it is normal to see !memcg for a hugetlb folio.
 | |
| 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
 | |
| 	 * was not selected.
 | |
| 	 */
 | |
| 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
 | |
| 	if (!memcg)
 | |
| 		return;
 | |
| 
 | |
| 	/* Transfer the charge and the css ref */
 | |
| 	commit_charge(new, memcg);
 | |
| 
 | |
| 	/* Warning should never happen, so don't worry about refcount non-0 */
 | |
| 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
 | |
| 	old->memcg_data = 0;
 | |
| }
 | |
| 
 | |
| DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
 | |
| EXPORT_SYMBOL(memcg_sockets_enabled_key);
 | |
| 
 | |
| void mem_cgroup_sk_alloc(struct sock *sk)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (!mem_cgroup_sockets_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/* Do not associate the sock with unrelated interrupted task's memcg. */
 | |
| 	if (!in_task())
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = mem_cgroup_from_task(current);
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		goto out;
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
 | |
| 		goto out;
 | |
| 	if (css_tryget(&memcg->css))
 | |
| 		sk->sk_memcg = memcg;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void mem_cgroup_sk_free(struct sock *sk)
 | |
| {
 | |
| 	if (sk->sk_memcg)
 | |
| 		css_put(&sk->sk_memcg->css);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_charge_skmem - charge socket memory
 | |
|  * @memcg: memcg to charge
 | |
|  * @nr_pages: number of pages to charge
 | |
|  * @gfp_mask: reclaim mode
 | |
|  *
 | |
|  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 | |
|  * @memcg's configured limit, %false if it doesn't.
 | |
|  */
 | |
| bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
 | |
| 			     gfp_t gfp_mask)
 | |
| {
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
 | |
| 
 | |
| 	if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
 | |
| 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_uncharge_skmem - uncharge socket memory
 | |
|  * @memcg: memcg to uncharge
 | |
|  * @nr_pages: number of pages to uncharge
 | |
|  */
 | |
| void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
 | |
| {
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
 | |
| 		memcg1_uncharge_skmem(memcg, nr_pages);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
 | |
| 
 | |
| 	refill_stock(memcg, nr_pages);
 | |
| }
 | |
| 
 | |
| static int __init cgroup_memory(char *s)
 | |
| {
 | |
| 	char *token;
 | |
| 
 | |
| 	while ((token = strsep(&s, ",")) != NULL) {
 | |
| 		if (!*token)
 | |
| 			continue;
 | |
| 		if (!strcmp(token, "nosocket"))
 | |
| 			cgroup_memory_nosocket = true;
 | |
| 		if (!strcmp(token, "nokmem"))
 | |
| 			cgroup_memory_nokmem = true;
 | |
| 		if (!strcmp(token, "nobpf"))
 | |
| 			cgroup_memory_nobpf = true;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| __setup("cgroup.memory=", cgroup_memory);
 | |
| 
 | |
| /*
 | |
|  * Memory controller init before cgroup_init() initialize root_mem_cgroup.
 | |
|  *
 | |
|  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 | |
|  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 | |
|  * basically everything that doesn't depend on a specific mem_cgroup structure
 | |
|  * should be initialized from here.
 | |
|  */
 | |
| int __init mem_cgroup_init(void)
 | |
| {
 | |
| 	unsigned int memcg_size;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
 | |
| 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
 | |
| 	 * to work fine, we should make sure that the overfill threshold can't
 | |
| 	 * exceed S32_MAX / PAGE_SIZE.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
 | |
| 
 | |
| 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
 | |
| 				  memcg_hotplug_cpu_dead);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
 | |
| 			  drain_local_memcg_stock);
 | |
| 		INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
 | |
| 			  drain_local_obj_stock);
 | |
| 	}
 | |
| 
 | |
| 	memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
 | |
| 	memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
 | |
| 					 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
 | |
| 
 | |
| 	memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
 | |
| 				     SLAB_PANIC | SLAB_HWCACHE_ALIGN);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SWAP
 | |
| /**
 | |
|  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
 | |
|  * @folio: folio being added to swap
 | |
|  * @entry: swap entry to charge
 | |
|  *
 | |
|  * Try to charge @folio's memcg for the swap space at @entry.
 | |
|  *
 | |
|  * Returns 0 on success, -ENOMEM on failure.
 | |
|  */
 | |
| int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
 | |
| {
 | |
| 	unsigned int nr_pages = folio_nr_pages(folio);
 | |
| 	struct page_counter *counter;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (do_memsw_account())
 | |
| 		return 0;
 | |
| 
 | |
| 	memcg = folio_memcg(folio);
 | |
| 
 | |
| 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
 | |
| 	if (!memcg)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!entry.val) {
 | |
| 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	memcg = mem_cgroup_id_get_online(memcg);
 | |
| 
 | |
| 	if (!mem_cgroup_is_root(memcg) &&
 | |
| 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
 | |
| 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
 | |
| 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
 | |
| 		mem_cgroup_id_put(memcg);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Get references for the tail pages, too */
 | |
| 	if (nr_pages > 1)
 | |
| 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
 | |
| 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
 | |
| 
 | |
| 	swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __mem_cgroup_uncharge_swap - uncharge swap space
 | |
|  * @entry: swap entry to uncharge
 | |
|  * @nr_pages: the amount of swap space to uncharge
 | |
|  */
 | |
| void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned short id;
 | |
| 
 | |
| 	id = swap_cgroup_clear(entry, nr_pages);
 | |
| 	rcu_read_lock();
 | |
| 	memcg = mem_cgroup_from_id(id);
 | |
| 	if (memcg) {
 | |
| 		if (!mem_cgroup_is_root(memcg)) {
 | |
| 			if (do_memsw_account())
 | |
| 				page_counter_uncharge(&memcg->memsw, nr_pages);
 | |
| 			else
 | |
| 				page_counter_uncharge(&memcg->swap, nr_pages);
 | |
| 		}
 | |
| 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
 | |
| 		mem_cgroup_id_put_many(memcg, nr_pages);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	long nr_swap_pages = get_nr_swap_pages();
 | |
| 
 | |
| 	if (mem_cgroup_disabled() || do_memsw_account())
 | |
| 		return nr_swap_pages;
 | |
| 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
 | |
| 		nr_swap_pages = min_t(long, nr_swap_pages,
 | |
| 				      READ_ONCE(memcg->swap.max) -
 | |
| 				      page_counter_read(&memcg->swap));
 | |
| 	return nr_swap_pages;
 | |
| }
 | |
| 
 | |
| bool mem_cgroup_swap_full(struct folio *folio)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 
 | |
| 	if (vm_swap_full())
 | |
| 		return true;
 | |
| 	if (do_memsw_account())
 | |
| 		return false;
 | |
| 
 | |
| 	memcg = folio_memcg(folio);
 | |
| 	if (!memcg)
 | |
| 		return false;
 | |
| 
 | |
| 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
 | |
| 		unsigned long usage = page_counter_read(&memcg->swap);
 | |
| 
 | |
| 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
 | |
| 		    usage * 2 >= READ_ONCE(memcg->swap.max))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int __init setup_swap_account(char *s)
 | |
| {
 | |
| 	bool res;
 | |
| 
 | |
| 	if (!kstrtobool(s, &res) && !res)
 | |
| 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
 | |
| 			     "in favor of configuring swap control via cgroupfs. "
 | |
| 			     "Please report your usecase to linux-mm@kvack.org if you "
 | |
| 			     "depend on this functionality.\n");
 | |
| 	return 1;
 | |
| }
 | |
| __setup("swapaccount=", setup_swap_account);
 | |
| 
 | |
| static u64 swap_current_read(struct cgroup_subsys_state *css,
 | |
| 			     struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| static int swap_peak_show(struct seq_file *sf, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
 | |
| 
 | |
| 	return peak_show(sf, v, &memcg->swap);
 | |
| }
 | |
| 
 | |
| static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
 | |
| 			       size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 
 | |
| 	return peak_write(of, buf, nbytes, off, &memcg->swap,
 | |
| 			  &memcg->swap_peaks);
 | |
| }
 | |
| 
 | |
| static int swap_high_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
 | |
| }
 | |
| 
 | |
| static ssize_t swap_high_write(struct kernfs_open_file *of,
 | |
| 			       char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long high;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &high);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	page_counter_set_high(&memcg->swap, high);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int swap_max_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
 | |
| }
 | |
| 
 | |
| static ssize_t swap_max_write(struct kernfs_open_file *of,
 | |
| 			      char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long max;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &max);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	xchg(&memcg->swap.max, max);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int swap_events_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	seq_printf(m, "high %lu\n",
 | |
| 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
 | |
| 	seq_printf(m, "max %lu\n",
 | |
| 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
 | |
| 	seq_printf(m, "fail %lu\n",
 | |
| 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cftype swap_files[] = {
 | |
| 	{
 | |
| 		.name = "swap.current",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.read_u64 = swap_current_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swap.high",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = swap_high_show,
 | |
| 		.write = swap_high_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swap.max",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = swap_max_show,
 | |
| 		.write = swap_max_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swap.peak",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.open = peak_open,
 | |
| 		.release = peak_release,
 | |
| 		.seq_show = swap_peak_show,
 | |
| 		.write = swap_peak_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swap.events",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
 | |
| 		.seq_show = swap_events_show,
 | |
| 	},
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_ZSWAP
 | |
| /**
 | |
|  * obj_cgroup_may_zswap - check if this cgroup can zswap
 | |
|  * @objcg: the object cgroup
 | |
|  *
 | |
|  * Check if the hierarchical zswap limit has been reached.
 | |
|  *
 | |
|  * This doesn't check for specific headroom, and it is not atomic
 | |
|  * either. But with zswap, the size of the allocation is only known
 | |
|  * once compression has occurred, and this optimistic pre-check avoids
 | |
|  * spending cycles on compression when there is already no room left
 | |
|  * or zswap is disabled altogether somewhere in the hierarchy.
 | |
|  */
 | |
| bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
 | |
| {
 | |
| 	struct mem_cgroup *memcg, *original_memcg;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		return true;
 | |
| 
 | |
| 	original_memcg = get_mem_cgroup_from_objcg(objcg);
 | |
| 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
 | |
| 	     memcg = parent_mem_cgroup(memcg)) {
 | |
| 		unsigned long max = READ_ONCE(memcg->zswap_max);
 | |
| 		unsigned long pages;
 | |
| 
 | |
| 		if (max == PAGE_COUNTER_MAX)
 | |
| 			continue;
 | |
| 		if (max == 0) {
 | |
| 			ret = false;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Force flush to get accurate stats for charging */
 | |
| 		__mem_cgroup_flush_stats(memcg, true);
 | |
| 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
 | |
| 		if (pages < max)
 | |
| 			continue;
 | |
| 		ret = false;
 | |
| 		break;
 | |
| 	}
 | |
| 	mem_cgroup_put(original_memcg);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * obj_cgroup_charge_zswap - charge compression backend memory
 | |
|  * @objcg: the object cgroup
 | |
|  * @size: size of compressed object
 | |
|  *
 | |
|  * This forces the charge after obj_cgroup_may_zswap() allowed
 | |
|  * compression and storage in zwap for this cgroup to go ahead.
 | |
|  */
 | |
| void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		return;
 | |
| 
 | |
| 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
 | |
| 
 | |
| 	/* PF_MEMALLOC context, charging must succeed */
 | |
| 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
 | |
| 		VM_WARN_ON_ONCE(1);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = obj_cgroup_memcg(objcg);
 | |
| 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
 | |
| 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
 | |
|  * @objcg: the object cgroup
 | |
|  * @size: size of compressed object
 | |
|  *
 | |
|  * Uncharges zswap memory on page in.
 | |
|  */
 | |
| void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		return;
 | |
| 
 | |
| 	obj_cgroup_uncharge(objcg, size);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = obj_cgroup_memcg(objcg);
 | |
| 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
 | |
| 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	/* if zswap is disabled, do not block pages going to the swapping device */
 | |
| 	if (!zswap_is_enabled())
 | |
| 		return true;
 | |
| 
 | |
| 	for (; memcg; memcg = parent_mem_cgroup(memcg))
 | |
| 		if (!READ_ONCE(memcg->zswap_writeback))
 | |
| 			return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static u64 zswap_current_read(struct cgroup_subsys_state *css,
 | |
| 			      struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	mem_cgroup_flush_stats(memcg);
 | |
| 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
 | |
| }
 | |
| 
 | |
| static int zswap_max_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
 | |
| }
 | |
| 
 | |
| static ssize_t zswap_max_write(struct kernfs_open_file *of,
 | |
| 			       char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long max;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &max);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	xchg(&memcg->zswap_max, max);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int zswap_writeback_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
 | |
| 				char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	int zswap_writeback;
 | |
| 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
 | |
| 
 | |
| 	if (parse_ret)
 | |
| 		return parse_ret;
 | |
| 
 | |
| 	if (zswap_writeback != 0 && zswap_writeback != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static struct cftype zswap_files[] = {
 | |
| 	{
 | |
| 		.name = "zswap.current",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.read_u64 = zswap_current_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "zswap.max",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = zswap_max_show,
 | |
| 		.write = zswap_max_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "zswap.writeback",
 | |
| 		.seq_show = zswap_writeback_show,
 | |
| 		.write = zswap_writeback_write,
 | |
| 	},
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| #endif /* CONFIG_ZSWAP */
 | |
| 
 | |
| static int __init mem_cgroup_swap_init(void)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
 | |
| #ifdef CONFIG_MEMCG_V1
 | |
| 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
 | |
| #endif
 | |
| #ifdef CONFIG_ZSWAP
 | |
| 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(mem_cgroup_swap_init);
 | |
| 
 | |
| #endif /* CONFIG_SWAP */
 | |
| 
 | |
| bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
 | |
| {
 | |
| 	return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
 | |
| }
 |