mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 d2734f044f
			
		
	
	
		d2734f044f
		
	
	
	
	
		
			
			The comments for the return value of memory_failure are not complete, supplement the comments. Link: https://lkml.kernel.org/r/20250312112852.82415-4-xueshuai@linux.alibaba.com Signed-off-by: Shuai Xue <xueshuai@linux.alibaba.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com> Reviewed-by: Jane Chu <jane.chu@oracle.com> Acked-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Tony Luck <tony.luck@intel.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Borislav Betkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ruidong Tian <tianruidong@linux.alibaba.com> Cc: Thomas Gleinxer <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			2841 lines
		
	
	
	
		
			75 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2841 lines
		
	
	
	
		
			75 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) 2008, 2009 Intel Corporation
 | |
|  * Authors: Andi Kleen, Fengguang Wu
 | |
|  *
 | |
|  * High level machine check handler. Handles pages reported by the
 | |
|  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
 | |
|  * failure.
 | |
|  *
 | |
|  * In addition there is a "soft offline" entry point that allows stop using
 | |
|  * not-yet-corrupted-by-suspicious pages without killing anything.
 | |
|  *
 | |
|  * Handles page cache pages in various states.	The tricky part
 | |
|  * here is that we can access any page asynchronously in respect to
 | |
|  * other VM users, because memory failures could happen anytime and
 | |
|  * anywhere. This could violate some of their assumptions. This is why
 | |
|  * this code has to be extremely careful. Generally it tries to use
 | |
|  * normal locking rules, as in get the standard locks, even if that means
 | |
|  * the error handling takes potentially a long time.
 | |
|  *
 | |
|  * It can be very tempting to add handling for obscure cases here.
 | |
|  * In general any code for handling new cases should only be added iff:
 | |
|  * - You know how to test it.
 | |
|  * - You have a test that can be added to mce-test
 | |
|  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 | |
|  * - The case actually shows up as a frequent (top 10) page state in
 | |
|  *   tools/mm/page-types when running a real workload.
 | |
|  *
 | |
|  * There are several operations here with exponential complexity because
 | |
|  * of unsuitable VM data structures. For example the operation to map back
 | |
|  * from RMAP chains to processes has to walk the complete process list and
 | |
|  * has non linear complexity with the number. But since memory corruptions
 | |
|  * are rare we hope to get away with this. This avoids impacting the core
 | |
|  * VM.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "Memory failure: " fmt
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/kfifo.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/pagewalk.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include "swap.h"
 | |
| #include "internal.h"
 | |
| #include "ras/ras_event.h"
 | |
| 
 | |
| static int sysctl_memory_failure_early_kill __read_mostly;
 | |
| 
 | |
| static int sysctl_memory_failure_recovery __read_mostly = 1;
 | |
| 
 | |
| static int sysctl_enable_soft_offline __read_mostly = 1;
 | |
| 
 | |
| atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
 | |
| 
 | |
| static bool hw_memory_failure __read_mostly = false;
 | |
| 
 | |
| static DEFINE_MUTEX(mf_mutex);
 | |
| 
 | |
| void num_poisoned_pages_inc(unsigned long pfn)
 | |
| {
 | |
| 	atomic_long_inc(&num_poisoned_pages);
 | |
| 	memblk_nr_poison_inc(pfn);
 | |
| }
 | |
| 
 | |
| void num_poisoned_pages_sub(unsigned long pfn, long i)
 | |
| {
 | |
| 	atomic_long_sub(i, &num_poisoned_pages);
 | |
| 	if (pfn != -1UL)
 | |
| 		memblk_nr_poison_sub(pfn, i);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
 | |
|  * @_name: name of the file in the per NUMA sysfs directory.
 | |
|  */
 | |
| #define MF_ATTR_RO(_name)					\
 | |
| static ssize_t _name##_show(struct device *dev,			\
 | |
| 			    struct device_attribute *attr,	\
 | |
| 			    char *buf)				\
 | |
| {								\
 | |
| 	struct memory_failure_stats *mf_stats =			\
 | |
| 		&NODE_DATA(dev->id)->mf_stats;			\
 | |
| 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
 | |
| }								\
 | |
| static DEVICE_ATTR_RO(_name)
 | |
| 
 | |
| MF_ATTR_RO(total);
 | |
| MF_ATTR_RO(ignored);
 | |
| MF_ATTR_RO(failed);
 | |
| MF_ATTR_RO(delayed);
 | |
| MF_ATTR_RO(recovered);
 | |
| 
 | |
| static struct attribute *memory_failure_attr[] = {
 | |
| 	&dev_attr_total.attr,
 | |
| 	&dev_attr_ignored.attr,
 | |
| 	&dev_attr_failed.attr,
 | |
| 	&dev_attr_delayed.attr,
 | |
| 	&dev_attr_recovered.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| const struct attribute_group memory_failure_attr_group = {
 | |
| 	.name = "memory_failure",
 | |
| 	.attrs = memory_failure_attr,
 | |
| };
 | |
| 
 | |
| static const struct ctl_table memory_failure_table[] = {
 | |
| 	{
 | |
| 		.procname	= "memory_failure_early_kill",
 | |
| 		.data		= &sysctl_memory_failure_early_kill,
 | |
| 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 		.extra2		= SYSCTL_ONE,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "memory_failure_recovery",
 | |
| 		.data		= &sysctl_memory_failure_recovery,
 | |
| 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 		.extra2		= SYSCTL_ONE,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "enable_soft_offline",
 | |
| 		.data		= &sysctl_enable_soft_offline,
 | |
| 		.maxlen		= sizeof(sysctl_enable_soft_offline),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 		.extra2		= SYSCTL_ONE,
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Return values:
 | |
|  *   1:   the page is dissolved (if needed) and taken off from buddy,
 | |
|  *   0:   the page is dissolved (if needed) and not taken off from buddy,
 | |
|  *   < 0: failed to dissolve.
 | |
|  */
 | |
| static int __page_handle_poison(struct page *page)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * zone_pcp_disable() can't be used here. It will
 | |
| 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
 | |
| 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
 | |
| 	 * optimization is enabled. This will break current lock dependency
 | |
| 	 * chain and leads to deadlock.
 | |
| 	 * Disabling pcp before dissolving the page was a deterministic
 | |
| 	 * approach because we made sure that those pages cannot end up in any
 | |
| 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
 | |
| 	 * but nothing guarantees that those pages do not get back to a PCP
 | |
| 	 * queue if we need to refill those.
 | |
| 	 */
 | |
| 	ret = dissolve_free_hugetlb_folio(page_folio(page));
 | |
| 	if (!ret) {
 | |
| 		drain_all_pages(page_zone(page));
 | |
| 		ret = take_page_off_buddy(page);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
 | |
| {
 | |
| 	if (hugepage_or_freepage) {
 | |
| 		/*
 | |
| 		 * Doing this check for free pages is also fine since
 | |
| 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
 | |
| 		 */
 | |
| 		if (__page_handle_poison(page) <= 0)
 | |
| 			/*
 | |
| 			 * We could fail to take off the target page from buddy
 | |
| 			 * for example due to racy page allocation, but that's
 | |
| 			 * acceptable because soft-offlined page is not broken
 | |
| 			 * and if someone really want to use it, they should
 | |
| 			 * take it.
 | |
| 			 */
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	SetPageHWPoison(page);
 | |
| 	if (release)
 | |
| 		put_page(page);
 | |
| 	page_ref_inc(page);
 | |
| 	num_poisoned_pages_inc(page_to_pfn(page));
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
 | |
| 
 | |
| u32 hwpoison_filter_enable = 0;
 | |
| u32 hwpoison_filter_dev_major = ~0U;
 | |
| u32 hwpoison_filter_dev_minor = ~0U;
 | |
| u64 hwpoison_filter_flags_mask;
 | |
| u64 hwpoison_filter_flags_value;
 | |
| EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
 | |
| EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
 | |
| EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
 | |
| EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
 | |
| EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
 | |
| 
 | |
| static int hwpoison_filter_dev(struct page *p)
 | |
| {
 | |
| 	struct folio *folio = page_folio(p);
 | |
| 	struct address_space *mapping;
 | |
| 	dev_t dev;
 | |
| 
 | |
| 	if (hwpoison_filter_dev_major == ~0U &&
 | |
| 	    hwpoison_filter_dev_minor == ~0U)
 | |
| 		return 0;
 | |
| 
 | |
| 	mapping = folio_mapping(folio);
 | |
| 	if (mapping == NULL || mapping->host == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dev = mapping->host->i_sb->s_dev;
 | |
| 	if (hwpoison_filter_dev_major != ~0U &&
 | |
| 	    hwpoison_filter_dev_major != MAJOR(dev))
 | |
| 		return -EINVAL;
 | |
| 	if (hwpoison_filter_dev_minor != ~0U &&
 | |
| 	    hwpoison_filter_dev_minor != MINOR(dev))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hwpoison_filter_flags(struct page *p)
 | |
| {
 | |
| 	if (!hwpoison_filter_flags_mask)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 | |
| 				    hwpoison_filter_flags_value)
 | |
| 		return 0;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This allows stress tests to limit test scope to a collection of tasks
 | |
|  * by putting them under some memcg. This prevents killing unrelated/important
 | |
|  * processes such as /sbin/init. Note that the target task may share clean
 | |
|  * pages with init (eg. libc text), which is harmless. If the target task
 | |
|  * share _dirty_ pages with another task B, the test scheme must make sure B
 | |
|  * is also included in the memcg. At last, due to race conditions this filter
 | |
|  * can only guarantee that the page either belongs to the memcg tasks, or is
 | |
|  * a freed page.
 | |
|  */
 | |
| #ifdef CONFIG_MEMCG
 | |
| u64 hwpoison_filter_memcg;
 | |
| EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 | |
| static int hwpoison_filter_task(struct page *p)
 | |
| {
 | |
| 	if (!hwpoison_filter_memcg)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static int hwpoison_filter_task(struct page *p) { return 0; }
 | |
| #endif
 | |
| 
 | |
| int hwpoison_filter(struct page *p)
 | |
| {
 | |
| 	if (!hwpoison_filter_enable)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (hwpoison_filter_dev(p))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (hwpoison_filter_flags(p))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (hwpoison_filter_task(p))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hwpoison_filter);
 | |
| #else
 | |
| int hwpoison_filter(struct page *p)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Kill all processes that have a poisoned page mapped and then isolate
 | |
|  * the page.
 | |
|  *
 | |
|  * General strategy:
 | |
|  * Find all processes having the page mapped and kill them.
 | |
|  * But we keep a page reference around so that the page is not
 | |
|  * actually freed yet.
 | |
|  * Then stash the page away
 | |
|  *
 | |
|  * There's no convenient way to get back to mapped processes
 | |
|  * from the VMAs. So do a brute-force search over all
 | |
|  * running processes.
 | |
|  *
 | |
|  * Remember that machine checks are not common (or rather
 | |
|  * if they are common you have other problems), so this shouldn't
 | |
|  * be a performance issue.
 | |
|  *
 | |
|  * Also there are some races possible while we get from the
 | |
|  * error detection to actually handle it.
 | |
|  */
 | |
| 
 | |
| struct to_kill {
 | |
| 	struct list_head nd;
 | |
| 	struct task_struct *tsk;
 | |
| 	unsigned long addr;
 | |
| 	short size_shift;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Send all the processes who have the page mapped a signal.
 | |
|  * ``action optional'' if they are not immediately affected by the error
 | |
|  * ``action required'' if error happened in current execution context
 | |
|  */
 | |
| static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 | |
| {
 | |
| 	struct task_struct *t = tk->tsk;
 | |
| 	short addr_lsb = tk->size_shift;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 | |
| 			pfn, t->comm, task_pid_nr(t));
 | |
| 
 | |
| 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
 | |
| 		ret = force_sig_mceerr(BUS_MCEERR_AR,
 | |
| 				 (void __user *)tk->addr, addr_lsb);
 | |
| 	else
 | |
| 		/*
 | |
| 		 * Signal other processes sharing the page if they have
 | |
| 		 * PF_MCE_EARLY set.
 | |
| 		 * Don't use force here, it's convenient if the signal
 | |
| 		 * can be temporarily blocked.
 | |
| 		 */
 | |
| 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 | |
| 				      addr_lsb, t);
 | |
| 	if (ret < 0)
 | |
| 		pr_info("Error sending signal to %s:%d: %d\n",
 | |
| 			t->comm, task_pid_nr(t), ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unknown page type encountered. Try to check whether it can turn PageLRU by
 | |
|  * lru_add_drain_all.
 | |
|  */
 | |
| void shake_folio(struct folio *folio)
 | |
| {
 | |
| 	if (folio_test_hugetlb(folio))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * TODO: Could shrink slab caches here if a lightweight range-based
 | |
| 	 * shrinker will be available.
 | |
| 	 */
 | |
| 	if (folio_test_slab(folio))
 | |
| 		return;
 | |
| 
 | |
| 	lru_add_drain_all();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(shake_folio);
 | |
| 
 | |
| static void shake_page(struct page *page)
 | |
| {
 | |
| 	shake_folio(page_folio(page));
 | |
| }
 | |
| 
 | |
| static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	unsigned long ret = 0;
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	pte_t ptent;
 | |
| 
 | |
| 	VM_BUG_ON_VMA(address == -EFAULT, vma);
 | |
| 	pgd = pgd_offset(vma->vm_mm, address);
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		return 0;
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (!p4d_present(*p4d))
 | |
| 		return 0;
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (!pud_present(*pud))
 | |
| 		return 0;
 | |
| 	if (pud_trans_huge(*pud))
 | |
| 		return PUD_SHIFT;
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (!pmd_present(*pmd))
 | |
| 		return 0;
 | |
| 	if (pmd_trans_huge(*pmd))
 | |
| 		return PMD_SHIFT;
 | |
| 	pte = pte_offset_map(pmd, address);
 | |
| 	if (!pte)
 | |
| 		return 0;
 | |
| 	ptent = ptep_get(pte);
 | |
| 	if (pte_present(ptent))
 | |
| 		ret = PAGE_SHIFT;
 | |
| 	pte_unmap(pte);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Failure handling: if we can't find or can't kill a process there's
 | |
|  * not much we can do.	We just print a message and ignore otherwise.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Schedule a process for later kill.
 | |
|  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 | |
|  */
 | |
| static void __add_to_kill(struct task_struct *tsk, const struct page *p,
 | |
| 			  struct vm_area_struct *vma, struct list_head *to_kill,
 | |
| 			  unsigned long addr)
 | |
| {
 | |
| 	struct to_kill *tk;
 | |
| 
 | |
| 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 | |
| 	if (!tk) {
 | |
| 		pr_err("Out of memory while machine check handling\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tk->addr = addr;
 | |
| 	if (is_zone_device_page(p))
 | |
| 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
 | |
| 	else
 | |
| 		tk->size_shift = folio_shift(page_folio(p));
 | |
| 
 | |
| 	/*
 | |
| 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 | |
| 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 | |
| 	 * so "tk->size_shift == 0" effectively checks no mapping on
 | |
| 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 | |
| 	 * to a process' address space, it's possible not all N VMAs
 | |
| 	 * contain mappings for the page, but at least one VMA does.
 | |
| 	 * Only deliver SIGBUS with payload derived from the VMA that
 | |
| 	 * has a mapping for the page.
 | |
| 	 */
 | |
| 	if (tk->addr == -EFAULT) {
 | |
| 		pr_info("Unable to find user space address %lx in %s\n",
 | |
| 			page_to_pfn(p), tsk->comm);
 | |
| 	} else if (tk->size_shift == 0) {
 | |
| 		kfree(tk);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	get_task_struct(tsk);
 | |
| 	tk->tsk = tsk;
 | |
| 	list_add_tail(&tk->nd, to_kill);
 | |
| }
 | |
| 
 | |
| static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
 | |
| 		struct vm_area_struct *vma, struct list_head *to_kill,
 | |
| 		unsigned long addr)
 | |
| {
 | |
| 	if (addr == -EFAULT)
 | |
| 		return;
 | |
| 	__add_to_kill(tsk, p, vma, to_kill, addr);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KSM
 | |
| static bool task_in_to_kill_list(struct list_head *to_kill,
 | |
| 				 struct task_struct *tsk)
 | |
| {
 | |
| 	struct to_kill *tk, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(tk, next, to_kill, nd) {
 | |
| 		if (tk->tsk == tsk)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
 | |
| 		     struct vm_area_struct *vma, struct list_head *to_kill,
 | |
| 		     unsigned long addr)
 | |
| {
 | |
| 	if (!task_in_to_kill_list(to_kill, tsk))
 | |
| 		__add_to_kill(tsk, p, vma, to_kill, addr);
 | |
| }
 | |
| #endif
 | |
| /*
 | |
|  * Kill the processes that have been collected earlier.
 | |
|  *
 | |
|  * Only do anything when FORCEKILL is set, otherwise just free the
 | |
|  * list (this is used for clean pages which do not need killing)
 | |
|  */
 | |
| static void kill_procs(struct list_head *to_kill, int forcekill,
 | |
| 		unsigned long pfn, int flags)
 | |
| {
 | |
| 	struct to_kill *tk, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(tk, next, to_kill, nd) {
 | |
| 		if (forcekill) {
 | |
| 			if (tk->addr == -EFAULT) {
 | |
| 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 | |
| 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
 | |
| 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 | |
| 						 tk->tsk, PIDTYPE_PID);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * In theory the process could have mapped
 | |
| 			 * something else on the address in-between. We could
 | |
| 			 * check for that, but we need to tell the
 | |
| 			 * process anyways.
 | |
| 			 */
 | |
| 			else if (kill_proc(tk, pfn, flags) < 0)
 | |
| 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
 | |
| 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
 | |
| 		}
 | |
| 		list_del(&tk->nd);
 | |
| 		put_task_struct(tk->tsk);
 | |
| 		kfree(tk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 | |
|  * on behalf of the thread group. Return task_struct of the (first found)
 | |
|  * dedicated thread if found, and return NULL otherwise.
 | |
|  *
 | |
|  * We already hold rcu lock in the caller, so we don't have to call
 | |
|  * rcu_read_lock/unlock() in this function.
 | |
|  */
 | |
| static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	for_each_thread(tsk, t) {
 | |
| 		if (t->flags & PF_MCE_PROCESS) {
 | |
| 			if (t->flags & PF_MCE_EARLY)
 | |
| 				return t;
 | |
| 		} else {
 | |
| 			if (sysctl_memory_failure_early_kill)
 | |
| 				return t;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine whether a given process is "early kill" process which expects
 | |
|  * to be signaled when some page under the process is hwpoisoned.
 | |
|  * Return task_struct of the dedicated thread (main thread unless explicitly
 | |
|  * specified) if the process is "early kill" and otherwise returns NULL.
 | |
|  *
 | |
|  * Note that the above is true for Action Optional case. For Action Required
 | |
|  * case, it's only meaningful to the current thread which need to be signaled
 | |
|  * with SIGBUS, this error is Action Optional for other non current
 | |
|  * processes sharing the same error page,if the process is "early kill", the
 | |
|  * task_struct of the dedicated thread will also be returned.
 | |
|  */
 | |
| struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
 | |
| {
 | |
| 	if (!tsk->mm)
 | |
| 		return NULL;
 | |
| 	/*
 | |
| 	 * Comparing ->mm here because current task might represent
 | |
| 	 * a subthread, while tsk always points to the main thread.
 | |
| 	 */
 | |
| 	if (force_early && tsk->mm == current->mm)
 | |
| 		return current;
 | |
| 
 | |
| 	return find_early_kill_thread(tsk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Collect processes when the error hit an anonymous page.
 | |
|  */
 | |
| static void collect_procs_anon(const struct folio *folio,
 | |
| 		const struct page *page, struct list_head *to_kill,
 | |
| 		int force_early)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	struct anon_vma *av;
 | |
| 	pgoff_t pgoff;
 | |
| 
 | |
| 	av = folio_lock_anon_vma_read(folio, NULL);
 | |
| 	if (av == NULL)	/* Not actually mapped anymore */
 | |
| 		return;
 | |
| 
 | |
| 	pgoff = page_pgoff(folio, page);
 | |
| 	rcu_read_lock();
 | |
| 	for_each_process(tsk) {
 | |
| 		struct vm_area_struct *vma;
 | |
| 		struct anon_vma_chain *vmac;
 | |
| 		struct task_struct *t = task_early_kill(tsk, force_early);
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		if (!t)
 | |
| 			continue;
 | |
| 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 | |
| 					       pgoff, pgoff) {
 | |
| 			vma = vmac->vma;
 | |
| 			if (vma->vm_mm != t->mm)
 | |
| 				continue;
 | |
| 			addr = page_mapped_in_vma(page, vma);
 | |
| 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	anon_vma_unlock_read(av);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Collect processes when the error hit a file mapped page.
 | |
|  */
 | |
| static void collect_procs_file(const struct folio *folio,
 | |
| 		const struct page *page, struct list_head *to_kill,
 | |
| 		int force_early)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct task_struct *tsk;
 | |
| 	struct address_space *mapping = folio->mapping;
 | |
| 	pgoff_t pgoff;
 | |
| 
 | |
| 	i_mmap_lock_read(mapping);
 | |
| 	rcu_read_lock();
 | |
| 	pgoff = page_pgoff(folio, page);
 | |
| 	for_each_process(tsk) {
 | |
| 		struct task_struct *t = task_early_kill(tsk, force_early);
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		if (!t)
 | |
| 			continue;
 | |
| 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 | |
| 				      pgoff) {
 | |
| 			/*
 | |
| 			 * Send early kill signal to tasks where a vma covers
 | |
| 			 * the page but the corrupted page is not necessarily
 | |
| 			 * mapped in its pte.
 | |
| 			 * Assume applications who requested early kill want
 | |
| 			 * to be informed of all such data corruptions.
 | |
| 			 */
 | |
| 			if (vma->vm_mm != t->mm)
 | |
| 				continue;
 | |
| 			addr = page_address_in_vma(folio, page, vma);
 | |
| 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	i_mmap_unlock_read(mapping);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FS_DAX
 | |
| static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
 | |
| 			      struct vm_area_struct *vma,
 | |
| 			      struct list_head *to_kill, pgoff_t pgoff)
 | |
| {
 | |
| 	unsigned long addr = vma_address(vma, pgoff, 1);
 | |
| 	__add_to_kill(tsk, p, vma, to_kill, addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Collect processes when the error hit a fsdax page.
 | |
|  */
 | |
| static void collect_procs_fsdax(const struct page *page,
 | |
| 		struct address_space *mapping, pgoff_t pgoff,
 | |
| 		struct list_head *to_kill, bool pre_remove)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| 	i_mmap_lock_read(mapping);
 | |
| 	rcu_read_lock();
 | |
| 	for_each_process(tsk) {
 | |
| 		struct task_struct *t = tsk;
 | |
| 
 | |
| 		/*
 | |
| 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
 | |
| 		 * the current may not be the one accessing the fsdax page.
 | |
| 		 * Otherwise, search for the current task.
 | |
| 		 */
 | |
| 		if (!pre_remove)
 | |
| 			t = task_early_kill(tsk, true);
 | |
| 		if (!t)
 | |
| 			continue;
 | |
| 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 | |
| 			if (vma->vm_mm == t->mm)
 | |
| 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	i_mmap_unlock_read(mapping);
 | |
| }
 | |
| #endif /* CONFIG_FS_DAX */
 | |
| 
 | |
| /*
 | |
|  * Collect the processes who have the corrupted page mapped to kill.
 | |
|  */
 | |
| static void collect_procs(const struct folio *folio, const struct page *page,
 | |
| 		struct list_head *tokill, int force_early)
 | |
| {
 | |
| 	if (!folio->mapping)
 | |
| 		return;
 | |
| 	if (unlikely(folio_test_ksm(folio)))
 | |
| 		collect_procs_ksm(folio, page, tokill, force_early);
 | |
| 	else if (folio_test_anon(folio))
 | |
| 		collect_procs_anon(folio, page, tokill, force_early);
 | |
| 	else
 | |
| 		collect_procs_file(folio, page, tokill, force_early);
 | |
| }
 | |
| 
 | |
| struct hwpoison_walk {
 | |
| 	struct to_kill tk;
 | |
| 	unsigned long pfn;
 | |
| 	int flags;
 | |
| };
 | |
| 
 | |
| static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
 | |
| {
 | |
| 	tk->addr = addr;
 | |
| 	tk->size_shift = shift;
 | |
| }
 | |
| 
 | |
| static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
 | |
| 				unsigned long poisoned_pfn, struct to_kill *tk)
 | |
| {
 | |
| 	unsigned long pfn = 0;
 | |
| 
 | |
| 	if (pte_present(pte)) {
 | |
| 		pfn = pte_pfn(pte);
 | |
| 	} else {
 | |
| 		swp_entry_t swp = pte_to_swp_entry(pte);
 | |
| 
 | |
| 		if (is_hwpoison_entry(swp))
 | |
| 			pfn = swp_offset_pfn(swp);
 | |
| 	}
 | |
| 
 | |
| 	if (!pfn || pfn != poisoned_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	set_to_kill(tk, addr, shift);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 | |
| 				      struct hwpoison_walk *hwp)
 | |
| {
 | |
| 	pmd_t pmd = *pmdp;
 | |
| 	unsigned long pfn;
 | |
| 	unsigned long hwpoison_vaddr;
 | |
| 
 | |
| 	if (!pmd_present(pmd))
 | |
| 		return 0;
 | |
| 	pfn = pmd_pfn(pmd);
 | |
| 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
 | |
| 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
 | |
| 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 | |
| 				      struct hwpoison_walk *hwp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
 | |
| 			      unsigned long end, struct mm_walk *walk)
 | |
| {
 | |
| 	struct hwpoison_walk *hwp = walk->private;
 | |
| 	int ret = 0;
 | |
| 	pte_t *ptep, *mapped_pte;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
 | |
| 	if (ptl) {
 | |
| 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
 | |
| 		spin_unlock(ptl);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
 | |
| 						addr, &ptl);
 | |
| 	if (!ptep)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
 | |
| 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
 | |
| 					     hwp->pfn, &hwp->tk);
 | |
| 		if (ret == 1)
 | |
| 			break;
 | |
| 	}
 | |
| 	pte_unmap_unlock(mapped_pte, ptl);
 | |
| out:
 | |
| 	cond_resched();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
 | |
| 			    unsigned long addr, unsigned long end,
 | |
| 			    struct mm_walk *walk)
 | |
| {
 | |
| 	struct hwpoison_walk *hwp = walk->private;
 | |
| 	pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
 | |
| 	struct hstate *h = hstate_vma(walk->vma);
 | |
| 
 | |
| 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
 | |
| 				      hwp->pfn, &hwp->tk);
 | |
| }
 | |
| #else
 | |
| #define hwpoison_hugetlb_range	NULL
 | |
| #endif
 | |
| 
 | |
| static const struct mm_walk_ops hwpoison_walk_ops = {
 | |
| 	.pmd_entry = hwpoison_pte_range,
 | |
| 	.hugetlb_entry = hwpoison_hugetlb_range,
 | |
| 	.walk_lock = PGWALK_RDLOCK,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Sends SIGBUS to the current process with error info.
 | |
|  *
 | |
|  * This function is intended to handle "Action Required" MCEs on already
 | |
|  * hardware poisoned pages. They could happen, for example, when
 | |
|  * memory_failure() failed to unmap the error page at the first call, or
 | |
|  * when multiple local machine checks happened on different CPUs.
 | |
|  *
 | |
|  * MCE handler currently has no easy access to the error virtual address,
 | |
|  * so this function walks page table to find it. The returned virtual address
 | |
|  * is proper in most cases, but it could be wrong when the application
 | |
|  * process has multiple entries mapping the error page.
 | |
|  */
 | |
| static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
 | |
| 				  int flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct hwpoison_walk priv = {
 | |
| 		.pfn = pfn,
 | |
| 	};
 | |
| 	priv.tk.tsk = p;
 | |
| 
 | |
| 	if (!p->mm)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	mmap_read_lock(p->mm);
 | |
| 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
 | |
| 			      (void *)&priv);
 | |
| 	/*
 | |
| 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
 | |
| 	 * succeeds or fails, then kill the process with SIGBUS.
 | |
| 	 * ret = 0 when poison page is a clean page and it's dropped, no
 | |
| 	 * SIGBUS is needed.
 | |
| 	 */
 | |
| 	if (ret == 1 && priv.tk.addr)
 | |
| 		kill_proc(&priv.tk, pfn, flags);
 | |
| 	mmap_read_unlock(p->mm);
 | |
| 
 | |
| 	return ret > 0 ? -EHWPOISON : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
 | |
|  * But it could not do more to isolate the page from being accessed again,
 | |
|  * nor does it kill the process. This is extremely rare and one of the
 | |
|  * potential causes is that the page state has been changed due to
 | |
|  * underlying race condition. This is the most severe outcomes.
 | |
|  *
 | |
|  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
 | |
|  * It should have killed the process, but it can't isolate the page,
 | |
|  * due to conditions such as extra pin, unmap failure, etc. Accessing
 | |
|  * the page again may trigger another MCE and the process will be killed
 | |
|  * by the m-f() handler immediately.
 | |
|  *
 | |
|  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
 | |
|  * The page is unmapped, and is removed from the LRU or file mapping.
 | |
|  * An attempt to access the page again will trigger page fault and the
 | |
|  * PF handler will kill the process.
 | |
|  *
 | |
|  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
 | |
|  * The page has been completely isolated, that is, unmapped, taken out of
 | |
|  * the buddy system, or hole-punnched out of the file mapping.
 | |
|  */
 | |
| static const char *action_name[] = {
 | |
| 	[MF_IGNORED] = "Ignored",
 | |
| 	[MF_FAILED] = "Failed",
 | |
| 	[MF_DELAYED] = "Delayed",
 | |
| 	[MF_RECOVERED] = "Recovered",
 | |
| };
 | |
| 
 | |
| static const char * const action_page_types[] = {
 | |
| 	[MF_MSG_KERNEL]			= "reserved kernel page",
 | |
| 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 | |
| 	[MF_MSG_HUGE]			= "huge page",
 | |
| 	[MF_MSG_FREE_HUGE]		= "free huge page",
 | |
| 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
 | |
| 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 | |
| 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 | |
| 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 | |
| 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 | |
| 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 | |
| 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 | |
| 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 | |
| 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 | |
| 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 | |
| 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 | |
| 	[MF_MSG_BUDDY]			= "free buddy page",
 | |
| 	[MF_MSG_DAX]			= "dax page",
 | |
| 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
 | |
| 	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
 | |
| 	[MF_MSG_UNKNOWN]		= "unknown page",
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * XXX: It is possible that a page is isolated from LRU cache,
 | |
|  * and then kept in swap cache or failed to remove from page cache.
 | |
|  * The page count will stop it from being freed by unpoison.
 | |
|  * Stress tests should be aware of this memory leak problem.
 | |
|  */
 | |
| static int delete_from_lru_cache(struct folio *folio)
 | |
| {
 | |
| 	if (folio_isolate_lru(folio)) {
 | |
| 		/*
 | |
| 		 * Clear sensible page flags, so that the buddy system won't
 | |
| 		 * complain when the folio is unpoison-and-freed.
 | |
| 		 */
 | |
| 		folio_clear_active(folio);
 | |
| 		folio_clear_unevictable(folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * Poisoned page might never drop its ref count to 0 so we have
 | |
| 		 * to uncharge it manually from its memcg.
 | |
| 		 */
 | |
| 		mem_cgroup_uncharge(folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * drop the refcount elevated by folio_isolate_lru()
 | |
| 		 */
 | |
| 		folio_put(folio);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static int truncate_error_folio(struct folio *folio, unsigned long pfn,
 | |
| 				struct address_space *mapping)
 | |
| {
 | |
| 	int ret = MF_FAILED;
 | |
| 
 | |
| 	if (mapping->a_ops->error_remove_folio) {
 | |
| 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
 | |
| 
 | |
| 		if (err != 0)
 | |
| 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
 | |
| 		else if (!filemap_release_folio(folio, GFP_NOIO))
 | |
| 			pr_info("%#lx: failed to release buffers\n", pfn);
 | |
| 		else
 | |
| 			ret = MF_RECOVERED;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If the file system doesn't support it just invalidate
 | |
| 		 * This fails on dirty or anything with private pages
 | |
| 		 */
 | |
| 		if (mapping_evict_folio(mapping, folio))
 | |
| 			ret = MF_RECOVERED;
 | |
| 		else
 | |
| 			pr_info("%#lx: Failed to invalidate\n",	pfn);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct page_state {
 | |
| 	unsigned long mask;
 | |
| 	unsigned long res;
 | |
| 	enum mf_action_page_type type;
 | |
| 
 | |
| 	/* Callback ->action() has to unlock the relevant page inside it. */
 | |
| 	int (*action)(struct page_state *ps, struct page *p);
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Return true if page is still referenced by others, otherwise return
 | |
|  * false.
 | |
|  *
 | |
|  * The extra_pins is true when one extra refcount is expected.
 | |
|  */
 | |
| static bool has_extra_refcount(struct page_state *ps, struct page *p,
 | |
| 			       bool extra_pins)
 | |
| {
 | |
| 	int count = page_count(p) - 1;
 | |
| 
 | |
| 	if (extra_pins)
 | |
| 		count -= folio_nr_pages(page_folio(p));
 | |
| 
 | |
| 	if (count > 0) {
 | |
| 		pr_err("%#lx: %s still referenced by %d users\n",
 | |
| 		       page_to_pfn(p), action_page_types[ps->type], count);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Error hit kernel page.
 | |
|  * Do nothing, try to be lucky and not touch this instead. For a few cases we
 | |
|  * could be more sophisticated.
 | |
|  */
 | |
| static int me_kernel(struct page_state *ps, struct page *p)
 | |
| {
 | |
| 	unlock_page(p);
 | |
| 	return MF_IGNORED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Page in unknown state. Do nothing.
 | |
|  * This is a catch-all in case we fail to make sense of the page state.
 | |
|  */
 | |
| static int me_unknown(struct page_state *ps, struct page *p)
 | |
| {
 | |
| 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
 | |
| 	unlock_page(p);
 | |
| 	return MF_IGNORED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean (or cleaned) page cache page.
 | |
|  */
 | |
| static int me_pagecache_clean(struct page_state *ps, struct page *p)
 | |
| {
 | |
| 	struct folio *folio = page_folio(p);
 | |
| 	int ret;
 | |
| 	struct address_space *mapping;
 | |
| 	bool extra_pins;
 | |
| 
 | |
| 	delete_from_lru_cache(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * For anonymous folios the only reference left
 | |
| 	 * should be the one m_f() holds.
 | |
| 	 */
 | |
| 	if (folio_test_anon(folio)) {
 | |
| 		ret = MF_RECOVERED;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now truncate the page in the page cache. This is really
 | |
| 	 * more like a "temporary hole punch"
 | |
| 	 * Don't do this for block devices when someone else
 | |
| 	 * has a reference, because it could be file system metadata
 | |
| 	 * and that's not safe to truncate.
 | |
| 	 */
 | |
| 	mapping = folio_mapping(folio);
 | |
| 	if (!mapping) {
 | |
| 		/* Folio has been torn down in the meantime */
 | |
| 		ret = MF_FAILED;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The shmem page is kept in page cache instead of truncating
 | |
| 	 * so is expected to have an extra refcount after error-handling.
 | |
| 	 */
 | |
| 	extra_pins = shmem_mapping(mapping);
 | |
| 
 | |
| 	/*
 | |
| 	 * Truncation is a bit tricky. Enable it per file system for now.
 | |
| 	 *
 | |
| 	 * Open: to take i_rwsem or not for this? Right now we don't.
 | |
| 	 */
 | |
| 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
 | |
| 	if (has_extra_refcount(ps, p, extra_pins))
 | |
| 		ret = MF_FAILED;
 | |
| 
 | |
| out:
 | |
| 	folio_unlock(folio);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dirty pagecache page
 | |
|  * Issues: when the error hit a hole page the error is not properly
 | |
|  * propagated.
 | |
|  */
 | |
| static int me_pagecache_dirty(struct page_state *ps, struct page *p)
 | |
| {
 | |
| 	struct folio *folio = page_folio(p);
 | |
| 	struct address_space *mapping = folio_mapping(folio);
 | |
| 
 | |
| 	/* TBD: print more information about the file. */
 | |
| 	if (mapping) {
 | |
| 		/*
 | |
| 		 * IO error will be reported by write(), fsync(), etc.
 | |
| 		 * who check the mapping.
 | |
| 		 * This way the application knows that something went
 | |
| 		 * wrong with its dirty file data.
 | |
| 		 */
 | |
| 		mapping_set_error(mapping, -EIO);
 | |
| 	}
 | |
| 
 | |
| 	return me_pagecache_clean(ps, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean and dirty swap cache.
 | |
|  *
 | |
|  * Dirty swap cache page is tricky to handle. The page could live both in page
 | |
|  * table and swap cache(ie. page is freshly swapped in). So it could be
 | |
|  * referenced concurrently by 2 types of PTEs:
 | |
|  * normal PTEs and swap PTEs. We try to handle them consistently by calling
 | |
|  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
 | |
|  * and then
 | |
|  *      - clear dirty bit to prevent IO
 | |
|  *      - remove from LRU
 | |
|  *      - but keep in the swap cache, so that when we return to it on
 | |
|  *        a later page fault, we know the application is accessing
 | |
|  *        corrupted data and shall be killed (we installed simple
 | |
|  *        interception code in do_swap_page to catch it).
 | |
|  *
 | |
|  * Clean swap cache pages can be directly isolated. A later page fault will
 | |
|  * bring in the known good data from disk.
 | |
|  */
 | |
| static int me_swapcache_dirty(struct page_state *ps, struct page *p)
 | |
| {
 | |
| 	struct folio *folio = page_folio(p);
 | |
| 	int ret;
 | |
| 	bool extra_pins = false;
 | |
| 
 | |
| 	folio_clear_dirty(folio);
 | |
| 	/* Trigger EIO in shmem: */
 | |
| 	folio_clear_uptodate(folio);
 | |
| 
 | |
| 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
 | |
| 	folio_unlock(folio);
 | |
| 
 | |
| 	if (ret == MF_DELAYED)
 | |
| 		extra_pins = true;
 | |
| 
 | |
| 	if (has_extra_refcount(ps, p, extra_pins))
 | |
| 		ret = MF_FAILED;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int me_swapcache_clean(struct page_state *ps, struct page *p)
 | |
| {
 | |
| 	struct folio *folio = page_folio(p);
 | |
| 	int ret;
 | |
| 
 | |
| 	delete_from_swap_cache(folio);
 | |
| 
 | |
| 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
 | |
| 	folio_unlock(folio);
 | |
| 
 | |
| 	if (has_extra_refcount(ps, p, false))
 | |
| 		ret = MF_FAILED;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Huge pages. Needs work.
 | |
|  * Issues:
 | |
|  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 | |
|  *   To narrow down kill region to one page, we need to break up pmd.
 | |
|  */
 | |
| static int me_huge_page(struct page_state *ps, struct page *p)
 | |
| {
 | |
| 	struct folio *folio = page_folio(p);
 | |
| 	int res;
 | |
| 	struct address_space *mapping;
 | |
| 	bool extra_pins = false;
 | |
| 
 | |
| 	mapping = folio_mapping(folio);
 | |
| 	if (mapping) {
 | |
| 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
 | |
| 		/* The page is kept in page cache. */
 | |
| 		extra_pins = true;
 | |
| 		folio_unlock(folio);
 | |
| 	} else {
 | |
| 		folio_unlock(folio);
 | |
| 		/*
 | |
| 		 * migration entry prevents later access on error hugepage,
 | |
| 		 * so we can free and dissolve it into buddy to save healthy
 | |
| 		 * subpages.
 | |
| 		 */
 | |
| 		folio_put(folio);
 | |
| 		if (__page_handle_poison(p) > 0) {
 | |
| 			page_ref_inc(p);
 | |
| 			res = MF_RECOVERED;
 | |
| 		} else {
 | |
| 			res = MF_FAILED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (has_extra_refcount(ps, p, extra_pins))
 | |
| 		res = MF_FAILED;
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Various page states we can handle.
 | |
|  *
 | |
|  * A page state is defined by its current page->flags bits.
 | |
|  * The table matches them in order and calls the right handler.
 | |
|  *
 | |
|  * This is quite tricky because we can access page at any time
 | |
|  * in its live cycle, so all accesses have to be extremely careful.
 | |
|  *
 | |
|  * This is not complete. More states could be added.
 | |
|  * For any missing state don't attempt recovery.
 | |
|  */
 | |
| 
 | |
| #define dirty		(1UL << PG_dirty)
 | |
| #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 | |
| #define unevict		(1UL << PG_unevictable)
 | |
| #define mlock		(1UL << PG_mlocked)
 | |
| #define lru		(1UL << PG_lru)
 | |
| #define head		(1UL << PG_head)
 | |
| #define reserved	(1UL << PG_reserved)
 | |
| 
 | |
| static struct page_state error_states[] = {
 | |
| 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
 | |
| 	/*
 | |
| 	 * free pages are specially detected outside this table:
 | |
| 	 * PG_buddy pages only make a small fraction of all free pages.
 | |
| 	 */
 | |
| 
 | |
| 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
 | |
| 
 | |
| 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
 | |
| 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
 | |
| 
 | |
| 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
 | |
| 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
 | |
| 
 | |
| 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
 | |
| 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
 | |
| 
 | |
| 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
 | |
| 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
 | |
| 
 | |
| 	/*
 | |
| 	 * Catchall entry: must be at end.
 | |
| 	 */
 | |
| 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
 | |
| };
 | |
| 
 | |
| #undef dirty
 | |
| #undef sc
 | |
| #undef unevict
 | |
| #undef mlock
 | |
| #undef lru
 | |
| #undef head
 | |
| #undef reserved
 | |
| 
 | |
| static void update_per_node_mf_stats(unsigned long pfn,
 | |
| 				     enum mf_result result)
 | |
| {
 | |
| 	int nid = MAX_NUMNODES;
 | |
| 	struct memory_failure_stats *mf_stats = NULL;
 | |
| 
 | |
| 	nid = pfn_to_nid(pfn);
 | |
| 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
 | |
| 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mf_stats = &NODE_DATA(nid)->mf_stats;
 | |
| 	switch (result) {
 | |
| 	case MF_IGNORED:
 | |
| 		++mf_stats->ignored;
 | |
| 		break;
 | |
| 	case MF_FAILED:
 | |
| 		++mf_stats->failed;
 | |
| 		break;
 | |
| 	case MF_DELAYED:
 | |
| 		++mf_stats->delayed;
 | |
| 		break;
 | |
| 	case MF_RECOVERED:
 | |
| 		++mf_stats->recovered;
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
 | |
| 		break;
 | |
| 	}
 | |
| 	++mf_stats->total;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 | |
|  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 | |
|  */
 | |
| static int action_result(unsigned long pfn, enum mf_action_page_type type,
 | |
| 			 enum mf_result result)
 | |
| {
 | |
| 	trace_memory_failure_event(pfn, type, result);
 | |
| 
 | |
| 	num_poisoned_pages_inc(pfn);
 | |
| 
 | |
| 	update_per_node_mf_stats(pfn, result);
 | |
| 
 | |
| 	pr_err("%#lx: recovery action for %s: %s\n",
 | |
| 		pfn, action_page_types[type], action_name[result]);
 | |
| 
 | |
| 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 | |
| }
 | |
| 
 | |
| static int page_action(struct page_state *ps, struct page *p,
 | |
| 			unsigned long pfn)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| 	/* page p should be unlocked after returning from ps->action().  */
 | |
| 	result = ps->action(ps, p);
 | |
| 
 | |
| 	/* Could do more checks here if page looks ok */
 | |
| 	/*
 | |
| 	 * Could adjust zone counters here to correct for the missing page.
 | |
| 	 */
 | |
| 
 | |
| 	return action_result(pfn, ps->type, result);
 | |
| }
 | |
| 
 | |
| static inline bool PageHWPoisonTakenOff(struct page *page)
 | |
| {
 | |
| 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
 | |
| }
 | |
| 
 | |
| void SetPageHWPoisonTakenOff(struct page *page)
 | |
| {
 | |
| 	set_page_private(page, MAGIC_HWPOISON);
 | |
| }
 | |
| 
 | |
| void ClearPageHWPoisonTakenOff(struct page *page)
 | |
| {
 | |
| 	if (PageHWPoison(page))
 | |
| 		set_page_private(page, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if a page type of a given page is supported by hwpoison
 | |
|  * mechanism (while handling could fail), otherwise false.  This function
 | |
|  * does not return true for hugetlb or device memory pages, so it's assumed
 | |
|  * to be called only in the context where we never have such pages.
 | |
|  */
 | |
| static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
 | |
| {
 | |
| 	if (PageSlab(page))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Soft offline could migrate non-LRU movable pages */
 | |
| 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
 | |
| 		return true;
 | |
| 
 | |
| 	return PageLRU(page) || is_free_buddy_page(page);
 | |
| }
 | |
| 
 | |
| static int __get_hwpoison_page(struct page *page, unsigned long flags)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	int ret = 0;
 | |
| 	bool hugetlb = false;
 | |
| 
 | |
| 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
 | |
| 	if (hugetlb) {
 | |
| 		/* Make sure hugetlb demotion did not happen from under us. */
 | |
| 		if (folio == page_folio(page))
 | |
| 			return ret;
 | |
| 		if (ret > 0) {
 | |
| 			folio_put(folio);
 | |
| 			folio = page_folio(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This check prevents from calling folio_try_get() for any
 | |
| 	 * unsupported type of folio in order to reduce the risk of unexpected
 | |
| 	 * races caused by taking a folio refcount.
 | |
| 	 */
 | |
| 	if (!HWPoisonHandlable(&folio->page, flags))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (folio_try_get(folio)) {
 | |
| 		if (folio == page_folio(page))
 | |
| 			return 1;
 | |
| 
 | |
| 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define GET_PAGE_MAX_RETRY_NUM 3
 | |
| 
 | |
| static int get_any_page(struct page *p, unsigned long flags)
 | |
| {
 | |
| 	int ret = 0, pass = 0;
 | |
| 	bool count_increased = false;
 | |
| 
 | |
| 	if (flags & MF_COUNT_INCREASED)
 | |
| 		count_increased = true;
 | |
| 
 | |
| try_again:
 | |
| 	if (!count_increased) {
 | |
| 		ret = __get_hwpoison_page(p, flags);
 | |
| 		if (!ret) {
 | |
| 			if (page_count(p)) {
 | |
| 				/* We raced with an allocation, retry. */
 | |
| 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
 | |
| 					goto try_again;
 | |
| 				ret = -EBUSY;
 | |
| 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
 | |
| 				/* We raced with put_page, retry. */
 | |
| 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
 | |
| 					goto try_again;
 | |
| 				ret = -EIO;
 | |
| 			}
 | |
| 			goto out;
 | |
| 		} else if (ret == -EBUSY) {
 | |
| 			/*
 | |
| 			 * We raced with (possibly temporary) unhandlable
 | |
| 			 * page, retry.
 | |
| 			 */
 | |
| 			if (pass++ < 3) {
 | |
| 				shake_page(p);
 | |
| 				goto try_again;
 | |
| 			}
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
 | |
| 		ret = 1;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * A page we cannot handle. Check whether we can turn
 | |
| 		 * it into something we can handle.
 | |
| 		 */
 | |
| 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
 | |
| 			put_page(p);
 | |
| 			shake_page(p);
 | |
| 			count_increased = false;
 | |
| 			goto try_again;
 | |
| 		}
 | |
| 		put_page(p);
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| out:
 | |
| 	if (ret == -EIO)
 | |
| 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __get_unpoison_page(struct page *page)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	int ret = 0;
 | |
| 	bool hugetlb = false;
 | |
| 
 | |
| 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
 | |
| 	if (hugetlb) {
 | |
| 		/* Make sure hugetlb demotion did not happen from under us. */
 | |
| 		if (folio == page_folio(page))
 | |
| 			return ret;
 | |
| 		if (ret > 0)
 | |
| 			folio_put(folio);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
 | |
| 	 * but also isolated from buddy freelist, so need to identify the
 | |
| 	 * state and have to cancel both operations to unpoison.
 | |
| 	 */
 | |
| 	if (PageHWPoisonTakenOff(page))
 | |
| 		return -EHWPOISON;
 | |
| 
 | |
| 	return get_page_unless_zero(page) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_hwpoison_page() - Get refcount for memory error handling
 | |
|  * @p:		Raw error page (hit by memory error)
 | |
|  * @flags:	Flags controlling behavior of error handling
 | |
|  *
 | |
|  * get_hwpoison_page() takes a page refcount of an error page to handle memory
 | |
|  * error on it, after checking that the error page is in a well-defined state
 | |
|  * (defined as a page-type we can successfully handle the memory error on it,
 | |
|  * such as LRU page and hugetlb page).
 | |
|  *
 | |
|  * Memory error handling could be triggered at any time on any type of page,
 | |
|  * so it's prone to race with typical memory management lifecycle (like
 | |
|  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
 | |
|  * extra care for the error page's state (as done in __get_hwpoison_page()),
 | |
|  * and has some retry logic in get_any_page().
 | |
|  *
 | |
|  * When called from unpoison_memory(), the caller should already ensure that
 | |
|  * the given page has PG_hwpoison. So it's never reused for other page
 | |
|  * allocations, and __get_unpoison_page() never races with them.
 | |
|  *
 | |
|  * Return: 0 on failure or free buddy (hugetlb) page,
 | |
|  *         1 on success for in-use pages in a well-defined state,
 | |
|  *         -EIO for pages on which we can not handle memory errors,
 | |
|  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
 | |
|  *         operations like allocation and free,
 | |
|  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
 | |
|  */
 | |
| static int get_hwpoison_page(struct page *p, unsigned long flags)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	zone_pcp_disable(page_zone(p));
 | |
| 	if (flags & MF_UNPOISON)
 | |
| 		ret = __get_unpoison_page(p);
 | |
| 	else
 | |
| 		ret = get_any_page(p, flags);
 | |
| 	zone_pcp_enable(page_zone(p));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
 | |
| {
 | |
| 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
 | |
| 	struct address_space *mapping;
 | |
| 
 | |
| 	if (folio_test_swapcache(folio)) {
 | |
| 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
 | |
| 		ttu &= ~TTU_HWPOISON;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Propagate the dirty bit from PTEs to struct page first, because we
 | |
| 	 * need this to decide if we should kill or just drop the page.
 | |
| 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
 | |
| 	 * be called inside page lock (it's recommended but not enforced).
 | |
| 	 */
 | |
| 	mapping = folio_mapping(folio);
 | |
| 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
 | |
| 	    mapping_can_writeback(mapping)) {
 | |
| 		if (folio_mkclean(folio)) {
 | |
| 			folio_set_dirty(folio);
 | |
| 		} else {
 | |
| 			ttu &= ~TTU_HWPOISON;
 | |
| 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
 | |
| 				pfn);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
 | |
| 		/*
 | |
| 		 * For hugetlb folios in shared mappings, try_to_unmap
 | |
| 		 * could potentially call huge_pmd_unshare.  Because of
 | |
| 		 * this, take semaphore in write mode here and set
 | |
| 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
 | |
| 		 * at this higher level.
 | |
| 		 */
 | |
| 		mapping = hugetlb_folio_mapping_lock_write(folio);
 | |
| 		if (!mapping) {
 | |
| 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
 | |
| 				folio_pfn(folio));
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 
 | |
| 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
 | |
| 		i_mmap_unlock_write(mapping);
 | |
| 	} else {
 | |
| 		try_to_unmap(folio, ttu);
 | |
| 	}
 | |
| 
 | |
| 	return folio_mapped(folio) ? -EBUSY : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do all that is necessary to remove user space mappings. Unmap
 | |
|  * the pages and send SIGBUS to the processes if the data was dirty.
 | |
|  */
 | |
| static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
 | |
| 		unsigned long pfn, int flags)
 | |
| {
 | |
| 	LIST_HEAD(tokill);
 | |
| 	bool unmap_success;
 | |
| 	int forcekill;
 | |
| 	bool mlocked = folio_test_mlocked(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we are interested only in user-mapped pages, so skip any
 | |
| 	 * other types of pages.
 | |
| 	 */
 | |
| 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
 | |
| 	    folio_test_pgtable(folio) || folio_test_offline(folio))
 | |
| 		return true;
 | |
| 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * This check implies we don't kill processes if their pages
 | |
| 	 * are in the swap cache early. Those are always late kills.
 | |
| 	 */
 | |
| 	if (!folio_mapped(folio))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * First collect all the processes that have the page
 | |
| 	 * mapped in dirty form.  This has to be done before try_to_unmap,
 | |
| 	 * because ttu takes the rmap data structures down.
 | |
| 	 */
 | |
| 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
 | |
| 
 | |
| 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
 | |
| 	if (!unmap_success)
 | |
| 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
 | |
| 		       pfn, folio_mapcount(folio));
 | |
| 
 | |
| 	/*
 | |
| 	 * try_to_unmap() might put mlocked page in lru cache, so call
 | |
| 	 * shake_page() again to ensure that it's flushed.
 | |
| 	 */
 | |
| 	if (mlocked)
 | |
| 		shake_folio(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that the dirty bit has been propagated to the
 | |
| 	 * struct page and all unmaps done we can decide if
 | |
| 	 * killing is needed or not.  Only kill when the page
 | |
| 	 * was dirty or the process is not restartable,
 | |
| 	 * otherwise the tokill list is merely
 | |
| 	 * freed.  When there was a problem unmapping earlier
 | |
| 	 * use a more force-full uncatchable kill to prevent
 | |
| 	 * any accesses to the poisoned memory.
 | |
| 	 */
 | |
| 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
 | |
| 		    !unmap_success;
 | |
| 	kill_procs(&tokill, forcekill, pfn, flags);
 | |
| 
 | |
| 	return unmap_success;
 | |
| }
 | |
| 
 | |
| static int identify_page_state(unsigned long pfn, struct page *p,
 | |
| 				unsigned long page_flags)
 | |
| {
 | |
| 	struct page_state *ps;
 | |
| 
 | |
| 	/*
 | |
| 	 * The first check uses the current page flags which may not have any
 | |
| 	 * relevant information. The second check with the saved page flags is
 | |
| 	 * carried out only if the first check can't determine the page status.
 | |
| 	 */
 | |
| 	for (ps = error_states;; ps++)
 | |
| 		if ((p->flags & ps->mask) == ps->res)
 | |
| 			break;
 | |
| 
 | |
| 	page_flags |= (p->flags & (1UL << PG_dirty));
 | |
| 
 | |
| 	if (!ps->mask)
 | |
| 		for (ps = error_states;; ps++)
 | |
| 			if ((page_flags & ps->mask) == ps->res)
 | |
| 				break;
 | |
| 	return page_action(ps, p, pfn);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When 'release' is 'false', it means that if thp split has failed,
 | |
|  * there is still more to do, hence the page refcount we took earlier
 | |
|  * is still needed.
 | |
|  */
 | |
| static int try_to_split_thp_page(struct page *page, bool release)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	ret = split_huge_page(page);
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	if (ret && release)
 | |
| 		put_page(page);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
 | |
| 		struct address_space *mapping, pgoff_t index, int flags)
 | |
| {
 | |
| 	struct to_kill *tk;
 | |
| 	unsigned long size = 0;
 | |
| 
 | |
| 	list_for_each_entry(tk, to_kill, nd)
 | |
| 		if (tk->size_shift)
 | |
| 			size = max(size, 1UL << tk->size_shift);
 | |
| 
 | |
| 	if (size) {
 | |
| 		/*
 | |
| 		 * Unmap the largest mapping to avoid breaking up device-dax
 | |
| 		 * mappings which are constant size. The actual size of the
 | |
| 		 * mapping being torn down is communicated in siginfo, see
 | |
| 		 * kill_proc()
 | |
| 		 */
 | |
| 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
 | |
| 
 | |
| 		unmap_mapping_range(mapping, start, size, 0);
 | |
| 	}
 | |
| 
 | |
| 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only dev_pagemap pages get here, such as fsdax when the filesystem
 | |
|  * either do not claim or fails to claim a hwpoison event, or devdax.
 | |
|  * The fsdax pages are initialized per base page, and the devdax pages
 | |
|  * could be initialized either as base pages, or as compound pages with
 | |
|  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
 | |
|  * hwpoison, such that, if a subpage of a compound page is poisoned,
 | |
|  * simply mark the compound head page is by far sufficient.
 | |
|  */
 | |
| static int mf_generic_kill_procs(unsigned long long pfn, int flags,
 | |
| 		struct dev_pagemap *pgmap)
 | |
| {
 | |
| 	struct folio *folio = pfn_folio(pfn);
 | |
| 	LIST_HEAD(to_kill);
 | |
| 	dax_entry_t cookie;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent the inode from being freed while we are interrogating
 | |
| 	 * the address_space, typically this would be handled by
 | |
| 	 * lock_page(), but dax pages do not use the page lock. This
 | |
| 	 * also prevents changes to the mapping of this pfn until
 | |
| 	 * poison signaling is complete.
 | |
| 	 */
 | |
| 	cookie = dax_lock_folio(folio);
 | |
| 	if (!cookie)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (hwpoison_filter(&folio->page)) {
 | |
| 		rc = -EOPNOTSUPP;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	switch (pgmap->type) {
 | |
| 	case MEMORY_DEVICE_PRIVATE:
 | |
| 	case MEMORY_DEVICE_COHERENT:
 | |
| 		/*
 | |
| 		 * TODO: Handle device pages which may need coordination
 | |
| 		 * with device-side memory.
 | |
| 		 */
 | |
| 		rc = -ENXIO;
 | |
| 		goto unlock;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use this flag as an indication that the dax page has been
 | |
| 	 * remapped UC to prevent speculative consumption of poison.
 | |
| 	 */
 | |
| 	SetPageHWPoison(&folio->page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlike System-RAM there is no possibility to swap in a
 | |
| 	 * different physical page at a given virtual address, so all
 | |
| 	 * userspace consumption of ZONE_DEVICE memory necessitates
 | |
| 	 * SIGBUS (i.e. MF_MUST_KILL)
 | |
| 	 */
 | |
| 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
 | |
| 	collect_procs(folio, &folio->page, &to_kill, true);
 | |
| 
 | |
| 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
 | |
| unlock:
 | |
| 	dax_unlock_folio(folio, cookie);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FS_DAX
 | |
| /**
 | |
|  * mf_dax_kill_procs - Collect and kill processes who are using this file range
 | |
|  * @mapping:	address_space of the file in use
 | |
|  * @index:	start pgoff of the range within the file
 | |
|  * @count:	length of the range, in unit of PAGE_SIZE
 | |
|  * @mf_flags:	memory failure flags
 | |
|  */
 | |
| int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
 | |
| 		unsigned long count, int mf_flags)
 | |
| {
 | |
| 	LIST_HEAD(to_kill);
 | |
| 	dax_entry_t cookie;
 | |
| 	struct page *page;
 | |
| 	size_t end = index + count;
 | |
| 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
 | |
| 
 | |
| 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
 | |
| 
 | |
| 	for (; index < end; index++) {
 | |
| 		page = NULL;
 | |
| 		cookie = dax_lock_mapping_entry(mapping, index, &page);
 | |
| 		if (!cookie)
 | |
| 			return -EBUSY;
 | |
| 		if (!page)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		if (!pre_remove)
 | |
| 			SetPageHWPoison(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * The pre_remove case is revoking access, the memory is still
 | |
| 		 * good and could theoretically be put back into service.
 | |
| 		 */
 | |
| 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
 | |
| 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
 | |
| 				index, mf_flags);
 | |
| unlock:
 | |
| 		dax_unlock_mapping_entry(mapping, index, cookie);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
 | |
| #endif /* CONFIG_FS_DAX */
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 
 | |
| /*
 | |
|  * Struct raw_hwp_page represents information about "raw error page",
 | |
|  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
 | |
|  */
 | |
| struct raw_hwp_page {
 | |
| 	struct llist_node node;
 | |
| 	struct page *page;
 | |
| };
 | |
| 
 | |
| static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
 | |
| {
 | |
| 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
 | |
| }
 | |
| 
 | |
| bool is_raw_hwpoison_page_in_hugepage(struct page *page)
 | |
| {
 | |
| 	struct llist_head *raw_hwp_head;
 | |
| 	struct raw_hwp_page *p;
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if (!folio_test_hwpoison(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!folio_test_hugetlb(folio))
 | |
| 		return PageHWPoison(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
 | |
| 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
 | |
| 	 */
 | |
| 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
 | |
| 		return true;
 | |
| 
 | |
| 	mutex_lock(&mf_mutex);
 | |
| 
 | |
| 	raw_hwp_head = raw_hwp_list_head(folio);
 | |
| 	llist_for_each_entry(p, raw_hwp_head->first, node) {
 | |
| 		if (page == p->page) {
 | |
| 			ret = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&mf_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
 | |
| {
 | |
| 	struct llist_node *head;
 | |
| 	struct raw_hwp_page *p, *next;
 | |
| 	unsigned long count = 0;
 | |
| 
 | |
| 	head = llist_del_all(raw_hwp_list_head(folio));
 | |
| 	llist_for_each_entry_safe(p, next, head, node) {
 | |
| 		if (move_flag)
 | |
| 			SetPageHWPoison(p->page);
 | |
| 		else
 | |
| 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
 | |
| 		kfree(p);
 | |
| 		count++;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
 | |
| {
 | |
| 	struct llist_head *head;
 | |
| 	struct raw_hwp_page *raw_hwp;
 | |
| 	struct raw_hwp_page *p;
 | |
| 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once the hwpoison hugepage has lost reliable raw error info,
 | |
| 	 * there is little meaning to keep additional error info precisely,
 | |
| 	 * so skip to add additional raw error info.
 | |
| 	 */
 | |
| 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
 | |
| 		return -EHWPOISON;
 | |
| 	head = raw_hwp_list_head(folio);
 | |
| 	llist_for_each_entry(p, head->first, node) {
 | |
| 		if (p->page == page)
 | |
| 			return -EHWPOISON;
 | |
| 	}
 | |
| 
 | |
| 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
 | |
| 	if (raw_hwp) {
 | |
| 		raw_hwp->page = page;
 | |
| 		llist_add(&raw_hwp->node, head);
 | |
| 		/* the first error event will be counted in action_result(). */
 | |
| 		if (ret)
 | |
| 			num_poisoned_pages_inc(page_to_pfn(page));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Failed to save raw error info.  We no longer trace all
 | |
| 		 * hwpoisoned subpages, and we need refuse to free/dissolve
 | |
| 		 * this hwpoisoned hugepage.
 | |
| 		 */
 | |
| 		folio_set_hugetlb_raw_hwp_unreliable(folio);
 | |
| 		/*
 | |
| 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
 | |
| 		 * used any more, so free it.
 | |
| 		 */
 | |
| 		__folio_free_raw_hwp(folio, false);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
 | |
| {
 | |
| 	/*
 | |
| 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
 | |
| 	 * pages for tail pages are required but they don't exist.
 | |
| 	 */
 | |
| 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
 | |
| 	 * definition.
 | |
| 	 */
 | |
| 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	return __folio_free_raw_hwp(folio, move_flag);
 | |
| }
 | |
| 
 | |
| void folio_clear_hugetlb_hwpoison(struct folio *folio)
 | |
| {
 | |
| 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
 | |
| 		return;
 | |
| 	if (folio_test_hugetlb_vmemmap_optimized(folio))
 | |
| 		return;
 | |
| 	folio_clear_hwpoison(folio);
 | |
| 	folio_free_raw_hwp(folio, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from hugetlb code with hugetlb_lock held.
 | |
|  *
 | |
|  * Return values:
 | |
|  *   0             - free hugepage
 | |
|  *   1             - in-use hugepage
 | |
|  *   2             - not a hugepage
 | |
|  *   -EBUSY        - the hugepage is busy (try to retry)
 | |
|  *   -EHWPOISON    - the hugepage is already hwpoisoned
 | |
|  */
 | |
| int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
 | |
| 				 bool *migratable_cleared)
 | |
| {
 | |
| 	struct page *page = pfn_to_page(pfn);
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	int ret = 2;	/* fallback to normal page handling */
 | |
| 	bool count_increased = false;
 | |
| 
 | |
| 	if (!folio_test_hugetlb(folio))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (flags & MF_COUNT_INCREASED) {
 | |
| 		ret = 1;
 | |
| 		count_increased = true;
 | |
| 	} else if (folio_test_hugetlb_freed(folio)) {
 | |
| 		ret = 0;
 | |
| 	} else if (folio_test_hugetlb_migratable(folio)) {
 | |
| 		ret = folio_try_get(folio);
 | |
| 		if (ret)
 | |
| 			count_increased = true;
 | |
| 	} else {
 | |
| 		ret = -EBUSY;
 | |
| 		if (!(flags & MF_NO_RETRY))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (folio_set_hugetlb_hwpoison(folio, page)) {
 | |
| 		ret = -EHWPOISON;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
 | |
| 	 * from being migrated by memory hotremove.
 | |
| 	 */
 | |
| 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
 | |
| 		folio_clear_hugetlb_migratable(folio);
 | |
| 		*migratable_cleared = true;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| out:
 | |
| 	if (count_increased)
 | |
| 		folio_put(folio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Taking refcount of hugetlb pages needs extra care about race conditions
 | |
|  * with basic operations like hugepage allocation/free/demotion.
 | |
|  * So some of prechecks for hwpoison (pinning, and testing/setting
 | |
|  * PageHWPoison) should be done in single hugetlb_lock range.
 | |
|  */
 | |
| static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
 | |
| {
 | |
| 	int res;
 | |
| 	struct page *p = pfn_to_page(pfn);
 | |
| 	struct folio *folio;
 | |
| 	unsigned long page_flags;
 | |
| 	bool migratable_cleared = false;
 | |
| 
 | |
| 	*hugetlb = 1;
 | |
| retry:
 | |
| 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
 | |
| 	if (res == 2) { /* fallback to normal page handling */
 | |
| 		*hugetlb = 0;
 | |
| 		return 0;
 | |
| 	} else if (res == -EHWPOISON) {
 | |
| 		pr_err("%#lx: already hardware poisoned\n", pfn);
 | |
| 		if (flags & MF_ACTION_REQUIRED) {
 | |
| 			folio = page_folio(p);
 | |
| 			res = kill_accessing_process(current, folio_pfn(folio), flags);
 | |
| 			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
 | |
| 		}
 | |
| 		return res;
 | |
| 	} else if (res == -EBUSY) {
 | |
| 		if (!(flags & MF_NO_RETRY)) {
 | |
| 			flags |= MF_NO_RETRY;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
 | |
| 	}
 | |
| 
 | |
| 	folio = page_folio(p);
 | |
| 	folio_lock(folio);
 | |
| 
 | |
| 	if (hwpoison_filter(p)) {
 | |
| 		folio_clear_hugetlb_hwpoison(folio);
 | |
| 		if (migratable_cleared)
 | |
| 			folio_set_hugetlb_migratable(folio);
 | |
| 		folio_unlock(folio);
 | |
| 		if (res == 1)
 | |
| 			folio_put(folio);
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Handling free hugepage.  The possible race with hugepage allocation
 | |
| 	 * or demotion can be prevented by PageHWPoison flag.
 | |
| 	 */
 | |
| 	if (res == 0) {
 | |
| 		folio_unlock(folio);
 | |
| 		if (__page_handle_poison(p) > 0) {
 | |
| 			page_ref_inc(p);
 | |
| 			res = MF_RECOVERED;
 | |
| 		} else {
 | |
| 			res = MF_FAILED;
 | |
| 		}
 | |
| 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
 | |
| 	}
 | |
| 
 | |
| 	page_flags = folio->flags;
 | |
| 
 | |
| 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
 | |
| 		folio_unlock(folio);
 | |
| 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
 | |
| 	}
 | |
| 
 | |
| 	return identify_page_state(pfn, p, page_flags);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif	/* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| /* Drop the extra refcount in case we come from madvise() */
 | |
| static void put_ref_page(unsigned long pfn, int flags)
 | |
| {
 | |
| 	if (!(flags & MF_COUNT_INCREASED))
 | |
| 		return;
 | |
| 
 | |
| 	put_page(pfn_to_page(pfn));
 | |
| }
 | |
| 
 | |
| static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
 | |
| 		struct dev_pagemap *pgmap)
 | |
| {
 | |
| 	int rc = -ENXIO;
 | |
| 
 | |
| 	/* device metadata space is not recoverable */
 | |
| 	if (!pgmap_pfn_valid(pgmap, pfn))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Call driver's implementation to handle the memory failure, otherwise
 | |
| 	 * fall back to generic handler.
 | |
| 	 */
 | |
| 	if (pgmap_has_memory_failure(pgmap)) {
 | |
| 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
 | |
| 		/*
 | |
| 		 * Fall back to generic handler too if operation is not
 | |
| 		 * supported inside the driver/device/filesystem.
 | |
| 		 */
 | |
| 		if (rc != -EOPNOTSUPP)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
 | |
| out:
 | |
| 	/* drop pgmap ref acquired in caller */
 | |
| 	put_dev_pagemap(pgmap);
 | |
| 	if (rc != -EOPNOTSUPP)
 | |
| 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The calling condition is as such: thp split failed, page might have
 | |
|  * been RDMA pinned, not much can be done for recovery.
 | |
|  * But a SIGBUS should be delivered with vaddr provided so that the user
 | |
|  * application has a chance to recover. Also, application processes'
 | |
|  * election for MCE early killed will be honored.
 | |
|  */
 | |
| static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
 | |
| 				struct folio *folio)
 | |
| {
 | |
| 	LIST_HEAD(tokill);
 | |
| 
 | |
| 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
 | |
| 	kill_procs(&tokill, true, pfn, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memory_failure - Handle memory failure of a page.
 | |
|  * @pfn: Page Number of the corrupted page
 | |
|  * @flags: fine tune action taken
 | |
|  *
 | |
|  * This function is called by the low level machine check code
 | |
|  * of an architecture when it detects hardware memory corruption
 | |
|  * of a page. It tries its best to recover, which includes
 | |
|  * dropping pages, killing processes etc.
 | |
|  *
 | |
|  * The function is primarily of use for corruptions that
 | |
|  * happen outside the current execution context (e.g. when
 | |
|  * detected by a background scrubber)
 | |
|  *
 | |
|  * Must run in process context (e.g. a work queue) with interrupts
 | |
|  * enabled and no spinlocks held.
 | |
|  *
 | |
|  * Return:
 | |
|  *   0             - success,
 | |
|  *   -ENXIO        - memory not managed by the kernel
 | |
|  *   -EOPNOTSUPP   - hwpoison_filter() filtered the error event,
 | |
|  *   -EHWPOISON    - the page was already poisoned, potentially
 | |
|  *                   kill process,
 | |
|  *   other negative values - failure.
 | |
|  */
 | |
| int memory_failure(unsigned long pfn, int flags)
 | |
| {
 | |
| 	struct page *p;
 | |
| 	struct folio *folio;
 | |
| 	struct dev_pagemap *pgmap;
 | |
| 	int res = 0;
 | |
| 	unsigned long page_flags;
 | |
| 	bool retry = true;
 | |
| 	int hugetlb = 0;
 | |
| 
 | |
| 	if (!sysctl_memory_failure_recovery)
 | |
| 		panic("Memory failure on page %lx", pfn);
 | |
| 
 | |
| 	mutex_lock(&mf_mutex);
 | |
| 
 | |
| 	if (!(flags & MF_SW_SIMULATED))
 | |
| 		hw_memory_failure = true;
 | |
| 
 | |
| 	p = pfn_to_online_page(pfn);
 | |
| 	if (!p) {
 | |
| 		res = arch_memory_failure(pfn, flags);
 | |
| 		if (res == 0)
 | |
| 			goto unlock_mutex;
 | |
| 
 | |
| 		if (pfn_valid(pfn)) {
 | |
| 			pgmap = get_dev_pagemap(pfn, NULL);
 | |
| 			put_ref_page(pfn, flags);
 | |
| 			if (pgmap) {
 | |
| 				res = memory_failure_dev_pagemap(pfn, flags,
 | |
| 								 pgmap);
 | |
| 				goto unlock_mutex;
 | |
| 			}
 | |
| 		}
 | |
| 		pr_err("%#lx: memory outside kernel control\n", pfn);
 | |
| 		res = -ENXIO;
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| try_again:
 | |
| 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
 | |
| 	if (hugetlb)
 | |
| 		goto unlock_mutex;
 | |
| 
 | |
| 	if (TestSetPageHWPoison(p)) {
 | |
| 		pr_err("%#lx: already hardware poisoned\n", pfn);
 | |
| 		res = -EHWPOISON;
 | |
| 		if (flags & MF_ACTION_REQUIRED)
 | |
| 			res = kill_accessing_process(current, pfn, flags);
 | |
| 		if (flags & MF_COUNT_INCREASED)
 | |
| 			put_page(p);
 | |
| 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need/can do nothing about count=0 pages.
 | |
| 	 * 1) it's a free page, and therefore in safe hand:
 | |
| 	 *    check_new_page() will be the gate keeper.
 | |
| 	 * 2) it's part of a non-compound high order page.
 | |
| 	 *    Implies some kernel user: cannot stop them from
 | |
| 	 *    R/W the page; let's pray that the page has been
 | |
| 	 *    used and will be freed some time later.
 | |
| 	 * In fact it's dangerous to directly bump up page count from 0,
 | |
| 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
 | |
| 	 */
 | |
| 	if (!(flags & MF_COUNT_INCREASED)) {
 | |
| 		res = get_hwpoison_page(p, flags);
 | |
| 		if (!res) {
 | |
| 			if (is_free_buddy_page(p)) {
 | |
| 				if (take_page_off_buddy(p)) {
 | |
| 					page_ref_inc(p);
 | |
| 					res = MF_RECOVERED;
 | |
| 				} else {
 | |
| 					/* We lost the race, try again */
 | |
| 					if (retry) {
 | |
| 						ClearPageHWPoison(p);
 | |
| 						retry = false;
 | |
| 						goto try_again;
 | |
| 					}
 | |
| 					res = MF_FAILED;
 | |
| 				}
 | |
| 				res = action_result(pfn, MF_MSG_BUDDY, res);
 | |
| 			} else {
 | |
| 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
 | |
| 			}
 | |
| 			goto unlock_mutex;
 | |
| 		} else if (res < 0) {
 | |
| 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
 | |
| 			goto unlock_mutex;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	folio = page_folio(p);
 | |
| 
 | |
| 	/* filter pages that are protected from hwpoison test by users */
 | |
| 	folio_lock(folio);
 | |
| 	if (hwpoison_filter(p)) {
 | |
| 		ClearPageHWPoison(p);
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		res = -EOPNOTSUPP;
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 	folio_unlock(folio);
 | |
| 
 | |
| 	if (folio_test_large(folio)) {
 | |
| 		/*
 | |
| 		 * The flag must be set after the refcount is bumped
 | |
| 		 * otherwise it may race with THP split.
 | |
| 		 * And the flag can't be set in get_hwpoison_page() since
 | |
| 		 * it is called by soft offline too and it is just called
 | |
| 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
 | |
| 		 * place.
 | |
| 		 *
 | |
| 		 * Don't need care about the above error handling paths for
 | |
| 		 * get_hwpoison_page() since they handle either free page
 | |
| 		 * or unhandlable page.  The refcount is bumped iff the
 | |
| 		 * page is a valid handlable page.
 | |
| 		 */
 | |
| 		folio_set_has_hwpoisoned(folio);
 | |
| 		if (try_to_split_thp_page(p, false) < 0) {
 | |
| 			res = -EHWPOISON;
 | |
| 			kill_procs_now(p, pfn, flags, folio);
 | |
| 			put_page(p);
 | |
| 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
 | |
| 			goto unlock_mutex;
 | |
| 		}
 | |
| 		VM_BUG_ON_PAGE(!page_count(p), p);
 | |
| 		folio = page_folio(p);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We ignore non-LRU pages for good reasons.
 | |
| 	 * - PG_locked is only well defined for LRU pages and a few others
 | |
| 	 * - to avoid races with __SetPageLocked()
 | |
| 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
 | |
| 	 * The check (unnecessarily) ignores LRU pages being isolated and
 | |
| 	 * walked by the page reclaim code, however that's not a big loss.
 | |
| 	 */
 | |
| 	shake_folio(folio);
 | |
| 
 | |
| 	folio_lock(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're only intended to deal with the non-Compound page here.
 | |
| 	 * The page cannot become compound pages again as folio has been
 | |
| 	 * splited and extra refcnt is held.
 | |
| 	 */
 | |
| 	WARN_ON(folio_test_large(folio));
 | |
| 
 | |
| 	/*
 | |
| 	 * We use page flags to determine what action should be taken, but
 | |
| 	 * the flags can be modified by the error containment action.  One
 | |
| 	 * example is an mlocked page, where PG_mlocked is cleared by
 | |
| 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
 | |
| 	 * status correctly, we save a copy of the page flags at this time.
 | |
| 	 */
 | |
| 	page_flags = folio->flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * __munlock_folio() may clear a writeback folio's LRU flag without
 | |
| 	 * the folio lock. We need to wait for writeback completion for this
 | |
| 	 * folio or it may trigger a vfs BUG while evicting inode.
 | |
| 	 */
 | |
| 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
 | |
| 		goto identify_page_state;
 | |
| 
 | |
| 	/*
 | |
| 	 * It's very difficult to mess with pages currently under IO
 | |
| 	 * and in many cases impossible, so we just avoid it here.
 | |
| 	 */
 | |
| 	folio_wait_writeback(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now take care of user space mappings.
 | |
| 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
 | |
| 	 */
 | |
| 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
 | |
| 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
 | |
| 		goto unlock_page;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Torn down by someone else?
 | |
| 	 */
 | |
| 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
 | |
| 	    folio->mapping == NULL) {
 | |
| 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
 | |
| 		goto unlock_page;
 | |
| 	}
 | |
| 
 | |
| identify_page_state:
 | |
| 	res = identify_page_state(pfn, p, page_flags);
 | |
| 	mutex_unlock(&mf_mutex);
 | |
| 	return res;
 | |
| unlock_page:
 | |
| 	folio_unlock(folio);
 | |
| unlock_mutex:
 | |
| 	mutex_unlock(&mf_mutex);
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(memory_failure);
 | |
| 
 | |
| #define MEMORY_FAILURE_FIFO_ORDER	4
 | |
| #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
 | |
| 
 | |
| struct memory_failure_entry {
 | |
| 	unsigned long pfn;
 | |
| 	int flags;
 | |
| };
 | |
| 
 | |
| struct memory_failure_cpu {
 | |
| 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
 | |
| 		      MEMORY_FAILURE_FIFO_SIZE);
 | |
| 	raw_spinlock_t lock;
 | |
| 	struct work_struct work;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
 | |
| 
 | |
| /**
 | |
|  * memory_failure_queue - Schedule handling memory failure of a page.
 | |
|  * @pfn: Page Number of the corrupted page
 | |
|  * @flags: Flags for memory failure handling
 | |
|  *
 | |
|  * This function is called by the low level hardware error handler
 | |
|  * when it detects hardware memory corruption of a page. It schedules
 | |
|  * the recovering of error page, including dropping pages, killing
 | |
|  * processes etc.
 | |
|  *
 | |
|  * The function is primarily of use for corruptions that
 | |
|  * happen outside the current execution context (e.g. when
 | |
|  * detected by a background scrubber)
 | |
|  *
 | |
|  * Can run in IRQ context.
 | |
|  */
 | |
| void memory_failure_queue(unsigned long pfn, int flags)
 | |
| {
 | |
| 	struct memory_failure_cpu *mf_cpu;
 | |
| 	unsigned long proc_flags;
 | |
| 	bool buffer_overflow;
 | |
| 	struct memory_failure_entry entry = {
 | |
| 		.pfn =		pfn,
 | |
| 		.flags =	flags,
 | |
| 	};
 | |
| 
 | |
| 	mf_cpu = &get_cpu_var(memory_failure_cpu);
 | |
| 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
 | |
| 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
 | |
| 	if (!buffer_overflow)
 | |
| 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
 | |
| 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
 | |
| 	put_cpu_var(memory_failure_cpu);
 | |
| 	if (buffer_overflow)
 | |
| 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
 | |
| 		       pfn);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(memory_failure_queue);
 | |
| 
 | |
| static void memory_failure_work_func(struct work_struct *work)
 | |
| {
 | |
| 	struct memory_failure_cpu *mf_cpu;
 | |
| 	struct memory_failure_entry entry = { 0, };
 | |
| 	unsigned long proc_flags;
 | |
| 	int gotten;
 | |
| 
 | |
| 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
 | |
| 	for (;;) {
 | |
| 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
 | |
| 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
 | |
| 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
 | |
| 		if (!gotten)
 | |
| 			break;
 | |
| 		if (entry.flags & MF_SOFT_OFFLINE)
 | |
| 			soft_offline_page(entry.pfn, entry.flags);
 | |
| 		else
 | |
| 			memory_failure(entry.pfn, entry.flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process memory_failure work queued on the specified CPU.
 | |
|  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 | |
|  */
 | |
| void memory_failure_queue_kick(int cpu)
 | |
| {
 | |
| 	struct memory_failure_cpu *mf_cpu;
 | |
| 
 | |
| 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
 | |
| 	cancel_work_sync(&mf_cpu->work);
 | |
| 	memory_failure_work_func(&mf_cpu->work);
 | |
| }
 | |
| 
 | |
| static int __init memory_failure_init(void)
 | |
| {
 | |
| 	struct memory_failure_cpu *mf_cpu;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
 | |
| 		raw_spin_lock_init(&mf_cpu->lock);
 | |
| 		INIT_KFIFO(mf_cpu->fifo);
 | |
| 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
 | |
| 	}
 | |
| 
 | |
| 	register_sysctl_init("vm", memory_failure_table);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(memory_failure_init);
 | |
| 
 | |
| #undef pr_fmt
 | |
| #define pr_fmt(fmt)	"Unpoison: " fmt
 | |
| #define unpoison_pr_info(fmt, pfn, rs)			\
 | |
| ({							\
 | |
| 	if (__ratelimit(rs))				\
 | |
| 		pr_info(fmt, pfn);			\
 | |
| })
 | |
| 
 | |
| /**
 | |
|  * unpoison_memory - Unpoison a previously poisoned page
 | |
|  * @pfn: Page number of the to be unpoisoned page
 | |
|  *
 | |
|  * Software-unpoison a page that has been poisoned by
 | |
|  * memory_failure() earlier.
 | |
|  *
 | |
|  * This is only done on the software-level, so it only works
 | |
|  * for linux injected failures, not real hardware failures
 | |
|  *
 | |
|  * Returns 0 for success, otherwise -errno.
 | |
|  */
 | |
| int unpoison_memory(unsigned long pfn)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	struct page *p;
 | |
| 	int ret = -EBUSY, ghp;
 | |
| 	unsigned long count;
 | |
| 	bool huge = false;
 | |
| 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
 | |
| 					DEFAULT_RATELIMIT_BURST);
 | |
| 
 | |
| 	if (!pfn_valid(pfn))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	p = pfn_to_page(pfn);
 | |
| 	folio = page_folio(p);
 | |
| 
 | |
| 	mutex_lock(&mf_mutex);
 | |
| 
 | |
| 	if (hw_memory_failure) {
 | |
| 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
 | |
| 				 pfn, &unpoison_rs);
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	if (is_huge_zero_folio(folio)) {
 | |
| 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
 | |
| 				 pfn, &unpoison_rs);
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	if (!PageHWPoison(p)) {
 | |
| 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
 | |
| 				 pfn, &unpoison_rs);
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	if (folio_ref_count(folio) > 1) {
 | |
| 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
 | |
| 				 pfn, &unpoison_rs);
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
 | |
| 	    folio_test_reserved(folio) || folio_test_offline(folio))
 | |
| 		goto unlock_mutex;
 | |
| 
 | |
| 	if (folio_mapped(folio)) {
 | |
| 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
 | |
| 				 pfn, &unpoison_rs);
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	if (folio_mapping(folio)) {
 | |
| 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
 | |
| 				 pfn, &unpoison_rs);
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	ghp = get_hwpoison_page(p, MF_UNPOISON);
 | |
| 	if (!ghp) {
 | |
| 		if (folio_test_hugetlb(folio)) {
 | |
| 			huge = true;
 | |
| 			count = folio_free_raw_hwp(folio, false);
 | |
| 			if (count == 0)
 | |
| 				goto unlock_mutex;
 | |
| 		}
 | |
| 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
 | |
| 	} else if (ghp < 0) {
 | |
| 		if (ghp == -EHWPOISON) {
 | |
| 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
 | |
| 		} else {
 | |
| 			ret = ghp;
 | |
| 			unpoison_pr_info("%#lx: failed to grab page\n",
 | |
| 					 pfn, &unpoison_rs);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (folio_test_hugetlb(folio)) {
 | |
| 			huge = true;
 | |
| 			count = folio_free_raw_hwp(folio, false);
 | |
| 			if (count == 0) {
 | |
| 				folio_put(folio);
 | |
| 				goto unlock_mutex;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		folio_put(folio);
 | |
| 		if (TestClearPageHWPoison(p)) {
 | |
| 			folio_put(folio);
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unlock_mutex:
 | |
| 	mutex_unlock(&mf_mutex);
 | |
| 	if (!ret) {
 | |
| 		if (!huge)
 | |
| 			num_poisoned_pages_sub(pfn, 1);
 | |
| 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
 | |
| 				 page_to_pfn(p), &unpoison_rs);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(unpoison_memory);
 | |
| 
 | |
| #undef pr_fmt
 | |
| #define pr_fmt(fmt) "Soft offline: " fmt
 | |
| 
 | |
| /*
 | |
|  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
 | |
|  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
 | |
|  * If the page is mapped, it migrates the contents over.
 | |
|  */
 | |
| static int soft_offline_in_use_page(struct page *page)
 | |
| {
 | |
| 	long ret = 0;
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	char const *msg_page[] = {"page", "hugepage"};
 | |
| 	bool huge = folio_test_hugetlb(folio);
 | |
| 	bool isolated;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 	struct migration_target_control mtc = {
 | |
| 		.nid = NUMA_NO_NODE,
 | |
| 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
 | |
| 		.reason = MR_MEMORY_FAILURE,
 | |
| 	};
 | |
| 
 | |
| 	if (!huge && folio_test_large(folio)) {
 | |
| 		if (try_to_split_thp_page(page, true)) {
 | |
| 			pr_info("%#lx: thp split failed\n", pfn);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 		folio = page_folio(page);
 | |
| 	}
 | |
| 
 | |
| 	folio_lock(folio);
 | |
| 	if (!huge)
 | |
| 		folio_wait_writeback(folio);
 | |
| 	if (PageHWPoison(page)) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		pr_info("%#lx: page already poisoned\n", pfn);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
 | |
| 		/*
 | |
| 		 * Try to invalidate first. This should work for
 | |
| 		 * non dirty unmapped page cache pages.
 | |
| 		 */
 | |
| 		ret = mapping_evict_folio(folio_mapping(folio), folio);
 | |
| 	folio_unlock(folio);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		pr_info("%#lx: invalidated\n", pfn);
 | |
| 		page_handle_poison(page, false, true);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	isolated = isolate_folio_to_list(folio, &pagelist);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we succeed to isolate the folio, we grabbed another refcount on
 | |
| 	 * the folio, so we can safely drop the one we got from get_any_page().
 | |
| 	 * If we failed to isolate the folio, it means that we cannot go further
 | |
| 	 * and we will return an error, so drop the reference we got from
 | |
| 	 * get_any_page() as well.
 | |
| 	 */
 | |
| 	folio_put(folio);
 | |
| 
 | |
| 	if (isolated) {
 | |
| 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
 | |
| 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
 | |
| 		if (!ret) {
 | |
| 			bool release = !huge;
 | |
| 
 | |
| 			if (!page_handle_poison(page, huge, release))
 | |
| 				ret = -EBUSY;
 | |
| 		} else {
 | |
| 			if (!list_empty(&pagelist))
 | |
| 				putback_movable_pages(&pagelist);
 | |
| 
 | |
| 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
 | |
| 				pfn, msg_page[huge], ret, &page->flags);
 | |
| 			if (ret > 0)
 | |
| 				ret = -EBUSY;
 | |
| 		}
 | |
| 	} else {
 | |
| 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
 | |
| 			pfn, msg_page[huge], page_count(page), &page->flags);
 | |
| 		ret = -EBUSY;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * soft_offline_page - Soft offline a page.
 | |
|  * @pfn: pfn to soft-offline
 | |
|  * @flags: flags. Same as memory_failure().
 | |
|  *
 | |
|  * Returns 0 on success,
 | |
|  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
 | |
|  *         disabled by /proc/sys/vm/enable_soft_offline,
 | |
|  *         < 0 otherwise negated errno.
 | |
|  *
 | |
|  * Soft offline a page, by migration or invalidation,
 | |
|  * without killing anything. This is for the case when
 | |
|  * a page is not corrupted yet (so it's still valid to access),
 | |
|  * but has had a number of corrected errors and is better taken
 | |
|  * out.
 | |
|  *
 | |
|  * The actual policy on when to do that is maintained by
 | |
|  * user space.
 | |
|  *
 | |
|  * This should never impact any application or cause data loss,
 | |
|  * however it might take some time.
 | |
|  *
 | |
|  * This is not a 100% solution for all memory, but tries to be
 | |
|  * ``good enough'' for the majority of memory.
 | |
|  */
 | |
| int soft_offline_page(unsigned long pfn, int flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	bool try_again = true;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!pfn_valid(pfn)) {
 | |
| 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
 | |
| 	page = pfn_to_online_page(pfn);
 | |
| 	if (!page) {
 | |
| 		put_ref_page(pfn, flags);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (!sysctl_enable_soft_offline) {
 | |
| 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
 | |
| 		put_ref_page(pfn, flags);
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&mf_mutex);
 | |
| 
 | |
| 	if (PageHWPoison(page)) {
 | |
| 		pr_info("%#lx: page already poisoned\n", pfn);
 | |
| 		put_ref_page(pfn, flags);
 | |
| 		mutex_unlock(&mf_mutex);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	get_online_mems();
 | |
| 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
 | |
| 	put_online_mems();
 | |
| 
 | |
| 	if (hwpoison_filter(page)) {
 | |
| 		if (ret > 0)
 | |
| 			put_page(page);
 | |
| 
 | |
| 		mutex_unlock(&mf_mutex);
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (ret > 0) {
 | |
| 		ret = soft_offline_in_use_page(page);
 | |
| 	} else if (ret == 0) {
 | |
| 		if (!page_handle_poison(page, true, false)) {
 | |
| 			if (try_again) {
 | |
| 				try_again = false;
 | |
| 				flags &= ~MF_COUNT_INCREASED;
 | |
| 				goto retry;
 | |
| 			}
 | |
| 			ret = -EBUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&mf_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 |