mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 41ffaa0ea7
			
		
	
	
		41ffaa0ea7
		
	
	
	
	
		
			
			We should not free wi_group->wi_kobj here.  In the error path of
add_weighted_interleave_group() where this snippet is called from,
kobj_{del, put} is immediately called right after this section.  Thus, it
is not only unnecessary but also incorrect to free it here.
Link: https://lkml.kernel.org/r/20250602162345.2595696-1-joshua.hahnjy@gmail.com
Fixes: e341f9c3c8 ("mm/mempolicy: Weighted Interleave Auto-tuning")
Signed-off-by: Joshua Hahn <joshua.hahnjy@gmail.com>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202506011545.Fduxqxqj-lkp@intel.com/
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Byungchul Park <byungchul@sk.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gregory Price <gourry@gourry.net>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Mathew Brost <matthew.brost@intel.com>
Cc: Rakie Kim <rakie.kim@sk.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			3879 lines
		
	
	
	
		
			98 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3879 lines
		
	
	
	
		
			98 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Simple NUMA memory policy for the Linux kernel.
 | |
|  *
 | |
|  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
 | |
|  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 | |
|  *
 | |
|  * NUMA policy allows the user to give hints in which node(s) memory should
 | |
|  * be allocated.
 | |
|  *
 | |
|  * Support six policies per VMA and per process:
 | |
|  *
 | |
|  * The VMA policy has priority over the process policy for a page fault.
 | |
|  *
 | |
|  * interleave     Allocate memory interleaved over a set of nodes,
 | |
|  *                with normal fallback if it fails.
 | |
|  *                For VMA based allocations this interleaves based on the
 | |
|  *                offset into the backing object or offset into the mapping
 | |
|  *                for anonymous memory. For process policy an process counter
 | |
|  *                is used.
 | |
|  *
 | |
|  * weighted interleave
 | |
|  *                Allocate memory interleaved over a set of nodes based on
 | |
|  *                a set of weights (per-node), with normal fallback if it
 | |
|  *                fails.  Otherwise operates the same as interleave.
 | |
|  *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
 | |
|  *                on node 0 for every 1 page allocated on node 1.
 | |
|  *
 | |
|  * bind           Only allocate memory on a specific set of nodes,
 | |
|  *                no fallback.
 | |
|  *                FIXME: memory is allocated starting with the first node
 | |
|  *                to the last. It would be better if bind would truly restrict
 | |
|  *                the allocation to memory nodes instead
 | |
|  *
 | |
|  * preferred      Try a specific node first before normal fallback.
 | |
|  *                As a special case NUMA_NO_NODE here means do the allocation
 | |
|  *                on the local CPU. This is normally identical to default,
 | |
|  *                but useful to set in a VMA when you have a non default
 | |
|  *                process policy.
 | |
|  *
 | |
|  * preferred many Try a set of nodes first before normal fallback. This is
 | |
|  *                similar to preferred without the special case.
 | |
|  *
 | |
|  * default        Allocate on the local node first, or when on a VMA
 | |
|  *                use the process policy. This is what Linux always did
 | |
|  *		  in a NUMA aware kernel and still does by, ahem, default.
 | |
|  *
 | |
|  * The process policy is applied for most non interrupt memory allocations
 | |
|  * in that process' context. Interrupts ignore the policies and always
 | |
|  * try to allocate on the local CPU. The VMA policy is only applied for memory
 | |
|  * allocations for a VMA in the VM.
 | |
|  *
 | |
|  * Currently there are a few corner cases in swapping where the policy
 | |
|  * is not applied, but the majority should be handled. When process policy
 | |
|  * is used it is not remembered over swap outs/swap ins.
 | |
|  *
 | |
|  * Only the highest zone in the zone hierarchy gets policied. Allocations
 | |
|  * requesting a lower zone just use default policy. This implies that
 | |
|  * on systems with highmem kernel lowmem allocation don't get policied.
 | |
|  * Same with GFP_DMA allocations.
 | |
|  *
 | |
|  * For shmem/tmpfs shared memory the policy is shared between
 | |
|  * all users and remembered even when nobody has memory mapped.
 | |
|  */
 | |
| 
 | |
| /* Notebook:
 | |
|    fix mmap readahead to honour policy and enable policy for any page cache
 | |
|    object
 | |
|    statistics for bigpages
 | |
|    global policy for page cache? currently it uses process policy. Requires
 | |
|    first item above.
 | |
|    handle mremap for shared memory (currently ignored for the policy)
 | |
|    grows down?
 | |
|    make bind policy root only? It can trigger oom much faster and the
 | |
|    kernel is not always grateful with that.
 | |
| */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/pagewalk.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/numa_balancing.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/printk.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/gcd.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/memory.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /* Internal flags */
 | |
| #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 | |
| #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
 | |
| #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
 | |
| 
 | |
| static struct kmem_cache *policy_cache;
 | |
| static struct kmem_cache *sn_cache;
 | |
| 
 | |
| /* Highest zone. An specific allocation for a zone below that is not
 | |
|    policied. */
 | |
| enum zone_type policy_zone = 0;
 | |
| 
 | |
| /*
 | |
|  * run-time system-wide default policy => local allocation
 | |
|  */
 | |
| static struct mempolicy default_policy = {
 | |
| 	.refcnt = ATOMIC_INIT(1), /* never free it */
 | |
| 	.mode = MPOL_LOCAL,
 | |
| };
 | |
| 
 | |
| static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 | |
| 
 | |
| /*
 | |
|  * weightiness balances the tradeoff between small weights (cycles through nodes
 | |
|  * faster, more fair/even distribution) and large weights (smaller errors
 | |
|  * between actual bandwidth ratios and weight ratios). 32 is a number that has
 | |
|  * been found to perform at a reasonable compromise between the two goals.
 | |
|  */
 | |
| static const int weightiness = 32;
 | |
| 
 | |
| /*
 | |
|  * A null weighted_interleave_state is interpreted as having .mode="auto",
 | |
|  * and .iw_table is interpreted as an array of 1s with length nr_node_ids.
 | |
|  */
 | |
| struct weighted_interleave_state {
 | |
| 	bool mode_auto;
 | |
| 	u8 iw_table[];
 | |
| };
 | |
| static struct weighted_interleave_state __rcu *wi_state;
 | |
| static unsigned int *node_bw_table;
 | |
| 
 | |
| /*
 | |
|  * wi_state_lock protects both wi_state and node_bw_table.
 | |
|  * node_bw_table is only used by writers to update wi_state.
 | |
|  */
 | |
| static DEFINE_MUTEX(wi_state_lock);
 | |
| 
 | |
| static u8 get_il_weight(int node)
 | |
| {
 | |
| 	struct weighted_interleave_state *state;
 | |
| 	u8 weight = 1;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	state = rcu_dereference(wi_state);
 | |
| 	if (state)
 | |
| 		weight = state->iw_table[node];
 | |
| 	rcu_read_unlock();
 | |
| 	return weight;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert bandwidth values into weighted interleave weights.
 | |
|  * Call with wi_state_lock.
 | |
|  */
 | |
| static void reduce_interleave_weights(unsigned int *bw, u8 *new_iw)
 | |
| {
 | |
| 	u64 sum_bw = 0;
 | |
| 	unsigned int cast_sum_bw, scaling_factor = 1, iw_gcd = 0;
 | |
| 	int nid;
 | |
| 
 | |
| 	for_each_node_state(nid, N_MEMORY)
 | |
| 		sum_bw += bw[nid];
 | |
| 
 | |
| 	/* Scale bandwidths to whole numbers in the range [1, weightiness] */
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		/*
 | |
| 		 * Try not to perform 64-bit division.
 | |
| 		 * If sum_bw < scaling_factor, then sum_bw < U32_MAX.
 | |
| 		 * If sum_bw > scaling_factor, then round the weight up to 1.
 | |
| 		 */
 | |
| 		scaling_factor = weightiness * bw[nid];
 | |
| 		if (bw[nid] && sum_bw < scaling_factor) {
 | |
| 			cast_sum_bw = (unsigned int)sum_bw;
 | |
| 			new_iw[nid] = scaling_factor / cast_sum_bw;
 | |
| 		} else {
 | |
| 			new_iw[nid] = 1;
 | |
| 		}
 | |
| 		if (!iw_gcd)
 | |
| 			iw_gcd = new_iw[nid];
 | |
| 		iw_gcd = gcd(iw_gcd, new_iw[nid]);
 | |
| 	}
 | |
| 
 | |
| 	/* 1:2 is strictly better than 16:32. Reduce by the weights' GCD. */
 | |
| 	for_each_node_state(nid, N_MEMORY)
 | |
| 		new_iw[nid] /= iw_gcd;
 | |
| }
 | |
| 
 | |
| int mempolicy_set_node_perf(unsigned int node, struct access_coordinate *coords)
 | |
| {
 | |
| 	struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL;
 | |
| 	unsigned int *old_bw, *new_bw;
 | |
| 	unsigned int bw_val;
 | |
| 	int i;
 | |
| 
 | |
| 	bw_val = min(coords->read_bandwidth, coords->write_bandwidth);
 | |
| 	new_bw = kcalloc(nr_node_ids, sizeof(unsigned int), GFP_KERNEL);
 | |
| 	if (!new_bw)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	new_wi_state = kmalloc(struct_size(new_wi_state, iw_table, nr_node_ids),
 | |
| 			       GFP_KERNEL);
 | |
| 	if (!new_wi_state) {
 | |
| 		kfree(new_bw);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	new_wi_state->mode_auto = true;
 | |
| 	for (i = 0; i < nr_node_ids; i++)
 | |
| 		new_wi_state->iw_table[i] = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update bandwidth info, even in manual mode. That way, when switching
 | |
| 	 * to auto mode in the future, iw_table can be overwritten using
 | |
| 	 * accurate bw data.
 | |
| 	 */
 | |
| 	mutex_lock(&wi_state_lock);
 | |
| 
 | |
| 	old_bw = node_bw_table;
 | |
| 	if (old_bw)
 | |
| 		memcpy(new_bw, old_bw, nr_node_ids * sizeof(*old_bw));
 | |
| 	new_bw[node] = bw_val;
 | |
| 	node_bw_table = new_bw;
 | |
| 
 | |
| 	old_wi_state = rcu_dereference_protected(wi_state,
 | |
| 					lockdep_is_held(&wi_state_lock));
 | |
| 	if (old_wi_state && !old_wi_state->mode_auto) {
 | |
| 		/* Manual mode; skip reducing weights and updating wi_state */
 | |
| 		mutex_unlock(&wi_state_lock);
 | |
| 		kfree(new_wi_state);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* NULL wi_state assumes auto=true; reduce weights and update wi_state*/
 | |
| 	reduce_interleave_weights(new_bw, new_wi_state->iw_table);
 | |
| 	rcu_assign_pointer(wi_state, new_wi_state);
 | |
| 
 | |
| 	mutex_unlock(&wi_state_lock);
 | |
| 	if (old_wi_state) {
 | |
| 		synchronize_rcu();
 | |
| 		kfree(old_wi_state);
 | |
| 	}
 | |
| out:
 | |
| 	kfree(old_bw);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_nearest_node - Find nearest node by state
 | |
|  * @node: Node id to start the search
 | |
|  * @state: State to filter the search
 | |
|  *
 | |
|  * Lookup the closest node by distance if @nid is not in state.
 | |
|  *
 | |
|  * Return: this @node if it is in state, otherwise the closest node by distance
 | |
|  */
 | |
| int numa_nearest_node(int node, unsigned int state)
 | |
| {
 | |
| 	int min_dist = INT_MAX, dist, n, min_node;
 | |
| 
 | |
| 	if (state >= NR_NODE_STATES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (node == NUMA_NO_NODE || node_state(node, state))
 | |
| 		return node;
 | |
| 
 | |
| 	min_node = node;
 | |
| 	for_each_node_state(n, state) {
 | |
| 		dist = node_distance(node, n);
 | |
| 		if (dist < min_dist) {
 | |
| 			min_dist = dist;
 | |
| 			min_node = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return min_node;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(numa_nearest_node);
 | |
| 
 | |
| /**
 | |
|  * nearest_node_nodemask - Find the node in @mask at the nearest distance
 | |
|  *			   from @node.
 | |
|  *
 | |
|  * @node: a valid node ID to start the search from.
 | |
|  * @mask: a pointer to a nodemask representing the allowed nodes.
 | |
|  *
 | |
|  * This function iterates over all nodes in @mask and calculates the
 | |
|  * distance from the starting @node, then it returns the node ID that is
 | |
|  * the closest to @node, or MAX_NUMNODES if no node is found.
 | |
|  *
 | |
|  * Note that @node must be a valid node ID usable with node_distance(),
 | |
|  * providing an invalid node ID (e.g., NUMA_NO_NODE) may result in crashes
 | |
|  * or unexpected behavior.
 | |
|  */
 | |
| int nearest_node_nodemask(int node, nodemask_t *mask)
 | |
| {
 | |
| 	int dist, n, min_dist = INT_MAX, min_node = MAX_NUMNODES;
 | |
| 
 | |
| 	for_each_node_mask(n, *mask) {
 | |
| 		dist = node_distance(node, n);
 | |
| 		if (dist < min_dist) {
 | |
| 			min_dist = dist;
 | |
| 			min_node = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return min_node;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(nearest_node_nodemask);
 | |
| 
 | |
| struct mempolicy *get_task_policy(struct task_struct *p)
 | |
| {
 | |
| 	struct mempolicy *pol = p->mempolicy;
 | |
| 	int node;
 | |
| 
 | |
| 	if (pol)
 | |
| 		return pol;
 | |
| 
 | |
| 	node = numa_node_id();
 | |
| 	if (node != NUMA_NO_NODE) {
 | |
| 		pol = &preferred_node_policy[node];
 | |
| 		/* preferred_node_policy is not initialised early in boot */
 | |
| 		if (pol->mode)
 | |
| 			return pol;
 | |
| 	}
 | |
| 
 | |
| 	return &default_policy;
 | |
| }
 | |
| 
 | |
| static const struct mempolicy_operations {
 | |
| 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 | |
| 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 | |
| } mpol_ops[MPOL_MAX];
 | |
| 
 | |
| static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 | |
| {
 | |
| 	return pol->flags & MPOL_MODE_FLAGS;
 | |
| }
 | |
| 
 | |
| static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 | |
| 				   const nodemask_t *rel)
 | |
| {
 | |
| 	nodemask_t tmp;
 | |
| 	nodes_fold(tmp, *orig, nodes_weight(*rel));
 | |
| 	nodes_onto(*ret, tmp, *rel);
 | |
| }
 | |
| 
 | |
| static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 | |
| {
 | |
| 	if (nodes_empty(*nodes))
 | |
| 		return -EINVAL;
 | |
| 	pol->nodes = *nodes;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 | |
| {
 | |
| 	if (nodes_empty(*nodes))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nodes_clear(pol->nodes);
 | |
| 	node_set(first_node(*nodes), pol->nodes);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 | |
|  * any, for the new policy.  mpol_new() has already validated the nodes
 | |
|  * parameter with respect to the policy mode and flags.
 | |
|  *
 | |
|  * Must be called holding task's alloc_lock to protect task's mems_allowed
 | |
|  * and mempolicy.  May also be called holding the mmap_lock for write.
 | |
|  */
 | |
| static int mpol_set_nodemask(struct mempolicy *pol,
 | |
| 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Default (pol==NULL) resp. local memory policies are not a
 | |
| 	 * subject of any remapping. They also do not need any special
 | |
| 	 * constructor.
 | |
| 	 */
 | |
| 	if (!pol || pol->mode == MPOL_LOCAL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check N_MEMORY */
 | |
| 	nodes_and(nsc->mask1,
 | |
| 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 | |
| 
 | |
| 	VM_BUG_ON(!nodes);
 | |
| 
 | |
| 	if (pol->flags & MPOL_F_RELATIVE_NODES)
 | |
| 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 | |
| 	else
 | |
| 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
 | |
| 
 | |
| 	if (mpol_store_user_nodemask(pol))
 | |
| 		pol->w.user_nodemask = *nodes;
 | |
| 	else
 | |
| 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
 | |
| 
 | |
| 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function just creates a new policy, does some check and simple
 | |
|  * initialization. You must invoke mpol_set_nodemask() to set nodes.
 | |
|  */
 | |
| static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 | |
| 				  nodemask_t *nodes)
 | |
| {
 | |
| 	struct mempolicy *policy;
 | |
| 
 | |
| 	if (mode == MPOL_DEFAULT) {
 | |
| 		if (nodes && !nodes_empty(*nodes))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	VM_BUG_ON(!nodes);
 | |
| 
 | |
| 	/*
 | |
| 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 | |
| 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 | |
| 	 * All other modes require a valid pointer to a non-empty nodemask.
 | |
| 	 */
 | |
| 	if (mode == MPOL_PREFERRED) {
 | |
| 		if (nodes_empty(*nodes)) {
 | |
| 			if (((flags & MPOL_F_STATIC_NODES) ||
 | |
| 			     (flags & MPOL_F_RELATIVE_NODES)))
 | |
| 				return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 			mode = MPOL_LOCAL;
 | |
| 		}
 | |
| 	} else if (mode == MPOL_LOCAL) {
 | |
| 		if (!nodes_empty(*nodes) ||
 | |
| 		    (flags & MPOL_F_STATIC_NODES) ||
 | |
| 		    (flags & MPOL_F_RELATIVE_NODES))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 	} else if (nodes_empty(*nodes))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 | |
| 	if (!policy)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	atomic_set(&policy->refcnt, 1);
 | |
| 	policy->mode = mode;
 | |
| 	policy->flags = flags;
 | |
| 	policy->home_node = NUMA_NO_NODE;
 | |
| 
 | |
| 	return policy;
 | |
| }
 | |
| 
 | |
| /* Slow path of a mpol destructor. */
 | |
| void __mpol_put(struct mempolicy *pol)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&pol->refcnt))
 | |
| 		return;
 | |
| 	kmem_cache_free(policy_cache, pol);
 | |
| }
 | |
| 
 | |
| static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 | |
| {
 | |
| 	nodemask_t tmp;
 | |
| 
 | |
| 	if (pol->flags & MPOL_F_STATIC_NODES)
 | |
| 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 | |
| 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 | |
| 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 | |
| 	else {
 | |
| 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
 | |
| 								*nodes);
 | |
| 		pol->w.cpuset_mems_allowed = *nodes;
 | |
| 	}
 | |
| 
 | |
| 	if (nodes_empty(tmp))
 | |
| 		tmp = *nodes;
 | |
| 
 | |
| 	pol->nodes = tmp;
 | |
| }
 | |
| 
 | |
| static void mpol_rebind_preferred(struct mempolicy *pol,
 | |
| 						const nodemask_t *nodes)
 | |
| {
 | |
| 	pol->w.cpuset_mems_allowed = *nodes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mpol_rebind_policy - Migrate a policy to a different set of nodes
 | |
|  *
 | |
|  * Per-vma policies are protected by mmap_lock. Allocations using per-task
 | |
|  * policies are protected by task->mems_allowed_seq to prevent a premature
 | |
|  * OOM/allocation failure due to parallel nodemask modification.
 | |
|  */
 | |
| static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 | |
| {
 | |
| 	if (!pol || pol->mode == MPOL_LOCAL)
 | |
| 		return;
 | |
| 	if (!mpol_store_user_nodemask(pol) &&
 | |
| 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 | |
| 		return;
 | |
| 
 | |
| 	mpol_ops[pol->mode].rebind(pol, newmask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for mpol_rebind_policy() that just requires task
 | |
|  * pointer, and updates task mempolicy.
 | |
|  *
 | |
|  * Called with task's alloc_lock held.
 | |
|  */
 | |
| void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 | |
| {
 | |
| 	mpol_rebind_policy(tsk->mempolicy, new);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rebind each vma in mm to new nodemask.
 | |
|  *
 | |
|  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 | |
|  */
 | |
| void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	VMA_ITERATOR(vmi, mm, 0);
 | |
| 
 | |
| 	mmap_write_lock(mm);
 | |
| 	for_each_vma(vmi, vma) {
 | |
| 		vma_start_write(vma);
 | |
| 		mpol_rebind_policy(vma->vm_policy, new);
 | |
| 	}
 | |
| 	mmap_write_unlock(mm);
 | |
| }
 | |
| 
 | |
| static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 | |
| 	[MPOL_DEFAULT] = {
 | |
| 		.rebind = mpol_rebind_default,
 | |
| 	},
 | |
| 	[MPOL_INTERLEAVE] = {
 | |
| 		.create = mpol_new_nodemask,
 | |
| 		.rebind = mpol_rebind_nodemask,
 | |
| 	},
 | |
| 	[MPOL_PREFERRED] = {
 | |
| 		.create = mpol_new_preferred,
 | |
| 		.rebind = mpol_rebind_preferred,
 | |
| 	},
 | |
| 	[MPOL_BIND] = {
 | |
| 		.create = mpol_new_nodemask,
 | |
| 		.rebind = mpol_rebind_nodemask,
 | |
| 	},
 | |
| 	[MPOL_LOCAL] = {
 | |
| 		.rebind = mpol_rebind_default,
 | |
| 	},
 | |
| 	[MPOL_PREFERRED_MANY] = {
 | |
| 		.create = mpol_new_nodemask,
 | |
| 		.rebind = mpol_rebind_preferred,
 | |
| 	},
 | |
| 	[MPOL_WEIGHTED_INTERLEAVE] = {
 | |
| 		.create = mpol_new_nodemask,
 | |
| 		.rebind = mpol_rebind_nodemask,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
 | |
| 				unsigned long flags);
 | |
| static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
 | |
| 				pgoff_t ilx, int *nid);
 | |
| 
 | |
| static bool strictly_unmovable(unsigned long flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
 | |
| 	 * if any misplaced page is found.
 | |
| 	 */
 | |
| 	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
 | |
| 			 MPOL_MF_STRICT;
 | |
| }
 | |
| 
 | |
| struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
 | |
| 	struct mempolicy *pol;
 | |
| 	pgoff_t ilx;
 | |
| };
 | |
| 
 | |
| struct queue_pages {
 | |
| 	struct list_head *pagelist;
 | |
| 	unsigned long flags;
 | |
| 	nodemask_t *nmask;
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	struct vm_area_struct *first;
 | |
| 	struct folio *large;		/* note last large folio encountered */
 | |
| 	long nr_failed;			/* could not be isolated at this time */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Check if the folio's nid is in qp->nmask.
 | |
|  *
 | |
|  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 | |
|  * in the invert of qp->nmask.
 | |
|  */
 | |
| static inline bool queue_folio_required(struct folio *folio,
 | |
| 					struct queue_pages *qp)
 | |
| {
 | |
| 	int nid = folio_nid(folio);
 | |
| 	unsigned long flags = qp->flags;
 | |
| 
 | |
| 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 | |
| }
 | |
| 
 | |
| static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	struct queue_pages *qp = walk->private;
 | |
| 
 | |
| 	if (unlikely(is_pmd_migration_entry(*pmd))) {
 | |
| 		qp->nr_failed++;
 | |
| 		return;
 | |
| 	}
 | |
| 	folio = pmd_folio(*pmd);
 | |
| 	if (is_huge_zero_folio(folio)) {
 | |
| 		walk->action = ACTION_CONTINUE;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!queue_folio_required(folio, qp))
 | |
| 		return;
 | |
| 	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
 | |
| 	    !vma_migratable(walk->vma) ||
 | |
| 	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
 | |
| 		qp->nr_failed++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan through folios, checking if they satisfy the required conditions,
 | |
|  * moving them from LRU to local pagelist for migration if they do (or not).
 | |
|  *
 | |
|  * queue_folios_pte_range() has two possible return values:
 | |
|  * 0 - continue walking to scan for more, even if an existing folio on the
 | |
|  *     wrong node could not be isolated and queued for migration.
 | |
|  * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
 | |
|  *        and an existing folio was on a node that does not follow the policy.
 | |
|  */
 | |
| static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
 | |
| 			unsigned long end, struct mm_walk *walk)
 | |
| {
 | |
| 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	struct folio *folio;
 | |
| 	struct queue_pages *qp = walk->private;
 | |
| 	unsigned long flags = qp->flags;
 | |
| 	pte_t *pte, *mapped_pte;
 | |
| 	pte_t ptent;
 | |
| 	spinlock_t *ptl;
 | |
| 	int max_nr, nr;
 | |
| 
 | |
| 	ptl = pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (ptl) {
 | |
| 		queue_folios_pmd(pmd, walk);
 | |
| 		spin_unlock(ptl);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 | |
| 	if (!pte) {
 | |
| 		walk->action = ACTION_AGAIN;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	for (; addr != end; pte += nr, addr += nr * PAGE_SIZE) {
 | |
| 		max_nr = (end - addr) >> PAGE_SHIFT;
 | |
| 		nr = 1;
 | |
| 		ptent = ptep_get(pte);
 | |
| 		if (pte_none(ptent))
 | |
| 			continue;
 | |
| 		if (!pte_present(ptent)) {
 | |
| 			if (is_migration_entry(pte_to_swp_entry(ptent)))
 | |
| 				qp->nr_failed++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		folio = vm_normal_folio(vma, addr, ptent);
 | |
| 		if (!folio || folio_is_zone_device(folio))
 | |
| 			continue;
 | |
| 		if (folio_test_large(folio) && max_nr != 1)
 | |
| 			nr = folio_pte_batch(folio, addr, pte, ptent,
 | |
| 					     max_nr, fpb_flags,
 | |
| 					     NULL, NULL, NULL);
 | |
| 		/*
 | |
| 		 * vm_normal_folio() filters out zero pages, but there might
 | |
| 		 * still be reserved folios to skip, perhaps in a VDSO.
 | |
| 		 */
 | |
| 		if (folio_test_reserved(folio))
 | |
| 			continue;
 | |
| 		if (!queue_folio_required(folio, qp))
 | |
| 			continue;
 | |
| 		if (folio_test_large(folio)) {
 | |
| 			/*
 | |
| 			 * A large folio can only be isolated from LRU once,
 | |
| 			 * but may be mapped by many PTEs (and Copy-On-Write may
 | |
| 			 * intersperse PTEs of other, order 0, folios).  This is
 | |
| 			 * a common case, so don't mistake it for failure (but
 | |
| 			 * there can be other cases of multi-mapped pages which
 | |
| 			 * this quick check does not help to filter out - and a
 | |
| 			 * search of the pagelist might grow to be prohibitive).
 | |
| 			 *
 | |
| 			 * migrate_pages(&pagelist) returns nr_failed folios, so
 | |
| 			 * check "large" now so that queue_pages_range() returns
 | |
| 			 * a comparable nr_failed folios.  This does imply that
 | |
| 			 * if folio could not be isolated for some racy reason
 | |
| 			 * at its first PTE, later PTEs will not give it another
 | |
| 			 * chance of isolation; but keeps the accounting simple.
 | |
| 			 */
 | |
| 			if (folio == qp->large)
 | |
| 				continue;
 | |
| 			qp->large = folio;
 | |
| 		}
 | |
| 		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
 | |
| 		    !vma_migratable(vma) ||
 | |
| 		    !migrate_folio_add(folio, qp->pagelist, flags)) {
 | |
| 			qp->nr_failed += nr;
 | |
| 			if (strictly_unmovable(flags))
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	pte_unmap_unlock(mapped_pte, ptl);
 | |
| 	cond_resched();
 | |
| out:
 | |
| 	if (qp->nr_failed && strictly_unmovable(flags))
 | |
| 		return -EIO;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
 | |
| 			       unsigned long addr, unsigned long end,
 | |
| 			       struct mm_walk *walk)
 | |
| {
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 	struct queue_pages *qp = walk->private;
 | |
| 	unsigned long flags = qp->flags;
 | |
| 	struct folio *folio;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t entry;
 | |
| 
 | |
| 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 | |
| 	entry = huge_ptep_get(walk->mm, addr, pte);
 | |
| 	if (!pte_present(entry)) {
 | |
| 		if (unlikely(is_hugetlb_entry_migration(entry)))
 | |
| 			qp->nr_failed++;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	folio = pfn_folio(pte_pfn(entry));
 | |
| 	if (!queue_folio_required(folio, qp))
 | |
| 		goto unlock;
 | |
| 	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
 | |
| 	    !vma_migratable(walk->vma)) {
 | |
| 		qp->nr_failed++;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
 | |
| 	 * Choosing not to migrate a shared folio is not counted as a failure.
 | |
| 	 *
 | |
| 	 * See folio_maybe_mapped_shared() on possible imprecision when we
 | |
| 	 * cannot easily detect if a folio is shared.
 | |
| 	 */
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) ||
 | |
| 	    (!folio_maybe_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
 | |
| 		if (!folio_isolate_hugetlb(folio, qp->pagelist))
 | |
| 			qp->nr_failed++;
 | |
| unlock:
 | |
| 	spin_unlock(ptl);
 | |
| 	if (qp->nr_failed && strictly_unmovable(flags))
 | |
| 		return -EIO;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /*
 | |
|  * This is used to mark a range of virtual addresses to be inaccessible.
 | |
|  * These are later cleared by a NUMA hinting fault. Depending on these
 | |
|  * faults, pages may be migrated for better NUMA placement.
 | |
|  *
 | |
|  * This is assuming that NUMA faults are handled using PROT_NONE. If
 | |
|  * an architecture makes a different choice, it will need further
 | |
|  * changes to the core.
 | |
|  */
 | |
| unsigned long change_prot_numa(struct vm_area_struct *vma,
 | |
| 			unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	struct mmu_gather tlb;
 | |
| 	long nr_updated;
 | |
| 
 | |
| 	tlb_gather_mmu(&tlb, vma->vm_mm);
 | |
| 
 | |
| 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
 | |
| 	if (nr_updated > 0) {
 | |
| 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 | |
| 		count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated);
 | |
| 	}
 | |
| 
 | |
| 	tlb_finish_mmu(&tlb);
 | |
| 
 | |
| 	return nr_updated;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| static int queue_pages_test_walk(unsigned long start, unsigned long end,
 | |
| 				struct mm_walk *walk)
 | |
| {
 | |
| 	struct vm_area_struct *next, *vma = walk->vma;
 | |
| 	struct queue_pages *qp = walk->private;
 | |
| 	unsigned long flags = qp->flags;
 | |
| 
 | |
| 	/* range check first */
 | |
| 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
 | |
| 
 | |
| 	if (!qp->first) {
 | |
| 		qp->first = vma;
 | |
| 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 | |
| 			(qp->start < vma->vm_start))
 | |
| 			/* hole at head side of range */
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	next = find_vma(vma->vm_mm, vma->vm_end);
 | |
| 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 | |
| 		((vma->vm_end < qp->end) &&
 | |
| 		(!next || vma->vm_end < next->vm_start)))
 | |
| 		/* hole at middle or tail of range */
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Need check MPOL_MF_STRICT to return -EIO if possible
 | |
| 	 * regardless of vma_migratable
 | |
| 	 */
 | |
| 	if (!vma_migratable(vma) &&
 | |
| 	    !(flags & MPOL_MF_STRICT))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check page nodes, and queue pages to move, in the current vma.
 | |
| 	 * But if no moving, and no strict checking, the scan can be skipped.
 | |
| 	 */
 | |
| 	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static const struct mm_walk_ops queue_pages_walk_ops = {
 | |
| 	.hugetlb_entry		= queue_folios_hugetlb,
 | |
| 	.pmd_entry		= queue_folios_pte_range,
 | |
| 	.test_walk		= queue_pages_test_walk,
 | |
| 	.walk_lock		= PGWALK_RDLOCK,
 | |
| };
 | |
| 
 | |
| static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
 | |
| 	.hugetlb_entry		= queue_folios_hugetlb,
 | |
| 	.pmd_entry		= queue_folios_pte_range,
 | |
| 	.test_walk		= queue_pages_test_walk,
 | |
| 	.walk_lock		= PGWALK_WRLOCK,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Walk through page tables and collect pages to be migrated.
 | |
|  *
 | |
|  * If pages found in a given range are not on the required set of @nodes,
 | |
|  * and migration is allowed, they are isolated and queued to @pagelist.
 | |
|  *
 | |
|  * queue_pages_range() may return:
 | |
|  * 0 - all pages already on the right node, or successfully queued for moving
 | |
|  *     (or neither strict checking nor moving requested: only range checking).
 | |
|  * >0 - this number of misplaced folios could not be queued for moving
 | |
|  *      (a hugetlbfs page or a transparent huge page being counted as 1).
 | |
|  * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
 | |
|  * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
 | |
|  */
 | |
| static long
 | |
| queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 | |
| 		nodemask_t *nodes, unsigned long flags,
 | |
| 		struct list_head *pagelist)
 | |
| {
 | |
| 	int err;
 | |
| 	struct queue_pages qp = {
 | |
| 		.pagelist = pagelist,
 | |
| 		.flags = flags,
 | |
| 		.nmask = nodes,
 | |
| 		.start = start,
 | |
| 		.end = end,
 | |
| 		.first = NULL,
 | |
| 	};
 | |
| 	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
 | |
| 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
 | |
| 
 | |
| 	err = walk_page_range(mm, start, end, ops, &qp);
 | |
| 
 | |
| 	if (!qp.first)
 | |
| 		/* whole range in hole */
 | |
| 		err = -EFAULT;
 | |
| 
 | |
| 	return err ? : qp.nr_failed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Apply policy to a single VMA
 | |
|  * This must be called with the mmap_lock held for writing.
 | |
|  */
 | |
| static int vma_replace_policy(struct vm_area_struct *vma,
 | |
| 				struct mempolicy *pol)
 | |
| {
 | |
| 	int err;
 | |
| 	struct mempolicy *old;
 | |
| 	struct mempolicy *new;
 | |
| 
 | |
| 	vma_assert_write_locked(vma);
 | |
| 
 | |
| 	new = mpol_dup(pol);
 | |
| 	if (IS_ERR(new))
 | |
| 		return PTR_ERR(new);
 | |
| 
 | |
| 	if (vma->vm_ops && vma->vm_ops->set_policy) {
 | |
| 		err = vma->vm_ops->set_policy(vma, new);
 | |
| 		if (err)
 | |
| 			goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	old = vma->vm_policy;
 | |
| 	vma->vm_policy = new; /* protected by mmap_lock */
 | |
| 	mpol_put(old);
 | |
| 
 | |
| 	return 0;
 | |
|  err_out:
 | |
| 	mpol_put(new);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Split or merge the VMA (if required) and apply the new policy */
 | |
| static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
 | |
| 		struct vm_area_struct **prev, unsigned long start,
 | |
| 		unsigned long end, struct mempolicy *new_pol)
 | |
| {
 | |
| 	unsigned long vmstart, vmend;
 | |
| 
 | |
| 	vmend = min(end, vma->vm_end);
 | |
| 	if (start > vma->vm_start) {
 | |
| 		*prev = vma;
 | |
| 		vmstart = start;
 | |
| 	} else {
 | |
| 		vmstart = vma->vm_start;
 | |
| 	}
 | |
| 
 | |
| 	if (mpol_equal(vma->vm_policy, new_pol)) {
 | |
| 		*prev = vma;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
 | |
| 	if (IS_ERR(vma))
 | |
| 		return PTR_ERR(vma);
 | |
| 
 | |
| 	*prev = vma;
 | |
| 	return vma_replace_policy(vma, new_pol);
 | |
| }
 | |
| 
 | |
| /* Set the process memory policy */
 | |
| static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 | |
| 			     nodemask_t *nodes)
 | |
| {
 | |
| 	struct mempolicy *new, *old;
 | |
| 	NODEMASK_SCRATCH(scratch);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!scratch)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	new = mpol_new(mode, flags, nodes);
 | |
| 	if (IS_ERR(new)) {
 | |
| 		ret = PTR_ERR(new);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	task_lock(current);
 | |
| 	ret = mpol_set_nodemask(new, nodes, scratch);
 | |
| 	if (ret) {
 | |
| 		task_unlock(current);
 | |
| 		mpol_put(new);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	old = current->mempolicy;
 | |
| 	current->mempolicy = new;
 | |
| 	if (new && (new->mode == MPOL_INTERLEAVE ||
 | |
| 		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
 | |
| 		current->il_prev = MAX_NUMNODES-1;
 | |
| 		current->il_weight = 0;
 | |
| 	}
 | |
| 	task_unlock(current);
 | |
| 	mpol_put(old);
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	NODEMASK_SCRATCH_FREE(scratch);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return nodemask for policy for get_mempolicy() query
 | |
|  *
 | |
|  * Called with task's alloc_lock held
 | |
|  */
 | |
| static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
 | |
| {
 | |
| 	nodes_clear(*nodes);
 | |
| 	if (pol == &default_policy)
 | |
| 		return;
 | |
| 
 | |
| 	switch (pol->mode) {
 | |
| 	case MPOL_BIND:
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 	case MPOL_PREFERRED:
 | |
| 	case MPOL_PREFERRED_MANY:
 | |
| 	case MPOL_WEIGHTED_INTERLEAVE:
 | |
| 		*nodes = pol->nodes;
 | |
| 		break;
 | |
| 	case MPOL_LOCAL:
 | |
| 		/* return empty node mask for local allocation */
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int lookup_node(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	struct page *p = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
 | |
| 	if (ret > 0) {
 | |
| 		ret = page_to_nid(p);
 | |
| 		put_page(p);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Retrieve NUMA policy */
 | |
| static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 | |
| 			     unsigned long addr, unsigned long flags)
 | |
| {
 | |
| 	int err;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma = NULL;
 | |
| 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 | |
| 
 | |
| 	if (flags &
 | |
| 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (flags & MPOL_F_MEMS_ALLOWED) {
 | |
| 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 | |
| 			return -EINVAL;
 | |
| 		*policy = 0;	/* just so it's initialized */
 | |
| 		task_lock(current);
 | |
| 		*nmask  = cpuset_current_mems_allowed;
 | |
| 		task_unlock(current);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & MPOL_F_ADDR) {
 | |
| 		pgoff_t ilx;		/* ignored here */
 | |
| 		/*
 | |
| 		 * Do NOT fall back to task policy if the
 | |
| 		 * vma/shared policy at addr is NULL.  We
 | |
| 		 * want to return MPOL_DEFAULT in this case.
 | |
| 		 */
 | |
| 		mmap_read_lock(mm);
 | |
| 		vma = vma_lookup(mm, addr);
 | |
| 		if (!vma) {
 | |
| 			mmap_read_unlock(mm);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		pol = __get_vma_policy(vma, addr, &ilx);
 | |
| 	} else if (addr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!pol)
 | |
| 		pol = &default_policy;	/* indicates default behavior */
 | |
| 
 | |
| 	if (flags & MPOL_F_NODE) {
 | |
| 		if (flags & MPOL_F_ADDR) {
 | |
| 			/*
 | |
| 			 * Take a refcount on the mpol, because we are about to
 | |
| 			 * drop the mmap_lock, after which only "pol" remains
 | |
| 			 * valid, "vma" is stale.
 | |
| 			 */
 | |
| 			pol_refcount = pol;
 | |
| 			vma = NULL;
 | |
| 			mpol_get(pol);
 | |
| 			mmap_read_unlock(mm);
 | |
| 			err = lookup_node(mm, addr);
 | |
| 			if (err < 0)
 | |
| 				goto out;
 | |
| 			*policy = err;
 | |
| 		} else if (pol == current->mempolicy &&
 | |
| 				pol->mode == MPOL_INTERLEAVE) {
 | |
| 			*policy = next_node_in(current->il_prev, pol->nodes);
 | |
| 		} else if (pol == current->mempolicy &&
 | |
| 				pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
 | |
| 			if (current->il_weight)
 | |
| 				*policy = current->il_prev;
 | |
| 			else
 | |
| 				*policy = next_node_in(current->il_prev,
 | |
| 						       pol->nodes);
 | |
| 		} else {
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		*policy = pol == &default_policy ? MPOL_DEFAULT :
 | |
| 						pol->mode;
 | |
| 		/*
 | |
| 		 * Internal mempolicy flags must be masked off before exposing
 | |
| 		 * the policy to userspace.
 | |
| 		 */
 | |
| 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (nmask) {
 | |
| 		if (mpol_store_user_nodemask(pol)) {
 | |
| 			*nmask = pol->w.user_nodemask;
 | |
| 		} else {
 | |
| 			task_lock(current);
 | |
| 			get_policy_nodemask(pol, nmask);
 | |
| 			task_unlock(current);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	mpol_cond_put(pol);
 | |
| 	if (vma)
 | |
| 		mmap_read_unlock(mm);
 | |
| 	if (pol_refcount)
 | |
| 		mpol_put(pol_refcount);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
 | |
| 				unsigned long flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
 | |
| 	 * Choosing not to migrate a shared folio is not counted as a failure.
 | |
| 	 *
 | |
| 	 * See folio_maybe_mapped_shared() on possible imprecision when we
 | |
| 	 * cannot easily detect if a folio is shared.
 | |
| 	 */
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) || !folio_maybe_mapped_shared(folio)) {
 | |
| 		if (folio_isolate_lru(folio)) {
 | |
| 			list_add_tail(&folio->lru, foliolist);
 | |
| 			node_stat_mod_folio(folio,
 | |
| 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
 | |
| 				folio_nr_pages(folio));
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Non-movable folio may reach here.  And, there may be
 | |
| 			 * temporary off LRU folios or non-LRU movable folios.
 | |
| 			 * Treat them as unmovable folios since they can't be
 | |
| 			 * isolated, so they can't be moved at the moment.
 | |
| 			 */
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Migrate pages from one node to a target node.
 | |
|  * Returns error or the number of pages not migrated.
 | |
|  */
 | |
| static long migrate_to_node(struct mm_struct *mm, int source, int dest,
 | |
| 			    int flags)
 | |
| {
 | |
| 	nodemask_t nmask;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 	long nr_failed;
 | |
| 	long err = 0;
 | |
| 	struct migration_target_control mtc = {
 | |
| 		.nid = dest,
 | |
| 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
 | |
| 		.reason = MR_SYSCALL,
 | |
| 	};
 | |
| 
 | |
| 	nodes_clear(nmask);
 | |
| 	node_set(source, nmask);
 | |
| 
 | |
| 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	vma = find_vma(mm, 0);
 | |
| 	if (unlikely(!vma)) {
 | |
| 		mmap_read_unlock(mm);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This does not migrate the range, but isolates all pages that
 | |
| 	 * need migration.  Between passing in the full user address
 | |
| 	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
 | |
| 	 * but passes back the count of pages which could not be isolated.
 | |
| 	 */
 | |
| 	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
 | |
| 				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 | |
| 	mmap_read_unlock(mm);
 | |
| 
 | |
| 	if (!list_empty(&pagelist)) {
 | |
| 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
 | |
| 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
 | |
| 		if (err)
 | |
| 			putback_movable_pages(&pagelist);
 | |
| 	}
 | |
| 
 | |
| 	if (err >= 0)
 | |
| 		err += nr_failed;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move pages between the two nodesets so as to preserve the physical
 | |
|  * layout as much as possible.
 | |
|  *
 | |
|  * Returns the number of page that could not be moved.
 | |
|  */
 | |
| int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
 | |
| 		     const nodemask_t *to, int flags)
 | |
| {
 | |
| 	long nr_failed = 0;
 | |
| 	long err = 0;
 | |
| 	nodemask_t tmp;
 | |
| 
 | |
| 	lru_cache_disable();
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 | |
| 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 | |
| 	 * bit in 'tmp', and return that <source, dest> pair for migration.
 | |
| 	 * The pair of nodemasks 'to' and 'from' define the map.
 | |
| 	 *
 | |
| 	 * If no pair of bits is found that way, fallback to picking some
 | |
| 	 * pair of 'source' and 'dest' bits that are not the same.  If the
 | |
| 	 * 'source' and 'dest' bits are the same, this represents a node
 | |
| 	 * that will be migrating to itself, so no pages need move.
 | |
| 	 *
 | |
| 	 * If no bits are left in 'tmp', or if all remaining bits left
 | |
| 	 * in 'tmp' correspond to the same bit in 'to', return false
 | |
| 	 * (nothing left to migrate).
 | |
| 	 *
 | |
| 	 * This lets us pick a pair of nodes to migrate between, such that
 | |
| 	 * if possible the dest node is not already occupied by some other
 | |
| 	 * source node, minimizing the risk of overloading the memory on a
 | |
| 	 * node that would happen if we migrated incoming memory to a node
 | |
| 	 * before migrating outgoing memory source that same node.
 | |
| 	 *
 | |
| 	 * A single scan of tmp is sufficient.  As we go, we remember the
 | |
| 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
 | |
| 	 * that not only moved, but what's better, moved to an empty slot
 | |
| 	 * (d is not set in tmp), then we break out then, with that pair.
 | |
| 	 * Otherwise when we finish scanning from_tmp, we at least have the
 | |
| 	 * most recent <s, d> pair that moved.  If we get all the way through
 | |
| 	 * the scan of tmp without finding any node that moved, much less
 | |
| 	 * moved to an empty node, then there is nothing left worth migrating.
 | |
| 	 */
 | |
| 
 | |
| 	tmp = *from;
 | |
| 	while (!nodes_empty(tmp)) {
 | |
| 		int s, d;
 | |
| 		int source = NUMA_NO_NODE;
 | |
| 		int dest = 0;
 | |
| 
 | |
| 		for_each_node_mask(s, tmp) {
 | |
| 
 | |
| 			/*
 | |
| 			 * do_migrate_pages() tries to maintain the relative
 | |
| 			 * node relationship of the pages established between
 | |
| 			 * threads and memory areas.
 | |
|                          *
 | |
| 			 * However if the number of source nodes is not equal to
 | |
| 			 * the number of destination nodes we can not preserve
 | |
| 			 * this node relative relationship.  In that case, skip
 | |
| 			 * copying memory from a node that is in the destination
 | |
| 			 * mask.
 | |
| 			 *
 | |
| 			 * Example: [2,3,4] -> [3,4,5] moves everything.
 | |
| 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
 | |
| 			 */
 | |
| 
 | |
| 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
 | |
| 						(node_isset(s, *to)))
 | |
| 				continue;
 | |
| 
 | |
| 			d = node_remap(s, *from, *to);
 | |
| 			if (s == d)
 | |
| 				continue;
 | |
| 
 | |
| 			source = s;	/* Node moved. Memorize */
 | |
| 			dest = d;
 | |
| 
 | |
| 			/* dest not in remaining from nodes? */
 | |
| 			if (!node_isset(dest, tmp))
 | |
| 				break;
 | |
| 		}
 | |
| 		if (source == NUMA_NO_NODE)
 | |
| 			break;
 | |
| 
 | |
| 		node_clear(source, tmp);
 | |
| 		err = migrate_to_node(mm, source, dest, flags);
 | |
| 		if (err > 0)
 | |
| 			nr_failed += err;
 | |
| 		if (err < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	lru_cache_enable();
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new folio for page migration, according to NUMA mempolicy.
 | |
|  */
 | |
| static struct folio *alloc_migration_target_by_mpol(struct folio *src,
 | |
| 						    unsigned long private)
 | |
| {
 | |
| 	struct migration_mpol *mmpol = (struct migration_mpol *)private;
 | |
| 	struct mempolicy *pol = mmpol->pol;
 | |
| 	pgoff_t ilx = mmpol->ilx;
 | |
| 	unsigned int order;
 | |
| 	int nid = numa_node_id();
 | |
| 	gfp_t gfp;
 | |
| 
 | |
| 	order = folio_order(src);
 | |
| 	ilx += src->index >> order;
 | |
| 
 | |
| 	if (folio_test_hugetlb(src)) {
 | |
| 		nodemask_t *nodemask;
 | |
| 		struct hstate *h;
 | |
| 
 | |
| 		h = folio_hstate(src);
 | |
| 		gfp = htlb_alloc_mask(h);
 | |
| 		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
 | |
| 		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
 | |
| 				htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
 | |
| 	}
 | |
| 
 | |
| 	if (folio_test_large(src))
 | |
| 		gfp = GFP_TRANSHUGE;
 | |
| 	else
 | |
| 		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
 | |
| 
 | |
| 	return folio_alloc_mpol(gfp, order, pol, ilx, nid);
 | |
| }
 | |
| #else
 | |
| 
 | |
| static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
 | |
| 				unsigned long flags)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
 | |
| 		     const nodemask_t *to, int flags)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static struct folio *alloc_migration_target_by_mpol(struct folio *src,
 | |
| 						    unsigned long private)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static long do_mbind(unsigned long start, unsigned long len,
 | |
| 		     unsigned short mode, unsigned short mode_flags,
 | |
| 		     nodemask_t *nmask, unsigned long flags)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma, *prev;
 | |
| 	struct vma_iterator vmi;
 | |
| 	struct migration_mpol mmpol;
 | |
| 	struct mempolicy *new;
 | |
| 	unsigned long end;
 | |
| 	long err;
 | |
| 	long nr_failed;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 
 | |
| 	if (flags & ~(unsigned long)MPOL_MF_VALID)
 | |
| 		return -EINVAL;
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (start & ~PAGE_MASK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (mode == MPOL_DEFAULT)
 | |
| 		flags &= ~MPOL_MF_STRICT;
 | |
| 
 | |
| 	len = PAGE_ALIGN(len);
 | |
| 	end = start + len;
 | |
| 
 | |
| 	if (end < start)
 | |
| 		return -EINVAL;
 | |
| 	if (end == start)
 | |
| 		return 0;
 | |
| 
 | |
| 	new = mpol_new(mode, mode_flags, nmask);
 | |
| 	if (IS_ERR(new))
 | |
| 		return PTR_ERR(new);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are using the default policy then operation
 | |
| 	 * on discontinuous address spaces is okay after all
 | |
| 	 */
 | |
| 	if (!new)
 | |
| 		flags |= MPOL_MF_DISCONTIG_OK;
 | |
| 
 | |
| 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 | |
| 		lru_cache_disable();
 | |
| 	{
 | |
| 		NODEMASK_SCRATCH(scratch);
 | |
| 		if (scratch) {
 | |
| 			mmap_write_lock(mm);
 | |
| 			err = mpol_set_nodemask(new, nmask, scratch);
 | |
| 			if (err)
 | |
| 				mmap_write_unlock(mm);
 | |
| 		} else
 | |
| 			err = -ENOMEM;
 | |
| 		NODEMASK_SCRATCH_FREE(scratch);
 | |
| 	}
 | |
| 	if (err)
 | |
| 		goto mpol_out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the VMAs before scanning for pages to migrate,
 | |
| 	 * to ensure we don't miss a concurrently inserted page.
 | |
| 	 */
 | |
| 	nr_failed = queue_pages_range(mm, start, end, nmask,
 | |
| 			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
 | |
| 
 | |
| 	if (nr_failed < 0) {
 | |
| 		err = nr_failed;
 | |
| 		nr_failed = 0;
 | |
| 	} else {
 | |
| 		vma_iter_init(&vmi, mm, start);
 | |
| 		prev = vma_prev(&vmi);
 | |
| 		for_each_vma_range(vmi, vma, end) {
 | |
| 			err = mbind_range(&vmi, vma, &prev, start, end, new);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!err && !list_empty(&pagelist)) {
 | |
| 		/* Convert MPOL_DEFAULT's NULL to task or default policy */
 | |
| 		if (!new) {
 | |
| 			new = get_task_policy(current);
 | |
| 			mpol_get(new);
 | |
| 		}
 | |
| 		mmpol.pol = new;
 | |
| 		mmpol.ilx = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * In the interleaved case, attempt to allocate on exactly the
 | |
| 		 * targeted nodes, for the first VMA to be migrated; for later
 | |
| 		 * VMAs, the nodes will still be interleaved from the targeted
 | |
| 		 * nodemask, but one by one may be selected differently.
 | |
| 		 */
 | |
| 		if (new->mode == MPOL_INTERLEAVE ||
 | |
| 		    new->mode == MPOL_WEIGHTED_INTERLEAVE) {
 | |
| 			struct folio *folio;
 | |
| 			unsigned int order;
 | |
| 			unsigned long addr = -EFAULT;
 | |
| 
 | |
| 			list_for_each_entry(folio, &pagelist, lru) {
 | |
| 				if (!folio_test_ksm(folio))
 | |
| 					break;
 | |
| 			}
 | |
| 			if (!list_entry_is_head(folio, &pagelist, lru)) {
 | |
| 				vma_iter_init(&vmi, mm, start);
 | |
| 				for_each_vma_range(vmi, vma, end) {
 | |
| 					addr = page_address_in_vma(folio,
 | |
| 						folio_page(folio, 0), vma);
 | |
| 					if (addr != -EFAULT)
 | |
| 						break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (addr != -EFAULT) {
 | |
| 				order = folio_order(folio);
 | |
| 				/* We already know the pol, but not the ilx */
 | |
| 				mpol_cond_put(get_vma_policy(vma, addr, order,
 | |
| 							     &mmpol.ilx));
 | |
| 				/* Set base from which to increment by index */
 | |
| 				mmpol.ilx -= folio->index >> order;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mmap_write_unlock(mm);
 | |
| 
 | |
| 	if (!err && !list_empty(&pagelist)) {
 | |
| 		nr_failed |= migrate_pages(&pagelist,
 | |
| 				alloc_migration_target_by_mpol, NULL,
 | |
| 				(unsigned long)&mmpol, MIGRATE_SYNC,
 | |
| 				MR_MEMPOLICY_MBIND, NULL);
 | |
| 	}
 | |
| 
 | |
| 	if (nr_failed && (flags & MPOL_MF_STRICT))
 | |
| 		err = -EIO;
 | |
| 	if (!list_empty(&pagelist))
 | |
| 		putback_movable_pages(&pagelist);
 | |
| mpol_out:
 | |
| 	mpol_put(new);
 | |
| 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 | |
| 		lru_cache_enable();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * User space interface with variable sized bitmaps for nodelists.
 | |
|  */
 | |
| static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
 | |
| 		      unsigned long maxnode)
 | |
| {
 | |
| 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (in_compat_syscall())
 | |
| 		ret = compat_get_bitmap(mask,
 | |
| 					(const compat_ulong_t __user *)nmask,
 | |
| 					maxnode);
 | |
| 	else
 | |
| 		ret = copy_from_user(mask, nmask,
 | |
| 				     nlongs * sizeof(unsigned long));
 | |
| 
 | |
| 	if (ret)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (maxnode % BITS_PER_LONG)
 | |
| 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Copy a node mask from user space. */
 | |
| static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
 | |
| 		     unsigned long maxnode)
 | |
| {
 | |
| 	--maxnode;
 | |
| 	nodes_clear(*nodes);
 | |
| 	if (maxnode == 0 || !nmask)
 | |
| 		return 0;
 | |
| 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * When the user specified more nodes than supported just check
 | |
| 	 * if the non supported part is all zero, one word at a time,
 | |
| 	 * starting at the end.
 | |
| 	 */
 | |
| 	while (maxnode > MAX_NUMNODES) {
 | |
| 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
 | |
| 		unsigned long t;
 | |
| 
 | |
| 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (maxnode - bits >= MAX_NUMNODES) {
 | |
| 			maxnode -= bits;
 | |
| 		} else {
 | |
| 			maxnode = MAX_NUMNODES;
 | |
| 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
 | |
| 		}
 | |
| 		if (t)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
 | |
| }
 | |
| 
 | |
| /* Copy a kernel node mask to user space */
 | |
| static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
 | |
| 			      nodemask_t *nodes)
 | |
| {
 | |
| 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
 | |
| 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
 | |
| 	bool compat = in_compat_syscall();
 | |
| 
 | |
| 	if (compat)
 | |
| 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
 | |
| 
 | |
| 	if (copy > nbytes) {
 | |
| 		if (copy > PAGE_SIZE)
 | |
| 			return -EINVAL;
 | |
| 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
 | |
| 			return -EFAULT;
 | |
| 		copy = nbytes;
 | |
| 		maxnode = nr_node_ids;
 | |
| 	}
 | |
| 
 | |
| 	if (compat)
 | |
| 		return compat_put_bitmap((compat_ulong_t __user *)mask,
 | |
| 					 nodes_addr(*nodes), maxnode);
 | |
| 
 | |
| 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
 | |
| static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
 | |
| {
 | |
| 	*flags = *mode & MPOL_MODE_FLAGS;
 | |
| 	*mode &= ~MPOL_MODE_FLAGS;
 | |
| 
 | |
| 	if ((unsigned int)(*mode) >=  MPOL_MAX)
 | |
| 		return -EINVAL;
 | |
| 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
 | |
| 		return -EINVAL;
 | |
| 	if (*flags & MPOL_F_NUMA_BALANCING) {
 | |
| 		if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
 | |
| 			*flags |= (MPOL_F_MOF | MPOL_F_MORON);
 | |
| 		else
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long kernel_mbind(unsigned long start, unsigned long len,
 | |
| 			 unsigned long mode, const unsigned long __user *nmask,
 | |
| 			 unsigned long maxnode, unsigned int flags)
 | |
| {
 | |
| 	unsigned short mode_flags;
 | |
| 	nodemask_t nodes;
 | |
| 	int lmode = mode;
 | |
| 	int err;
 | |
| 
 | |
| 	start = untagged_addr(start);
 | |
| 	err = sanitize_mpol_flags(&lmode, &mode_flags);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = get_nodes(&nodes, nmask, maxnode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
 | |
| 		unsigned long, home_node, unsigned long, flags)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma, *prev;
 | |
| 	struct mempolicy *new, *old;
 | |
| 	unsigned long end;
 | |
| 	int err = -ENOENT;
 | |
| 	VMA_ITERATOR(vmi, mm, start);
 | |
| 
 | |
| 	start = untagged_addr(start);
 | |
| 	if (start & ~PAGE_MASK)
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * flags is used for future extension if any.
 | |
| 	 */
 | |
| 	if (flags != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check home_node is online to avoid accessing uninitialized
 | |
| 	 * NODE_DATA.
 | |
| 	 */
 | |
| 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	len = PAGE_ALIGN(len);
 | |
| 	end = start + len;
 | |
| 
 | |
| 	if (end < start)
 | |
| 		return -EINVAL;
 | |
| 	if (end == start)
 | |
| 		return 0;
 | |
| 	mmap_write_lock(mm);
 | |
| 	prev = vma_prev(&vmi);
 | |
| 	for_each_vma_range(vmi, vma, end) {
 | |
| 		/*
 | |
| 		 * If any vma in the range got policy other than MPOL_BIND
 | |
| 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
 | |
| 		 * the home node for vmas we already updated before.
 | |
| 		 */
 | |
| 		old = vma_policy(vma);
 | |
| 		if (!old) {
 | |
| 			prev = vma;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
 | |
| 			err = -EOPNOTSUPP;
 | |
| 			break;
 | |
| 		}
 | |
| 		new = mpol_dup(old);
 | |
| 		if (IS_ERR(new)) {
 | |
| 			err = PTR_ERR(new);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		vma_start_write(vma);
 | |
| 		new->home_node = home_node;
 | |
| 		err = mbind_range(&vmi, vma, &prev, start, end, new);
 | |
| 		mpol_put(new);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 	mmap_write_unlock(mm);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
 | |
| 		unsigned long, mode, const unsigned long __user *, nmask,
 | |
| 		unsigned long, maxnode, unsigned int, flags)
 | |
| {
 | |
| 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
 | |
| }
 | |
| 
 | |
| /* Set the process memory policy */
 | |
| static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
 | |
| 				 unsigned long maxnode)
 | |
| {
 | |
| 	unsigned short mode_flags;
 | |
| 	nodemask_t nodes;
 | |
| 	int lmode = mode;
 | |
| 	int err;
 | |
| 
 | |
| 	err = sanitize_mpol_flags(&lmode, &mode_flags);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = get_nodes(&nodes, nmask, maxnode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return do_set_mempolicy(lmode, mode_flags, &nodes);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
 | |
| 		unsigned long, maxnode)
 | |
| {
 | |
| 	return kernel_set_mempolicy(mode, nmask, maxnode);
 | |
| }
 | |
| 
 | |
| static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
 | |
| 				const unsigned long __user *old_nodes,
 | |
| 				const unsigned long __user *new_nodes)
 | |
| {
 | |
| 	struct mm_struct *mm = NULL;
 | |
| 	struct task_struct *task;
 | |
| 	nodemask_t task_nodes;
 | |
| 	int err;
 | |
| 	nodemask_t *old;
 | |
| 	nodemask_t *new;
 | |
| 	NODEMASK_SCRATCH(scratch);
 | |
| 
 | |
| 	if (!scratch)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	old = &scratch->mask1;
 | |
| 	new = &scratch->mask2;
 | |
| 
 | |
| 	err = get_nodes(old, old_nodes, maxnode);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = get_nodes(new, new_nodes, maxnode);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Find the mm_struct */
 | |
| 	rcu_read_lock();
 | |
| 	task = pid ? find_task_by_vpid(pid) : current;
 | |
| 	if (!task) {
 | |
| 		rcu_read_unlock();
 | |
| 		err = -ESRCH;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	get_task_struct(task);
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if this process has the right to modify the specified process.
 | |
| 	 * Use the regular "ptrace_may_access()" checks.
 | |
| 	 */
 | |
| 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 | |
| 		rcu_read_unlock();
 | |
| 		err = -EPERM;
 | |
| 		goto out_put;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	task_nodes = cpuset_mems_allowed(task);
 | |
| 	/* Is the user allowed to access the target nodes? */
 | |
| 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
 | |
| 		err = -EPERM;
 | |
| 		goto out_put;
 | |
| 	}
 | |
| 
 | |
| 	task_nodes = cpuset_mems_allowed(current);
 | |
| 	nodes_and(*new, *new, task_nodes);
 | |
| 	if (nodes_empty(*new))
 | |
| 		goto out_put;
 | |
| 
 | |
| 	err = security_task_movememory(task);
 | |
| 	if (err)
 | |
| 		goto out_put;
 | |
| 
 | |
| 	mm = get_task_mm(task);
 | |
| 	put_task_struct(task);
 | |
| 
 | |
| 	if (!mm) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = do_migrate_pages(mm, old, new,
 | |
| 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
 | |
| 
 | |
| 	mmput(mm);
 | |
| out:
 | |
| 	NODEMASK_SCRATCH_FREE(scratch);
 | |
| 
 | |
| 	return err;
 | |
| 
 | |
| out_put:
 | |
| 	put_task_struct(task);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
 | |
| 		const unsigned long __user *, old_nodes,
 | |
| 		const unsigned long __user *, new_nodes)
 | |
| {
 | |
| 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
 | |
| }
 | |
| 
 | |
| /* Retrieve NUMA policy */
 | |
| static int kernel_get_mempolicy(int __user *policy,
 | |
| 				unsigned long __user *nmask,
 | |
| 				unsigned long maxnode,
 | |
| 				unsigned long addr,
 | |
| 				unsigned long flags)
 | |
| {
 | |
| 	int err;
 | |
| 	int pval;
 | |
| 	nodemask_t nodes;
 | |
| 
 | |
| 	if (nmask != NULL && maxnode < nr_node_ids)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	addr = untagged_addr(addr);
 | |
| 
 | |
| 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (policy && put_user(pval, policy))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (nmask)
 | |
| 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
 | |
| 		unsigned long __user *, nmask, unsigned long, maxnode,
 | |
| 		unsigned long, addr, unsigned long, flags)
 | |
| {
 | |
| 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
 | |
| }
 | |
| 
 | |
| bool vma_migratable(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * DAX device mappings require predictable access latency, so avoid
 | |
| 	 * incurring periodic faults.
 | |
| 	 */
 | |
| 	if (vma_is_dax(vma))
 | |
| 		return false;
 | |
| 
 | |
| 	if (is_vm_hugetlb_page(vma) &&
 | |
| 		!hugepage_migration_supported(hstate_vma(vma)))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Migration allocates pages in the highest zone. If we cannot
 | |
| 	 * do so then migration (at least from node to node) is not
 | |
| 	 * possible.
 | |
| 	 */
 | |
| 	if (vma->vm_file &&
 | |
| 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
 | |
| 			< policy_zone)
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
 | |
| 				   unsigned long addr, pgoff_t *ilx)
 | |
| {
 | |
| 	*ilx = 0;
 | |
| 	return (vma->vm_ops && vma->vm_ops->get_policy) ?
 | |
| 		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get_vma_policy(@vma, @addr, @order, @ilx)
 | |
|  * @vma: virtual memory area whose policy is sought
 | |
|  * @addr: address in @vma for shared policy lookup
 | |
|  * @order: 0, or appropriate huge_page_order for interleaving
 | |
|  * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
 | |
|  *       MPOL_WEIGHTED_INTERLEAVE
 | |
|  *
 | |
|  * Returns effective policy for a VMA at specified address.
 | |
|  * Falls back to current->mempolicy or system default policy, as necessary.
 | |
|  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
 | |
|  * count--added by the get_policy() vm_op, as appropriate--to protect against
 | |
|  * freeing by another task.  It is the caller's responsibility to free the
 | |
|  * extra reference for shared policies.
 | |
|  */
 | |
| struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
 | |
| 				 unsigned long addr, int order, pgoff_t *ilx)
 | |
| {
 | |
| 	struct mempolicy *pol;
 | |
| 
 | |
| 	pol = __get_vma_policy(vma, addr, ilx);
 | |
| 	if (!pol)
 | |
| 		pol = get_task_policy(current);
 | |
| 	if (pol->mode == MPOL_INTERLEAVE ||
 | |
| 	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
 | |
| 		*ilx += vma->vm_pgoff >> order;
 | |
| 		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
 | |
| 	}
 | |
| 	return pol;
 | |
| }
 | |
| 
 | |
| bool vma_policy_mof(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct mempolicy *pol;
 | |
| 
 | |
| 	if (vma->vm_ops && vma->vm_ops->get_policy) {
 | |
| 		bool ret = false;
 | |
| 		pgoff_t ilx;		/* ignored here */
 | |
| 
 | |
| 		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
 | |
| 		if (pol && (pol->flags & MPOL_F_MOF))
 | |
| 			ret = true;
 | |
| 		mpol_cond_put(pol);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	pol = vma->vm_policy;
 | |
| 	if (!pol)
 | |
| 		pol = get_task_policy(current);
 | |
| 
 | |
| 	return pol->flags & MPOL_F_MOF;
 | |
| }
 | |
| 
 | |
| bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
 | |
| {
 | |
| 	enum zone_type dynamic_policy_zone = policy_zone;
 | |
| 
 | |
| 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
 | |
| 
 | |
| 	/*
 | |
| 	 * if policy->nodes has movable memory only,
 | |
| 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
 | |
| 	 *
 | |
| 	 * policy->nodes is intersect with node_states[N_MEMORY].
 | |
| 	 * so if the following test fails, it implies
 | |
| 	 * policy->nodes has movable memory only.
 | |
| 	 */
 | |
| 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
 | |
| 		dynamic_policy_zone = ZONE_MOVABLE;
 | |
| 
 | |
| 	return zone >= dynamic_policy_zone;
 | |
| }
 | |
| 
 | |
| static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| retry:
 | |
| 	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
 | |
| 	cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 	node = current->il_prev;
 | |
| 	if (!current->il_weight || !node_isset(node, policy->nodes)) {
 | |
| 		node = next_node_in(node, policy->nodes);
 | |
| 		if (read_mems_allowed_retry(cpuset_mems_cookie))
 | |
| 			goto retry;
 | |
| 		if (node == MAX_NUMNODES)
 | |
| 			return node;
 | |
| 		current->il_prev = node;
 | |
| 		current->il_weight = get_il_weight(node);
 | |
| 	}
 | |
| 	current->il_weight--;
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| /* Do dynamic interleaving for a process */
 | |
| static unsigned int interleave_nodes(struct mempolicy *policy)
 | |
| {
 | |
| 	unsigned int nid;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| 	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
 | |
| 	do {
 | |
| 		cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 		nid = next_node_in(current->il_prev, policy->nodes);
 | |
| 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 | |
| 
 | |
| 	if (nid < MAX_NUMNODES)
 | |
| 		current->il_prev = nid;
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Depending on the memory policy provide a node from which to allocate the
 | |
|  * next slab entry.
 | |
|  */
 | |
| unsigned int mempolicy_slab_node(void)
 | |
| {
 | |
| 	struct mempolicy *policy;
 | |
| 	int node = numa_mem_id();
 | |
| 
 | |
| 	if (!in_task())
 | |
| 		return node;
 | |
| 
 | |
| 	policy = current->mempolicy;
 | |
| 	if (!policy)
 | |
| 		return node;
 | |
| 
 | |
| 	switch (policy->mode) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 		return first_node(policy->nodes);
 | |
| 
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		return interleave_nodes(policy);
 | |
| 
 | |
| 	case MPOL_WEIGHTED_INTERLEAVE:
 | |
| 		return weighted_interleave_nodes(policy);
 | |
| 
 | |
| 	case MPOL_BIND:
 | |
| 	case MPOL_PREFERRED_MANY:
 | |
| 	{
 | |
| 		struct zoneref *z;
 | |
| 
 | |
| 		/*
 | |
| 		 * Follow bind policy behavior and start allocation at the
 | |
| 		 * first node.
 | |
| 		 */
 | |
| 		struct zonelist *zonelist;
 | |
| 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
 | |
| 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
 | |
| 		z = first_zones_zonelist(zonelist, highest_zoneidx,
 | |
| 							&policy->nodes);
 | |
| 		return zonelist_zone(z) ? zonelist_node_idx(z) : node;
 | |
| 	}
 | |
| 	case MPOL_LOCAL:
 | |
| 		return node;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
 | |
| 					      nodemask_t *mask)
 | |
| {
 | |
| 	/*
 | |
| 	 * barrier stabilizes the nodemask locally so that it can be iterated
 | |
| 	 * over safely without concern for changes. Allocators validate node
 | |
| 	 * selection does not violate mems_allowed, so this is safe.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 	memcpy(mask, &pol->nodes, sizeof(nodemask_t));
 | |
| 	barrier();
 | |
| 	return nodes_weight(*mask);
 | |
| }
 | |
| 
 | |
| static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
 | |
| {
 | |
| 	struct weighted_interleave_state *state;
 | |
| 	nodemask_t nodemask;
 | |
| 	unsigned int target, nr_nodes;
 | |
| 	u8 *table = NULL;
 | |
| 	unsigned int weight_total = 0;
 | |
| 	u8 weight;
 | |
| 	int nid = 0;
 | |
| 
 | |
| 	nr_nodes = read_once_policy_nodemask(pol, &nodemask);
 | |
| 	if (!nr_nodes)
 | |
| 		return numa_node_id();
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	state = rcu_dereference(wi_state);
 | |
| 	/* Uninitialized wi_state means we should assume all weights are 1 */
 | |
| 	if (state)
 | |
| 		table = state->iw_table;
 | |
| 
 | |
| 	/* calculate the total weight */
 | |
| 	for_each_node_mask(nid, nodemask)
 | |
| 		weight_total += table ? table[nid] : 1;
 | |
| 
 | |
| 	/* Calculate the node offset based on totals */
 | |
| 	target = ilx % weight_total;
 | |
| 	nid = first_node(nodemask);
 | |
| 	while (target) {
 | |
| 		/* detect system default usage */
 | |
| 		weight = table ? table[nid] : 1;
 | |
| 		if (target < weight)
 | |
| 			break;
 | |
| 		target -= weight;
 | |
| 		nid = next_node_in(nid, nodemask);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do static interleaving for interleave index @ilx.  Returns the ilx'th
 | |
|  * node in pol->nodes (starting from ilx=0), wrapping around if ilx
 | |
|  * exceeds the number of present nodes.
 | |
|  */
 | |
| static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
 | |
| {
 | |
| 	nodemask_t nodemask;
 | |
| 	unsigned int target, nnodes;
 | |
| 	int i;
 | |
| 	int nid;
 | |
| 
 | |
| 	nnodes = read_once_policy_nodemask(pol, &nodemask);
 | |
| 	if (!nnodes)
 | |
| 		return numa_node_id();
 | |
| 	target = ilx % nnodes;
 | |
| 	nid = first_node(nodemask);
 | |
| 	for (i = 0; i < target; i++)
 | |
| 		nid = next_node(nid, nodemask);
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a nodemask representing a mempolicy for filtering nodes for
 | |
|  * page allocation, together with preferred node id (or the input node id).
 | |
|  */
 | |
| static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
 | |
| 				   pgoff_t ilx, int *nid)
 | |
| {
 | |
| 	nodemask_t *nodemask = NULL;
 | |
| 
 | |
| 	switch (pol->mode) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 		/* Override input node id */
 | |
| 		*nid = first_node(pol->nodes);
 | |
| 		break;
 | |
| 	case MPOL_PREFERRED_MANY:
 | |
| 		nodemask = &pol->nodes;
 | |
| 		if (pol->home_node != NUMA_NO_NODE)
 | |
| 			*nid = pol->home_node;
 | |
| 		break;
 | |
| 	case MPOL_BIND:
 | |
| 		/* Restrict to nodemask (but not on lower zones) */
 | |
| 		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
 | |
| 		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
 | |
| 			nodemask = &pol->nodes;
 | |
| 		if (pol->home_node != NUMA_NO_NODE)
 | |
| 			*nid = pol->home_node;
 | |
| 		/*
 | |
| 		 * __GFP_THISNODE shouldn't even be used with the bind policy
 | |
| 		 * because we might easily break the expectation to stay on the
 | |
| 		 * requested node and not break the policy.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(gfp & __GFP_THISNODE);
 | |
| 		break;
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		/* Override input node id */
 | |
| 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
 | |
| 			interleave_nodes(pol) : interleave_nid(pol, ilx);
 | |
| 		break;
 | |
| 	case MPOL_WEIGHTED_INTERLEAVE:
 | |
| 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
 | |
| 			weighted_interleave_nodes(pol) :
 | |
| 			weighted_interleave_nid(pol, ilx);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return nodemask;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLBFS
 | |
| /*
 | |
|  * huge_node(@vma, @addr, @gfp_flags, @mpol)
 | |
|  * @vma: virtual memory area whose policy is sought
 | |
|  * @addr: address in @vma for shared policy lookup and interleave policy
 | |
|  * @gfp_flags: for requested zone
 | |
|  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
 | |
|  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
 | |
|  *
 | |
|  * Returns a nid suitable for a huge page allocation and a pointer
 | |
|  * to the struct mempolicy for conditional unref after allocation.
 | |
|  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
 | |
|  * to the mempolicy's @nodemask for filtering the zonelist.
 | |
|  */
 | |
| int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
 | |
| 		struct mempolicy **mpol, nodemask_t **nodemask)
 | |
| {
 | |
| 	pgoff_t ilx;
 | |
| 	int nid;
 | |
| 
 | |
| 	nid = numa_node_id();
 | |
| 	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
 | |
| 	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * init_nodemask_of_mempolicy
 | |
|  *
 | |
|  * If the current task's mempolicy is "default" [NULL], return 'false'
 | |
|  * to indicate default policy.  Otherwise, extract the policy nodemask
 | |
|  * for 'bind' or 'interleave' policy into the argument nodemask, or
 | |
|  * initialize the argument nodemask to contain the single node for
 | |
|  * 'preferred' or 'local' policy and return 'true' to indicate presence
 | |
|  * of non-default mempolicy.
 | |
|  *
 | |
|  * We don't bother with reference counting the mempolicy [mpol_get/put]
 | |
|  * because the current task is examining it's own mempolicy and a task's
 | |
|  * mempolicy is only ever changed by the task itself.
 | |
|  *
 | |
|  * N.B., it is the caller's responsibility to free a returned nodemask.
 | |
|  */
 | |
| bool init_nodemask_of_mempolicy(nodemask_t *mask)
 | |
| {
 | |
| 	struct mempolicy *mempolicy;
 | |
| 
 | |
| 	if (!(mask && current->mempolicy))
 | |
| 		return false;
 | |
| 
 | |
| 	task_lock(current);
 | |
| 	mempolicy = current->mempolicy;
 | |
| 	switch (mempolicy->mode) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 	case MPOL_PREFERRED_MANY:
 | |
| 	case MPOL_BIND:
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 	case MPOL_WEIGHTED_INTERLEAVE:
 | |
| 		*mask = mempolicy->nodes;
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_LOCAL:
 | |
| 		init_nodemask_of_node(mask, numa_node_id());
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 	task_unlock(current);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * mempolicy_in_oom_domain
 | |
|  *
 | |
|  * If tsk's mempolicy is "bind", check for intersection between mask and
 | |
|  * the policy nodemask. Otherwise, return true for all other policies
 | |
|  * including "interleave", as a tsk with "interleave" policy may have
 | |
|  * memory allocated from all nodes in system.
 | |
|  *
 | |
|  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
 | |
|  */
 | |
| bool mempolicy_in_oom_domain(struct task_struct *tsk,
 | |
| 					const nodemask_t *mask)
 | |
| {
 | |
| 	struct mempolicy *mempolicy;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	if (!mask)
 | |
| 		return ret;
 | |
| 
 | |
| 	task_lock(tsk);
 | |
| 	mempolicy = tsk->mempolicy;
 | |
| 	if (mempolicy && mempolicy->mode == MPOL_BIND)
 | |
| 		ret = nodes_intersects(mempolicy->nodes, *mask);
 | |
| 	task_unlock(tsk);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
 | |
| 						int nid, nodemask_t *nodemask)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	gfp_t preferred_gfp;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a two pass approach. The first pass will only try the
 | |
| 	 * preferred nodes but skip the direct reclaim and allow the
 | |
| 	 * allocation to fail, while the second pass will try all the
 | |
| 	 * nodes in system.
 | |
| 	 */
 | |
| 	preferred_gfp = gfp | __GFP_NOWARN;
 | |
| 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
 | |
| 	page = __alloc_frozen_pages_noprof(preferred_gfp, order, nid, nodemask);
 | |
| 	if (!page)
 | |
| 		page = __alloc_frozen_pages_noprof(gfp, order, nid, NULL);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
 | |
|  * @gfp: GFP flags.
 | |
|  * @order: Order of the page allocation.
 | |
|  * @pol: Pointer to the NUMA mempolicy.
 | |
|  * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
 | |
|  * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
 | |
|  *
 | |
|  * Return: The page on success or NULL if allocation fails.
 | |
|  */
 | |
| static struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
 | |
| 		struct mempolicy *pol, pgoff_t ilx, int nid)
 | |
| {
 | |
| 	nodemask_t *nodemask;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
 | |
| 
 | |
| 	if (pol->mode == MPOL_PREFERRED_MANY)
 | |
| 		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 | |
| 	    /* filter "hugepage" allocation, unless from alloc_pages() */
 | |
| 	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
 | |
| 		/*
 | |
| 		 * For hugepage allocation and non-interleave policy which
 | |
| 		 * allows the current node (or other explicitly preferred
 | |
| 		 * node) we only try to allocate from the current/preferred
 | |
| 		 * node and don't fall back to other nodes, as the cost of
 | |
| 		 * remote accesses would likely offset THP benefits.
 | |
| 		 *
 | |
| 		 * If the policy is interleave or does not allow the current
 | |
| 		 * node in its nodemask, we allocate the standard way.
 | |
| 		 */
 | |
| 		if (pol->mode != MPOL_INTERLEAVE &&
 | |
| 		    pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
 | |
| 		    (!nodemask || node_isset(nid, *nodemask))) {
 | |
| 			/*
 | |
| 			 * First, try to allocate THP only on local node, but
 | |
| 			 * don't reclaim unnecessarily, just compact.
 | |
| 			 */
 | |
| 			page = __alloc_frozen_pages_noprof(
 | |
| 				gfp | __GFP_THISNODE | __GFP_NORETRY, order,
 | |
| 				nid, NULL);
 | |
| 			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
 | |
| 				return page;
 | |
| 			/*
 | |
| 			 * If hugepage allocations are configured to always
 | |
| 			 * synchronous compact or the vma has been madvised
 | |
| 			 * to prefer hugepage backing, retry allowing remote
 | |
| 			 * memory with both reclaim and compact as well.
 | |
| 			 */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	page = __alloc_frozen_pages_noprof(gfp, order, nid, nodemask);
 | |
| 
 | |
| 	if (unlikely(pol->mode == MPOL_INTERLEAVE ||
 | |
| 		     pol->mode == MPOL_WEIGHTED_INTERLEAVE) && page) {
 | |
| 		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
 | |
| 		if (static_branch_likely(&vm_numa_stat_key) &&
 | |
| 		    page_to_nid(page) == nid) {
 | |
| 			preempt_disable();
 | |
| 			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
 | |
| 			preempt_enable();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
 | |
| 		struct mempolicy *pol, pgoff_t ilx, int nid)
 | |
| {
 | |
| 	struct page *page = alloc_pages_mpol(gfp | __GFP_COMP, order, pol,
 | |
| 			ilx, nid);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	set_page_refcounted(page);
 | |
| 	return page_rmappable_folio(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vma_alloc_folio - Allocate a folio for a VMA.
 | |
|  * @gfp: GFP flags.
 | |
|  * @order: Order of the folio.
 | |
|  * @vma: Pointer to VMA.
 | |
|  * @addr: Virtual address of the allocation.  Must be inside @vma.
 | |
|  *
 | |
|  * Allocate a folio for a specific address in @vma, using the appropriate
 | |
|  * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
 | |
|  * VMA to prevent it from going away.  Should be used for all allocations
 | |
|  * for folios that will be mapped into user space, excepting hugetlbfs, and
 | |
|  * excepting where direct use of folio_alloc_mpol() is more appropriate.
 | |
|  *
 | |
|  * Return: The folio on success or NULL if allocation fails.
 | |
|  */
 | |
| struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
 | |
| 		unsigned long addr)
 | |
| {
 | |
| 	struct mempolicy *pol;
 | |
| 	pgoff_t ilx;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_DROPPABLE)
 | |
| 		gfp |= __GFP_NOWARN;
 | |
| 
 | |
| 	pol = get_vma_policy(vma, addr, order, &ilx);
 | |
| 	folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
 | |
| 	mpol_cond_put(pol);
 | |
| 	return folio;
 | |
| }
 | |
| EXPORT_SYMBOL(vma_alloc_folio_noprof);
 | |
| 
 | |
| struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned order)
 | |
| {
 | |
| 	struct mempolicy *pol = &default_policy;
 | |
| 
 | |
| 	/*
 | |
| 	 * No reference counting needed for current->mempolicy
 | |
| 	 * nor system default_policy
 | |
| 	 */
 | |
| 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
 | |
| 		pol = get_task_policy(current);
 | |
| 
 | |
| 	return alloc_pages_mpol(gfp, order, pol, NO_INTERLEAVE_INDEX,
 | |
| 				       numa_node_id());
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_pages - Allocate pages.
 | |
|  * @gfp: GFP flags.
 | |
|  * @order: Power of two of number of pages to allocate.
 | |
|  *
 | |
|  * Allocate 1 << @order contiguous pages.  The physical address of the
 | |
|  * first page is naturally aligned (eg an order-3 allocation will be aligned
 | |
|  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
 | |
|  * process is honoured when in process context.
 | |
|  *
 | |
|  * Context: Can be called from any context, providing the appropriate GFP
 | |
|  * flags are used.
 | |
|  * Return: The page on success or NULL if allocation fails.
 | |
|  */
 | |
| struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
 | |
| {
 | |
| 	struct page *page = alloc_frozen_pages_noprof(gfp, order);
 | |
| 
 | |
| 	if (page)
 | |
| 		set_page_refcounted(page);
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(alloc_pages_noprof);
 | |
| 
 | |
| struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
 | |
| {
 | |
| 	return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
 | |
| }
 | |
| EXPORT_SYMBOL(folio_alloc_noprof);
 | |
| 
 | |
| static unsigned long alloc_pages_bulk_interleave(gfp_t gfp,
 | |
| 		struct mempolicy *pol, unsigned long nr_pages,
 | |
| 		struct page **page_array)
 | |
| {
 | |
| 	int nodes;
 | |
| 	unsigned long nr_pages_per_node;
 | |
| 	int delta;
 | |
| 	int i;
 | |
| 	unsigned long nr_allocated;
 | |
| 	unsigned long total_allocated = 0;
 | |
| 
 | |
| 	nodes = nodes_weight(pol->nodes);
 | |
| 	nr_pages_per_node = nr_pages / nodes;
 | |
| 	delta = nr_pages - nodes * nr_pages_per_node;
 | |
| 
 | |
| 	for (i = 0; i < nodes; i++) {
 | |
| 		if (delta) {
 | |
| 			nr_allocated = alloc_pages_bulk_noprof(gfp,
 | |
| 					interleave_nodes(pol), NULL,
 | |
| 					nr_pages_per_node + 1,
 | |
| 					page_array);
 | |
| 			delta--;
 | |
| 		} else {
 | |
| 			nr_allocated = alloc_pages_bulk_noprof(gfp,
 | |
| 					interleave_nodes(pol), NULL,
 | |
| 					nr_pages_per_node, page_array);
 | |
| 		}
 | |
| 
 | |
| 		page_array += nr_allocated;
 | |
| 		total_allocated += nr_allocated;
 | |
| 	}
 | |
| 
 | |
| 	return total_allocated;
 | |
| }
 | |
| 
 | |
| static unsigned long alloc_pages_bulk_weighted_interleave(gfp_t gfp,
 | |
| 		struct mempolicy *pol, unsigned long nr_pages,
 | |
| 		struct page **page_array)
 | |
| {
 | |
| 	struct weighted_interleave_state *state;
 | |
| 	struct task_struct *me = current;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 	unsigned long total_allocated = 0;
 | |
| 	unsigned long nr_allocated = 0;
 | |
| 	unsigned long rounds;
 | |
| 	unsigned long node_pages, delta;
 | |
| 	u8 *weights, weight;
 | |
| 	unsigned int weight_total = 0;
 | |
| 	unsigned long rem_pages = nr_pages;
 | |
| 	nodemask_t nodes;
 | |
| 	int nnodes, node;
 | |
| 	int resume_node = MAX_NUMNODES - 1;
 | |
| 	u8 resume_weight = 0;
 | |
| 	int prev_node;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!nr_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* read the nodes onto the stack, retry if done during rebind */
 | |
| 	do {
 | |
| 		cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 		nnodes = read_once_policy_nodemask(pol, &nodes);
 | |
| 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 | |
| 
 | |
| 	/* if the nodemask has become invalid, we cannot do anything */
 | |
| 	if (!nnodes)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Continue allocating from most recent node and adjust the nr_pages */
 | |
| 	node = me->il_prev;
 | |
| 	weight = me->il_weight;
 | |
| 	if (weight && node_isset(node, nodes)) {
 | |
| 		node_pages = min(rem_pages, weight);
 | |
| 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
 | |
| 						  page_array);
 | |
| 		page_array += nr_allocated;
 | |
| 		total_allocated += nr_allocated;
 | |
| 		/* if that's all the pages, no need to interleave */
 | |
| 		if (rem_pages <= weight) {
 | |
| 			me->il_weight -= rem_pages;
 | |
| 			return total_allocated;
 | |
| 		}
 | |
| 		/* Otherwise we adjust remaining pages, continue from there */
 | |
| 		rem_pages -= weight;
 | |
| 	}
 | |
| 	/* clear active weight in case of an allocation failure */
 | |
| 	me->il_weight = 0;
 | |
| 	prev_node = node;
 | |
| 
 | |
| 	/* create a local copy of node weights to operate on outside rcu */
 | |
| 	weights = kzalloc(nr_node_ids, GFP_KERNEL);
 | |
| 	if (!weights)
 | |
| 		return total_allocated;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	state = rcu_dereference(wi_state);
 | |
| 	if (state) {
 | |
| 		memcpy(weights, state->iw_table, nr_node_ids * sizeof(u8));
 | |
| 		rcu_read_unlock();
 | |
| 	} else {
 | |
| 		rcu_read_unlock();
 | |
| 		for (i = 0; i < nr_node_ids; i++)
 | |
| 			weights[i] = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate total, detect system default usage */
 | |
| 	for_each_node_mask(node, nodes)
 | |
| 		weight_total += weights[node];
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
 | |
| 	 * Track which node weighted interleave should resume from.
 | |
| 	 *
 | |
| 	 * if (rounds > 0) and (delta == 0), resume_node will always be
 | |
| 	 * the node following prev_node and its weight.
 | |
| 	 */
 | |
| 	rounds = rem_pages / weight_total;
 | |
| 	delta = rem_pages % weight_total;
 | |
| 	resume_node = next_node_in(prev_node, nodes);
 | |
| 	resume_weight = weights[resume_node];
 | |
| 	for (i = 0; i < nnodes; i++) {
 | |
| 		node = next_node_in(prev_node, nodes);
 | |
| 		weight = weights[node];
 | |
| 		node_pages = weight * rounds;
 | |
| 		/* If a delta exists, add this node's portion of the delta */
 | |
| 		if (delta > weight) {
 | |
| 			node_pages += weight;
 | |
| 			delta -= weight;
 | |
| 		} else if (delta) {
 | |
| 			/* when delta is depleted, resume from that node */
 | |
| 			node_pages += delta;
 | |
| 			resume_node = node;
 | |
| 			resume_weight = weight - delta;
 | |
| 			delta = 0;
 | |
| 		}
 | |
| 		/* node_pages can be 0 if an allocation fails and rounds == 0 */
 | |
| 		if (!node_pages)
 | |
| 			break;
 | |
| 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
 | |
| 						  page_array);
 | |
| 		page_array += nr_allocated;
 | |
| 		total_allocated += nr_allocated;
 | |
| 		if (total_allocated == nr_pages)
 | |
| 			break;
 | |
| 		prev_node = node;
 | |
| 	}
 | |
| 	me->il_prev = resume_node;
 | |
| 	me->il_weight = resume_weight;
 | |
| 	kfree(weights);
 | |
| 	return total_allocated;
 | |
| }
 | |
| 
 | |
| static unsigned long alloc_pages_bulk_preferred_many(gfp_t gfp, int nid,
 | |
| 		struct mempolicy *pol, unsigned long nr_pages,
 | |
| 		struct page **page_array)
 | |
| {
 | |
| 	gfp_t preferred_gfp;
 | |
| 	unsigned long nr_allocated = 0;
 | |
| 
 | |
| 	preferred_gfp = gfp | __GFP_NOWARN;
 | |
| 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
 | |
| 
 | |
| 	nr_allocated  = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
 | |
| 					   nr_pages, page_array);
 | |
| 
 | |
| 	if (nr_allocated < nr_pages)
 | |
| 		nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
 | |
| 				nr_pages - nr_allocated,
 | |
| 				page_array + nr_allocated);
 | |
| 	return nr_allocated;
 | |
| }
 | |
| 
 | |
| /* alloc pages bulk and mempolicy should be considered at the
 | |
|  * same time in some situation such as vmalloc.
 | |
|  *
 | |
|  * It can accelerate memory allocation especially interleaving
 | |
|  * allocate memory.
 | |
|  */
 | |
| unsigned long alloc_pages_bulk_mempolicy_noprof(gfp_t gfp,
 | |
| 		unsigned long nr_pages, struct page **page_array)
 | |
| {
 | |
| 	struct mempolicy *pol = &default_policy;
 | |
| 	nodemask_t *nodemask;
 | |
| 	int nid;
 | |
| 
 | |
| 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
 | |
| 		pol = get_task_policy(current);
 | |
| 
 | |
| 	if (pol->mode == MPOL_INTERLEAVE)
 | |
| 		return alloc_pages_bulk_interleave(gfp, pol,
 | |
| 							 nr_pages, page_array);
 | |
| 
 | |
| 	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
 | |
| 		return alloc_pages_bulk_weighted_interleave(
 | |
| 				  gfp, pol, nr_pages, page_array);
 | |
| 
 | |
| 	if (pol->mode == MPOL_PREFERRED_MANY)
 | |
| 		return alloc_pages_bulk_preferred_many(gfp,
 | |
| 				numa_node_id(), pol, nr_pages, page_array);
 | |
| 
 | |
| 	nid = numa_node_id();
 | |
| 	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
 | |
| 	return alloc_pages_bulk_noprof(gfp, nid, nodemask,
 | |
| 				       nr_pages, page_array);
 | |
| }
 | |
| 
 | |
| int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
 | |
| {
 | |
| 	struct mempolicy *pol = mpol_dup(src->vm_policy);
 | |
| 
 | |
| 	if (IS_ERR(pol))
 | |
| 		return PTR_ERR(pol);
 | |
| 	dst->vm_policy = pol;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
 | |
|  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
 | |
|  * with the mems_allowed returned by cpuset_mems_allowed().  This
 | |
|  * keeps mempolicies cpuset relative after its cpuset moves.  See
 | |
|  * further kernel/cpuset.c update_nodemask().
 | |
|  *
 | |
|  * current's mempolicy may be rebinded by the other task(the task that changes
 | |
|  * cpuset's mems), so we needn't do rebind work for current task.
 | |
|  */
 | |
| 
 | |
| /* Slow path of a mempolicy duplicate */
 | |
| struct mempolicy *__mpol_dup(struct mempolicy *old)
 | |
| {
 | |
| 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 | |
| 
 | |
| 	if (!new)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/* task's mempolicy is protected by alloc_lock */
 | |
| 	if (old == current->mempolicy) {
 | |
| 		task_lock(current);
 | |
| 		*new = *old;
 | |
| 		task_unlock(current);
 | |
| 	} else
 | |
| 		*new = *old;
 | |
| 
 | |
| 	if (current_cpuset_is_being_rebound()) {
 | |
| 		nodemask_t mems = cpuset_mems_allowed(current);
 | |
| 		mpol_rebind_policy(new, &mems);
 | |
| 	}
 | |
| 	atomic_set(&new->refcnt, 1);
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| /* Slow path of a mempolicy comparison */
 | |
| bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
 | |
| {
 | |
| 	if (!a || !b)
 | |
| 		return false;
 | |
| 	if (a->mode != b->mode)
 | |
| 		return false;
 | |
| 	if (a->flags != b->flags)
 | |
| 		return false;
 | |
| 	if (a->home_node != b->home_node)
 | |
| 		return false;
 | |
| 	if (mpol_store_user_nodemask(a))
 | |
| 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
 | |
| 			return false;
 | |
| 
 | |
| 	switch (a->mode) {
 | |
| 	case MPOL_BIND:
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 	case MPOL_PREFERRED:
 | |
| 	case MPOL_PREFERRED_MANY:
 | |
| 	case MPOL_WEIGHTED_INTERLEAVE:
 | |
| 		return !!nodes_equal(a->nodes, b->nodes);
 | |
| 	case MPOL_LOCAL:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shared memory backing store policy support.
 | |
|  *
 | |
|  * Remember policies even when nobody has shared memory mapped.
 | |
|  * The policies are kept in Red-Black tree linked from the inode.
 | |
|  * They are protected by the sp->lock rwlock, which should be held
 | |
|  * for any accesses to the tree.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * lookup first element intersecting start-end.  Caller holds sp->lock for
 | |
|  * reading or for writing
 | |
|  */
 | |
| static struct sp_node *sp_lookup(struct shared_policy *sp,
 | |
| 					pgoff_t start, pgoff_t end)
 | |
| {
 | |
| 	struct rb_node *n = sp->root.rb_node;
 | |
| 
 | |
| 	while (n) {
 | |
| 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
 | |
| 
 | |
| 		if (start >= p->end)
 | |
| 			n = n->rb_right;
 | |
| 		else if (end <= p->start)
 | |
| 			n = n->rb_left;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 	for (;;) {
 | |
| 		struct sp_node *w = NULL;
 | |
| 		struct rb_node *prev = rb_prev(n);
 | |
| 		if (!prev)
 | |
| 			break;
 | |
| 		w = rb_entry(prev, struct sp_node, nd);
 | |
| 		if (w->end <= start)
 | |
| 			break;
 | |
| 		n = prev;
 | |
| 	}
 | |
| 	return rb_entry(n, struct sp_node, nd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert a new shared policy into the list.  Caller holds sp->lock for
 | |
|  * writing.
 | |
|  */
 | |
| static void sp_insert(struct shared_policy *sp, struct sp_node *new)
 | |
| {
 | |
| 	struct rb_node **p = &sp->root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct sp_node *nd;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		nd = rb_entry(parent, struct sp_node, nd);
 | |
| 		if (new->start < nd->start)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (new->end > nd->end)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| 	rb_link_node(&new->nd, parent, p);
 | |
| 	rb_insert_color(&new->nd, &sp->root);
 | |
| }
 | |
| 
 | |
| /* Find shared policy intersecting idx */
 | |
| struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
 | |
| 						pgoff_t idx)
 | |
| {
 | |
| 	struct mempolicy *pol = NULL;
 | |
| 	struct sp_node *sn;
 | |
| 
 | |
| 	if (!sp->root.rb_node)
 | |
| 		return NULL;
 | |
| 	read_lock(&sp->lock);
 | |
| 	sn = sp_lookup(sp, idx, idx+1);
 | |
| 	if (sn) {
 | |
| 		mpol_get(sn->policy);
 | |
| 		pol = sn->policy;
 | |
| 	}
 | |
| 	read_unlock(&sp->lock);
 | |
| 	return pol;
 | |
| }
 | |
| 
 | |
| static void sp_free(struct sp_node *n)
 | |
| {
 | |
| 	mpol_put(n->policy);
 | |
| 	kmem_cache_free(sn_cache, n);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mpol_misplaced - check whether current folio node is valid in policy
 | |
|  *
 | |
|  * @folio: folio to be checked
 | |
|  * @vmf: structure describing the fault
 | |
|  * @addr: virtual address in @vma for shared policy lookup and interleave policy
 | |
|  *
 | |
|  * Lookup current policy node id for vma,addr and "compare to" folio's
 | |
|  * node id.  Policy determination "mimics" alloc_page_vma().
 | |
|  * Called from fault path where we know the vma and faulting address.
 | |
|  *
 | |
|  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
 | |
|  * policy, or a suitable node ID to allocate a replacement folio from.
 | |
|  */
 | |
| int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
 | |
| 		   unsigned long addr)
 | |
| {
 | |
| 	struct mempolicy *pol;
 | |
| 	pgoff_t ilx;
 | |
| 	struct zoneref *z;
 | |
| 	int curnid = folio_nid(folio);
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	int thiscpu = raw_smp_processor_id();
 | |
| 	int thisnid = numa_node_id();
 | |
| 	int polnid = NUMA_NO_NODE;
 | |
| 	int ret = NUMA_NO_NODE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure ptl is held so that we don't preempt and we
 | |
| 	 * have a stable smp processor id
 | |
| 	 */
 | |
| 	lockdep_assert_held(vmf->ptl);
 | |
| 	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
 | |
| 	if (!(pol->flags & MPOL_F_MOF))
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (pol->mode) {
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		polnid = interleave_nid(pol, ilx);
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_WEIGHTED_INTERLEAVE:
 | |
| 		polnid = weighted_interleave_nid(pol, ilx);
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_PREFERRED:
 | |
| 		if (node_isset(curnid, pol->nodes))
 | |
| 			goto out;
 | |
| 		polnid = first_node(pol->nodes);
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_LOCAL:
 | |
| 		polnid = numa_node_id();
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_BIND:
 | |
| 	case MPOL_PREFERRED_MANY:
 | |
| 		/*
 | |
| 		 * Even though MPOL_PREFERRED_MANY can allocate pages outside
 | |
| 		 * policy nodemask we don't allow numa migration to nodes
 | |
| 		 * outside policy nodemask for now. This is done so that if we
 | |
| 		 * want demotion to slow memory to happen, before allocating
 | |
| 		 * from some DRAM node say 'x', we will end up using a
 | |
| 		 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
 | |
| 		 * we should not promote to node 'x' from slow memory node.
 | |
| 		 */
 | |
| 		if (pol->flags & MPOL_F_MORON) {
 | |
| 			/*
 | |
| 			 * Optimize placement among multiple nodes
 | |
| 			 * via NUMA balancing
 | |
| 			 */
 | |
| 			if (node_isset(thisnid, pol->nodes))
 | |
| 				break;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * use current page if in policy nodemask,
 | |
| 		 * else select nearest allowed node, if any.
 | |
| 		 * If no allowed nodes, use current [!misplaced].
 | |
| 		 */
 | |
| 		if (node_isset(curnid, pol->nodes))
 | |
| 			goto out;
 | |
| 		z = first_zones_zonelist(
 | |
| 				node_zonelist(thisnid, GFP_HIGHUSER),
 | |
| 				gfp_zone(GFP_HIGHUSER),
 | |
| 				&pol->nodes);
 | |
| 		polnid = zonelist_node_idx(z);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/* Migrate the folio towards the node whose CPU is referencing it */
 | |
| 	if (pol->flags & MPOL_F_MORON) {
 | |
| 		polnid = thisnid;
 | |
| 
 | |
| 		if (!should_numa_migrate_memory(current, folio, curnid,
 | |
| 						thiscpu))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (curnid != polnid)
 | |
| 		ret = polnid;
 | |
| out:
 | |
| 	mpol_cond_put(pol);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
 | |
|  * dropped after task->mempolicy is set to NULL so that any allocation done as
 | |
|  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
 | |
|  * policy.
 | |
|  */
 | |
| void mpol_put_task_policy(struct task_struct *task)
 | |
| {
 | |
| 	struct mempolicy *pol;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	pol = task->mempolicy;
 | |
| 	task->mempolicy = NULL;
 | |
| 	task_unlock(task);
 | |
| 	mpol_put(pol);
 | |
| }
 | |
| 
 | |
| static void sp_delete(struct shared_policy *sp, struct sp_node *n)
 | |
| {
 | |
| 	rb_erase(&n->nd, &sp->root);
 | |
| 	sp_free(n);
 | |
| }
 | |
| 
 | |
| static void sp_node_init(struct sp_node *node, unsigned long start,
 | |
| 			unsigned long end, struct mempolicy *pol)
 | |
| {
 | |
| 	node->start = start;
 | |
| 	node->end = end;
 | |
| 	node->policy = pol;
 | |
| }
 | |
| 
 | |
| static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
 | |
| 				struct mempolicy *pol)
 | |
| {
 | |
| 	struct sp_node *n;
 | |
| 	struct mempolicy *newpol;
 | |
| 
 | |
| 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 
 | |
| 	newpol = mpol_dup(pol);
 | |
| 	if (IS_ERR(newpol)) {
 | |
| 		kmem_cache_free(sn_cache, n);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	newpol->flags |= MPOL_F_SHARED;
 | |
| 	sp_node_init(n, start, end, newpol);
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /* Replace a policy range. */
 | |
| static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
 | |
| 				 pgoff_t end, struct sp_node *new)
 | |
| {
 | |
| 	struct sp_node *n;
 | |
| 	struct sp_node *n_new = NULL;
 | |
| 	struct mempolicy *mpol_new = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| restart:
 | |
| 	write_lock(&sp->lock);
 | |
| 	n = sp_lookup(sp, start, end);
 | |
| 	/* Take care of old policies in the same range. */
 | |
| 	while (n && n->start < end) {
 | |
| 		struct rb_node *next = rb_next(&n->nd);
 | |
| 		if (n->start >= start) {
 | |
| 			if (n->end <= end)
 | |
| 				sp_delete(sp, n);
 | |
| 			else
 | |
| 				n->start = end;
 | |
| 		} else {
 | |
| 			/* Old policy spanning whole new range. */
 | |
| 			if (n->end > end) {
 | |
| 				if (!n_new)
 | |
| 					goto alloc_new;
 | |
| 
 | |
| 				*mpol_new = *n->policy;
 | |
| 				atomic_set(&mpol_new->refcnt, 1);
 | |
| 				sp_node_init(n_new, end, n->end, mpol_new);
 | |
| 				n->end = start;
 | |
| 				sp_insert(sp, n_new);
 | |
| 				n_new = NULL;
 | |
| 				mpol_new = NULL;
 | |
| 				break;
 | |
| 			} else
 | |
| 				n->end = start;
 | |
| 		}
 | |
| 		if (!next)
 | |
| 			break;
 | |
| 		n = rb_entry(next, struct sp_node, nd);
 | |
| 	}
 | |
| 	if (new)
 | |
| 		sp_insert(sp, new);
 | |
| 	write_unlock(&sp->lock);
 | |
| 	ret = 0;
 | |
| 
 | |
| err_out:
 | |
| 	if (mpol_new)
 | |
| 		mpol_put(mpol_new);
 | |
| 	if (n_new)
 | |
| 		kmem_cache_free(sn_cache, n_new);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| alloc_new:
 | |
| 	write_unlock(&sp->lock);
 | |
| 	ret = -ENOMEM;
 | |
| 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
 | |
| 	if (!n_new)
 | |
| 		goto err_out;
 | |
| 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 | |
| 	if (!mpol_new)
 | |
| 		goto err_out;
 | |
| 	atomic_set(&mpol_new->refcnt, 1);
 | |
| 	goto restart;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mpol_shared_policy_init - initialize shared policy for inode
 | |
|  * @sp: pointer to inode shared policy
 | |
|  * @mpol:  struct mempolicy to install
 | |
|  *
 | |
|  * Install non-NULL @mpol in inode's shared policy rb-tree.
 | |
|  * On entry, the current task has a reference on a non-NULL @mpol.
 | |
|  * This must be released on exit.
 | |
|  * This is called at get_inode() calls and we can use GFP_KERNEL.
 | |
|  */
 | |
| void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
 | |
| 	rwlock_init(&sp->lock);
 | |
| 
 | |
| 	if (mpol) {
 | |
| 		struct sp_node *sn;
 | |
| 		struct mempolicy *npol;
 | |
| 		NODEMASK_SCRATCH(scratch);
 | |
| 
 | |
| 		if (!scratch)
 | |
| 			goto put_mpol;
 | |
| 
 | |
| 		/* contextualize the tmpfs mount point mempolicy to this file */
 | |
| 		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
 | |
| 		if (IS_ERR(npol))
 | |
| 			goto free_scratch; /* no valid nodemask intersection */
 | |
| 
 | |
| 		task_lock(current);
 | |
| 		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
 | |
| 		task_unlock(current);
 | |
| 		if (ret)
 | |
| 			goto put_npol;
 | |
| 
 | |
| 		/* alloc node covering entire file; adds ref to file's npol */
 | |
| 		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
 | |
| 		if (sn)
 | |
| 			sp_insert(sp, sn);
 | |
| put_npol:
 | |
| 		mpol_put(npol);	/* drop initial ref on file's npol */
 | |
| free_scratch:
 | |
| 		NODEMASK_SCRATCH_FREE(scratch);
 | |
| put_mpol:
 | |
| 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int mpol_set_shared_policy(struct shared_policy *sp,
 | |
| 			struct vm_area_struct *vma, struct mempolicy *pol)
 | |
| {
 | |
| 	int err;
 | |
| 	struct sp_node *new = NULL;
 | |
| 	unsigned long sz = vma_pages(vma);
 | |
| 
 | |
| 	if (pol) {
 | |
| 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
 | |
| 		if (!new)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
 | |
| 	if (err && new)
 | |
| 		sp_free(new);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Free a backing policy store on inode delete. */
 | |
| void mpol_free_shared_policy(struct shared_policy *sp)
 | |
| {
 | |
| 	struct sp_node *n;
 | |
| 	struct rb_node *next;
 | |
| 
 | |
| 	if (!sp->root.rb_node)
 | |
| 		return;
 | |
| 	write_lock(&sp->lock);
 | |
| 	next = rb_first(&sp->root);
 | |
| 	while (next) {
 | |
| 		n = rb_entry(next, struct sp_node, nd);
 | |
| 		next = rb_next(&n->nd);
 | |
| 		sp_delete(sp, n);
 | |
| 	}
 | |
| 	write_unlock(&sp->lock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| static int __initdata numabalancing_override;
 | |
| 
 | |
| static void __init check_numabalancing_enable(void)
 | |
| {
 | |
| 	bool numabalancing_default = false;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
 | |
| 		numabalancing_default = true;
 | |
| 
 | |
| 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
 | |
| 	if (numabalancing_override)
 | |
| 		set_numabalancing_state(numabalancing_override == 1);
 | |
| 
 | |
| 	if (num_online_nodes() > 1 && !numabalancing_override) {
 | |
| 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
 | |
| 			numabalancing_default ? "Enabling" : "Disabling");
 | |
| 		set_numabalancing_state(numabalancing_default);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init setup_numabalancing(char *str)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	if (!str)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!strcmp(str, "enable")) {
 | |
| 		numabalancing_override = 1;
 | |
| 		ret = 1;
 | |
| 	} else if (!strcmp(str, "disable")) {
 | |
| 		numabalancing_override = -1;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| out:
 | |
| 	if (!ret)
 | |
| 		pr_warn("Unable to parse numa_balancing=\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| __setup("numa_balancing=", setup_numabalancing);
 | |
| #else
 | |
| static inline void __init check_numabalancing_enable(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| void __init numa_policy_init(void)
 | |
| {
 | |
| 	nodemask_t interleave_nodes;
 | |
| 	unsigned long largest = 0;
 | |
| 	int nid, prefer = 0;
 | |
| 
 | |
| 	policy_cache = kmem_cache_create("numa_policy",
 | |
| 					 sizeof(struct mempolicy),
 | |
| 					 0, SLAB_PANIC, NULL);
 | |
| 
 | |
| 	sn_cache = kmem_cache_create("shared_policy_node",
 | |
| 				     sizeof(struct sp_node),
 | |
| 				     0, SLAB_PANIC, NULL);
 | |
| 
 | |
| 	for_each_node(nid) {
 | |
| 		preferred_node_policy[nid] = (struct mempolicy) {
 | |
| 			.refcnt = ATOMIC_INIT(1),
 | |
| 			.mode = MPOL_PREFERRED,
 | |
| 			.flags = MPOL_F_MOF | MPOL_F_MORON,
 | |
| 			.nodes = nodemask_of_node(nid),
 | |
| 		};
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set interleaving policy for system init. Interleaving is only
 | |
| 	 * enabled across suitably sized nodes (default is >= 16MB), or
 | |
| 	 * fall back to the largest node if they're all smaller.
 | |
| 	 */
 | |
| 	nodes_clear(interleave_nodes);
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		unsigned long total_pages = node_present_pages(nid);
 | |
| 
 | |
| 		/* Preserve the largest node */
 | |
| 		if (largest < total_pages) {
 | |
| 			largest = total_pages;
 | |
| 			prefer = nid;
 | |
| 		}
 | |
| 
 | |
| 		/* Interleave this node? */
 | |
| 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
 | |
| 			node_set(nid, interleave_nodes);
 | |
| 	}
 | |
| 
 | |
| 	/* All too small, use the largest */
 | |
| 	if (unlikely(nodes_empty(interleave_nodes)))
 | |
| 		node_set(prefer, interleave_nodes);
 | |
| 
 | |
| 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
 | |
| 		pr_err("%s: interleaving failed\n", __func__);
 | |
| 
 | |
| 	check_numabalancing_enable();
 | |
| }
 | |
| 
 | |
| /* Reset policy of current process to default */
 | |
| void numa_default_policy(void)
 | |
| {
 | |
| 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse and format mempolicy from/to strings
 | |
|  */
 | |
| static const char * const policy_modes[] =
 | |
| {
 | |
| 	[MPOL_DEFAULT]    = "default",
 | |
| 	[MPOL_PREFERRED]  = "prefer",
 | |
| 	[MPOL_BIND]       = "bind",
 | |
| 	[MPOL_INTERLEAVE] = "interleave",
 | |
| 	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
 | |
| 	[MPOL_LOCAL]      = "local",
 | |
| 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_TMPFS
 | |
| /**
 | |
|  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
 | |
|  * @str:  string containing mempolicy to parse
 | |
|  * @mpol:  pointer to struct mempolicy pointer, returned on success.
 | |
|  *
 | |
|  * Format of input:
 | |
|  *	<mode>[=<flags>][:<nodelist>]
 | |
|  *
 | |
|  * Return: %0 on success, else %1
 | |
|  */
 | |
| int mpol_parse_str(char *str, struct mempolicy **mpol)
 | |
| {
 | |
| 	struct mempolicy *new = NULL;
 | |
| 	unsigned short mode_flags;
 | |
| 	nodemask_t nodes;
 | |
| 	char *nodelist = strchr(str, ':');
 | |
| 	char *flags = strchr(str, '=');
 | |
| 	int err = 1, mode;
 | |
| 
 | |
| 	if (flags)
 | |
| 		*flags++ = '\0';	/* terminate mode string */
 | |
| 
 | |
| 	if (nodelist) {
 | |
| 		/* NUL-terminate mode or flags string */
 | |
| 		*nodelist++ = '\0';
 | |
| 		if (nodelist_parse(nodelist, nodes))
 | |
| 			goto out;
 | |
| 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		nodes_clear(nodes);
 | |
| 
 | |
| 	mode = match_string(policy_modes, MPOL_MAX, str);
 | |
| 	if (mode < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 		/*
 | |
| 		 * Insist on a nodelist of one node only, although later
 | |
| 		 * we use first_node(nodes) to grab a single node, so here
 | |
| 		 * nodelist (or nodes) cannot be empty.
 | |
| 		 */
 | |
| 		if (nodelist) {
 | |
| 			char *rest = nodelist;
 | |
| 			while (isdigit(*rest))
 | |
| 				rest++;
 | |
| 			if (*rest)
 | |
| 				goto out;
 | |
| 			if (nodes_empty(nodes))
 | |
| 				goto out;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 	case MPOL_WEIGHTED_INTERLEAVE:
 | |
| 		/*
 | |
| 		 * Default to online nodes with memory if no nodelist
 | |
| 		 */
 | |
| 		if (!nodelist)
 | |
| 			nodes = node_states[N_MEMORY];
 | |
| 		break;
 | |
| 	case MPOL_LOCAL:
 | |
| 		/*
 | |
| 		 * Don't allow a nodelist;  mpol_new() checks flags
 | |
| 		 */
 | |
| 		if (nodelist)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	case MPOL_DEFAULT:
 | |
| 		/*
 | |
| 		 * Insist on a empty nodelist
 | |
| 		 */
 | |
| 		if (!nodelist)
 | |
| 			err = 0;
 | |
| 		goto out;
 | |
| 	case MPOL_PREFERRED_MANY:
 | |
| 	case MPOL_BIND:
 | |
| 		/*
 | |
| 		 * Insist on a nodelist
 | |
| 		 */
 | |
| 		if (!nodelist)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	mode_flags = 0;
 | |
| 	if (flags) {
 | |
| 		/*
 | |
| 		 * Currently, we only support two mutually exclusive
 | |
| 		 * mode flags.
 | |
| 		 */
 | |
| 		if (!strcmp(flags, "static"))
 | |
| 			mode_flags |= MPOL_F_STATIC_NODES;
 | |
| 		else if (!strcmp(flags, "relative"))
 | |
| 			mode_flags |= MPOL_F_RELATIVE_NODES;
 | |
| 		else
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	new = mpol_new(mode, mode_flags, &nodes);
 | |
| 	if (IS_ERR(new))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
 | |
| 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
 | |
| 	 */
 | |
| 	if (mode != MPOL_PREFERRED) {
 | |
| 		new->nodes = nodes;
 | |
| 	} else if (nodelist) {
 | |
| 		nodes_clear(new->nodes);
 | |
| 		node_set(first_node(nodes), new->nodes);
 | |
| 	} else {
 | |
| 		new->mode = MPOL_LOCAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Save nodes for contextualization: this will be used to "clone"
 | |
| 	 * the mempolicy in a specific context [cpuset] at a later time.
 | |
| 	 */
 | |
| 	new->w.user_nodemask = nodes;
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| out:
 | |
| 	/* Restore string for error message */
 | |
| 	if (nodelist)
 | |
| 		*--nodelist = ':';
 | |
| 	if (flags)
 | |
| 		*--flags = '=';
 | |
| 	if (!err)
 | |
| 		*mpol = new;
 | |
| 	return err;
 | |
| }
 | |
| #endif /* CONFIG_TMPFS */
 | |
| 
 | |
| /**
 | |
|  * mpol_to_str - format a mempolicy structure for printing
 | |
|  * @buffer:  to contain formatted mempolicy string
 | |
|  * @maxlen:  length of @buffer
 | |
|  * @pol:  pointer to mempolicy to be formatted
 | |
|  *
 | |
|  * Convert @pol into a string.  If @buffer is too short, truncate the string.
 | |
|  * Recommend a @maxlen of at least 51 for the longest mode, "weighted
 | |
|  * interleave", plus the longest flag flags, "relative|balancing", and to
 | |
|  * display at least a few node ids.
 | |
|  */
 | |
| void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
 | |
| {
 | |
| 	char *p = buffer;
 | |
| 	nodemask_t nodes = NODE_MASK_NONE;
 | |
| 	unsigned short mode = MPOL_DEFAULT;
 | |
| 	unsigned short flags = 0;
 | |
| 
 | |
| 	if (pol &&
 | |
| 	    pol != &default_policy &&
 | |
| 	    !(pol >= &preferred_node_policy[0] &&
 | |
| 	      pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
 | |
| 		mode = pol->mode;
 | |
| 		flags = pol->flags;
 | |
| 	}
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MPOL_DEFAULT:
 | |
| 	case MPOL_LOCAL:
 | |
| 		break;
 | |
| 	case MPOL_PREFERRED:
 | |
| 	case MPOL_PREFERRED_MANY:
 | |
| 	case MPOL_BIND:
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 	case MPOL_WEIGHTED_INTERLEAVE:
 | |
| 		nodes = pol->nodes;
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		snprintf(p, maxlen, "unknown");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
 | |
| 
 | |
| 	if (flags & MPOL_MODE_FLAGS) {
 | |
| 		p += snprintf(p, buffer + maxlen - p, "=");
 | |
| 
 | |
| 		/*
 | |
| 		 * Static and relative are mutually exclusive.
 | |
| 		 */
 | |
| 		if (flags & MPOL_F_STATIC_NODES)
 | |
| 			p += snprintf(p, buffer + maxlen - p, "static");
 | |
| 		else if (flags & MPOL_F_RELATIVE_NODES)
 | |
| 			p += snprintf(p, buffer + maxlen - p, "relative");
 | |
| 
 | |
| 		if (flags & MPOL_F_NUMA_BALANCING) {
 | |
| 			if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
 | |
| 				p += snprintf(p, buffer + maxlen - p, "|");
 | |
| 			p += snprintf(p, buffer + maxlen - p, "balancing");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!nodes_empty(nodes))
 | |
| 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
 | |
| 			       nodemask_pr_args(&nodes));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| struct iw_node_attr {
 | |
| 	struct kobj_attribute kobj_attr;
 | |
| 	int nid;
 | |
| };
 | |
| 
 | |
| struct sysfs_wi_group {
 | |
| 	struct kobject wi_kobj;
 | |
| 	struct mutex kobj_lock;
 | |
| 	struct iw_node_attr *nattrs[];
 | |
| };
 | |
| 
 | |
| static struct sysfs_wi_group *wi_group;
 | |
| 
 | |
| static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
 | |
| 			 char *buf)
 | |
| {
 | |
| 	struct iw_node_attr *node_attr;
 | |
| 	u8 weight;
 | |
| 
 | |
| 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
 | |
| 	weight = get_il_weight(node_attr->nid);
 | |
| 	return sysfs_emit(buf, "%d\n", weight);
 | |
| }
 | |
| 
 | |
| static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
 | |
| 			  const char *buf, size_t count)
 | |
| {
 | |
| 	struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL;
 | |
| 	struct iw_node_attr *node_attr;
 | |
| 	u8 weight = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
 | |
| 	if (count == 0 || sysfs_streq(buf, "") ||
 | |
| 	    kstrtou8(buf, 0, &weight) || weight == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new_wi_state = kzalloc(struct_size(new_wi_state, iw_table, nr_node_ids),
 | |
| 			       GFP_KERNEL);
 | |
| 	if (!new_wi_state)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&wi_state_lock);
 | |
| 	old_wi_state = rcu_dereference_protected(wi_state,
 | |
| 					lockdep_is_held(&wi_state_lock));
 | |
| 	if (old_wi_state) {
 | |
| 		memcpy(new_wi_state->iw_table, old_wi_state->iw_table,
 | |
| 					nr_node_ids * sizeof(u8));
 | |
| 	} else {
 | |
| 		for (i = 0; i < nr_node_ids; i++)
 | |
| 			new_wi_state->iw_table[i] = 1;
 | |
| 	}
 | |
| 	new_wi_state->iw_table[node_attr->nid] = weight;
 | |
| 	new_wi_state->mode_auto = false;
 | |
| 
 | |
| 	rcu_assign_pointer(wi_state, new_wi_state);
 | |
| 	mutex_unlock(&wi_state_lock);
 | |
| 	if (old_wi_state) {
 | |
| 		synchronize_rcu();
 | |
| 		kfree(old_wi_state);
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t weighted_interleave_auto_show(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct weighted_interleave_state *state;
 | |
| 	bool wi_auto = true;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	state = rcu_dereference(wi_state);
 | |
| 	if (state)
 | |
| 		wi_auto = state->mode_auto;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return sysfs_emit(buf, "%s\n", str_true_false(wi_auto));
 | |
| }
 | |
| 
 | |
| static ssize_t weighted_interleave_auto_store(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, const char *buf, size_t count)
 | |
| {
 | |
| 	struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL;
 | |
| 	unsigned int *bw;
 | |
| 	bool input;
 | |
| 	int i;
 | |
| 
 | |
| 	if (kstrtobool(buf, &input))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new_wi_state = kzalloc(struct_size(new_wi_state, iw_table, nr_node_ids),
 | |
| 			       GFP_KERNEL);
 | |
| 	if (!new_wi_state)
 | |
| 		return -ENOMEM;
 | |
| 	for (i = 0; i < nr_node_ids; i++)
 | |
| 		new_wi_state->iw_table[i] = 1;
 | |
| 
 | |
| 	mutex_lock(&wi_state_lock);
 | |
| 	if (!input) {
 | |
| 		old_wi_state = rcu_dereference_protected(wi_state,
 | |
| 					lockdep_is_held(&wi_state_lock));
 | |
| 		if (!old_wi_state)
 | |
| 			goto update_wi_state;
 | |
| 		if (input == old_wi_state->mode_auto) {
 | |
| 			mutex_unlock(&wi_state_lock);
 | |
| 			return count;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(new_wi_state->iw_table, old_wi_state->iw_table,
 | |
| 					       nr_node_ids * sizeof(u8));
 | |
| 		goto update_wi_state;
 | |
| 	}
 | |
| 
 | |
| 	bw = node_bw_table;
 | |
| 	if (!bw) {
 | |
| 		mutex_unlock(&wi_state_lock);
 | |
| 		kfree(new_wi_state);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	new_wi_state->mode_auto = true;
 | |
| 	reduce_interleave_weights(bw, new_wi_state->iw_table);
 | |
| 
 | |
| update_wi_state:
 | |
| 	rcu_assign_pointer(wi_state, new_wi_state);
 | |
| 	mutex_unlock(&wi_state_lock);
 | |
| 	if (old_wi_state) {
 | |
| 		synchronize_rcu();
 | |
| 		kfree(old_wi_state);
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void sysfs_wi_node_delete(int nid)
 | |
| {
 | |
| 	struct iw_node_attr *attr;
 | |
| 
 | |
| 	if (nid < 0 || nid >= nr_node_ids)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&wi_group->kobj_lock);
 | |
| 	attr = wi_group->nattrs[nid];
 | |
| 	if (!attr) {
 | |
| 		mutex_unlock(&wi_group->kobj_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	wi_group->nattrs[nid] = NULL;
 | |
| 	mutex_unlock(&wi_group->kobj_lock);
 | |
| 
 | |
| 	sysfs_remove_file(&wi_group->wi_kobj, &attr->kobj_attr.attr);
 | |
| 	kfree(attr->kobj_attr.attr.name);
 | |
| 	kfree(attr);
 | |
| }
 | |
| 
 | |
| static void sysfs_wi_node_delete_all(void)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	for (nid = 0; nid < nr_node_ids; nid++)
 | |
| 		sysfs_wi_node_delete(nid);
 | |
| }
 | |
| 
 | |
| static void wi_state_free(void)
 | |
| {
 | |
| 	struct weighted_interleave_state *old_wi_state;
 | |
| 
 | |
| 	mutex_lock(&wi_state_lock);
 | |
| 
 | |
| 	old_wi_state = rcu_dereference_protected(wi_state,
 | |
| 			lockdep_is_held(&wi_state_lock));
 | |
| 	if (!old_wi_state) {
 | |
| 		mutex_unlock(&wi_state_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rcu_assign_pointer(wi_state, NULL);
 | |
| 	mutex_unlock(&wi_state_lock);
 | |
| 	synchronize_rcu();
 | |
| 	kfree(old_wi_state);
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute wi_auto_attr =
 | |
| 	__ATTR(auto, 0664, weighted_interleave_auto_show,
 | |
| 			   weighted_interleave_auto_store);
 | |
| 
 | |
| static void wi_cleanup(void) {
 | |
| 	sysfs_remove_file(&wi_group->wi_kobj, &wi_auto_attr.attr);
 | |
| 	sysfs_wi_node_delete_all();
 | |
| 	wi_state_free();
 | |
| }
 | |
| 
 | |
| static void wi_kobj_release(struct kobject *wi_kobj)
 | |
| {
 | |
| 	kfree(wi_group);
 | |
| }
 | |
| 
 | |
| static const struct kobj_type wi_ktype = {
 | |
| 	.sysfs_ops = &kobj_sysfs_ops,
 | |
| 	.release = wi_kobj_release,
 | |
| };
 | |
| 
 | |
| static int sysfs_wi_node_add(int nid)
 | |
| {
 | |
| 	int ret;
 | |
| 	char *name;
 | |
| 	struct iw_node_attr *new_attr;
 | |
| 
 | |
| 	if (nid < 0 || nid >= nr_node_ids) {
 | |
| 		pr_err("invalid node id: %d\n", nid);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	new_attr = kzalloc(sizeof(*new_attr), GFP_KERNEL);
 | |
| 	if (!new_attr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	name = kasprintf(GFP_KERNEL, "node%d", nid);
 | |
| 	if (!name) {
 | |
| 		kfree(new_attr);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	sysfs_attr_init(&new_attr->kobj_attr.attr);
 | |
| 	new_attr->kobj_attr.attr.name = name;
 | |
| 	new_attr->kobj_attr.attr.mode = 0644;
 | |
| 	new_attr->kobj_attr.show = node_show;
 | |
| 	new_attr->kobj_attr.store = node_store;
 | |
| 	new_attr->nid = nid;
 | |
| 
 | |
| 	mutex_lock(&wi_group->kobj_lock);
 | |
| 	if (wi_group->nattrs[nid]) {
 | |
| 		mutex_unlock(&wi_group->kobj_lock);
 | |
| 		ret = -EEXIST;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = sysfs_create_file(&wi_group->wi_kobj, &new_attr->kobj_attr.attr);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&wi_group->kobj_lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	wi_group->nattrs[nid] = new_attr;
 | |
| 	mutex_unlock(&wi_group->kobj_lock);
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	kfree(new_attr->kobj_attr.attr.name);
 | |
| 	kfree(new_attr);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int wi_node_notifier(struct notifier_block *nb,
 | |
| 			       unsigned long action, void *data)
 | |
| {
 | |
| 	int err;
 | |
| 	struct memory_notify *arg = data;
 | |
| 	int nid = arg->status_change_nid;
 | |
| 
 | |
| 	if (nid < 0)
 | |
| 		return NOTIFY_OK;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_ONLINE:
 | |
| 		err = sysfs_wi_node_add(nid);
 | |
| 		if (err)
 | |
| 			pr_err("failed to add sysfs for node%d during hotplug: %d\n",
 | |
| 			       nid, err);
 | |
| 		break;
 | |
| 	case MEM_OFFLINE:
 | |
| 		sysfs_wi_node_delete(nid);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static int __init add_weighted_interleave_group(struct kobject *mempolicy_kobj)
 | |
| {
 | |
| 	int nid, err;
 | |
| 
 | |
| 	wi_group = kzalloc(struct_size(wi_group, nattrs, nr_node_ids),
 | |
| 			   GFP_KERNEL);
 | |
| 	if (!wi_group)
 | |
| 		return -ENOMEM;
 | |
| 	mutex_init(&wi_group->kobj_lock);
 | |
| 
 | |
| 	err = kobject_init_and_add(&wi_group->wi_kobj, &wi_ktype, mempolicy_kobj,
 | |
| 				   "weighted_interleave");
 | |
| 	if (err)
 | |
| 		goto err_put_kobj;
 | |
| 
 | |
| 	err = sysfs_create_file(&wi_group->wi_kobj, &wi_auto_attr.attr);
 | |
| 	if (err)
 | |
| 		goto err_put_kobj;
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		if (!node_state(nid, N_MEMORY))
 | |
| 			continue;
 | |
| 
 | |
| 		err = sysfs_wi_node_add(nid);
 | |
| 		if (err) {
 | |
| 			pr_err("failed to add sysfs for node%d during init: %d\n",
 | |
| 			       nid, err);
 | |
| 			goto err_cleanup_kobj;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	hotplug_memory_notifier(wi_node_notifier, DEFAULT_CALLBACK_PRI);
 | |
| 	return 0;
 | |
| 
 | |
| err_cleanup_kobj:
 | |
| 	wi_cleanup();
 | |
| 	kobject_del(&wi_group->wi_kobj);
 | |
| err_put_kobj:
 | |
| 	kobject_put(&wi_group->wi_kobj);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __init mempolicy_sysfs_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 	static struct kobject *mempolicy_kobj;
 | |
| 
 | |
| 	mempolicy_kobj = kobject_create_and_add("mempolicy", mm_kobj);
 | |
| 	if (!mempolicy_kobj)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = add_weighted_interleave_group(mempolicy_kobj);
 | |
| 	if (err)
 | |
| 		goto err_kobj;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_kobj:
 | |
| 	kobject_del(mempolicy_kobj);
 | |
| 	kobject_put(mempolicy_kobj);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| late_initcall(mempolicy_sysfs_init);
 | |
| #endif /* CONFIG_SYSFS */
 |