mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 786d5cc2b9
			
		
	
	
		786d5cc2b9
		
	
	
	
	
		
			
			Use cl@gentwo.org throughout and remove the old email addresses. Link: https://lkml.kernel.org/r/8b962f57-4d98-cbb0-cd82-b6ba456733e8@gentwo.org Signed-off-by: Christoph Lameter <cl@gentwo.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			2184 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2184 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Slab allocator functions that are independent of the allocator strategy
 | |
|  *
 | |
|  * (C) 2012 Christoph Lameter <cl@gentwo.org>
 | |
|  */
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/kfence.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/swiotlb.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/page.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/stackdepot.h>
 | |
| #include <trace/events/rcu.h>
 | |
| 
 | |
| #include "../kernel/rcu/rcu.h"
 | |
| #include "internal.h"
 | |
| #include "slab.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/kmem.h>
 | |
| 
 | |
| enum slab_state slab_state;
 | |
| LIST_HEAD(slab_caches);
 | |
| DEFINE_MUTEX(slab_mutex);
 | |
| struct kmem_cache *kmem_cache;
 | |
| 
 | |
| /*
 | |
|  * Set of flags that will prevent slab merging
 | |
|  */
 | |
| #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 | |
| 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
 | |
| 		SLAB_FAILSLAB | SLAB_NO_MERGE)
 | |
| 
 | |
| #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
 | |
| 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
 | |
| 
 | |
| /*
 | |
|  * Merge control. If this is set then no merging of slab caches will occur.
 | |
|  */
 | |
| static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
 | |
| 
 | |
| static int __init setup_slab_nomerge(char *str)
 | |
| {
 | |
| 	slab_nomerge = true;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __init setup_slab_merge(char *str)
 | |
| {
 | |
| 	slab_nomerge = false;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
 | |
| __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
 | |
| 
 | |
| __setup("slab_nomerge", setup_slab_nomerge);
 | |
| __setup("slab_merge", setup_slab_merge);
 | |
| 
 | |
| /*
 | |
|  * Determine the size of a slab object
 | |
|  */
 | |
| unsigned int kmem_cache_size(struct kmem_cache *s)
 | |
| {
 | |
| 	return s->object_size;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_size);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 
 | |
| static bool kmem_cache_is_duplicate_name(const char *name)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		if (!strcmp(s->name, name))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int kmem_cache_sanity_check(const char *name, unsigned int size)
 | |
| {
 | |
| 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
 | |
| 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Duplicate names will confuse slabtop, et al */
 | |
| 	WARN(kmem_cache_is_duplicate_name(name),
 | |
| 			"kmem_cache of name '%s' already exists\n", name);
 | |
| 
 | |
| 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Figure out what the alignment of the objects will be given a set of
 | |
|  * flags, a user specified alignment and the size of the objects.
 | |
|  */
 | |
| static unsigned int calculate_alignment(slab_flags_t flags,
 | |
| 		unsigned int align, unsigned int size)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the user wants hardware cache aligned objects then follow that
 | |
| 	 * suggestion if the object is sufficiently large.
 | |
| 	 *
 | |
| 	 * The hardware cache alignment cannot override the specified
 | |
| 	 * alignment though. If that is greater then use it.
 | |
| 	 */
 | |
| 	if (flags & SLAB_HWCACHE_ALIGN) {
 | |
| 		unsigned int ralign;
 | |
| 
 | |
| 		ralign = cache_line_size();
 | |
| 		while (size <= ralign / 2)
 | |
| 			ralign /= 2;
 | |
| 		align = max(align, ralign);
 | |
| 	}
 | |
| 
 | |
| 	align = max(align, arch_slab_minalign());
 | |
| 
 | |
| 	return ALIGN(align, sizeof(void *));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a mergeable slab cache
 | |
|  */
 | |
| int slab_unmergeable(struct kmem_cache *s)
 | |
| {
 | |
| 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (s->ctor)
 | |
| 		return 1;
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| 	if (s->usersize)
 | |
| 		return 1;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have set a slab to be unmergeable during bootstrap.
 | |
| 	 */
 | |
| 	if (s->refcount < 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 | |
| 		slab_flags_t flags, const char *name, void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	if (slab_nomerge)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (ctor)
 | |
| 		return NULL;
 | |
| 
 | |
| 	flags = kmem_cache_flags(flags, name);
 | |
| 
 | |
| 	if (flags & SLAB_NEVER_MERGE)
 | |
| 		return NULL;
 | |
| 
 | |
| 	size = ALIGN(size, sizeof(void *));
 | |
| 	align = calculate_alignment(flags, align, size);
 | |
| 	size = ALIGN(size, align);
 | |
| 
 | |
| 	list_for_each_entry_reverse(s, &slab_caches, list) {
 | |
| 		if (slab_unmergeable(s))
 | |
| 			continue;
 | |
| 
 | |
| 		if (size > s->size)
 | |
| 			continue;
 | |
| 
 | |
| 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Check if alignment is compatible.
 | |
| 		 * Courtesy of Adrian Drzewiecki
 | |
| 		 */
 | |
| 		if ((s->size & ~(align - 1)) != s->size)
 | |
| 			continue;
 | |
| 
 | |
| 		if (s->size - size >= sizeof(void *))
 | |
| 			continue;
 | |
| 
 | |
| 		return s;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *create_cache(const char *name,
 | |
| 				       unsigned int object_size,
 | |
| 				       struct kmem_cache_args *args,
 | |
| 				       slab_flags_t flags)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	/* If a custom freelist pointer is requested make sure it's sane. */
 | |
| 	err = -EINVAL;
 | |
| 	if (args->use_freeptr_offset &&
 | |
| 	    (args->freeptr_offset >= object_size ||
 | |
| 	     !(flags & SLAB_TYPESAFE_BY_RCU) ||
 | |
| 	     !IS_ALIGNED(args->freeptr_offset, __alignof__(freeptr_t))))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 | |
| 	if (!s)
 | |
| 		goto out;
 | |
| 	err = do_kmem_cache_create(s, name, object_size, args, flags);
 | |
| 	if (err)
 | |
| 		goto out_free_cache;
 | |
| 
 | |
| 	s->refcount = 1;
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	return s;
 | |
| 
 | |
| out_free_cache:
 | |
| 	kmem_cache_free(kmem_cache, s);
 | |
| out:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __kmem_cache_create_args - Create a kmem cache.
 | |
|  * @name: A string which is used in /proc/slabinfo to identify this cache.
 | |
|  * @object_size: The size of objects to be created in this cache.
 | |
|  * @args: Additional arguments for the cache creation (see
 | |
|  *        &struct kmem_cache_args).
 | |
|  * @flags: See the desriptions of individual flags. The common ones are listed
 | |
|  *         in the description below.
 | |
|  *
 | |
|  * Not to be called directly, use the kmem_cache_create() wrapper with the same
 | |
|  * parameters.
 | |
|  *
 | |
|  * Commonly used @flags:
 | |
|  *
 | |
|  * &SLAB_ACCOUNT - Account allocations to memcg.
 | |
|  *
 | |
|  * &SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries.
 | |
|  *
 | |
|  * &SLAB_RECLAIM_ACCOUNT - Objects are reclaimable.
 | |
|  *
 | |
|  * &SLAB_TYPESAFE_BY_RCU - Slab page (not individual objects) freeing delayed
 | |
|  * by a grace period - see the full description before using.
 | |
|  *
 | |
|  * Context: Cannot be called within a interrupt, but can be interrupted.
 | |
|  *
 | |
|  * Return: a pointer to the cache on success, NULL on failure.
 | |
|  */
 | |
| struct kmem_cache *__kmem_cache_create_args(const char *name,
 | |
| 					    unsigned int object_size,
 | |
| 					    struct kmem_cache_args *args,
 | |
| 					    slab_flags_t flags)
 | |
| {
 | |
| 	struct kmem_cache *s = NULL;
 | |
| 	const char *cache_name;
 | |
| 	int err;
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	/*
 | |
| 	 * If no slab_debug was enabled globally, the static key is not yet
 | |
| 	 * enabled by setup_slub_debug(). Enable it if the cache is being
 | |
| 	 * created with any of the debugging flags passed explicitly.
 | |
| 	 * It's also possible that this is the first cache created with
 | |
| 	 * SLAB_STORE_USER and we should init stack_depot for it.
 | |
| 	 */
 | |
| 	if (flags & SLAB_DEBUG_FLAGS)
 | |
| 		static_branch_enable(&slub_debug_enabled);
 | |
| 	if (flags & SLAB_STORE_USER)
 | |
| 		stack_depot_init();
 | |
| #else
 | |
| 	flags &= ~SLAB_DEBUG_FLAGS;
 | |
| #endif
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	err = kmem_cache_sanity_check(name, object_size);
 | |
| 	if (err) {
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & ~SLAB_FLAGS_PERMITTED) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Fail closed on bad usersize of useroffset values. */
 | |
| 	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
 | |
| 	    WARN_ON(!args->usersize && args->useroffset) ||
 | |
| 	    WARN_ON(object_size < args->usersize ||
 | |
| 		    object_size - args->usersize < args->useroffset))
 | |
| 		args->usersize = args->useroffset = 0;
 | |
| 
 | |
| 	if (!args->usersize)
 | |
| 		s = __kmem_cache_alias(name, object_size, args->align, flags,
 | |
| 				       args->ctor);
 | |
| 	if (s)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cache_name = kstrdup_const(name, GFP_KERNEL);
 | |
| 	if (!cache_name) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	args->align = calculate_alignment(flags, args->align, object_size);
 | |
| 	s = create_cache(cache_name, object_size, args, flags);
 | |
| 	if (IS_ERR(s)) {
 | |
| 		err = PTR_ERR(s);
 | |
| 		kfree_const(cache_name);
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	if (err) {
 | |
| 		if (flags & SLAB_PANIC)
 | |
| 			panic("%s: Failed to create slab '%s'. Error %d\n",
 | |
| 				__func__, name, err);
 | |
| 		else {
 | |
| 			pr_warn("%s(%s) failed with error %d\n",
 | |
| 				__func__, name, err);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return s;
 | |
| }
 | |
| EXPORT_SYMBOL(__kmem_cache_create_args);
 | |
| 
 | |
| static struct kmem_cache *kmem_buckets_cache __ro_after_init;
 | |
| 
 | |
| /**
 | |
|  * kmem_buckets_create - Create a set of caches that handle dynamic sized
 | |
|  *			 allocations via kmem_buckets_alloc()
 | |
|  * @name: A prefix string which is used in /proc/slabinfo to identify this
 | |
|  *	  cache. The individual caches with have their sizes as the suffix.
 | |
|  * @flags: SLAB flags (see kmem_cache_create() for details).
 | |
|  * @useroffset: Starting offset within an allocation that may be copied
 | |
|  *		to/from userspace.
 | |
|  * @usersize: How many bytes, starting at @useroffset, may be copied
 | |
|  *		to/from userspace.
 | |
|  * @ctor: A constructor for the objects, run when new allocations are made.
 | |
|  *
 | |
|  * Cannot be called within an interrupt, but can be interrupted.
 | |
|  *
 | |
|  * Return: a pointer to the cache on success, NULL on failure. When
 | |
|  * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and
 | |
|  * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc().
 | |
|  * (i.e. callers only need to check for NULL on failure.)
 | |
|  */
 | |
| kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
 | |
| 				  unsigned int useroffset,
 | |
| 				  unsigned int usersize,
 | |
| 				  void (*ctor)(void *))
 | |
| {
 | |
| 	unsigned long mask = 0;
 | |
| 	unsigned int idx;
 | |
| 	kmem_buckets *b;
 | |
| 
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]) > BITS_PER_LONG);
 | |
| 
 | |
| 	/*
 | |
| 	 * When the separate buckets API is not built in, just return
 | |
| 	 * a non-NULL value for the kmem_buckets pointer, which will be
 | |
| 	 * unused when performing allocations.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_SLAB_BUCKETS))
 | |
| 		return ZERO_SIZE_PTR;
 | |
| 
 | |
| 	if (WARN_ON(!kmem_buckets_cache))
 | |
| 		return NULL;
 | |
| 
 | |
| 	b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO);
 | |
| 	if (WARN_ON(!b))
 | |
| 		return NULL;
 | |
| 
 | |
| 	flags |= SLAB_NO_MERGE;
 | |
| 
 | |
| 	for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) {
 | |
| 		char *short_size, *cache_name;
 | |
| 		unsigned int cache_useroffset, cache_usersize;
 | |
| 		unsigned int size, aligned_idx;
 | |
| 
 | |
| 		if (!kmalloc_caches[KMALLOC_NORMAL][idx])
 | |
| 			continue;
 | |
| 
 | |
| 		size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size;
 | |
| 		if (!size)
 | |
| 			continue;
 | |
| 
 | |
| 		short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-');
 | |
| 		if (WARN_ON(!short_size))
 | |
| 			goto fail;
 | |
| 
 | |
| 		if (useroffset >= size) {
 | |
| 			cache_useroffset = 0;
 | |
| 			cache_usersize = 0;
 | |
| 		} else {
 | |
| 			cache_useroffset = useroffset;
 | |
| 			cache_usersize = min(size - cache_useroffset, usersize);
 | |
| 		}
 | |
| 
 | |
| 		aligned_idx = __kmalloc_index(size, false);
 | |
| 		if (!(*b)[aligned_idx]) {
 | |
| 			cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1);
 | |
| 			if (WARN_ON(!cache_name))
 | |
| 				goto fail;
 | |
| 			(*b)[aligned_idx] = kmem_cache_create_usercopy(cache_name, size,
 | |
| 					0, flags, cache_useroffset,
 | |
| 					cache_usersize, ctor);
 | |
| 			kfree(cache_name);
 | |
| 			if (WARN_ON(!(*b)[aligned_idx]))
 | |
| 				goto fail;
 | |
| 			set_bit(aligned_idx, &mask);
 | |
| 		}
 | |
| 		if (idx != aligned_idx)
 | |
| 			(*b)[idx] = (*b)[aligned_idx];
 | |
| 	}
 | |
| 
 | |
| 	return b;
 | |
| 
 | |
| fail:
 | |
| 	for_each_set_bit(idx, &mask, ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]))
 | |
| 		kmem_cache_destroy((*b)[idx]);
 | |
| 	kmem_cache_free(kmem_buckets_cache, b);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_buckets_create);
 | |
| 
 | |
| /*
 | |
|  * For a given kmem_cache, kmem_cache_destroy() should only be called
 | |
|  * once or there will be a use-after-free problem. The actual deletion
 | |
|  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
 | |
|  * protection. So they are now done without holding those locks.
 | |
|  */
 | |
| static void kmem_cache_release(struct kmem_cache *s)
 | |
| {
 | |
| 	kfence_shutdown_cache(s);
 | |
| 	if (__is_defined(SLAB_SUPPORTS_SYSFS) && slab_state >= FULL)
 | |
| 		sysfs_slab_release(s);
 | |
| 	else
 | |
| 		slab_kmem_cache_release(s);
 | |
| }
 | |
| 
 | |
| void slab_kmem_cache_release(struct kmem_cache *s)
 | |
| {
 | |
| 	__kmem_cache_release(s);
 | |
| 	kfree_const(s->name);
 | |
| 	kmem_cache_free(kmem_cache, s);
 | |
| }
 | |
| 
 | |
| void kmem_cache_destroy(struct kmem_cache *s)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (unlikely(!s) || !kasan_check_byte(s))
 | |
| 		return;
 | |
| 
 | |
| 	/* in-flight kfree_rcu()'s may include objects from our cache */
 | |
| 	kvfree_rcu_barrier();
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_SLUB_RCU_DEBUG) &&
 | |
| 	    (s->flags & SLAB_TYPESAFE_BY_RCU)) {
 | |
| 		/*
 | |
| 		 * Under CONFIG_SLUB_RCU_DEBUG, when objects in a
 | |
| 		 * SLAB_TYPESAFE_BY_RCU slab are freed, SLUB will internally
 | |
| 		 * defer their freeing with call_rcu().
 | |
| 		 * Wait for such call_rcu() invocations here before actually
 | |
| 		 * destroying the cache.
 | |
| 		 *
 | |
| 		 * It doesn't matter that we haven't looked at the slab refcount
 | |
| 		 * yet - slabs with SLAB_TYPESAFE_BY_RCU can't be merged, so
 | |
| 		 * the refcount should be 1 here.
 | |
| 		 */
 | |
| 		rcu_barrier();
 | |
| 	}
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	s->refcount--;
 | |
| 	if (s->refcount) {
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		cpus_read_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* free asan quarantined objects */
 | |
| 	kasan_cache_shutdown(s);
 | |
| 
 | |
| 	err = __kmem_cache_shutdown(s);
 | |
| 	if (!slab_in_kunit_test())
 | |
| 		WARN(err, "%s %s: Slab cache still has objects when called from %pS",
 | |
| 		     __func__, s->name, (void *)_RET_IP_);
 | |
| 
 | |
| 	list_del(&s->list);
 | |
| 
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	cpus_read_unlock();
 | |
| 
 | |
| 	if (slab_state >= FULL)
 | |
| 		sysfs_slab_unlink(s);
 | |
| 	debugfs_slab_release(s);
 | |
| 
 | |
| 	if (err)
 | |
| 		return;
 | |
| 
 | |
| 	if (s->flags & SLAB_TYPESAFE_BY_RCU)
 | |
| 		rcu_barrier();
 | |
| 
 | |
| 	kmem_cache_release(s);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_destroy);
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_shrink - Shrink a cache.
 | |
|  * @cachep: The cache to shrink.
 | |
|  *
 | |
|  * Releases as many slabs as possible for a cache.
 | |
|  * To help debugging, a zero exit status indicates all slabs were released.
 | |
|  *
 | |
|  * Return: %0 if all slabs were released, non-zero otherwise
 | |
|  */
 | |
| int kmem_cache_shrink(struct kmem_cache *cachep)
 | |
| {
 | |
| 	kasan_cache_shrink(cachep);
 | |
| 
 | |
| 	return __kmem_cache_shrink(cachep);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_shrink);
 | |
| 
 | |
| bool slab_is_available(void)
 | |
| {
 | |
| 	return slab_state >= UP;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 | |
| {
 | |
| 	if (__kfence_obj_info(kpp, object, slab))
 | |
| 		return;
 | |
| 	__kmem_obj_info(kpp, object, slab);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmem_dump_obj - Print available slab provenance information
 | |
|  * @object: slab object for which to find provenance information.
 | |
|  *
 | |
|  * This function uses pr_cont(), so that the caller is expected to have
 | |
|  * printed out whatever preamble is appropriate.  The provenance information
 | |
|  * depends on the type of object and on how much debugging is enabled.
 | |
|  * For a slab-cache object, the fact that it is a slab object is printed,
 | |
|  * and, if available, the slab name, return address, and stack trace from
 | |
|  * the allocation and last free path of that object.
 | |
|  *
 | |
|  * Return: %true if the pointer is to a not-yet-freed object from
 | |
|  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 | |
|  * is to an already-freed object, and %false otherwise.
 | |
|  */
 | |
| bool kmem_dump_obj(void *object)
 | |
| {
 | |
| 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 | |
| 	int i;
 | |
| 	struct slab *slab;
 | |
| 	unsigned long ptroffset;
 | |
| 	struct kmem_obj_info kp = { };
 | |
| 
 | |
| 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 | |
| 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 | |
| 		return false;
 | |
| 	slab = virt_to_slab(object);
 | |
| 	if (!slab)
 | |
| 		return false;
 | |
| 
 | |
| 	kmem_obj_info(&kp, object, slab);
 | |
| 	if (kp.kp_slab_cache)
 | |
| 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 | |
| 	else
 | |
| 		pr_cont(" slab%s", cp);
 | |
| 	if (is_kfence_address(object))
 | |
| 		pr_cont(" (kfence)");
 | |
| 	if (kp.kp_objp)
 | |
| 		pr_cont(" start %px", kp.kp_objp);
 | |
| 	if (kp.kp_data_offset)
 | |
| 		pr_cont(" data offset %lu", kp.kp_data_offset);
 | |
| 	if (kp.kp_objp) {
 | |
| 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
 | |
| 		pr_cont(" pointer offset %lu", ptroffset);
 | |
| 	}
 | |
| 	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
 | |
| 		pr_cont(" size %u", kp.kp_slab_cache->object_size);
 | |
| 	if (kp.kp_ret)
 | |
| 		pr_cont(" allocated at %pS\n", kp.kp_ret);
 | |
| 	else
 | |
| 		pr_cont("\n");
 | |
| 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
 | |
| 		if (!kp.kp_stack[i])
 | |
| 			break;
 | |
| 		pr_info("    %pS\n", kp.kp_stack[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (kp.kp_free_stack[0])
 | |
| 		pr_cont(" Free path:\n");
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
 | |
| 		if (!kp.kp_free_stack[i])
 | |
| 			break;
 | |
| 		pr_info("    %pS\n", kp.kp_free_stack[i]);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmem_dump_obj);
 | |
| #endif
 | |
| 
 | |
| /* Create a cache during boot when no slab services are available yet */
 | |
| void __init create_boot_cache(struct kmem_cache *s, const char *name,
 | |
| 		unsigned int size, slab_flags_t flags,
 | |
| 		unsigned int useroffset, unsigned int usersize)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned int align = ARCH_KMALLOC_MINALIGN;
 | |
| 	struct kmem_cache_args kmem_args = {};
 | |
| 
 | |
| 	/*
 | |
| 	 * kmalloc caches guarantee alignment of at least the largest
 | |
| 	 * power-of-two divisor of the size. For power-of-two sizes,
 | |
| 	 * it is the size itself.
 | |
| 	 */
 | |
| 	if (flags & SLAB_KMALLOC)
 | |
| 		align = max(align, 1U << (ffs(size) - 1));
 | |
| 	kmem_args.align = calculate_alignment(flags, align, size);
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| 	kmem_args.useroffset = useroffset;
 | |
| 	kmem_args.usersize = usersize;
 | |
| #endif
 | |
| 
 | |
| 	err = do_kmem_cache_create(s, name, size, &kmem_args, flags);
 | |
| 
 | |
| 	if (err)
 | |
| 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 | |
| 					name, size, err);
 | |
| 
 | |
| 	s->refcount = -1;	/* Exempt from merging for now */
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *__init create_kmalloc_cache(const char *name,
 | |
| 						      unsigned int size,
 | |
| 						      slab_flags_t flags)
 | |
| {
 | |
| 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 | |
| 
 | |
| 	if (!s)
 | |
| 		panic("Out of memory when creating slab %s\n", name);
 | |
| 
 | |
| 	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	s->refcount = 1;
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init =
 | |
| { /* initialization for https://llvm.org/pr42570 */ };
 | |
| EXPORT_SYMBOL(kmalloc_caches);
 | |
| 
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| unsigned long random_kmalloc_seed __ro_after_init;
 | |
| EXPORT_SYMBOL(random_kmalloc_seed);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Conversion table for small slabs sizes / 8 to the index in the
 | |
|  * kmalloc array. This is necessary for slabs < 192 since we have non power
 | |
|  * of two cache sizes there. The size of larger slabs can be determined using
 | |
|  * fls.
 | |
|  */
 | |
| u8 kmalloc_size_index[24] __ro_after_init = {
 | |
| 	3,	/* 8 */
 | |
| 	4,	/* 16 */
 | |
| 	5,	/* 24 */
 | |
| 	5,	/* 32 */
 | |
| 	6,	/* 40 */
 | |
| 	6,	/* 48 */
 | |
| 	6,	/* 56 */
 | |
| 	6,	/* 64 */
 | |
| 	1,	/* 72 */
 | |
| 	1,	/* 80 */
 | |
| 	1,	/* 88 */
 | |
| 	1,	/* 96 */
 | |
| 	7,	/* 104 */
 | |
| 	7,	/* 112 */
 | |
| 	7,	/* 120 */
 | |
| 	7,	/* 128 */
 | |
| 	2,	/* 136 */
 | |
| 	2,	/* 144 */
 | |
| 	2,	/* 152 */
 | |
| 	2,	/* 160 */
 | |
| 	2,	/* 168 */
 | |
| 	2,	/* 176 */
 | |
| 	2,	/* 184 */
 | |
| 	2	/* 192 */
 | |
| };
 | |
| 
 | |
| size_t kmalloc_size_roundup(size_t size)
 | |
| {
 | |
| 	if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
 | |
| 		/*
 | |
| 		 * The flags don't matter since size_index is common to all.
 | |
| 		 * Neither does the caller for just getting ->object_size.
 | |
| 		 */
 | |
| 		return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size;
 | |
| 	}
 | |
| 
 | |
| 	/* Above the smaller buckets, size is a multiple of page size. */
 | |
| 	if (size && size <= KMALLOC_MAX_SIZE)
 | |
| 		return PAGE_SIZE << get_order(size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
 | |
| 	 * and very large size - kmalloc() may fail.
 | |
| 	 */
 | |
| 	return size;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(kmalloc_size_roundup);
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
 | |
| #else
 | |
| #define KMALLOC_DMA_NAME(sz)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
 | |
| #else
 | |
| #define KMALLOC_CGROUP_NAME(sz)
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| #define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
 | |
| #else
 | |
| #define KMALLOC_RCL_NAME(sz)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
 | |
| #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
 | |
| #define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz,
 | |
| #define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz,
 | |
| #define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz,
 | |
| #define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz,
 | |
| #define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz,
 | |
| #define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz,
 | |
| #define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz,
 | |
| #define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz,
 | |
| #define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz,
 | |
| #define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
 | |
| #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
 | |
| #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
 | |
| #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
 | |
| #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
 | |
| #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
 | |
| #else // CONFIG_RANDOM_KMALLOC_CACHES
 | |
| #define KMALLOC_RANDOM_NAME(N, sz)
 | |
| #endif
 | |
| 
 | |
| #define INIT_KMALLOC_INFO(__size, __short_size)			\
 | |
| {								\
 | |
| 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 | |
| 	KMALLOC_RCL_NAME(__short_size)				\
 | |
| 	KMALLOC_CGROUP_NAME(__short_size)			\
 | |
| 	KMALLOC_DMA_NAME(__short_size)				\
 | |
| 	KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\
 | |
| 	.size = __size,						\
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
 | |
|  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
 | |
|  * kmalloc-2M.
 | |
|  */
 | |
| const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 | |
| 	INIT_KMALLOC_INFO(0, 0),
 | |
| 	INIT_KMALLOC_INFO(96, 96),
 | |
| 	INIT_KMALLOC_INFO(192, 192),
 | |
| 	INIT_KMALLOC_INFO(8, 8),
 | |
| 	INIT_KMALLOC_INFO(16, 16),
 | |
| 	INIT_KMALLOC_INFO(32, 32),
 | |
| 	INIT_KMALLOC_INFO(64, 64),
 | |
| 	INIT_KMALLOC_INFO(128, 128),
 | |
| 	INIT_KMALLOC_INFO(256, 256),
 | |
| 	INIT_KMALLOC_INFO(512, 512),
 | |
| 	INIT_KMALLOC_INFO(1024, 1k),
 | |
| 	INIT_KMALLOC_INFO(2048, 2k),
 | |
| 	INIT_KMALLOC_INFO(4096, 4k),
 | |
| 	INIT_KMALLOC_INFO(8192, 8k),
 | |
| 	INIT_KMALLOC_INFO(16384, 16k),
 | |
| 	INIT_KMALLOC_INFO(32768, 32k),
 | |
| 	INIT_KMALLOC_INFO(65536, 64k),
 | |
| 	INIT_KMALLOC_INFO(131072, 128k),
 | |
| 	INIT_KMALLOC_INFO(262144, 256k),
 | |
| 	INIT_KMALLOC_INFO(524288, 512k),
 | |
| 	INIT_KMALLOC_INFO(1048576, 1M),
 | |
| 	INIT_KMALLOC_INFO(2097152, 2M)
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Patch up the size_index table if we have strange large alignment
 | |
|  * requirements for the kmalloc array. This is only the case for
 | |
|  * MIPS it seems. The standard arches will not generate any code here.
 | |
|  *
 | |
|  * Largest permitted alignment is 256 bytes due to the way we
 | |
|  * handle the index determination for the smaller caches.
 | |
|  *
 | |
|  * Make sure that nothing crazy happens if someone starts tinkering
 | |
|  * around with ARCH_KMALLOC_MINALIGN
 | |
|  */
 | |
| void __init setup_kmalloc_cache_index_table(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 | |
| 		!is_power_of_2(KMALLOC_MIN_SIZE));
 | |
| 
 | |
| 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 | |
| 		unsigned int elem = size_index_elem(i);
 | |
| 
 | |
| 		if (elem >= ARRAY_SIZE(kmalloc_size_index))
 | |
| 			break;
 | |
| 		kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE >= 64) {
 | |
| 		/*
 | |
| 		 * The 96 byte sized cache is not used if the alignment
 | |
| 		 * is 64 byte.
 | |
| 		 */
 | |
| 		for (i = 64 + 8; i <= 96; i += 8)
 | |
| 			kmalloc_size_index[size_index_elem(i)] = 7;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE >= 128) {
 | |
| 		/*
 | |
| 		 * The 192 byte sized cache is not used if the alignment
 | |
| 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 | |
| 		 * instead.
 | |
| 		 */
 | |
| 		for (i = 128 + 8; i <= 192; i += 8)
 | |
| 			kmalloc_size_index[size_index_elem(i)] = 8;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned int __kmalloc_minalign(void)
 | |
| {
 | |
| 	unsigned int minalign = dma_get_cache_alignment();
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
 | |
| 	    is_swiotlb_allocated())
 | |
| 		minalign = ARCH_KMALLOC_MINALIGN;
 | |
| 
 | |
| 	return max(minalign, arch_slab_minalign());
 | |
| }
 | |
| 
 | |
| static void __init
 | |
| new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
 | |
| {
 | |
| 	slab_flags_t flags = 0;
 | |
| 	unsigned int minalign = __kmalloc_minalign();
 | |
| 	unsigned int aligned_size = kmalloc_info[idx].size;
 | |
| 	int aligned_idx = idx;
 | |
| 
 | |
| 	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
 | |
| 		flags |= SLAB_RECLAIM_ACCOUNT;
 | |
| 	} else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) {
 | |
| 		if (mem_cgroup_kmem_disabled()) {
 | |
| 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
 | |
| 			return;
 | |
| 		}
 | |
| 		flags |= SLAB_ACCOUNT;
 | |
| 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
 | |
| 		flags |= SLAB_CACHE_DMA;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| 	if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
 | |
| 		flags |= SLAB_NO_MERGE;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * If CONFIG_MEMCG is enabled, disable cache merging for
 | |
| 	 * KMALLOC_NORMAL caches.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL))
 | |
| 		flags |= SLAB_NO_MERGE;
 | |
| 
 | |
| 	if (minalign > ARCH_KMALLOC_MINALIGN) {
 | |
| 		aligned_size = ALIGN(aligned_size, minalign);
 | |
| 		aligned_idx = __kmalloc_index(aligned_size, false);
 | |
| 	}
 | |
| 
 | |
| 	if (!kmalloc_caches[type][aligned_idx])
 | |
| 		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
 | |
| 					kmalloc_info[aligned_idx].name[type],
 | |
| 					aligned_size, flags);
 | |
| 	if (idx != aligned_idx)
 | |
| 		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the kmalloc array. Some of the regular kmalloc arrays
 | |
|  * may already have been created because they were needed to
 | |
|  * enable allocations for slab creation.
 | |
|  */
 | |
| void __init create_kmalloc_caches(void)
 | |
| {
 | |
| 	int i;
 | |
| 	enum kmalloc_cache_type type;
 | |
| 
 | |
| 	/*
 | |
| 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG defined
 | |
| 	 */
 | |
| 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
 | |
| 		/* Caches that are NOT of the two-to-the-power-of size. */
 | |
| 		if (KMALLOC_MIN_SIZE <= 32)
 | |
| 			new_kmalloc_cache(1, type);
 | |
| 		if (KMALLOC_MIN_SIZE <= 64)
 | |
| 			new_kmalloc_cache(2, type);
 | |
| 
 | |
| 		/* Caches that are of the two-to-the-power-of size. */
 | |
| 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
 | |
| 			new_kmalloc_cache(i, type);
 | |
| 	}
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| 	random_kmalloc_seed = get_random_u64();
 | |
| #endif
 | |
| 
 | |
| 	/* Kmalloc array is now usable */
 | |
| 	slab_state = UP;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_SLAB_BUCKETS))
 | |
| 		kmem_buckets_cache = kmem_cache_create("kmalloc_buckets",
 | |
| 						       sizeof(kmem_buckets),
 | |
| 						       0, SLAB_NO_MERGE, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __ksize -- Report full size of underlying allocation
 | |
|  * @object: pointer to the object
 | |
|  *
 | |
|  * This should only be used internally to query the true size of allocations.
 | |
|  * It is not meant to be a way to discover the usable size of an allocation
 | |
|  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
 | |
|  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
 | |
|  * and/or FORTIFY_SOURCE.
 | |
|  *
 | |
|  * Return: size of the actual memory used by @object in bytes
 | |
|  */
 | |
| size_t __ksize(const void *object)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	if (unlikely(object == ZERO_SIZE_PTR))
 | |
| 		return 0;
 | |
| 
 | |
| 	folio = virt_to_folio(object);
 | |
| 
 | |
| 	if (unlikely(!folio_test_slab(folio))) {
 | |
| 		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
 | |
| 			return 0;
 | |
| 		if (WARN_ON(object != folio_address(folio)))
 | |
| 			return 0;
 | |
| 		return folio_size(folio);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
 | |
| #endif
 | |
| 
 | |
| 	return slab_ksize(folio_slab(folio)->slab_cache);
 | |
| }
 | |
| 
 | |
| gfp_t kmalloc_fix_flags(gfp_t flags)
 | |
| {
 | |
| 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 | |
| 
 | |
| 	flags &= ~GFP_SLAB_BUG_MASK;
 | |
| 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 | |
| 			invalid_mask, &invalid_mask, flags, &flags);
 | |
| 	dump_stack();
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM
 | |
| /* Randomize a generic freelist */
 | |
| static void freelist_randomize(unsigned int *list,
 | |
| 			       unsigned int count)
 | |
| {
 | |
| 	unsigned int rand;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++)
 | |
| 		list[i] = i;
 | |
| 
 | |
| 	/* Fisher-Yates shuffle */
 | |
| 	for (i = count - 1; i > 0; i--) {
 | |
| 		rand = get_random_u32_below(i + 1);
 | |
| 		swap(list[i], list[rand]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Create a random sequence per cache */
 | |
| int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 | |
| 				    gfp_t gfp)
 | |
| {
 | |
| 
 | |
| 	if (count < 2 || cachep->random_seq)
 | |
| 		return 0;
 | |
| 
 | |
| 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
 | |
| 	if (!cachep->random_seq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	freelist_randomize(cachep->random_seq, count);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Destroy the per-cache random freelist sequence */
 | |
| void cache_random_seq_destroy(struct kmem_cache *cachep)
 | |
| {
 | |
| 	kfree(cachep->random_seq);
 | |
| 	cachep->random_seq = NULL;
 | |
| }
 | |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| #define SLABINFO_RIGHTS (0400)
 | |
| 
 | |
| static void print_slabinfo_header(struct seq_file *m)
 | |
| {
 | |
| 	/*
 | |
| 	 * Output format version, so at least we can change it
 | |
| 	 * without _too_ many complaints.
 | |
| 	 */
 | |
| 	seq_puts(m, "slabinfo - version: 2.1\n");
 | |
| 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
 | |
| 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 | |
| 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| 
 | |
| static void *slab_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	return seq_list_start(&slab_caches, *pos);
 | |
| }
 | |
| 
 | |
| static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 | |
| {
 | |
| 	return seq_list_next(p, &slab_caches, pos);
 | |
| }
 | |
| 
 | |
| static void slab_stop(struct seq_file *m, void *p)
 | |
| {
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| static void cache_show(struct kmem_cache *s, struct seq_file *m)
 | |
| {
 | |
| 	struct slabinfo sinfo;
 | |
| 
 | |
| 	memset(&sinfo, 0, sizeof(sinfo));
 | |
| 	get_slabinfo(s, &sinfo);
 | |
| 
 | |
| 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
 | |
| 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
 | |
| 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 | |
| 
 | |
| 	seq_printf(m, " : tunables %4u %4u %4u",
 | |
| 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
 | |
| 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
 | |
| 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| 
 | |
| static int slab_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
 | |
| 
 | |
| 	if (p == slab_caches.next)
 | |
| 		print_slabinfo_header(m);
 | |
| 	cache_show(s, m);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void dump_unreclaimable_slab(void)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	struct slabinfo sinfo;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here acquiring slab_mutex is risky since we don't prefer to get
 | |
| 	 * sleep in oom path. But, without mutex hold, it may introduce a
 | |
| 	 * risk of crash.
 | |
| 	 * Use mutex_trylock to protect the list traverse, dump nothing
 | |
| 	 * without acquiring the mutex.
 | |
| 	 */
 | |
| 	if (!mutex_trylock(&slab_mutex)) {
 | |
| 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Unreclaimable slab info:\n");
 | |
| 	pr_info("Name                      Used          Total\n");
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 			continue;
 | |
| 
 | |
| 		get_slabinfo(s, &sinfo);
 | |
| 
 | |
| 		if (sinfo.num_objs > 0)
 | |
| 			pr_info("%-17s %10luKB %10luKB\n", s->name,
 | |
| 				(sinfo.active_objs * s->size) / 1024,
 | |
| 				(sinfo.num_objs * s->size) / 1024);
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slabinfo_op - iterator that generates /proc/slabinfo
 | |
|  *
 | |
|  * Output layout:
 | |
|  * cache-name
 | |
|  * num-active-objs
 | |
|  * total-objs
 | |
|  * object size
 | |
|  * num-active-slabs
 | |
|  * total-slabs
 | |
|  * num-pages-per-slab
 | |
|  * + further values on SMP and with statistics enabled
 | |
|  */
 | |
| static const struct seq_operations slabinfo_op = {
 | |
| 	.start = slab_start,
 | |
| 	.next = slab_next,
 | |
| 	.stop = slab_stop,
 | |
| 	.show = slab_show,
 | |
| };
 | |
| 
 | |
| static int slabinfo_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &slabinfo_op);
 | |
| }
 | |
| 
 | |
| static const struct proc_ops slabinfo_proc_ops = {
 | |
| 	.proc_flags	= PROC_ENTRY_PERMANENT,
 | |
| 	.proc_open	= slabinfo_open,
 | |
| 	.proc_read	= seq_read,
 | |
| 	.proc_lseek	= seq_lseek,
 | |
| 	.proc_release	= seq_release,
 | |
| };
 | |
| 
 | |
| static int __init slab_proc_init(void)
 | |
| {
 | |
| 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
 | |
| 	return 0;
 | |
| }
 | |
| module_init(slab_proc_init);
 | |
| 
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| /**
 | |
|  * kfree_sensitive - Clear sensitive information in memory before freeing
 | |
|  * @p: object to free memory of
 | |
|  *
 | |
|  * The memory of the object @p points to is zeroed before freed.
 | |
|  * If @p is %NULL, kfree_sensitive() does nothing.
 | |
|  *
 | |
|  * Note: this function zeroes the whole allocated buffer which can be a good
 | |
|  * deal bigger than the requested buffer size passed to kmalloc(). So be
 | |
|  * careful when using this function in performance sensitive code.
 | |
|  */
 | |
| void kfree_sensitive(const void *p)
 | |
| {
 | |
| 	size_t ks;
 | |
| 	void *mem = (void *)p;
 | |
| 
 | |
| 	ks = ksize(mem);
 | |
| 	if (ks) {
 | |
| 		kasan_unpoison_range(mem, ks);
 | |
| 		memzero_explicit(mem, ks);
 | |
| 	}
 | |
| 	kfree(mem);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree_sensitive);
 | |
| 
 | |
| size_t ksize(const void *objp)
 | |
| {
 | |
| 	/*
 | |
| 	 * We need to first check that the pointer to the object is valid.
 | |
| 	 * The KASAN report printed from ksize() is more useful, then when
 | |
| 	 * it's printed later when the behaviour could be undefined due to
 | |
| 	 * a potential use-after-free or double-free.
 | |
| 	 *
 | |
| 	 * We use kasan_check_byte(), which is supported for the hardware
 | |
| 	 * tag-based KASAN mode, unlike kasan_check_read/write().
 | |
| 	 *
 | |
| 	 * If the pointed to memory is invalid, we return 0 to avoid users of
 | |
| 	 * ksize() writing to and potentially corrupting the memory region.
 | |
| 	 *
 | |
| 	 * We want to perform the check before __ksize(), to avoid potentially
 | |
| 	 * crashing in __ksize() due to accessing invalid metadata.
 | |
| 	 */
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
 | |
| 		return 0;
 | |
| 
 | |
| 	return kfence_ksize(objp) ?: __ksize(objp);
 | |
| }
 | |
| EXPORT_SYMBOL(ksize);
 | |
| 
 | |
| #ifdef CONFIG_BPF_SYSCALL
 | |
| #include <linux/btf.h>
 | |
| 
 | |
| __bpf_kfunc_start_defs();
 | |
| 
 | |
| __bpf_kfunc struct kmem_cache *bpf_get_kmem_cache(u64 addr)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	if (!virt_addr_valid((void *)(long)addr))
 | |
| 		return NULL;
 | |
| 
 | |
| 	slab = virt_to_slab((void *)(long)addr);
 | |
| 	return slab ? slab->slab_cache : NULL;
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_end_defs();
 | |
| #endif /* CONFIG_BPF_SYSCALL */
 | |
| 
 | |
| /* Tracepoints definitions. */
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmalloc);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kfree);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
 | |
| 
 | |
| #ifndef CONFIG_KVFREE_RCU_BATCHED
 | |
| 
 | |
| void kvfree_call_rcu(struct rcu_head *head, void *ptr)
 | |
| {
 | |
| 	if (head) {
 | |
| 		kasan_record_aux_stack(ptr);
 | |
| 		call_rcu(head, kvfree_rcu_cb);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// kvfree_rcu(one_arg) call.
 | |
| 	might_sleep();
 | |
| 	synchronize_rcu();
 | |
| 	kvfree(ptr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvfree_call_rcu);
 | |
| 
 | |
| void __init kvfree_rcu_init(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_KVFREE_RCU_BATCHED */
 | |
| 
 | |
| /*
 | |
|  * This rcu parameter is runtime-read-only. It reflects
 | |
|  * a minimum allowed number of objects which can be cached
 | |
|  * per-CPU. Object size is equal to one page. This value
 | |
|  * can be changed at boot time.
 | |
|  */
 | |
| static int rcu_min_cached_objs = 5;
 | |
| module_param(rcu_min_cached_objs, int, 0444);
 | |
| 
 | |
| // A page shrinker can ask for pages to be freed to make them
 | |
| // available for other parts of the system. This usually happens
 | |
| // under low memory conditions, and in that case we should also
 | |
| // defer page-cache filling for a short time period.
 | |
| //
 | |
| // The default value is 5 seconds, which is long enough to reduce
 | |
| // interference with the shrinker while it asks other systems to
 | |
| // drain their caches.
 | |
| static int rcu_delay_page_cache_fill_msec = 5000;
 | |
| module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 | |
| 
 | |
| static struct workqueue_struct *rcu_reclaim_wq;
 | |
| 
 | |
| /* Maximum number of jiffies to wait before draining a batch. */
 | |
| #define KFREE_DRAIN_JIFFIES (5 * HZ)
 | |
| #define KFREE_N_BATCHES 2
 | |
| #define FREE_N_CHANNELS 2
 | |
| 
 | |
| /**
 | |
|  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
 | |
|  * @list: List node. All blocks are linked between each other
 | |
|  * @gp_snap: Snapshot of RCU state for objects placed to this bulk
 | |
|  * @nr_records: Number of active pointers in the array
 | |
|  * @records: Array of the kvfree_rcu() pointers
 | |
|  */
 | |
| struct kvfree_rcu_bulk_data {
 | |
| 	struct list_head list;
 | |
| 	struct rcu_gp_oldstate gp_snap;
 | |
| 	unsigned long nr_records;
 | |
| 	void *records[] __counted_by(nr_records);
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This macro defines how many entries the "records" array
 | |
|  * will contain. It is based on the fact that the size of
 | |
|  * kvfree_rcu_bulk_data structure becomes exactly one page.
 | |
|  */
 | |
| #define KVFREE_BULK_MAX_ENTR \
 | |
| 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
 | |
| 
 | |
| /**
 | |
|  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
 | |
|  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
 | |
|  * @head_free: List of kfree_rcu() objects waiting for a grace period
 | |
|  * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
 | |
|  * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
 | |
|  * @krcp: Pointer to @kfree_rcu_cpu structure
 | |
|  */
 | |
| 
 | |
| struct kfree_rcu_cpu_work {
 | |
| 	struct rcu_work rcu_work;
 | |
| 	struct rcu_head *head_free;
 | |
| 	struct rcu_gp_oldstate head_free_gp_snap;
 | |
| 	struct list_head bulk_head_free[FREE_N_CHANNELS];
 | |
| 	struct kfree_rcu_cpu *krcp;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
 | |
|  * @head: List of kfree_rcu() objects not yet waiting for a grace period
 | |
|  * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
 | |
|  * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
 | |
|  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
 | |
|  * @lock: Synchronize access to this structure
 | |
|  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
 | |
|  * @initialized: The @rcu_work fields have been initialized
 | |
|  * @head_count: Number of objects in rcu_head singular list
 | |
|  * @bulk_count: Number of objects in bulk-list
 | |
|  * @bkvcache:
 | |
|  *	A simple cache list that contains objects for reuse purpose.
 | |
|  *	In order to save some per-cpu space the list is singular.
 | |
|  *	Even though it is lockless an access has to be protected by the
 | |
|  *	per-cpu lock.
 | |
|  * @page_cache_work: A work to refill the cache when it is empty
 | |
|  * @backoff_page_cache_fill: Delay cache refills
 | |
|  * @work_in_progress: Indicates that page_cache_work is running
 | |
|  * @hrtimer: A hrtimer for scheduling a page_cache_work
 | |
|  * @nr_bkv_objs: number of allocated objects at @bkvcache.
 | |
|  *
 | |
|  * This is a per-CPU structure.  The reason that it is not included in
 | |
|  * the rcu_data structure is to permit this code to be extracted from
 | |
|  * the RCU files.  Such extraction could allow further optimization of
 | |
|  * the interactions with the slab allocators.
 | |
|  */
 | |
| struct kfree_rcu_cpu {
 | |
| 	// Objects queued on a linked list
 | |
| 	// through their rcu_head structures.
 | |
| 	struct rcu_head *head;
 | |
| 	unsigned long head_gp_snap;
 | |
| 	atomic_t head_count;
 | |
| 
 | |
| 	// Objects queued on a bulk-list.
 | |
| 	struct list_head bulk_head[FREE_N_CHANNELS];
 | |
| 	atomic_t bulk_count[FREE_N_CHANNELS];
 | |
| 
 | |
| 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
 | |
| 	raw_spinlock_t lock;
 | |
| 	struct delayed_work monitor_work;
 | |
| 	bool initialized;
 | |
| 
 | |
| 	struct delayed_work page_cache_work;
 | |
| 	atomic_t backoff_page_cache_fill;
 | |
| 	atomic_t work_in_progress;
 | |
| 	struct hrtimer hrtimer;
 | |
| 
 | |
| 	struct llist_head bkvcache;
 | |
| 	int nr_bkv_objs;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
 | |
| 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
 | |
| };
 | |
| 
 | |
| static __always_inline void
 | |
| debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bhead->nr_records; i++)
 | |
| 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline struct kfree_rcu_cpu *
 | |
| krc_this_cpu_lock(unsigned long *flags)
 | |
| {
 | |
| 	struct kfree_rcu_cpu *krcp;
 | |
| 
 | |
| 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
 | |
| 	krcp = this_cpu_ptr(&krc);
 | |
| 	raw_spin_lock(&krcp->lock);
 | |
| 
 | |
| 	return krcp;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
 | |
| {
 | |
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | |
| }
 | |
| 
 | |
| static inline struct kvfree_rcu_bulk_data *
 | |
| get_cached_bnode(struct kfree_rcu_cpu *krcp)
 | |
| {
 | |
| 	if (!krcp->nr_bkv_objs)
 | |
| 		return NULL;
 | |
| 
 | |
| 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
 | |
| 	return (struct kvfree_rcu_bulk_data *)
 | |
| 		llist_del_first(&krcp->bkvcache);
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| put_cached_bnode(struct kfree_rcu_cpu *krcp,
 | |
| 	struct kvfree_rcu_bulk_data *bnode)
 | |
| {
 | |
| 	// Check the limit.
 | |
| 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
 | |
| 		return false;
 | |
| 
 | |
| 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
 | |
| 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int
 | |
| drain_page_cache(struct kfree_rcu_cpu *krcp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct llist_node *page_list, *pos, *n;
 | |
| 	int freed = 0;
 | |
| 
 | |
| 	if (!rcu_min_cached_objs)
 | |
| 		return 0;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | |
| 	page_list = llist_del_all(&krcp->bkvcache);
 | |
| 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
 | |
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | |
| 
 | |
| 	llist_for_each_safe(pos, n, page_list) {
 | |
| 		free_page((unsigned long)pos);
 | |
| 		freed++;
 | |
| 	}
 | |
| 
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static void
 | |
| kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
 | |
| 	struct kvfree_rcu_bulk_data *bnode, int idx)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
 | |
| 		debug_rcu_bhead_unqueue(bnode);
 | |
| 		rcu_lock_acquire(&rcu_callback_map);
 | |
| 		if (idx == 0) { // kmalloc() / kfree().
 | |
| 			trace_rcu_invoke_kfree_bulk_callback(
 | |
| 				"slab", bnode->nr_records,
 | |
| 				bnode->records);
 | |
| 
 | |
| 			kfree_bulk(bnode->nr_records, bnode->records);
 | |
| 		} else { // vmalloc() / vfree().
 | |
| 			for (i = 0; i < bnode->nr_records; i++) {
 | |
| 				trace_rcu_invoke_kvfree_callback(
 | |
| 					"slab", bnode->records[i], 0);
 | |
| 
 | |
| 				vfree(bnode->records[i]);
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_lock_release(&rcu_callback_map);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | |
| 	if (put_cached_bnode(krcp, bnode))
 | |
| 		bnode = NULL;
 | |
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | |
| 
 | |
| 	if (bnode)
 | |
| 		free_page((unsigned long) bnode);
 | |
| 
 | |
| 	cond_resched_tasks_rcu_qs();
 | |
| }
 | |
| 
 | |
| static void
 | |
| kvfree_rcu_list(struct rcu_head *head)
 | |
| {
 | |
| 	struct rcu_head *next;
 | |
| 
 | |
| 	for (; head; head = next) {
 | |
| 		void *ptr = (void *) head->func;
 | |
| 		unsigned long offset = (void *) head - ptr;
 | |
| 
 | |
| 		next = head->next;
 | |
| 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
 | |
| 		rcu_lock_acquire(&rcu_callback_map);
 | |
| 		trace_rcu_invoke_kvfree_callback("slab", head, offset);
 | |
| 
 | |
| 		kvfree(ptr);
 | |
| 
 | |
| 		rcu_lock_release(&rcu_callback_map);
 | |
| 		cond_resched_tasks_rcu_qs();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is invoked in workqueue context after a grace period.
 | |
|  * It frees all the objects queued on ->bulk_head_free or ->head_free.
 | |
|  */
 | |
| static void kfree_rcu_work(struct work_struct *work)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kvfree_rcu_bulk_data *bnode, *n;
 | |
| 	struct list_head bulk_head[FREE_N_CHANNELS];
 | |
| 	struct rcu_head *head;
 | |
| 	struct kfree_rcu_cpu *krcp;
 | |
| 	struct kfree_rcu_cpu_work *krwp;
 | |
| 	struct rcu_gp_oldstate head_gp_snap;
 | |
| 	int i;
 | |
| 
 | |
| 	krwp = container_of(to_rcu_work(work),
 | |
| 		struct kfree_rcu_cpu_work, rcu_work);
 | |
| 	krcp = krwp->krcp;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | |
| 	// Channels 1 and 2.
 | |
| 	for (i = 0; i < FREE_N_CHANNELS; i++)
 | |
| 		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
 | |
| 
 | |
| 	// Channel 3.
 | |
| 	head = krwp->head_free;
 | |
| 	krwp->head_free = NULL;
 | |
| 	head_gp_snap = krwp->head_free_gp_snap;
 | |
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | |
| 
 | |
| 	// Handle the first two channels.
 | |
| 	for (i = 0; i < FREE_N_CHANNELS; i++) {
 | |
| 		// Start from the tail page, so a GP is likely passed for it.
 | |
| 		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
 | |
| 			kvfree_rcu_bulk(krcp, bnode, i);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is used when the "bulk" path can not be used for the
 | |
| 	 * double-argument of kvfree_rcu().  This happens when the
 | |
| 	 * page-cache is empty, which means that objects are instead
 | |
| 	 * queued on a linked list through their rcu_head structures.
 | |
| 	 * This list is named "Channel 3".
 | |
| 	 */
 | |
| 	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
 | |
| 		kvfree_rcu_list(head);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| need_offload_krc(struct kfree_rcu_cpu *krcp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < FREE_N_CHANNELS; i++)
 | |
| 		if (!list_empty(&krcp->bulk_head[i]))
 | |
| 			return true;
 | |
| 
 | |
| 	return !!READ_ONCE(krcp->head);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < FREE_N_CHANNELS; i++)
 | |
| 		if (!list_empty(&krwp->bulk_head_free[i]))
 | |
| 			return true;
 | |
| 
 | |
| 	return !!krwp->head_free;
 | |
| }
 | |
| 
 | |
| static int krc_count(struct kfree_rcu_cpu *krcp)
 | |
| {
 | |
| 	int sum = atomic_read(&krcp->head_count);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < FREE_N_CHANNELS; i++)
 | |
| 		sum += atomic_read(&krcp->bulk_count[i]);
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| static void
 | |
| __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
 | |
| {
 | |
| 	long delay, delay_left;
 | |
| 
 | |
| 	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
 | |
| 	if (delayed_work_pending(&krcp->monitor_work)) {
 | |
| 		delay_left = krcp->monitor_work.timer.expires - jiffies;
 | |
| 		if (delay < delay_left)
 | |
| 			mod_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay);
 | |
| 		return;
 | |
| 	}
 | |
| 	queue_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay);
 | |
| }
 | |
| 
 | |
| static void
 | |
| schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | |
| 	__schedule_delayed_monitor_work(krcp);
 | |
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | |
| }
 | |
| 
 | |
| static void
 | |
| kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
 | |
| {
 | |
| 	struct list_head bulk_ready[FREE_N_CHANNELS];
 | |
| 	struct kvfree_rcu_bulk_data *bnode, *n;
 | |
| 	struct rcu_head *head_ready = NULL;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | |
| 	for (i = 0; i < FREE_N_CHANNELS; i++) {
 | |
| 		INIT_LIST_HEAD(&bulk_ready[i]);
 | |
| 
 | |
| 		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
 | |
| 			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
 | |
| 				break;
 | |
| 
 | |
| 			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
 | |
| 			list_move(&bnode->list, &bulk_ready[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
 | |
| 		head_ready = krcp->head;
 | |
| 		atomic_set(&krcp->head_count, 0);
 | |
| 		WRITE_ONCE(krcp->head, NULL);
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | |
| 
 | |
| 	for (i = 0; i < FREE_N_CHANNELS; i++) {
 | |
| 		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
 | |
| 			kvfree_rcu_bulk(krcp, bnode, i);
 | |
| 	}
 | |
| 
 | |
| 	if (head_ready)
 | |
| 		kvfree_rcu_list(head_ready);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return: %true if a work is queued, %false otherwise.
 | |
|  */
 | |
| static bool
 | |
| kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool queued = false;
 | |
| 	int i, j;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | |
| 
 | |
| 	// Attempt to start a new batch.
 | |
| 	for (i = 0; i < KFREE_N_BATCHES; i++) {
 | |
| 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
 | |
| 
 | |
| 		// Try to detach bulk_head or head and attach it, only when
 | |
| 		// all channels are free.  Any channel is not free means at krwp
 | |
| 		// there is on-going rcu work to handle krwp's free business.
 | |
| 		if (need_wait_for_krwp_work(krwp))
 | |
| 			continue;
 | |
| 
 | |
| 		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
 | |
| 		if (need_offload_krc(krcp)) {
 | |
| 			// Channel 1 corresponds to the SLAB-pointer bulk path.
 | |
| 			// Channel 2 corresponds to vmalloc-pointer bulk path.
 | |
| 			for (j = 0; j < FREE_N_CHANNELS; j++) {
 | |
| 				if (list_empty(&krwp->bulk_head_free[j])) {
 | |
| 					atomic_set(&krcp->bulk_count[j], 0);
 | |
| 					list_replace_init(&krcp->bulk_head[j],
 | |
| 						&krwp->bulk_head_free[j]);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Channel 3 corresponds to both SLAB and vmalloc
 | |
| 			// objects queued on the linked list.
 | |
| 			if (!krwp->head_free) {
 | |
| 				krwp->head_free = krcp->head;
 | |
| 				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
 | |
| 				atomic_set(&krcp->head_count, 0);
 | |
| 				WRITE_ONCE(krcp->head, NULL);
 | |
| 			}
 | |
| 
 | |
| 			// One work is per one batch, so there are three
 | |
| 			// "free channels", the batch can handle. Break
 | |
| 			// the loop since it is done with this CPU thus
 | |
| 			// queuing an RCU work is _always_ success here.
 | |
| 			queued = queue_rcu_work(rcu_reclaim_wq, &krwp->rcu_work);
 | |
| 			WARN_ON_ONCE(!queued);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | |
| 	return queued;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
 | |
|  */
 | |
| static void kfree_rcu_monitor(struct work_struct *work)
 | |
| {
 | |
| 	struct kfree_rcu_cpu *krcp = container_of(work,
 | |
| 		struct kfree_rcu_cpu, monitor_work.work);
 | |
| 
 | |
| 	// Drain ready for reclaim.
 | |
| 	kvfree_rcu_drain_ready(krcp);
 | |
| 
 | |
| 	// Queue a batch for a rest.
 | |
| 	kvfree_rcu_queue_batch(krcp);
 | |
| 
 | |
| 	// If there is nothing to detach, it means that our job is
 | |
| 	// successfully done here. In case of having at least one
 | |
| 	// of the channels that is still busy we should rearm the
 | |
| 	// work to repeat an attempt. Because previous batches are
 | |
| 	// still in progress.
 | |
| 	if (need_offload_krc(krcp))
 | |
| 		schedule_delayed_monitor_work(krcp);
 | |
| }
 | |
| 
 | |
| static void fill_page_cache_func(struct work_struct *work)
 | |
| {
 | |
| 	struct kvfree_rcu_bulk_data *bnode;
 | |
| 	struct kfree_rcu_cpu *krcp =
 | |
| 		container_of(work, struct kfree_rcu_cpu,
 | |
| 			page_cache_work.work);
 | |
| 	unsigned long flags;
 | |
| 	int nr_pages;
 | |
| 	bool pushed;
 | |
| 	int i;
 | |
| 
 | |
| 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
 | |
| 		1 : rcu_min_cached_objs;
 | |
| 
 | |
| 	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
 | |
| 		bnode = (struct kvfree_rcu_bulk_data *)
 | |
| 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 | |
| 
 | |
| 		if (!bnode)
 | |
| 			break;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&krcp->lock, flags);
 | |
| 		pushed = put_cached_bnode(krcp, bnode);
 | |
| 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | |
| 
 | |
| 		if (!pushed) {
 | |
| 			free_page((unsigned long) bnode);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&krcp->work_in_progress, 0);
 | |
| 	atomic_set(&krcp->backoff_page_cache_fill, 0);
 | |
| }
 | |
| 
 | |
| // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
 | |
| // state specified by flags.  If can_alloc is true, the caller must
 | |
| // be schedulable and not be holding any locks or mutexes that might be
 | |
| // acquired by the memory allocator or anything that it might invoke.
 | |
| // Returns true if ptr was successfully recorded, else the caller must
 | |
| // use a fallback.
 | |
| static inline bool
 | |
| add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
 | |
| 	unsigned long *flags, void *ptr, bool can_alloc)
 | |
| {
 | |
| 	struct kvfree_rcu_bulk_data *bnode;
 | |
| 	int idx;
 | |
| 
 | |
| 	*krcp = krc_this_cpu_lock(flags);
 | |
| 	if (unlikely(!(*krcp)->initialized))
 | |
| 		return false;
 | |
| 
 | |
| 	idx = !!is_vmalloc_addr(ptr);
 | |
| 	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
 | |
| 		struct kvfree_rcu_bulk_data, list);
 | |
| 
 | |
| 	/* Check if a new block is required. */
 | |
| 	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
 | |
| 		bnode = get_cached_bnode(*krcp);
 | |
| 		if (!bnode && can_alloc) {
 | |
| 			krc_this_cpu_unlock(*krcp, *flags);
 | |
| 
 | |
| 			// __GFP_NORETRY - allows a light-weight direct reclaim
 | |
| 			// what is OK from minimizing of fallback hitting point of
 | |
| 			// view. Apart of that it forbids any OOM invoking what is
 | |
| 			// also beneficial since we are about to release memory soon.
 | |
| 			//
 | |
| 			// __GFP_NOMEMALLOC - prevents from consuming of all the
 | |
| 			// memory reserves. Please note we have a fallback path.
 | |
| 			//
 | |
| 			// __GFP_NOWARN - it is supposed that an allocation can
 | |
| 			// be failed under low memory or high memory pressure
 | |
| 			// scenarios.
 | |
| 			bnode = (struct kvfree_rcu_bulk_data *)
 | |
| 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 | |
| 			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
 | |
| 		}
 | |
| 
 | |
| 		if (!bnode)
 | |
| 			return false;
 | |
| 
 | |
| 		// Initialize the new block and attach it.
 | |
| 		bnode->nr_records = 0;
 | |
| 		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
 | |
| 	}
 | |
| 
 | |
| 	// Finally insert and update the GP for this page.
 | |
| 	bnode->nr_records++;
 | |
| 	bnode->records[bnode->nr_records - 1] = ptr;
 | |
| 	get_state_synchronize_rcu_full(&bnode->gp_snap);
 | |
| 	atomic_inc(&(*krcp)->bulk_count[idx]);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart
 | |
| schedule_page_work_fn(struct hrtimer *t)
 | |
| {
 | |
| 	struct kfree_rcu_cpu *krcp =
 | |
| 		container_of(t, struct kfree_rcu_cpu, hrtimer);
 | |
| 
 | |
| 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| static void
 | |
| run_page_cache_worker(struct kfree_rcu_cpu *krcp)
 | |
| {
 | |
| 	// If cache disabled, bail out.
 | |
| 	if (!rcu_min_cached_objs)
 | |
| 		return;
 | |
| 
 | |
| 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
 | |
| 			!atomic_xchg(&krcp->work_in_progress, 1)) {
 | |
| 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
 | |
| 			queue_delayed_work(rcu_reclaim_wq,
 | |
| 				&krcp->page_cache_work,
 | |
| 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
 | |
| 		} else {
 | |
| 			hrtimer_setup(&krcp->hrtimer, schedule_page_work_fn, CLOCK_MONOTONIC,
 | |
| 				      HRTIMER_MODE_REL);
 | |
| 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init kfree_rcu_scheduler_running(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
 | |
| 
 | |
| 		if (need_offload_krc(krcp))
 | |
| 			schedule_delayed_monitor_work(krcp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue a request for lazy invocation of the appropriate free routine
 | |
|  * after a grace period.  Please note that three paths are maintained,
 | |
|  * two for the common case using arrays of pointers and a third one that
 | |
|  * is used only when the main paths cannot be used, for example, due to
 | |
|  * memory pressure.
 | |
|  *
 | |
|  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
 | |
|  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
 | |
|  * be free'd in workqueue context. This allows us to: batch requests together to
 | |
|  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
 | |
|  */
 | |
| void kvfree_call_rcu(struct rcu_head *head, void *ptr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kfree_rcu_cpu *krcp;
 | |
| 	bool success;
 | |
| 
 | |
| 	/*
 | |
| 	 * Please note there is a limitation for the head-less
 | |
| 	 * variant, that is why there is a clear rule for such
 | |
| 	 * objects: it can be used from might_sleep() context
 | |
| 	 * only. For other places please embed an rcu_head to
 | |
| 	 * your data.
 | |
| 	 */
 | |
| 	if (!head)
 | |
| 		might_sleep();
 | |
| 
 | |
| 	// Queue the object but don't yet schedule the batch.
 | |
| 	if (debug_rcu_head_queue(ptr)) {
 | |
| 		// Probable double kfree_rcu(), just leak.
 | |
| 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
 | |
| 			  __func__, head);
 | |
| 
 | |
| 		// Mark as success and leave.
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	kasan_record_aux_stack(ptr);
 | |
| 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
 | |
| 	if (!success) {
 | |
| 		run_page_cache_worker(krcp);
 | |
| 
 | |
| 		if (head == NULL)
 | |
| 			// Inline if kvfree_rcu(one_arg) call.
 | |
| 			goto unlock_return;
 | |
| 
 | |
| 		head->func = ptr;
 | |
| 		head->next = krcp->head;
 | |
| 		WRITE_ONCE(krcp->head, head);
 | |
| 		atomic_inc(&krcp->head_count);
 | |
| 
 | |
| 		// Take a snapshot for this krcp.
 | |
| 		krcp->head_gp_snap = get_state_synchronize_rcu();
 | |
| 		success = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The kvfree_rcu() caller considers the pointer freed at this point
 | |
| 	 * and likely removes any references to it. Since the actual slab
 | |
| 	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
 | |
| 	 * this object (no scanning or false positives reporting).
 | |
| 	 */
 | |
| 	kmemleak_ignore(ptr);
 | |
| 
 | |
| 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
 | |
| 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
 | |
| 		__schedule_delayed_monitor_work(krcp);
 | |
| 
 | |
| unlock_return:
 | |
| 	krc_this_cpu_unlock(krcp, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Inline kvfree() after synchronize_rcu(). We can do
 | |
| 	 * it from might_sleep() context only, so the current
 | |
| 	 * CPU can pass the QS state.
 | |
| 	 */
 | |
| 	if (!success) {
 | |
| 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
 | |
| 		synchronize_rcu();
 | |
| 		kvfree(ptr);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvfree_call_rcu);
 | |
| 
 | |
| /**
 | |
|  * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete.
 | |
|  *
 | |
|  * Note that a single argument of kvfree_rcu() call has a slow path that
 | |
|  * triggers synchronize_rcu() following by freeing a pointer. It is done
 | |
|  * before the return from the function. Therefore for any single-argument
 | |
|  * call that will result in a kfree() to a cache that is to be destroyed
 | |
|  * during module exit, it is developer's responsibility to ensure that all
 | |
|  * such calls have returned before the call to kmem_cache_destroy().
 | |
|  */
 | |
| void kvfree_rcu_barrier(void)
 | |
| {
 | |
| 	struct kfree_rcu_cpu_work *krwp;
 | |
| 	struct kfree_rcu_cpu *krcp;
 | |
| 	bool queued;
 | |
| 	int i, cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Firstly we detach objects and queue them over an RCU-batch
 | |
| 	 * for all CPUs. Finally queued works are flushed for each CPU.
 | |
| 	 *
 | |
| 	 * Please note. If there are outstanding batches for a particular
 | |
| 	 * CPU, those have to be finished first following by queuing a new.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		krcp = per_cpu_ptr(&krc, cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if this CPU has any objects which have been queued for a
 | |
| 		 * new GP completion. If not(means nothing to detach), we are done
 | |
| 		 * with it. If any batch is pending/running for this "krcp", below
 | |
| 		 * per-cpu flush_rcu_work() waits its completion(see last step).
 | |
| 		 */
 | |
| 		if (!need_offload_krc(krcp))
 | |
| 			continue;
 | |
| 
 | |
| 		while (1) {
 | |
| 			/*
 | |
| 			 * If we are not able to queue a new RCU work it means:
 | |
| 			 * - batches for this CPU are still in flight which should
 | |
| 			 *   be flushed first and then repeat;
 | |
| 			 * - no objects to detach, because of concurrency.
 | |
| 			 */
 | |
| 			queued = kvfree_rcu_queue_batch(krcp);
 | |
| 
 | |
| 			/*
 | |
| 			 * Bail out, if there is no need to offload this "krcp"
 | |
| 			 * anymore. As noted earlier it can run concurrently.
 | |
| 			 */
 | |
| 			if (queued || !need_offload_krc(krcp))
 | |
| 				break;
 | |
| 
 | |
| 			/* There are ongoing batches. */
 | |
| 			for (i = 0; i < KFREE_N_BATCHES; i++) {
 | |
| 				krwp = &(krcp->krw_arr[i]);
 | |
| 				flush_rcu_work(&krwp->rcu_work);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we guarantee that all objects are flushed.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		krcp = per_cpu_ptr(&krc, cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * A monitor work can drain ready to reclaim objects
 | |
| 		 * directly. Wait its completion if running or pending.
 | |
| 		 */
 | |
| 		cancel_delayed_work_sync(&krcp->monitor_work);
 | |
| 
 | |
| 		for (i = 0; i < KFREE_N_BATCHES; i++) {
 | |
| 			krwp = &(krcp->krw_arr[i]);
 | |
| 			flush_rcu_work(&krwp->rcu_work);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvfree_rcu_barrier);
 | |
| 
 | |
| static unsigned long
 | |
| kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long count = 0;
 | |
| 
 | |
| 	/* Snapshot count of all CPUs */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
 | |
| 
 | |
| 		count += krc_count(krcp);
 | |
| 		count += READ_ONCE(krcp->nr_bkv_objs);
 | |
| 		atomic_set(&krcp->backoff_page_cache_fill, 1);
 | |
| 	}
 | |
| 
 | |
| 	return count == 0 ? SHRINK_EMPTY : count;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	int cpu, freed = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		int count;
 | |
| 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
 | |
| 
 | |
| 		count = krc_count(krcp);
 | |
| 		count += drain_page_cache(krcp);
 | |
| 		kfree_rcu_monitor(&krcp->monitor_work.work);
 | |
| 
 | |
| 		sc->nr_to_scan -= count;
 | |
| 		freed += count;
 | |
| 
 | |
| 		if (sc->nr_to_scan <= 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return freed == 0 ? SHRINK_STOP : freed;
 | |
| }
 | |
| 
 | |
| void __init kvfree_rcu_init(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int i, j;
 | |
| 	struct shrinker *kfree_rcu_shrinker;
 | |
| 
 | |
| 	rcu_reclaim_wq = alloc_workqueue("kvfree_rcu_reclaim",
 | |
| 			WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
 | |
| 	WARN_ON(!rcu_reclaim_wq);
 | |
| 
 | |
| 	/* Clamp it to [0:100] seconds interval. */
 | |
| 	if (rcu_delay_page_cache_fill_msec < 0 ||
 | |
| 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
 | |
| 
 | |
| 		rcu_delay_page_cache_fill_msec =
 | |
| 			clamp(rcu_delay_page_cache_fill_msec, 0,
 | |
| 				(int) (100 * MSEC_PER_SEC));
 | |
| 
 | |
| 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
 | |
| 			rcu_delay_page_cache_fill_msec);
 | |
| 	}
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
 | |
| 
 | |
| 		for (i = 0; i < KFREE_N_BATCHES; i++) {
 | |
| 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
 | |
| 			krcp->krw_arr[i].krcp = krcp;
 | |
| 
 | |
| 			for (j = 0; j < FREE_N_CHANNELS; j++)
 | |
| 				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < FREE_N_CHANNELS; i++)
 | |
| 			INIT_LIST_HEAD(&krcp->bulk_head[i]);
 | |
| 
 | |
| 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
 | |
| 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
 | |
| 		krcp->initialized = true;
 | |
| 	}
 | |
| 
 | |
| 	kfree_rcu_shrinker = shrinker_alloc(0, "slab-kvfree-rcu");
 | |
| 	if (!kfree_rcu_shrinker) {
 | |
| 		pr_err("Failed to allocate kfree_rcu() shrinker!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
 | |
| 	kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
 | |
| 
 | |
| 	shrinker_register(kfree_rcu_shrinker);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_KVFREE_RCU_BATCHED */
 | |
| 
 |