mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 2619a6d413
			
		
	
	
		2619a6d413
		
	
	
	
	
		
			
			-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQSQHSd0lITzzeNWNm3h3BK/laaZPAUCaD2Y1wAKCRDh3BK/laaZ PFSHAP4q1+mOlQfZJPH/PFDwa+F0QW/uc3szXatS0888nxui/gEAsIeyyJlf+Mr8 /1JPXxCqcapRFw9xsS0zioiK54Elfww= =2KxA -----END PGP SIGNATURE----- Merge tag 'fuse-update-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse Pull fuse updates from Miklos Szeredi: - Remove tmp page copying in writeback path (Joanne). This removes ~300 lines and with that a lot of complexity related to avoiding reclaim related deadlock. The old mechanism is replaced with a mapping flag that tells the MM not to block reclaim waiting for writeback to complete. The MM parts have been reviewed/acked by respective maintainers. - Convert more code to handle large folios (Joanne). This still just adds the code to deal with large folios and does not enable them yet. - Allow invalidating all cached lookups atomically (Luis Henriques). This feature is useful for CernVMFS, which currently does this iteratively. - Align write prefaulting in fuse with generic one (Dave Hansen) - Fix race causing invalid data to be cached when setting attributes on different nodes of a distributed fs (Guang Yuan Wu) - Update documentation for passthrough (Chen Linxuan) - Add fdinfo about the device number associated with an opened /dev/fuse instance (Chen Linxuan) - Increase readdir buffer size (Miklos). This depends on a patch to VFS readdir code that was already merged through Christians tree. - Optimize io-uring request expiration (Joanne) - Misc cleanups * tag 'fuse-update-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse: (25 commits) fuse: increase readdir buffer size readdir: supply dir_context.count as readdir buffer size hint fuse: don't allow signals to interrupt getdents copying fuse: support large folios for writeback fuse: support large folios for readahead fuse: support large folios for queued writes fuse: support large folios for stores fuse: support large folios for symlinks fuse: support large folios for folio reads fuse: support large folios for writethrough writes fuse: refactor fuse_fill_write_pages() fuse: support large folios for retrieves fuse: support copying large folios fs: fuse: add dev id to /dev/fuse fdinfo docs: filesystems: add fuse-passthrough.rst MAINTAINERS: update filter of FUSE documentation fuse: fix race between concurrent setattrs from multiple nodes fuse: remove tmp folio for writebacks and internal rb tree mm: skip folio reclaim in legacy memcg contexts for deadlockable mappings fuse: optimize over-io-uring request expiration check ...
		
			
				
	
	
		
			7756 lines
		
	
	
	
		
			215 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7756 lines
		
	
	
	
		
			215 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | ||
| /*
 | ||
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | ||
|  *
 | ||
|  *  Swap reorganised 29.12.95, Stephen Tweedie.
 | ||
|  *  kswapd added: 7.1.96  sct
 | ||
|  *  Removed kswapd_ctl limits, and swap out as many pages as needed
 | ||
|  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 | ||
|  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 | ||
|  *  Multiqueue VM started 5.8.00, Rik van Riel.
 | ||
|  */
 | ||
| 
 | ||
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | ||
| 
 | ||
| #include <linux/mm.h>
 | ||
| #include <linux/sched/mm.h>
 | ||
| #include <linux/module.h>
 | ||
| #include <linux/gfp.h>
 | ||
| #include <linux/kernel_stat.h>
 | ||
| #include <linux/swap.h>
 | ||
| #include <linux/pagemap.h>
 | ||
| #include <linux/init.h>
 | ||
| #include <linux/highmem.h>
 | ||
| #include <linux/vmpressure.h>
 | ||
| #include <linux/vmstat.h>
 | ||
| #include <linux/file.h>
 | ||
| #include <linux/writeback.h>
 | ||
| #include <linux/blkdev.h>
 | ||
| #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
 | ||
| #include <linux/mm_inline.h>
 | ||
| #include <linux/backing-dev.h>
 | ||
| #include <linux/rmap.h>
 | ||
| #include <linux/topology.h>
 | ||
| #include <linux/cpu.h>
 | ||
| #include <linux/cpuset.h>
 | ||
| #include <linux/compaction.h>
 | ||
| #include <linux/notifier.h>
 | ||
| #include <linux/delay.h>
 | ||
| #include <linux/kthread.h>
 | ||
| #include <linux/freezer.h>
 | ||
| #include <linux/memcontrol.h>
 | ||
| #include <linux/migrate.h>
 | ||
| #include <linux/delayacct.h>
 | ||
| #include <linux/sysctl.h>
 | ||
| #include <linux/memory-tiers.h>
 | ||
| #include <linux/oom.h>
 | ||
| #include <linux/pagevec.h>
 | ||
| #include <linux/prefetch.h>
 | ||
| #include <linux/printk.h>
 | ||
| #include <linux/dax.h>
 | ||
| #include <linux/psi.h>
 | ||
| #include <linux/pagewalk.h>
 | ||
| #include <linux/shmem_fs.h>
 | ||
| #include <linux/ctype.h>
 | ||
| #include <linux/debugfs.h>
 | ||
| #include <linux/khugepaged.h>
 | ||
| #include <linux/rculist_nulls.h>
 | ||
| #include <linux/random.h>
 | ||
| #include <linux/mmu_notifier.h>
 | ||
| 
 | ||
| #include <asm/tlbflush.h>
 | ||
| #include <asm/div64.h>
 | ||
| 
 | ||
| #include <linux/swapops.h>
 | ||
| #include <linux/balloon_compaction.h>
 | ||
| #include <linux/sched/sysctl.h>
 | ||
| 
 | ||
| #include "internal.h"
 | ||
| #include "swap.h"
 | ||
| 
 | ||
| #define CREATE_TRACE_POINTS
 | ||
| #include <trace/events/vmscan.h>
 | ||
| 
 | ||
| struct scan_control {
 | ||
| 	/* How many pages shrink_list() should reclaim */
 | ||
| 	unsigned long nr_to_reclaim;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
 | ||
| 	 * are scanned.
 | ||
| 	 */
 | ||
| 	nodemask_t	*nodemask;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The memory cgroup that hit its limit and as a result is the
 | ||
| 	 * primary target of this reclaim invocation.
 | ||
| 	 */
 | ||
| 	struct mem_cgroup *target_mem_cgroup;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Scan pressure balancing between anon and file LRUs
 | ||
| 	 */
 | ||
| 	unsigned long	anon_cost;
 | ||
| 	unsigned long	file_cost;
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
 | ||
| 	int *proactive_swappiness;
 | ||
| #endif
 | ||
| 
 | ||
| 	/* Can active folios be deactivated as part of reclaim? */
 | ||
| #define DEACTIVATE_ANON 1
 | ||
| #define DEACTIVATE_FILE 2
 | ||
| 	unsigned int may_deactivate:2;
 | ||
| 	unsigned int force_deactivate:1;
 | ||
| 	unsigned int skipped_deactivate:1;
 | ||
| 
 | ||
| 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
 | ||
| 	unsigned int may_writepage:1;
 | ||
| 
 | ||
| 	/* Can mapped folios be reclaimed? */
 | ||
| 	unsigned int may_unmap:1;
 | ||
| 
 | ||
| 	/* Can folios be swapped as part of reclaim? */
 | ||
| 	unsigned int may_swap:1;
 | ||
| 
 | ||
| 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
 | ||
| 	unsigned int no_cache_trim_mode:1;
 | ||
| 
 | ||
| 	/* Has cache_trim_mode failed at least once? */
 | ||
| 	unsigned int cache_trim_mode_failed:1;
 | ||
| 
 | ||
| 	/* Proactive reclaim invoked by userspace through memory.reclaim */
 | ||
| 	unsigned int proactive:1;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Cgroup memory below memory.low is protected as long as we
 | ||
| 	 * don't threaten to OOM. If any cgroup is reclaimed at
 | ||
| 	 * reduced force or passed over entirely due to its memory.low
 | ||
| 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
 | ||
| 	 * result, then go back for one more cycle that reclaims the protected
 | ||
| 	 * memory (memcg_low_reclaim) to avert OOM.
 | ||
| 	 */
 | ||
| 	unsigned int memcg_low_reclaim:1;
 | ||
| 	unsigned int memcg_low_skipped:1;
 | ||
| 
 | ||
| 	/* Shared cgroup tree walk failed, rescan the whole tree */
 | ||
| 	unsigned int memcg_full_walk:1;
 | ||
| 
 | ||
| 	unsigned int hibernation_mode:1;
 | ||
| 
 | ||
| 	/* One of the zones is ready for compaction */
 | ||
| 	unsigned int compaction_ready:1;
 | ||
| 
 | ||
| 	/* There is easily reclaimable cold cache in the current node */
 | ||
| 	unsigned int cache_trim_mode:1;
 | ||
| 
 | ||
| 	/* The file folios on the current node are dangerously low */
 | ||
| 	unsigned int file_is_tiny:1;
 | ||
| 
 | ||
| 	/* Always discard instead of demoting to lower tier memory */
 | ||
| 	unsigned int no_demotion:1;
 | ||
| 
 | ||
| 	/* Allocation order */
 | ||
| 	s8 order;
 | ||
| 
 | ||
| 	/* Scan (total_size >> priority) pages at once */
 | ||
| 	s8 priority;
 | ||
| 
 | ||
| 	/* The highest zone to isolate folios for reclaim from */
 | ||
| 	s8 reclaim_idx;
 | ||
| 
 | ||
| 	/* This context's GFP mask */
 | ||
| 	gfp_t gfp_mask;
 | ||
| 
 | ||
| 	/* Incremented by the number of inactive pages that were scanned */
 | ||
| 	unsigned long nr_scanned;
 | ||
| 
 | ||
| 	/* Number of pages freed so far during a call to shrink_zones() */
 | ||
| 	unsigned long nr_reclaimed;
 | ||
| 
 | ||
| 	struct {
 | ||
| 		unsigned int dirty;
 | ||
| 		unsigned int unqueued_dirty;
 | ||
| 		unsigned int congested;
 | ||
| 		unsigned int writeback;
 | ||
| 		unsigned int immediate;
 | ||
| 		unsigned int file_taken;
 | ||
| 		unsigned int taken;
 | ||
| 	} nr;
 | ||
| 
 | ||
| 	/* for recording the reclaimed slab by now */
 | ||
| 	struct reclaim_state reclaim_state;
 | ||
| };
 | ||
| 
 | ||
| #ifdef ARCH_HAS_PREFETCHW
 | ||
| #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
 | ||
| 	do {								\
 | ||
| 		if ((_folio)->lru.prev != _base) {			\
 | ||
| 			struct folio *prev;				\
 | ||
| 									\
 | ||
| 			prev = lru_to_folio(&(_folio->lru));		\
 | ||
| 			prefetchw(&prev->_field);			\
 | ||
| 		}							\
 | ||
| 	} while (0)
 | ||
| #else
 | ||
| #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
 | ||
|  */
 | ||
| int vm_swappiness = 60;
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 
 | ||
| /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
 | ||
| static bool cgroup_reclaim(struct scan_control *sc)
 | ||
| {
 | ||
| 	return sc->target_mem_cgroup;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Returns true for reclaim on the root cgroup. This is true for direct
 | ||
|  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
 | ||
|  */
 | ||
| static bool root_reclaim(struct scan_control *sc)
 | ||
| {
 | ||
| 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 | ||
|  * @sc: scan_control in question
 | ||
|  *
 | ||
|  * The normal page dirty throttling mechanism in balance_dirty_pages() is
 | ||
|  * completely broken with the legacy memcg and direct stalling in
 | ||
|  * shrink_folio_list() is used for throttling instead, which lacks all the
 | ||
|  * niceties such as fairness, adaptive pausing, bandwidth proportional
 | ||
|  * allocation and configurability.
 | ||
|  *
 | ||
|  * This function tests whether the vmscan currently in progress can assume
 | ||
|  * that the normal dirty throttling mechanism is operational.
 | ||
|  */
 | ||
| static bool writeback_throttling_sane(struct scan_control *sc)
 | ||
| {
 | ||
| 	if (!cgroup_reclaim(sc))
 | ||
| 		return true;
 | ||
| #ifdef CONFIG_CGROUP_WRITEBACK
 | ||
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | ||
| 		return true;
 | ||
| #endif
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	if (sc->proactive && sc->proactive_swappiness)
 | ||
| 		return *sc->proactive_swappiness;
 | ||
| 	return mem_cgroup_swappiness(memcg);
 | ||
| }
 | ||
| #else
 | ||
| static bool cgroup_reclaim(struct scan_control *sc)
 | ||
| {
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| static bool root_reclaim(struct scan_control *sc)
 | ||
| {
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static bool writeback_throttling_sane(struct scan_control *sc)
 | ||
| {
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	return READ_ONCE(vm_swappiness);
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
 | ||
|  * and including the specified highidx
 | ||
|  * @zone: The current zone in the iterator
 | ||
|  * @pgdat: The pgdat which node_zones are being iterated
 | ||
|  * @idx: The index variable
 | ||
|  * @highidx: The index of the highest zone to return
 | ||
|  *
 | ||
|  * This macro iterates through all managed zones up to and including the specified highidx.
 | ||
|  * The zone iterator enters an invalid state after macro call and must be reinitialized
 | ||
|  * before it can be used again.
 | ||
|  */
 | ||
| #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\
 | ||
| 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\
 | ||
| 	    (idx) <= (highidx);					\
 | ||
| 	    (idx)++, (zone)++)					\
 | ||
| 		if (!managed_zone(zone))			\
 | ||
| 			continue;				\
 | ||
| 		else
 | ||
| 
 | ||
| static void set_task_reclaim_state(struct task_struct *task,
 | ||
| 				   struct reclaim_state *rs)
 | ||
| {
 | ||
| 	/* Check for an overwrite */
 | ||
| 	WARN_ON_ONCE(rs && task->reclaim_state);
 | ||
| 
 | ||
| 	/* Check for the nulling of an already-nulled member */
 | ||
| 	WARN_ON_ONCE(!rs && !task->reclaim_state);
 | ||
| 
 | ||
| 	task->reclaim_state = rs;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
 | ||
|  * scan_control->nr_reclaimed.
 | ||
|  */
 | ||
| static void flush_reclaim_state(struct scan_control *sc)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * Currently, reclaim_state->reclaimed includes three types of pages
 | ||
| 	 * freed outside of vmscan:
 | ||
| 	 * (1) Slab pages.
 | ||
| 	 * (2) Clean file pages from pruned inodes (on highmem systems).
 | ||
| 	 * (3) XFS freed buffer pages.
 | ||
| 	 *
 | ||
| 	 * For all of these cases, we cannot universally link the pages to a
 | ||
| 	 * single memcg. For example, a memcg-aware shrinker can free one object
 | ||
| 	 * charged to the target memcg, causing an entire page to be freed.
 | ||
| 	 * If we count the entire page as reclaimed from the memcg, we end up
 | ||
| 	 * overestimating the reclaimed amount (potentially under-reclaiming).
 | ||
| 	 *
 | ||
| 	 * Only count such pages for global reclaim to prevent under-reclaiming
 | ||
| 	 * from the target memcg; preventing unnecessary retries during memcg
 | ||
| 	 * charging and false positives from proactive reclaim.
 | ||
| 	 *
 | ||
| 	 * For uncommon cases where the freed pages were actually mostly
 | ||
| 	 * charged to the target memcg, we end up underestimating the reclaimed
 | ||
| 	 * amount. This should be fine. The freed pages will be uncharged
 | ||
| 	 * anyway, even if they are not counted here properly, and we will be
 | ||
| 	 * able to make forward progress in charging (which is usually in a
 | ||
| 	 * retry loop).
 | ||
| 	 *
 | ||
| 	 * We can go one step further, and report the uncharged objcg pages in
 | ||
| 	 * memcg reclaim, to make reporting more accurate and reduce
 | ||
| 	 * underestimation, but it's probably not worth the complexity for now.
 | ||
| 	 */
 | ||
| 	if (current->reclaim_state && root_reclaim(sc)) {
 | ||
| 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
 | ||
| 		current->reclaim_state->reclaimed = 0;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static bool can_demote(int nid, struct scan_control *sc,
 | ||
| 		       struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	int demotion_nid;
 | ||
| 
 | ||
| 	if (!numa_demotion_enabled)
 | ||
| 		return false;
 | ||
| 	if (sc && sc->no_demotion)
 | ||
| 		return false;
 | ||
| 
 | ||
| 	demotion_nid = next_demotion_node(nid);
 | ||
| 	if (demotion_nid == NUMA_NO_NODE)
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/* If demotion node isn't in the cgroup's mems_allowed, fall back */
 | ||
| 	return mem_cgroup_node_allowed(memcg, demotion_nid);
 | ||
| }
 | ||
| 
 | ||
| static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
 | ||
| 					  int nid,
 | ||
| 					  struct scan_control *sc)
 | ||
| {
 | ||
| 	if (memcg == NULL) {
 | ||
| 		/*
 | ||
| 		 * For non-memcg reclaim, is there
 | ||
| 		 * space in any swap device?
 | ||
| 		 */
 | ||
| 		if (get_nr_swap_pages() > 0)
 | ||
| 			return true;
 | ||
| 	} else {
 | ||
| 		/* Is the memcg below its swap limit? */
 | ||
| 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
 | ||
| 			return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The page can not be swapped.
 | ||
| 	 *
 | ||
| 	 * Can it be reclaimed from this node via demotion?
 | ||
| 	 */
 | ||
| 	return can_demote(nid, sc, memcg);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This misses isolated folios which are not accounted for to save counters.
 | ||
|  * As the data only determines if reclaim or compaction continues, it is
 | ||
|  * not expected that isolated folios will be a dominating factor.
 | ||
|  */
 | ||
| unsigned long zone_reclaimable_pages(struct zone *zone)
 | ||
| {
 | ||
| 	unsigned long nr;
 | ||
| 
 | ||
| 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 | ||
| 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 | ||
| 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
 | ||
| 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 | ||
| 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 | ||
| 	/*
 | ||
| 	 * If there are no reclaimable file-backed or anonymous pages,
 | ||
| 	 * ensure zones with sufficient free pages are not skipped.
 | ||
| 	 * This prevents zones like DMA32 from being ignored in reclaim
 | ||
| 	 * scenarios where they can still help alleviate memory pressure.
 | ||
| 	 */
 | ||
| 	if (nr == 0)
 | ||
| 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
 | ||
| 	return nr;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 | ||
|  * @lruvec: lru vector
 | ||
|  * @lru: lru to use
 | ||
|  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
 | ||
|  */
 | ||
| static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 | ||
| 				     int zone_idx)
 | ||
| {
 | ||
| 	unsigned long size = 0;
 | ||
| 	int zid;
 | ||
| 	struct zone *zone;
 | ||
| 
 | ||
| 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
 | ||
| 		if (!mem_cgroup_disabled())
 | ||
| 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 | ||
| 		else
 | ||
| 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 | ||
| 	}
 | ||
| 	return size;
 | ||
| }
 | ||
| 
 | ||
| static unsigned long drop_slab_node(int nid)
 | ||
| {
 | ||
| 	unsigned long freed = 0;
 | ||
| 	struct mem_cgroup *memcg = NULL;
 | ||
| 
 | ||
| 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 | ||
| 	do {
 | ||
| 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 | ||
| 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 | ||
| 
 | ||
| 	return freed;
 | ||
| }
 | ||
| 
 | ||
| void drop_slab(void)
 | ||
| {
 | ||
| 	int nid;
 | ||
| 	int shift = 0;
 | ||
| 	unsigned long freed;
 | ||
| 
 | ||
| 	do {
 | ||
| 		freed = 0;
 | ||
| 		for_each_online_node(nid) {
 | ||
| 			if (fatal_signal_pending(current))
 | ||
| 				return;
 | ||
| 
 | ||
| 			freed += drop_slab_node(nid);
 | ||
| 		}
 | ||
| 	} while ((freed >> shift++) > 1);
 | ||
| }
 | ||
| 
 | ||
| #define CHECK_RECLAIMER_OFFSET(type)					\
 | ||
| 	do {								\
 | ||
| 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
 | ||
| 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\
 | ||
| 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
 | ||
| 			     PGSCAN_##type - PGSCAN_KSWAPD);		\
 | ||
| 	} while (0)
 | ||
| 
 | ||
| static int reclaimer_offset(struct scan_control *sc)
 | ||
| {
 | ||
| 	CHECK_RECLAIMER_OFFSET(DIRECT);
 | ||
| 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
 | ||
| 	CHECK_RECLAIMER_OFFSET(PROACTIVE);
 | ||
| 
 | ||
| 	if (current_is_kswapd())
 | ||
| 		return 0;
 | ||
| 	if (current_is_khugepaged())
 | ||
| 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
 | ||
| 	if (sc->proactive)
 | ||
| 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
 | ||
| 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
 | ||
| }
 | ||
| 
 | ||
| static inline int is_page_cache_freeable(struct folio *folio)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * A freeable page cache folio is referenced only by the caller
 | ||
| 	 * that isolated the folio, the page cache and optional filesystem
 | ||
| 	 * private data at folio->private.
 | ||
| 	 */
 | ||
| 	return folio_ref_count(folio) - folio_test_private(folio) ==
 | ||
| 		1 + folio_nr_pages(folio);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * We detected a synchronous write error writing a folio out.  Probably
 | ||
|  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 | ||
|  * fsync(), msync() or close().
 | ||
|  *
 | ||
|  * The tricky part is that after writepage we cannot touch the mapping: nothing
 | ||
|  * prevents it from being freed up.  But we have a ref on the folio and once
 | ||
|  * that folio is locked, the mapping is pinned.
 | ||
|  *
 | ||
|  * We're allowed to run sleeping folio_lock() here because we know the caller has
 | ||
|  * __GFP_FS.
 | ||
|  */
 | ||
| static void handle_write_error(struct address_space *mapping,
 | ||
| 				struct folio *folio, int error)
 | ||
| {
 | ||
| 	folio_lock(folio);
 | ||
| 	if (folio_mapping(folio) == mapping)
 | ||
| 		mapping_set_error(mapping, error);
 | ||
| 	folio_unlock(folio);
 | ||
| }
 | ||
| 
 | ||
| static bool skip_throttle_noprogress(pg_data_t *pgdat)
 | ||
| {
 | ||
| 	int reclaimable = 0, write_pending = 0;
 | ||
| 	int i;
 | ||
| 	struct zone *zone;
 | ||
| 	/*
 | ||
| 	 * If kswapd is disabled, reschedule if necessary but do not
 | ||
| 	 * throttle as the system is likely near OOM.
 | ||
| 	 */
 | ||
| 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If there are a lot of dirty/writeback folios then do not
 | ||
| 	 * throttle as throttling will occur when the folios cycle
 | ||
| 	 * towards the end of the LRU if still under writeback.
 | ||
| 	 */
 | ||
| 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
 | ||
| 		reclaimable += zone_reclaimable_pages(zone);
 | ||
| 		write_pending += zone_page_state_snapshot(zone,
 | ||
| 						  NR_ZONE_WRITE_PENDING);
 | ||
| 	}
 | ||
| 	if (2 * write_pending <= reclaimable)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
 | ||
| {
 | ||
| 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
 | ||
| 	long timeout, ret;
 | ||
| 	DEFINE_WAIT(wait);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Do not throttle user workers, kthreads other than kswapd or
 | ||
| 	 * workqueues. They may be required for reclaim to make
 | ||
| 	 * forward progress (e.g. journalling workqueues or kthreads).
 | ||
| 	 */
 | ||
| 	if (!current_is_kswapd() &&
 | ||
| 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
 | ||
| 		cond_resched();
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * These figures are pulled out of thin air.
 | ||
| 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
 | ||
| 	 * parallel reclaimers which is a short-lived event so the timeout is
 | ||
| 	 * short. Failing to make progress or waiting on writeback are
 | ||
| 	 * potentially long-lived events so use a longer timeout. This is shaky
 | ||
| 	 * logic as a failure to make progress could be due to anything from
 | ||
| 	 * writeback to a slow device to excessive referenced folios at the tail
 | ||
| 	 * of the inactive LRU.
 | ||
| 	 */
 | ||
| 	switch(reason) {
 | ||
| 	case VMSCAN_THROTTLE_WRITEBACK:
 | ||
| 		timeout = HZ/10;
 | ||
| 
 | ||
| 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
 | ||
| 			WRITE_ONCE(pgdat->nr_reclaim_start,
 | ||
| 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
 | ||
| 		}
 | ||
| 
 | ||
| 		break;
 | ||
| 	case VMSCAN_THROTTLE_CONGESTED:
 | ||
| 		fallthrough;
 | ||
| 	case VMSCAN_THROTTLE_NOPROGRESS:
 | ||
| 		if (skip_throttle_noprogress(pgdat)) {
 | ||
| 			cond_resched();
 | ||
| 			return;
 | ||
| 		}
 | ||
| 
 | ||
| 		timeout = 1;
 | ||
| 
 | ||
| 		break;
 | ||
| 	case VMSCAN_THROTTLE_ISOLATED:
 | ||
| 		timeout = HZ/50;
 | ||
| 		break;
 | ||
| 	default:
 | ||
| 		WARN_ON_ONCE(1);
 | ||
| 		timeout = HZ;
 | ||
| 		break;
 | ||
| 	}
 | ||
| 
 | ||
| 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
 | ||
| 	ret = schedule_timeout(timeout);
 | ||
| 	finish_wait(wqh, &wait);
 | ||
| 
 | ||
| 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
 | ||
| 		atomic_dec(&pgdat->nr_writeback_throttled);
 | ||
| 
 | ||
| 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
 | ||
| 				jiffies_to_usecs(timeout - ret),
 | ||
| 				reason);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Account for folios written if tasks are throttled waiting on dirty
 | ||
|  * folios to clean. If enough folios have been cleaned since throttling
 | ||
|  * started then wakeup the throttled tasks.
 | ||
|  */
 | ||
| void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 | ||
| 							int nr_throttled)
 | ||
| {
 | ||
| 	unsigned long nr_written;
 | ||
| 
 | ||
| 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * This is an inaccurate read as the per-cpu deltas may not
 | ||
| 	 * be synchronised. However, given that the system is
 | ||
| 	 * writeback throttled, it is not worth taking the penalty
 | ||
| 	 * of getting an accurate count. At worst, the throttle
 | ||
| 	 * timeout guarantees forward progress.
 | ||
| 	 */
 | ||
| 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
 | ||
| 		READ_ONCE(pgdat->nr_reclaim_start);
 | ||
| 
 | ||
| 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
 | ||
| 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
 | ||
| }
 | ||
| 
 | ||
| /* possible outcome of pageout() */
 | ||
| typedef enum {
 | ||
| 	/* failed to write folio out, folio is locked */
 | ||
| 	PAGE_KEEP,
 | ||
| 	/* move folio to the active list, folio is locked */
 | ||
| 	PAGE_ACTIVATE,
 | ||
| 	/* folio has been sent to the disk successfully, folio is unlocked */
 | ||
| 	PAGE_SUCCESS,
 | ||
| 	/* folio is clean and locked */
 | ||
| 	PAGE_CLEAN,
 | ||
| } pageout_t;
 | ||
| 
 | ||
| /*
 | ||
|  * pageout is called by shrink_folio_list() for each dirty folio.
 | ||
|  */
 | ||
| static pageout_t pageout(struct folio *folio, struct address_space *mapping,
 | ||
| 			 struct swap_iocb **plug, struct list_head *folio_list)
 | ||
| {
 | ||
| 	int (*writeout)(struct folio *, struct writeback_control *);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We no longer attempt to writeback filesystem folios here, other
 | ||
| 	 * than tmpfs/shmem.  That's taken care of in page-writeback.
 | ||
| 	 * If we find a dirty filesystem folio at the end of the LRU list,
 | ||
| 	 * typically that means the filesystem is saturating the storage
 | ||
| 	 * with contiguous writes and telling it to write a folio here
 | ||
| 	 * would only make the situation worse by injecting an element
 | ||
| 	 * of random access.
 | ||
| 	 *
 | ||
| 	 * If the folio is swapcache, write it back even if that would
 | ||
| 	 * block, for some throttling. This happens by accident, because
 | ||
| 	 * swap_backing_dev_info is bust: it doesn't reflect the
 | ||
| 	 * congestion state of the swapdevs.  Easy to fix, if needed.
 | ||
| 	 */
 | ||
| 	if (!is_page_cache_freeable(folio))
 | ||
| 		return PAGE_KEEP;
 | ||
| 	if (!mapping) {
 | ||
| 		/*
 | ||
| 		 * Some data journaling orphaned folios can have
 | ||
| 		 * folio->mapping == NULL while being dirty with clean buffers.
 | ||
| 		 */
 | ||
| 		if (folio_test_private(folio)) {
 | ||
| 			if (try_to_free_buffers(folio)) {
 | ||
| 				folio_clear_dirty(folio);
 | ||
| 				pr_info("%s: orphaned folio\n", __func__);
 | ||
| 				return PAGE_CLEAN;
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return PAGE_KEEP;
 | ||
| 	}
 | ||
| 	if (shmem_mapping(mapping))
 | ||
| 		writeout = shmem_writeout;
 | ||
| 	else if (folio_test_anon(folio))
 | ||
| 		writeout = swap_writeout;
 | ||
| 	else
 | ||
| 		return PAGE_ACTIVATE;
 | ||
| 
 | ||
| 	if (folio_clear_dirty_for_io(folio)) {
 | ||
| 		int res;
 | ||
| 		struct writeback_control wbc = {
 | ||
| 			.sync_mode = WB_SYNC_NONE,
 | ||
| 			.nr_to_write = SWAP_CLUSTER_MAX,
 | ||
| 			.range_start = 0,
 | ||
| 			.range_end = LLONG_MAX,
 | ||
| 			.for_reclaim = 1,
 | ||
| 			.swap_plug = plug,
 | ||
| 		};
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * The large shmem folio can be split if CONFIG_THP_SWAP is
 | ||
| 		 * not enabled or contiguous swap entries are failed to
 | ||
| 		 * allocate.
 | ||
| 		 */
 | ||
| 		if (shmem_mapping(mapping) && folio_test_large(folio))
 | ||
| 			wbc.list = folio_list;
 | ||
| 
 | ||
| 		folio_set_reclaim(folio);
 | ||
| 		res = writeout(folio, &wbc);
 | ||
| 		if (res < 0)
 | ||
| 			handle_write_error(mapping, folio, res);
 | ||
| 		if (res == AOP_WRITEPAGE_ACTIVATE) {
 | ||
| 			folio_clear_reclaim(folio);
 | ||
| 			return PAGE_ACTIVATE;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!folio_test_writeback(folio)) {
 | ||
| 			/* synchronous write? */
 | ||
| 			folio_clear_reclaim(folio);
 | ||
| 		}
 | ||
| 		trace_mm_vmscan_write_folio(folio);
 | ||
| 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
 | ||
| 		return PAGE_SUCCESS;
 | ||
| 	}
 | ||
| 
 | ||
| 	return PAGE_CLEAN;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Same as remove_mapping, but if the folio is removed from the mapping, it
 | ||
|  * gets returned with a refcount of 0.
 | ||
|  */
 | ||
| static int __remove_mapping(struct address_space *mapping, struct folio *folio,
 | ||
| 			    bool reclaimed, struct mem_cgroup *target_memcg)
 | ||
| {
 | ||
| 	int refcount;
 | ||
| 	void *shadow = NULL;
 | ||
| 
 | ||
| 	BUG_ON(!folio_test_locked(folio));
 | ||
| 	BUG_ON(mapping != folio_mapping(folio));
 | ||
| 
 | ||
| 	if (!folio_test_swapcache(folio))
 | ||
| 		spin_lock(&mapping->host->i_lock);
 | ||
| 	xa_lock_irq(&mapping->i_pages);
 | ||
| 	/*
 | ||
| 	 * The non racy check for a busy folio.
 | ||
| 	 *
 | ||
| 	 * Must be careful with the order of the tests. When someone has
 | ||
| 	 * a ref to the folio, it may be possible that they dirty it then
 | ||
| 	 * drop the reference. So if the dirty flag is tested before the
 | ||
| 	 * refcount here, then the following race may occur:
 | ||
| 	 *
 | ||
| 	 * get_user_pages(&page);
 | ||
| 	 * [user mapping goes away]
 | ||
| 	 * write_to(page);
 | ||
| 	 *				!folio_test_dirty(folio)    [good]
 | ||
| 	 * folio_set_dirty(folio);
 | ||
| 	 * folio_put(folio);
 | ||
| 	 *				!refcount(folio)   [good, discard it]
 | ||
| 	 *
 | ||
| 	 * [oops, our write_to data is lost]
 | ||
| 	 *
 | ||
| 	 * Reversing the order of the tests ensures such a situation cannot
 | ||
| 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
 | ||
| 	 * load is not satisfied before that of folio->_refcount.
 | ||
| 	 *
 | ||
| 	 * Note that if the dirty flag is always set via folio_mark_dirty,
 | ||
| 	 * and thus under the i_pages lock, then this ordering is not required.
 | ||
| 	 */
 | ||
| 	refcount = 1 + folio_nr_pages(folio);
 | ||
| 	if (!folio_ref_freeze(folio, refcount))
 | ||
| 		goto cannot_free;
 | ||
| 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
 | ||
| 	if (unlikely(folio_test_dirty(folio))) {
 | ||
| 		folio_ref_unfreeze(folio, refcount);
 | ||
| 		goto cannot_free;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (folio_test_swapcache(folio)) {
 | ||
| 		swp_entry_t swap = folio->swap;
 | ||
| 
 | ||
| 		if (reclaimed && !mapping_exiting(mapping))
 | ||
| 			shadow = workingset_eviction(folio, target_memcg);
 | ||
| 		__delete_from_swap_cache(folio, swap, shadow);
 | ||
| 		memcg1_swapout(folio, swap);
 | ||
| 		xa_unlock_irq(&mapping->i_pages);
 | ||
| 		put_swap_folio(folio, swap);
 | ||
| 	} else {
 | ||
| 		void (*free_folio)(struct folio *);
 | ||
| 
 | ||
| 		free_folio = mapping->a_ops->free_folio;
 | ||
| 		/*
 | ||
| 		 * Remember a shadow entry for reclaimed file cache in
 | ||
| 		 * order to detect refaults, thus thrashing, later on.
 | ||
| 		 *
 | ||
| 		 * But don't store shadows in an address space that is
 | ||
| 		 * already exiting.  This is not just an optimization,
 | ||
| 		 * inode reclaim needs to empty out the radix tree or
 | ||
| 		 * the nodes are lost.  Don't plant shadows behind its
 | ||
| 		 * back.
 | ||
| 		 *
 | ||
| 		 * We also don't store shadows for DAX mappings because the
 | ||
| 		 * only page cache folios found in these are zero pages
 | ||
| 		 * covering holes, and because we don't want to mix DAX
 | ||
| 		 * exceptional entries and shadow exceptional entries in the
 | ||
| 		 * same address_space.
 | ||
| 		 */
 | ||
| 		if (reclaimed && folio_is_file_lru(folio) &&
 | ||
| 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 | ||
| 			shadow = workingset_eviction(folio, target_memcg);
 | ||
| 		__filemap_remove_folio(folio, shadow);
 | ||
| 		xa_unlock_irq(&mapping->i_pages);
 | ||
| 		if (mapping_shrinkable(mapping))
 | ||
| 			inode_add_lru(mapping->host);
 | ||
| 		spin_unlock(&mapping->host->i_lock);
 | ||
| 
 | ||
| 		if (free_folio)
 | ||
| 			free_folio(folio);
 | ||
| 	}
 | ||
| 
 | ||
| 	return 1;
 | ||
| 
 | ||
| cannot_free:
 | ||
| 	xa_unlock_irq(&mapping->i_pages);
 | ||
| 	if (!folio_test_swapcache(folio))
 | ||
| 		spin_unlock(&mapping->host->i_lock);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * remove_mapping() - Attempt to remove a folio from its mapping.
 | ||
|  * @mapping: The address space.
 | ||
|  * @folio: The folio to remove.
 | ||
|  *
 | ||
|  * If the folio is dirty, under writeback or if someone else has a ref
 | ||
|  * on it, removal will fail.
 | ||
|  * Return: The number of pages removed from the mapping.  0 if the folio
 | ||
|  * could not be removed.
 | ||
|  * Context: The caller should have a single refcount on the folio and
 | ||
|  * hold its lock.
 | ||
|  */
 | ||
| long remove_mapping(struct address_space *mapping, struct folio *folio)
 | ||
| {
 | ||
| 	if (__remove_mapping(mapping, folio, false, NULL)) {
 | ||
| 		/*
 | ||
| 		 * Unfreezing the refcount with 1 effectively
 | ||
| 		 * drops the pagecache ref for us without requiring another
 | ||
| 		 * atomic operation.
 | ||
| 		 */
 | ||
| 		folio_ref_unfreeze(folio, 1);
 | ||
| 		return folio_nr_pages(folio);
 | ||
| 	}
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
 | ||
|  * @folio: Folio to be returned to an LRU list.
 | ||
|  *
 | ||
|  * Add previously isolated @folio to appropriate LRU list.
 | ||
|  * The folio may still be unevictable for other reasons.
 | ||
|  *
 | ||
|  * Context: lru_lock must not be held, interrupts must be enabled.
 | ||
|  */
 | ||
| void folio_putback_lru(struct folio *folio)
 | ||
| {
 | ||
| 	folio_add_lru(folio);
 | ||
| 	folio_put(folio);		/* drop ref from isolate */
 | ||
| }
 | ||
| 
 | ||
| enum folio_references {
 | ||
| 	FOLIOREF_RECLAIM,
 | ||
| 	FOLIOREF_RECLAIM_CLEAN,
 | ||
| 	FOLIOREF_KEEP,
 | ||
| 	FOLIOREF_ACTIVATE,
 | ||
| };
 | ||
| 
 | ||
| #ifdef CONFIG_LRU_GEN
 | ||
| /*
 | ||
|  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
 | ||
|  * needs to be done by taking the folio off the LRU list and then adding it back
 | ||
|  * with PG_active set. In contrast, the aging (page table walk) path uses
 | ||
|  * folio_update_gen().
 | ||
|  */
 | ||
| static bool lru_gen_set_refs(struct folio *folio)
 | ||
| {
 | ||
| 	/* see the comment on LRU_REFS_FLAGS */
 | ||
| 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
 | ||
| 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset));
 | ||
| 	return true;
 | ||
| }
 | ||
| #else
 | ||
| static bool lru_gen_set_refs(struct folio *folio)
 | ||
| {
 | ||
| 	return false;
 | ||
| }
 | ||
| #endif /* CONFIG_LRU_GEN */
 | ||
| 
 | ||
| static enum folio_references folio_check_references(struct folio *folio,
 | ||
| 						  struct scan_control *sc)
 | ||
| {
 | ||
| 	int referenced_ptes, referenced_folio;
 | ||
| 	unsigned long vm_flags;
 | ||
| 
 | ||
| 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
 | ||
| 					   &vm_flags);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
 | ||
| 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
 | ||
| 	 */
 | ||
| 	if (vm_flags & VM_LOCKED)
 | ||
| 		return FOLIOREF_ACTIVATE;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * There are two cases to consider.
 | ||
| 	 * 1) Rmap lock contention: rotate.
 | ||
| 	 * 2) Skip the non-shared swapbacked folio mapped solely by
 | ||
| 	 *    the exiting or OOM-reaped process.
 | ||
| 	 */
 | ||
| 	if (referenced_ptes == -1)
 | ||
| 		return FOLIOREF_KEEP;
 | ||
| 
 | ||
| 	if (lru_gen_enabled()) {
 | ||
| 		if (!referenced_ptes)
 | ||
| 			return FOLIOREF_RECLAIM;
 | ||
| 
 | ||
| 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
 | ||
| 	}
 | ||
| 
 | ||
| 	referenced_folio = folio_test_clear_referenced(folio);
 | ||
| 
 | ||
| 	if (referenced_ptes) {
 | ||
| 		/*
 | ||
| 		 * All mapped folios start out with page table
 | ||
| 		 * references from the instantiating fault, so we need
 | ||
| 		 * to look twice if a mapped file/anon folio is used more
 | ||
| 		 * than once.
 | ||
| 		 *
 | ||
| 		 * Mark it and spare it for another trip around the
 | ||
| 		 * inactive list.  Another page table reference will
 | ||
| 		 * lead to its activation.
 | ||
| 		 *
 | ||
| 		 * Note: the mark is set for activated folios as well
 | ||
| 		 * so that recently deactivated but used folios are
 | ||
| 		 * quickly recovered.
 | ||
| 		 */
 | ||
| 		folio_set_referenced(folio);
 | ||
| 
 | ||
| 		if (referenced_folio || referenced_ptes > 1)
 | ||
| 			return FOLIOREF_ACTIVATE;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Activate file-backed executable folios after first usage.
 | ||
| 		 */
 | ||
| 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
 | ||
| 			return FOLIOREF_ACTIVATE;
 | ||
| 
 | ||
| 		return FOLIOREF_KEEP;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Reclaim if clean, defer dirty folios to writeback */
 | ||
| 	if (referenced_folio && folio_is_file_lru(folio))
 | ||
| 		return FOLIOREF_RECLAIM_CLEAN;
 | ||
| 
 | ||
| 	return FOLIOREF_RECLAIM;
 | ||
| }
 | ||
| 
 | ||
| /* Check if a folio is dirty or under writeback */
 | ||
| static void folio_check_dirty_writeback(struct folio *folio,
 | ||
| 				       bool *dirty, bool *writeback)
 | ||
| {
 | ||
| 	struct address_space *mapping;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Anonymous folios are not handled by flushers and must be written
 | ||
| 	 * from reclaim context. Do not stall reclaim based on them.
 | ||
| 	 * MADV_FREE anonymous folios are put into inactive file list too.
 | ||
| 	 * They could be mistakenly treated as file lru. So further anon
 | ||
| 	 * test is needed.
 | ||
| 	 */
 | ||
| 	if (!folio_is_file_lru(folio) ||
 | ||
| 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
 | ||
| 		*dirty = false;
 | ||
| 		*writeback = false;
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* By default assume that the folio flags are accurate */
 | ||
| 	*dirty = folio_test_dirty(folio);
 | ||
| 	*writeback = folio_test_writeback(folio);
 | ||
| 
 | ||
| 	/* Verify dirty/writeback state if the filesystem supports it */
 | ||
| 	if (!folio_test_private(folio))
 | ||
| 		return;
 | ||
| 
 | ||
| 	mapping = folio_mapping(folio);
 | ||
| 	if (mapping && mapping->a_ops->is_dirty_writeback)
 | ||
| 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
 | ||
| }
 | ||
| 
 | ||
| struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
 | ||
| {
 | ||
| 	struct folio *dst;
 | ||
| 	nodemask_t *allowed_mask;
 | ||
| 	struct migration_target_control *mtc;
 | ||
| 
 | ||
| 	mtc = (struct migration_target_control *)private;
 | ||
| 
 | ||
| 	allowed_mask = mtc->nmask;
 | ||
| 	/*
 | ||
| 	 * make sure we allocate from the target node first also trying to
 | ||
| 	 * demote or reclaim pages from the target node via kswapd if we are
 | ||
| 	 * low on free memory on target node. If we don't do this and if
 | ||
| 	 * we have free memory on the slower(lower) memtier, we would start
 | ||
| 	 * allocating pages from slower(lower) memory tiers without even forcing
 | ||
| 	 * a demotion of cold pages from the target memtier. This can result
 | ||
| 	 * in the kernel placing hot pages in slower(lower) memory tiers.
 | ||
| 	 */
 | ||
| 	mtc->nmask = NULL;
 | ||
| 	mtc->gfp_mask |= __GFP_THISNODE;
 | ||
| 	dst = alloc_migration_target(src, (unsigned long)mtc);
 | ||
| 	if (dst)
 | ||
| 		return dst;
 | ||
| 
 | ||
| 	mtc->gfp_mask &= ~__GFP_THISNODE;
 | ||
| 	mtc->nmask = allowed_mask;
 | ||
| 
 | ||
| 	return alloc_migration_target(src, (unsigned long)mtc);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Take folios on @demote_folios and attempt to demote them to another node.
 | ||
|  * Folios which are not demoted are left on @demote_folios.
 | ||
|  */
 | ||
| static unsigned int demote_folio_list(struct list_head *demote_folios,
 | ||
| 				     struct pglist_data *pgdat)
 | ||
| {
 | ||
| 	int target_nid = next_demotion_node(pgdat->node_id);
 | ||
| 	unsigned int nr_succeeded;
 | ||
| 	nodemask_t allowed_mask;
 | ||
| 
 | ||
| 	struct migration_target_control mtc = {
 | ||
| 		/*
 | ||
| 		 * Allocate from 'node', or fail quickly and quietly.
 | ||
| 		 * When this happens, 'page' will likely just be discarded
 | ||
| 		 * instead of migrated.
 | ||
| 		 */
 | ||
| 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
 | ||
| 			__GFP_NOMEMALLOC | GFP_NOWAIT,
 | ||
| 		.nid = target_nid,
 | ||
| 		.nmask = &allowed_mask,
 | ||
| 		.reason = MR_DEMOTION,
 | ||
| 	};
 | ||
| 
 | ||
| 	if (list_empty(demote_folios))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (target_nid == NUMA_NO_NODE)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	node_get_allowed_targets(pgdat, &allowed_mask);
 | ||
| 
 | ||
| 	/* Demotion ignores all cpuset and mempolicy settings */
 | ||
| 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
 | ||
| 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
 | ||
| 		      &nr_succeeded);
 | ||
| 
 | ||
| 	return nr_succeeded;
 | ||
| }
 | ||
| 
 | ||
| static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
 | ||
| {
 | ||
| 	if (gfp_mask & __GFP_FS)
 | ||
| 		return true;
 | ||
| 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
 | ||
| 		return false;
 | ||
| 	/*
 | ||
| 	 * We can "enter_fs" for swap-cache with only __GFP_IO
 | ||
| 	 * providing this isn't SWP_FS_OPS.
 | ||
| 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
 | ||
| 	 * but that will never affect SWP_FS_OPS, so the data_race
 | ||
| 	 * is safe.
 | ||
| 	 */
 | ||
| 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * shrink_folio_list() returns the number of reclaimed pages
 | ||
|  */
 | ||
| static unsigned int shrink_folio_list(struct list_head *folio_list,
 | ||
| 		struct pglist_data *pgdat, struct scan_control *sc,
 | ||
| 		struct reclaim_stat *stat, bool ignore_references,
 | ||
| 		struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	struct folio_batch free_folios;
 | ||
| 	LIST_HEAD(ret_folios);
 | ||
| 	LIST_HEAD(demote_folios);
 | ||
| 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
 | ||
| 	unsigned int pgactivate = 0;
 | ||
| 	bool do_demote_pass;
 | ||
| 	struct swap_iocb *plug = NULL;
 | ||
| 
 | ||
| 	folio_batch_init(&free_folios);
 | ||
| 	memset(stat, 0, sizeof(*stat));
 | ||
| 	cond_resched();
 | ||
| 	do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
 | ||
| 
 | ||
| retry:
 | ||
| 	while (!list_empty(folio_list)) {
 | ||
| 		struct address_space *mapping;
 | ||
| 		struct folio *folio;
 | ||
| 		enum folio_references references = FOLIOREF_RECLAIM;
 | ||
| 		bool dirty, writeback;
 | ||
| 		unsigned int nr_pages;
 | ||
| 
 | ||
| 		cond_resched();
 | ||
| 
 | ||
| 		folio = lru_to_folio(folio_list);
 | ||
| 		list_del(&folio->lru);
 | ||
| 
 | ||
| 		if (!folio_trylock(folio))
 | ||
| 			goto keep;
 | ||
| 
 | ||
| 		if (folio_contain_hwpoisoned_page(folio)) {
 | ||
| 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
 | ||
| 			folio_unlock(folio);
 | ||
| 			folio_put(folio);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
 | ||
| 
 | ||
| 		nr_pages = folio_nr_pages(folio);
 | ||
| 
 | ||
| 		/* Account the number of base pages */
 | ||
| 		sc->nr_scanned += nr_pages;
 | ||
| 
 | ||
| 		if (unlikely(!folio_evictable(folio)))
 | ||
| 			goto activate_locked;
 | ||
| 
 | ||
| 		if (!sc->may_unmap && folio_mapped(folio))
 | ||
| 			goto keep_locked;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * The number of dirty pages determines if a node is marked
 | ||
| 		 * reclaim_congested. kswapd will stall and start writing
 | ||
| 		 * folios if the tail of the LRU is all dirty unqueued folios.
 | ||
| 		 */
 | ||
| 		folio_check_dirty_writeback(folio, &dirty, &writeback);
 | ||
| 		if (dirty || writeback)
 | ||
| 			stat->nr_dirty += nr_pages;
 | ||
| 
 | ||
| 		if (dirty && !writeback)
 | ||
| 			stat->nr_unqueued_dirty += nr_pages;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Treat this folio as congested if folios are cycling
 | ||
| 		 * through the LRU so quickly that the folios marked
 | ||
| 		 * for immediate reclaim are making it to the end of
 | ||
| 		 * the LRU a second time.
 | ||
| 		 */
 | ||
| 		if (writeback && folio_test_reclaim(folio))
 | ||
| 			stat->nr_congested += nr_pages;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If a folio at the tail of the LRU is under writeback, there
 | ||
| 		 * are three cases to consider.
 | ||
| 		 *
 | ||
| 		 * 1) If reclaim is encountering an excessive number
 | ||
| 		 *    of folios under writeback and this folio has both
 | ||
| 		 *    the writeback and reclaim flags set, then it
 | ||
| 		 *    indicates that folios are being queued for I/O but
 | ||
| 		 *    are being recycled through the LRU before the I/O
 | ||
| 		 *    can complete. Waiting on the folio itself risks an
 | ||
| 		 *    indefinite stall if it is impossible to writeback
 | ||
| 		 *    the folio due to I/O error or disconnected storage
 | ||
| 		 *    so instead note that the LRU is being scanned too
 | ||
| 		 *    quickly and the caller can stall after the folio
 | ||
| 		 *    list has been processed.
 | ||
| 		 *
 | ||
| 		 * 2) Global or new memcg reclaim encounters a folio that is
 | ||
| 		 *    not marked for immediate reclaim, or the caller does not
 | ||
| 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
 | ||
| 		 *    not to fs), or the folio belongs to a mapping where
 | ||
| 		 *    waiting on writeback during reclaim may lead to a deadlock.
 | ||
| 		 *    In this case mark the folio for immediate reclaim and
 | ||
| 		 *    continue scanning.
 | ||
| 		 *
 | ||
| 		 *    Require may_enter_fs() because we would wait on fs, which
 | ||
| 		 *    may not have submitted I/O yet. And the loop driver might
 | ||
| 		 *    enter reclaim, and deadlock if it waits on a folio for
 | ||
| 		 *    which it is needed to do the write (loop masks off
 | ||
| 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
 | ||
| 		 *    would probably show more reasons.
 | ||
| 		 *
 | ||
| 		 * 3) Legacy memcg encounters a folio that already has the
 | ||
| 		 *    reclaim flag set. memcg does not have any dirty folio
 | ||
| 		 *    throttling so we could easily OOM just because too many
 | ||
| 		 *    folios are in writeback and there is nothing else to
 | ||
| 		 *    reclaim. Wait for the writeback to complete.
 | ||
| 		 *
 | ||
| 		 * In cases 1) and 2) we activate the folios to get them out of
 | ||
| 		 * the way while we continue scanning for clean folios on the
 | ||
| 		 * inactive list and refilling from the active list. The
 | ||
| 		 * observation here is that waiting for disk writes is more
 | ||
| 		 * expensive than potentially causing reloads down the line.
 | ||
| 		 * Since they're marked for immediate reclaim, they won't put
 | ||
| 		 * memory pressure on the cache working set any longer than it
 | ||
| 		 * takes to write them to disk.
 | ||
| 		 */
 | ||
| 		if (folio_test_writeback(folio)) {
 | ||
| 			mapping = folio_mapping(folio);
 | ||
| 
 | ||
| 			/* Case 1 above */
 | ||
| 			if (current_is_kswapd() &&
 | ||
| 			    folio_test_reclaim(folio) &&
 | ||
| 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
 | ||
| 				stat->nr_immediate += nr_pages;
 | ||
| 				goto activate_locked;
 | ||
| 
 | ||
| 			/* Case 2 above */
 | ||
| 			} else if (writeback_throttling_sane(sc) ||
 | ||
| 			    !folio_test_reclaim(folio) ||
 | ||
| 			    !may_enter_fs(folio, sc->gfp_mask) ||
 | ||
| 			    (mapping &&
 | ||
| 			     mapping_writeback_may_deadlock_on_reclaim(mapping))) {
 | ||
| 				/*
 | ||
| 				 * This is slightly racy -
 | ||
| 				 * folio_end_writeback() might have
 | ||
| 				 * just cleared the reclaim flag, then
 | ||
| 				 * setting the reclaim flag here ends up
 | ||
| 				 * interpreted as the readahead flag - but
 | ||
| 				 * that does not matter enough to care.
 | ||
| 				 * What we do want is for this folio to
 | ||
| 				 * have the reclaim flag set next time
 | ||
| 				 * memcg reclaim reaches the tests above,
 | ||
| 				 * so it will then wait for writeback to
 | ||
| 				 * avoid OOM; and it's also appropriate
 | ||
| 				 * in global reclaim.
 | ||
| 				 */
 | ||
| 				folio_set_reclaim(folio);
 | ||
| 				stat->nr_writeback += nr_pages;
 | ||
| 				goto activate_locked;
 | ||
| 
 | ||
| 			/* Case 3 above */
 | ||
| 			} else {
 | ||
| 				folio_unlock(folio);
 | ||
| 				folio_wait_writeback(folio);
 | ||
| 				/* then go back and try same folio again */
 | ||
| 				list_add_tail(&folio->lru, folio_list);
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!ignore_references)
 | ||
| 			references = folio_check_references(folio, sc);
 | ||
| 
 | ||
| 		switch (references) {
 | ||
| 		case FOLIOREF_ACTIVATE:
 | ||
| 			goto activate_locked;
 | ||
| 		case FOLIOREF_KEEP:
 | ||
| 			stat->nr_ref_keep += nr_pages;
 | ||
| 			goto keep_locked;
 | ||
| 		case FOLIOREF_RECLAIM:
 | ||
| 		case FOLIOREF_RECLAIM_CLEAN:
 | ||
| 			; /* try to reclaim the folio below */
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Before reclaiming the folio, try to relocate
 | ||
| 		 * its contents to another node.
 | ||
| 		 */
 | ||
| 		if (do_demote_pass &&
 | ||
| 		    (thp_migration_supported() || !folio_test_large(folio))) {
 | ||
| 			list_add(&folio->lru, &demote_folios);
 | ||
| 			folio_unlock(folio);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Anonymous process memory has backing store?
 | ||
| 		 * Try to allocate it some swap space here.
 | ||
| 		 * Lazyfree folio could be freed directly
 | ||
| 		 */
 | ||
| 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
 | ||
| 			if (!folio_test_swapcache(folio)) {
 | ||
| 				if (!(sc->gfp_mask & __GFP_IO))
 | ||
| 					goto keep_locked;
 | ||
| 				if (folio_maybe_dma_pinned(folio))
 | ||
| 					goto keep_locked;
 | ||
| 				if (folio_test_large(folio)) {
 | ||
| 					/* cannot split folio, skip it */
 | ||
| 					if (!can_split_folio(folio, 1, NULL))
 | ||
| 						goto activate_locked;
 | ||
| 					/*
 | ||
| 					 * Split partially mapped folios right away.
 | ||
| 					 * We can free the unmapped pages without IO.
 | ||
| 					 */
 | ||
| 					if (data_race(!list_empty(&folio->_deferred_list) &&
 | ||
| 					    folio_test_partially_mapped(folio)) &&
 | ||
| 					    split_folio_to_list(folio, folio_list))
 | ||
| 						goto activate_locked;
 | ||
| 				}
 | ||
| 				if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) {
 | ||
| 					int __maybe_unused order = folio_order(folio);
 | ||
| 
 | ||
| 					if (!folio_test_large(folio))
 | ||
| 						goto activate_locked_split;
 | ||
| 					/* Fallback to swap normal pages */
 | ||
| 					if (split_folio_to_list(folio, folio_list))
 | ||
| 						goto activate_locked;
 | ||
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | ||
| 					if (nr_pages >= HPAGE_PMD_NR) {
 | ||
| 						count_memcg_folio_events(folio,
 | ||
| 							THP_SWPOUT_FALLBACK, 1);
 | ||
| 						count_vm_event(THP_SWPOUT_FALLBACK);
 | ||
| 					}
 | ||
| #endif
 | ||
| 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
 | ||
| 					if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN))
 | ||
| 						goto activate_locked_split;
 | ||
| 				}
 | ||
| 				/*
 | ||
| 				 * Normally the folio will be dirtied in unmap because its
 | ||
| 				 * pte should be dirty. A special case is MADV_FREE page. The
 | ||
| 				 * page's pte could have dirty bit cleared but the folio's
 | ||
| 				 * SwapBacked flag is still set because clearing the dirty bit
 | ||
| 				 * and SwapBacked flag has no lock protected. For such folio,
 | ||
| 				 * unmap will not set dirty bit for it, so folio reclaim will
 | ||
| 				 * not write the folio out. This can cause data corruption when
 | ||
| 				 * the folio is swapped in later. Always setting the dirty flag
 | ||
| 				 * for the folio solves the problem.
 | ||
| 				 */
 | ||
| 				folio_mark_dirty(folio);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If the folio was split above, the tail pages will make
 | ||
| 		 * their own pass through this function and be accounted
 | ||
| 		 * then.
 | ||
| 		 */
 | ||
| 		if ((nr_pages > 1) && !folio_test_large(folio)) {
 | ||
| 			sc->nr_scanned -= (nr_pages - 1);
 | ||
| 			nr_pages = 1;
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * The folio is mapped into the page tables of one or more
 | ||
| 		 * processes. Try to unmap it here.
 | ||
| 		 */
 | ||
| 		if (folio_mapped(folio)) {
 | ||
| 			enum ttu_flags flags = TTU_BATCH_FLUSH;
 | ||
| 			bool was_swapbacked = folio_test_swapbacked(folio);
 | ||
| 
 | ||
| 			if (folio_test_pmd_mappable(folio))
 | ||
| 				flags |= TTU_SPLIT_HUGE_PMD;
 | ||
| 			/*
 | ||
| 			 * Without TTU_SYNC, try_to_unmap will only begin to
 | ||
| 			 * hold PTL from the first present PTE within a large
 | ||
| 			 * folio. Some initial PTEs might be skipped due to
 | ||
| 			 * races with parallel PTE writes in which PTEs can be
 | ||
| 			 * cleared temporarily before being written new present
 | ||
| 			 * values. This will lead to a large folio is still
 | ||
| 			 * mapped while some subpages have been partially
 | ||
| 			 * unmapped after try_to_unmap; TTU_SYNC helps
 | ||
| 			 * try_to_unmap acquire PTL from the first PTE,
 | ||
| 			 * eliminating the influence of temporary PTE values.
 | ||
| 			 */
 | ||
| 			if (folio_test_large(folio))
 | ||
| 				flags |= TTU_SYNC;
 | ||
| 
 | ||
| 			try_to_unmap(folio, flags);
 | ||
| 			if (folio_mapped(folio)) {
 | ||
| 				stat->nr_unmap_fail += nr_pages;
 | ||
| 				if (!was_swapbacked &&
 | ||
| 				    folio_test_swapbacked(folio))
 | ||
| 					stat->nr_lazyfree_fail += nr_pages;
 | ||
| 				goto activate_locked;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Folio is unmapped now so it cannot be newly pinned anymore.
 | ||
| 		 * No point in trying to reclaim folio if it is pinned.
 | ||
| 		 * Furthermore we don't want to reclaim underlying fs metadata
 | ||
| 		 * if the folio is pinned and thus potentially modified by the
 | ||
| 		 * pinning process as that may upset the filesystem.
 | ||
| 		 */
 | ||
| 		if (folio_maybe_dma_pinned(folio))
 | ||
| 			goto activate_locked;
 | ||
| 
 | ||
| 		mapping = folio_mapping(folio);
 | ||
| 		if (folio_test_dirty(folio)) {
 | ||
| 			/*
 | ||
| 			 * Only kswapd can writeback filesystem folios
 | ||
| 			 * to avoid risk of stack overflow. But avoid
 | ||
| 			 * injecting inefficient single-folio I/O into
 | ||
| 			 * flusher writeback as much as possible: only
 | ||
| 			 * write folios when we've encountered many
 | ||
| 			 * dirty folios, and when we've already scanned
 | ||
| 			 * the rest of the LRU for clean folios and see
 | ||
| 			 * the same dirty folios again (with the reclaim
 | ||
| 			 * flag set).
 | ||
| 			 */
 | ||
| 			if (folio_is_file_lru(folio) &&
 | ||
| 			    (!current_is_kswapd() ||
 | ||
| 			     !folio_test_reclaim(folio) ||
 | ||
| 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
 | ||
| 				/*
 | ||
| 				 * Immediately reclaim when written back.
 | ||
| 				 * Similar in principle to folio_deactivate()
 | ||
| 				 * except we already have the folio isolated
 | ||
| 				 * and know it's dirty
 | ||
| 				 */
 | ||
| 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
 | ||
| 						nr_pages);
 | ||
| 				folio_set_reclaim(folio);
 | ||
| 
 | ||
| 				goto activate_locked;
 | ||
| 			}
 | ||
| 
 | ||
| 			if (references == FOLIOREF_RECLAIM_CLEAN)
 | ||
| 				goto keep_locked;
 | ||
| 			if (!may_enter_fs(folio, sc->gfp_mask))
 | ||
| 				goto keep_locked;
 | ||
| 			if (!sc->may_writepage)
 | ||
| 				goto keep_locked;
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * Folio is dirty. Flush the TLB if a writable entry
 | ||
| 			 * potentially exists to avoid CPU writes after I/O
 | ||
| 			 * starts and then write it out here.
 | ||
| 			 */
 | ||
| 			try_to_unmap_flush_dirty();
 | ||
| 			switch (pageout(folio, mapping, &plug, folio_list)) {
 | ||
| 			case PAGE_KEEP:
 | ||
| 				goto keep_locked;
 | ||
| 			case PAGE_ACTIVATE:
 | ||
| 				/*
 | ||
| 				 * If shmem folio is split when writeback to swap,
 | ||
| 				 * the tail pages will make their own pass through
 | ||
| 				 * this function and be accounted then.
 | ||
| 				 */
 | ||
| 				if (nr_pages > 1 && !folio_test_large(folio)) {
 | ||
| 					sc->nr_scanned -= (nr_pages - 1);
 | ||
| 					nr_pages = 1;
 | ||
| 				}
 | ||
| 				goto activate_locked;
 | ||
| 			case PAGE_SUCCESS:
 | ||
| 				if (nr_pages > 1 && !folio_test_large(folio)) {
 | ||
| 					sc->nr_scanned -= (nr_pages - 1);
 | ||
| 					nr_pages = 1;
 | ||
| 				}
 | ||
| 				stat->nr_pageout += nr_pages;
 | ||
| 
 | ||
| 				if (folio_test_writeback(folio))
 | ||
| 					goto keep;
 | ||
| 				if (folio_test_dirty(folio))
 | ||
| 					goto keep;
 | ||
| 
 | ||
| 				/*
 | ||
| 				 * A synchronous write - probably a ramdisk.  Go
 | ||
| 				 * ahead and try to reclaim the folio.
 | ||
| 				 */
 | ||
| 				if (!folio_trylock(folio))
 | ||
| 					goto keep;
 | ||
| 				if (folio_test_dirty(folio) ||
 | ||
| 				    folio_test_writeback(folio))
 | ||
| 					goto keep_locked;
 | ||
| 				mapping = folio_mapping(folio);
 | ||
| 				fallthrough;
 | ||
| 			case PAGE_CLEAN:
 | ||
| 				; /* try to free the folio below */
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If the folio has buffers, try to free the buffer
 | ||
| 		 * mappings associated with this folio. If we succeed
 | ||
| 		 * we try to free the folio as well.
 | ||
| 		 *
 | ||
| 		 * We do this even if the folio is dirty.
 | ||
| 		 * filemap_release_folio() does not perform I/O, but it
 | ||
| 		 * is possible for a folio to have the dirty flag set,
 | ||
| 		 * but it is actually clean (all its buffers are clean).
 | ||
| 		 * This happens if the buffers were written out directly,
 | ||
| 		 * with submit_bh(). ext3 will do this, as well as
 | ||
| 		 * the blockdev mapping.  filemap_release_folio() will
 | ||
| 		 * discover that cleanness and will drop the buffers
 | ||
| 		 * and mark the folio clean - it can be freed.
 | ||
| 		 *
 | ||
| 		 * Rarely, folios can have buffers and no ->mapping.
 | ||
| 		 * These are the folios which were not successfully
 | ||
| 		 * invalidated in truncate_cleanup_folio().  We try to
 | ||
| 		 * drop those buffers here and if that worked, and the
 | ||
| 		 * folio is no longer mapped into process address space
 | ||
| 		 * (refcount == 1) it can be freed.  Otherwise, leave
 | ||
| 		 * the folio on the LRU so it is swappable.
 | ||
| 		 */
 | ||
| 		if (folio_needs_release(folio)) {
 | ||
| 			if (!filemap_release_folio(folio, sc->gfp_mask))
 | ||
| 				goto activate_locked;
 | ||
| 			if (!mapping && folio_ref_count(folio) == 1) {
 | ||
| 				folio_unlock(folio);
 | ||
| 				if (folio_put_testzero(folio))
 | ||
| 					goto free_it;
 | ||
| 				else {
 | ||
| 					/*
 | ||
| 					 * rare race with speculative reference.
 | ||
| 					 * the speculative reference will free
 | ||
| 					 * this folio shortly, so we may
 | ||
| 					 * increment nr_reclaimed here (and
 | ||
| 					 * leave it off the LRU).
 | ||
| 					 */
 | ||
| 					nr_reclaimed += nr_pages;
 | ||
| 					continue;
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
 | ||
| 			/* follow __remove_mapping for reference */
 | ||
| 			if (!folio_ref_freeze(folio, 1))
 | ||
| 				goto keep_locked;
 | ||
| 			/*
 | ||
| 			 * The folio has only one reference left, which is
 | ||
| 			 * from the isolation. After the caller puts the
 | ||
| 			 * folio back on the lru and drops the reference, the
 | ||
| 			 * folio will be freed anyway. It doesn't matter
 | ||
| 			 * which lru it goes on. So we don't bother checking
 | ||
| 			 * the dirty flag here.
 | ||
| 			 */
 | ||
| 			count_vm_events(PGLAZYFREED, nr_pages);
 | ||
| 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
 | ||
| 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
 | ||
| 							 sc->target_mem_cgroup))
 | ||
| 			goto keep_locked;
 | ||
| 
 | ||
| 		folio_unlock(folio);
 | ||
| free_it:
 | ||
| 		/*
 | ||
| 		 * Folio may get swapped out as a whole, need to account
 | ||
| 		 * all pages in it.
 | ||
| 		 */
 | ||
| 		nr_reclaimed += nr_pages;
 | ||
| 
 | ||
| 		folio_unqueue_deferred_split(folio);
 | ||
| 		if (folio_batch_add(&free_folios, folio) == 0) {
 | ||
| 			mem_cgroup_uncharge_folios(&free_folios);
 | ||
| 			try_to_unmap_flush();
 | ||
| 			free_unref_folios(&free_folios);
 | ||
| 		}
 | ||
| 		continue;
 | ||
| 
 | ||
| activate_locked_split:
 | ||
| 		/*
 | ||
| 		 * The tail pages that are failed to add into swap cache
 | ||
| 		 * reach here.  Fixup nr_scanned and nr_pages.
 | ||
| 		 */
 | ||
| 		if (nr_pages > 1) {
 | ||
| 			sc->nr_scanned -= (nr_pages - 1);
 | ||
| 			nr_pages = 1;
 | ||
| 		}
 | ||
| activate_locked:
 | ||
| 		/* Not a candidate for swapping, so reclaim swap space. */
 | ||
| 		if (folio_test_swapcache(folio) &&
 | ||
| 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
 | ||
| 			folio_free_swap(folio);
 | ||
| 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
 | ||
| 		if (!folio_test_mlocked(folio)) {
 | ||
| 			int type = folio_is_file_lru(folio);
 | ||
| 			folio_set_active(folio);
 | ||
| 			stat->nr_activate[type] += nr_pages;
 | ||
| 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
 | ||
| 		}
 | ||
| keep_locked:
 | ||
| 		folio_unlock(folio);
 | ||
| keep:
 | ||
| 		list_add(&folio->lru, &ret_folios);
 | ||
| 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
 | ||
| 				folio_test_unevictable(folio), folio);
 | ||
| 	}
 | ||
| 	/* 'folio_list' is always empty here */
 | ||
| 
 | ||
| 	/* Migrate folios selected for demotion */
 | ||
| 	nr_demoted = demote_folio_list(&demote_folios, pgdat);
 | ||
| 	nr_reclaimed += nr_demoted;
 | ||
| 	stat->nr_demoted += nr_demoted;
 | ||
| 	/* Folios that could not be demoted are still in @demote_folios */
 | ||
| 	if (!list_empty(&demote_folios)) {
 | ||
| 		/* Folios which weren't demoted go back on @folio_list */
 | ||
| 		list_splice_init(&demote_folios, folio_list);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * goto retry to reclaim the undemoted folios in folio_list if
 | ||
| 		 * desired.
 | ||
| 		 *
 | ||
| 		 * Reclaiming directly from top tier nodes is not often desired
 | ||
| 		 * due to it breaking the LRU ordering: in general memory
 | ||
| 		 * should be reclaimed from lower tier nodes and demoted from
 | ||
| 		 * top tier nodes.
 | ||
| 		 *
 | ||
| 		 * However, disabling reclaim from top tier nodes entirely
 | ||
| 		 * would cause ooms in edge scenarios where lower tier memory
 | ||
| 		 * is unreclaimable for whatever reason, eg memory being
 | ||
| 		 * mlocked or too hot to reclaim. We can disable reclaim
 | ||
| 		 * from top tier nodes in proactive reclaim though as that is
 | ||
| 		 * not real memory pressure.
 | ||
| 		 */
 | ||
| 		if (!sc->proactive) {
 | ||
| 			do_demote_pass = false;
 | ||
| 			goto retry;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
 | ||
| 
 | ||
| 	mem_cgroup_uncharge_folios(&free_folios);
 | ||
| 	try_to_unmap_flush();
 | ||
| 	free_unref_folios(&free_folios);
 | ||
| 
 | ||
| 	list_splice(&ret_folios, folio_list);
 | ||
| 	count_vm_events(PGACTIVATE, pgactivate);
 | ||
| 
 | ||
| 	if (plug)
 | ||
| 		swap_write_unplug(plug);
 | ||
| 	return nr_reclaimed;
 | ||
| }
 | ||
| 
 | ||
| unsigned int reclaim_clean_pages_from_list(struct zone *zone,
 | ||
| 					   struct list_head *folio_list)
 | ||
| {
 | ||
| 	struct scan_control sc = {
 | ||
| 		.gfp_mask = GFP_KERNEL,
 | ||
| 		.may_unmap = 1,
 | ||
| 	};
 | ||
| 	struct reclaim_stat stat;
 | ||
| 	unsigned int nr_reclaimed;
 | ||
| 	struct folio *folio, *next;
 | ||
| 	LIST_HEAD(clean_folios);
 | ||
| 	unsigned int noreclaim_flag;
 | ||
| 
 | ||
| 	list_for_each_entry_safe(folio, next, folio_list, lru) {
 | ||
| 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
 | ||
| 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
 | ||
| 		    !folio_test_unevictable(folio)) {
 | ||
| 			folio_clear_active(folio);
 | ||
| 			list_move(&folio->lru, &clean_folios);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We should be safe here since we are only dealing with file pages and
 | ||
| 	 * we are not kswapd and therefore cannot write dirty file pages. But
 | ||
| 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
 | ||
| 	 * change in the future.
 | ||
| 	 */
 | ||
| 	noreclaim_flag = memalloc_noreclaim_save();
 | ||
| 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
 | ||
| 					&stat, true, NULL);
 | ||
| 	memalloc_noreclaim_restore(noreclaim_flag);
 | ||
| 
 | ||
| 	list_splice(&clean_folios, folio_list);
 | ||
| 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
 | ||
| 			    -(long)nr_reclaimed);
 | ||
| 	/*
 | ||
| 	 * Since lazyfree pages are isolated from file LRU from the beginning,
 | ||
| 	 * they will rotate back to anonymous LRU in the end if it failed to
 | ||
| 	 * discard so isolated count will be mismatched.
 | ||
| 	 * Compensate the isolated count for both LRU lists.
 | ||
| 	 */
 | ||
| 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
 | ||
| 			    stat.nr_lazyfree_fail);
 | ||
| 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
 | ||
| 			    -(long)stat.nr_lazyfree_fail);
 | ||
| 	return nr_reclaimed;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Update LRU sizes after isolating pages. The LRU size updates must
 | ||
|  * be complete before mem_cgroup_update_lru_size due to a sanity check.
 | ||
|  */
 | ||
| static __always_inline void update_lru_sizes(struct lruvec *lruvec,
 | ||
| 			enum lru_list lru, unsigned long *nr_zone_taken)
 | ||
| {
 | ||
| 	int zid;
 | ||
| 
 | ||
| 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | ||
| 		if (!nr_zone_taken[zid])
 | ||
| 			continue;
 | ||
| 
 | ||
| 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
 | ||
| 	}
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
 | ||
|  *
 | ||
|  * lruvec->lru_lock is heavily contended.  Some of the functions that
 | ||
|  * shrink the lists perform better by taking out a batch of pages
 | ||
|  * and working on them outside the LRU lock.
 | ||
|  *
 | ||
|  * For pagecache intensive workloads, this function is the hottest
 | ||
|  * spot in the kernel (apart from copy_*_user functions).
 | ||
|  *
 | ||
|  * Lru_lock must be held before calling this function.
 | ||
|  *
 | ||
|  * @nr_to_scan:	The number of eligible pages to look through on the list.
 | ||
|  * @lruvec:	The LRU vector to pull pages from.
 | ||
|  * @dst:	The temp list to put pages on to.
 | ||
|  * @nr_scanned:	The number of pages that were scanned.
 | ||
|  * @sc:		The scan_control struct for this reclaim session
 | ||
|  * @lru:	LRU list id for isolating
 | ||
|  *
 | ||
|  * returns how many pages were moved onto *@dst.
 | ||
|  */
 | ||
| static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
 | ||
| 		struct lruvec *lruvec, struct list_head *dst,
 | ||
| 		unsigned long *nr_scanned, struct scan_control *sc,
 | ||
| 		enum lru_list lru)
 | ||
| {
 | ||
| 	struct list_head *src = &lruvec->lists[lru];
 | ||
| 	unsigned long nr_taken = 0;
 | ||
| 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
 | ||
| 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
 | ||
| 	unsigned long skipped = 0, total_scan = 0, scan = 0;
 | ||
| 	unsigned long nr_pages;
 | ||
| 	unsigned long max_nr_skipped = 0;
 | ||
| 	LIST_HEAD(folios_skipped);
 | ||
| 
 | ||
| 	while (scan < nr_to_scan && !list_empty(src)) {
 | ||
| 		struct list_head *move_to = src;
 | ||
| 		struct folio *folio;
 | ||
| 
 | ||
| 		folio = lru_to_folio(src);
 | ||
| 		prefetchw_prev_lru_folio(folio, src, flags);
 | ||
| 
 | ||
| 		nr_pages = folio_nr_pages(folio);
 | ||
| 		total_scan += nr_pages;
 | ||
| 
 | ||
| 		/* Using max_nr_skipped to prevent hard LOCKUP*/
 | ||
| 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
 | ||
| 		    (folio_zonenum(folio) > sc->reclaim_idx)) {
 | ||
| 			nr_skipped[folio_zonenum(folio)] += nr_pages;
 | ||
| 			move_to = &folios_skipped;
 | ||
| 			max_nr_skipped++;
 | ||
| 			goto move;
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Do not count skipped folios because that makes the function
 | ||
| 		 * return with no isolated folios if the LRU mostly contains
 | ||
| 		 * ineligible folios.  This causes the VM to not reclaim any
 | ||
| 		 * folios, triggering a premature OOM.
 | ||
| 		 * Account all pages in a folio.
 | ||
| 		 */
 | ||
| 		scan += nr_pages;
 | ||
| 
 | ||
| 		if (!folio_test_lru(folio))
 | ||
| 			goto move;
 | ||
| 		if (!sc->may_unmap && folio_mapped(folio))
 | ||
| 			goto move;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Be careful not to clear the lru flag until after we're
 | ||
| 		 * sure the folio is not being freed elsewhere -- the
 | ||
| 		 * folio release code relies on it.
 | ||
| 		 */
 | ||
| 		if (unlikely(!folio_try_get(folio)))
 | ||
| 			goto move;
 | ||
| 
 | ||
| 		if (!folio_test_clear_lru(folio)) {
 | ||
| 			/* Another thread is already isolating this folio */
 | ||
| 			folio_put(folio);
 | ||
| 			goto move;
 | ||
| 		}
 | ||
| 
 | ||
| 		nr_taken += nr_pages;
 | ||
| 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
 | ||
| 		move_to = dst;
 | ||
| move:
 | ||
| 		list_move(&folio->lru, move_to);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Splice any skipped folios to the start of the LRU list. Note that
 | ||
| 	 * this disrupts the LRU order when reclaiming for lower zones but
 | ||
| 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
 | ||
| 	 * scanning would soon rescan the same folios to skip and waste lots
 | ||
| 	 * of cpu cycles.
 | ||
| 	 */
 | ||
| 	if (!list_empty(&folios_skipped)) {
 | ||
| 		int zid;
 | ||
| 
 | ||
| 		list_splice(&folios_skipped, src);
 | ||
| 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | ||
| 			if (!nr_skipped[zid])
 | ||
| 				continue;
 | ||
| 
 | ||
| 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
 | ||
| 			skipped += nr_skipped[zid];
 | ||
| 		}
 | ||
| 	}
 | ||
| 	*nr_scanned = total_scan;
 | ||
| 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
 | ||
| 				    total_scan, skipped, nr_taken, lru);
 | ||
| 	update_lru_sizes(lruvec, lru, nr_zone_taken);
 | ||
| 	return nr_taken;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
 | ||
|  * @folio: Folio to isolate from its LRU list.
 | ||
|  *
 | ||
|  * Isolate a @folio from an LRU list and adjust the vmstat statistic
 | ||
|  * corresponding to whatever LRU list the folio was on.
 | ||
|  *
 | ||
|  * The folio will have its LRU flag cleared.  If it was found on the
 | ||
|  * active list, it will have the Active flag set.  If it was found on the
 | ||
|  * unevictable list, it will have the Unevictable flag set.  These flags
 | ||
|  * may need to be cleared by the caller before letting the page go.
 | ||
|  *
 | ||
|  * Context:
 | ||
|  *
 | ||
|  * (1) Must be called with an elevated refcount on the folio. This is a
 | ||
|  *     fundamental difference from isolate_lru_folios() (which is called
 | ||
|  *     without a stable reference).
 | ||
|  * (2) The lru_lock must not be held.
 | ||
|  * (3) Interrupts must be enabled.
 | ||
|  *
 | ||
|  * Return: true if the folio was removed from an LRU list.
 | ||
|  * false if the folio was not on an LRU list.
 | ||
|  */
 | ||
| bool folio_isolate_lru(struct folio *folio)
 | ||
| {
 | ||
| 	bool ret = false;
 | ||
| 
 | ||
| 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
 | ||
| 
 | ||
| 	if (folio_test_clear_lru(folio)) {
 | ||
| 		struct lruvec *lruvec;
 | ||
| 
 | ||
| 		folio_get(folio);
 | ||
| 		lruvec = folio_lruvec_lock_irq(folio);
 | ||
| 		lruvec_del_folio(lruvec, folio);
 | ||
| 		unlock_page_lruvec_irq(lruvec);
 | ||
| 		ret = true;
 | ||
| 	}
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 | ||
|  * then get rescheduled. When there are massive number of tasks doing page
 | ||
|  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 | ||
|  * the LRU list will go small and be scanned faster than necessary, leading to
 | ||
|  * unnecessary swapping, thrashing and OOM.
 | ||
|  */
 | ||
| static bool too_many_isolated(struct pglist_data *pgdat, int file,
 | ||
| 		struct scan_control *sc)
 | ||
| {
 | ||
| 	unsigned long inactive, isolated;
 | ||
| 	bool too_many;
 | ||
| 
 | ||
| 	if (current_is_kswapd())
 | ||
| 		return false;
 | ||
| 
 | ||
| 	if (!writeback_throttling_sane(sc))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	if (file) {
 | ||
| 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
 | ||
| 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
 | ||
| 	} else {
 | ||
| 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
 | ||
| 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
 | ||
| 	 * won't get blocked by normal direct-reclaimers, forming a circular
 | ||
| 	 * deadlock.
 | ||
| 	 */
 | ||
| 	if (gfp_has_io_fs(sc->gfp_mask))
 | ||
| 		inactive >>= 3;
 | ||
| 
 | ||
| 	too_many = isolated > inactive;
 | ||
| 
 | ||
| 	/* Wake up tasks throttled due to too_many_isolated. */
 | ||
| 	if (!too_many)
 | ||
| 		wake_throttle_isolated(pgdat);
 | ||
| 
 | ||
| 	return too_many;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
 | ||
|  *
 | ||
|  * Returns the number of pages moved to the given lruvec.
 | ||
|  */
 | ||
| static unsigned int move_folios_to_lru(struct lruvec *lruvec,
 | ||
| 		struct list_head *list)
 | ||
| {
 | ||
| 	int nr_pages, nr_moved = 0;
 | ||
| 	struct folio_batch free_folios;
 | ||
| 
 | ||
| 	folio_batch_init(&free_folios);
 | ||
| 	while (!list_empty(list)) {
 | ||
| 		struct folio *folio = lru_to_folio(list);
 | ||
| 
 | ||
| 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 | ||
| 		list_del(&folio->lru);
 | ||
| 		if (unlikely(!folio_evictable(folio))) {
 | ||
| 			spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 			folio_putback_lru(folio);
 | ||
| 			spin_lock_irq(&lruvec->lru_lock);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * The folio_set_lru needs to be kept here for list integrity.
 | ||
| 		 * Otherwise:
 | ||
| 		 *   #0 move_folios_to_lru             #1 release_pages
 | ||
| 		 *   if (!folio_put_testzero())
 | ||
| 		 *				      if (folio_put_testzero())
 | ||
| 		 *				        !lru //skip lru_lock
 | ||
| 		 *     folio_set_lru()
 | ||
| 		 *     list_add(&folio->lru,)
 | ||
| 		 *                                        list_add(&folio->lru,)
 | ||
| 		 */
 | ||
| 		folio_set_lru(folio);
 | ||
| 
 | ||
| 		if (unlikely(folio_put_testzero(folio))) {
 | ||
| 			__folio_clear_lru_flags(folio);
 | ||
| 
 | ||
| 			folio_unqueue_deferred_split(folio);
 | ||
| 			if (folio_batch_add(&free_folios, folio) == 0) {
 | ||
| 				spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 				mem_cgroup_uncharge_folios(&free_folios);
 | ||
| 				free_unref_folios(&free_folios);
 | ||
| 				spin_lock_irq(&lruvec->lru_lock);
 | ||
| 			}
 | ||
| 
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * All pages were isolated from the same lruvec (and isolation
 | ||
| 		 * inhibits memcg migration).
 | ||
| 		 */
 | ||
| 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
 | ||
| 		lruvec_add_folio(lruvec, folio);
 | ||
| 		nr_pages = folio_nr_pages(folio);
 | ||
| 		nr_moved += nr_pages;
 | ||
| 		if (folio_test_active(folio))
 | ||
| 			workingset_age_nonresident(lruvec, nr_pages);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (free_folios.nr) {
 | ||
| 		spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 		mem_cgroup_uncharge_folios(&free_folios);
 | ||
| 		free_unref_folios(&free_folios);
 | ||
| 		spin_lock_irq(&lruvec->lru_lock);
 | ||
| 	}
 | ||
| 
 | ||
| 	return nr_moved;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
 | ||
|  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
 | ||
|  * we should not throttle.  Otherwise it is safe to do so.
 | ||
|  */
 | ||
| static int current_may_throttle(void)
 | ||
| {
 | ||
| 	return !(current->flags & PF_LOCAL_THROTTLE);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
 | ||
|  * of reclaimed pages
 | ||
|  */
 | ||
| static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
 | ||
| 		struct lruvec *lruvec, struct scan_control *sc,
 | ||
| 		enum lru_list lru)
 | ||
| {
 | ||
| 	LIST_HEAD(folio_list);
 | ||
| 	unsigned long nr_scanned;
 | ||
| 	unsigned int nr_reclaimed = 0;
 | ||
| 	unsigned long nr_taken;
 | ||
| 	struct reclaim_stat stat;
 | ||
| 	bool file = is_file_lru(lru);
 | ||
| 	enum vm_event_item item;
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 | ||
| 	bool stalled = false;
 | ||
| 
 | ||
| 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
 | ||
| 		if (stalled)
 | ||
| 			return 0;
 | ||
| 
 | ||
| 		/* wait a bit for the reclaimer. */
 | ||
| 		stalled = true;
 | ||
| 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 | ||
| 
 | ||
| 		/* We are about to die and free our memory. Return now. */
 | ||
| 		if (fatal_signal_pending(current))
 | ||
| 			return SWAP_CLUSTER_MAX;
 | ||
| 	}
 | ||
| 
 | ||
| 	lru_add_drain();
 | ||
| 
 | ||
| 	spin_lock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
 | ||
| 				     &nr_scanned, sc, lru);
 | ||
| 
 | ||
| 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
 | ||
| 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
 | ||
| 	if (!cgroup_reclaim(sc))
 | ||
| 		__count_vm_events(item, nr_scanned);
 | ||
| 	count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
 | ||
| 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
 | ||
| 
 | ||
| 	spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	if (nr_taken == 0)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
 | ||
| 					 lruvec_memcg(lruvec));
 | ||
| 
 | ||
| 	spin_lock_irq(&lruvec->lru_lock);
 | ||
| 	move_folios_to_lru(lruvec, &folio_list);
 | ||
| 
 | ||
| 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
 | ||
| 					stat.nr_demoted);
 | ||
| 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
 | ||
| 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
 | ||
| 	if (!cgroup_reclaim(sc))
 | ||
| 		__count_vm_events(item, nr_reclaimed);
 | ||
| 	count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
 | ||
| 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
 | ||
| 	spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If dirty folios are scanned that are not queued for IO, it
 | ||
| 	 * implies that flushers are not doing their job. This can
 | ||
| 	 * happen when memory pressure pushes dirty folios to the end of
 | ||
| 	 * the LRU before the dirty limits are breached and the dirty
 | ||
| 	 * data has expired. It can also happen when the proportion of
 | ||
| 	 * dirty folios grows not through writes but through memory
 | ||
| 	 * pressure reclaiming all the clean cache. And in some cases,
 | ||
| 	 * the flushers simply cannot keep up with the allocation
 | ||
| 	 * rate. Nudge the flusher threads in case they are asleep.
 | ||
| 	 */
 | ||
| 	if (stat.nr_unqueued_dirty == nr_taken) {
 | ||
| 		wakeup_flusher_threads(WB_REASON_VMSCAN);
 | ||
| 		/*
 | ||
| 		 * For cgroupv1 dirty throttling is achieved by waking up
 | ||
| 		 * the kernel flusher here and later waiting on folios
 | ||
| 		 * which are in writeback to finish (see shrink_folio_list()).
 | ||
| 		 *
 | ||
| 		 * Flusher may not be able to issue writeback quickly
 | ||
| 		 * enough for cgroupv1 writeback throttling to work
 | ||
| 		 * on a large system.
 | ||
| 		 */
 | ||
| 		if (!writeback_throttling_sane(sc))
 | ||
| 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
 | ||
| 	}
 | ||
| 
 | ||
| 	sc->nr.dirty += stat.nr_dirty;
 | ||
| 	sc->nr.congested += stat.nr_congested;
 | ||
| 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
 | ||
| 	sc->nr.writeback += stat.nr_writeback;
 | ||
| 	sc->nr.immediate += stat.nr_immediate;
 | ||
| 	sc->nr.taken += nr_taken;
 | ||
| 	if (file)
 | ||
| 		sc->nr.file_taken += nr_taken;
 | ||
| 
 | ||
| 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
 | ||
| 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
 | ||
| 	return nr_reclaimed;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
 | ||
|  *
 | ||
|  * We move them the other way if the folio is referenced by one or more
 | ||
|  * processes.
 | ||
|  *
 | ||
|  * If the folios are mostly unmapped, the processing is fast and it is
 | ||
|  * appropriate to hold lru_lock across the whole operation.  But if
 | ||
|  * the folios are mapped, the processing is slow (folio_referenced()), so
 | ||
|  * we should drop lru_lock around each folio.  It's impossible to balance
 | ||
|  * this, so instead we remove the folios from the LRU while processing them.
 | ||
|  * It is safe to rely on the active flag against the non-LRU folios in here
 | ||
|  * because nobody will play with that bit on a non-LRU folio.
 | ||
|  *
 | ||
|  * The downside is that we have to touch folio->_refcount against each folio.
 | ||
|  * But we had to alter folio->flags anyway.
 | ||
|  */
 | ||
| static void shrink_active_list(unsigned long nr_to_scan,
 | ||
| 			       struct lruvec *lruvec,
 | ||
| 			       struct scan_control *sc,
 | ||
| 			       enum lru_list lru)
 | ||
| {
 | ||
| 	unsigned long nr_taken;
 | ||
| 	unsigned long nr_scanned;
 | ||
| 	unsigned long vm_flags;
 | ||
| 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
 | ||
| 	LIST_HEAD(l_active);
 | ||
| 	LIST_HEAD(l_inactive);
 | ||
| 	unsigned nr_deactivate, nr_activate;
 | ||
| 	unsigned nr_rotated = 0;
 | ||
| 	bool file = is_file_lru(lru);
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 | ||
| 
 | ||
| 	lru_add_drain();
 | ||
| 
 | ||
| 	spin_lock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
 | ||
| 				     &nr_scanned, sc, lru);
 | ||
| 
 | ||
| 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
 | ||
| 
 | ||
| 	if (!cgroup_reclaim(sc))
 | ||
| 		__count_vm_events(PGREFILL, nr_scanned);
 | ||
| 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
 | ||
| 
 | ||
| 	spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	while (!list_empty(&l_hold)) {
 | ||
| 		struct folio *folio;
 | ||
| 
 | ||
| 		cond_resched();
 | ||
| 		folio = lru_to_folio(&l_hold);
 | ||
| 		list_del(&folio->lru);
 | ||
| 
 | ||
| 		if (unlikely(!folio_evictable(folio))) {
 | ||
| 			folio_putback_lru(folio);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (unlikely(buffer_heads_over_limit)) {
 | ||
| 			if (folio_needs_release(folio) &&
 | ||
| 			    folio_trylock(folio)) {
 | ||
| 				filemap_release_folio(folio, 0);
 | ||
| 				folio_unlock(folio);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Referenced or rmap lock contention: rotate */
 | ||
| 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
 | ||
| 				     &vm_flags) != 0) {
 | ||
| 			/*
 | ||
| 			 * Identify referenced, file-backed active folios and
 | ||
| 			 * give them one more trip around the active list. So
 | ||
| 			 * that executable code get better chances to stay in
 | ||
| 			 * memory under moderate memory pressure.  Anon folios
 | ||
| 			 * are not likely to be evicted by use-once streaming
 | ||
| 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
 | ||
| 			 * so we ignore them here.
 | ||
| 			 */
 | ||
| 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
 | ||
| 				nr_rotated += folio_nr_pages(folio);
 | ||
| 				list_add(&folio->lru, &l_active);
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		folio_clear_active(folio);	/* we are de-activating */
 | ||
| 		folio_set_workingset(folio);
 | ||
| 		list_add(&folio->lru, &l_inactive);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Move folios back to the lru list.
 | ||
| 	 */
 | ||
| 	spin_lock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	nr_activate = move_folios_to_lru(lruvec, &l_active);
 | ||
| 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
 | ||
| 
 | ||
| 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
 | ||
| 	count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
 | ||
| 
 | ||
| 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
 | ||
| 	spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	if (nr_rotated)
 | ||
| 		lru_note_cost(lruvec, file, 0, nr_rotated);
 | ||
| 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
 | ||
| 			nr_deactivate, nr_rotated, sc->priority, file);
 | ||
| }
 | ||
| 
 | ||
| static unsigned int reclaim_folio_list(struct list_head *folio_list,
 | ||
| 				      struct pglist_data *pgdat)
 | ||
| {
 | ||
| 	struct reclaim_stat stat;
 | ||
| 	unsigned int nr_reclaimed;
 | ||
| 	struct folio *folio;
 | ||
| 	struct scan_control sc = {
 | ||
| 		.gfp_mask = GFP_KERNEL,
 | ||
| 		.may_writepage = 1,
 | ||
| 		.may_unmap = 1,
 | ||
| 		.may_swap = 1,
 | ||
| 		.no_demotion = 1,
 | ||
| 	};
 | ||
| 
 | ||
| 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
 | ||
| 	while (!list_empty(folio_list)) {
 | ||
| 		folio = lru_to_folio(folio_list);
 | ||
| 		list_del(&folio->lru);
 | ||
| 		folio_putback_lru(folio);
 | ||
| 	}
 | ||
| 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
 | ||
| 
 | ||
| 	return nr_reclaimed;
 | ||
| }
 | ||
| 
 | ||
| unsigned long reclaim_pages(struct list_head *folio_list)
 | ||
| {
 | ||
| 	int nid;
 | ||
| 	unsigned int nr_reclaimed = 0;
 | ||
| 	LIST_HEAD(node_folio_list);
 | ||
| 	unsigned int noreclaim_flag;
 | ||
| 
 | ||
| 	if (list_empty(folio_list))
 | ||
| 		return nr_reclaimed;
 | ||
| 
 | ||
| 	noreclaim_flag = memalloc_noreclaim_save();
 | ||
| 
 | ||
| 	nid = folio_nid(lru_to_folio(folio_list));
 | ||
| 	do {
 | ||
| 		struct folio *folio = lru_to_folio(folio_list);
 | ||
| 
 | ||
| 		if (nid == folio_nid(folio)) {
 | ||
| 			folio_clear_active(folio);
 | ||
| 			list_move(&folio->lru, &node_folio_list);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
 | ||
| 		nid = folio_nid(lru_to_folio(folio_list));
 | ||
| 	} while (!list_empty(folio_list));
 | ||
| 
 | ||
| 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
 | ||
| 
 | ||
| 	memalloc_noreclaim_restore(noreclaim_flag);
 | ||
| 
 | ||
| 	return nr_reclaimed;
 | ||
| }
 | ||
| 
 | ||
| static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
 | ||
| 				 struct lruvec *lruvec, struct scan_control *sc)
 | ||
| {
 | ||
| 	if (is_active_lru(lru)) {
 | ||
| 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
 | ||
| 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
 | ||
| 		else
 | ||
| 			sc->skipped_deactivate = 1;
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * The inactive anon list should be small enough that the VM never has
 | ||
|  * to do too much work.
 | ||
|  *
 | ||
|  * The inactive file list should be small enough to leave most memory
 | ||
|  * to the established workingset on the scan-resistant active list,
 | ||
|  * but large enough to avoid thrashing the aggregate readahead window.
 | ||
|  *
 | ||
|  * Both inactive lists should also be large enough that each inactive
 | ||
|  * folio has a chance to be referenced again before it is reclaimed.
 | ||
|  *
 | ||
|  * If that fails and refaulting is observed, the inactive list grows.
 | ||
|  *
 | ||
|  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
 | ||
|  * on this LRU, maintained by the pageout code. An inactive_ratio
 | ||
|  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
 | ||
|  *
 | ||
|  * total     target    max
 | ||
|  * memory    ratio     inactive
 | ||
|  * -------------------------------------
 | ||
|  *   10MB       1         5MB
 | ||
|  *  100MB       1        50MB
 | ||
|  *    1GB       3       250MB
 | ||
|  *   10GB      10       0.9GB
 | ||
|  *  100GB      31         3GB
 | ||
|  *    1TB     101        10GB
 | ||
|  *   10TB     320        32GB
 | ||
|  */
 | ||
| static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
 | ||
| {
 | ||
| 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
 | ||
| 	unsigned long inactive, active;
 | ||
| 	unsigned long inactive_ratio;
 | ||
| 	unsigned long gb;
 | ||
| 
 | ||
| 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
 | ||
| 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
 | ||
| 
 | ||
| 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
 | ||
| 	if (gb)
 | ||
| 		inactive_ratio = int_sqrt(10 * gb);
 | ||
| 	else
 | ||
| 		inactive_ratio = 1;
 | ||
| 
 | ||
| 	return inactive * inactive_ratio < active;
 | ||
| }
 | ||
| 
 | ||
| enum scan_balance {
 | ||
| 	SCAN_EQUAL,
 | ||
| 	SCAN_FRACT,
 | ||
| 	SCAN_ANON,
 | ||
| 	SCAN_FILE,
 | ||
| };
 | ||
| 
 | ||
| static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	unsigned long file;
 | ||
| 	struct lruvec *target_lruvec;
 | ||
| 
 | ||
| 	if (lru_gen_enabled())
 | ||
| 		return;
 | ||
| 
 | ||
| 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Flush the memory cgroup stats in rate-limited way as we don't need
 | ||
| 	 * most accurate stats here. We may switch to regular stats flushing
 | ||
| 	 * in the future once it is cheap enough.
 | ||
| 	 */
 | ||
| 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Determine the scan balance between anon and file LRUs.
 | ||
| 	 */
 | ||
| 	spin_lock_irq(&target_lruvec->lru_lock);
 | ||
| 	sc->anon_cost = target_lruvec->anon_cost;
 | ||
| 	sc->file_cost = target_lruvec->file_cost;
 | ||
| 	spin_unlock_irq(&target_lruvec->lru_lock);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Target desirable inactive:active list ratios for the anon
 | ||
| 	 * and file LRU lists.
 | ||
| 	 */
 | ||
| 	if (!sc->force_deactivate) {
 | ||
| 		unsigned long refaults;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * When refaults are being observed, it means a new
 | ||
| 		 * workingset is being established. Deactivate to get
 | ||
| 		 * rid of any stale active pages quickly.
 | ||
| 		 */
 | ||
| 		refaults = lruvec_page_state(target_lruvec,
 | ||
| 				WORKINGSET_ACTIVATE_ANON);
 | ||
| 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
 | ||
| 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
 | ||
| 			sc->may_deactivate |= DEACTIVATE_ANON;
 | ||
| 		else
 | ||
| 			sc->may_deactivate &= ~DEACTIVATE_ANON;
 | ||
| 
 | ||
| 		refaults = lruvec_page_state(target_lruvec,
 | ||
| 				WORKINGSET_ACTIVATE_FILE);
 | ||
| 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
 | ||
| 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
 | ||
| 			sc->may_deactivate |= DEACTIVATE_FILE;
 | ||
| 		else
 | ||
| 			sc->may_deactivate &= ~DEACTIVATE_FILE;
 | ||
| 	} else
 | ||
| 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If we have plenty of inactive file pages that aren't
 | ||
| 	 * thrashing, try to reclaim those first before touching
 | ||
| 	 * anonymous pages.
 | ||
| 	 */
 | ||
| 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
 | ||
| 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
 | ||
| 	    !sc->no_cache_trim_mode)
 | ||
| 		sc->cache_trim_mode = 1;
 | ||
| 	else
 | ||
| 		sc->cache_trim_mode = 0;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Prevent the reclaimer from falling into the cache trap: as
 | ||
| 	 * cache pages start out inactive, every cache fault will tip
 | ||
| 	 * the scan balance towards the file LRU.  And as the file LRU
 | ||
| 	 * shrinks, so does the window for rotation from references.
 | ||
| 	 * This means we have a runaway feedback loop where a tiny
 | ||
| 	 * thrashing file LRU becomes infinitely more attractive than
 | ||
| 	 * anon pages.  Try to detect this based on file LRU size.
 | ||
| 	 */
 | ||
| 	if (!cgroup_reclaim(sc)) {
 | ||
| 		unsigned long total_high_wmark = 0;
 | ||
| 		unsigned long free, anon;
 | ||
| 		int z;
 | ||
| 		struct zone *zone;
 | ||
| 
 | ||
| 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
 | ||
| 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
 | ||
| 			   node_page_state(pgdat, NR_INACTIVE_FILE);
 | ||
| 
 | ||
| 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
 | ||
| 			total_high_wmark += high_wmark_pages(zone);
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Consider anon: if that's low too, this isn't a
 | ||
| 		 * runaway file reclaim problem, but rather just
 | ||
| 		 * extreme pressure. Reclaim as per usual then.
 | ||
| 		 */
 | ||
| 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
 | ||
| 
 | ||
| 		sc->file_is_tiny =
 | ||
| 			file + free <= total_high_wmark &&
 | ||
| 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
 | ||
| 			anon >> sc->priority;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static inline void calculate_pressure_balance(struct scan_control *sc,
 | ||
| 			int swappiness, u64 *fraction, u64 *denominator)
 | ||
| {
 | ||
| 	unsigned long anon_cost, file_cost, total_cost;
 | ||
| 	unsigned long ap, fp;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Calculate the pressure balance between anon and file pages.
 | ||
| 	 *
 | ||
| 	 * The amount of pressure we put on each LRU is inversely
 | ||
| 	 * proportional to the cost of reclaiming each list, as
 | ||
| 	 * determined by the share of pages that are refaulting, times
 | ||
| 	 * the relative IO cost of bringing back a swapped out
 | ||
| 	 * anonymous page vs reloading a filesystem page (swappiness).
 | ||
| 	 *
 | ||
| 	 * Although we limit that influence to ensure no list gets
 | ||
| 	 * left behind completely: at least a third of the pressure is
 | ||
| 	 * applied, before swappiness.
 | ||
| 	 *
 | ||
| 	 * With swappiness at 100, anon and file have equal IO cost.
 | ||
| 	 */
 | ||
| 	total_cost = sc->anon_cost + sc->file_cost;
 | ||
| 	anon_cost = total_cost + sc->anon_cost;
 | ||
| 	file_cost = total_cost + sc->file_cost;
 | ||
| 	total_cost = anon_cost + file_cost;
 | ||
| 
 | ||
| 	ap = swappiness * (total_cost + 1);
 | ||
| 	ap /= anon_cost + 1;
 | ||
| 
 | ||
| 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
 | ||
| 	fp /= file_cost + 1;
 | ||
| 
 | ||
| 	fraction[WORKINGSET_ANON] = ap;
 | ||
| 	fraction[WORKINGSET_FILE] = fp;
 | ||
| 	*denominator = ap + fp;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Determine how aggressively the anon and file LRU lists should be
 | ||
|  * scanned.
 | ||
|  *
 | ||
|  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
 | ||
|  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
 | ||
|  */
 | ||
| static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
 | ||
| 			   unsigned long *nr)
 | ||
| {
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	int swappiness = sc_swappiness(sc, memcg);
 | ||
| 	u64 fraction[ANON_AND_FILE];
 | ||
| 	u64 denominator = 0;	/* gcc */
 | ||
| 	enum scan_balance scan_balance;
 | ||
| 	enum lru_list lru;
 | ||
| 
 | ||
| 	/* If we have no swap space, do not bother scanning anon folios. */
 | ||
| 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
 | ||
| 		scan_balance = SCAN_FILE;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Global reclaim will swap to prevent OOM even with no
 | ||
| 	 * swappiness, but memcg users want to use this knob to
 | ||
| 	 * disable swapping for individual groups completely when
 | ||
| 	 * using the memory controller's swap limit feature would be
 | ||
| 	 * too expensive.
 | ||
| 	 */
 | ||
| 	if (cgroup_reclaim(sc) && !swappiness) {
 | ||
| 		scan_balance = SCAN_FILE;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Proactive reclaim initiated by userspace for anonymous memory only */
 | ||
| 	if (swappiness == SWAPPINESS_ANON_ONLY) {
 | ||
| 		WARN_ON_ONCE(!sc->proactive);
 | ||
| 		scan_balance = SCAN_ANON;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Do not apply any pressure balancing cleverness when the
 | ||
| 	 * system is close to OOM, scan both anon and file equally
 | ||
| 	 * (unless the swappiness setting disagrees with swapping).
 | ||
| 	 */
 | ||
| 	if (!sc->priority && swappiness) {
 | ||
| 		scan_balance = SCAN_EQUAL;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If the system is almost out of file pages, force-scan anon.
 | ||
| 	 */
 | ||
| 	if (sc->file_is_tiny) {
 | ||
| 		scan_balance = SCAN_ANON;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If there is enough inactive page cache, we do not reclaim
 | ||
| 	 * anything from the anonymous working right now to make sure
 | ||
|          * a streaming file access pattern doesn't cause swapping.
 | ||
| 	 */
 | ||
| 	if (sc->cache_trim_mode) {
 | ||
| 		scan_balance = SCAN_FILE;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	scan_balance = SCAN_FRACT;
 | ||
| 	calculate_pressure_balance(sc, swappiness, fraction, &denominator);
 | ||
| 
 | ||
| out:
 | ||
| 	for_each_evictable_lru(lru) {
 | ||
| 		bool file = is_file_lru(lru);
 | ||
| 		unsigned long lruvec_size;
 | ||
| 		unsigned long low, min;
 | ||
| 		unsigned long scan;
 | ||
| 
 | ||
| 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
 | ||
| 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
 | ||
| 				      &min, &low);
 | ||
| 
 | ||
| 		if (min || low) {
 | ||
| 			/*
 | ||
| 			 * Scale a cgroup's reclaim pressure by proportioning
 | ||
| 			 * its current usage to its memory.low or memory.min
 | ||
| 			 * setting.
 | ||
| 			 *
 | ||
| 			 * This is important, as otherwise scanning aggression
 | ||
| 			 * becomes extremely binary -- from nothing as we
 | ||
| 			 * approach the memory protection threshold, to totally
 | ||
| 			 * nominal as we exceed it.  This results in requiring
 | ||
| 			 * setting extremely liberal protection thresholds. It
 | ||
| 			 * also means we simply get no protection at all if we
 | ||
| 			 * set it too low, which is not ideal.
 | ||
| 			 *
 | ||
| 			 * If there is any protection in place, we reduce scan
 | ||
| 			 * pressure by how much of the total memory used is
 | ||
| 			 * within protection thresholds.
 | ||
| 			 *
 | ||
| 			 * There is one special case: in the first reclaim pass,
 | ||
| 			 * we skip over all groups that are within their low
 | ||
| 			 * protection. If that fails to reclaim enough pages to
 | ||
| 			 * satisfy the reclaim goal, we come back and override
 | ||
| 			 * the best-effort low protection. However, we still
 | ||
| 			 * ideally want to honor how well-behaved groups are in
 | ||
| 			 * that case instead of simply punishing them all
 | ||
| 			 * equally. As such, we reclaim them based on how much
 | ||
| 			 * memory they are using, reducing the scan pressure
 | ||
| 			 * again by how much of the total memory used is under
 | ||
| 			 * hard protection.
 | ||
| 			 */
 | ||
| 			unsigned long cgroup_size = mem_cgroup_size(memcg);
 | ||
| 			unsigned long protection;
 | ||
| 
 | ||
| 			/* memory.low scaling, make sure we retry before OOM */
 | ||
| 			if (!sc->memcg_low_reclaim && low > min) {
 | ||
| 				protection = low;
 | ||
| 				sc->memcg_low_skipped = 1;
 | ||
| 			} else {
 | ||
| 				protection = min;
 | ||
| 			}
 | ||
| 
 | ||
| 			/* Avoid TOCTOU with earlier protection check */
 | ||
| 			cgroup_size = max(cgroup_size, protection);
 | ||
| 
 | ||
| 			scan = lruvec_size - lruvec_size * protection /
 | ||
| 				(cgroup_size + 1);
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
 | ||
| 			 * reclaim moving forwards, avoiding decrementing
 | ||
| 			 * sc->priority further than desirable.
 | ||
| 			 */
 | ||
| 			scan = max(scan, SWAP_CLUSTER_MAX);
 | ||
| 		} else {
 | ||
| 			scan = lruvec_size;
 | ||
| 		}
 | ||
| 
 | ||
| 		scan >>= sc->priority;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If the cgroup's already been deleted, make sure to
 | ||
| 		 * scrape out the remaining cache.
 | ||
| 		 */
 | ||
| 		if (!scan && !mem_cgroup_online(memcg))
 | ||
| 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
 | ||
| 
 | ||
| 		switch (scan_balance) {
 | ||
| 		case SCAN_EQUAL:
 | ||
| 			/* Scan lists relative to size */
 | ||
| 			break;
 | ||
| 		case SCAN_FRACT:
 | ||
| 			/*
 | ||
| 			 * Scan types proportional to swappiness and
 | ||
| 			 * their relative recent reclaim efficiency.
 | ||
| 			 * Make sure we don't miss the last page on
 | ||
| 			 * the offlined memory cgroups because of a
 | ||
| 			 * round-off error.
 | ||
| 			 */
 | ||
| 			scan = mem_cgroup_online(memcg) ?
 | ||
| 			       div64_u64(scan * fraction[file], denominator) :
 | ||
| 			       DIV64_U64_ROUND_UP(scan * fraction[file],
 | ||
| 						  denominator);
 | ||
| 			break;
 | ||
| 		case SCAN_FILE:
 | ||
| 		case SCAN_ANON:
 | ||
| 			/* Scan one type exclusively */
 | ||
| 			if ((scan_balance == SCAN_FILE) != file)
 | ||
| 				scan = 0;
 | ||
| 			break;
 | ||
| 		default:
 | ||
| 			/* Look ma, no brain */
 | ||
| 			BUG();
 | ||
| 		}
 | ||
| 
 | ||
| 		nr[lru] = scan;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Anonymous LRU management is a waste if there is
 | ||
|  * ultimately no way to reclaim the memory.
 | ||
|  */
 | ||
| static bool can_age_anon_pages(struct lruvec *lruvec,
 | ||
| 			       struct scan_control *sc)
 | ||
| {
 | ||
| 	/* Aging the anon LRU is valuable if swap is present: */
 | ||
| 	if (total_swap_pages > 0)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	/* Also valuable if anon pages can be demoted: */
 | ||
| 	return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
 | ||
| 			  lruvec_memcg(lruvec));
 | ||
| }
 | ||
| 
 | ||
| #ifdef CONFIG_LRU_GEN
 | ||
| 
 | ||
| #ifdef CONFIG_LRU_GEN_ENABLED
 | ||
| DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
 | ||
| #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
 | ||
| #else
 | ||
| DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
 | ||
| #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
 | ||
| #endif
 | ||
| 
 | ||
| static bool should_walk_mmu(void)
 | ||
| {
 | ||
| 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
 | ||
| }
 | ||
| 
 | ||
| static bool should_clear_pmd_young(void)
 | ||
| {
 | ||
| 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          shorthand helpers
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| #define DEFINE_MAX_SEQ(lruvec)						\
 | ||
| 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
 | ||
| 
 | ||
| #define DEFINE_MIN_SEQ(lruvec)						\
 | ||
| 	unsigned long min_seq[ANON_AND_FILE] = {			\
 | ||
| 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
 | ||
| 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
 | ||
| 	}
 | ||
| 
 | ||
| /* Get the min/max evictable type based on swappiness */
 | ||
| #define min_type(swappiness) (!(swappiness))
 | ||
| #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
 | ||
| 
 | ||
| #define evictable_min_seq(min_seq, swappiness)				\
 | ||
| 	min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
 | ||
| 
 | ||
| #define for_each_gen_type_zone(gen, type, zone)				\
 | ||
| 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
 | ||
| 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
 | ||
| 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
 | ||
| 
 | ||
| #define for_each_evictable_type(type, swappiness)			\
 | ||
| 	for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
 | ||
| 
 | ||
| #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
 | ||
| #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
 | ||
| 
 | ||
| static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
 | ||
| {
 | ||
| 	struct pglist_data *pgdat = NODE_DATA(nid);
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 	if (memcg) {
 | ||
| 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
 | ||
| 
 | ||
| 		/* see the comment in mem_cgroup_lruvec() */
 | ||
| 		if (!lruvec->pgdat)
 | ||
| 			lruvec->pgdat = pgdat;
 | ||
| 
 | ||
| 		return lruvec;
 | ||
| 	}
 | ||
| #endif
 | ||
| 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
 | ||
| 
 | ||
| 	return &pgdat->__lruvec;
 | ||
| }
 | ||
| 
 | ||
| static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
 | ||
| {
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 | ||
| 
 | ||
| 	if (!sc->may_swap)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (!can_demote(pgdat->node_id, sc, memcg) &&
 | ||
| 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return sc_swappiness(sc, memcg);
 | ||
| }
 | ||
| 
 | ||
| static int get_nr_gens(struct lruvec *lruvec, int type)
 | ||
| {
 | ||
| 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
 | ||
| }
 | ||
| 
 | ||
| static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
 | ||
| {
 | ||
| 	int type;
 | ||
| 
 | ||
| 	for (type = 0; type < ANON_AND_FILE; type++) {
 | ||
| 		int n = get_nr_gens(lruvec, type);
 | ||
| 
 | ||
| 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
 | ||
| 			return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          Bloom filters
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| /*
 | ||
|  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
 | ||
|  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
 | ||
|  * bits in a bitmap, k is the number of hash functions and n is the number of
 | ||
|  * inserted items.
 | ||
|  *
 | ||
|  * Page table walkers use one of the two filters to reduce their search space.
 | ||
|  * To get rid of non-leaf entries that no longer have enough leaf entries, the
 | ||
|  * aging uses the double-buffering technique to flip to the other filter each
 | ||
|  * time it produces a new generation. For non-leaf entries that have enough
 | ||
|  * leaf entries, the aging carries them over to the next generation in
 | ||
|  * walk_pmd_range(); the eviction also report them when walking the rmap
 | ||
|  * in lru_gen_look_around().
 | ||
|  *
 | ||
|  * For future optimizations:
 | ||
|  * 1. It's not necessary to keep both filters all the time. The spare one can be
 | ||
|  *    freed after the RCU grace period and reallocated if needed again.
 | ||
|  * 2. And when reallocating, it's worth scaling its size according to the number
 | ||
|  *    of inserted entries in the other filter, to reduce the memory overhead on
 | ||
|  *    small systems and false positives on large systems.
 | ||
|  * 3. Jenkins' hash function is an alternative to Knuth's.
 | ||
|  */
 | ||
| #define BLOOM_FILTER_SHIFT	15
 | ||
| 
 | ||
| static inline int filter_gen_from_seq(unsigned long seq)
 | ||
| {
 | ||
| 	return seq % NR_BLOOM_FILTERS;
 | ||
| }
 | ||
| 
 | ||
| static void get_item_key(void *item, int *key)
 | ||
| {
 | ||
| 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
 | ||
| 
 | ||
| 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
 | ||
| 
 | ||
| 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
 | ||
| 	key[1] = hash >> BLOOM_FILTER_SHIFT;
 | ||
| }
 | ||
| 
 | ||
| static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
 | ||
| 			      void *item)
 | ||
| {
 | ||
| 	int key[2];
 | ||
| 	unsigned long *filter;
 | ||
| 	int gen = filter_gen_from_seq(seq);
 | ||
| 
 | ||
| 	filter = READ_ONCE(mm_state->filters[gen]);
 | ||
| 	if (!filter)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	get_item_key(item, key);
 | ||
| 
 | ||
| 	return test_bit(key[0], filter) && test_bit(key[1], filter);
 | ||
| }
 | ||
| 
 | ||
| static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
 | ||
| 				void *item)
 | ||
| {
 | ||
| 	int key[2];
 | ||
| 	unsigned long *filter;
 | ||
| 	int gen = filter_gen_from_seq(seq);
 | ||
| 
 | ||
| 	filter = READ_ONCE(mm_state->filters[gen]);
 | ||
| 	if (!filter)
 | ||
| 		return;
 | ||
| 
 | ||
| 	get_item_key(item, key);
 | ||
| 
 | ||
| 	if (!test_bit(key[0], filter))
 | ||
| 		set_bit(key[0], filter);
 | ||
| 	if (!test_bit(key[1], filter))
 | ||
| 		set_bit(key[1], filter);
 | ||
| }
 | ||
| 
 | ||
| static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
 | ||
| {
 | ||
| 	unsigned long *filter;
 | ||
| 	int gen = filter_gen_from_seq(seq);
 | ||
| 
 | ||
| 	filter = mm_state->filters[gen];
 | ||
| 	if (filter) {
 | ||
| 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
 | ||
| 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
 | ||
| 	WRITE_ONCE(mm_state->filters[gen], filter);
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          mm_struct list
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| #ifdef CONFIG_LRU_GEN_WALKS_MMU
 | ||
| 
 | ||
| static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	static struct lru_gen_mm_list mm_list = {
 | ||
| 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
 | ||
| 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
 | ||
| 	};
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 	if (memcg)
 | ||
| 		return &memcg->mm_list;
 | ||
| #endif
 | ||
| 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
 | ||
| 
 | ||
| 	return &mm_list;
 | ||
| }
 | ||
| 
 | ||
| static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
 | ||
| {
 | ||
| 	return &lruvec->mm_state;
 | ||
| }
 | ||
| 
 | ||
| static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
 | ||
| {
 | ||
| 	int key;
 | ||
| 	struct mm_struct *mm;
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
 | ||
| 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
 | ||
| 
 | ||
| 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
 | ||
| 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
 | ||
| 
 | ||
| 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	clear_bit(key, &mm->lru_gen.bitmap);
 | ||
| 
 | ||
| 	return mmget_not_zero(mm) ? mm : NULL;
 | ||
| }
 | ||
| 
 | ||
| void lru_gen_add_mm(struct mm_struct *mm)
 | ||
| {
 | ||
| 	int nid;
 | ||
| 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
 | ||
| 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
 | ||
| 	mm->lru_gen.memcg = memcg;
 | ||
| #endif
 | ||
| 	spin_lock(&mm_list->lock);
 | ||
| 
 | ||
| 	for_each_node_state(nid, N_MEMORY) {
 | ||
| 		struct lruvec *lruvec = get_lruvec(memcg, nid);
 | ||
| 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 
 | ||
| 		/* the first addition since the last iteration */
 | ||
| 		if (mm_state->tail == &mm_list->fifo)
 | ||
| 			mm_state->tail = &mm->lru_gen.list;
 | ||
| 	}
 | ||
| 
 | ||
| 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
 | ||
| 
 | ||
| 	spin_unlock(&mm_list->lock);
 | ||
| }
 | ||
| 
 | ||
| void lru_gen_del_mm(struct mm_struct *mm)
 | ||
| {
 | ||
| 	int nid;
 | ||
| 	struct lru_gen_mm_list *mm_list;
 | ||
| 	struct mem_cgroup *memcg = NULL;
 | ||
| 
 | ||
| 	if (list_empty(&mm->lru_gen.list))
 | ||
| 		return;
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 	memcg = mm->lru_gen.memcg;
 | ||
| #endif
 | ||
| 	mm_list = get_mm_list(memcg);
 | ||
| 
 | ||
| 	spin_lock(&mm_list->lock);
 | ||
| 
 | ||
| 	for_each_node(nid) {
 | ||
| 		struct lruvec *lruvec = get_lruvec(memcg, nid);
 | ||
| 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 
 | ||
| 		/* where the current iteration continues after */
 | ||
| 		if (mm_state->head == &mm->lru_gen.list)
 | ||
| 			mm_state->head = mm_state->head->prev;
 | ||
| 
 | ||
| 		/* where the last iteration ended before */
 | ||
| 		if (mm_state->tail == &mm->lru_gen.list)
 | ||
| 			mm_state->tail = mm_state->tail->next;
 | ||
| 	}
 | ||
| 
 | ||
| 	list_del_init(&mm->lru_gen.list);
 | ||
| 
 | ||
| 	spin_unlock(&mm_list->lock);
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 	mem_cgroup_put(mm->lru_gen.memcg);
 | ||
| 	mm->lru_gen.memcg = NULL;
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| void lru_gen_migrate_mm(struct mm_struct *mm)
 | ||
| {
 | ||
| 	struct mem_cgroup *memcg;
 | ||
| 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(task->mm != mm);
 | ||
| 	lockdep_assert_held(&task->alloc_lock);
 | ||
| 
 | ||
| 	/* for mm_update_next_owner() */
 | ||
| 	if (mem_cgroup_disabled())
 | ||
| 		return;
 | ||
| 
 | ||
| 	/* migration can happen before addition */
 | ||
| 	if (!mm->lru_gen.memcg)
 | ||
| 		return;
 | ||
| 
 | ||
| 	rcu_read_lock();
 | ||
| 	memcg = mem_cgroup_from_task(task);
 | ||
| 	rcu_read_unlock();
 | ||
| 	if (memcg == mm->lru_gen.memcg)
 | ||
| 		return;
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
 | ||
| 
 | ||
| 	lru_gen_del_mm(mm);
 | ||
| 	lru_gen_add_mm(mm);
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| #else /* !CONFIG_LRU_GEN_WALKS_MMU */
 | ||
| 
 | ||
| static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
 | ||
| {
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
 | ||
| {
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int hist;
 | ||
| 	struct lruvec *lruvec = walk->lruvec;
 | ||
| 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 
 | ||
| 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
 | ||
| 
 | ||
| 	hist = lru_hist_from_seq(walk->seq);
 | ||
| 
 | ||
| 	for (i = 0; i < NR_MM_STATS; i++) {
 | ||
| 		WRITE_ONCE(mm_state->stats[hist][i],
 | ||
| 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
 | ||
| 		walk->mm_stats[i] = 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (NR_HIST_GENS > 1 && last) {
 | ||
| 		hist = lru_hist_from_seq(walk->seq + 1);
 | ||
| 
 | ||
| 		for (i = 0; i < NR_MM_STATS; i++)
 | ||
| 			WRITE_ONCE(mm_state->stats[hist][i], 0);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
 | ||
| {
 | ||
| 	bool first = false;
 | ||
| 	bool last = false;
 | ||
| 	struct mm_struct *mm = NULL;
 | ||
| 	struct lruvec *lruvec = walk->lruvec;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
 | ||
| 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * mm_state->seq is incremented after each iteration of mm_list. There
 | ||
| 	 * are three interesting cases for this page table walker:
 | ||
| 	 * 1. It tries to start a new iteration with a stale max_seq: there is
 | ||
| 	 *    nothing left to do.
 | ||
| 	 * 2. It started the next iteration: it needs to reset the Bloom filter
 | ||
| 	 *    so that a fresh set of PTE tables can be recorded.
 | ||
| 	 * 3. It ended the current iteration: it needs to reset the mm stats
 | ||
| 	 *    counters and tell its caller to increment max_seq.
 | ||
| 	 */
 | ||
| 	spin_lock(&mm_list->lock);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
 | ||
| 
 | ||
| 	if (walk->seq <= mm_state->seq)
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	if (!mm_state->head)
 | ||
| 		mm_state->head = &mm_list->fifo;
 | ||
| 
 | ||
| 	if (mm_state->head == &mm_list->fifo)
 | ||
| 		first = true;
 | ||
| 
 | ||
| 	do {
 | ||
| 		mm_state->head = mm_state->head->next;
 | ||
| 		if (mm_state->head == &mm_list->fifo) {
 | ||
| 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
 | ||
| 			last = true;
 | ||
| 			break;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* force scan for those added after the last iteration */
 | ||
| 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
 | ||
| 			mm_state->tail = mm_state->head->next;
 | ||
| 			walk->force_scan = true;
 | ||
| 		}
 | ||
| 	} while (!(mm = get_next_mm(walk)));
 | ||
| done:
 | ||
| 	if (*iter || last)
 | ||
| 		reset_mm_stats(walk, last);
 | ||
| 
 | ||
| 	spin_unlock(&mm_list->lock);
 | ||
| 
 | ||
| 	if (mm && first)
 | ||
| 		reset_bloom_filter(mm_state, walk->seq + 1);
 | ||
| 
 | ||
| 	if (*iter)
 | ||
| 		mmput_async(*iter);
 | ||
| 
 | ||
| 	*iter = mm;
 | ||
| 
 | ||
| 	return last;
 | ||
| }
 | ||
| 
 | ||
| static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
 | ||
| {
 | ||
| 	bool success = false;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
 | ||
| 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 
 | ||
| 	spin_lock(&mm_list->lock);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
 | ||
| 
 | ||
| 	if (seq > mm_state->seq) {
 | ||
| 		mm_state->head = NULL;
 | ||
| 		mm_state->tail = NULL;
 | ||
| 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
 | ||
| 		success = true;
 | ||
| 	}
 | ||
| 
 | ||
| 	spin_unlock(&mm_list->lock);
 | ||
| 
 | ||
| 	return success;
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          PID controller
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| /*
 | ||
|  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
 | ||
|  *
 | ||
|  * The P term is refaulted/(evicted+protected) from a tier in the generation
 | ||
|  * currently being evicted; the I term is the exponential moving average of the
 | ||
|  * P term over the generations previously evicted, using the smoothing factor
 | ||
|  * 1/2; the D term isn't supported.
 | ||
|  *
 | ||
|  * The setpoint (SP) is always the first tier of one type; the process variable
 | ||
|  * (PV) is either any tier of the other type or any other tier of the same
 | ||
|  * type.
 | ||
|  *
 | ||
|  * The error is the difference between the SP and the PV; the correction is to
 | ||
|  * turn off protection when SP>PV or turn on protection when SP<PV.
 | ||
|  *
 | ||
|  * For future optimizations:
 | ||
|  * 1. The D term may discount the other two terms over time so that long-lived
 | ||
|  *    generations can resist stale information.
 | ||
|  */
 | ||
| struct ctrl_pos {
 | ||
| 	unsigned long refaulted;
 | ||
| 	unsigned long total;
 | ||
| 	int gain;
 | ||
| };
 | ||
| 
 | ||
| static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
 | ||
| 			  struct ctrl_pos *pos)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
 | ||
| 
 | ||
| 	pos->gain = gain;
 | ||
| 	pos->refaulted = pos->total = 0;
 | ||
| 
 | ||
| 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
 | ||
| 		pos->refaulted += lrugen->avg_refaulted[type][i] +
 | ||
| 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
 | ||
| 		pos->total += lrugen->avg_total[type][i] +
 | ||
| 			      lrugen->protected[hist][type][i] +
 | ||
| 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
 | ||
| {
 | ||
| 	int hist, tier;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
 | ||
| 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
 | ||
| 
 | ||
| 	lockdep_assert_held(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	if (!carryover && !clear)
 | ||
| 		return;
 | ||
| 
 | ||
| 	hist = lru_hist_from_seq(seq);
 | ||
| 
 | ||
| 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
 | ||
| 		if (carryover) {
 | ||
| 			unsigned long sum;
 | ||
| 
 | ||
| 			sum = lrugen->avg_refaulted[type][tier] +
 | ||
| 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
 | ||
| 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
 | ||
| 
 | ||
| 			sum = lrugen->avg_total[type][tier] +
 | ||
| 			      lrugen->protected[hist][type][tier] +
 | ||
| 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
 | ||
| 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (clear) {
 | ||
| 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
 | ||
| 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
 | ||
| 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * Return true if the PV has a limited number of refaults or a lower
 | ||
| 	 * refaulted/total than the SP.
 | ||
| 	 */
 | ||
| 	return pv->refaulted < MIN_LRU_BATCH ||
 | ||
| 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
 | ||
| 	       (sp->refaulted + 1) * pv->total * pv->gain;
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          the aging
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| /* promote pages accessed through page tables */
 | ||
| static int folio_update_gen(struct folio *folio, int gen)
 | ||
| {
 | ||
| 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
 | ||
| 
 | ||
| 	/* see the comment on LRU_REFS_FLAGS */
 | ||
| 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
 | ||
| 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
 | ||
| 		return -1;
 | ||
| 	}
 | ||
| 
 | ||
| 	do {
 | ||
| 		/* lru_gen_del_folio() has isolated this page? */
 | ||
| 		if (!(old_flags & LRU_GEN_MASK))
 | ||
| 			return -1;
 | ||
| 
 | ||
| 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
 | ||
| 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
 | ||
| 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
 | ||
| 
 | ||
| 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
 | ||
| }
 | ||
| 
 | ||
| /* protect pages accessed multiple times through file descriptors */
 | ||
| static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
 | ||
| {
 | ||
| 	int type = folio_is_file_lru(folio);
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
 | ||
| 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
 | ||
| 
 | ||
| 	do {
 | ||
| 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
 | ||
| 		/* folio_update_gen() has promoted this page? */
 | ||
| 		if (new_gen >= 0 && new_gen != old_gen)
 | ||
| 			return new_gen;
 | ||
| 
 | ||
| 		new_gen = (old_gen + 1) % MAX_NR_GENS;
 | ||
| 
 | ||
| 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
 | ||
| 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
 | ||
| 		/* for folio_end_writeback() */
 | ||
| 		if (reclaiming)
 | ||
| 			new_flags |= BIT(PG_reclaim);
 | ||
| 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
 | ||
| 
 | ||
| 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
 | ||
| 
 | ||
| 	return new_gen;
 | ||
| }
 | ||
| 
 | ||
| static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
 | ||
| 			      int old_gen, int new_gen)
 | ||
| {
 | ||
| 	int type = folio_is_file_lru(folio);
 | ||
| 	int zone = folio_zonenum(folio);
 | ||
| 	int delta = folio_nr_pages(folio);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
 | ||
| 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
 | ||
| 
 | ||
| 	walk->batched++;
 | ||
| 
 | ||
| 	walk->nr_pages[old_gen][type][zone] -= delta;
 | ||
| 	walk->nr_pages[new_gen][type][zone] += delta;
 | ||
| }
 | ||
| 
 | ||
| static void reset_batch_size(struct lru_gen_mm_walk *walk)
 | ||
| {
 | ||
| 	int gen, type, zone;
 | ||
| 	struct lruvec *lruvec = walk->lruvec;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 
 | ||
| 	walk->batched = 0;
 | ||
| 
 | ||
| 	for_each_gen_type_zone(gen, type, zone) {
 | ||
| 		enum lru_list lru = type * LRU_INACTIVE_FILE;
 | ||
| 		int delta = walk->nr_pages[gen][type][zone];
 | ||
| 
 | ||
| 		if (!delta)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		walk->nr_pages[gen][type][zone] = 0;
 | ||
| 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
 | ||
| 			   lrugen->nr_pages[gen][type][zone] + delta);
 | ||
| 
 | ||
| 		if (lru_gen_is_active(lruvec, gen))
 | ||
| 			lru += LRU_ACTIVE;
 | ||
| 		__update_lru_size(lruvec, lru, zone, delta);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
 | ||
| {
 | ||
| 	struct address_space *mapping;
 | ||
| 	struct vm_area_struct *vma = args->vma;
 | ||
| 	struct lru_gen_mm_walk *walk = args->private;
 | ||
| 
 | ||
| 	if (!vma_is_accessible(vma))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	if (is_vm_hugetlb_page(vma))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	if (!vma_has_recency(vma))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	if (vma == get_gate_vma(vma->vm_mm))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	if (vma_is_anonymous(vma))
 | ||
| 		return !walk->swappiness;
 | ||
| 
 | ||
| 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	mapping = vma->vm_file->f_mapping;
 | ||
| 	if (mapping_unevictable(mapping))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	if (shmem_mapping(mapping))
 | ||
| 		return !walk->swappiness;
 | ||
| 
 | ||
| 	if (walk->swappiness > MAX_SWAPPINESS)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	/* to exclude special mappings like dax, etc. */
 | ||
| 	return !mapping->a_ops->read_folio;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Some userspace memory allocators map many single-page VMAs. Instead of
 | ||
|  * returning back to the PGD table for each of such VMAs, finish an entire PMD
 | ||
|  * table to reduce zigzags and improve cache performance.
 | ||
|  */
 | ||
| static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
 | ||
| 			 unsigned long *vm_start, unsigned long *vm_end)
 | ||
| {
 | ||
| 	unsigned long start = round_up(*vm_end, size);
 | ||
| 	unsigned long end = (start | ~mask) + 1;
 | ||
| 	VMA_ITERATOR(vmi, args->mm, start);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(mask & size);
 | ||
| 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
 | ||
| 
 | ||
| 	for_each_vma(vmi, args->vma) {
 | ||
| 		if (end && end <= args->vma->vm_start)
 | ||
| 			return false;
 | ||
| 
 | ||
| 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		*vm_start = max(start, args->vma->vm_start);
 | ||
| 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
 | ||
| 
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
 | ||
| 				 struct pglist_data *pgdat)
 | ||
| {
 | ||
| 	unsigned long pfn = pte_pfn(pte);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
 | ||
| 
 | ||
| 	if (!pte_present(pte) || is_zero_pfn(pfn))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	return pfn;
 | ||
| }
 | ||
| 
 | ||
| static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
 | ||
| 				 struct pglist_data *pgdat)
 | ||
| {
 | ||
| 	unsigned long pfn = pmd_pfn(pmd);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
 | ||
| 
 | ||
| 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	return pfn;
 | ||
| }
 | ||
| 
 | ||
| static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
 | ||
| 				   struct pglist_data *pgdat)
 | ||
| {
 | ||
| 	struct folio *folio = pfn_folio(pfn);
 | ||
| 
 | ||
| 	if (folio_lru_gen(folio) < 0)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (folio_nid(folio) != pgdat->node_id)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (folio_memcg(folio) != memcg)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	return folio;
 | ||
| }
 | ||
| 
 | ||
| static bool suitable_to_scan(int total, int young)
 | ||
| {
 | ||
| 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
 | ||
| 
 | ||
| 	/* suitable if the average number of young PTEs per cacheline is >=1 */
 | ||
| 	return young * n >= total;
 | ||
| }
 | ||
| 
 | ||
| static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
 | ||
| 			      int new_gen, bool dirty)
 | ||
| {
 | ||
| 	int old_gen;
 | ||
| 
 | ||
| 	if (!folio)
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (dirty && !folio_test_dirty(folio) &&
 | ||
| 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
 | ||
| 	      !folio_test_swapcache(folio)))
 | ||
| 		folio_mark_dirty(folio);
 | ||
| 
 | ||
| 	if (walk) {
 | ||
| 		old_gen = folio_update_gen(folio, new_gen);
 | ||
| 		if (old_gen >= 0 && old_gen != new_gen)
 | ||
| 			update_batch_size(walk, folio, old_gen, new_gen);
 | ||
| 	} else if (lru_gen_set_refs(folio)) {
 | ||
| 		old_gen = folio_lru_gen(folio);
 | ||
| 		if (old_gen >= 0 && old_gen != new_gen)
 | ||
| 			folio_activate(folio);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
 | ||
| 			   struct mm_walk *args)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	bool dirty;
 | ||
| 	pte_t *pte;
 | ||
| 	spinlock_t *ptl;
 | ||
| 	unsigned long addr;
 | ||
| 	int total = 0;
 | ||
| 	int young = 0;
 | ||
| 	struct folio *last = NULL;
 | ||
| 	struct lru_gen_mm_walk *walk = args->private;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
 | ||
| 	DEFINE_MAX_SEQ(walk->lruvec);
 | ||
| 	int gen = lru_gen_from_seq(max_seq);
 | ||
| 	pmd_t pmdval;
 | ||
| 
 | ||
| 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
 | ||
| 	if (!pte)
 | ||
| 		return false;
 | ||
| 
 | ||
| 	if (!spin_trylock(ptl)) {
 | ||
| 		pte_unmap(pte);
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
 | ||
| 		pte_unmap_unlock(pte, ptl);
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	arch_enter_lazy_mmu_mode();
 | ||
| restart:
 | ||
| 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
 | ||
| 		unsigned long pfn;
 | ||
| 		struct folio *folio;
 | ||
| 		pte_t ptent = ptep_get(pte + i);
 | ||
| 
 | ||
| 		total++;
 | ||
| 		walk->mm_stats[MM_LEAF_TOTAL]++;
 | ||
| 
 | ||
| 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
 | ||
| 		if (pfn == -1)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		folio = get_pfn_folio(pfn, memcg, pgdat);
 | ||
| 		if (!folio)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (last != folio) {
 | ||
| 			walk_update_folio(walk, last, gen, dirty);
 | ||
| 
 | ||
| 			last = folio;
 | ||
| 			dirty = false;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (pte_dirty(ptent))
 | ||
| 			dirty = true;
 | ||
| 
 | ||
| 		young++;
 | ||
| 		walk->mm_stats[MM_LEAF_YOUNG]++;
 | ||
| 	}
 | ||
| 
 | ||
| 	walk_update_folio(walk, last, gen, dirty);
 | ||
| 	last = NULL;
 | ||
| 
 | ||
| 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
 | ||
| 		goto restart;
 | ||
| 
 | ||
| 	arch_leave_lazy_mmu_mode();
 | ||
| 	pte_unmap_unlock(pte, ptl);
 | ||
| 
 | ||
| 	return suitable_to_scan(total, young);
 | ||
| }
 | ||
| 
 | ||
| static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
 | ||
| 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	bool dirty;
 | ||
| 	pmd_t *pmd;
 | ||
| 	spinlock_t *ptl;
 | ||
| 	struct folio *last = NULL;
 | ||
| 	struct lru_gen_mm_walk *walk = args->private;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
 | ||
| 	DEFINE_MAX_SEQ(walk->lruvec);
 | ||
| 	int gen = lru_gen_from_seq(max_seq);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(pud_leaf(*pud));
 | ||
| 
 | ||
| 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
 | ||
| 	if (*first == -1) {
 | ||
| 		*first = addr;
 | ||
| 		bitmap_zero(bitmap, MIN_LRU_BATCH);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
 | ||
| 	if (i && i <= MIN_LRU_BATCH) {
 | ||
| 		__set_bit(i - 1, bitmap);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	pmd = pmd_offset(pud, *first);
 | ||
| 
 | ||
| 	ptl = pmd_lockptr(args->mm, pmd);
 | ||
| 	if (!spin_trylock(ptl))
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	arch_enter_lazy_mmu_mode();
 | ||
| 
 | ||
| 	do {
 | ||
| 		unsigned long pfn;
 | ||
| 		struct folio *folio;
 | ||
| 
 | ||
| 		/* don't round down the first address */
 | ||
| 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
 | ||
| 
 | ||
| 		if (!pmd_present(pmd[i]))
 | ||
| 			goto next;
 | ||
| 
 | ||
| 		if (!pmd_trans_huge(pmd[i])) {
 | ||
| 			if (!walk->force_scan && should_clear_pmd_young() &&
 | ||
| 			    !mm_has_notifiers(args->mm))
 | ||
| 				pmdp_test_and_clear_young(vma, addr, pmd + i);
 | ||
| 			goto next;
 | ||
| 		}
 | ||
| 
 | ||
| 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
 | ||
| 		if (pfn == -1)
 | ||
| 			goto next;
 | ||
| 
 | ||
| 		folio = get_pfn_folio(pfn, memcg, pgdat);
 | ||
| 		if (!folio)
 | ||
| 			goto next;
 | ||
| 
 | ||
| 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
 | ||
| 			goto next;
 | ||
| 
 | ||
| 		if (last != folio) {
 | ||
| 			walk_update_folio(walk, last, gen, dirty);
 | ||
| 
 | ||
| 			last = folio;
 | ||
| 			dirty = false;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (pmd_dirty(pmd[i]))
 | ||
| 			dirty = true;
 | ||
| 
 | ||
| 		walk->mm_stats[MM_LEAF_YOUNG]++;
 | ||
| next:
 | ||
| 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
 | ||
| 	} while (i <= MIN_LRU_BATCH);
 | ||
| 
 | ||
| 	walk_update_folio(walk, last, gen, dirty);
 | ||
| 
 | ||
| 	arch_leave_lazy_mmu_mode();
 | ||
| 	spin_unlock(ptl);
 | ||
| done:
 | ||
| 	*first = -1;
 | ||
| }
 | ||
| 
 | ||
| static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
 | ||
| 			   struct mm_walk *args)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	pmd_t *pmd;
 | ||
| 	unsigned long next;
 | ||
| 	unsigned long addr;
 | ||
| 	struct vm_area_struct *vma;
 | ||
| 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
 | ||
| 	unsigned long first = -1;
 | ||
| 	struct lru_gen_mm_walk *walk = args->private;
 | ||
| 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(pud_leaf(*pud));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Finish an entire PMD in two passes: the first only reaches to PTE
 | ||
| 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
 | ||
| 	 * the PMD lock to clear the accessed bit in PMD entries.
 | ||
| 	 */
 | ||
| 	pmd = pmd_offset(pud, start & PUD_MASK);
 | ||
| restart:
 | ||
| 	/* walk_pte_range() may call get_next_vma() */
 | ||
| 	vma = args->vma;
 | ||
| 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
 | ||
| 		pmd_t val = pmdp_get_lockless(pmd + i);
 | ||
| 
 | ||
| 		next = pmd_addr_end(addr, end);
 | ||
| 
 | ||
| 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
 | ||
| 			walk->mm_stats[MM_LEAF_TOTAL]++;
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (pmd_trans_huge(val)) {
 | ||
| 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
 | ||
| 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
 | ||
| 
 | ||
| 			walk->mm_stats[MM_LEAF_TOTAL]++;
 | ||
| 
 | ||
| 			if (pfn != -1)
 | ||
| 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!walk->force_scan && should_clear_pmd_young() &&
 | ||
| 		    !mm_has_notifiers(args->mm)) {
 | ||
| 			if (!pmd_young(val))
 | ||
| 				continue;
 | ||
| 
 | ||
| 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		walk->mm_stats[MM_NONLEAF_FOUND]++;
 | ||
| 
 | ||
| 		if (!walk_pte_range(&val, addr, next, args))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		walk->mm_stats[MM_NONLEAF_ADDED]++;
 | ||
| 
 | ||
| 		/* carry over to the next generation */
 | ||
| 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
 | ||
| 	}
 | ||
| 
 | ||
| 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
 | ||
| 
 | ||
| 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
 | ||
| 		goto restart;
 | ||
| }
 | ||
| 
 | ||
| static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
 | ||
| 			  struct mm_walk *args)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	pud_t *pud;
 | ||
| 	unsigned long addr;
 | ||
| 	unsigned long next;
 | ||
| 	struct lru_gen_mm_walk *walk = args->private;
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
 | ||
| 
 | ||
| 	pud = pud_offset(p4d, start & P4D_MASK);
 | ||
| restart:
 | ||
| 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
 | ||
| 		pud_t val = READ_ONCE(pud[i]);
 | ||
| 
 | ||
| 		next = pud_addr_end(addr, end);
 | ||
| 
 | ||
| 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		walk_pmd_range(&val, addr, next, args);
 | ||
| 
 | ||
| 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
 | ||
| 			end = (addr | ~PUD_MASK) + 1;
 | ||
| 			goto done;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
 | ||
| 		goto restart;
 | ||
| 
 | ||
| 	end = round_up(end, P4D_SIZE);
 | ||
| done:
 | ||
| 	if (!end || !args->vma)
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	walk->next_addr = max(end, args->vma->vm_start);
 | ||
| 
 | ||
| 	return -EAGAIN;
 | ||
| }
 | ||
| 
 | ||
| static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
 | ||
| {
 | ||
| 	static const struct mm_walk_ops mm_walk_ops = {
 | ||
| 		.test_walk = should_skip_vma,
 | ||
| 		.p4d_entry = walk_pud_range,
 | ||
| 		.walk_lock = PGWALK_RDLOCK,
 | ||
| 	};
 | ||
| 	int err;
 | ||
| 	struct lruvec *lruvec = walk->lruvec;
 | ||
| 
 | ||
| 	walk->next_addr = FIRST_USER_ADDRESS;
 | ||
| 
 | ||
| 	do {
 | ||
| 		DEFINE_MAX_SEQ(lruvec);
 | ||
| 
 | ||
| 		err = -EBUSY;
 | ||
| 
 | ||
| 		/* another thread might have called inc_max_seq() */
 | ||
| 		if (walk->seq != max_seq)
 | ||
| 			break;
 | ||
| 
 | ||
| 		/* the caller might be holding the lock for write */
 | ||
| 		if (mmap_read_trylock(mm)) {
 | ||
| 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
 | ||
| 
 | ||
| 			mmap_read_unlock(mm);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (walk->batched) {
 | ||
| 			spin_lock_irq(&lruvec->lru_lock);
 | ||
| 			reset_batch_size(walk);
 | ||
| 			spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 		}
 | ||
| 
 | ||
| 		cond_resched();
 | ||
| 	} while (err == -EAGAIN);
 | ||
| }
 | ||
| 
 | ||
| static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
 | ||
| {
 | ||
| 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
 | ||
| 
 | ||
| 	if (pgdat && current_is_kswapd()) {
 | ||
| 		VM_WARN_ON_ONCE(walk);
 | ||
| 
 | ||
| 		walk = &pgdat->mm_walk;
 | ||
| 	} else if (!walk && force_alloc) {
 | ||
| 		VM_WARN_ON_ONCE(current_is_kswapd());
 | ||
| 
 | ||
| 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
 | ||
| 	}
 | ||
| 
 | ||
| 	current->reclaim_state->mm_walk = walk;
 | ||
| 
 | ||
| 	return walk;
 | ||
| }
 | ||
| 
 | ||
| static void clear_mm_walk(void)
 | ||
| {
 | ||
| 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
 | ||
| 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
 | ||
| 
 | ||
| 	current->reclaim_state->mm_walk = NULL;
 | ||
| 
 | ||
| 	if (!current_is_kswapd())
 | ||
| 		kfree(walk);
 | ||
| }
 | ||
| 
 | ||
| static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
 | ||
| {
 | ||
| 	int zone;
 | ||
| 	int remaining = MAX_LRU_BATCH;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
 | ||
| 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
 | ||
| 
 | ||
| 	/* For file type, skip the check if swappiness is anon only */
 | ||
| 	if (type && (swappiness == SWAPPINESS_ANON_ONLY))
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	/* For anon type, skip the check if swappiness is zero (file only) */
 | ||
| 	if (!type && !swappiness)
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	/* prevent cold/hot inversion if the type is evictable */
 | ||
| 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | ||
| 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
 | ||
| 
 | ||
| 		while (!list_empty(head)) {
 | ||
| 			struct folio *folio = lru_to_folio(head);
 | ||
| 			int refs = folio_lru_refs(folio);
 | ||
| 			bool workingset = folio_test_workingset(folio);
 | ||
| 
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
 | ||
| 
 | ||
| 			new_gen = folio_inc_gen(lruvec, folio, false);
 | ||
| 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
 | ||
| 
 | ||
| 			/* don't count the workingset being lazily promoted */
 | ||
| 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
 | ||
| 				int tier = lru_tier_from_refs(refs, workingset);
 | ||
| 				int delta = folio_nr_pages(folio);
 | ||
| 
 | ||
| 				WRITE_ONCE(lrugen->protected[hist][type][tier],
 | ||
| 					   lrugen->protected[hist][type][tier] + delta);
 | ||
| 			}
 | ||
| 
 | ||
| 			if (!--remaining)
 | ||
| 				return false;
 | ||
| 		}
 | ||
| 	}
 | ||
| done:
 | ||
| 	reset_ctrl_pos(lruvec, type, true);
 | ||
| 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
 | ||
| {
 | ||
| 	int gen, type, zone;
 | ||
| 	bool success = false;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	DEFINE_MIN_SEQ(lruvec);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
 | ||
| 
 | ||
| 	/* find the oldest populated generation */
 | ||
| 	for_each_evictable_type(type, swappiness) {
 | ||
| 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
 | ||
| 			gen = lru_gen_from_seq(min_seq[type]);
 | ||
| 
 | ||
| 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | ||
| 				if (!list_empty(&lrugen->folios[gen][type][zone]))
 | ||
| 					goto next;
 | ||
| 			}
 | ||
| 
 | ||
| 			min_seq[type]++;
 | ||
| 		}
 | ||
| next:
 | ||
| 		;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* see the comment on lru_gen_folio */
 | ||
| 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
 | ||
| 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
 | ||
| 
 | ||
| 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
 | ||
| 			min_seq[LRU_GEN_ANON] = seq;
 | ||
| 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
 | ||
| 			min_seq[LRU_GEN_FILE] = seq;
 | ||
| 	}
 | ||
| 
 | ||
| 	for_each_evictable_type(type, swappiness) {
 | ||
| 		if (min_seq[type] <= lrugen->min_seq[type])
 | ||
| 			continue;
 | ||
| 
 | ||
| 		reset_ctrl_pos(lruvec, type, true);
 | ||
| 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
 | ||
| 		success = true;
 | ||
| 	}
 | ||
| 
 | ||
| 	return success;
 | ||
| }
 | ||
| 
 | ||
| static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
 | ||
| {
 | ||
| 	bool success;
 | ||
| 	int prev, next;
 | ||
| 	int type, zone;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| restart:
 | ||
| 	if (seq < READ_ONCE(lrugen->max_seq))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	spin_lock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
 | ||
| 
 | ||
| 	success = seq == lrugen->max_seq;
 | ||
| 	if (!success)
 | ||
| 		goto unlock;
 | ||
| 
 | ||
| 	for (type = 0; type < ANON_AND_FILE; type++) {
 | ||
| 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (inc_min_seq(lruvec, type, swappiness))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 		cond_resched();
 | ||
| 		goto restart;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
 | ||
| 	 * the current max_seq need to be covered, since max_seq+1 can overlap
 | ||
| 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
 | ||
| 	 * overlap, cold/hot inversion happens.
 | ||
| 	 */
 | ||
| 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
 | ||
| 	next = lru_gen_from_seq(lrugen->max_seq + 1);
 | ||
| 
 | ||
| 	for (type = 0; type < ANON_AND_FILE; type++) {
 | ||
| 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | ||
| 			enum lru_list lru = type * LRU_INACTIVE_FILE;
 | ||
| 			long delta = lrugen->nr_pages[prev][type][zone] -
 | ||
| 				     lrugen->nr_pages[next][type][zone];
 | ||
| 
 | ||
| 			if (!delta)
 | ||
| 				continue;
 | ||
| 
 | ||
| 			__update_lru_size(lruvec, lru, zone, delta);
 | ||
| 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	for (type = 0; type < ANON_AND_FILE; type++)
 | ||
| 		reset_ctrl_pos(lruvec, type, false);
 | ||
| 
 | ||
| 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
 | ||
| 	/* make sure preceding modifications appear */
 | ||
| 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
 | ||
| unlock:
 | ||
| 	spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	return success;
 | ||
| }
 | ||
| 
 | ||
| static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
 | ||
| 			       int swappiness, bool force_scan)
 | ||
| {
 | ||
| 	bool success;
 | ||
| 	struct lru_gen_mm_walk *walk;
 | ||
| 	struct mm_struct *mm = NULL;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
 | ||
| 
 | ||
| 	if (!mm_state)
 | ||
| 		return inc_max_seq(lruvec, seq, swappiness);
 | ||
| 
 | ||
| 	/* see the comment in iterate_mm_list() */
 | ||
| 	if (seq <= READ_ONCE(mm_state->seq))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If the hardware doesn't automatically set the accessed bit, fallback
 | ||
| 	 * to lru_gen_look_around(), which only clears the accessed bit in a
 | ||
| 	 * handful of PTEs. Spreading the work out over a period of time usually
 | ||
| 	 * is less efficient, but it avoids bursty page faults.
 | ||
| 	 */
 | ||
| 	if (!should_walk_mmu()) {
 | ||
| 		success = iterate_mm_list_nowalk(lruvec, seq);
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	walk = set_mm_walk(NULL, true);
 | ||
| 	if (!walk) {
 | ||
| 		success = iterate_mm_list_nowalk(lruvec, seq);
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	walk->lruvec = lruvec;
 | ||
| 	walk->seq = seq;
 | ||
| 	walk->swappiness = swappiness;
 | ||
| 	walk->force_scan = force_scan;
 | ||
| 
 | ||
| 	do {
 | ||
| 		success = iterate_mm_list(walk, &mm);
 | ||
| 		if (mm)
 | ||
| 			walk_mm(mm, walk);
 | ||
| 	} while (mm);
 | ||
| done:
 | ||
| 	if (success) {
 | ||
| 		success = inc_max_seq(lruvec, seq, swappiness);
 | ||
| 		WARN_ON_ONCE(!success);
 | ||
| 	}
 | ||
| 
 | ||
| 	return success;
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          working set protection
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	int priority;
 | ||
| 	unsigned long reclaimable;
 | ||
| 
 | ||
| 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
 | ||
| 		return;
 | ||
| 	/*
 | ||
| 	 * Determine the initial priority based on
 | ||
| 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
 | ||
| 	 * where reclaimed_to_scanned_ratio = inactive / total.
 | ||
| 	 */
 | ||
| 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
 | ||
| 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
 | ||
| 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
 | ||
| 
 | ||
| 	/* round down reclaimable and round up sc->nr_to_reclaim */
 | ||
| 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The estimation is based on LRU pages only, so cap it to prevent
 | ||
| 	 * overshoots of shrinker objects by large margins.
 | ||
| 	 */
 | ||
| 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
 | ||
| }
 | ||
| 
 | ||
| static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
 | ||
| {
 | ||
| 	int gen, type, zone;
 | ||
| 	unsigned long total = 0;
 | ||
| 	int swappiness = get_swappiness(lruvec, sc);
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	DEFINE_MAX_SEQ(lruvec);
 | ||
| 	DEFINE_MIN_SEQ(lruvec);
 | ||
| 
 | ||
| 	for_each_evictable_type(type, swappiness) {
 | ||
| 		unsigned long seq;
 | ||
| 
 | ||
| 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
 | ||
| 			gen = lru_gen_from_seq(seq);
 | ||
| 
 | ||
| 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
 | ||
| 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* whether the size is big enough to be helpful */
 | ||
| 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
 | ||
| }
 | ||
| 
 | ||
| static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
 | ||
| 				  unsigned long min_ttl)
 | ||
| {
 | ||
| 	int gen;
 | ||
| 	unsigned long birth;
 | ||
| 	int swappiness = get_swappiness(lruvec, sc);
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	DEFINE_MIN_SEQ(lruvec);
 | ||
| 
 | ||
| 	if (mem_cgroup_below_min(NULL, memcg))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	if (!lruvec_is_sizable(lruvec, sc))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
 | ||
| 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
 | ||
| 
 | ||
| 	return time_is_before_jiffies(birth + min_ttl);
 | ||
| }
 | ||
| 
 | ||
| /* to protect the working set of the last N jiffies */
 | ||
| static unsigned long lru_gen_min_ttl __read_mostly;
 | ||
| 
 | ||
| static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	struct mem_cgroup *memcg;
 | ||
| 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
 | ||
| 	bool reclaimable = !min_ttl;
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(!current_is_kswapd());
 | ||
| 
 | ||
| 	set_initial_priority(pgdat, sc);
 | ||
| 
 | ||
| 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 | ||
| 	do {
 | ||
| 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | ||
| 
 | ||
| 		mem_cgroup_calculate_protection(NULL, memcg);
 | ||
| 
 | ||
| 		if (!reclaimable)
 | ||
| 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
 | ||
| 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The main goal is to OOM kill if every generation from all memcgs is
 | ||
| 	 * younger than min_ttl. However, another possibility is all memcgs are
 | ||
| 	 * either too small or below min.
 | ||
| 	 */
 | ||
| 	if (!reclaimable && mutex_trylock(&oom_lock)) {
 | ||
| 		struct oom_control oc = {
 | ||
| 			.gfp_mask = sc->gfp_mask,
 | ||
| 		};
 | ||
| 
 | ||
| 		out_of_memory(&oc);
 | ||
| 
 | ||
| 		mutex_unlock(&oom_lock);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          rmap/PT walk feedback
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| /*
 | ||
|  * This function exploits spatial locality when shrink_folio_list() walks the
 | ||
|  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
 | ||
|  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
 | ||
|  * the PTE table to the Bloom filter. This forms a feedback loop between the
 | ||
|  * eviction and the aging.
 | ||
|  */
 | ||
| bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	bool dirty;
 | ||
| 	unsigned long start;
 | ||
| 	unsigned long end;
 | ||
| 	struct lru_gen_mm_walk *walk;
 | ||
| 	struct folio *last = NULL;
 | ||
| 	int young = 1;
 | ||
| 	pte_t *pte = pvmw->pte;
 | ||
| 	unsigned long addr = pvmw->address;
 | ||
| 	struct vm_area_struct *vma = pvmw->vma;
 | ||
| 	struct folio *folio = pfn_folio(pvmw->pfn);
 | ||
| 	struct mem_cgroup *memcg = folio_memcg(folio);
 | ||
| 	struct pglist_data *pgdat = folio_pgdat(folio);
 | ||
| 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | ||
| 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 	DEFINE_MAX_SEQ(lruvec);
 | ||
| 	int gen = lru_gen_from_seq(max_seq);
 | ||
| 
 | ||
| 	lockdep_assert_held(pvmw->ptl);
 | ||
| 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
 | ||
| 
 | ||
| 	if (!ptep_clear_young_notify(vma, addr, pte))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	if (spin_is_contended(pvmw->ptl))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	/* exclude special VMAs containing anon pages from COW */
 | ||
| 	if (vma->vm_flags & VM_SPECIAL)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	/* avoid taking the LRU lock under the PTL when possible */
 | ||
| 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
 | ||
| 
 | ||
| 	start = max(addr & PMD_MASK, vma->vm_start);
 | ||
| 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
 | ||
| 
 | ||
| 	if (end - start == PAGE_SIZE)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
 | ||
| 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
 | ||
| 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
 | ||
| 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
 | ||
| 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
 | ||
| 		else {
 | ||
| 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
 | ||
| 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	arch_enter_lazy_mmu_mode();
 | ||
| 
 | ||
| 	pte -= (addr - start) / PAGE_SIZE;
 | ||
| 
 | ||
| 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
 | ||
| 		unsigned long pfn;
 | ||
| 		pte_t ptent = ptep_get(pte + i);
 | ||
| 
 | ||
| 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
 | ||
| 		if (pfn == -1)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		folio = get_pfn_folio(pfn, memcg, pgdat);
 | ||
| 		if (!folio)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (!ptep_clear_young_notify(vma, addr, pte + i))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (last != folio) {
 | ||
| 			walk_update_folio(walk, last, gen, dirty);
 | ||
| 
 | ||
| 			last = folio;
 | ||
| 			dirty = false;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (pte_dirty(ptent))
 | ||
| 			dirty = true;
 | ||
| 
 | ||
| 		young++;
 | ||
| 	}
 | ||
| 
 | ||
| 	walk_update_folio(walk, last, gen, dirty);
 | ||
| 
 | ||
| 	arch_leave_lazy_mmu_mode();
 | ||
| 
 | ||
| 	/* feedback from rmap walkers to page table walkers */
 | ||
| 	if (mm_state && suitable_to_scan(i, young))
 | ||
| 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          memcg LRU
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| /* see the comment on MEMCG_NR_GENS */
 | ||
| enum {
 | ||
| 	MEMCG_LRU_NOP,
 | ||
| 	MEMCG_LRU_HEAD,
 | ||
| 	MEMCG_LRU_TAIL,
 | ||
| 	MEMCG_LRU_OLD,
 | ||
| 	MEMCG_LRU_YOUNG,
 | ||
| };
 | ||
| 
 | ||
| static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
 | ||
| {
 | ||
| 	int seg;
 | ||
| 	int old, new;
 | ||
| 	unsigned long flags;
 | ||
| 	int bin = get_random_u32_below(MEMCG_NR_BINS);
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 | ||
| 
 | ||
| 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
 | ||
| 
 | ||
| 	seg = 0;
 | ||
| 	new = old = lruvec->lrugen.gen;
 | ||
| 
 | ||
| 	/* see the comment on MEMCG_NR_GENS */
 | ||
| 	if (op == MEMCG_LRU_HEAD)
 | ||
| 		seg = MEMCG_LRU_HEAD;
 | ||
| 	else if (op == MEMCG_LRU_TAIL)
 | ||
| 		seg = MEMCG_LRU_TAIL;
 | ||
| 	else if (op == MEMCG_LRU_OLD)
 | ||
| 		new = get_memcg_gen(pgdat->memcg_lru.seq);
 | ||
| 	else if (op == MEMCG_LRU_YOUNG)
 | ||
| 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
 | ||
| 	else
 | ||
| 		VM_WARN_ON_ONCE(true);
 | ||
| 
 | ||
| 	WRITE_ONCE(lruvec->lrugen.seg, seg);
 | ||
| 	WRITE_ONCE(lruvec->lrugen.gen, new);
 | ||
| 
 | ||
| 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
 | ||
| 
 | ||
| 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
 | ||
| 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
 | ||
| 	else
 | ||
| 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
 | ||
| 
 | ||
| 	pgdat->memcg_lru.nr_memcgs[old]--;
 | ||
| 	pgdat->memcg_lru.nr_memcgs[new]++;
 | ||
| 
 | ||
| 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
 | ||
| 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
 | ||
| 
 | ||
| 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
 | ||
| }
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 
 | ||
| void lru_gen_online_memcg(struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	int gen;
 | ||
| 	int nid;
 | ||
| 	int bin = get_random_u32_below(MEMCG_NR_BINS);
 | ||
| 
 | ||
| 	for_each_node(nid) {
 | ||
| 		struct pglist_data *pgdat = NODE_DATA(nid);
 | ||
| 		struct lruvec *lruvec = get_lruvec(memcg, nid);
 | ||
| 
 | ||
| 		spin_lock_irq(&pgdat->memcg_lru.lock);
 | ||
| 
 | ||
| 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
 | ||
| 
 | ||
| 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
 | ||
| 
 | ||
| 		lruvec->lrugen.gen = gen;
 | ||
| 
 | ||
| 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
 | ||
| 		pgdat->memcg_lru.nr_memcgs[gen]++;
 | ||
| 
 | ||
| 		spin_unlock_irq(&pgdat->memcg_lru.lock);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void lru_gen_offline_memcg(struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	int nid;
 | ||
| 
 | ||
| 	for_each_node(nid) {
 | ||
| 		struct lruvec *lruvec = get_lruvec(memcg, nid);
 | ||
| 
 | ||
| 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void lru_gen_release_memcg(struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	int gen;
 | ||
| 	int nid;
 | ||
| 
 | ||
| 	for_each_node(nid) {
 | ||
| 		struct pglist_data *pgdat = NODE_DATA(nid);
 | ||
| 		struct lruvec *lruvec = get_lruvec(memcg, nid);
 | ||
| 
 | ||
| 		spin_lock_irq(&pgdat->memcg_lru.lock);
 | ||
| 
 | ||
| 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
 | ||
| 			goto unlock;
 | ||
| 
 | ||
| 		gen = lruvec->lrugen.gen;
 | ||
| 
 | ||
| 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
 | ||
| 		pgdat->memcg_lru.nr_memcgs[gen]--;
 | ||
| 
 | ||
| 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
 | ||
| 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
 | ||
| unlock:
 | ||
| 		spin_unlock_irq(&pgdat->memcg_lru.lock);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
 | ||
| {
 | ||
| 	struct lruvec *lruvec = get_lruvec(memcg, nid);
 | ||
| 
 | ||
| 	/* see the comment on MEMCG_NR_GENS */
 | ||
| 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
 | ||
| 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
 | ||
| }
 | ||
| 
 | ||
| #endif /* CONFIG_MEMCG */
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          the eviction
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
 | ||
| 		       int tier_idx)
 | ||
| {
 | ||
| 	bool success;
 | ||
| 	bool dirty, writeback;
 | ||
| 	int gen = folio_lru_gen(folio);
 | ||
| 	int type = folio_is_file_lru(folio);
 | ||
| 	int zone = folio_zonenum(folio);
 | ||
| 	int delta = folio_nr_pages(folio);
 | ||
| 	int refs = folio_lru_refs(folio);
 | ||
| 	bool workingset = folio_test_workingset(folio);
 | ||
| 	int tier = lru_tier_from_refs(refs, workingset);
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
 | ||
| 
 | ||
| 	/* unevictable */
 | ||
| 	if (!folio_evictable(folio)) {
 | ||
| 		success = lru_gen_del_folio(lruvec, folio, true);
 | ||
| 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
 | ||
| 		folio_set_unevictable(folio);
 | ||
| 		lruvec_add_folio(lruvec, folio);
 | ||
| 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* promoted */
 | ||
| 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
 | ||
| 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* protected */
 | ||
| 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
 | ||
| 		gen = folio_inc_gen(lruvec, folio, false);
 | ||
| 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
 | ||
| 
 | ||
| 		/* don't count the workingset being lazily promoted */
 | ||
| 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
 | ||
| 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
 | ||
| 
 | ||
| 			WRITE_ONCE(lrugen->protected[hist][type][tier],
 | ||
| 				   lrugen->protected[hist][type][tier] + delta);
 | ||
| 		}
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* ineligible */
 | ||
| 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
 | ||
| 		gen = folio_inc_gen(lruvec, folio, false);
 | ||
| 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	dirty = folio_test_dirty(folio);
 | ||
| 	writeback = folio_test_writeback(folio);
 | ||
| 	if (type == LRU_GEN_FILE && dirty) {
 | ||
| 		sc->nr.file_taken += delta;
 | ||
| 		if (!writeback)
 | ||
| 			sc->nr.unqueued_dirty += delta;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* waiting for writeback */
 | ||
| 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
 | ||
| 		gen = folio_inc_gen(lruvec, folio, true);
 | ||
| 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
 | ||
| {
 | ||
| 	bool success;
 | ||
| 
 | ||
| 	/* swap constrained */
 | ||
| 	if (!(sc->gfp_mask & __GFP_IO) &&
 | ||
| 	    (folio_test_dirty(folio) ||
 | ||
| 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/* raced with release_pages() */
 | ||
| 	if (!folio_try_get(folio))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/* raced with another isolation */
 | ||
| 	if (!folio_test_clear_lru(folio)) {
 | ||
| 		folio_put(folio);
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* see the comment on LRU_REFS_FLAGS */
 | ||
| 	if (!folio_test_referenced(folio))
 | ||
| 		set_mask_bits(&folio->flags, LRU_REFS_MASK, 0);
 | ||
| 
 | ||
| 	/* for shrink_folio_list() */
 | ||
| 	folio_clear_reclaim(folio);
 | ||
| 
 | ||
| 	success = lru_gen_del_folio(lruvec, folio, true);
 | ||
| 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
 | ||
| 		       int type, int tier, struct list_head *list)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int gen;
 | ||
| 	enum vm_event_item item;
 | ||
| 	int sorted = 0;
 | ||
| 	int scanned = 0;
 | ||
| 	int isolated = 0;
 | ||
| 	int skipped = 0;
 | ||
| 	int remaining = MAX_LRU_BATCH;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(!list_empty(list));
 | ||
| 
 | ||
| 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
 | ||
| 
 | ||
| 	for (i = MAX_NR_ZONES; i > 0; i--) {
 | ||
| 		LIST_HEAD(moved);
 | ||
| 		int skipped_zone = 0;
 | ||
| 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
 | ||
| 		struct list_head *head = &lrugen->folios[gen][type][zone];
 | ||
| 
 | ||
| 		while (!list_empty(head)) {
 | ||
| 			struct folio *folio = lru_to_folio(head);
 | ||
| 			int delta = folio_nr_pages(folio);
 | ||
| 
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
 | ||
| 
 | ||
| 			scanned += delta;
 | ||
| 
 | ||
| 			if (sort_folio(lruvec, folio, sc, tier))
 | ||
| 				sorted += delta;
 | ||
| 			else if (isolate_folio(lruvec, folio, sc)) {
 | ||
| 				list_add(&folio->lru, list);
 | ||
| 				isolated += delta;
 | ||
| 			} else {
 | ||
| 				list_move(&folio->lru, &moved);
 | ||
| 				skipped_zone += delta;
 | ||
| 			}
 | ||
| 
 | ||
| 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
 | ||
| 				break;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (skipped_zone) {
 | ||
| 			list_splice(&moved, head);
 | ||
| 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
 | ||
| 			skipped += skipped_zone;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!remaining || isolated >= MIN_LRU_BATCH)
 | ||
| 			break;
 | ||
| 	}
 | ||
| 
 | ||
| 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
 | ||
| 	if (!cgroup_reclaim(sc)) {
 | ||
| 		__count_vm_events(item, isolated);
 | ||
| 		__count_vm_events(PGREFILL, sorted);
 | ||
| 	}
 | ||
| 	count_memcg_events(memcg, item, isolated);
 | ||
| 	count_memcg_events(memcg, PGREFILL, sorted);
 | ||
| 	__count_vm_events(PGSCAN_ANON + type, isolated);
 | ||
| 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
 | ||
| 				scanned, skipped, isolated,
 | ||
| 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
 | ||
| 	if (type == LRU_GEN_FILE)
 | ||
| 		sc->nr.file_taken += isolated;
 | ||
| 	/*
 | ||
| 	 * There might not be eligible folios due to reclaim_idx. Check the
 | ||
| 	 * remaining to prevent livelock if it's not making progress.
 | ||
| 	 */
 | ||
| 	return isolated || !remaining ? scanned : 0;
 | ||
| }
 | ||
| 
 | ||
| static int get_tier_idx(struct lruvec *lruvec, int type)
 | ||
| {
 | ||
| 	int tier;
 | ||
| 	struct ctrl_pos sp, pv;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
 | ||
| 	 * This value is chosen because any other tier would have at least twice
 | ||
| 	 * as many refaults as the first tier.
 | ||
| 	 */
 | ||
| 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
 | ||
| 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
 | ||
| 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
 | ||
| 		if (!positive_ctrl_err(&sp, &pv))
 | ||
| 			break;
 | ||
| 	}
 | ||
| 
 | ||
| 	return tier - 1;
 | ||
| }
 | ||
| 
 | ||
| static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
 | ||
| {
 | ||
| 	struct ctrl_pos sp, pv;
 | ||
| 
 | ||
| 	if (swappiness <= MIN_SWAPPINESS + 1)
 | ||
| 		return LRU_GEN_FILE;
 | ||
| 
 | ||
| 	if (swappiness >= MAX_SWAPPINESS)
 | ||
| 		return LRU_GEN_ANON;
 | ||
| 	/*
 | ||
| 	 * Compare the sum of all tiers of anon with that of file to determine
 | ||
| 	 * which type to scan.
 | ||
| 	 */
 | ||
| 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
 | ||
| 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
 | ||
| 
 | ||
| 	return positive_ctrl_err(&sp, &pv);
 | ||
| }
 | ||
| 
 | ||
| static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
 | ||
| 			  int *type_scanned, struct list_head *list)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int type = get_type_to_scan(lruvec, swappiness);
 | ||
| 
 | ||
| 	for_each_evictable_type(i, swappiness) {
 | ||
| 		int scanned;
 | ||
| 		int tier = get_tier_idx(lruvec, type);
 | ||
| 
 | ||
| 		*type_scanned = type;
 | ||
| 
 | ||
| 		scanned = scan_folios(lruvec, sc, type, tier, list);
 | ||
| 		if (scanned)
 | ||
| 			return scanned;
 | ||
| 
 | ||
| 		type = !type;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
 | ||
| {
 | ||
| 	int type;
 | ||
| 	int scanned;
 | ||
| 	int reclaimed;
 | ||
| 	LIST_HEAD(list);
 | ||
| 	LIST_HEAD(clean);
 | ||
| 	struct folio *folio;
 | ||
| 	struct folio *next;
 | ||
| 	enum vm_event_item item;
 | ||
| 	struct reclaim_stat stat;
 | ||
| 	struct lru_gen_mm_walk *walk;
 | ||
| 	bool skip_retry = false;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 | ||
| 
 | ||
| 	spin_lock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
 | ||
| 
 | ||
| 	scanned += try_to_inc_min_seq(lruvec, swappiness);
 | ||
| 
 | ||
| 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
 | ||
| 		scanned = 0;
 | ||
| 
 | ||
| 	spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	if (list_empty(&list))
 | ||
| 		return scanned;
 | ||
| retry:
 | ||
| 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
 | ||
| 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
 | ||
| 	sc->nr_reclaimed += reclaimed;
 | ||
| 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
 | ||
| 			scanned, reclaimed, &stat, sc->priority,
 | ||
| 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
 | ||
| 
 | ||
| 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
 | ||
| 		DEFINE_MIN_SEQ(lruvec);
 | ||
| 
 | ||
| 		if (!folio_evictable(folio)) {
 | ||
| 			list_del(&folio->lru);
 | ||
| 			folio_putback_lru(folio);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* retry folios that may have missed folio_rotate_reclaimable() */
 | ||
| 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
 | ||
| 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
 | ||
| 			list_move(&folio->lru, &clean);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* don't add rejected folios to the oldest generation */
 | ||
| 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
 | ||
| 			set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active));
 | ||
| 	}
 | ||
| 
 | ||
| 	spin_lock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	move_folios_to_lru(lruvec, &list);
 | ||
| 
 | ||
| 	walk = current->reclaim_state->mm_walk;
 | ||
| 	if (walk && walk->batched) {
 | ||
| 		walk->lruvec = lruvec;
 | ||
| 		reset_batch_size(walk);
 | ||
| 	}
 | ||
| 
 | ||
| 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
 | ||
| 					stat.nr_demoted);
 | ||
| 
 | ||
| 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
 | ||
| 	if (!cgroup_reclaim(sc))
 | ||
| 		__count_vm_events(item, reclaimed);
 | ||
| 	count_memcg_events(memcg, item, reclaimed);
 | ||
| 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
 | ||
| 
 | ||
| 	spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 	list_splice_init(&clean, &list);
 | ||
| 
 | ||
| 	if (!list_empty(&list)) {
 | ||
| 		skip_retry = true;
 | ||
| 		goto retry;
 | ||
| 	}
 | ||
| 
 | ||
| 	return scanned;
 | ||
| }
 | ||
| 
 | ||
| static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
 | ||
| 			     int swappiness, unsigned long *nr_to_scan)
 | ||
| {
 | ||
| 	int gen, type, zone;
 | ||
| 	unsigned long size = 0;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	DEFINE_MIN_SEQ(lruvec);
 | ||
| 
 | ||
| 	*nr_to_scan = 0;
 | ||
| 	/* have to run aging, since eviction is not possible anymore */
 | ||
| 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	for_each_evictable_type(type, swappiness) {
 | ||
| 		unsigned long seq;
 | ||
| 
 | ||
| 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
 | ||
| 			gen = lru_gen_from_seq(seq);
 | ||
| 
 | ||
| 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
 | ||
| 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	*nr_to_scan = size;
 | ||
| 	/* better to run aging even though eviction is still possible */
 | ||
| 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * For future optimizations:
 | ||
|  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
 | ||
|  *    reclaim.
 | ||
|  */
 | ||
| static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
 | ||
| {
 | ||
| 	bool success;
 | ||
| 	unsigned long nr_to_scan;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	DEFINE_MAX_SEQ(lruvec);
 | ||
| 
 | ||
| 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
 | ||
| 
 | ||
| 	/* try to scrape all its memory if this memcg was deleted */
 | ||
| 	if (nr_to_scan && !mem_cgroup_online(memcg))
 | ||
| 		return nr_to_scan;
 | ||
| 
 | ||
| 	/* try to get away with not aging at the default priority */
 | ||
| 	if (!success || sc->priority == DEF_PRIORITY)
 | ||
| 		return nr_to_scan >> sc->priority;
 | ||
| 
 | ||
| 	/* stop scanning this lruvec as it's low on cold folios */
 | ||
| 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
 | ||
| }
 | ||
| 
 | ||
| static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	enum zone_watermarks mark;
 | ||
| 
 | ||
| 	/* don't abort memcg reclaim to ensure fairness */
 | ||
| 	if (!root_reclaim(sc))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	/* check the order to exclude compaction-induced reclaim */
 | ||
| 	if (!current_is_kswapd() || sc->order)
 | ||
| 		return false;
 | ||
| 
 | ||
| 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
 | ||
| 	       WMARK_PROMO : WMARK_HIGH;
 | ||
| 
 | ||
| 	for (i = 0; i <= sc->reclaim_idx; i++) {
 | ||
| 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
 | ||
| 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
 | ||
| 
 | ||
| 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
 | ||
| 			return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* kswapd should abort if all eligible zones are safe */
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
 | ||
| {
 | ||
| 	long nr_to_scan;
 | ||
| 	unsigned long scanned = 0;
 | ||
| 	int swappiness = get_swappiness(lruvec, sc);
 | ||
| 
 | ||
| 	while (true) {
 | ||
| 		int delta;
 | ||
| 
 | ||
| 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
 | ||
| 		if (nr_to_scan <= 0)
 | ||
| 			break;
 | ||
| 
 | ||
| 		delta = evict_folios(lruvec, sc, swappiness);
 | ||
| 		if (!delta)
 | ||
| 			break;
 | ||
| 
 | ||
| 		scanned += delta;
 | ||
| 		if (scanned >= nr_to_scan)
 | ||
| 			break;
 | ||
| 
 | ||
| 		if (should_abort_scan(lruvec, sc))
 | ||
| 			break;
 | ||
| 
 | ||
| 		cond_resched();
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If too many file cache in the coldest generation can't be evicted
 | ||
| 	 * due to being dirty, wake up the flusher.
 | ||
| 	 */
 | ||
| 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
 | ||
| 		wakeup_flusher_threads(WB_REASON_VMSCAN);
 | ||
| 
 | ||
| 	/* whether this lruvec should be rotated */
 | ||
| 	return nr_to_scan < 0;
 | ||
| }
 | ||
| 
 | ||
| static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
 | ||
| {
 | ||
| 	bool success;
 | ||
| 	unsigned long scanned = sc->nr_scanned;
 | ||
| 	unsigned long reclaimed = sc->nr_reclaimed;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 | ||
| 
 | ||
| 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
 | ||
| 	if (mem_cgroup_below_min(NULL, memcg))
 | ||
| 		return MEMCG_LRU_YOUNG;
 | ||
| 
 | ||
| 	if (mem_cgroup_below_low(NULL, memcg)) {
 | ||
| 		/* see the comment on MEMCG_NR_GENS */
 | ||
| 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
 | ||
| 			return MEMCG_LRU_TAIL;
 | ||
| 
 | ||
| 		memcg_memory_event(memcg, MEMCG_LOW);
 | ||
| 	}
 | ||
| 
 | ||
| 	success = try_to_shrink_lruvec(lruvec, sc);
 | ||
| 
 | ||
| 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
 | ||
| 
 | ||
| 	if (!sc->proactive)
 | ||
| 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
 | ||
| 			   sc->nr_reclaimed - reclaimed);
 | ||
| 
 | ||
| 	flush_reclaim_state(sc);
 | ||
| 
 | ||
| 	if (success && mem_cgroup_online(memcg))
 | ||
| 		return MEMCG_LRU_YOUNG;
 | ||
| 
 | ||
| 	if (!success && lruvec_is_sizable(lruvec, sc))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* one retry if offlined or too small */
 | ||
| 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
 | ||
| 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
 | ||
| }
 | ||
| 
 | ||
| static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	int op;
 | ||
| 	int gen;
 | ||
| 	int bin;
 | ||
| 	int first_bin;
 | ||
| 	struct lruvec *lruvec;
 | ||
| 	struct lru_gen_folio *lrugen;
 | ||
| 	struct mem_cgroup *memcg;
 | ||
| 	struct hlist_nulls_node *pos;
 | ||
| 
 | ||
| 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
 | ||
| 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
 | ||
| restart:
 | ||
| 	op = 0;
 | ||
| 	memcg = NULL;
 | ||
| 
 | ||
| 	rcu_read_lock();
 | ||
| 
 | ||
| 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
 | ||
| 		if (op) {
 | ||
| 			lru_gen_rotate_memcg(lruvec, op);
 | ||
| 			op = 0;
 | ||
| 		}
 | ||
| 
 | ||
| 		mem_cgroup_put(memcg);
 | ||
| 		memcg = NULL;
 | ||
| 
 | ||
| 		if (gen != READ_ONCE(lrugen->gen))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		lruvec = container_of(lrugen, struct lruvec, lrugen);
 | ||
| 		memcg = lruvec_memcg(lruvec);
 | ||
| 
 | ||
| 		if (!mem_cgroup_tryget(memcg)) {
 | ||
| 			lru_gen_release_memcg(memcg);
 | ||
| 			memcg = NULL;
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		rcu_read_unlock();
 | ||
| 
 | ||
| 		op = shrink_one(lruvec, sc);
 | ||
| 
 | ||
| 		rcu_read_lock();
 | ||
| 
 | ||
| 		if (should_abort_scan(lruvec, sc))
 | ||
| 			break;
 | ||
| 	}
 | ||
| 
 | ||
| 	rcu_read_unlock();
 | ||
| 
 | ||
| 	if (op)
 | ||
| 		lru_gen_rotate_memcg(lruvec, op);
 | ||
| 
 | ||
| 	mem_cgroup_put(memcg);
 | ||
| 
 | ||
| 	if (!is_a_nulls(pos))
 | ||
| 		return;
 | ||
| 
 | ||
| 	/* restart if raced with lru_gen_rotate_memcg() */
 | ||
| 	if (gen != get_nulls_value(pos))
 | ||
| 		goto restart;
 | ||
| 
 | ||
| 	/* try the rest of the bins of the current generation */
 | ||
| 	bin = get_memcg_bin(bin + 1);
 | ||
| 	if (bin != first_bin)
 | ||
| 		goto restart;
 | ||
| }
 | ||
| 
 | ||
| static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
 | ||
| {
 | ||
| 	struct blk_plug plug;
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(root_reclaim(sc));
 | ||
| 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
 | ||
| 
 | ||
| 	lru_add_drain();
 | ||
| 
 | ||
| 	blk_start_plug(&plug);
 | ||
| 
 | ||
| 	set_mm_walk(NULL, sc->proactive);
 | ||
| 
 | ||
| 	if (try_to_shrink_lruvec(lruvec, sc))
 | ||
| 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
 | ||
| 
 | ||
| 	clear_mm_walk();
 | ||
| 
 | ||
| 	blk_finish_plug(&plug);
 | ||
| }
 | ||
| 
 | ||
| static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	struct blk_plug plug;
 | ||
| 	unsigned long reclaimed = sc->nr_reclaimed;
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(!root_reclaim(sc));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Unmapped clean folios are already prioritized. Scanning for more of
 | ||
| 	 * them is likely futile and can cause high reclaim latency when there
 | ||
| 	 * is a large number of memcgs.
 | ||
| 	 */
 | ||
| 	if (!sc->may_writepage || !sc->may_unmap)
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	lru_add_drain();
 | ||
| 
 | ||
| 	blk_start_plug(&plug);
 | ||
| 
 | ||
| 	set_mm_walk(pgdat, sc->proactive);
 | ||
| 
 | ||
| 	set_initial_priority(pgdat, sc);
 | ||
| 
 | ||
| 	if (current_is_kswapd())
 | ||
| 		sc->nr_reclaimed = 0;
 | ||
| 
 | ||
| 	if (mem_cgroup_disabled())
 | ||
| 		shrink_one(&pgdat->__lruvec, sc);
 | ||
| 	else
 | ||
| 		shrink_many(pgdat, sc);
 | ||
| 
 | ||
| 	if (current_is_kswapd())
 | ||
| 		sc->nr_reclaimed += reclaimed;
 | ||
| 
 | ||
| 	clear_mm_walk();
 | ||
| 
 | ||
| 	blk_finish_plug(&plug);
 | ||
| done:
 | ||
| 	if (sc->nr_reclaimed > reclaimed)
 | ||
| 		pgdat->kswapd_failures = 0;
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          state change
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
 | ||
| {
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 
 | ||
| 	if (lrugen->enabled) {
 | ||
| 		enum lru_list lru;
 | ||
| 
 | ||
| 		for_each_evictable_lru(lru) {
 | ||
| 			if (!list_empty(&lruvec->lists[lru]))
 | ||
| 				return false;
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		int gen, type, zone;
 | ||
| 
 | ||
| 		for_each_gen_type_zone(gen, type, zone) {
 | ||
| 			if (!list_empty(&lrugen->folios[gen][type][zone]))
 | ||
| 				return false;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static bool fill_evictable(struct lruvec *lruvec)
 | ||
| {
 | ||
| 	enum lru_list lru;
 | ||
| 	int remaining = MAX_LRU_BATCH;
 | ||
| 
 | ||
| 	for_each_evictable_lru(lru) {
 | ||
| 		int type = is_file_lru(lru);
 | ||
| 		bool active = is_active_lru(lru);
 | ||
| 		struct list_head *head = &lruvec->lists[lru];
 | ||
| 
 | ||
| 		while (!list_empty(head)) {
 | ||
| 			bool success;
 | ||
| 			struct folio *folio = lru_to_folio(head);
 | ||
| 
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
 | ||
| 
 | ||
| 			lruvec_del_folio(lruvec, folio);
 | ||
| 			success = lru_gen_add_folio(lruvec, folio, false);
 | ||
| 			VM_WARN_ON_ONCE(!success);
 | ||
| 
 | ||
| 			if (!--remaining)
 | ||
| 				return false;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static bool drain_evictable(struct lruvec *lruvec)
 | ||
| {
 | ||
| 	int gen, type, zone;
 | ||
| 	int remaining = MAX_LRU_BATCH;
 | ||
| 
 | ||
| 	for_each_gen_type_zone(gen, type, zone) {
 | ||
| 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
 | ||
| 
 | ||
| 		while (!list_empty(head)) {
 | ||
| 			bool success;
 | ||
| 			struct folio *folio = lru_to_folio(head);
 | ||
| 
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
 | ||
| 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
 | ||
| 
 | ||
| 			success = lru_gen_del_folio(lruvec, folio, false);
 | ||
| 			VM_WARN_ON_ONCE(!success);
 | ||
| 			lruvec_add_folio(lruvec, folio);
 | ||
| 
 | ||
| 			if (!--remaining)
 | ||
| 				return false;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static void lru_gen_change_state(bool enabled)
 | ||
| {
 | ||
| 	static DEFINE_MUTEX(state_mutex);
 | ||
| 
 | ||
| 	struct mem_cgroup *memcg;
 | ||
| 
 | ||
| 	cgroup_lock();
 | ||
| 	cpus_read_lock();
 | ||
| 	get_online_mems();
 | ||
| 	mutex_lock(&state_mutex);
 | ||
| 
 | ||
| 	if (enabled == lru_gen_enabled())
 | ||
| 		goto unlock;
 | ||
| 
 | ||
| 	if (enabled)
 | ||
| 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
 | ||
| 	else
 | ||
| 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
 | ||
| 
 | ||
| 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 | ||
| 	do {
 | ||
| 		int nid;
 | ||
| 
 | ||
| 		for_each_node(nid) {
 | ||
| 			struct lruvec *lruvec = get_lruvec(memcg, nid);
 | ||
| 
 | ||
| 			spin_lock_irq(&lruvec->lru_lock);
 | ||
| 
 | ||
| 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
 | ||
| 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
 | ||
| 
 | ||
| 			lruvec->lrugen.enabled = enabled;
 | ||
| 
 | ||
| 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
 | ||
| 				spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 				cond_resched();
 | ||
| 				spin_lock_irq(&lruvec->lru_lock);
 | ||
| 			}
 | ||
| 
 | ||
| 			spin_unlock_irq(&lruvec->lru_lock);
 | ||
| 		}
 | ||
| 
 | ||
| 		cond_resched();
 | ||
| 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
 | ||
| unlock:
 | ||
| 	mutex_unlock(&state_mutex);
 | ||
| 	put_online_mems();
 | ||
| 	cpus_read_unlock();
 | ||
| 	cgroup_unlock();
 | ||
| }
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          sysfs interface
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
 | ||
| {
 | ||
| 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
 | ||
| }
 | ||
| 
 | ||
| /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
 | ||
| static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
 | ||
| 				const char *buf, size_t len)
 | ||
| {
 | ||
| 	unsigned int msecs;
 | ||
| 
 | ||
| 	if (kstrtouint(buf, 0, &msecs))
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
 | ||
| 
 | ||
| 	return len;
 | ||
| }
 | ||
| 
 | ||
| static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
 | ||
| 
 | ||
| static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
 | ||
| {
 | ||
| 	unsigned int caps = 0;
 | ||
| 
 | ||
| 	if (get_cap(LRU_GEN_CORE))
 | ||
| 		caps |= BIT(LRU_GEN_CORE);
 | ||
| 
 | ||
| 	if (should_walk_mmu())
 | ||
| 		caps |= BIT(LRU_GEN_MM_WALK);
 | ||
| 
 | ||
| 	if (should_clear_pmd_young())
 | ||
| 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
 | ||
| 
 | ||
| 	return sysfs_emit(buf, "0x%04x\n", caps);
 | ||
| }
 | ||
| 
 | ||
| /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
 | ||
| static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
 | ||
| 			     const char *buf, size_t len)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	unsigned int caps;
 | ||
| 
 | ||
| 	if (tolower(*buf) == 'n')
 | ||
| 		caps = 0;
 | ||
| 	else if (tolower(*buf) == 'y')
 | ||
| 		caps = -1;
 | ||
| 	else if (kstrtouint(buf, 0, &caps))
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
 | ||
| 		bool enabled = caps & BIT(i);
 | ||
| 
 | ||
| 		if (i == LRU_GEN_CORE)
 | ||
| 			lru_gen_change_state(enabled);
 | ||
| 		else if (enabled)
 | ||
| 			static_branch_enable(&lru_gen_caps[i]);
 | ||
| 		else
 | ||
| 			static_branch_disable(&lru_gen_caps[i]);
 | ||
| 	}
 | ||
| 
 | ||
| 	return len;
 | ||
| }
 | ||
| 
 | ||
| static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
 | ||
| 
 | ||
| static struct attribute *lru_gen_attrs[] = {
 | ||
| 	&lru_gen_min_ttl_attr.attr,
 | ||
| 	&lru_gen_enabled_attr.attr,
 | ||
| 	NULL
 | ||
| };
 | ||
| 
 | ||
| static const struct attribute_group lru_gen_attr_group = {
 | ||
| 	.name = "lru_gen",
 | ||
| 	.attrs = lru_gen_attrs,
 | ||
| };
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          debugfs interface
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
 | ||
| {
 | ||
| 	struct mem_cgroup *memcg;
 | ||
| 	loff_t nr_to_skip = *pos;
 | ||
| 
 | ||
| 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
 | ||
| 	if (!m->private)
 | ||
| 		return ERR_PTR(-ENOMEM);
 | ||
| 
 | ||
| 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 | ||
| 	do {
 | ||
| 		int nid;
 | ||
| 
 | ||
| 		for_each_node_state(nid, N_MEMORY) {
 | ||
| 			if (!nr_to_skip--)
 | ||
| 				return get_lruvec(memcg, nid);
 | ||
| 		}
 | ||
| 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
 | ||
| 
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| static void lru_gen_seq_stop(struct seq_file *m, void *v)
 | ||
| {
 | ||
| 	if (!IS_ERR_OR_NULL(v))
 | ||
| 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
 | ||
| 
 | ||
| 	kvfree(m->private);
 | ||
| 	m->private = NULL;
 | ||
| }
 | ||
| 
 | ||
| static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
 | ||
| {
 | ||
| 	int nid = lruvec_pgdat(v)->node_id;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(v);
 | ||
| 
 | ||
| 	++*pos;
 | ||
| 
 | ||
| 	nid = next_memory_node(nid);
 | ||
| 	if (nid == MAX_NUMNODES) {
 | ||
| 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
 | ||
| 		if (!memcg)
 | ||
| 			return NULL;
 | ||
| 
 | ||
| 		nid = first_memory_node;
 | ||
| 	}
 | ||
| 
 | ||
| 	return get_lruvec(memcg, nid);
 | ||
| }
 | ||
| 
 | ||
| static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
 | ||
| 				  unsigned long max_seq, unsigned long *min_seq,
 | ||
| 				  unsigned long seq)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int type, tier;
 | ||
| 	int hist = lru_hist_from_seq(seq);
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 
 | ||
| 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
 | ||
| 		seq_printf(m, "            %10d", tier);
 | ||
| 		for (type = 0; type < ANON_AND_FILE; type++) {
 | ||
| 			const char *s = "xxx";
 | ||
| 			unsigned long n[3] = {};
 | ||
| 
 | ||
| 			if (seq == max_seq) {
 | ||
| 				s = "RTx";
 | ||
| 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
 | ||
| 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
 | ||
| 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
 | ||
| 				s = "rep";
 | ||
| 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
 | ||
| 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
 | ||
| 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
 | ||
| 			}
 | ||
| 
 | ||
| 			for (i = 0; i < 3; i++)
 | ||
| 				seq_printf(m, " %10lu%c", n[i], s[i]);
 | ||
| 		}
 | ||
| 		seq_putc(m, '\n');
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!mm_state)
 | ||
| 		return;
 | ||
| 
 | ||
| 	seq_puts(m, "                      ");
 | ||
| 	for (i = 0; i < NR_MM_STATS; i++) {
 | ||
| 		const char *s = "xxxx";
 | ||
| 		unsigned long n = 0;
 | ||
| 
 | ||
| 		if (seq == max_seq && NR_HIST_GENS == 1) {
 | ||
| 			s = "TYFA";
 | ||
| 			n = READ_ONCE(mm_state->stats[hist][i]);
 | ||
| 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
 | ||
| 			s = "tyfa";
 | ||
| 			n = READ_ONCE(mm_state->stats[hist][i]);
 | ||
| 		}
 | ||
| 
 | ||
| 		seq_printf(m, " %10lu%c", n, s[i]);
 | ||
| 	}
 | ||
| 	seq_putc(m, '\n');
 | ||
| }
 | ||
| 
 | ||
| /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
 | ||
| static int lru_gen_seq_show(struct seq_file *m, void *v)
 | ||
| {
 | ||
| 	unsigned long seq;
 | ||
| 	bool full = !debugfs_real_fops(m->file)->write;
 | ||
| 	struct lruvec *lruvec = v;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	int nid = lruvec_pgdat(lruvec)->node_id;
 | ||
| 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
 | ||
| 	DEFINE_MAX_SEQ(lruvec);
 | ||
| 	DEFINE_MIN_SEQ(lruvec);
 | ||
| 
 | ||
| 	if (nid == first_memory_node) {
 | ||
| 		const char *path = memcg ? m->private : "";
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 		if (memcg)
 | ||
| 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
 | ||
| #endif
 | ||
| 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
 | ||
| 	}
 | ||
| 
 | ||
| 	seq_printf(m, " node %5d\n", nid);
 | ||
| 
 | ||
| 	if (!full)
 | ||
| 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
 | ||
| 	else if (max_seq >= MAX_NR_GENS)
 | ||
| 		seq = max_seq - MAX_NR_GENS + 1;
 | ||
| 	else
 | ||
| 		seq = 0;
 | ||
| 
 | ||
| 	for (; seq <= max_seq; seq++) {
 | ||
| 		int type, zone;
 | ||
| 		int gen = lru_gen_from_seq(seq);
 | ||
| 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
 | ||
| 
 | ||
| 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
 | ||
| 
 | ||
| 		for (type = 0; type < ANON_AND_FILE; type++) {
 | ||
| 			unsigned long size = 0;
 | ||
| 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
 | ||
| 
 | ||
| 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
 | ||
| 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
 | ||
| 
 | ||
| 			seq_printf(m, " %10lu%c", size, mark);
 | ||
| 		}
 | ||
| 
 | ||
| 		seq_putc(m, '\n');
 | ||
| 
 | ||
| 		if (full)
 | ||
| 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static const struct seq_operations lru_gen_seq_ops = {
 | ||
| 	.start = lru_gen_seq_start,
 | ||
| 	.stop = lru_gen_seq_stop,
 | ||
| 	.next = lru_gen_seq_next,
 | ||
| 	.show = lru_gen_seq_show,
 | ||
| };
 | ||
| 
 | ||
| static int run_aging(struct lruvec *lruvec, unsigned long seq,
 | ||
| 		     int swappiness, bool force_scan)
 | ||
| {
 | ||
| 	DEFINE_MAX_SEQ(lruvec);
 | ||
| 
 | ||
| 	if (seq > max_seq)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
 | ||
| }
 | ||
| 
 | ||
| static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
 | ||
| 			int swappiness, unsigned long nr_to_reclaim)
 | ||
| {
 | ||
| 	DEFINE_MAX_SEQ(lruvec);
 | ||
| 
 | ||
| 	if (seq + MIN_NR_GENS > max_seq)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	sc->nr_reclaimed = 0;
 | ||
| 
 | ||
| 	while (!signal_pending(current)) {
 | ||
| 		DEFINE_MIN_SEQ(lruvec);
 | ||
| 
 | ||
| 		if (seq < evictable_min_seq(min_seq, swappiness))
 | ||
| 			return 0;
 | ||
| 
 | ||
| 		if (sc->nr_reclaimed >= nr_to_reclaim)
 | ||
| 			return 0;
 | ||
| 
 | ||
| 		if (!evict_folios(lruvec, sc, swappiness))
 | ||
| 			return 0;
 | ||
| 
 | ||
| 		cond_resched();
 | ||
| 	}
 | ||
| 
 | ||
| 	return -EINTR;
 | ||
| }
 | ||
| 
 | ||
| static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
 | ||
| 		   struct scan_control *sc, int swappiness, unsigned long opt)
 | ||
| {
 | ||
| 	struct lruvec *lruvec;
 | ||
| 	int err = -EINVAL;
 | ||
| 	struct mem_cgroup *memcg = NULL;
 | ||
| 
 | ||
| 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	if (!mem_cgroup_disabled()) {
 | ||
| 		rcu_read_lock();
 | ||
| 
 | ||
| 		memcg = mem_cgroup_from_id(memcg_id);
 | ||
| 		if (!mem_cgroup_tryget(memcg))
 | ||
| 			memcg = NULL;
 | ||
| 
 | ||
| 		rcu_read_unlock();
 | ||
| 
 | ||
| 		if (!memcg)
 | ||
| 			return -EINVAL;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (memcg_id != mem_cgroup_id(memcg))
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	lruvec = get_lruvec(memcg, nid);
 | ||
| 
 | ||
| 	if (swappiness < MIN_SWAPPINESS)
 | ||
| 		swappiness = get_swappiness(lruvec, sc);
 | ||
| 	else if (swappiness > SWAPPINESS_ANON_ONLY)
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	switch (cmd) {
 | ||
| 	case '+':
 | ||
| 		err = run_aging(lruvec, seq, swappiness, opt);
 | ||
| 		break;
 | ||
| 	case '-':
 | ||
| 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
 | ||
| 		break;
 | ||
| 	}
 | ||
| done:
 | ||
| 	mem_cgroup_put(memcg);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
 | ||
| static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
 | ||
| 				 size_t len, loff_t *pos)
 | ||
| {
 | ||
| 	void *buf;
 | ||
| 	char *cur, *next;
 | ||
| 	unsigned int flags;
 | ||
| 	struct blk_plug plug;
 | ||
| 	int err = -EINVAL;
 | ||
| 	struct scan_control sc = {
 | ||
| 		.may_writepage = true,
 | ||
| 		.may_unmap = true,
 | ||
| 		.may_swap = true,
 | ||
| 		.reclaim_idx = MAX_NR_ZONES - 1,
 | ||
| 		.gfp_mask = GFP_KERNEL,
 | ||
| 	};
 | ||
| 
 | ||
| 	buf = kvmalloc(len + 1, GFP_KERNEL);
 | ||
| 	if (!buf)
 | ||
| 		return -ENOMEM;
 | ||
| 
 | ||
| 	if (copy_from_user(buf, src, len)) {
 | ||
| 		kvfree(buf);
 | ||
| 		return -EFAULT;
 | ||
| 	}
 | ||
| 
 | ||
| 	set_task_reclaim_state(current, &sc.reclaim_state);
 | ||
| 	flags = memalloc_noreclaim_save();
 | ||
| 	blk_start_plug(&plug);
 | ||
| 	if (!set_mm_walk(NULL, true)) {
 | ||
| 		err = -ENOMEM;
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	next = buf;
 | ||
| 	next[len] = '\0';
 | ||
| 
 | ||
| 	while ((cur = strsep(&next, ",;\n"))) {
 | ||
| 		int n;
 | ||
| 		int end;
 | ||
| 		char cmd, swap_string[5];
 | ||
| 		unsigned int memcg_id;
 | ||
| 		unsigned int nid;
 | ||
| 		unsigned long seq;
 | ||
| 		unsigned int swappiness;
 | ||
| 		unsigned long opt = -1;
 | ||
| 
 | ||
| 		cur = skip_spaces(cur);
 | ||
| 		if (!*cur)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
 | ||
| 			   &seq, &end, swap_string, &end, &opt, &end);
 | ||
| 		if (n < 4 || cur[end]) {
 | ||
| 			err = -EINVAL;
 | ||
| 			break;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (n == 4) {
 | ||
| 			swappiness = -1;
 | ||
| 		} else if (!strcmp("max", swap_string)) {
 | ||
| 			/* set by userspace for anonymous memory only */
 | ||
| 			swappiness = SWAPPINESS_ANON_ONLY;
 | ||
| 		} else {
 | ||
| 			err = kstrtouint(swap_string, 0, &swappiness);
 | ||
| 			if (err)
 | ||
| 				break;
 | ||
| 		}
 | ||
| 
 | ||
| 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
 | ||
| 		if (err)
 | ||
| 			break;
 | ||
| 	}
 | ||
| done:
 | ||
| 	clear_mm_walk();
 | ||
| 	blk_finish_plug(&plug);
 | ||
| 	memalloc_noreclaim_restore(flags);
 | ||
| 	set_task_reclaim_state(current, NULL);
 | ||
| 
 | ||
| 	kvfree(buf);
 | ||
| 
 | ||
| 	return err ? : len;
 | ||
| }
 | ||
| 
 | ||
| static int lru_gen_seq_open(struct inode *inode, struct file *file)
 | ||
| {
 | ||
| 	return seq_open(file, &lru_gen_seq_ops);
 | ||
| }
 | ||
| 
 | ||
| static const struct file_operations lru_gen_rw_fops = {
 | ||
| 	.open = lru_gen_seq_open,
 | ||
| 	.read = seq_read,
 | ||
| 	.write = lru_gen_seq_write,
 | ||
| 	.llseek = seq_lseek,
 | ||
| 	.release = seq_release,
 | ||
| };
 | ||
| 
 | ||
| static const struct file_operations lru_gen_ro_fops = {
 | ||
| 	.open = lru_gen_seq_open,
 | ||
| 	.read = seq_read,
 | ||
| 	.llseek = seq_lseek,
 | ||
| 	.release = seq_release,
 | ||
| };
 | ||
| 
 | ||
| /******************************************************************************
 | ||
|  *                          initialization
 | ||
|  ******************************************************************************/
 | ||
| 
 | ||
| void lru_gen_init_pgdat(struct pglist_data *pgdat)
 | ||
| {
 | ||
| 	int i, j;
 | ||
| 
 | ||
| 	spin_lock_init(&pgdat->memcg_lru.lock);
 | ||
| 
 | ||
| 	for (i = 0; i < MEMCG_NR_GENS; i++) {
 | ||
| 		for (j = 0; j < MEMCG_NR_BINS; j++)
 | ||
| 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void lru_gen_init_lruvec(struct lruvec *lruvec)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int gen, type, zone;
 | ||
| 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
 | ||
| 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 
 | ||
| 	lrugen->max_seq = MIN_NR_GENS + 1;
 | ||
| 	lrugen->enabled = lru_gen_enabled();
 | ||
| 
 | ||
| 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
 | ||
| 		lrugen->timestamps[i] = jiffies;
 | ||
| 
 | ||
| 	for_each_gen_type_zone(gen, type, zone)
 | ||
| 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
 | ||
| 
 | ||
| 	if (mm_state)
 | ||
| 		mm_state->seq = MIN_NR_GENS;
 | ||
| }
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 
 | ||
| void lru_gen_init_memcg(struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
 | ||
| 
 | ||
| 	if (!mm_list)
 | ||
| 		return;
 | ||
| 
 | ||
| 	INIT_LIST_HEAD(&mm_list->fifo);
 | ||
| 	spin_lock_init(&mm_list->lock);
 | ||
| }
 | ||
| 
 | ||
| void lru_gen_exit_memcg(struct mem_cgroup *memcg)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int nid;
 | ||
| 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
 | ||
| 
 | ||
| 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
 | ||
| 
 | ||
| 	for_each_node(nid) {
 | ||
| 		struct lruvec *lruvec = get_lruvec(memcg, nid);
 | ||
| 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
 | ||
| 
 | ||
| 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
 | ||
| 					   sizeof(lruvec->lrugen.nr_pages)));
 | ||
| 
 | ||
| 		lruvec->lrugen.list.next = LIST_POISON1;
 | ||
| 
 | ||
| 		if (!mm_state)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
 | ||
| 			bitmap_free(mm_state->filters[i]);
 | ||
| 			mm_state->filters[i] = NULL;
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| #endif /* CONFIG_MEMCG */
 | ||
| 
 | ||
| static int __init init_lru_gen(void)
 | ||
| {
 | ||
| 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
 | ||
| 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
 | ||
| 
 | ||
| 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
 | ||
| 		pr_err("lru_gen: failed to create sysfs group\n");
 | ||
| 
 | ||
| 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
 | ||
| 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
 | ||
| 
 | ||
| 	return 0;
 | ||
| };
 | ||
| late_initcall(init_lru_gen);
 | ||
| 
 | ||
| #else /* !CONFIG_LRU_GEN */
 | ||
| 
 | ||
| static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	BUILD_BUG();
 | ||
| }
 | ||
| 
 | ||
| static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
 | ||
| {
 | ||
| 	BUILD_BUG();
 | ||
| }
 | ||
| 
 | ||
| static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	BUILD_BUG();
 | ||
| }
 | ||
| 
 | ||
| #endif /* CONFIG_LRU_GEN */
 | ||
| 
 | ||
| static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
 | ||
| {
 | ||
| 	unsigned long nr[NR_LRU_LISTS];
 | ||
| 	unsigned long targets[NR_LRU_LISTS];
 | ||
| 	unsigned long nr_to_scan;
 | ||
| 	enum lru_list lru;
 | ||
| 	unsigned long nr_reclaimed = 0;
 | ||
| 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
 | ||
| 	bool proportional_reclaim;
 | ||
| 	struct blk_plug plug;
 | ||
| 
 | ||
| 	if (lru_gen_enabled() && !root_reclaim(sc)) {
 | ||
| 		lru_gen_shrink_lruvec(lruvec, sc);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	get_scan_count(lruvec, sc, nr);
 | ||
| 
 | ||
| 	/* Record the original scan target for proportional adjustments later */
 | ||
| 	memcpy(targets, nr, sizeof(nr));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
 | ||
| 	 * event that can occur when there is little memory pressure e.g.
 | ||
| 	 * multiple streaming readers/writers. Hence, we do not abort scanning
 | ||
| 	 * when the requested number of pages are reclaimed when scanning at
 | ||
| 	 * DEF_PRIORITY on the assumption that the fact we are direct
 | ||
| 	 * reclaiming implies that kswapd is not keeping up and it is best to
 | ||
| 	 * do a batch of work at once. For memcg reclaim one check is made to
 | ||
| 	 * abort proportional reclaim if either the file or anon lru has already
 | ||
| 	 * dropped to zero at the first pass.
 | ||
| 	 */
 | ||
| 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
 | ||
| 				sc->priority == DEF_PRIORITY);
 | ||
| 
 | ||
| 	blk_start_plug(&plug);
 | ||
| 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
 | ||
| 					nr[LRU_INACTIVE_FILE]) {
 | ||
| 		unsigned long nr_anon, nr_file, percentage;
 | ||
| 		unsigned long nr_scanned;
 | ||
| 
 | ||
| 		for_each_evictable_lru(lru) {
 | ||
| 			if (nr[lru]) {
 | ||
| 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
 | ||
| 				nr[lru] -= nr_to_scan;
 | ||
| 
 | ||
| 				nr_reclaimed += shrink_list(lru, nr_to_scan,
 | ||
| 							    lruvec, sc);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		cond_resched();
 | ||
| 
 | ||
| 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * For kswapd and memcg, reclaim at least the number of pages
 | ||
| 		 * requested. Ensure that the anon and file LRUs are scanned
 | ||
| 		 * proportionally what was requested by get_scan_count(). We
 | ||
| 		 * stop reclaiming one LRU and reduce the amount scanning
 | ||
| 		 * proportional to the original scan target.
 | ||
| 		 */
 | ||
| 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
 | ||
| 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * It's just vindictive to attack the larger once the smaller
 | ||
| 		 * has gone to zero.  And given the way we stop scanning the
 | ||
| 		 * smaller below, this makes sure that we only make one nudge
 | ||
| 		 * towards proportionality once we've got nr_to_reclaim.
 | ||
| 		 */
 | ||
| 		if (!nr_file || !nr_anon)
 | ||
| 			break;
 | ||
| 
 | ||
| 		if (nr_file > nr_anon) {
 | ||
| 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
 | ||
| 						targets[LRU_ACTIVE_ANON] + 1;
 | ||
| 			lru = LRU_BASE;
 | ||
| 			percentage = nr_anon * 100 / scan_target;
 | ||
| 		} else {
 | ||
| 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
 | ||
| 						targets[LRU_ACTIVE_FILE] + 1;
 | ||
| 			lru = LRU_FILE;
 | ||
| 			percentage = nr_file * 100 / scan_target;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Stop scanning the smaller of the LRU */
 | ||
| 		nr[lru] = 0;
 | ||
| 		nr[lru + LRU_ACTIVE] = 0;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Recalculate the other LRU scan count based on its original
 | ||
| 		 * scan target and the percentage scanning already complete
 | ||
| 		 */
 | ||
| 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
 | ||
| 		nr_scanned = targets[lru] - nr[lru];
 | ||
| 		nr[lru] = targets[lru] * (100 - percentage) / 100;
 | ||
| 		nr[lru] -= min(nr[lru], nr_scanned);
 | ||
| 
 | ||
| 		lru += LRU_ACTIVE;
 | ||
| 		nr_scanned = targets[lru] - nr[lru];
 | ||
| 		nr[lru] = targets[lru] * (100 - percentage) / 100;
 | ||
| 		nr[lru] -= min(nr[lru], nr_scanned);
 | ||
| 	}
 | ||
| 	blk_finish_plug(&plug);
 | ||
| 	sc->nr_reclaimed += nr_reclaimed;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Even if we did not try to evict anon pages at all, we want to
 | ||
| 	 * rebalance the anon lru active/inactive ratio.
 | ||
| 	 */
 | ||
| 	if (can_age_anon_pages(lruvec, sc) &&
 | ||
| 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
 | ||
| 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
 | ||
| 				   sc, LRU_ACTIVE_ANON);
 | ||
| }
 | ||
| 
 | ||
| /* Use reclaim/compaction for costly allocs or under memory pressure */
 | ||
| static bool in_reclaim_compaction(struct scan_control *sc)
 | ||
| {
 | ||
| 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
 | ||
| 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
 | ||
| 			 sc->priority < DEF_PRIORITY - 2))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Reclaim/compaction is used for high-order allocation requests. It reclaims
 | ||
|  * order-0 pages before compacting the zone. should_continue_reclaim() returns
 | ||
|  * true if more pages should be reclaimed such that when the page allocator
 | ||
|  * calls try_to_compact_pages() that it will have enough free pages to succeed.
 | ||
|  * It will give up earlier than that if there is difficulty reclaiming pages.
 | ||
|  */
 | ||
| static inline bool should_continue_reclaim(struct pglist_data *pgdat,
 | ||
| 					unsigned long nr_reclaimed,
 | ||
| 					struct scan_control *sc)
 | ||
| {
 | ||
| 	unsigned long pages_for_compaction;
 | ||
| 	unsigned long inactive_lru_pages;
 | ||
| 	int z;
 | ||
| 	struct zone *zone;
 | ||
| 
 | ||
| 	/* If not in reclaim/compaction mode, stop */
 | ||
| 	if (!in_reclaim_compaction(sc))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
 | ||
| 	 * number of pages that were scanned. This will return to the caller
 | ||
| 	 * with the risk reclaim/compaction and the resulting allocation attempt
 | ||
| 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
 | ||
| 	 * allocations through requiring that the full LRU list has been scanned
 | ||
| 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
 | ||
| 	 * scan, but that approximation was wrong, and there were corner cases
 | ||
| 	 * where always a non-zero amount of pages were scanned.
 | ||
| 	 */
 | ||
| 	if (!nr_reclaimed)
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/* If compaction would go ahead or the allocation would succeed, stop */
 | ||
| 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
 | ||
| 		unsigned long watermark = min_wmark_pages(zone);
 | ||
| 
 | ||
| 		/* Allocation can already succeed, nothing to do */
 | ||
| 		if (zone_watermark_ok(zone, sc->order, watermark,
 | ||
| 				      sc->reclaim_idx, 0))
 | ||
| 			return false;
 | ||
| 
 | ||
| 		if (compaction_suitable(zone, sc->order, watermark,
 | ||
| 					sc->reclaim_idx))
 | ||
| 			return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If we have not reclaimed enough pages for compaction and the
 | ||
| 	 * inactive lists are large enough, continue reclaiming
 | ||
| 	 */
 | ||
| 	pages_for_compaction = compact_gap(sc->order);
 | ||
| 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
 | ||
| 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
 | ||
| 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
 | ||
| 
 | ||
| 	return inactive_lru_pages > pages_for_compaction;
 | ||
| }
 | ||
| 
 | ||
| static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
 | ||
| 	struct mem_cgroup_reclaim_cookie reclaim = {
 | ||
| 		.pgdat = pgdat,
 | ||
| 	};
 | ||
| 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
 | ||
| 	struct mem_cgroup *memcg;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * In most cases, direct reclaimers can do partial walks
 | ||
| 	 * through the cgroup tree, using an iterator state that
 | ||
| 	 * persists across invocations. This strikes a balance between
 | ||
| 	 * fairness and allocation latency.
 | ||
| 	 *
 | ||
| 	 * For kswapd, reliable forward progress is more important
 | ||
| 	 * than a quick return to idle. Always do full walks.
 | ||
| 	 */
 | ||
| 	if (current_is_kswapd() || sc->memcg_full_walk)
 | ||
| 		partial = NULL;
 | ||
| 
 | ||
| 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
 | ||
| 	do {
 | ||
| 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | ||
| 		unsigned long reclaimed;
 | ||
| 		unsigned long scanned;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * This loop can become CPU-bound when target memcgs
 | ||
| 		 * aren't eligible for reclaim - either because they
 | ||
| 		 * don't have any reclaimable pages, or because their
 | ||
| 		 * memory is explicitly protected. Avoid soft lockups.
 | ||
| 		 */
 | ||
| 		cond_resched();
 | ||
| 
 | ||
| 		mem_cgroup_calculate_protection(target_memcg, memcg);
 | ||
| 
 | ||
| 		if (mem_cgroup_below_min(target_memcg, memcg)) {
 | ||
| 			/*
 | ||
| 			 * Hard protection.
 | ||
| 			 * If there is no reclaimable memory, OOM.
 | ||
| 			 */
 | ||
| 			continue;
 | ||
| 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
 | ||
| 			/*
 | ||
| 			 * Soft protection.
 | ||
| 			 * Respect the protection only as long as
 | ||
| 			 * there is an unprotected supply
 | ||
| 			 * of reclaimable memory from other cgroups.
 | ||
| 			 */
 | ||
| 			if (!sc->memcg_low_reclaim) {
 | ||
| 				sc->memcg_low_skipped = 1;
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			memcg_memory_event(memcg, MEMCG_LOW);
 | ||
| 		}
 | ||
| 
 | ||
| 		reclaimed = sc->nr_reclaimed;
 | ||
| 		scanned = sc->nr_scanned;
 | ||
| 
 | ||
| 		shrink_lruvec(lruvec, sc);
 | ||
| 
 | ||
| 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
 | ||
| 			    sc->priority);
 | ||
| 
 | ||
| 		/* Record the group's reclaim efficiency */
 | ||
| 		if (!sc->proactive)
 | ||
| 			vmpressure(sc->gfp_mask, memcg, false,
 | ||
| 				   sc->nr_scanned - scanned,
 | ||
| 				   sc->nr_reclaimed - reclaimed);
 | ||
| 
 | ||
| 		/* If partial walks are allowed, bail once goal is reached */
 | ||
| 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
 | ||
| 			mem_cgroup_iter_break(target_memcg, memcg);
 | ||
| 			break;
 | ||
| 		}
 | ||
| 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
 | ||
| }
 | ||
| 
 | ||
| static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
 | ||
| 	struct lruvec *target_lruvec;
 | ||
| 	bool reclaimable = false;
 | ||
| 
 | ||
| 	if (lru_gen_enabled() && root_reclaim(sc)) {
 | ||
| 		memset(&sc->nr, 0, sizeof(sc->nr));
 | ||
| 		lru_gen_shrink_node(pgdat, sc);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
 | ||
| 
 | ||
| again:
 | ||
| 	memset(&sc->nr, 0, sizeof(sc->nr));
 | ||
| 
 | ||
| 	nr_reclaimed = sc->nr_reclaimed;
 | ||
| 	nr_scanned = sc->nr_scanned;
 | ||
| 
 | ||
| 	prepare_scan_control(pgdat, sc);
 | ||
| 
 | ||
| 	shrink_node_memcgs(pgdat, sc);
 | ||
| 
 | ||
| 	flush_reclaim_state(sc);
 | ||
| 
 | ||
| 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
 | ||
| 
 | ||
| 	/* Record the subtree's reclaim efficiency */
 | ||
| 	if (!sc->proactive)
 | ||
| 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
 | ||
| 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
 | ||
| 
 | ||
| 	if (nr_node_reclaimed)
 | ||
| 		reclaimable = true;
 | ||
| 
 | ||
| 	if (current_is_kswapd()) {
 | ||
| 		/*
 | ||
| 		 * If reclaim is isolating dirty pages under writeback,
 | ||
| 		 * it implies that the long-lived page allocation rate
 | ||
| 		 * is exceeding the page laundering rate. Either the
 | ||
| 		 * global limits are not being effective at throttling
 | ||
| 		 * processes due to the page distribution throughout
 | ||
| 		 * zones or there is heavy usage of a slow backing
 | ||
| 		 * device. The only option is to throttle from reclaim
 | ||
| 		 * context which is not ideal as there is no guarantee
 | ||
| 		 * the dirtying process is throttled in the same way
 | ||
| 		 * balance_dirty_pages() manages.
 | ||
| 		 *
 | ||
| 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
 | ||
| 		 * count the number of pages under pages flagged for
 | ||
| 		 * immediate reclaim and stall if any are encountered
 | ||
| 		 * in the nr_immediate check below.
 | ||
| 		 */
 | ||
| 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
 | ||
| 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
 | ||
| 
 | ||
| 		/* Allow kswapd to start writing pages during reclaim.*/
 | ||
| 		if (sc->nr.unqueued_dirty &&
 | ||
| 			sc->nr.unqueued_dirty == sc->nr.file_taken)
 | ||
| 			set_bit(PGDAT_DIRTY, &pgdat->flags);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If kswapd scans pages marked for immediate
 | ||
| 		 * reclaim and under writeback (nr_immediate), it
 | ||
| 		 * implies that pages are cycling through the LRU
 | ||
| 		 * faster than they are written so forcibly stall
 | ||
| 		 * until some pages complete writeback.
 | ||
| 		 */
 | ||
| 		if (sc->nr.immediate)
 | ||
| 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Tag a node/memcg as congested if all the dirty pages were marked
 | ||
| 	 * for writeback and immediate reclaim (counted in nr.congested).
 | ||
| 	 *
 | ||
| 	 * Legacy memcg will stall in page writeback so avoid forcibly
 | ||
| 	 * stalling in reclaim_throttle().
 | ||
| 	 */
 | ||
| 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
 | ||
| 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
 | ||
| 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
 | ||
| 
 | ||
| 		if (current_is_kswapd())
 | ||
| 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Stall direct reclaim for IO completions if the lruvec is
 | ||
| 	 * node is congested. Allow kswapd to continue until it
 | ||
| 	 * starts encountering unqueued dirty pages or cycling through
 | ||
| 	 * the LRU too quickly.
 | ||
| 	 */
 | ||
| 	if (!current_is_kswapd() && current_may_throttle() &&
 | ||
| 	    !sc->hibernation_mode &&
 | ||
| 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
 | ||
| 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
 | ||
| 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
 | ||
| 
 | ||
| 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
 | ||
| 		goto again;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Kswapd gives up on balancing particular nodes after too
 | ||
| 	 * many failures to reclaim anything from them and goes to
 | ||
| 	 * sleep. On reclaim progress, reset the failure counter. A
 | ||
| 	 * successful direct reclaim run will revive a dormant kswapd.
 | ||
| 	 */
 | ||
| 	if (reclaimable)
 | ||
| 		pgdat->kswapd_failures = 0;
 | ||
| 	else if (sc->cache_trim_mode)
 | ||
| 		sc->cache_trim_mode_failed = 1;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Returns true if compaction should go ahead for a costly-order request, or
 | ||
|  * the allocation would already succeed without compaction. Return false if we
 | ||
|  * should reclaim first.
 | ||
|  */
 | ||
| static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
 | ||
| {
 | ||
| 	unsigned long watermark;
 | ||
| 
 | ||
| 	if (!gfp_compaction_allowed(sc->gfp_mask))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/* Allocation can already succeed, nothing to do */
 | ||
| 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
 | ||
| 			      sc->reclaim_idx, 0))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Direct reclaim usually targets the min watermark, but compaction
 | ||
| 	 * takes time to run and there are potentially other callers using the
 | ||
| 	 * pages just freed. So target a higher buffer to give compaction a
 | ||
| 	 * reasonable chance of completing and allocating the pages.
 | ||
| 	 *
 | ||
| 	 * Note that we won't actually reclaim the whole buffer in one attempt
 | ||
| 	 * as the target watermark in should_continue_reclaim() is lower. But if
 | ||
| 	 * we are already above the high+gap watermark, don't reclaim at all.
 | ||
| 	 */
 | ||
| 	watermark = high_wmark_pages(zone);
 | ||
| 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * If reclaim is making progress greater than 12% efficiency then
 | ||
| 	 * wake all the NOPROGRESS throttled tasks.
 | ||
| 	 */
 | ||
| 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
 | ||
| 		wait_queue_head_t *wqh;
 | ||
| 
 | ||
| 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
 | ||
| 		if (waitqueue_active(wqh))
 | ||
| 			wake_up(wqh);
 | ||
| 
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
 | ||
| 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
 | ||
| 	 * under writeback and marked for immediate reclaim at the tail of the
 | ||
| 	 * LRU.
 | ||
| 	 */
 | ||
| 	if (current_is_kswapd() || cgroup_reclaim(sc))
 | ||
| 		return;
 | ||
| 
 | ||
| 	/* Throttle if making no progress at high prioities. */
 | ||
| 	if (sc->priority == 1 && !sc->nr_reclaimed)
 | ||
| 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This is the direct reclaim path, for page-allocating processes.  We only
 | ||
|  * try to reclaim pages from zones which will satisfy the caller's allocation
 | ||
|  * request.
 | ||
|  *
 | ||
|  * If a zone is deemed to be full of pinned pages then just give it a light
 | ||
|  * scan then give up on it.
 | ||
|  */
 | ||
| static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
 | ||
| {
 | ||
| 	struct zoneref *z;
 | ||
| 	struct zone *zone;
 | ||
| 	unsigned long nr_soft_reclaimed;
 | ||
| 	unsigned long nr_soft_scanned;
 | ||
| 	gfp_t orig_mask;
 | ||
| 	pg_data_t *last_pgdat = NULL;
 | ||
| 	pg_data_t *first_pgdat = NULL;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If the number of buffer_heads in the machine exceeds the maximum
 | ||
| 	 * allowed level, force direct reclaim to scan the highmem zone as
 | ||
| 	 * highmem pages could be pinning lowmem pages storing buffer_heads
 | ||
| 	 */
 | ||
| 	orig_mask = sc->gfp_mask;
 | ||
| 	if (buffer_heads_over_limit) {
 | ||
| 		sc->gfp_mask |= __GFP_HIGHMEM;
 | ||
| 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
 | ||
| 	}
 | ||
| 
 | ||
| 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 | ||
| 					sc->reclaim_idx, sc->nodemask) {
 | ||
| 		/*
 | ||
| 		 * Take care memory controller reclaiming has small influence
 | ||
| 		 * to global LRU.
 | ||
| 		 */
 | ||
| 		if (!cgroup_reclaim(sc)) {
 | ||
| 			if (!cpuset_zone_allowed(zone,
 | ||
| 						 GFP_KERNEL | __GFP_HARDWALL))
 | ||
| 				continue;
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * If we already have plenty of memory free for
 | ||
| 			 * compaction in this zone, don't free any more.
 | ||
| 			 * Even though compaction is invoked for any
 | ||
| 			 * non-zero order, only frequent costly order
 | ||
| 			 * reclamation is disruptive enough to become a
 | ||
| 			 * noticeable problem, like transparent huge
 | ||
| 			 * page allocations.
 | ||
| 			 */
 | ||
| 			if (IS_ENABLED(CONFIG_COMPACTION) &&
 | ||
| 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
 | ||
| 			    compaction_ready(zone, sc)) {
 | ||
| 				sc->compaction_ready = true;
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * Shrink each node in the zonelist once. If the
 | ||
| 			 * zonelist is ordered by zone (not the default) then a
 | ||
| 			 * node may be shrunk multiple times but in that case
 | ||
| 			 * the user prefers lower zones being preserved.
 | ||
| 			 */
 | ||
| 			if (zone->zone_pgdat == last_pgdat)
 | ||
| 				continue;
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * This steals pages from memory cgroups over softlimit
 | ||
| 			 * and returns the number of reclaimed pages and
 | ||
| 			 * scanned pages. This works for global memory pressure
 | ||
| 			 * and balancing, not for a memcg's limit.
 | ||
| 			 */
 | ||
| 			nr_soft_scanned = 0;
 | ||
| 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
 | ||
| 								      sc->order, sc->gfp_mask,
 | ||
| 								      &nr_soft_scanned);
 | ||
| 			sc->nr_reclaimed += nr_soft_reclaimed;
 | ||
| 			sc->nr_scanned += nr_soft_scanned;
 | ||
| 			/* need some check for avoid more shrink_zone() */
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!first_pgdat)
 | ||
| 			first_pgdat = zone->zone_pgdat;
 | ||
| 
 | ||
| 		/* See comment about same check for global reclaim above */
 | ||
| 		if (zone->zone_pgdat == last_pgdat)
 | ||
| 			continue;
 | ||
| 		last_pgdat = zone->zone_pgdat;
 | ||
| 		shrink_node(zone->zone_pgdat, sc);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (first_pgdat)
 | ||
| 		consider_reclaim_throttle(first_pgdat, sc);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Restore to original mask to avoid the impact on the caller if we
 | ||
| 	 * promoted it to __GFP_HIGHMEM.
 | ||
| 	 */
 | ||
| 	sc->gfp_mask = orig_mask;
 | ||
| }
 | ||
| 
 | ||
| static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
 | ||
| {
 | ||
| 	struct lruvec *target_lruvec;
 | ||
| 	unsigned long refaults;
 | ||
| 
 | ||
| 	if (lru_gen_enabled())
 | ||
| 		return;
 | ||
| 
 | ||
| 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
 | ||
| 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
 | ||
| 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
 | ||
| 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
 | ||
| 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This is the main entry point to direct page reclaim.
 | ||
|  *
 | ||
|  * If a full scan of the inactive list fails to free enough memory then we
 | ||
|  * are "out of memory" and something needs to be killed.
 | ||
|  *
 | ||
|  * If the caller is !__GFP_FS then the probability of a failure is reasonably
 | ||
|  * high - the zone may be full of dirty or under-writeback pages, which this
 | ||
|  * caller can't do much about.  We kick the writeback threads and take explicit
 | ||
|  * naps in the hope that some of these pages can be written.  But if the
 | ||
|  * allocating task holds filesystem locks which prevent writeout this might not
 | ||
|  * work, and the allocation attempt will fail.
 | ||
|  *
 | ||
|  * returns:	0, if no pages reclaimed
 | ||
|  * 		else, the number of pages reclaimed
 | ||
|  */
 | ||
| static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
 | ||
| 					  struct scan_control *sc)
 | ||
| {
 | ||
| 	int initial_priority = sc->priority;
 | ||
| 	pg_data_t *last_pgdat;
 | ||
| 	struct zoneref *z;
 | ||
| 	struct zone *zone;
 | ||
| retry:
 | ||
| 	delayacct_freepages_start();
 | ||
| 
 | ||
| 	if (!cgroup_reclaim(sc))
 | ||
| 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
 | ||
| 
 | ||
| 	do {
 | ||
| 		if (!sc->proactive)
 | ||
| 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
 | ||
| 					sc->priority);
 | ||
| 		sc->nr_scanned = 0;
 | ||
| 		shrink_zones(zonelist, sc);
 | ||
| 
 | ||
| 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
 | ||
| 			break;
 | ||
| 
 | ||
| 		if (sc->compaction_ready)
 | ||
| 			break;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If we're getting trouble reclaiming, start doing
 | ||
| 		 * writepage even in laptop mode.
 | ||
| 		 */
 | ||
| 		if (sc->priority < DEF_PRIORITY - 2)
 | ||
| 			sc->may_writepage = 1;
 | ||
| 	} while (--sc->priority >= 0);
 | ||
| 
 | ||
| 	last_pgdat = NULL;
 | ||
| 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
 | ||
| 					sc->nodemask) {
 | ||
| 		if (zone->zone_pgdat == last_pgdat)
 | ||
| 			continue;
 | ||
| 		last_pgdat = zone->zone_pgdat;
 | ||
| 
 | ||
| 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
 | ||
| 
 | ||
| 		if (cgroup_reclaim(sc)) {
 | ||
| 			struct lruvec *lruvec;
 | ||
| 
 | ||
| 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
 | ||
| 						   zone->zone_pgdat);
 | ||
| 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	delayacct_freepages_end();
 | ||
| 
 | ||
| 	if (sc->nr_reclaimed)
 | ||
| 		return sc->nr_reclaimed;
 | ||
| 
 | ||
| 	/* Aborted reclaim to try compaction? don't OOM, then */
 | ||
| 	if (sc->compaction_ready)
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * In most cases, direct reclaimers can do partial walks
 | ||
| 	 * through the cgroup tree to meet the reclaim goal while
 | ||
| 	 * keeping latency low. Since the iterator state is shared
 | ||
| 	 * among all direct reclaim invocations (to retain fairness
 | ||
| 	 * among cgroups), though, high concurrency can result in
 | ||
| 	 * individual threads not seeing enough cgroups to make
 | ||
| 	 * meaningful forward progress. Avoid false OOMs in this case.
 | ||
| 	 */
 | ||
| 	if (!sc->memcg_full_walk) {
 | ||
| 		sc->priority = initial_priority;
 | ||
| 		sc->memcg_full_walk = 1;
 | ||
| 		goto retry;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We make inactive:active ratio decisions based on the node's
 | ||
| 	 * composition of memory, but a restrictive reclaim_idx or a
 | ||
| 	 * memory.low cgroup setting can exempt large amounts of
 | ||
| 	 * memory from reclaim. Neither of which are very common, so
 | ||
| 	 * instead of doing costly eligibility calculations of the
 | ||
| 	 * entire cgroup subtree up front, we assume the estimates are
 | ||
| 	 * good, and retry with forcible deactivation if that fails.
 | ||
| 	 */
 | ||
| 	if (sc->skipped_deactivate) {
 | ||
| 		sc->priority = initial_priority;
 | ||
| 		sc->force_deactivate = 1;
 | ||
| 		sc->skipped_deactivate = 0;
 | ||
| 		goto retry;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Untapped cgroup reserves?  Don't OOM, retry. */
 | ||
| 	if (sc->memcg_low_skipped) {
 | ||
| 		sc->priority = initial_priority;
 | ||
| 		sc->force_deactivate = 0;
 | ||
| 		sc->memcg_low_reclaim = 1;
 | ||
| 		sc->memcg_low_skipped = 0;
 | ||
| 		goto retry;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static bool allow_direct_reclaim(pg_data_t *pgdat)
 | ||
| {
 | ||
| 	struct zone *zone;
 | ||
| 	unsigned long pfmemalloc_reserve = 0;
 | ||
| 	unsigned long free_pages = 0;
 | ||
| 	int i;
 | ||
| 	bool wmark_ok;
 | ||
| 
 | ||
| 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
 | ||
| 		if (!zone_reclaimable_pages(zone))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		pfmemalloc_reserve += min_wmark_pages(zone);
 | ||
| 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If there are no reserves (unexpected config) then do not throttle */
 | ||
| 	if (!pfmemalloc_reserve)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
 | ||
| 
 | ||
| 	/* kswapd must be awake if processes are being throttled */
 | ||
| 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
 | ||
| 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
 | ||
| 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
 | ||
| 
 | ||
| 		wake_up_interruptible(&pgdat->kswapd_wait);
 | ||
| 	}
 | ||
| 
 | ||
| 	return wmark_ok;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Throttle direct reclaimers if backing storage is backed by the network
 | ||
|  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 | ||
|  * depleted. kswapd will continue to make progress and wake the processes
 | ||
|  * when the low watermark is reached.
 | ||
|  *
 | ||
|  * Returns true if a fatal signal was delivered during throttling. If this
 | ||
|  * happens, the page allocator should not consider triggering the OOM killer.
 | ||
|  */
 | ||
| static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
 | ||
| 					nodemask_t *nodemask)
 | ||
| {
 | ||
| 	struct zoneref *z;
 | ||
| 	struct zone *zone;
 | ||
| 	pg_data_t *pgdat = NULL;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Kernel threads should not be throttled as they may be indirectly
 | ||
| 	 * responsible for cleaning pages necessary for reclaim to make forward
 | ||
| 	 * progress. kjournald for example may enter direct reclaim while
 | ||
| 	 * committing a transaction where throttling it could forcing other
 | ||
| 	 * processes to block on log_wait_commit().
 | ||
| 	 */
 | ||
| 	if (current->flags & PF_KTHREAD)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If a fatal signal is pending, this process should not throttle.
 | ||
| 	 * It should return quickly so it can exit and free its memory
 | ||
| 	 */
 | ||
| 	if (fatal_signal_pending(current))
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Check if the pfmemalloc reserves are ok by finding the first node
 | ||
| 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
 | ||
| 	 * GFP_KERNEL will be required for allocating network buffers when
 | ||
| 	 * swapping over the network so ZONE_HIGHMEM is unusable.
 | ||
| 	 *
 | ||
| 	 * Throttling is based on the first usable node and throttled processes
 | ||
| 	 * wait on a queue until kswapd makes progress and wakes them. There
 | ||
| 	 * is an affinity then between processes waking up and where reclaim
 | ||
| 	 * progress has been made assuming the process wakes on the same node.
 | ||
| 	 * More importantly, processes running on remote nodes will not compete
 | ||
| 	 * for remote pfmemalloc reserves and processes on different nodes
 | ||
| 	 * should make reasonable progress.
 | ||
| 	 */
 | ||
| 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 | ||
| 					gfp_zone(gfp_mask), nodemask) {
 | ||
| 		if (zone_idx(zone) > ZONE_NORMAL)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		/* Throttle based on the first usable node */
 | ||
| 		pgdat = zone->zone_pgdat;
 | ||
| 		if (allow_direct_reclaim(pgdat))
 | ||
| 			goto out;
 | ||
| 		break;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If no zone was usable by the allocation flags then do not throttle */
 | ||
| 	if (!pgdat)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	/* Account for the throttling */
 | ||
| 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If the caller cannot enter the filesystem, it's possible that it
 | ||
| 	 * is due to the caller holding an FS lock or performing a journal
 | ||
| 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
 | ||
| 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
 | ||
| 	 * blocked waiting on the same lock. Instead, throttle for up to a
 | ||
| 	 * second before continuing.
 | ||
| 	 */
 | ||
| 	if (!(gfp_mask & __GFP_FS))
 | ||
| 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
 | ||
| 			allow_direct_reclaim(pgdat), HZ);
 | ||
| 	else
 | ||
| 		/* Throttle until kswapd wakes the process */
 | ||
| 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
 | ||
| 			allow_direct_reclaim(pgdat));
 | ||
| 
 | ||
| 	if (fatal_signal_pending(current))
 | ||
| 		return true;
 | ||
| 
 | ||
| out:
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
 | ||
| 				gfp_t gfp_mask, nodemask_t *nodemask)
 | ||
| {
 | ||
| 	unsigned long nr_reclaimed;
 | ||
| 	struct scan_control sc = {
 | ||
| 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 | ||
| 		.gfp_mask = current_gfp_context(gfp_mask),
 | ||
| 		.reclaim_idx = gfp_zone(gfp_mask),
 | ||
| 		.order = order,
 | ||
| 		.nodemask = nodemask,
 | ||
| 		.priority = DEF_PRIORITY,
 | ||
| 		.may_writepage = !laptop_mode,
 | ||
| 		.may_unmap = 1,
 | ||
| 		.may_swap = 1,
 | ||
| 	};
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
 | ||
| 	 * Confirm they are large enough for max values.
 | ||
| 	 */
 | ||
| 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
 | ||
| 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
 | ||
| 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Do not enter reclaim if fatal signal was delivered while throttled.
 | ||
| 	 * 1 is returned so that the page allocator does not OOM kill at this
 | ||
| 	 * point.
 | ||
| 	 */
 | ||
| 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	set_task_reclaim_state(current, &sc.reclaim_state);
 | ||
| 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
 | ||
| 
 | ||
| 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 | ||
| 
 | ||
| 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 | ||
| 	set_task_reclaim_state(current, NULL);
 | ||
| 
 | ||
| 	return nr_reclaimed;
 | ||
| }
 | ||
| 
 | ||
| #ifdef CONFIG_MEMCG
 | ||
| 
 | ||
| /* Only used by soft limit reclaim. Do not reuse for anything else. */
 | ||
| unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
 | ||
| 						gfp_t gfp_mask, bool noswap,
 | ||
| 						pg_data_t *pgdat,
 | ||
| 						unsigned long *nr_scanned)
 | ||
| {
 | ||
| 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | ||
| 	struct scan_control sc = {
 | ||
| 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 | ||
| 		.target_mem_cgroup = memcg,
 | ||
| 		.may_writepage = !laptop_mode,
 | ||
| 		.may_unmap = 1,
 | ||
| 		.reclaim_idx = MAX_NR_ZONES - 1,
 | ||
| 		.may_swap = !noswap,
 | ||
| 	};
 | ||
| 
 | ||
| 	WARN_ON_ONCE(!current->reclaim_state);
 | ||
| 
 | ||
| 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
 | ||
| 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
 | ||
| 
 | ||
| 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
 | ||
| 						      sc.gfp_mask);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * NOTE: Although we can get the priority field, using it
 | ||
| 	 * here is not a good idea, since it limits the pages we can scan.
 | ||
| 	 * if we don't reclaim here, the shrink_node from balance_pgdat
 | ||
| 	 * will pick up pages from other mem cgroup's as well. We hack
 | ||
| 	 * the priority and make it zero.
 | ||
| 	 */
 | ||
| 	shrink_lruvec(lruvec, &sc);
 | ||
| 
 | ||
| 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
 | ||
| 
 | ||
| 	*nr_scanned = sc.nr_scanned;
 | ||
| 
 | ||
| 	return sc.nr_reclaimed;
 | ||
| }
 | ||
| 
 | ||
| unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
 | ||
| 					   unsigned long nr_pages,
 | ||
| 					   gfp_t gfp_mask,
 | ||
| 					   unsigned int reclaim_options,
 | ||
| 					   int *swappiness)
 | ||
| {
 | ||
| 	unsigned long nr_reclaimed;
 | ||
| 	unsigned int noreclaim_flag;
 | ||
| 	struct scan_control sc = {
 | ||
| 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
 | ||
| 		.proactive_swappiness = swappiness,
 | ||
| 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
 | ||
| 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
 | ||
| 		.reclaim_idx = MAX_NR_ZONES - 1,
 | ||
| 		.target_mem_cgroup = memcg,
 | ||
| 		.priority = DEF_PRIORITY,
 | ||
| 		.may_writepage = !laptop_mode,
 | ||
| 		.may_unmap = 1,
 | ||
| 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
 | ||
| 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
 | ||
| 	};
 | ||
| 	/*
 | ||
| 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
 | ||
| 	 * equal pressure on all the nodes. This is based on the assumption that
 | ||
| 	 * the reclaim does not bail out early.
 | ||
| 	 */
 | ||
| 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 | ||
| 
 | ||
| 	set_task_reclaim_state(current, &sc.reclaim_state);
 | ||
| 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
 | ||
| 	noreclaim_flag = memalloc_noreclaim_save();
 | ||
| 
 | ||
| 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 | ||
| 
 | ||
| 	memalloc_noreclaim_restore(noreclaim_flag);
 | ||
| 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 | ||
| 	set_task_reclaim_state(current, NULL);
 | ||
| 
 | ||
| 	return nr_reclaimed;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
 | ||
| {
 | ||
| 	struct mem_cgroup *memcg;
 | ||
| 	struct lruvec *lruvec;
 | ||
| 
 | ||
| 	if (lru_gen_enabled()) {
 | ||
| 		lru_gen_age_node(pgdat, sc);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
 | ||
| 	if (!can_age_anon_pages(lruvec, sc))
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
 | ||
| 		return;
 | ||
| 
 | ||
| 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 | ||
| 	do {
 | ||
| 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | ||
| 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
 | ||
| 				   sc, LRU_ACTIVE_ANON);
 | ||
| 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
 | ||
| 	} while (memcg);
 | ||
| }
 | ||
| 
 | ||
| static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	struct zone *zone;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Check for watermark boosts top-down as the higher zones
 | ||
| 	 * are more likely to be boosted. Both watermarks and boosts
 | ||
| 	 * should not be checked at the same time as reclaim would
 | ||
| 	 * start prematurely when there is no boosting and a lower
 | ||
| 	 * zone is balanced.
 | ||
| 	 */
 | ||
| 	for (i = highest_zoneidx; i >= 0; i--) {
 | ||
| 		zone = pgdat->node_zones + i;
 | ||
| 		if (!managed_zone(zone))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (zone->watermark_boost)
 | ||
| 			return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Returns true if there is an eligible zone balanced for the request order
 | ||
|  * and highest_zoneidx
 | ||
|  */
 | ||
| static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	unsigned long mark = -1;
 | ||
| 	struct zone *zone;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Check watermarks bottom-up as lower zones are more likely to
 | ||
| 	 * meet watermarks.
 | ||
| 	 */
 | ||
| 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
 | ||
| 		enum zone_stat_item item;
 | ||
| 		unsigned long free_pages;
 | ||
| 
 | ||
| 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
 | ||
| 			mark = promo_wmark_pages(zone);
 | ||
| 		else
 | ||
| 			mark = high_wmark_pages(zone);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * In defrag_mode, watermarks must be met in whole
 | ||
| 		 * blocks to avoid polluting allocator fallbacks.
 | ||
| 		 *
 | ||
| 		 * However, kswapd usually cannot accomplish this on
 | ||
| 		 * its own and needs kcompactd support. Once it's
 | ||
| 		 * reclaimed a compaction gap, and kswapd_shrink_node
 | ||
| 		 * has dropped order, simply ensure there are enough
 | ||
| 		 * base pages for compaction, wake kcompactd & sleep.
 | ||
| 		 */
 | ||
| 		if (defrag_mode && order)
 | ||
| 			item = NR_FREE_PAGES_BLOCKS;
 | ||
| 		else
 | ||
| 			item = NR_FREE_PAGES;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * When there is a high number of CPUs in the system,
 | ||
| 		 * the cumulative error from the vmstat per-cpu cache
 | ||
| 		 * can blur the line between the watermarks. In that
 | ||
| 		 * case, be safe and get an accurate snapshot.
 | ||
| 		 *
 | ||
| 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
 | ||
| 		 * pageblock_nr_pages, while the vmstat pcp threshold
 | ||
| 		 * is limited to 125. On many configurations that
 | ||
| 		 * counter won't actually be per-cpu cached. But keep
 | ||
| 		 * things simple for now; revisit when somebody cares.
 | ||
| 		 */
 | ||
| 		free_pages = zone_page_state(zone, item);
 | ||
| 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
 | ||
| 			free_pages = zone_page_state_snapshot(zone, item);
 | ||
| 
 | ||
| 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
 | ||
| 					0, free_pages))
 | ||
| 			return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If a node has no managed zone within highest_zoneidx, it does not
 | ||
| 	 * need balancing by definition. This can happen if a zone-restricted
 | ||
| 	 * allocation tries to wake a remote kswapd.
 | ||
| 	 */
 | ||
| 	if (mark == -1)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| /* Clear pgdat state for congested, dirty or under writeback. */
 | ||
| static void clear_pgdat_congested(pg_data_t *pgdat)
 | ||
| {
 | ||
| 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
 | ||
| 
 | ||
| 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
 | ||
| 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
 | ||
| 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
 | ||
| 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Prepare kswapd for sleeping. This verifies that there are no processes
 | ||
|  * waiting in throttle_direct_reclaim() and that watermarks have been met.
 | ||
|  *
 | ||
|  * Returns true if kswapd is ready to sleep
 | ||
|  */
 | ||
| static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
 | ||
| 				int highest_zoneidx)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * The throttled processes are normally woken up in balance_pgdat() as
 | ||
| 	 * soon as allow_direct_reclaim() is true. But there is a potential
 | ||
| 	 * race between when kswapd checks the watermarks and a process gets
 | ||
| 	 * throttled. There is also a potential race if processes get
 | ||
| 	 * throttled, kswapd wakes, a large process exits thereby balancing the
 | ||
| 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
 | ||
| 	 * the wake up checks. If kswapd is going to sleep, no process should
 | ||
| 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
 | ||
| 	 * the wake up is premature, processes will wake kswapd and get
 | ||
| 	 * throttled again. The difference from wake ups in balance_pgdat() is
 | ||
| 	 * that here we are under prepare_to_wait().
 | ||
| 	 */
 | ||
| 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
 | ||
| 		wake_up_all(&pgdat->pfmemalloc_wait);
 | ||
| 
 | ||
| 	/* Hopeless node, leave it to direct reclaim */
 | ||
| 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
 | ||
| 		clear_pgdat_congested(pgdat);
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * kswapd shrinks a node of pages that are at or below the highest usable
 | ||
|  * zone that is currently unbalanced.
 | ||
|  *
 | ||
|  * Returns true if kswapd scanned at least the requested number of pages to
 | ||
|  * reclaim or if the lack of progress was due to pages under writeback.
 | ||
|  * This is used to determine if the scanning priority needs to be raised.
 | ||
|  */
 | ||
| static bool kswapd_shrink_node(pg_data_t *pgdat,
 | ||
| 			       struct scan_control *sc)
 | ||
| {
 | ||
| 	struct zone *zone;
 | ||
| 	int z;
 | ||
| 	unsigned long nr_reclaimed = sc->nr_reclaimed;
 | ||
| 
 | ||
| 	/* Reclaim a number of pages proportional to the number of zones */
 | ||
| 	sc->nr_to_reclaim = 0;
 | ||
| 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
 | ||
| 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Historically care was taken to put equal pressure on all zones but
 | ||
| 	 * now pressure is applied based on node LRU order.
 | ||
| 	 */
 | ||
| 	shrink_node(pgdat, sc);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Fragmentation may mean that the system cannot be rebalanced for
 | ||
| 	 * high-order allocations. If twice the allocation size has been
 | ||
| 	 * reclaimed then recheck watermarks only at order-0 to prevent
 | ||
| 	 * excessive reclaim. Assume that a process requested a high-order
 | ||
| 	 * can direct reclaim/compact.
 | ||
| 	 */
 | ||
| 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
 | ||
| 		sc->order = 0;
 | ||
| 
 | ||
| 	/* account for progress from mm_account_reclaimed_pages() */
 | ||
| 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
 | ||
| }
 | ||
| 
 | ||
| /* Page allocator PCP high watermark is lowered if reclaim is active. */
 | ||
| static inline void
 | ||
| update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	struct zone *zone;
 | ||
| 
 | ||
| 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
 | ||
| 		if (active)
 | ||
| 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
 | ||
| 		else
 | ||
| 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
 | ||
| {
 | ||
| 	update_reclaim_active(pgdat, highest_zoneidx, true);
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
 | ||
| {
 | ||
| 	update_reclaim_active(pgdat, highest_zoneidx, false);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 | ||
|  * that are eligible for use by the caller until at least one zone is
 | ||
|  * balanced.
 | ||
|  *
 | ||
|  * Returns the order kswapd finished reclaiming at.
 | ||
|  *
 | ||
|  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 | ||
|  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 | ||
|  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
 | ||
|  * or lower is eligible for reclaim until at least one usable zone is
 | ||
|  * balanced.
 | ||
|  */
 | ||
| static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	unsigned long nr_soft_reclaimed;
 | ||
| 	unsigned long nr_soft_scanned;
 | ||
| 	unsigned long pflags;
 | ||
| 	unsigned long nr_boost_reclaim;
 | ||
| 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
 | ||
| 	bool boosted;
 | ||
| 	struct zone *zone;
 | ||
| 	struct scan_control sc = {
 | ||
| 		.gfp_mask = GFP_KERNEL,
 | ||
| 		.order = order,
 | ||
| 		.may_unmap = 1,
 | ||
| 	};
 | ||
| 
 | ||
| 	set_task_reclaim_state(current, &sc.reclaim_state);
 | ||
| 	psi_memstall_enter(&pflags);
 | ||
| 	__fs_reclaim_acquire(_THIS_IP_);
 | ||
| 
 | ||
| 	count_vm_event(PAGEOUTRUN);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Account for the reclaim boost. Note that the zone boost is left in
 | ||
| 	 * place so that parallel allocations that are near the watermark will
 | ||
| 	 * stall or direct reclaim until kswapd is finished.
 | ||
| 	 */
 | ||
| 	nr_boost_reclaim = 0;
 | ||
| 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
 | ||
| 		nr_boost_reclaim += zone->watermark_boost;
 | ||
| 		zone_boosts[i] = zone->watermark_boost;
 | ||
| 	}
 | ||
| 	boosted = nr_boost_reclaim;
 | ||
| 
 | ||
| restart:
 | ||
| 	set_reclaim_active(pgdat, highest_zoneidx);
 | ||
| 	sc.priority = DEF_PRIORITY;
 | ||
| 	do {
 | ||
| 		unsigned long nr_reclaimed = sc.nr_reclaimed;
 | ||
| 		bool raise_priority = true;
 | ||
| 		bool balanced;
 | ||
| 		bool ret;
 | ||
| 		bool was_frozen;
 | ||
| 
 | ||
| 		sc.reclaim_idx = highest_zoneidx;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If the number of buffer_heads exceeds the maximum allowed
 | ||
| 		 * then consider reclaiming from all zones. This has a dual
 | ||
| 		 * purpose -- on 64-bit systems it is expected that
 | ||
| 		 * buffer_heads are stripped during active rotation. On 32-bit
 | ||
| 		 * systems, highmem pages can pin lowmem memory and shrinking
 | ||
| 		 * buffers can relieve lowmem pressure. Reclaim may still not
 | ||
| 		 * go ahead if all eligible zones for the original allocation
 | ||
| 		 * request are balanced to avoid excessive reclaim from kswapd.
 | ||
| 		 */
 | ||
| 		if (buffer_heads_over_limit) {
 | ||
| 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
 | ||
| 				zone = pgdat->node_zones + i;
 | ||
| 				if (!managed_zone(zone))
 | ||
| 					continue;
 | ||
| 
 | ||
| 				sc.reclaim_idx = i;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If the pgdat is imbalanced then ignore boosting and preserve
 | ||
| 		 * the watermarks for a later time and restart. Note that the
 | ||
| 		 * zone watermarks will be still reset at the end of balancing
 | ||
| 		 * on the grounds that the normal reclaim should be enough to
 | ||
| 		 * re-evaluate if boosting is required when kswapd next wakes.
 | ||
| 		 */
 | ||
| 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
 | ||
| 		if (!balanced && nr_boost_reclaim) {
 | ||
| 			nr_boost_reclaim = 0;
 | ||
| 			goto restart;
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If boosting is not active then only reclaim if there are no
 | ||
| 		 * eligible zones. Note that sc.reclaim_idx is not used as
 | ||
| 		 * buffer_heads_over_limit may have adjusted it.
 | ||
| 		 */
 | ||
| 		if (!nr_boost_reclaim && balanced)
 | ||
| 			goto out;
 | ||
| 
 | ||
| 		/* Limit the priority of boosting to avoid reclaim writeback */
 | ||
| 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
 | ||
| 			raise_priority = false;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Do not writeback or swap pages for boosted reclaim. The
 | ||
| 		 * intent is to relieve pressure not issue sub-optimal IO
 | ||
| 		 * from reclaim context. If no pages are reclaimed, the
 | ||
| 		 * reclaim will be aborted.
 | ||
| 		 */
 | ||
| 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
 | ||
| 		sc.may_swap = !nr_boost_reclaim;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Do some background aging, to give pages a chance to be
 | ||
| 		 * referenced before reclaiming. All pages are rotated
 | ||
| 		 * regardless of classzone as this is about consistent aging.
 | ||
| 		 */
 | ||
| 		kswapd_age_node(pgdat, &sc);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If we're getting trouble reclaiming, start doing writepage
 | ||
| 		 * even in laptop mode.
 | ||
| 		 */
 | ||
| 		if (sc.priority < DEF_PRIORITY - 2)
 | ||
| 			sc.may_writepage = 1;
 | ||
| 
 | ||
| 		/* Call soft limit reclaim before calling shrink_node. */
 | ||
| 		sc.nr_scanned = 0;
 | ||
| 		nr_soft_scanned = 0;
 | ||
| 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
 | ||
| 							      sc.gfp_mask, &nr_soft_scanned);
 | ||
| 		sc.nr_reclaimed += nr_soft_reclaimed;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * There should be no need to raise the scanning priority if
 | ||
| 		 * enough pages are already being scanned that that high
 | ||
| 		 * watermark would be met at 100% efficiency.
 | ||
| 		 */
 | ||
| 		if (kswapd_shrink_node(pgdat, &sc))
 | ||
| 			raise_priority = false;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If the low watermark is met there is no need for processes
 | ||
| 		 * to be throttled on pfmemalloc_wait as they should not be
 | ||
| 		 * able to safely make forward progress. Wake them
 | ||
| 		 */
 | ||
| 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
 | ||
| 				allow_direct_reclaim(pgdat))
 | ||
| 			wake_up_all(&pgdat->pfmemalloc_wait);
 | ||
| 
 | ||
| 		/* Check if kswapd should be suspending */
 | ||
| 		__fs_reclaim_release(_THIS_IP_);
 | ||
| 		ret = kthread_freezable_should_stop(&was_frozen);
 | ||
| 		__fs_reclaim_acquire(_THIS_IP_);
 | ||
| 		if (was_frozen || ret)
 | ||
| 			break;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Raise priority if scanning rate is too low or there was no
 | ||
| 		 * progress in reclaiming pages
 | ||
| 		 */
 | ||
| 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
 | ||
| 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If reclaim made no progress for a boost, stop reclaim as
 | ||
| 		 * IO cannot be queued and it could be an infinite loop in
 | ||
| 		 * extreme circumstances.
 | ||
| 		 */
 | ||
| 		if (nr_boost_reclaim && !nr_reclaimed)
 | ||
| 			break;
 | ||
| 
 | ||
| 		if (raise_priority || !nr_reclaimed)
 | ||
| 			sc.priority--;
 | ||
| 	} while (sc.priority >= 1);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Restart only if it went through the priority loop all the way,
 | ||
| 	 * but cache_trim_mode didn't work.
 | ||
| 	 */
 | ||
| 	if (!sc.nr_reclaimed && sc.priority < 1 &&
 | ||
| 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
 | ||
| 		sc.no_cache_trim_mode = 1;
 | ||
| 		goto restart;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!sc.nr_reclaimed)
 | ||
| 		pgdat->kswapd_failures++;
 | ||
| 
 | ||
| out:
 | ||
| 	clear_reclaim_active(pgdat, highest_zoneidx);
 | ||
| 
 | ||
| 	/* If reclaim was boosted, account for the reclaim done in this pass */
 | ||
| 	if (boosted) {
 | ||
| 		unsigned long flags;
 | ||
| 
 | ||
| 		for (i = 0; i <= highest_zoneidx; i++) {
 | ||
| 			if (!zone_boosts[i])
 | ||
| 				continue;
 | ||
| 
 | ||
| 			/* Increments are under the zone lock */
 | ||
| 			zone = pgdat->node_zones + i;
 | ||
| 			spin_lock_irqsave(&zone->lock, flags);
 | ||
| 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
 | ||
| 			spin_unlock_irqrestore(&zone->lock, flags);
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * As there is now likely space, wakeup kcompact to defragment
 | ||
| 		 * pageblocks.
 | ||
| 		 */
 | ||
| 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
 | ||
| 	}
 | ||
| 
 | ||
| 	snapshot_refaults(NULL, pgdat);
 | ||
| 	__fs_reclaim_release(_THIS_IP_);
 | ||
| 	psi_memstall_leave(&pflags);
 | ||
| 	set_task_reclaim_state(current, NULL);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Return the order kswapd stopped reclaiming at as
 | ||
| 	 * prepare_kswapd_sleep() takes it into account. If another caller
 | ||
| 	 * entered the allocator slow path while kswapd was awake, order will
 | ||
| 	 * remain at the higher level.
 | ||
| 	 */
 | ||
| 	return sc.order;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
 | ||
|  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
 | ||
|  * not a valid index then either kswapd runs for first time or kswapd couldn't
 | ||
|  * sleep after previous reclaim attempt (node is still unbalanced). In that
 | ||
|  * case return the zone index of the previous kswapd reclaim cycle.
 | ||
|  */
 | ||
| static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
 | ||
| 					   enum zone_type prev_highest_zoneidx)
 | ||
| {
 | ||
| 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
 | ||
| 
 | ||
| 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
 | ||
| }
 | ||
| 
 | ||
| static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
 | ||
| 				unsigned int highest_zoneidx)
 | ||
| {
 | ||
| 	long remaining = 0;
 | ||
| 	DEFINE_WAIT(wait);
 | ||
| 
 | ||
| 	if (freezing(current) || kthread_should_stop())
 | ||
| 		return;
 | ||
| 
 | ||
| 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Try to sleep for a short interval. Note that kcompactd will only be
 | ||
| 	 * woken if it is possible to sleep for a short interval. This is
 | ||
| 	 * deliberate on the assumption that if reclaim cannot keep an
 | ||
| 	 * eligible zone balanced that it's also unlikely that compaction will
 | ||
| 	 * succeed.
 | ||
| 	 */
 | ||
| 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
 | ||
| 		/*
 | ||
| 		 * Compaction records what page blocks it recently failed to
 | ||
| 		 * isolate pages from and skips them in the future scanning.
 | ||
| 		 * When kswapd is going to sleep, it is reasonable to assume
 | ||
| 		 * that pages and compaction may succeed so reset the cache.
 | ||
| 		 */
 | ||
| 		reset_isolation_suitable(pgdat);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * We have freed the memory, now we should compact it to make
 | ||
| 		 * allocation of the requested order possible.
 | ||
| 		 */
 | ||
| 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
 | ||
| 
 | ||
| 		remaining = schedule_timeout(HZ/10);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If woken prematurely then reset kswapd_highest_zoneidx and
 | ||
| 		 * order. The values will either be from a wakeup request or
 | ||
| 		 * the previous request that slept prematurely.
 | ||
| 		 */
 | ||
| 		if (remaining) {
 | ||
| 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
 | ||
| 					kswapd_highest_zoneidx(pgdat,
 | ||
| 							highest_zoneidx));
 | ||
| 
 | ||
| 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
 | ||
| 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
 | ||
| 		}
 | ||
| 
 | ||
| 		finish_wait(&pgdat->kswapd_wait, &wait);
 | ||
| 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * After a short sleep, check if it was a premature sleep. If not, then
 | ||
| 	 * go fully to sleep until explicitly woken up.
 | ||
| 	 */
 | ||
| 	if (!remaining &&
 | ||
| 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
 | ||
| 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * vmstat counters are not perfectly accurate and the estimated
 | ||
| 		 * value for counters such as NR_FREE_PAGES can deviate from the
 | ||
| 		 * true value by nr_online_cpus * threshold. To avoid the zone
 | ||
| 		 * watermarks being breached while under pressure, we reduce the
 | ||
| 		 * per-cpu vmstat threshold while kswapd is awake and restore
 | ||
| 		 * them before going back to sleep.
 | ||
| 		 */
 | ||
| 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
 | ||
| 
 | ||
| 		if (!kthread_should_stop())
 | ||
| 			schedule();
 | ||
| 
 | ||
| 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
 | ||
| 	} else {
 | ||
| 		if (remaining)
 | ||
| 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
 | ||
| 		else
 | ||
| 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
 | ||
| 	}
 | ||
| 	finish_wait(&pgdat->kswapd_wait, &wait);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * The background pageout daemon, started as a kernel thread
 | ||
|  * from the init process.
 | ||
|  *
 | ||
|  * This basically trickles out pages so that we have _some_
 | ||
|  * free memory available even if there is no other activity
 | ||
|  * that frees anything up. This is needed for things like routing
 | ||
|  * etc, where we otherwise might have all activity going on in
 | ||
|  * asynchronous contexts that cannot page things out.
 | ||
|  *
 | ||
|  * If there are applications that are active memory-allocators
 | ||
|  * (most normal use), this basically shouldn't matter.
 | ||
|  */
 | ||
| static int kswapd(void *p)
 | ||
| {
 | ||
| 	unsigned int alloc_order, reclaim_order;
 | ||
| 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
 | ||
| 	pg_data_t *pgdat = (pg_data_t *)p;
 | ||
| 	struct task_struct *tsk = current;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Tell the memory management that we're a "memory allocator",
 | ||
| 	 * and that if we need more memory we should get access to it
 | ||
| 	 * regardless (see "__alloc_pages()"). "kswapd" should
 | ||
| 	 * never get caught in the normal page freeing logic.
 | ||
| 	 *
 | ||
| 	 * (Kswapd normally doesn't need memory anyway, but sometimes
 | ||
| 	 * you need a small amount of memory in order to be able to
 | ||
| 	 * page out something else, and this flag essentially protects
 | ||
| 	 * us from recursively trying to free more memory as we're
 | ||
| 	 * trying to free the first piece of memory in the first place).
 | ||
| 	 */
 | ||
| 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
 | ||
| 	set_freezable();
 | ||
| 
 | ||
| 	WRITE_ONCE(pgdat->kswapd_order, 0);
 | ||
| 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
 | ||
| 	atomic_set(&pgdat->nr_writeback_throttled, 0);
 | ||
| 	for ( ; ; ) {
 | ||
| 		bool was_frozen;
 | ||
| 
 | ||
| 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
 | ||
| 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
 | ||
| 							highest_zoneidx);
 | ||
| 
 | ||
| kswapd_try_sleep:
 | ||
| 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
 | ||
| 					highest_zoneidx);
 | ||
| 
 | ||
| 		/* Read the new order and highest_zoneidx */
 | ||
| 		alloc_order = READ_ONCE(pgdat->kswapd_order);
 | ||
| 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
 | ||
| 							highest_zoneidx);
 | ||
| 		WRITE_ONCE(pgdat->kswapd_order, 0);
 | ||
| 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
 | ||
| 
 | ||
| 		if (kthread_freezable_should_stop(&was_frozen))
 | ||
| 			break;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * We can speed up thawing tasks if we don't call balance_pgdat
 | ||
| 		 * after returning from the refrigerator
 | ||
| 		 */
 | ||
| 		if (was_frozen)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Reclaim begins at the requested order but if a high-order
 | ||
| 		 * reclaim fails then kswapd falls back to reclaiming for
 | ||
| 		 * order-0. If that happens, kswapd will consider sleeping
 | ||
| 		 * for the order it finished reclaiming at (reclaim_order)
 | ||
| 		 * but kcompactd is woken to compact for the original
 | ||
| 		 * request (alloc_order).
 | ||
| 		 */
 | ||
| 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
 | ||
| 						alloc_order);
 | ||
| 		reclaim_order = balance_pgdat(pgdat, alloc_order,
 | ||
| 						highest_zoneidx);
 | ||
| 		if (reclaim_order < alloc_order)
 | ||
| 			goto kswapd_try_sleep;
 | ||
| 	}
 | ||
| 
 | ||
| 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * A zone is low on free memory or too fragmented for high-order memory.  If
 | ||
|  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 | ||
|  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 | ||
|  * has failed or is not needed, still wake up kcompactd if only compaction is
 | ||
|  * needed.
 | ||
|  */
 | ||
| void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
 | ||
| 		   enum zone_type highest_zoneidx)
 | ||
| {
 | ||
| 	pg_data_t *pgdat;
 | ||
| 	enum zone_type curr_idx;
 | ||
| 
 | ||
| 	if (!managed_zone(zone))
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (!cpuset_zone_allowed(zone, gfp_flags))
 | ||
| 		return;
 | ||
| 
 | ||
| 	pgdat = zone->zone_pgdat;
 | ||
| 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
 | ||
| 
 | ||
| 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
 | ||
| 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
 | ||
| 
 | ||
| 	if (READ_ONCE(pgdat->kswapd_order) < order)
 | ||
| 		WRITE_ONCE(pgdat->kswapd_order, order);
 | ||
| 
 | ||
| 	if (!waitqueue_active(&pgdat->kswapd_wait))
 | ||
| 		return;
 | ||
| 
 | ||
| 	/* Hopeless node, leave it to direct reclaim if possible */
 | ||
| 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
 | ||
| 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
 | ||
| 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
 | ||
| 		/*
 | ||
| 		 * There may be plenty of free memory available, but it's too
 | ||
| 		 * fragmented for high-order allocations.  Wake up kcompactd
 | ||
| 		 * and rely on compaction_suitable() to determine if it's
 | ||
| 		 * needed.  If it fails, it will defer subsequent attempts to
 | ||
| 		 * ratelimit its work.
 | ||
| 		 */
 | ||
| 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
 | ||
| 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
 | ||
| 				      gfp_flags);
 | ||
| 	wake_up_interruptible(&pgdat->kswapd_wait);
 | ||
| }
 | ||
| 
 | ||
| #ifdef CONFIG_HIBERNATION
 | ||
| /*
 | ||
|  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
 | ||
|  * freed pages.
 | ||
|  *
 | ||
|  * Rather than trying to age LRUs the aim is to preserve the overall
 | ||
|  * LRU order by reclaiming preferentially
 | ||
|  * inactive > active > active referenced > active mapped
 | ||
|  */
 | ||
| unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
 | ||
| {
 | ||
| 	struct scan_control sc = {
 | ||
| 		.nr_to_reclaim = nr_to_reclaim,
 | ||
| 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 | ||
| 		.reclaim_idx = MAX_NR_ZONES - 1,
 | ||
| 		.priority = DEF_PRIORITY,
 | ||
| 		.may_writepage = 1,
 | ||
| 		.may_unmap = 1,
 | ||
| 		.may_swap = 1,
 | ||
| 		.hibernation_mode = 1,
 | ||
| 	};
 | ||
| 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 | ||
| 	unsigned long nr_reclaimed;
 | ||
| 	unsigned int noreclaim_flag;
 | ||
| 
 | ||
| 	fs_reclaim_acquire(sc.gfp_mask);
 | ||
| 	noreclaim_flag = memalloc_noreclaim_save();
 | ||
| 	set_task_reclaim_state(current, &sc.reclaim_state);
 | ||
| 
 | ||
| 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 | ||
| 
 | ||
| 	set_task_reclaim_state(current, NULL);
 | ||
| 	memalloc_noreclaim_restore(noreclaim_flag);
 | ||
| 	fs_reclaim_release(sc.gfp_mask);
 | ||
| 
 | ||
| 	return nr_reclaimed;
 | ||
| }
 | ||
| #endif /* CONFIG_HIBERNATION */
 | ||
| 
 | ||
| /*
 | ||
|  * This kswapd start function will be called by init and node-hot-add.
 | ||
|  */
 | ||
| void __meminit kswapd_run(int nid)
 | ||
| {
 | ||
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | ||
| 
 | ||
| 	pgdat_kswapd_lock(pgdat);
 | ||
| 	if (!pgdat->kswapd) {
 | ||
| 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
 | ||
| 		if (IS_ERR(pgdat->kswapd)) {
 | ||
| 			/* failure at boot is fatal */
 | ||
| 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
 | ||
| 				   nid, PTR_ERR(pgdat->kswapd));
 | ||
| 			BUG_ON(system_state < SYSTEM_RUNNING);
 | ||
| 			pgdat->kswapd = NULL;
 | ||
| 		} else {
 | ||
| 			wake_up_process(pgdat->kswapd);
 | ||
| 		}
 | ||
| 	}
 | ||
| 	pgdat_kswapd_unlock(pgdat);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Called by memory hotplug when all memory in a node is offlined.  Caller must
 | ||
|  * be holding mem_hotplug_begin/done().
 | ||
|  */
 | ||
| void __meminit kswapd_stop(int nid)
 | ||
| {
 | ||
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | ||
| 	struct task_struct *kswapd;
 | ||
| 
 | ||
| 	pgdat_kswapd_lock(pgdat);
 | ||
| 	kswapd = pgdat->kswapd;
 | ||
| 	if (kswapd) {
 | ||
| 		kthread_stop(kswapd);
 | ||
| 		pgdat->kswapd = NULL;
 | ||
| 	}
 | ||
| 	pgdat_kswapd_unlock(pgdat);
 | ||
| }
 | ||
| 
 | ||
| static const struct ctl_table vmscan_sysctl_table[] = {
 | ||
| 	{
 | ||
| 		.procname	= "swappiness",
 | ||
| 		.data		= &vm_swappiness,
 | ||
| 		.maxlen		= sizeof(vm_swappiness),
 | ||
| 		.mode		= 0644,
 | ||
| 		.proc_handler	= proc_dointvec_minmax,
 | ||
| 		.extra1		= SYSCTL_ZERO,
 | ||
| 		.extra2		= SYSCTL_TWO_HUNDRED,
 | ||
| 	},
 | ||
| #ifdef CONFIG_NUMA
 | ||
| 	{
 | ||
| 		.procname	= "zone_reclaim_mode",
 | ||
| 		.data		= &node_reclaim_mode,
 | ||
| 		.maxlen		= sizeof(node_reclaim_mode),
 | ||
| 		.mode		= 0644,
 | ||
| 		.proc_handler	= proc_dointvec_minmax,
 | ||
| 		.extra1		= SYSCTL_ZERO,
 | ||
| 	}
 | ||
| #endif
 | ||
| };
 | ||
| 
 | ||
| static int __init kswapd_init(void)
 | ||
| {
 | ||
| 	int nid;
 | ||
| 
 | ||
| 	swap_setup();
 | ||
| 	for_each_node_state(nid, N_MEMORY)
 | ||
|  		kswapd_run(nid);
 | ||
| 	register_sysctl_init("vm", vmscan_sysctl_table);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| module_init(kswapd_init)
 | ||
| 
 | ||
| #ifdef CONFIG_NUMA
 | ||
| /*
 | ||
|  * Node reclaim mode
 | ||
|  *
 | ||
|  * If non-zero call node_reclaim when the number of free pages falls below
 | ||
|  * the watermarks.
 | ||
|  */
 | ||
| int node_reclaim_mode __read_mostly;
 | ||
| 
 | ||
| /*
 | ||
|  * Priority for NODE_RECLAIM. This determines the fraction of pages
 | ||
|  * of a node considered for each zone_reclaim. 4 scans 1/16th of
 | ||
|  * a zone.
 | ||
|  */
 | ||
| #define NODE_RECLAIM_PRIORITY 4
 | ||
| 
 | ||
| /*
 | ||
|  * Percentage of pages in a zone that must be unmapped for node_reclaim to
 | ||
|  * occur.
 | ||
|  */
 | ||
| int sysctl_min_unmapped_ratio = 1;
 | ||
| 
 | ||
| /*
 | ||
|  * If the number of slab pages in a zone grows beyond this percentage then
 | ||
|  * slab reclaim needs to occur.
 | ||
|  */
 | ||
| int sysctl_min_slab_ratio = 5;
 | ||
| 
 | ||
| static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
 | ||
| {
 | ||
| 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
 | ||
| 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
 | ||
| 		node_page_state(pgdat, NR_ACTIVE_FILE);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * It's possible for there to be more file mapped pages than
 | ||
| 	 * accounted for by the pages on the file LRU lists because
 | ||
| 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
 | ||
| 	 */
 | ||
| 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
 | ||
| }
 | ||
| 
 | ||
| /* Work out how many page cache pages we can reclaim in this reclaim_mode */
 | ||
| static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
 | ||
| {
 | ||
| 	unsigned long nr_pagecache_reclaimable;
 | ||
| 	unsigned long delta = 0;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If RECLAIM_UNMAP is set, then all file pages are considered
 | ||
| 	 * potentially reclaimable. Otherwise, we have to worry about
 | ||
| 	 * pages like swapcache and node_unmapped_file_pages() provides
 | ||
| 	 * a better estimate
 | ||
| 	 */
 | ||
| 	if (node_reclaim_mode & RECLAIM_UNMAP)
 | ||
| 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
 | ||
| 	else
 | ||
| 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
 | ||
| 
 | ||
| 	/* If we can't clean pages, remove dirty pages from consideration */
 | ||
| 	if (!(node_reclaim_mode & RECLAIM_WRITE))
 | ||
| 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
 | ||
| 
 | ||
| 	/* Watch for any possible underflows due to delta */
 | ||
| 	if (unlikely(delta > nr_pagecache_reclaimable))
 | ||
| 		delta = nr_pagecache_reclaimable;
 | ||
| 
 | ||
| 	return nr_pagecache_reclaimable - delta;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Try to free up some pages from this node through reclaim.
 | ||
|  */
 | ||
| static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
 | ||
| {
 | ||
| 	/* Minimum pages needed in order to stay on node */
 | ||
| 	const unsigned long nr_pages = 1 << order;
 | ||
| 	struct task_struct *p = current;
 | ||
| 	unsigned int noreclaim_flag;
 | ||
| 	struct scan_control sc = {
 | ||
| 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
 | ||
| 		.gfp_mask = current_gfp_context(gfp_mask),
 | ||
| 		.order = order,
 | ||
| 		.priority = NODE_RECLAIM_PRIORITY,
 | ||
| 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
 | ||
| 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
 | ||
| 		.may_swap = 1,
 | ||
| 		.reclaim_idx = gfp_zone(gfp_mask),
 | ||
| 	};
 | ||
| 	unsigned long pflags;
 | ||
| 
 | ||
| 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
 | ||
| 					   sc.gfp_mask);
 | ||
| 
 | ||
| 	cond_resched();
 | ||
| 	psi_memstall_enter(&pflags);
 | ||
| 	delayacct_freepages_start();
 | ||
| 	fs_reclaim_acquire(sc.gfp_mask);
 | ||
| 	/*
 | ||
| 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
 | ||
| 	 */
 | ||
| 	noreclaim_flag = memalloc_noreclaim_save();
 | ||
| 	set_task_reclaim_state(p, &sc.reclaim_state);
 | ||
| 
 | ||
| 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
 | ||
| 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
 | ||
| 		/*
 | ||
| 		 * Free memory by calling shrink node with increasing
 | ||
| 		 * priorities until we have enough memory freed.
 | ||
| 		 */
 | ||
| 		do {
 | ||
| 			shrink_node(pgdat, &sc);
 | ||
| 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
 | ||
| 	}
 | ||
| 
 | ||
| 	set_task_reclaim_state(p, NULL);
 | ||
| 	memalloc_noreclaim_restore(noreclaim_flag);
 | ||
| 	fs_reclaim_release(sc.gfp_mask);
 | ||
| 	psi_memstall_leave(&pflags);
 | ||
| 	delayacct_freepages_end();
 | ||
| 
 | ||
| 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
 | ||
| 
 | ||
| 	return sc.nr_reclaimed >= nr_pages;
 | ||
| }
 | ||
| 
 | ||
| int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Node reclaim reclaims unmapped file backed pages and
 | ||
| 	 * slab pages if we are over the defined limits.
 | ||
| 	 *
 | ||
| 	 * A small portion of unmapped file backed pages is needed for
 | ||
| 	 * file I/O otherwise pages read by file I/O will be immediately
 | ||
| 	 * thrown out if the node is overallocated. So we do not reclaim
 | ||
| 	 * if less than a specified percentage of the node is used by
 | ||
| 	 * unmapped file backed pages.
 | ||
| 	 */
 | ||
| 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
 | ||
| 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
 | ||
| 	    pgdat->min_slab_pages)
 | ||
| 		return NODE_RECLAIM_FULL;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Do not scan if the allocation should not be delayed.
 | ||
| 	 */
 | ||
| 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
 | ||
| 		return NODE_RECLAIM_NOSCAN;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Only run node reclaim on the local node or on nodes that do not
 | ||
| 	 * have associated processors. This will favor the local processor
 | ||
| 	 * over remote processors and spread off node memory allocations
 | ||
| 	 * as wide as possible.
 | ||
| 	 */
 | ||
| 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
 | ||
| 		return NODE_RECLAIM_NOSCAN;
 | ||
| 
 | ||
| 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
 | ||
| 		return NODE_RECLAIM_NOSCAN;
 | ||
| 
 | ||
| 	ret = __node_reclaim(pgdat, gfp_mask, order);
 | ||
| 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
 | ||
| 
 | ||
| 	if (ret)
 | ||
| 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
 | ||
| 	else
 | ||
| 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /**
 | ||
|  * check_move_unevictable_folios - Move evictable folios to appropriate zone
 | ||
|  * lru list
 | ||
|  * @fbatch: Batch of lru folios to check.
 | ||
|  *
 | ||
|  * Checks folios for evictability, if an evictable folio is in the unevictable
 | ||
|  * lru list, moves it to the appropriate evictable lru list. This function
 | ||
|  * should be only used for lru folios.
 | ||
|  */
 | ||
| void check_move_unevictable_folios(struct folio_batch *fbatch)
 | ||
| {
 | ||
| 	struct lruvec *lruvec = NULL;
 | ||
| 	int pgscanned = 0;
 | ||
| 	int pgrescued = 0;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	for (i = 0; i < fbatch->nr; i++) {
 | ||
| 		struct folio *folio = fbatch->folios[i];
 | ||
| 		int nr_pages = folio_nr_pages(folio);
 | ||
| 
 | ||
| 		pgscanned += nr_pages;
 | ||
| 
 | ||
| 		/* block memcg migration while the folio moves between lrus */
 | ||
| 		if (!folio_test_clear_lru(folio))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
 | ||
| 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
 | ||
| 			lruvec_del_folio(lruvec, folio);
 | ||
| 			folio_clear_unevictable(folio);
 | ||
| 			lruvec_add_folio(lruvec, folio);
 | ||
| 			pgrescued += nr_pages;
 | ||
| 		}
 | ||
| 		folio_set_lru(folio);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (lruvec) {
 | ||
| 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 | ||
| 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
 | ||
| 		unlock_page_lruvec_irq(lruvec);
 | ||
| 	} else if (pgscanned) {
 | ||
| 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
 | ||
| 	}
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
 |