mirror of
https://github.com/torvalds/linux.git
synced 2025-11-03 01:59:51 +02:00
Gleixner:
- Restructure the code needed for it and add a temporary initrd mapping
on 32-bit so that the loader can access the microcode blobs. This in
itself is a preparation for the next major improvement:
- Do not load microcode on 32-bit before paging has been enabled.
Handling this has caused an endless stream of headaches, issues, ugly
code and unnecessary hacks in the past. And there really wasn't any
sensible reason to do that in the first place. So switch the 32-bit
loading to happen after paging has been enabled and turn the loader
code "real purrty" again
- Drop mixed microcode steppings loading on Intel - there, a single patch
loaded on the whole system is sufficient
- Rework late loading to track which CPUs have updated microcode
successfully and which haven't, act accordingly
- Move late microcode loading on Intel in NMI context in order to
guarantee concurrent loading on all threads
- Make the late loading CPU-hotplug-safe and have the offlined threads
be woken up for the purpose of the update
- Add support for a minimum revision which determines whether late
microcode loading is safe on a machine and the microcode does not
change software visible features which the machine cannot use anyway
since feature detection has happened already. Roughly, the minimum
revision is the smallest revision number which must be loaded
currently on the system so that late updates can be allowed
- Other nice leanups, fixess, etc all over the place
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmVE0xkACgkQEsHwGGHe
VUrCuBAAhOqqwkYPiGXPWd2hvdn1zGtD5fvEdXn3Orzd+Lwc6YaQTsCxCjIO/0ws
8inpPFuOeGz4TZcplzipi3G5oatPVc7ORDuW+/BvQQQljZOsSKfhiaC29t6dvS6z
UG3sbCXKVwlJ5Kwv3Qe4eWur4Ex6GeFDZkIvBCmbaAdGPFlfu1i2uO1yBooNP1Rs
GiUkp+dP1/KREWwR/dOIsHYL2QjWIWfHQEWit/9Bj46rxE9ERx/TWt3AeKPfKriO
Wp0JKp6QY78jg6a0a2/JVmbT1BKz69Z9aPp6hl4P2MfbBYOnqijRhdezFW0NyqV2
pn6nsuiLIiXbnSOEw0+Wdnw5Q0qhICs5B5eaBfQrwgfZ8pxPHv2Ir777GvUTV01E
Dv0ZpYsHa+mHe17nlK8V3+4eajt0PetExcXAYNiIE+pCb7pLjjKkl8e+lcEvEsO0
QSL3zG5i5RWUMPYUvaFRgepWy3k/GPIoDQjRcUD3P+1T0GmnogNN10MMNhmOzfWU
pyafe4tJUOVsq0HJ7V/bxIHk2p+Q+5JLKh5xBm9janE4BpabmSQnvFWNblVfK4ig
M9ohjI/yMtgXROC4xkNXgi8wE5jfDKBghT6FjTqKWSV45vknF1mNEjvuaY+aRZ3H
MB4P3HCj+PKWJimWHRYnDshcytkgcgVcYDiim8va/4UDrw8O2ks=
=JOZu
-----END PGP SIGNATURE-----
Merge tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loading updates from Borislac Petkov:
"Major microcode loader restructuring, cleanup and improvements by
Thomas Gleixner:
- Restructure the code needed for it and add a temporary initrd
mapping on 32-bit so that the loader can access the microcode
blobs. This in itself is a preparation for the next major
improvement:
- Do not load microcode on 32-bit before paging has been enabled.
Handling this has caused an endless stream of headaches, issues,
ugly code and unnecessary hacks in the past. And there really
wasn't any sensible reason to do that in the first place. So switch
the 32-bit loading to happen after paging has been enabled and turn
the loader code "real purrty" again
- Drop mixed microcode steppings loading on Intel - there, a single
patch loaded on the whole system is sufficient
- Rework late loading to track which CPUs have updated microcode
successfully and which haven't, act accordingly
- Move late microcode loading on Intel in NMI context in order to
guarantee concurrent loading on all threads
- Make the late loading CPU-hotplug-safe and have the offlined
threads be woken up for the purpose of the update
- Add support for a minimum revision which determines whether late
microcode loading is safe on a machine and the microcode does not
change software visible features which the machine cannot use
anyway since feature detection has happened already. Roughly, the
minimum revision is the smallest revision number which must be
loaded currently on the system so that late updates can be allowed
- Other nice leanups, fixess, etc all over the place"
* tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
x86/microcode/intel: Add a minimum required revision for late loading
x86/microcode: Prepare for minimal revision check
x86/microcode: Handle "offline" CPUs correctly
x86/apic: Provide apic_force_nmi_on_cpu()
x86/microcode: Protect against instrumentation
x86/microcode: Rendezvous and load in NMI
x86/microcode: Replace the all-in-one rendevous handler
x86/microcode: Provide new control functions
x86/microcode: Add per CPU control field
x86/microcode: Add per CPU result state
x86/microcode: Sanitize __wait_for_cpus()
x86/microcode: Clarify the late load logic
x86/microcode: Handle "nosmt" correctly
x86/microcode: Clean up mc_cpu_down_prep()
x86/microcode: Get rid of the schedule work indirection
x86/microcode: Mop up early loading leftovers
x86/microcode/amd: Use cached microcode for AP load
x86/microcode/amd: Cache builtin/initrd microcode early
x86/microcode/amd: Cache builtin microcode too
x86/microcode/amd: Use correct per CPU ucode_cpu_info
...
320 lines
7.5 KiB
C
320 lines
7.5 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/cpumask.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/io_apic.h>
|
|
|
|
#include "local.h"
|
|
|
|
DEFINE_STATIC_KEY_FALSE(apic_use_ipi_shorthand);
|
|
|
|
#ifdef CONFIG_SMP
|
|
static int apic_ipi_shorthand_off __ro_after_init;
|
|
|
|
static __init int apic_ipi_shorthand(char *str)
|
|
{
|
|
get_option(&str, &apic_ipi_shorthand_off);
|
|
return 1;
|
|
}
|
|
__setup("no_ipi_broadcast=", apic_ipi_shorthand);
|
|
|
|
static int __init print_ipi_mode(void)
|
|
{
|
|
pr_info("IPI shorthand broadcast: %s\n",
|
|
apic_ipi_shorthand_off ? "disabled" : "enabled");
|
|
return 0;
|
|
}
|
|
late_initcall(print_ipi_mode);
|
|
|
|
void apic_smt_update(void)
|
|
{
|
|
/*
|
|
* Do not switch to broadcast mode if:
|
|
* - Disabled on the command line
|
|
* - Only a single CPU is online
|
|
* - Not all present CPUs have been at least booted once
|
|
*
|
|
* The latter is important as the local APIC might be in some
|
|
* random state and a broadcast might cause havoc. That's
|
|
* especially true for NMI broadcasting.
|
|
*/
|
|
if (apic_ipi_shorthand_off || num_online_cpus() == 1 ||
|
|
!cpumask_equal(cpu_present_mask, &cpus_booted_once_mask)) {
|
|
static_branch_disable(&apic_use_ipi_shorthand);
|
|
} else {
|
|
static_branch_enable(&apic_use_ipi_shorthand);
|
|
}
|
|
}
|
|
|
|
void apic_send_IPI_allbutself(unsigned int vector)
|
|
{
|
|
if (num_online_cpus() < 2)
|
|
return;
|
|
|
|
if (static_branch_likely(&apic_use_ipi_shorthand))
|
|
__apic_send_IPI_allbutself(vector);
|
|
else
|
|
__apic_send_IPI_mask_allbutself(cpu_online_mask, vector);
|
|
}
|
|
|
|
/*
|
|
* Send a 'reschedule' IPI to another CPU. It goes straight through and
|
|
* wastes no time serializing anything. Worst case is that we lose a
|
|
* reschedule ...
|
|
*/
|
|
void native_smp_send_reschedule(int cpu)
|
|
{
|
|
if (unlikely(cpu_is_offline(cpu))) {
|
|
WARN(1, "sched: Unexpected reschedule of offline CPU#%d!\n", cpu);
|
|
return;
|
|
}
|
|
__apic_send_IPI(cpu, RESCHEDULE_VECTOR);
|
|
}
|
|
|
|
void native_send_call_func_single_ipi(int cpu)
|
|
{
|
|
__apic_send_IPI(cpu, CALL_FUNCTION_SINGLE_VECTOR);
|
|
}
|
|
|
|
void native_send_call_func_ipi(const struct cpumask *mask)
|
|
{
|
|
if (static_branch_likely(&apic_use_ipi_shorthand)) {
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
if (!cpumask_or_equal(mask, cpumask_of(cpu), cpu_online_mask))
|
|
goto sendmask;
|
|
|
|
if (cpumask_test_cpu(cpu, mask))
|
|
__apic_send_IPI_all(CALL_FUNCTION_VECTOR);
|
|
else if (num_online_cpus() > 1)
|
|
__apic_send_IPI_allbutself(CALL_FUNCTION_VECTOR);
|
|
return;
|
|
}
|
|
|
|
sendmask:
|
|
__apic_send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
|
|
}
|
|
|
|
void apic_send_nmi_to_offline_cpu(unsigned int cpu)
|
|
{
|
|
if (WARN_ON_ONCE(!apic->nmi_to_offline_cpu))
|
|
return;
|
|
if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, &cpus_booted_once_mask)))
|
|
return;
|
|
apic->send_IPI(cpu, NMI_VECTOR);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static inline int __prepare_ICR2(unsigned int mask)
|
|
{
|
|
return SET_XAPIC_DEST_FIELD(mask);
|
|
}
|
|
|
|
u32 apic_mem_wait_icr_idle_timeout(void)
|
|
{
|
|
int cnt;
|
|
|
|
for (cnt = 0; cnt < 1000; cnt++) {
|
|
if (!(apic_read(APIC_ICR) & APIC_ICR_BUSY))
|
|
return 0;
|
|
inc_irq_stat(icr_read_retry_count);
|
|
udelay(100);
|
|
}
|
|
return APIC_ICR_BUSY;
|
|
}
|
|
|
|
void apic_mem_wait_icr_idle(void)
|
|
{
|
|
while (native_apic_mem_read(APIC_ICR) & APIC_ICR_BUSY)
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* This is safe against interruption because it only writes the lower 32
|
|
* bits of the APIC_ICR register. The destination field is ignored for
|
|
* short hand IPIs.
|
|
*
|
|
* wait_icr_idle()
|
|
* write(ICR2, dest)
|
|
* NMI
|
|
* wait_icr_idle()
|
|
* write(ICR)
|
|
* wait_icr_idle()
|
|
* write(ICR)
|
|
*
|
|
* This function does not need to disable interrupts as there is no ICR2
|
|
* interaction. The memory write is direct except when the machine is
|
|
* affected by the 11AP Pentium erratum, which turns the plain write into
|
|
* an XCHG operation.
|
|
*/
|
|
static void __default_send_IPI_shortcut(unsigned int shortcut, int vector)
|
|
{
|
|
/*
|
|
* Wait for the previous ICR command to complete. Use
|
|
* safe_apic_wait_icr_idle() for the NMI vector as there have been
|
|
* issues where otherwise the system hangs when the panic CPU tries
|
|
* to stop the others before launching the kdump kernel.
|
|
*/
|
|
if (unlikely(vector == NMI_VECTOR))
|
|
apic_mem_wait_icr_idle_timeout();
|
|
else
|
|
apic_mem_wait_icr_idle();
|
|
|
|
/* Destination field (ICR2) and the destination mode are ignored */
|
|
native_apic_mem_write(APIC_ICR, __prepare_ICR(shortcut, vector, 0));
|
|
}
|
|
|
|
/*
|
|
* This is used to send an IPI with no shorthand notation (the destination is
|
|
* specified in bits 56 to 63 of the ICR).
|
|
*/
|
|
void __default_send_IPI_dest_field(unsigned int dest_mask, int vector,
|
|
unsigned int dest_mode)
|
|
{
|
|
/* See comment in __default_send_IPI_shortcut() */
|
|
if (unlikely(vector == NMI_VECTOR))
|
|
apic_mem_wait_icr_idle_timeout();
|
|
else
|
|
apic_mem_wait_icr_idle();
|
|
|
|
/* Set the IPI destination field in the ICR */
|
|
native_apic_mem_write(APIC_ICR2, __prepare_ICR2(dest_mask));
|
|
/* Send it with the proper destination mode */
|
|
native_apic_mem_write(APIC_ICR, __prepare_ICR(0, vector, dest_mode));
|
|
}
|
|
|
|
void default_send_IPI_single_phys(int cpu, int vector)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__default_send_IPI_dest_field(per_cpu(x86_cpu_to_apicid, cpu),
|
|
vector, APIC_DEST_PHYSICAL);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void default_send_IPI_mask_sequence_phys(const struct cpumask *mask, int vector)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long cpu;
|
|
|
|
local_irq_save(flags);
|
|
for_each_cpu(cpu, mask) {
|
|
__default_send_IPI_dest_field(per_cpu(x86_cpu_to_apicid,
|
|
cpu), vector, APIC_DEST_PHYSICAL);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void default_send_IPI_mask_allbutself_phys(const struct cpumask *mask,
|
|
int vector)
|
|
{
|
|
unsigned int cpu, this_cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
for_each_cpu(cpu, mask) {
|
|
if (cpu == this_cpu)
|
|
continue;
|
|
__default_send_IPI_dest_field(per_cpu(x86_cpu_to_apicid,
|
|
cpu), vector, APIC_DEST_PHYSICAL);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Helper function for APICs which insist on cpumasks
|
|
*/
|
|
void default_send_IPI_single(int cpu, int vector)
|
|
{
|
|
__apic_send_IPI_mask(cpumask_of(cpu), vector);
|
|
}
|
|
|
|
void default_send_IPI_allbutself(int vector)
|
|
{
|
|
__default_send_IPI_shortcut(APIC_DEST_ALLBUT, vector);
|
|
}
|
|
|
|
void default_send_IPI_all(int vector)
|
|
{
|
|
__default_send_IPI_shortcut(APIC_DEST_ALLINC, vector);
|
|
}
|
|
|
|
void default_send_IPI_self(int vector)
|
|
{
|
|
__default_send_IPI_shortcut(APIC_DEST_SELF, vector);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
void default_send_IPI_mask_sequence_logical(const struct cpumask *mask, int vector)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int cpu;
|
|
|
|
local_irq_save(flags);
|
|
for_each_cpu(cpu, mask)
|
|
__default_send_IPI_dest_field(1U << cpu, vector, APIC_DEST_LOGICAL);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void default_send_IPI_mask_allbutself_logical(const struct cpumask *mask,
|
|
int vector)
|
|
{
|
|
unsigned int cpu, this_cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
for_each_cpu(cpu, mask) {
|
|
if (cpu == this_cpu)
|
|
continue;
|
|
__default_send_IPI_dest_field(1U << cpu, vector, APIC_DEST_LOGICAL);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void default_send_IPI_mask_logical(const struct cpumask *cpumask, int vector)
|
|
{
|
|
unsigned long mask = cpumask_bits(cpumask)[0];
|
|
unsigned long flags;
|
|
|
|
if (!mask)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
WARN_ON(mask & ~cpumask_bits(cpu_online_mask)[0]);
|
|
__default_send_IPI_dest_field(mask, vector, APIC_DEST_LOGICAL);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static int convert_apicid_to_cpu(u32 apic_id)
|
|
{
|
|
int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
if (per_cpu(x86_cpu_to_apicid, i) == apic_id)
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int safe_smp_processor_id(void)
|
|
{
|
|
u32 apicid;
|
|
int cpuid;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_APIC))
|
|
return 0;
|
|
|
|
apicid = read_apic_id();
|
|
if (apicid == BAD_APICID)
|
|
return 0;
|
|
|
|
cpuid = convert_apicid_to_cpu(apicid);
|
|
|
|
return cpuid >= 0 ? cpuid : 0;
|
|
}
|
|
#endif
|
|
#endif
|