mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 f10a890308
			
		
	
	
		f10a890308
		
	
	
	
	
		
			
			syzbot reports deadlock issue of f2fs as below:
======================================================
WARNING: possible circular locking dependency detected
6.12.0-rc3-syzkaller-00087-gc964ced77262 #0 Not tainted
------------------------------------------------------
kswapd0/79 is trying to acquire lock:
ffff888011824088 (&sbi->sb_lock){++++}-{3:3}, at: f2fs_down_write fs/f2fs/f2fs.h:2199 [inline]
ffff888011824088 (&sbi->sb_lock){++++}-{3:3}, at: f2fs_record_stop_reason+0x52/0x1d0 fs/f2fs/super.c:4068
but task is already holding lock:
ffff88804bd92610 (sb_internal#2){.+.+}-{0:0}, at: f2fs_evict_inode+0x662/0x15c0 fs/f2fs/inode.c:842
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (sb_internal#2){.+.+}-{0:0}:
       lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825
       percpu_down_read include/linux/percpu-rwsem.h:51 [inline]
       __sb_start_write include/linux/fs.h:1716 [inline]
       sb_start_intwrite+0x4d/0x1c0 include/linux/fs.h:1899
       f2fs_evict_inode+0x662/0x15c0 fs/f2fs/inode.c:842
       evict+0x4e8/0x9b0 fs/inode.c:725
       f2fs_evict_inode+0x1a4/0x15c0 fs/f2fs/inode.c:807
       evict+0x4e8/0x9b0 fs/inode.c:725
       dispose_list fs/inode.c:774 [inline]
       prune_icache_sb+0x239/0x2f0 fs/inode.c:963
       super_cache_scan+0x38c/0x4b0 fs/super.c:223
       do_shrink_slab+0x701/0x1160 mm/shrinker.c:435
       shrink_slab+0x1093/0x14d0 mm/shrinker.c:662
       shrink_one+0x43b/0x850 mm/vmscan.c:4818
       shrink_many mm/vmscan.c:4879 [inline]
       lru_gen_shrink_node mm/vmscan.c:4957 [inline]
       shrink_node+0x3799/0x3de0 mm/vmscan.c:5937
       kswapd_shrink_node mm/vmscan.c:6765 [inline]
       balance_pgdat mm/vmscan.c:6957 [inline]
       kswapd+0x1ca3/0x3700 mm/vmscan.c:7226
       kthread+0x2f0/0x390 kernel/kthread.c:389
       ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
       ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
-> #1 (fs_reclaim){+.+.}-{0:0}:
       lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825
       __fs_reclaim_acquire mm/page_alloc.c:3834 [inline]
       fs_reclaim_acquire+0x88/0x130 mm/page_alloc.c:3848
       might_alloc include/linux/sched/mm.h:318 [inline]
       prepare_alloc_pages+0x147/0x5b0 mm/page_alloc.c:4493
       __alloc_pages_noprof+0x16f/0x710 mm/page_alloc.c:4722
       alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265
       alloc_pages_noprof mm/mempolicy.c:2345 [inline]
       folio_alloc_noprof+0x128/0x180 mm/mempolicy.c:2352
       filemap_alloc_folio_noprof+0xdf/0x500 mm/filemap.c:1010
       do_read_cache_folio+0x2eb/0x850 mm/filemap.c:3787
       read_mapping_folio include/linux/pagemap.h:1011 [inline]
       f2fs_commit_super+0x3c0/0x7d0 fs/f2fs/super.c:4032
       f2fs_record_stop_reason+0x13b/0x1d0 fs/f2fs/super.c:4079
       f2fs_handle_critical_error+0x2ac/0x5c0 fs/f2fs/super.c:4174
       f2fs_write_inode+0x35f/0x4d0 fs/f2fs/inode.c:785
       write_inode fs/fs-writeback.c:1503 [inline]
       __writeback_single_inode+0x711/0x10d0 fs/fs-writeback.c:1723
       writeback_single_inode+0x1f3/0x660 fs/fs-writeback.c:1779
       sync_inode_metadata+0xc4/0x120 fs/fs-writeback.c:2849
       f2fs_release_file+0xa8/0x100 fs/f2fs/file.c:1941
       __fput+0x23f/0x880 fs/file_table.c:431
       task_work_run+0x24f/0x310 kernel/task_work.c:228
       resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
       exit_to_user_mode_loop kernel/entry/common.c:114 [inline]
       exit_to_user_mode_prepare include/linux/entry-common.h:328 [inline]
       __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline]
       syscall_exit_to_user_mode+0x168/0x370 kernel/entry/common.c:218
       do_syscall_64+0x100/0x230 arch/x86/entry/common.c:89
       entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (&sbi->sb_lock){++++}-{3:3}:
       check_prev_add kernel/locking/lockdep.c:3161 [inline]
       check_prevs_add kernel/locking/lockdep.c:3280 [inline]
       validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904
       __lock_acquire+0x1384/0x2050 kernel/locking/lockdep.c:5202
       lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825
       down_write+0x99/0x220 kernel/locking/rwsem.c:1577
       f2fs_down_write fs/f2fs/f2fs.h:2199 [inline]
       f2fs_record_stop_reason+0x52/0x1d0 fs/f2fs/super.c:4068
       f2fs_handle_critical_error+0x2ac/0x5c0 fs/f2fs/super.c:4174
       f2fs_evict_inode+0xa61/0x15c0 fs/f2fs/inode.c:883
       evict+0x4e8/0x9b0 fs/inode.c:725
       f2fs_evict_inode+0x1a4/0x15c0 fs/f2fs/inode.c:807
       evict+0x4e8/0x9b0 fs/inode.c:725
       dispose_list fs/inode.c:774 [inline]
       prune_icache_sb+0x239/0x2f0 fs/inode.c:963
       super_cache_scan+0x38c/0x4b0 fs/super.c:223
       do_shrink_slab+0x701/0x1160 mm/shrinker.c:435
       shrink_slab+0x1093/0x14d0 mm/shrinker.c:662
       shrink_one+0x43b/0x850 mm/vmscan.c:4818
       shrink_many mm/vmscan.c:4879 [inline]
       lru_gen_shrink_node mm/vmscan.c:4957 [inline]
       shrink_node+0x3799/0x3de0 mm/vmscan.c:5937
       kswapd_shrink_node mm/vmscan.c:6765 [inline]
       balance_pgdat mm/vmscan.c:6957 [inline]
       kswapd+0x1ca3/0x3700 mm/vmscan.c:7226
       kthread+0x2f0/0x390 kernel/kthread.c:389
       ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
       ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
other info that might help us debug this:
Chain exists of:
  &sbi->sb_lock --> fs_reclaim --> sb_internal#2
 Possible unsafe locking scenario:
       CPU0                    CPU1
       ----                    ----
  rlock(sb_internal#2);
                               lock(fs_reclaim);
                               lock(sb_internal#2);
  lock(&sbi->sb_lock);
Root cause is there will be potential deadlock in between
below tasks:
Thread A				Kswapd
- f2fs_ioc_commit_atomic_write
 - mnt_want_write_file -- down_read lock A
					- balance_pgdat
					 - __fs_reclaim_acquire  -- lock B
					  - shrink_node
					   - prune_icache_sb
					    - dispose_list
					     - f2fs_evict_inode
					      - sb_start_intwrite  -- down_read lock A
 - f2fs_do_sync_file
  - f2fs_write_inode
   - f2fs_handle_critical_error
    - f2fs_record_stop_reason
     - f2fs_commit_super
      - read_mapping_folio
       - filemap_alloc_folio_noprof
        - fs_reclaim_acquire  -- lock B
Both threads try to acquire read lock of lock A, then its upcoming write
lock grabber will trigger deadlock.
Let's always create an asynchronous task in f2fs_handle_critical_error()
rather than calling f2fs_record_stop_reason() synchronously to avoid
this potential deadlock issue.
Fixes: b62e71be21 ("f2fs: support errors=remount-ro|continue|panic mountoption")
Reported-by: syzbot+be4a9983e95a5e25c8d3@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/6704d667.050a0220.1e4d62.0081.GAE@google.com
Signed-off-by: Chao Yu <chao@kernel.org>
Reviewed-by: Daejun Park <daejun7.park@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
		
	
			
		
			
				
	
	
		
			1965 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1965 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * fs/f2fs/checkpoint.c
 | |
|  *
 | |
|  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 | |
|  *             http://www.samsung.com/
 | |
|  */
 | |
| #include <linux/fs.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/f2fs_fs.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/kthread.h>
 | |
| 
 | |
| #include "f2fs.h"
 | |
| #include "node.h"
 | |
| #include "segment.h"
 | |
| #include "iostat.h"
 | |
| #include <trace/events/f2fs.h>
 | |
| 
 | |
| #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
 | |
| 
 | |
| static struct kmem_cache *ino_entry_slab;
 | |
| struct kmem_cache *f2fs_inode_entry_slab;
 | |
| 
 | |
| void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
 | |
| 						unsigned char reason)
 | |
| {
 | |
| 	f2fs_build_fault_attr(sbi, 0, 0);
 | |
| 	if (!end_io)
 | |
| 		f2fs_flush_merged_writes(sbi);
 | |
| 	f2fs_handle_critical_error(sbi, reason);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We guarantee no failure on the returned page.
 | |
|  */
 | |
| struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 | |
| {
 | |
| 	struct address_space *mapping = META_MAPPING(sbi);
 | |
| 	struct page *page;
 | |
| repeat:
 | |
| 	page = f2fs_grab_cache_page(mapping, index, false);
 | |
| 	if (!page) {
 | |
| 		cond_resched();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 	f2fs_wait_on_page_writeback(page, META, true, true);
 | |
| 	if (!PageUptodate(page))
 | |
| 		SetPageUptodate(page);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
 | |
| 							bool is_meta)
 | |
| {
 | |
| 	struct address_space *mapping = META_MAPPING(sbi);
 | |
| 	struct page *page;
 | |
| 	struct f2fs_io_info fio = {
 | |
| 		.sbi = sbi,
 | |
| 		.type = META,
 | |
| 		.op = REQ_OP_READ,
 | |
| 		.op_flags = REQ_META | REQ_PRIO,
 | |
| 		.old_blkaddr = index,
 | |
| 		.new_blkaddr = index,
 | |
| 		.encrypted_page = NULL,
 | |
| 		.is_por = !is_meta ? 1 : 0,
 | |
| 	};
 | |
| 	int err;
 | |
| 
 | |
| 	if (unlikely(!is_meta))
 | |
| 		fio.op_flags &= ~REQ_META;
 | |
| repeat:
 | |
| 	page = f2fs_grab_cache_page(mapping, index, false);
 | |
| 	if (!page) {
 | |
| 		cond_resched();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 	if (PageUptodate(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	fio.page = page;
 | |
| 
 | |
| 	err = f2fs_submit_page_bio(&fio);
 | |
| 	if (err) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	if (unlikely(page->mapping != mapping)) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!PageUptodate(page))) {
 | |
| 		f2fs_handle_page_eio(sbi, page_folio(page), META);
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		return ERR_PTR(-EIO);
 | |
| 	}
 | |
| out:
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 | |
| {
 | |
| 	return __get_meta_page(sbi, index, true);
 | |
| }
 | |
| 
 | |
| struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int count = 0;
 | |
| 
 | |
| retry:
 | |
| 	page = __get_meta_page(sbi, index, true);
 | |
| 	if (IS_ERR(page)) {
 | |
| 		if (PTR_ERR(page) == -EIO &&
 | |
| 				++count <= DEFAULT_RETRY_IO_COUNT)
 | |
| 			goto retry;
 | |
| 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /* for POR only */
 | |
| struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 | |
| {
 | |
| 	return __get_meta_page(sbi, index, false);
 | |
| }
 | |
| 
 | |
| static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
 | |
| 							int type)
 | |
| {
 | |
| 	struct seg_entry *se;
 | |
| 	unsigned int segno, offset;
 | |
| 	bool exist;
 | |
| 
 | |
| 	if (type == DATA_GENERIC)
 | |
| 		return true;
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, blkaddr);
 | |
| 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 
 | |
| 	exist = f2fs_test_bit(offset, se->cur_valid_map);
 | |
| 
 | |
| 	/* skip data, if we already have an error in checkpoint. */
 | |
| 	if (unlikely(f2fs_cp_error(sbi)))
 | |
| 		return exist;
 | |
| 
 | |
| 	if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) ||
 | |
| 		(!exist && type == DATA_GENERIC_ENHANCE))
 | |
| 		goto out_err;
 | |
| 	if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE)
 | |
| 		goto out_handle;
 | |
| 	return exist;
 | |
| 
 | |
| out_err:
 | |
| 	f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
 | |
| 		 blkaddr, exist);
 | |
| 	set_sbi_flag(sbi, SBI_NEED_FSCK);
 | |
| 	dump_stack();
 | |
| out_handle:
 | |
| 	f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
 | |
| 	return exist;
 | |
| }
 | |
| 
 | |
| static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
 | |
| 					block_t blkaddr, int type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case META_NAT:
 | |
| 		break;
 | |
| 	case META_SIT:
 | |
| 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 | |
| 			goto check_only;
 | |
| 		break;
 | |
| 	case META_SSA:
 | |
| 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 | |
| 			blkaddr < SM_I(sbi)->ssa_blkaddr))
 | |
| 			goto check_only;
 | |
| 		break;
 | |
| 	case META_CP:
 | |
| 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 | |
| 			blkaddr < __start_cp_addr(sbi)))
 | |
| 			goto check_only;
 | |
| 		break;
 | |
| 	case META_POR:
 | |
| 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 | |
| 			blkaddr < MAIN_BLKADDR(sbi)))
 | |
| 			goto check_only;
 | |
| 		break;
 | |
| 	case DATA_GENERIC:
 | |
| 	case DATA_GENERIC_ENHANCE:
 | |
| 	case DATA_GENERIC_ENHANCE_READ:
 | |
| 	case DATA_GENERIC_ENHANCE_UPDATE:
 | |
| 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 | |
| 				blkaddr < MAIN_BLKADDR(sbi))) {
 | |
| 
 | |
| 			/* Skip to emit an error message. */
 | |
| 			if (unlikely(f2fs_cp_error(sbi)))
 | |
| 				return false;
 | |
| 
 | |
| 			f2fs_warn(sbi, "access invalid blkaddr:%u",
 | |
| 				  blkaddr);
 | |
| 			set_sbi_flag(sbi, SBI_NEED_FSCK);
 | |
| 			dump_stack();
 | |
| 			goto err;
 | |
| 		} else {
 | |
| 			return __is_bitmap_valid(sbi, blkaddr, type);
 | |
| 		}
 | |
| 		break;
 | |
| 	case META_GENERIC:
 | |
| 		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
 | |
| 			blkaddr >= MAIN_BLKADDR(sbi)))
 | |
| 			goto err;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| err:
 | |
| 	f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
 | |
| check_only:
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
 | |
| 					block_t blkaddr, int type)
 | |
| {
 | |
| 	if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
 | |
| 		return false;
 | |
| 	return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
 | |
| }
 | |
| 
 | |
| bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
 | |
| 					block_t blkaddr, int type)
 | |
| {
 | |
| 	return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Readahead CP/NAT/SIT/SSA/POR pages
 | |
|  */
 | |
| int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 | |
| 							int type, bool sync)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	block_t blkno = start;
 | |
| 	struct f2fs_io_info fio = {
 | |
| 		.sbi = sbi,
 | |
| 		.type = META,
 | |
| 		.op = REQ_OP_READ,
 | |
| 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
 | |
| 		.encrypted_page = NULL,
 | |
| 		.in_list = 0,
 | |
| 		.is_por = (type == META_POR) ? 1 : 0,
 | |
| 	};
 | |
| 	struct blk_plug plug;
 | |
| 	int err;
 | |
| 
 | |
| 	if (unlikely(type == META_POR))
 | |
| 		fio.op_flags &= ~REQ_META;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	for (; nrpages-- > 0; blkno++) {
 | |
| 
 | |
| 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
 | |
| 			goto out;
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case META_NAT:
 | |
| 			if (unlikely(blkno >=
 | |
| 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 | |
| 				blkno = 0;
 | |
| 			/* get nat block addr */
 | |
| 			fio.new_blkaddr = current_nat_addr(sbi,
 | |
| 					blkno * NAT_ENTRY_PER_BLOCK);
 | |
| 			break;
 | |
| 		case META_SIT:
 | |
| 			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
 | |
| 				goto out;
 | |
| 			/* get sit block addr */
 | |
| 			fio.new_blkaddr = current_sit_addr(sbi,
 | |
| 					blkno * SIT_ENTRY_PER_BLOCK);
 | |
| 			break;
 | |
| 		case META_SSA:
 | |
| 		case META_CP:
 | |
| 		case META_POR:
 | |
| 			fio.new_blkaddr = blkno;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 
 | |
| 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
 | |
| 						fio.new_blkaddr, false);
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 		if (PageUptodate(page)) {
 | |
| 			f2fs_put_page(page, 1);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		fio.page = page;
 | |
| 		err = f2fs_submit_page_bio(&fio);
 | |
| 		f2fs_put_page(page, err ? 1 : 0);
 | |
| 
 | |
| 		if (!err)
 | |
| 			f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
 | |
| 							F2FS_BLKSIZE);
 | |
| 	}
 | |
| out:
 | |
| 	blk_finish_plug(&plug);
 | |
| 	return blkno - start;
 | |
| }
 | |
| 
 | |
| void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
 | |
| 							unsigned int ra_blocks)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	bool readahead = false;
 | |
| 
 | |
| 	if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
 | |
| 		return;
 | |
| 
 | |
| 	page = find_get_page(META_MAPPING(sbi), index);
 | |
| 	if (!page || !PageUptodate(page))
 | |
| 		readahead = true;
 | |
| 	f2fs_put_page(page, 0);
 | |
| 
 | |
| 	if (readahead)
 | |
| 		f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
 | |
| }
 | |
| 
 | |
| static int __f2fs_write_meta_page(struct page *page,
 | |
| 				struct writeback_control *wbc,
 | |
| 				enum iostat_type io_type)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 
 | |
| 	trace_f2fs_writepage(folio, META);
 | |
| 
 | |
| 	if (unlikely(f2fs_cp_error(sbi))) {
 | |
| 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
 | |
| 			folio_clear_uptodate(folio);
 | |
| 			dec_page_count(sbi, F2FS_DIRTY_META);
 | |
| 			folio_unlock(folio);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		goto redirty_out;
 | |
| 	}
 | |
| 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 | |
| 		goto redirty_out;
 | |
| 	if (wbc->for_reclaim && folio->index < GET_SUM_BLOCK(sbi, 0))
 | |
| 		goto redirty_out;
 | |
| 
 | |
| 	f2fs_do_write_meta_page(sbi, folio, io_type);
 | |
| 	dec_page_count(sbi, F2FS_DIRTY_META);
 | |
| 
 | |
| 	if (wbc->for_reclaim)
 | |
| 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
 | |
| 
 | |
| 	folio_unlock(folio);
 | |
| 
 | |
| 	if (unlikely(f2fs_cp_error(sbi)))
 | |
| 		f2fs_submit_merged_write(sbi, META);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| redirty_out:
 | |
| 	redirty_page_for_writepage(wbc, page);
 | |
| 	return AOP_WRITEPAGE_ACTIVATE;
 | |
| }
 | |
| 
 | |
| static int f2fs_write_meta_page(struct page *page,
 | |
| 				struct writeback_control *wbc)
 | |
| {
 | |
| 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
 | |
| }
 | |
| 
 | |
| static int f2fs_write_meta_pages(struct address_space *mapping,
 | |
| 				struct writeback_control *wbc)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 | |
| 	long diff, written;
 | |
| 
 | |
| 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 | |
| 		goto skip_write;
 | |
| 
 | |
| 	/* collect a number of dirty meta pages and write together */
 | |
| 	if (wbc->sync_mode != WB_SYNC_ALL &&
 | |
| 			get_pages(sbi, F2FS_DIRTY_META) <
 | |
| 					nr_pages_to_skip(sbi, META))
 | |
| 		goto skip_write;
 | |
| 
 | |
| 	/* if locked failed, cp will flush dirty pages instead */
 | |
| 	if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
 | |
| 		goto skip_write;
 | |
| 
 | |
| 	trace_f2fs_writepages(mapping->host, wbc, META);
 | |
| 	diff = nr_pages_to_write(sbi, META, wbc);
 | |
| 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
 | |
| 	f2fs_up_write(&sbi->cp_global_sem);
 | |
| 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 | |
| 	return 0;
 | |
| 
 | |
| skip_write:
 | |
| 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 | |
| 	trace_f2fs_writepages(mapping->host, wbc, META);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 | |
| 				long nr_to_write, enum iostat_type io_type)
 | |
| {
 | |
| 	struct address_space *mapping = META_MAPPING(sbi);
 | |
| 	pgoff_t index = 0, prev = ULONG_MAX;
 | |
| 	struct folio_batch fbatch;
 | |
| 	long nwritten = 0;
 | |
| 	int nr_folios;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.for_reclaim = 0,
 | |
| 	};
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	while ((nr_folios = filemap_get_folios_tag(mapping, &index,
 | |
| 					(pgoff_t)-1,
 | |
| 					PAGECACHE_TAG_DIRTY, &fbatch))) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < nr_folios; i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 
 | |
| 			if (nr_to_write != LONG_MAX && i != 0 &&
 | |
| 					folio->index != prev +
 | |
| 					folio_nr_pages(fbatch.folios[i-1])) {
 | |
| 				folio_batch_release(&fbatch);
 | |
| 				goto stop;
 | |
| 			}
 | |
| 
 | |
| 			folio_lock(folio);
 | |
| 
 | |
| 			if (unlikely(folio->mapping != mapping)) {
 | |
| continue_unlock:
 | |
| 				folio_unlock(folio);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (!folio_test_dirty(folio)) {
 | |
| 				/* someone wrote it for us */
 | |
| 				goto continue_unlock;
 | |
| 			}
 | |
| 
 | |
| 			f2fs_wait_on_page_writeback(&folio->page, META,
 | |
| 					true, true);
 | |
| 
 | |
| 			if (!folio_clear_dirty_for_io(folio))
 | |
| 				goto continue_unlock;
 | |
| 
 | |
| 			if (__f2fs_write_meta_page(&folio->page, &wbc,
 | |
| 						io_type)) {
 | |
| 				folio_unlock(folio);
 | |
| 				break;
 | |
| 			}
 | |
| 			nwritten += folio_nr_pages(folio);
 | |
| 			prev = folio->index;
 | |
| 			if (unlikely(nwritten >= nr_to_write))
 | |
| 				break;
 | |
| 		}
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| stop:
 | |
| 	if (nwritten)
 | |
| 		f2fs_submit_merged_write(sbi, type);
 | |
| 
 | |
| 	blk_finish_plug(&plug);
 | |
| 
 | |
| 	return nwritten;
 | |
| }
 | |
| 
 | |
| static bool f2fs_dirty_meta_folio(struct address_space *mapping,
 | |
| 		struct folio *folio)
 | |
| {
 | |
| 	trace_f2fs_set_page_dirty(folio, META);
 | |
| 
 | |
| 	if (!folio_test_uptodate(folio))
 | |
| 		folio_mark_uptodate(folio);
 | |
| 	if (filemap_dirty_folio(mapping, folio)) {
 | |
| 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
 | |
| 		set_page_private_reference(&folio->page);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| const struct address_space_operations f2fs_meta_aops = {
 | |
| 	.writepage	= f2fs_write_meta_page,
 | |
| 	.writepages	= f2fs_write_meta_pages,
 | |
| 	.dirty_folio	= f2fs_dirty_meta_folio,
 | |
| 	.invalidate_folio = f2fs_invalidate_folio,
 | |
| 	.release_folio	= f2fs_release_folio,
 | |
| 	.migrate_folio	= filemap_migrate_folio,
 | |
| };
 | |
| 
 | |
| static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
 | |
| 						unsigned int devidx, int type)
 | |
| {
 | |
| 	struct inode_management *im = &sbi->im[type];
 | |
| 	struct ino_entry *e = NULL, *new = NULL;
 | |
| 
 | |
| 	if (type == FLUSH_INO) {
 | |
| 		rcu_read_lock();
 | |
| 		e = radix_tree_lookup(&im->ino_root, ino);
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	if (!e)
 | |
| 		new = f2fs_kmem_cache_alloc(ino_entry_slab,
 | |
| 						GFP_NOFS, true, NULL);
 | |
| 
 | |
| 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 | |
| 
 | |
| 	spin_lock(&im->ino_lock);
 | |
| 	e = radix_tree_lookup(&im->ino_root, ino);
 | |
| 	if (!e) {
 | |
| 		if (!new) {
 | |
| 			spin_unlock(&im->ino_lock);
 | |
| 			radix_tree_preload_end();
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		e = new;
 | |
| 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| 
 | |
| 		memset(e, 0, sizeof(struct ino_entry));
 | |
| 		e->ino = ino;
 | |
| 
 | |
| 		list_add_tail(&e->list, &im->ino_list);
 | |
| 		if (type != ORPHAN_INO)
 | |
| 			im->ino_num++;
 | |
| 	}
 | |
| 
 | |
| 	if (type == FLUSH_INO)
 | |
| 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
 | |
| 
 | |
| 	spin_unlock(&im->ino_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 
 | |
| 	if (new && e != new)
 | |
| 		kmem_cache_free(ino_entry_slab, new);
 | |
| }
 | |
| 
 | |
| static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 | |
| {
 | |
| 	struct inode_management *im = &sbi->im[type];
 | |
| 	struct ino_entry *e;
 | |
| 
 | |
| 	spin_lock(&im->ino_lock);
 | |
| 	e = radix_tree_lookup(&im->ino_root, ino);
 | |
| 	if (e) {
 | |
| 		list_del(&e->list);
 | |
| 		radix_tree_delete(&im->ino_root, ino);
 | |
| 		im->ino_num--;
 | |
| 		spin_unlock(&im->ino_lock);
 | |
| 		kmem_cache_free(ino_entry_slab, e);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_unlock(&im->ino_lock);
 | |
| }
 | |
| 
 | |
| void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 | |
| {
 | |
| 	/* add new dirty ino entry into list */
 | |
| 	__add_ino_entry(sbi, ino, 0, type);
 | |
| }
 | |
| 
 | |
| void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 | |
| {
 | |
| 	/* remove dirty ino entry from list */
 | |
| 	__remove_ino_entry(sbi, ino, type);
 | |
| }
 | |
| 
 | |
| /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
 | |
| bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 | |
| {
 | |
| 	struct inode_management *im = &sbi->im[mode];
 | |
| 	struct ino_entry *e;
 | |
| 
 | |
| 	spin_lock(&im->ino_lock);
 | |
| 	e = radix_tree_lookup(&im->ino_root, ino);
 | |
| 	spin_unlock(&im->ino_lock);
 | |
| 	return e ? true : false;
 | |
| }
 | |
| 
 | |
| void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
 | |
| {
 | |
| 	struct ino_entry *e, *tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
 | |
| 		struct inode_management *im = &sbi->im[i];
 | |
| 
 | |
| 		spin_lock(&im->ino_lock);
 | |
| 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 | |
| 			list_del(&e->list);
 | |
| 			radix_tree_delete(&im->ino_root, e->ino);
 | |
| 			kmem_cache_free(ino_entry_slab, e);
 | |
| 			im->ino_num--;
 | |
| 		}
 | |
| 		spin_unlock(&im->ino_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 | |
| 					unsigned int devidx, int type)
 | |
| {
 | |
| 	__add_ino_entry(sbi, ino, devidx, type);
 | |
| }
 | |
| 
 | |
| bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 | |
| 					unsigned int devidx, int type)
 | |
| {
 | |
| 	struct inode_management *im = &sbi->im[type];
 | |
| 	struct ino_entry *e;
 | |
| 	bool is_dirty = false;
 | |
| 
 | |
| 	spin_lock(&im->ino_lock);
 | |
| 	e = radix_tree_lookup(&im->ino_root, ino);
 | |
| 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
 | |
| 		is_dirty = true;
 | |
| 	spin_unlock(&im->ino_lock);
 | |
| 	return is_dirty;
 | |
| }
 | |
| 
 | |
| int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct inode_management *im = &sbi->im[ORPHAN_INO];
 | |
| 	int err = 0;
 | |
| 
 | |
| 	spin_lock(&im->ino_lock);
 | |
| 
 | |
| 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
 | |
| 		spin_unlock(&im->ino_lock);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(im->ino_num >= sbi->max_orphans))
 | |
| 		err = -ENOSPC;
 | |
| 	else
 | |
| 		im->ino_num++;
 | |
| 	spin_unlock(&im->ino_lock);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct inode_management *im = &sbi->im[ORPHAN_INO];
 | |
| 
 | |
| 	spin_lock(&im->ino_lock);
 | |
| 	f2fs_bug_on(sbi, im->ino_num == 0);
 | |
| 	im->ino_num--;
 | |
| 	spin_unlock(&im->ino_lock);
 | |
| }
 | |
| 
 | |
| void f2fs_add_orphan_inode(struct inode *inode)
 | |
| {
 | |
| 	/* add new orphan ino entry into list */
 | |
| 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
 | |
| 	f2fs_update_inode_page(inode);
 | |
| }
 | |
| 
 | |
| void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 | |
| {
 | |
| 	/* remove orphan entry from orphan list */
 | |
| 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 | |
| }
 | |
| 
 | |
| static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct node_info ni;
 | |
| 	int err;
 | |
| 
 | |
| 	inode = f2fs_iget_retry(sbi->sb, ino);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		/*
 | |
| 		 * there should be a bug that we can't find the entry
 | |
| 		 * to orphan inode.
 | |
| 		 */
 | |
| 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 | |
| 		return PTR_ERR(inode);
 | |
| 	}
 | |
| 
 | |
| 	err = f2fs_dquot_initialize(inode);
 | |
| 	if (err) {
 | |
| 		iput(inode);
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	clear_nlink(inode);
 | |
| 
 | |
| 	/* truncate all the data during iput */
 | |
| 	iput(inode);
 | |
| 
 | |
| 	err = f2fs_get_node_info(sbi, ino, &ni, false);
 | |
| 	if (err)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	/* ENOMEM was fully retried in f2fs_evict_inode. */
 | |
| 	if (ni.blk_addr != NULL_ADDR) {
 | |
| 		err = -EIO;
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| err_out:
 | |
| 	set_sbi_flag(sbi, SBI_NEED_FSCK);
 | |
| 	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
 | |
| 		  __func__, ino);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	block_t start_blk, orphan_blocks, i, j;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (f2fs_hw_is_readonly(sbi)) {
 | |
| 		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
 | |
| 		f2fs_info(sbi, "orphan cleanup on readonly fs");
 | |
| 
 | |
| 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 | |
| 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 | |
| 
 | |
| 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 | |
| 
 | |
| 	for (i = 0; i < orphan_blocks; i++) {
 | |
| 		struct page *page;
 | |
| 		struct f2fs_orphan_block *orphan_blk;
 | |
| 
 | |
| 		page = f2fs_get_meta_page(sbi, start_blk + i);
 | |
| 		if (IS_ERR(page)) {
 | |
| 			err = PTR_ERR(page);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 | |
| 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 | |
| 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 | |
| 
 | |
| 			err = recover_orphan_inode(sbi, ino);
 | |
| 			if (err) {
 | |
| 				f2fs_put_page(page, 1);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		f2fs_put_page(page, 1);
 | |
| 	}
 | |
| 	/* clear Orphan Flag */
 | |
| 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
 | |
| out:
 | |
| 	set_sbi_flag(sbi, SBI_IS_RECOVERED);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 | |
| {
 | |
| 	struct list_head *head;
 | |
| 	struct f2fs_orphan_block *orphan_blk = NULL;
 | |
| 	unsigned int nentries = 0;
 | |
| 	unsigned short index = 1;
 | |
| 	unsigned short orphan_blocks;
 | |
| 	struct page *page = NULL;
 | |
| 	struct ino_entry *orphan = NULL;
 | |
| 	struct inode_management *im = &sbi->im[ORPHAN_INO];
 | |
| 
 | |
| 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
 | |
| 	 * orphan inode operations are covered under f2fs_lock_op().
 | |
| 	 * And, spin_lock should be avoided due to page operations below.
 | |
| 	 */
 | |
| 	head = &im->ino_list;
 | |
| 
 | |
| 	/* loop for each orphan inode entry and write them in journal block */
 | |
| 	list_for_each_entry(orphan, head, list) {
 | |
| 		if (!page) {
 | |
| 			page = f2fs_grab_meta_page(sbi, start_blk++);
 | |
| 			orphan_blk =
 | |
| 				(struct f2fs_orphan_block *)page_address(page);
 | |
| 			memset(orphan_blk, 0, sizeof(*orphan_blk));
 | |
| 		}
 | |
| 
 | |
| 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 | |
| 
 | |
| 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 | |
| 			/*
 | |
| 			 * an orphan block is full of 1020 entries,
 | |
| 			 * then we need to flush current orphan blocks
 | |
| 			 * and bring another one in memory
 | |
| 			 */
 | |
| 			orphan_blk->blk_addr = cpu_to_le16(index);
 | |
| 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 | |
| 			orphan_blk->entry_count = cpu_to_le32(nentries);
 | |
| 			set_page_dirty(page);
 | |
| 			f2fs_put_page(page, 1);
 | |
| 			index++;
 | |
| 			nentries = 0;
 | |
| 			page = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (page) {
 | |
| 		orphan_blk->blk_addr = cpu_to_le16(index);
 | |
| 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 | |
| 		orphan_blk->entry_count = cpu_to_le32(nentries);
 | |
| 		set_page_dirty(page);
 | |
| 		f2fs_put_page(page, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
 | |
| 						struct f2fs_checkpoint *ckpt)
 | |
| {
 | |
| 	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
 | |
| 	__u32 chksum;
 | |
| 
 | |
| 	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
 | |
| 	if (chksum_ofs < CP_CHKSUM_OFFSET) {
 | |
| 		chksum_ofs += sizeof(chksum);
 | |
| 		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
 | |
| 						F2FS_BLKSIZE - chksum_ofs);
 | |
| 	}
 | |
| 	return chksum;
 | |
| }
 | |
| 
 | |
| static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
 | |
| 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
 | |
| 		unsigned long long *version)
 | |
| {
 | |
| 	size_t crc_offset = 0;
 | |
| 	__u32 crc;
 | |
| 
 | |
| 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
 | |
| 	if (IS_ERR(*cp_page))
 | |
| 		return PTR_ERR(*cp_page);
 | |
| 
 | |
| 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
 | |
| 
 | |
| 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
 | |
| 	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
 | |
| 			crc_offset > CP_CHKSUM_OFFSET) {
 | |
| 		f2fs_put_page(*cp_page, 1);
 | |
| 		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
 | |
| 	if (crc != cur_cp_crc(*cp_block)) {
 | |
| 		f2fs_put_page(*cp_page, 1);
 | |
| 		f2fs_warn(sbi, "invalid crc value");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*version = cur_cp_version(*cp_block);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 | |
| 				block_t cp_addr, unsigned long long *version)
 | |
| {
 | |
| 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
 | |
| 	struct f2fs_checkpoint *cp_block = NULL;
 | |
| 	unsigned long long cur_version = 0, pre_version = 0;
 | |
| 	unsigned int cp_blocks;
 | |
| 	int err;
 | |
| 
 | |
| 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 | |
| 					&cp_page_1, version);
 | |
| 	if (err)
 | |
| 		return NULL;
 | |
| 
 | |
| 	cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
 | |
| 
 | |
| 	if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) {
 | |
| 		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
 | |
| 			  le32_to_cpu(cp_block->cp_pack_total_block_count));
 | |
| 		goto invalid_cp;
 | |
| 	}
 | |
| 	pre_version = *version;
 | |
| 
 | |
| 	cp_addr += cp_blocks - 1;
 | |
| 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 | |
| 					&cp_page_2, version);
 | |
| 	if (err)
 | |
| 		goto invalid_cp;
 | |
| 	cur_version = *version;
 | |
| 
 | |
| 	if (cur_version == pre_version) {
 | |
| 		*version = cur_version;
 | |
| 		f2fs_put_page(cp_page_2, 1);
 | |
| 		return cp_page_1;
 | |
| 	}
 | |
| 	f2fs_put_page(cp_page_2, 1);
 | |
| invalid_cp:
 | |
| 	f2fs_put_page(cp_page_1, 1);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_checkpoint *cp_block;
 | |
| 	struct f2fs_super_block *fsb = sbi->raw_super;
 | |
| 	struct page *cp1, *cp2, *cur_page;
 | |
| 	unsigned long blk_size = sbi->blocksize;
 | |
| 	unsigned long long cp1_version = 0, cp2_version = 0;
 | |
| 	unsigned long long cp_start_blk_no;
 | |
| 	unsigned int cp_blks = 1 + __cp_payload(sbi);
 | |
| 	block_t cp_blk_no;
 | |
| 	int i;
 | |
| 	int err;
 | |
| 
 | |
| 	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
 | |
| 				  GFP_KERNEL);
 | |
| 	if (!sbi->ckpt)
 | |
| 		return -ENOMEM;
 | |
| 	/*
 | |
| 	 * Finding out valid cp block involves read both
 | |
| 	 * sets( cp pack 1 and cp pack 2)
 | |
| 	 */
 | |
| 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 | |
| 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 | |
| 
 | |
| 	/* The second checkpoint pack should start at the next segment */
 | |
| 	cp_start_blk_no += ((unsigned long long)1) <<
 | |
| 				le32_to_cpu(fsb->log_blocks_per_seg);
 | |
| 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 | |
| 
 | |
| 	if (cp1 && cp2) {
 | |
| 		if (ver_after(cp2_version, cp1_version))
 | |
| 			cur_page = cp2;
 | |
| 		else
 | |
| 			cur_page = cp1;
 | |
| 	} else if (cp1) {
 | |
| 		cur_page = cp1;
 | |
| 	} else if (cp2) {
 | |
| 		cur_page = cp2;
 | |
| 	} else {
 | |
| 		err = -EFSCORRUPTED;
 | |
| 		goto fail_no_cp;
 | |
| 	}
 | |
| 
 | |
| 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 | |
| 	memcpy(sbi->ckpt, cp_block, blk_size);
 | |
| 
 | |
| 	if (cur_page == cp1)
 | |
| 		sbi->cur_cp_pack = 1;
 | |
| 	else
 | |
| 		sbi->cur_cp_pack = 2;
 | |
| 
 | |
| 	/* Sanity checking of checkpoint */
 | |
| 	if (f2fs_sanity_check_ckpt(sbi)) {
 | |
| 		err = -EFSCORRUPTED;
 | |
| 		goto free_fail_no_cp;
 | |
| 	}
 | |
| 
 | |
| 	if (cp_blks <= 1)
 | |
| 		goto done;
 | |
| 
 | |
| 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 | |
| 	if (cur_page == cp2)
 | |
| 		cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
 | |
| 
 | |
| 	for (i = 1; i < cp_blks; i++) {
 | |
| 		void *sit_bitmap_ptr;
 | |
| 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 | |
| 
 | |
| 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
 | |
| 		if (IS_ERR(cur_page)) {
 | |
| 			err = PTR_ERR(cur_page);
 | |
| 			goto free_fail_no_cp;
 | |
| 		}
 | |
| 		sit_bitmap_ptr = page_address(cur_page);
 | |
| 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 | |
| 		f2fs_put_page(cur_page, 1);
 | |
| 	}
 | |
| done:
 | |
| 	f2fs_put_page(cp1, 1);
 | |
| 	f2fs_put_page(cp2, 1);
 | |
| 	return 0;
 | |
| 
 | |
| free_fail_no_cp:
 | |
| 	f2fs_put_page(cp1, 1);
 | |
| 	f2fs_put_page(cp2, 1);
 | |
| fail_no_cp:
 | |
| 	kvfree(sbi->ckpt);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 | |
| 
 | |
| 	if (is_inode_flag_set(inode, flag))
 | |
| 		return;
 | |
| 
 | |
| 	set_inode_flag(inode, flag);
 | |
| 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
 | |
| 	stat_inc_dirty_inode(sbi, type);
 | |
| }
 | |
| 
 | |
| static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 | |
| {
 | |
| 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 | |
| 
 | |
| 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
 | |
| 		return;
 | |
| 
 | |
| 	list_del_init(&F2FS_I(inode)->dirty_list);
 | |
| 	clear_inode_flag(inode, flag);
 | |
| 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
 | |
| }
 | |
| 
 | |
| void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 | |
| 
 | |
| 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 | |
| 			!S_ISLNK(inode->i_mode))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&sbi->inode_lock[type]);
 | |
| 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
 | |
| 		__add_dirty_inode(inode, type);
 | |
| 	inode_inc_dirty_pages(inode);
 | |
| 	spin_unlock(&sbi->inode_lock[type]);
 | |
| 
 | |
| 	set_page_private_reference(&folio->page);
 | |
| }
 | |
| 
 | |
| void f2fs_remove_dirty_inode(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 | |
| 
 | |
| 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 | |
| 			!S_ISLNK(inode->i_mode))
 | |
| 		return;
 | |
| 
 | |
| 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&sbi->inode_lock[type]);
 | |
| 	__remove_dirty_inode(inode, type);
 | |
| 	spin_unlock(&sbi->inode_lock[type]);
 | |
| }
 | |
| 
 | |
| int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
 | |
| 						bool from_cp)
 | |
| {
 | |
| 	struct list_head *head;
 | |
| 	struct inode *inode;
 | |
| 	struct f2fs_inode_info *fi;
 | |
| 	bool is_dir = (type == DIR_INODE);
 | |
| 	unsigned long ino = 0;
 | |
| 
 | |
| 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
 | |
| 				get_pages(sbi, is_dir ?
 | |
| 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 | |
| retry:
 | |
| 	if (unlikely(f2fs_cp_error(sbi))) {
 | |
| 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
 | |
| 				get_pages(sbi, is_dir ?
 | |
| 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&sbi->inode_lock[type]);
 | |
| 
 | |
| 	head = &sbi->inode_list[type];
 | |
| 	if (list_empty(head)) {
 | |
| 		spin_unlock(&sbi->inode_lock[type]);
 | |
| 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
 | |
| 				get_pages(sbi, is_dir ?
 | |
| 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 | |
| 		return 0;
 | |
| 	}
 | |
| 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
 | |
| 	inode = igrab(&fi->vfs_inode);
 | |
| 	spin_unlock(&sbi->inode_lock[type]);
 | |
| 	if (inode) {
 | |
| 		unsigned long cur_ino = inode->i_ino;
 | |
| 
 | |
| 		if (from_cp)
 | |
| 			F2FS_I(inode)->cp_task = current;
 | |
| 		F2FS_I(inode)->wb_task = current;
 | |
| 
 | |
| 		filemap_fdatawrite(inode->i_mapping);
 | |
| 
 | |
| 		F2FS_I(inode)->wb_task = NULL;
 | |
| 		if (from_cp)
 | |
| 			F2FS_I(inode)->cp_task = NULL;
 | |
| 
 | |
| 		iput(inode);
 | |
| 		/* We need to give cpu to another writers. */
 | |
| 		if (ino == cur_ino)
 | |
| 			cond_resched();
 | |
| 		else
 | |
| 			ino = cur_ino;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We should submit bio, since it exists several
 | |
| 		 * writebacking dentry pages in the freeing inode.
 | |
| 		 */
 | |
| 		f2fs_submit_merged_write(sbi, DATA);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct list_head *head = &sbi->inode_list[DIRTY_META];
 | |
| 	struct inode *inode;
 | |
| 	struct f2fs_inode_info *fi;
 | |
| 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
 | |
| 
 | |
| 	while (total--) {
 | |
| 		if (unlikely(f2fs_cp_error(sbi)))
 | |
| 			return -EIO;
 | |
| 
 | |
| 		spin_lock(&sbi->inode_lock[DIRTY_META]);
 | |
| 		if (list_empty(head)) {
 | |
| 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		fi = list_first_entry(head, struct f2fs_inode_info,
 | |
| 							gdirty_list);
 | |
| 		inode = igrab(&fi->vfs_inode);
 | |
| 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
 | |
| 		if (inode) {
 | |
| 			sync_inode_metadata(inode, 0);
 | |
| 
 | |
| 			/* it's on eviction */
 | |
| 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
 | |
| 				f2fs_update_inode_page(inode);
 | |
| 			iput(inode);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __prepare_cp_block(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	nid_t last_nid = nm_i->next_scan_nid;
 | |
| 
 | |
| 	next_free_nid(sbi, &last_nid);
 | |
| 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
 | |
| 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
 | |
| 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
 | |
| 	ckpt->next_free_nid = cpu_to_le32(last_nid);
 | |
| 
 | |
| 	/* update user_block_counts */
 | |
| 	sbi->last_valid_block_count = sbi->total_valid_block_count;
 | |
| 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
 | |
| 	percpu_counter_set(&sbi->rf_node_block_count, 0);
 | |
| }
 | |
| 
 | |
| static bool __need_flush_quota(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if (!is_journalled_quota(sbi))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!f2fs_down_write_trylock(&sbi->quota_sem))
 | |
| 		return true;
 | |
| 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
 | |
| 		ret = false;
 | |
| 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
 | |
| 		ret = false;
 | |
| 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
 | |
| 		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
 | |
| 		ret = true;
 | |
| 	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
 | |
| 		ret = true;
 | |
| 	}
 | |
| 	f2fs_up_write(&sbi->quota_sem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Freeze all the FS-operations for checkpoint.
 | |
|  */
 | |
| static int block_operations(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = WB_SYNC_ALL,
 | |
| 		.nr_to_write = LONG_MAX,
 | |
| 		.for_reclaim = 0,
 | |
| 	};
 | |
| 	int err = 0, cnt = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's flush inline_data in dirty node pages.
 | |
| 	 */
 | |
| 	f2fs_flush_inline_data(sbi);
 | |
| 
 | |
| retry_flush_quotas:
 | |
| 	f2fs_lock_all(sbi);
 | |
| 	if (__need_flush_quota(sbi)) {
 | |
| 		int locked;
 | |
| 
 | |
| 		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
 | |
| 			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
 | |
| 			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
 | |
| 			goto retry_flush_dents;
 | |
| 		}
 | |
| 		f2fs_unlock_all(sbi);
 | |
| 
 | |
| 		/* only failed during mount/umount/freeze/quotactl */
 | |
| 		locked = down_read_trylock(&sbi->sb->s_umount);
 | |
| 		f2fs_quota_sync(sbi->sb, -1);
 | |
| 		if (locked)
 | |
| 			up_read(&sbi->sb->s_umount);
 | |
| 		cond_resched();
 | |
| 		goto retry_flush_quotas;
 | |
| 	}
 | |
| 
 | |
| retry_flush_dents:
 | |
| 	/* write all the dirty dentry pages */
 | |
| 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
 | |
| 		f2fs_unlock_all(sbi);
 | |
| 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		cond_resched();
 | |
| 		goto retry_flush_quotas;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * POR: we should ensure that there are no dirty node pages
 | |
| 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
 | |
| 	 */
 | |
| 	f2fs_down_write(&sbi->node_change);
 | |
| 
 | |
| 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
 | |
| 		f2fs_up_write(&sbi->node_change);
 | |
| 		f2fs_unlock_all(sbi);
 | |
| 		err = f2fs_sync_inode_meta(sbi);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		cond_resched();
 | |
| 		goto retry_flush_quotas;
 | |
| 	}
 | |
| 
 | |
| retry_flush_nodes:
 | |
| 	f2fs_down_write(&sbi->node_write);
 | |
| 
 | |
| 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
 | |
| 		f2fs_up_write(&sbi->node_write);
 | |
| 		atomic_inc(&sbi->wb_sync_req[NODE]);
 | |
| 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
 | |
| 		atomic_dec(&sbi->wb_sync_req[NODE]);
 | |
| 		if (err) {
 | |
| 			f2fs_up_write(&sbi->node_change);
 | |
| 			f2fs_unlock_all(sbi);
 | |
| 			return err;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 		goto retry_flush_nodes;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * sbi->node_change is used only for AIO write_begin path which produces
 | |
| 	 * dirty node blocks and some checkpoint values by block allocation.
 | |
| 	 */
 | |
| 	__prepare_cp_block(sbi);
 | |
| 	f2fs_up_write(&sbi->node_change);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void unblock_operations(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	f2fs_up_write(&sbi->node_write);
 | |
| 	f2fs_unlock_all(sbi);
 | |
| }
 | |
| 
 | |
| void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (!get_pages(sbi, type))
 | |
| 			break;
 | |
| 
 | |
| 		if (unlikely(f2fs_cp_error(sbi) &&
 | |
| 			!is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
 | |
| 			break;
 | |
| 
 | |
| 		if (type == F2FS_DIRTY_META)
 | |
| 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
 | |
| 							FS_CP_META_IO);
 | |
| 		else if (type == F2FS_WB_CP_DATA)
 | |
| 			f2fs_submit_merged_write(sbi, DATA);
 | |
| 
 | |
| 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
 | |
| 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 | |
| 	}
 | |
| 	finish_wait(&sbi->cp_wait, &wait);
 | |
| }
 | |
| 
 | |
| static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 | |
| {
 | |
| 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (cpc->reason & CP_UMOUNT) {
 | |
| 		if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
 | |
| 			NM_I(sbi)->nat_bits_blocks > BLKS_PER_SEG(sbi)) {
 | |
| 			clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
 | |
| 			f2fs_notice(sbi, "Disable nat_bits due to no space");
 | |
| 		} else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
 | |
| 						f2fs_nat_bitmap_enabled(sbi)) {
 | |
| 			f2fs_enable_nat_bits(sbi);
 | |
| 			set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
 | |
| 			f2fs_notice(sbi, "Rebuild and enable nat_bits");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&sbi->cp_lock, flags);
 | |
| 
 | |
| 	if (cpc->reason & CP_TRIMMED)
 | |
| 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
 | |
| 	else
 | |
| 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
 | |
| 
 | |
| 	if (cpc->reason & CP_UMOUNT)
 | |
| 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
 | |
| 	else
 | |
| 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
 | |
| 
 | |
| 	if (cpc->reason & CP_FASTBOOT)
 | |
| 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
 | |
| 	else
 | |
| 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
 | |
| 
 | |
| 	if (orphan_num)
 | |
| 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 | |
| 	else
 | |
| 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
 | |
| 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
 | |
| 		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
 | |
| 	else
 | |
| 		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
 | |
| 		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
 | |
| 	else
 | |
| 		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
 | |
| 		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
 | |
| 	else
 | |
| 		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
 | |
| 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
 | |
| 	else
 | |
| 		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
 | |
| 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
 | |
| 
 | |
| 	/* set this flag to activate crc|cp_ver for recovery */
 | |
| 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
 | |
| 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
 | |
| }
 | |
| 
 | |
| static void commit_checkpoint(struct f2fs_sb_info *sbi,
 | |
| 	void *src, block_t blk_addr)
 | |
| {
 | |
| 	struct writeback_control wbc = {
 | |
| 		.for_reclaim = 0,
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * filemap_get_folios_tag and lock_page again will take
 | |
| 	 * some extra time. Therefore, f2fs_update_meta_pages and
 | |
| 	 * f2fs_sync_meta_pages are combined in this function.
 | |
| 	 */
 | |
| 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
 | |
| 	int err;
 | |
| 
 | |
| 	f2fs_wait_on_page_writeback(page, META, true, true);
 | |
| 
 | |
| 	memcpy(page_address(page), src, PAGE_SIZE);
 | |
| 
 | |
| 	set_page_dirty(page);
 | |
| 	if (unlikely(!clear_page_dirty_for_io(page)))
 | |
| 		f2fs_bug_on(sbi, 1);
 | |
| 
 | |
| 	/* writeout cp pack 2 page */
 | |
| 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
 | |
| 	if (unlikely(err && f2fs_cp_error(sbi))) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	f2fs_bug_on(sbi, err);
 | |
| 	f2fs_put_page(page, 0);
 | |
| 
 | |
| 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
 | |
| 	f2fs_submit_merged_write(sbi, META_FLUSH);
 | |
| }
 | |
| 
 | |
| static inline u64 get_sectors_written(struct block_device *bdev)
 | |
| {
 | |
| 	return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
 | |
| }
 | |
| 
 | |
| u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	if (f2fs_is_multi_device(sbi)) {
 | |
| 		u64 sectors = 0;
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < sbi->s_ndevs; i++)
 | |
| 			sectors += get_sectors_written(FDEV(i).bdev);
 | |
| 
 | |
| 		return sectors;
 | |
| 	}
 | |
| 
 | |
| 	return get_sectors_written(sbi->sb->s_bdev);
 | |
| }
 | |
| 
 | |
| static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct f2fs_nm_info *nm_i = NM_I(sbi);
 | |
| 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
 | |
| 	block_t start_blk;
 | |
| 	unsigned int data_sum_blocks, orphan_blocks;
 | |
| 	__u32 crc32 = 0;
 | |
| 	int i;
 | |
| 	int cp_payload_blks = __cp_payload(sbi);
 | |
| 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
 | |
| 	u64 kbytes_written;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Flush all the NAT/SIT pages */
 | |
| 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
 | |
| 
 | |
| 	/* start to update checkpoint, cp ver is already updated previously */
 | |
| 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
 | |
| 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
 | |
| 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
 | |
| 		struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
 | |
| 
 | |
| 		ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
 | |
| 		ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
 | |
| 		ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
 | |
| 	}
 | |
| 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
 | |
| 		struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
 | |
| 
 | |
| 		ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
 | |
| 		ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
 | |
| 		ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
 | |
| 	}
 | |
| 
 | |
| 	/* 2 cp + n data seg summary + orphan inode blocks */
 | |
| 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
 | |
| 	spin_lock_irqsave(&sbi->cp_lock, flags);
 | |
| 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
 | |
| 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 | |
| 	else
 | |
| 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 | |
| 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
 | |
| 
 | |
| 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
 | |
| 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
 | |
| 			orphan_blocks);
 | |
| 
 | |
| 	if (__remain_node_summaries(cpc->reason))
 | |
| 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
 | |
| 				cp_payload_blks + data_sum_blocks +
 | |
| 				orphan_blocks + NR_CURSEG_NODE_TYPE);
 | |
| 	else
 | |
| 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
 | |
| 				cp_payload_blks + data_sum_blocks +
 | |
| 				orphan_blocks);
 | |
| 
 | |
| 	/* update ckpt flag for checkpoint */
 | |
| 	update_ckpt_flags(sbi, cpc);
 | |
| 
 | |
| 	/* update SIT/NAT bitmap */
 | |
| 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
 | |
| 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
 | |
| 
 | |
| 	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
 | |
| 	*((__le32 *)((unsigned char *)ckpt +
 | |
| 				le32_to_cpu(ckpt->checksum_offset)))
 | |
| 				= cpu_to_le32(crc32);
 | |
| 
 | |
| 	start_blk = __start_cp_next_addr(sbi);
 | |
| 
 | |
| 	/* write nat bits */
 | |
| 	if ((cpc->reason & CP_UMOUNT) &&
 | |
| 			is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
 | |
| 		__u64 cp_ver = cur_cp_version(ckpt);
 | |
| 		block_t blk;
 | |
| 
 | |
| 		cp_ver |= ((__u64)crc32 << 32);
 | |
| 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
 | |
| 
 | |
| 		blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks;
 | |
| 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
 | |
| 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
 | |
| 					F2FS_BLK_TO_BYTES(i), blk + i);
 | |
| 	}
 | |
| 
 | |
| 	/* write out checkpoint buffer at block 0 */
 | |
| 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
 | |
| 
 | |
| 	for (i = 1; i < 1 + cp_payload_blks; i++)
 | |
| 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
 | |
| 							start_blk++);
 | |
| 
 | |
| 	if (orphan_num) {
 | |
| 		write_orphan_inodes(sbi, start_blk);
 | |
| 		start_blk += orphan_blocks;
 | |
| 	}
 | |
| 
 | |
| 	f2fs_write_data_summaries(sbi, start_blk);
 | |
| 	start_blk += data_sum_blocks;
 | |
| 
 | |
| 	/* Record write statistics in the hot node summary */
 | |
| 	kbytes_written = sbi->kbytes_written;
 | |
| 	kbytes_written += (f2fs_get_sectors_written(sbi) -
 | |
| 				sbi->sectors_written_start) >> 1;
 | |
| 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
 | |
| 
 | |
| 	if (__remain_node_summaries(cpc->reason)) {
 | |
| 		f2fs_write_node_summaries(sbi, start_blk);
 | |
| 		start_blk += NR_CURSEG_NODE_TYPE;
 | |
| 	}
 | |
| 
 | |
| 	/* Here, we have one bio having CP pack except cp pack 2 page */
 | |
| 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
 | |
| 	/* Wait for all dirty meta pages to be submitted for IO */
 | |
| 	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
 | |
| 
 | |
| 	/* wait for previous submitted meta pages writeback */
 | |
| 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
 | |
| 
 | |
| 	/* flush all device cache */
 | |
| 	err = f2fs_flush_device_cache(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* barrier and flush checkpoint cp pack 2 page if it can */
 | |
| 	commit_checkpoint(sbi, ckpt, start_blk);
 | |
| 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
 | |
| 
 | |
| 	/*
 | |
| 	 * invalidate intermediate page cache borrowed from meta inode which are
 | |
| 	 * used for migration of encrypted, verity or compressed inode's blocks.
 | |
| 	 */
 | |
| 	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
 | |
| 		f2fs_sb_has_compression(sbi))
 | |
| 		f2fs_bug_on(sbi,
 | |
| 			invalidate_inode_pages2_range(META_MAPPING(sbi),
 | |
| 				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1));
 | |
| 
 | |
| 	f2fs_release_ino_entry(sbi, false);
 | |
| 
 | |
| 	f2fs_reset_fsync_node_info(sbi);
 | |
| 
 | |
| 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
 | |
| 	clear_sbi_flag(sbi, SBI_NEED_CP);
 | |
| 	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
 | |
| 
 | |
| 	spin_lock(&sbi->stat_lock);
 | |
| 	sbi->unusable_block_count = 0;
 | |
| 	spin_unlock(&sbi->stat_lock);
 | |
| 
 | |
| 	__set_cp_next_pack(sbi);
 | |
| 
 | |
| 	/*
 | |
| 	 * redirty superblock if metadata like node page or inode cache is
 | |
| 	 * updated during writing checkpoint.
 | |
| 	 */
 | |
| 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
 | |
| 			get_pages(sbi, F2FS_DIRTY_IMETA))
 | |
| 		set_sbi_flag(sbi, SBI_IS_DIRTY);
 | |
| 
 | |
| 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
 | |
| 
 | |
| 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
 | |
| }
 | |
| 
 | |
| int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	unsigned long long ckpt_ver;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
 | |
| 		if (cpc->reason != CP_PAUSE)
 | |
| 			return 0;
 | |
| 		f2fs_warn(sbi, "Start checkpoint disabled!");
 | |
| 	}
 | |
| 	if (cpc->reason != CP_RESIZE)
 | |
| 		f2fs_down_write(&sbi->cp_global_sem);
 | |
| 
 | |
| 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
 | |
| 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
 | |
| 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
 | |
| 		goto out;
 | |
| 	if (unlikely(f2fs_cp_error(sbi))) {
 | |
| 		err = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
 | |
| 
 | |
| 	err = block_operations(sbi);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
 | |
| 
 | |
| 	f2fs_flush_merged_writes(sbi);
 | |
| 
 | |
| 	/* this is the case of multiple fstrims without any changes */
 | |
| 	if (cpc->reason & CP_DISCARD) {
 | |
| 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
 | |
| 			unblock_operations(sbi);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
 | |
| 				SIT_I(sbi)->dirty_sentries == 0 &&
 | |
| 				prefree_segments(sbi) == 0) {
 | |
| 			f2fs_flush_sit_entries(sbi, cpc);
 | |
| 			f2fs_clear_prefree_segments(sbi, cpc);
 | |
| 			unblock_operations(sbi);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * update checkpoint pack index
 | |
| 	 * Increase the version number so that
 | |
| 	 * SIT entries and seg summaries are written at correct place
 | |
| 	 */
 | |
| 	ckpt_ver = cur_cp_version(ckpt);
 | |
| 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
 | |
| 
 | |
| 	/* write cached NAT/SIT entries to NAT/SIT area */
 | |
| 	err = f2fs_flush_nat_entries(sbi, cpc);
 | |
| 	if (err) {
 | |
| 		f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
 | |
| 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
 | |
| 		goto stop;
 | |
| 	}
 | |
| 
 | |
| 	f2fs_flush_sit_entries(sbi, cpc);
 | |
| 
 | |
| 	/* save inmem log status */
 | |
| 	f2fs_save_inmem_curseg(sbi);
 | |
| 
 | |
| 	err = do_checkpoint(sbi, cpc);
 | |
| 	if (err) {
 | |
| 		f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
 | |
| 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
 | |
| 		f2fs_release_discard_addrs(sbi);
 | |
| 	} else {
 | |
| 		f2fs_clear_prefree_segments(sbi, cpc);
 | |
| 	}
 | |
| 
 | |
| 	f2fs_restore_inmem_curseg(sbi);
 | |
| 	f2fs_reinit_atgc_curseg(sbi);
 | |
| 	stat_inc_cp_count(sbi);
 | |
| stop:
 | |
| 	unblock_operations(sbi);
 | |
| 
 | |
| 	if (cpc->reason & CP_RECOVERY)
 | |
| 		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
 | |
| 
 | |
| 	/* update CP_TIME to trigger checkpoint periodically */
 | |
| 	f2fs_update_time(sbi, CP_TIME);
 | |
| 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
 | |
| out:
 | |
| 	if (cpc->reason != CP_RESIZE)
 | |
| 		f2fs_up_write(&sbi->cp_global_sem);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_INO_ENTRY; i++) {
 | |
| 		struct inode_management *im = &sbi->im[i];
 | |
| 
 | |
| 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
 | |
| 		spin_lock_init(&im->ino_lock);
 | |
| 		INIT_LIST_HEAD(&im->ino_list);
 | |
| 		im->ino_num = 0;
 | |
| 	}
 | |
| 
 | |
| 	sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS -
 | |
| 			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
 | |
| 			F2FS_ORPHANS_PER_BLOCK;
 | |
| }
 | |
| 
 | |
| int __init f2fs_create_checkpoint_caches(void)
 | |
| {
 | |
| 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
 | |
| 			sizeof(struct ino_entry));
 | |
| 	if (!ino_entry_slab)
 | |
| 		return -ENOMEM;
 | |
| 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
 | |
| 			sizeof(struct inode_entry));
 | |
| 	if (!f2fs_inode_entry_slab) {
 | |
| 		kmem_cache_destroy(ino_entry_slab);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void f2fs_destroy_checkpoint_caches(void)
 | |
| {
 | |
| 	kmem_cache_destroy(ino_entry_slab);
 | |
| 	kmem_cache_destroy(f2fs_inode_entry_slab);
 | |
| }
 | |
| 
 | |
| static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct cp_control cpc = { .reason = CP_SYNC, };
 | |
| 	int err;
 | |
| 
 | |
| 	f2fs_down_write(&sbi->gc_lock);
 | |
| 	err = f2fs_write_checkpoint(sbi, &cpc);
 | |
| 	f2fs_up_write(&sbi->gc_lock);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct ckpt_req_control *cprc = &sbi->cprc_info;
 | |
| 	struct ckpt_req *req, *next;
 | |
| 	struct llist_node *dispatch_list;
 | |
| 	u64 sum_diff = 0, diff, count = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	dispatch_list = llist_del_all(&cprc->issue_list);
 | |
| 	if (!dispatch_list)
 | |
| 		return;
 | |
| 	dispatch_list = llist_reverse_order(dispatch_list);
 | |
| 
 | |
| 	ret = __write_checkpoint_sync(sbi);
 | |
| 	atomic_inc(&cprc->issued_ckpt);
 | |
| 
 | |
| 	llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
 | |
| 		diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
 | |
| 		req->ret = ret;
 | |
| 		complete(&req->wait);
 | |
| 
 | |
| 		sum_diff += diff;
 | |
| 		count++;
 | |
| 	}
 | |
| 	atomic_sub(count, &cprc->queued_ckpt);
 | |
| 	atomic_add(count, &cprc->total_ckpt);
 | |
| 
 | |
| 	spin_lock(&cprc->stat_lock);
 | |
| 	cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
 | |
| 	if (cprc->peak_time < cprc->cur_time)
 | |
| 		cprc->peak_time = cprc->cur_time;
 | |
| 	spin_unlock(&cprc->stat_lock);
 | |
| }
 | |
| 
 | |
| static int issue_checkpoint_thread(void *data)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = data;
 | |
| 	struct ckpt_req_control *cprc = &sbi->cprc_info;
 | |
| 	wait_queue_head_t *q = &cprc->ckpt_wait_queue;
 | |
| repeat:
 | |
| 	if (kthread_should_stop())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!llist_empty(&cprc->issue_list))
 | |
| 		__checkpoint_and_complete_reqs(sbi);
 | |
| 
 | |
| 	wait_event_interruptible(*q,
 | |
| 		kthread_should_stop() || !llist_empty(&cprc->issue_list));
 | |
| 	goto repeat;
 | |
| }
 | |
| 
 | |
| static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
 | |
| 		struct ckpt_req *wait_req)
 | |
| {
 | |
| 	struct ckpt_req_control *cprc = &sbi->cprc_info;
 | |
| 
 | |
| 	if (!llist_empty(&cprc->issue_list)) {
 | |
| 		__checkpoint_and_complete_reqs(sbi);
 | |
| 	} else {
 | |
| 		/* already dispatched by issue_checkpoint_thread */
 | |
| 		if (wait_req)
 | |
| 			wait_for_completion(&wait_req->wait);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_ckpt_req(struct ckpt_req *req)
 | |
| {
 | |
| 	memset(req, 0, sizeof(struct ckpt_req));
 | |
| 
 | |
| 	init_completion(&req->wait);
 | |
| 	req->queue_time = ktime_get();
 | |
| }
 | |
| 
 | |
| int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct ckpt_req_control *cprc = &sbi->cprc_info;
 | |
| 	struct ckpt_req req;
 | |
| 	struct cp_control cpc;
 | |
| 
 | |
| 	cpc.reason = __get_cp_reason(sbi);
 | |
| 	if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
 | |
| 		int ret;
 | |
| 
 | |
| 		f2fs_down_write(&sbi->gc_lock);
 | |
| 		ret = f2fs_write_checkpoint(sbi, &cpc);
 | |
| 		f2fs_up_write(&sbi->gc_lock);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!cprc->f2fs_issue_ckpt)
 | |
| 		return __write_checkpoint_sync(sbi);
 | |
| 
 | |
| 	init_ckpt_req(&req);
 | |
| 
 | |
| 	llist_add(&req.llnode, &cprc->issue_list);
 | |
| 	atomic_inc(&cprc->queued_ckpt);
 | |
| 
 | |
| 	/*
 | |
| 	 * update issue_list before we wake up issue_checkpoint thread,
 | |
| 	 * this smp_mb() pairs with another barrier in ___wait_event(),
 | |
| 	 * see more details in comments of waitqueue_active().
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	if (waitqueue_active(&cprc->ckpt_wait_queue))
 | |
| 		wake_up(&cprc->ckpt_wait_queue);
 | |
| 
 | |
| 	if (cprc->f2fs_issue_ckpt)
 | |
| 		wait_for_completion(&req.wait);
 | |
| 	else
 | |
| 		flush_remained_ckpt_reqs(sbi, &req);
 | |
| 
 | |
| 	return req.ret;
 | |
| }
 | |
| 
 | |
| int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	dev_t dev = sbi->sb->s_bdev->bd_dev;
 | |
| 	struct ckpt_req_control *cprc = &sbi->cprc_info;
 | |
| 
 | |
| 	if (cprc->f2fs_issue_ckpt)
 | |
| 		return 0;
 | |
| 
 | |
| 	cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
 | |
| 			"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
 | |
| 	if (IS_ERR(cprc->f2fs_issue_ckpt)) {
 | |
| 		int err = PTR_ERR(cprc->f2fs_issue_ckpt);
 | |
| 
 | |
| 		cprc->f2fs_issue_ckpt = NULL;
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct ckpt_req_control *cprc = &sbi->cprc_info;
 | |
| 	struct task_struct *ckpt_task;
 | |
| 
 | |
| 	if (!cprc->f2fs_issue_ckpt)
 | |
| 		return;
 | |
| 
 | |
| 	ckpt_task = cprc->f2fs_issue_ckpt;
 | |
| 	cprc->f2fs_issue_ckpt = NULL;
 | |
| 	kthread_stop(ckpt_task);
 | |
| 
 | |
| 	f2fs_flush_ckpt_thread(sbi);
 | |
| }
 | |
| 
 | |
| void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct ckpt_req_control *cprc = &sbi->cprc_info;
 | |
| 
 | |
| 	flush_remained_ckpt_reqs(sbi, NULL);
 | |
| 
 | |
| 	/* Let's wait for the previous dispatched checkpoint. */
 | |
| 	while (atomic_read(&cprc->queued_ckpt))
 | |
| 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 | |
| }
 | |
| 
 | |
| void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct ckpt_req_control *cprc = &sbi->cprc_info;
 | |
| 
 | |
| 	atomic_set(&cprc->issued_ckpt, 0);
 | |
| 	atomic_set(&cprc->total_ckpt, 0);
 | |
| 	atomic_set(&cprc->queued_ckpt, 0);
 | |
| 	cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
 | |
| 	init_waitqueue_head(&cprc->ckpt_wait_queue);
 | |
| 	init_llist_head(&cprc->issue_list);
 | |
| 	spin_lock_init(&cprc->stat_lock);
 | |
| }
 |