mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 488b5b9eca
			
		
	
	
		488b5b9eca
		
	
	
	
	
		
			
			Memblock allocations are registered by kmemleak separately, based on their physical address. During the scanning stage, it checks whether an object is within the min_low_pfn and max_low_pfn boundaries and ignores it otherwise. With the recent addition of __percpu pointer leak detection (commit6c99d4eb7c("kmemleak: enable tracking for percpu pointers")), kmemleak started reporting leaks in setup_zone_pageset() and setup_per_cpu_pageset(). These were caused by the node_data[0] object (initialised in alloc_node_data()) ending on the PFN_PHYS(max_low_pfn) boundary. The non-strict upper boundary check introduced by commit84c3262991("mm: kmemleak: check physical address when scan") causes the pg_data_t object to be ignored (not scanned) and the __percpu pointers it contains to be reported as leaks. Make the max_low_pfn upper boundary check strict when deciding whether to ignore a physical address object and not scan it. Link: https://lkml.kernel.org/r/20250127184233.2974311-1-catalin.marinas@arm.com Fixes:84c3262991("mm: kmemleak: check physical address when scan") Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Jakub Kicinski <kuba@kernel.org> Tested-by: Matthieu Baerts (NGI0) <matttbe@kernel.org> Cc: Patrick Wang <patrick.wang.shcn@gmail.com> Cc: <stable@vger.kernel.org> [6.0.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			2292 lines
		
	
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2292 lines
		
	
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * mm/kmemleak.c
 | |
|  *
 | |
|  * Copyright (C) 2008 ARM Limited
 | |
|  * Written by Catalin Marinas <catalin.marinas@arm.com>
 | |
|  *
 | |
|  * For more information on the algorithm and kmemleak usage, please see
 | |
|  * Documentation/dev-tools/kmemleak.rst.
 | |
|  *
 | |
|  * Notes on locking
 | |
|  * ----------------
 | |
|  *
 | |
|  * The following locks and mutexes are used by kmemleak:
 | |
|  *
 | |
|  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
 | |
|  *   del_state modifications and accesses to the object trees
 | |
|  *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
 | |
|  *   object_list is the main list holding the metadata (struct
 | |
|  *   kmemleak_object) for the allocated memory blocks. The object trees are
 | |
|  *   red black trees used to look-up metadata based on a pointer to the
 | |
|  *   corresponding memory block. The kmemleak_object structures are added to
 | |
|  *   the object_list and the object tree root in the create_object() function
 | |
|  *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
 | |
|  *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
 | |
|  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
 | |
|  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
 | |
|  *   that some members of this structure may be protected by other means
 | |
|  *   (atomic or kmemleak_lock). This lock is also held when scanning the
 | |
|  *   corresponding memory block to avoid the kernel freeing it via the
 | |
|  *   kmemleak_free() callback. This is less heavyweight than holding a global
 | |
|  *   lock like kmemleak_lock during scanning.
 | |
|  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
 | |
|  *   unreferenced objects at a time. The gray_list contains the objects which
 | |
|  *   are already referenced or marked as false positives and need to be
 | |
|  *   scanned. This list is only modified during a scanning episode when the
 | |
|  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
 | |
|  *   Note that the kmemleak_object.use_count is incremented when an object is
 | |
|  *   added to the gray_list and therefore cannot be freed. This mutex also
 | |
|  *   prevents multiple users of the "kmemleak" debugfs file together with
 | |
|  *   modifications to the memory scanning parameters including the scan_thread
 | |
|  *   pointer
 | |
|  *
 | |
|  * Locks and mutexes are acquired/nested in the following order:
 | |
|  *
 | |
|  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
 | |
|  *
 | |
|  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
 | |
|  * regions.
 | |
|  *
 | |
|  * The kmemleak_object structures have a use_count incremented or decremented
 | |
|  * using the get_object()/put_object() functions. When the use_count becomes
 | |
|  * 0, this count can no longer be incremented and put_object() schedules the
 | |
|  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
 | |
|  * function must be protected by rcu_read_lock() to avoid accessing a freed
 | |
|  * structure.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/stacktrace.h>
 | |
| #include <linux/stackdepot.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/thread_info.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/crc32.h>
 | |
| 
 | |
| #include <asm/sections.h>
 | |
| #include <asm/processor.h>
 | |
| #include <linux/atomic.h>
 | |
| 
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/kfence.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| 
 | |
| /*
 | |
|  * Kmemleak configuration and common defines.
 | |
|  */
 | |
| #define MAX_TRACE		16	/* stack trace length */
 | |
| #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 | |
| #define SECS_FIRST_SCAN		60	/* delay before the first scan */
 | |
| #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 | |
| #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 | |
| 
 | |
| #define BYTES_PER_POINTER	sizeof(void *)
 | |
| 
 | |
| /* scanning area inside a memory block */
 | |
| struct kmemleak_scan_area {
 | |
| 	struct hlist_node node;
 | |
| 	unsigned long start;
 | |
| 	size_t size;
 | |
| };
 | |
| 
 | |
| #define KMEMLEAK_GREY	0
 | |
| #define KMEMLEAK_BLACK	-1
 | |
| 
 | |
| /*
 | |
|  * Structure holding the metadata for each allocated memory block.
 | |
|  * Modifications to such objects should be made while holding the
 | |
|  * object->lock. Insertions or deletions from object_list, gray_list or
 | |
|  * rb_node are already protected by the corresponding locks or mutex (see
 | |
|  * the notes on locking above). These objects are reference-counted
 | |
|  * (use_count) and freed using the RCU mechanism.
 | |
|  */
 | |
| struct kmemleak_object {
 | |
| 	raw_spinlock_t lock;
 | |
| 	unsigned int flags;		/* object status flags */
 | |
| 	struct list_head object_list;
 | |
| 	struct list_head gray_list;
 | |
| 	struct rb_node rb_node;
 | |
| 	struct rcu_head rcu;		/* object_list lockless traversal */
 | |
| 	/* object usage count; object freed when use_count == 0 */
 | |
| 	atomic_t use_count;
 | |
| 	unsigned int del_state;		/* deletion state */
 | |
| 	unsigned long pointer;
 | |
| 	size_t size;
 | |
| 	/* pass surplus references to this pointer */
 | |
| 	unsigned long excess_ref;
 | |
| 	/* minimum number of a pointers found before it is considered leak */
 | |
| 	int min_count;
 | |
| 	/* the total number of pointers found pointing to this object */
 | |
| 	int count;
 | |
| 	/* checksum for detecting modified objects */
 | |
| 	u32 checksum;
 | |
| 	depot_stack_handle_t trace_handle;
 | |
| 	/* memory ranges to be scanned inside an object (empty for all) */
 | |
| 	struct hlist_head area_list;
 | |
| 	unsigned long jiffies;		/* creation timestamp */
 | |
| 	pid_t pid;			/* pid of the current task */
 | |
| 	char comm[TASK_COMM_LEN];	/* executable name */
 | |
| };
 | |
| 
 | |
| /* flag representing the memory block allocation status */
 | |
| #define OBJECT_ALLOCATED	(1 << 0)
 | |
| /* flag set after the first reporting of an unreference object */
 | |
| #define OBJECT_REPORTED		(1 << 1)
 | |
| /* flag set to not scan the object */
 | |
| #define OBJECT_NO_SCAN		(1 << 2)
 | |
| /* flag set to fully scan the object when scan_area allocation failed */
 | |
| #define OBJECT_FULL_SCAN	(1 << 3)
 | |
| /* flag set for object allocated with physical address */
 | |
| #define OBJECT_PHYS		(1 << 4)
 | |
| /* flag set for per-CPU pointers */
 | |
| #define OBJECT_PERCPU		(1 << 5)
 | |
| 
 | |
| /* set when __remove_object() called */
 | |
| #define DELSTATE_REMOVED	(1 << 0)
 | |
| /* set to temporarily prevent deletion from object_list */
 | |
| #define DELSTATE_NO_DELETE	(1 << 1)
 | |
| 
 | |
| #define HEX_PREFIX		"    "
 | |
| /* number of bytes to print per line; must be 16 or 32 */
 | |
| #define HEX_ROW_SIZE		16
 | |
| /* number of bytes to print at a time (1, 2, 4, 8) */
 | |
| #define HEX_GROUP_SIZE		1
 | |
| /* include ASCII after the hex output */
 | |
| #define HEX_ASCII		1
 | |
| /* max number of lines to be printed */
 | |
| #define HEX_MAX_LINES		2
 | |
| 
 | |
| /* the list of all allocated objects */
 | |
| static LIST_HEAD(object_list);
 | |
| /* the list of gray-colored objects (see color_gray comment below) */
 | |
| static LIST_HEAD(gray_list);
 | |
| /* memory pool allocation */
 | |
| static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
 | |
| static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
 | |
| static LIST_HEAD(mem_pool_free_list);
 | |
| /* search tree for object boundaries */
 | |
| static struct rb_root object_tree_root = RB_ROOT;
 | |
| /* search tree for object (with OBJECT_PHYS flag) boundaries */
 | |
| static struct rb_root object_phys_tree_root = RB_ROOT;
 | |
| /* search tree for object (with OBJECT_PERCPU flag) boundaries */
 | |
| static struct rb_root object_percpu_tree_root = RB_ROOT;
 | |
| /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
 | |
| static DEFINE_RAW_SPINLOCK(kmemleak_lock);
 | |
| 
 | |
| /* allocation caches for kmemleak internal data */
 | |
| static struct kmem_cache *object_cache;
 | |
| static struct kmem_cache *scan_area_cache;
 | |
| 
 | |
| /* set if tracing memory operations is enabled */
 | |
| static int kmemleak_enabled = 1;
 | |
| /* same as above but only for the kmemleak_free() callback */
 | |
| static int kmemleak_free_enabled = 1;
 | |
| /* set in the late_initcall if there were no errors */
 | |
| static int kmemleak_late_initialized;
 | |
| /* set if a kmemleak warning was issued */
 | |
| static int kmemleak_warning;
 | |
| /* set if a fatal kmemleak error has occurred */
 | |
| static int kmemleak_error;
 | |
| 
 | |
| /* minimum and maximum address that may be valid pointers */
 | |
| static unsigned long min_addr = ULONG_MAX;
 | |
| static unsigned long max_addr;
 | |
| 
 | |
| /* minimum and maximum address that may be valid per-CPU pointers */
 | |
| static unsigned long min_percpu_addr = ULONG_MAX;
 | |
| static unsigned long max_percpu_addr;
 | |
| 
 | |
| static struct task_struct *scan_thread;
 | |
| /* used to avoid reporting of recently allocated objects */
 | |
| static unsigned long jiffies_min_age;
 | |
| static unsigned long jiffies_last_scan;
 | |
| /* delay between automatic memory scannings */
 | |
| static unsigned long jiffies_scan_wait;
 | |
| /* enables or disables the task stacks scanning */
 | |
| static int kmemleak_stack_scan = 1;
 | |
| /* protects the memory scanning, parameters and debug/kmemleak file access */
 | |
| static DEFINE_MUTEX(scan_mutex);
 | |
| /* setting kmemleak=on, will set this var, skipping the disable */
 | |
| static int kmemleak_skip_disable;
 | |
| /* If there are leaks that can be reported */
 | |
| static bool kmemleak_found_leaks;
 | |
| 
 | |
| static bool kmemleak_verbose;
 | |
| module_param_named(verbose, kmemleak_verbose, bool, 0600);
 | |
| 
 | |
| static void kmemleak_disable(void);
 | |
| 
 | |
| /*
 | |
|  * Print a warning and dump the stack trace.
 | |
|  */
 | |
| #define kmemleak_warn(x...)	do {		\
 | |
| 	pr_warn(x);				\
 | |
| 	dump_stack();				\
 | |
| 	kmemleak_warning = 1;			\
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * Macro invoked when a serious kmemleak condition occurred and cannot be
 | |
|  * recovered from. Kmemleak will be disabled and further allocation/freeing
 | |
|  * tracing no longer available.
 | |
|  */
 | |
| #define kmemleak_stop(x...)	do {	\
 | |
| 	kmemleak_warn(x);		\
 | |
| 	kmemleak_disable();		\
 | |
| } while (0)
 | |
| 
 | |
| #define warn_or_seq_printf(seq, fmt, ...)	do {	\
 | |
| 	if (seq)					\
 | |
| 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
 | |
| 	else						\
 | |
| 		pr_warn(fmt, ##__VA_ARGS__);		\
 | |
| } while (0)
 | |
| 
 | |
| static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
 | |
| 				 int rowsize, int groupsize, const void *buf,
 | |
| 				 size_t len, bool ascii)
 | |
| {
 | |
| 	if (seq)
 | |
| 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
 | |
| 			     buf, len, ascii);
 | |
| 	else
 | |
| 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
 | |
| 			       rowsize, groupsize, buf, len, ascii);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Printing of the objects hex dump to the seq file. The number of lines to be
 | |
|  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 | |
|  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 | |
|  * with the object->lock held.
 | |
|  */
 | |
| static void hex_dump_object(struct seq_file *seq,
 | |
| 			    struct kmemleak_object *object)
 | |
| {
 | |
| 	const u8 *ptr = (const u8 *)object->pointer;
 | |
| 	size_t len;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
 | |
| 		return;
 | |
| 
 | |
| 	if (object->flags & OBJECT_PERCPU)
 | |
| 		ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
 | |
| 
 | |
| 	/* limit the number of lines to HEX_MAX_LINES */
 | |
| 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 | |
| 
 | |
| 	if (object->flags & OBJECT_PERCPU)
 | |
| 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes on cpu %d):\n",
 | |
| 				   len, raw_smp_processor_id());
 | |
| 	else
 | |
| 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 | |
| 	kasan_disable_current();
 | |
| 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 | |
| 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
 | |
| 	kasan_enable_current();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Object colors, encoded with count and min_count:
 | |
|  * - white - orphan object, not enough references to it (count < min_count)
 | |
|  * - gray  - not orphan, not marked as false positive (min_count == 0) or
 | |
|  *		sufficient references to it (count >= min_count)
 | |
|  * - black - ignore, it doesn't contain references (e.g. text section)
 | |
|  *		(min_count == -1). No function defined for this color.
 | |
|  * Newly created objects don't have any color assigned (object->count == -1)
 | |
|  * before the next memory scan when they become white.
 | |
|  */
 | |
| static bool color_white(const struct kmemleak_object *object)
 | |
| {
 | |
| 	return object->count != KMEMLEAK_BLACK &&
 | |
| 		object->count < object->min_count;
 | |
| }
 | |
| 
 | |
| static bool color_gray(const struct kmemleak_object *object)
 | |
| {
 | |
| 	return object->min_count != KMEMLEAK_BLACK &&
 | |
| 		object->count >= object->min_count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Objects are considered unreferenced only if their color is white, they have
 | |
|  * not be deleted and have a minimum age to avoid false positives caused by
 | |
|  * pointers temporarily stored in CPU registers.
 | |
|  */
 | |
| static bool unreferenced_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 | |
| 		time_before_eq(object->jiffies + jiffies_min_age,
 | |
| 			       jiffies_last_scan);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Printing of the unreferenced objects information to the seq file. The
 | |
|  * print_unreferenced function must be called with the object->lock held.
 | |
|  */
 | |
| static void print_unreferenced(struct seq_file *seq,
 | |
| 			       struct kmemleak_object *object)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long *entries;
 | |
| 	unsigned int nr_entries;
 | |
| 
 | |
| 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
 | |
| 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 | |
| 			  object->pointer, object->size);
 | |
| 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
 | |
| 			   object->comm, object->pid, object->jiffies);
 | |
| 	hex_dump_object(seq, object);
 | |
| 	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
 | |
| 
 | |
| 	for (i = 0; i < nr_entries; i++) {
 | |
| 		void *ptr = (void *)entries[i];
 | |
| 		warn_or_seq_printf(seq, "    %pS\n", ptr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print the kmemleak_object information. This function is used mainly for
 | |
|  * debugging special cases when kmemleak operations. It must be called with
 | |
|  * the object->lock held.
 | |
|  */
 | |
| static void dump_object_info(struct kmemleak_object *object)
 | |
| {
 | |
| 	pr_notice("Object 0x%08lx (size %zu):\n",
 | |
| 			object->pointer, object->size);
 | |
| 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 | |
| 			object->comm, object->pid, object->jiffies);
 | |
| 	pr_notice("  min_count = %d\n", object->min_count);
 | |
| 	pr_notice("  count = %d\n", object->count);
 | |
| 	pr_notice("  flags = 0x%x\n", object->flags);
 | |
| 	pr_notice("  checksum = %u\n", object->checksum);
 | |
| 	pr_notice("  backtrace:\n");
 | |
| 	if (object->trace_handle)
 | |
| 		stack_depot_print(object->trace_handle);
 | |
| }
 | |
| 
 | |
| static struct rb_root *object_tree(unsigned long objflags)
 | |
| {
 | |
| 	if (objflags & OBJECT_PHYS)
 | |
| 		return &object_phys_tree_root;
 | |
| 	if (objflags & OBJECT_PERCPU)
 | |
| 		return &object_percpu_tree_root;
 | |
| 	return &object_tree_root;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look-up a memory block metadata (kmemleak_object) in the object search
 | |
|  * tree based on a pointer value. If alias is 0, only values pointing to the
 | |
|  * beginning of the memory block are allowed. The kmemleak_lock must be held
 | |
|  * when calling this function.
 | |
|  */
 | |
| static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
 | |
| 					       unsigned int objflags)
 | |
| {
 | |
| 	struct rb_node *rb = object_tree(objflags)->rb_node;
 | |
| 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 | |
| 
 | |
| 	while (rb) {
 | |
| 		struct kmemleak_object *object;
 | |
| 		unsigned long untagged_objp;
 | |
| 
 | |
| 		object = rb_entry(rb, struct kmemleak_object, rb_node);
 | |
| 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 | |
| 
 | |
| 		if (untagged_ptr < untagged_objp)
 | |
| 			rb = object->rb_node.rb_left;
 | |
| 		else if (untagged_objp + object->size <= untagged_ptr)
 | |
| 			rb = object->rb_node.rb_right;
 | |
| 		else if (untagged_objp == untagged_ptr || alias)
 | |
| 			return object;
 | |
| 		else {
 | |
| 			kmemleak_warn("Found object by alias at 0x%08lx\n",
 | |
| 				      ptr);
 | |
| 			dump_object_info(object);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Look-up a kmemleak object which allocated with virtual address. */
 | |
| static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 | |
| {
 | |
| 	return __lookup_object(ptr, alias, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 | |
|  * that once an object's use_count reached 0, the RCU freeing was already
 | |
|  * registered and the object should no longer be used. This function must be
 | |
|  * called under the protection of rcu_read_lock().
 | |
|  */
 | |
| static int get_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	return atomic_inc_not_zero(&object->use_count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Memory pool allocation and freeing. kmemleak_lock must not be held.
 | |
|  */
 | |
| static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	/* try the slab allocator first */
 | |
| 	if (object_cache) {
 | |
| 		object = kmem_cache_alloc_noprof(object_cache,
 | |
| 						 gfp_nested_mask(gfp));
 | |
| 		if (object)
 | |
| 			return object;
 | |
| 	}
 | |
| 
 | |
| 	/* slab allocation failed, try the memory pool */
 | |
| 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 | |
| 	object = list_first_entry_or_null(&mem_pool_free_list,
 | |
| 					  typeof(*object), object_list);
 | |
| 	if (object)
 | |
| 		list_del(&object->object_list);
 | |
| 	else if (mem_pool_free_count)
 | |
| 		object = &mem_pool[--mem_pool_free_count];
 | |
| 	else
 | |
| 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
 | |
| 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the object to either the slab allocator or the memory pool.
 | |
|  */
 | |
| static void mem_pool_free(struct kmemleak_object *object)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
 | |
| 		kmem_cache_free(object_cache, object);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* add the object to the memory pool free list */
 | |
| 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 | |
| 	list_add(&object->object_list, &mem_pool_free_list);
 | |
| 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RCU callback to free a kmemleak_object.
 | |
|  */
 | |
| static void free_object_rcu(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct hlist_node *tmp;
 | |
| 	struct kmemleak_scan_area *area;
 | |
| 	struct kmemleak_object *object =
 | |
| 		container_of(rcu, struct kmemleak_object, rcu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Once use_count is 0 (guaranteed by put_object), there is no other
 | |
| 	 * code accessing this object, hence no need for locking.
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 | |
| 		hlist_del(&area->node);
 | |
| 		kmem_cache_free(scan_area_cache, area);
 | |
| 	}
 | |
| 	mem_pool_free(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement the object use_count. Once the count is 0, free the object using
 | |
|  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 | |
|  * delete_object() path, the delayed RCU freeing ensures that there is no
 | |
|  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 | |
|  * is also possible.
 | |
|  */
 | |
| static void put_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&object->use_count))
 | |
| 		return;
 | |
| 
 | |
| 	/* should only get here after delete_object was called */
 | |
| 	WARN_ON(object->flags & OBJECT_ALLOCATED);
 | |
| 
 | |
| 	/*
 | |
| 	 * It may be too early for the RCU callbacks, however, there is no
 | |
| 	 * concurrent object_list traversal when !object_cache and all objects
 | |
| 	 * came from the memory pool. Free the object directly.
 | |
| 	 */
 | |
| 	if (object_cache)
 | |
| 		call_rcu(&object->rcu, free_object_rcu);
 | |
| 	else
 | |
| 		free_object_rcu(&object->rcu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up an object in the object search tree and increase its use_count.
 | |
|  */
 | |
| static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
 | |
| 						     unsigned int objflags)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 | |
| 	object = __lookup_object(ptr, alias, objflags);
 | |
| 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| 
 | |
| 	/* check whether the object is still available */
 | |
| 	if (object && !get_object(object))
 | |
| 		object = NULL;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /* Look up and get an object which allocated with virtual address. */
 | |
| static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 | |
| {
 | |
| 	return __find_and_get_object(ptr, alias, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove an object from its object tree and object_list. Must be called with
 | |
|  * the kmemleak_lock held _if_ kmemleak is still enabled.
 | |
|  */
 | |
| static void __remove_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	rb_erase(&object->rb_node, object_tree(object->flags));
 | |
| 	if (!(object->del_state & DELSTATE_NO_DELETE))
 | |
| 		list_del_rcu(&object->object_list);
 | |
| 	object->del_state |= DELSTATE_REMOVED;
 | |
| }
 | |
| 
 | |
| static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
 | |
| 							int alias,
 | |
| 							unsigned int objflags)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = __lookup_object(ptr, alias, objflags);
 | |
| 	if (object)
 | |
| 		__remove_object(object);
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up an object in the object search tree and remove it from both object
 | |
|  * tree root and object_list. The returned object's use_count should be at
 | |
|  * least 1, as initially set by create_object().
 | |
|  */
 | |
| static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
 | |
| 						      unsigned int objflags)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 | |
| 	object = __find_and_remove_object(ptr, alias, objflags);
 | |
| 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| static noinline depot_stack_handle_t set_track_prepare(void)
 | |
| {
 | |
| 	depot_stack_handle_t trace_handle;
 | |
| 	unsigned long entries[MAX_TRACE];
 | |
| 	unsigned int nr_entries;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use object_cache to determine whether kmemleak_init() has
 | |
| 	 * been invoked. stack_depot_early_init() is called before
 | |
| 	 * kmemleak_init() in mm_core_init().
 | |
| 	 */
 | |
| 	if (!object_cache)
 | |
| 		return 0;
 | |
| 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
 | |
| 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
 | |
| 
 | |
| 	return trace_handle;
 | |
| }
 | |
| 
 | |
| static struct kmemleak_object *__alloc_object(gfp_t gfp)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = mem_pool_alloc(gfp);
 | |
| 	if (!object) {
 | |
| 		pr_warn("Cannot allocate a kmemleak_object structure\n");
 | |
| 		kmemleak_disable();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&object->object_list);
 | |
| 	INIT_LIST_HEAD(&object->gray_list);
 | |
| 	INIT_HLIST_HEAD(&object->area_list);
 | |
| 	raw_spin_lock_init(&object->lock);
 | |
| 	atomic_set(&object->use_count, 1);
 | |
| 	object->excess_ref = 0;
 | |
| 	object->count = 0;			/* white color initially */
 | |
| 	object->checksum = 0;
 | |
| 	object->del_state = 0;
 | |
| 
 | |
| 	/* task information */
 | |
| 	if (in_hardirq()) {
 | |
| 		object->pid = 0;
 | |
| 		strscpy(object->comm, "hardirq");
 | |
| 	} else if (in_serving_softirq()) {
 | |
| 		object->pid = 0;
 | |
| 		strscpy(object->comm, "softirq");
 | |
| 	} else {
 | |
| 		object->pid = current->pid;
 | |
| 		/*
 | |
| 		 * There is a small chance of a race with set_task_comm(),
 | |
| 		 * however using get_task_comm() here may cause locking
 | |
| 		 * dependency issues with current->alloc_lock. In the worst
 | |
| 		 * case, the command line is not correct.
 | |
| 		 */
 | |
| 		strscpy(object->comm, current->comm);
 | |
| 	}
 | |
| 
 | |
| 	/* kernel backtrace */
 | |
| 	object->trace_handle = set_track_prepare();
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| static int __link_object(struct kmemleak_object *object, unsigned long ptr,
 | |
| 			 size_t size, int min_count, unsigned int objflags)
 | |
| {
 | |
| 
 | |
| 	struct kmemleak_object *parent;
 | |
| 	struct rb_node **link, *rb_parent;
 | |
| 	unsigned long untagged_ptr;
 | |
| 	unsigned long untagged_objp;
 | |
| 
 | |
| 	object->flags = OBJECT_ALLOCATED | objflags;
 | |
| 	object->pointer = ptr;
 | |
| 	object->size = kfence_ksize((void *)ptr) ?: size;
 | |
| 	object->min_count = min_count;
 | |
| 	object->jiffies = jiffies;
 | |
| 
 | |
| 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 | |
| 	/*
 | |
| 	 * Only update min_addr and max_addr with object storing virtual
 | |
| 	 * address. And update min_percpu_addr max_percpu_addr for per-CPU
 | |
| 	 * objects.
 | |
| 	 */
 | |
| 	if (objflags & OBJECT_PERCPU) {
 | |
| 		min_percpu_addr = min(min_percpu_addr, untagged_ptr);
 | |
| 		max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
 | |
| 	} else if (!(objflags & OBJECT_PHYS)) {
 | |
| 		min_addr = min(min_addr, untagged_ptr);
 | |
| 		max_addr = max(max_addr, untagged_ptr + size);
 | |
| 	}
 | |
| 	link = &object_tree(objflags)->rb_node;
 | |
| 	rb_parent = NULL;
 | |
| 	while (*link) {
 | |
| 		rb_parent = *link;
 | |
| 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 | |
| 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
 | |
| 		if (untagged_ptr + size <= untagged_objp)
 | |
| 			link = &parent->rb_node.rb_left;
 | |
| 		else if (untagged_objp + parent->size <= untagged_ptr)
 | |
| 			link = &parent->rb_node.rb_right;
 | |
| 		else {
 | |
| 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 | |
| 				      ptr);
 | |
| 			/*
 | |
| 			 * No need for parent->lock here since "parent" cannot
 | |
| 			 * be freed while the kmemleak_lock is held.
 | |
| 			 */
 | |
| 			dump_object_info(parent);
 | |
| 			return -EEXIST;
 | |
| 		}
 | |
| 	}
 | |
| 	rb_link_node(&object->rb_node, rb_parent, link);
 | |
| 	rb_insert_color(&object->rb_node, object_tree(objflags));
 | |
| 	list_add_tail_rcu(&object->object_list, &object_list);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the metadata (struct kmemleak_object) corresponding to an allocated
 | |
|  * memory block and add it to the object_list and object tree.
 | |
|  */
 | |
| static void __create_object(unsigned long ptr, size_t size,
 | |
| 				int min_count, gfp_t gfp, unsigned int objflags)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	object = __alloc_object(gfp);
 | |
| 	if (!object)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 | |
| 	ret = __link_object(object, ptr, size, min_count, objflags);
 | |
| 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| 	if (ret)
 | |
| 		mem_pool_free(object);
 | |
| }
 | |
| 
 | |
| /* Create kmemleak object which allocated with virtual address. */
 | |
| static void create_object(unsigned long ptr, size_t size,
 | |
| 			  int min_count, gfp_t gfp)
 | |
| {
 | |
| 	__create_object(ptr, size, min_count, gfp, 0);
 | |
| }
 | |
| 
 | |
| /* Create kmemleak object which allocated with physical address. */
 | |
| static void create_object_phys(unsigned long ptr, size_t size,
 | |
| 			       int min_count, gfp_t gfp)
 | |
| {
 | |
| 	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
 | |
| }
 | |
| 
 | |
| /* Create kmemleak object corresponding to a per-CPU allocation. */
 | |
| static void create_object_percpu(unsigned long ptr, size_t size,
 | |
| 				 int min_count, gfp_t gfp)
 | |
| {
 | |
| 	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark the object as not allocated and schedule RCU freeing via put_object().
 | |
|  */
 | |
| static void __delete_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 | |
| 	WARN_ON(atomic_read(&object->use_count) < 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Locking here also ensures that the corresponding memory block
 | |
| 	 * cannot be freed when it is being scanned.
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	object->flags &= ~OBJECT_ALLOCATED;
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 | |
|  * delete it.
 | |
|  */
 | |
| static void delete_object_full(unsigned long ptr, unsigned int objflags)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = find_and_remove_object(ptr, 0, objflags);
 | |
| 	if (!object) {
 | |
| #ifdef DEBUG
 | |
| 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 | |
| 			      ptr);
 | |
| #endif
 | |
| 		return;
 | |
| 	}
 | |
| 	__delete_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 | |
|  * delete it. If the memory block is partially freed, the function may create
 | |
|  * additional metadata for the remaining parts of the block.
 | |
|  */
 | |
| static void delete_object_part(unsigned long ptr, size_t size,
 | |
| 			       unsigned int objflags)
 | |
| {
 | |
| 	struct kmemleak_object *object, *object_l, *object_r;
 | |
| 	unsigned long start, end, flags;
 | |
| 
 | |
| 	object_l = __alloc_object(GFP_KERNEL);
 | |
| 	if (!object_l)
 | |
| 		return;
 | |
| 
 | |
| 	object_r = __alloc_object(GFP_KERNEL);
 | |
| 	if (!object_r)
 | |
| 		goto out;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 | |
| 	object = __find_and_remove_object(ptr, 1, objflags);
 | |
| 	if (!object) {
 | |
| #ifdef DEBUG
 | |
| 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 | |
| 			      ptr, size);
 | |
| #endif
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create one or two objects that may result from the memory block
 | |
| 	 * split. Note that partial freeing is only done by free_bootmem() and
 | |
| 	 * this happens before kmemleak_init() is called.
 | |
| 	 */
 | |
| 	start = object->pointer;
 | |
| 	end = object->pointer + object->size;
 | |
| 	if ((ptr > start) &&
 | |
| 	    !__link_object(object_l, start, ptr - start,
 | |
| 			   object->min_count, objflags))
 | |
| 		object_l = NULL;
 | |
| 	if ((ptr + size < end) &&
 | |
| 	    !__link_object(object_r, ptr + size, end - ptr - size,
 | |
| 			   object->min_count, objflags))
 | |
| 		object_r = NULL;
 | |
| 
 | |
| unlock:
 | |
| 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| 	if (object)
 | |
| 		__delete_object(object);
 | |
| 
 | |
| out:
 | |
| 	if (object_l)
 | |
| 		mem_pool_free(object_l);
 | |
| 	if (object_r)
 | |
| 		mem_pool_free(object_r);
 | |
| }
 | |
| 
 | |
| static void __paint_it(struct kmemleak_object *object, int color)
 | |
| {
 | |
| 	object->min_count = color;
 | |
| 	if (color == KMEMLEAK_BLACK)
 | |
| 		object->flags |= OBJECT_NO_SCAN;
 | |
| }
 | |
| 
 | |
| static void paint_it(struct kmemleak_object *object, int color)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	__paint_it(object, color);
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| }
 | |
| 
 | |
| static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = __find_and_get_object(ptr, 0, objflags);
 | |
| 	if (!object) {
 | |
| 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 | |
| 			      ptr,
 | |
| 			      (color == KMEMLEAK_GREY) ? "Grey" :
 | |
| 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 | |
| 		return;
 | |
| 	}
 | |
| 	paint_it(object, color);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark an object permanently as gray-colored so that it can no longer be
 | |
|  * reported as a leak. This is used in general to mark a false positive.
 | |
|  */
 | |
| static void make_gray_object(unsigned long ptr)
 | |
| {
 | |
| 	paint_ptr(ptr, KMEMLEAK_GREY, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark the object as black-colored so that it is ignored from scans and
 | |
|  * reporting.
 | |
|  */
 | |
| static void make_black_object(unsigned long ptr, unsigned int objflags)
 | |
| {
 | |
| 	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset the checksum of an object. The immediate effect is that it will not
 | |
|  * be reported as a leak during the next scan until its checksum is updated.
 | |
|  */
 | |
| static void reset_checksum(unsigned long ptr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = find_and_get_object(ptr, 0);
 | |
| 	if (!object) {
 | |
| 		kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
 | |
| 			      ptr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	object->checksum = 0;
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a scanning area to the object. If at least one such area is added,
 | |
|  * kmemleak will only scan these ranges rather than the whole memory block.
 | |
|  */
 | |
| static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 	struct kmemleak_scan_area *area = NULL;
 | |
| 	unsigned long untagged_ptr;
 | |
| 	unsigned long untagged_objp;
 | |
| 
 | |
| 	object = find_and_get_object(ptr, 1);
 | |
| 	if (!object) {
 | |
| 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 | |
| 			      ptr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 | |
| 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 | |
| 
 | |
| 	if (scan_area_cache)
 | |
| 		area = kmem_cache_alloc_noprof(scan_area_cache,
 | |
| 					       gfp_nested_mask(gfp));
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	if (!area) {
 | |
| 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
 | |
| 		/* mark the object for full scan to avoid false positives */
 | |
| 		object->flags |= OBJECT_FULL_SCAN;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	if (size == SIZE_MAX) {
 | |
| 		size = untagged_objp + object->size - untagged_ptr;
 | |
| 	} else if (untagged_ptr + size > untagged_objp + object->size) {
 | |
| 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 | |
| 		dump_object_info(object);
 | |
| 		kmem_cache_free(scan_area_cache, area);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	INIT_HLIST_NODE(&area->node);
 | |
| 	area->start = ptr;
 | |
| 	area->size = size;
 | |
| 
 | |
| 	hlist_add_head(&area->node, &object->area_list);
 | |
| out_unlock:
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Any surplus references (object already gray) to 'ptr' are passed to
 | |
|  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
 | |
|  * vm_struct may be used as an alternative reference to the vmalloc'ed object
 | |
|  * (see free_thread_stack()).
 | |
|  */
 | |
| static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = find_and_get_object(ptr, 0);
 | |
| 	if (!object) {
 | |
| 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
 | |
| 			      ptr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	object->excess_ref = excess_ref;
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
 | |
|  * pointer. Such object will not be scanned by kmemleak but references to it
 | |
|  * are searched.
 | |
|  */
 | |
| static void object_no_scan(unsigned long ptr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = find_and_get_object(ptr, 0);
 | |
| 	if (!object) {
 | |
| 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	object->flags |= OBJECT_NO_SCAN;
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmemleak_alloc - register a newly allocated object
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  * @size:	size of the object
 | |
|  * @min_count:	minimum number of references to this object. If during memory
 | |
|  *		scanning a number of references less than @min_count is found,
 | |
|  *		the object is reported as a memory leak. If @min_count is 0,
 | |
|  *		the object is never reported as a leak. If @min_count is -1,
 | |
|  *		the object is ignored (not scanned and not reported as a leak)
 | |
|  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 | |
|  *
 | |
|  * This function is called from the kernel allocators when a new object
 | |
|  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
 | |
|  */
 | |
| void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 | |
| 			  gfp_t gfp)
 | |
| {
 | |
| 	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
 | |
| 
 | |
| 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 | |
| 		create_object((unsigned long)ptr, size, min_count, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_alloc);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_alloc_percpu - register a newly allocated __percpu object
 | |
|  * @ptr:	__percpu pointer to beginning of the object
 | |
|  * @size:	size of the object
 | |
|  * @gfp:	flags used for kmemleak internal memory allocations
 | |
|  *
 | |
|  * This function is called from the kernel percpu allocator when a new object
 | |
|  * (memory block) is allocated (alloc_percpu).
 | |
|  */
 | |
| void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
 | |
| 				 gfp_t gfp)
 | |
| {
 | |
| 	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
 | |
| 
 | |
| 	if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
 | |
| 		create_object_percpu((__force unsigned long)ptr, size, 1, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_vmalloc - register a newly vmalloc'ed object
 | |
|  * @area:	pointer to vm_struct
 | |
|  * @size:	size of the object
 | |
|  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
 | |
|  *
 | |
|  * This function is called from the vmalloc() kernel allocator when a new
 | |
|  * object (memory block) is allocated.
 | |
|  */
 | |
| void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
 | |
| {
 | |
| 	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * A min_count = 2 is needed because vm_struct contains a reference to
 | |
| 	 * the virtual address of the vmalloc'ed block.
 | |
| 	 */
 | |
| 	if (kmemleak_enabled) {
 | |
| 		create_object((unsigned long)area->addr, size, 2, gfp);
 | |
| 		object_set_excess_ref((unsigned long)area,
 | |
| 				      (unsigned long)area->addr);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_free - unregister a previously registered object
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * This function is called from the kernel allocators when an object (memory
 | |
|  * block) is freed (kmem_cache_free, kfree, vfree etc.).
 | |
|  */
 | |
| void __ref kmemleak_free(const void *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, ptr);
 | |
| 
 | |
| 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
 | |
| 		delete_object_full((unsigned long)ptr, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_free);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_free_part - partially unregister a previously registered object
 | |
|  * @ptr:	pointer to the beginning or inside the object. This also
 | |
|  *		represents the start of the range to be freed
 | |
|  * @size:	size to be unregistered
 | |
|  *
 | |
|  * This function is called when only a part of a memory block is freed
 | |
|  * (usually from the bootmem allocator).
 | |
|  */
 | |
| void __ref kmemleak_free_part(const void *ptr, size_t size)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, ptr);
 | |
| 
 | |
| 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 | |
| 		delete_object_part((unsigned long)ptr, size, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_free_part);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_free_percpu - unregister a previously registered __percpu object
 | |
|  * @ptr:	__percpu pointer to beginning of the object
 | |
|  *
 | |
|  * This function is called from the kernel percpu allocator when an object
 | |
|  * (memory block) is freed (free_percpu).
 | |
|  */
 | |
| void __ref kmemleak_free_percpu(const void __percpu *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, ptr);
 | |
| 
 | |
| 	if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
 | |
| 		delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_update_trace - update object allocation stack trace
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * Override the object allocation stack trace for cases where the actual
 | |
|  * allocation place is not always useful.
 | |
|  */
 | |
| void __ref kmemleak_update_trace(const void *ptr)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	depot_stack_handle_t trace_handle;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	pr_debug("%s(0x%px)\n", __func__, ptr);
 | |
| 
 | |
| 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
 | |
| 		return;
 | |
| 
 | |
| 	object = find_and_get_object((unsigned long)ptr, 1);
 | |
| 	if (!object) {
 | |
| #ifdef DEBUG
 | |
| 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
 | |
| 			      ptr);
 | |
| #endif
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	trace_handle = set_track_prepare();
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	object->trace_handle = trace_handle;
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 
 | |
| 	put_object(object);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_update_trace);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_not_leak - mark an allocated object as false positive
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * Calling this function on an object will cause the memory block to no longer
 | |
|  * be reported as leak and always be scanned.
 | |
|  */
 | |
| void __ref kmemleak_not_leak(const void *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, ptr);
 | |
| 
 | |
| 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 | |
| 		make_gray_object((unsigned long)ptr);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_not_leak);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_transient_leak - mark an allocated object as transient false positive
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * Calling this function on an object will cause the memory block to not be
 | |
|  * reported as a leak temporarily. This may happen, for example, if the object
 | |
|  * is part of a singly linked list and the ->next reference to it is changed.
 | |
|  */
 | |
| void __ref kmemleak_transient_leak(const void *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, ptr);
 | |
| 
 | |
| 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 | |
| 		reset_checksum((unsigned long)ptr);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_transient_leak);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_ignore - ignore an allocated object
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * Calling this function on an object will cause the memory block to be
 | |
|  * ignored (not scanned and not reported as a leak). This is usually done when
 | |
|  * it is known that the corresponding block is not a leak and does not contain
 | |
|  * any references to other allocated memory blocks.
 | |
|  */
 | |
| void __ref kmemleak_ignore(const void *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, ptr);
 | |
| 
 | |
| 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 | |
| 		make_black_object((unsigned long)ptr, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_ignore);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_scan_area - limit the range to be scanned in an allocated object
 | |
|  * @ptr:	pointer to beginning or inside the object. This also
 | |
|  *		represents the start of the scan area
 | |
|  * @size:	size of the scan area
 | |
|  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 | |
|  *
 | |
|  * This function is used when it is known that only certain parts of an object
 | |
|  * contain references to other objects. Kmemleak will only scan these areas
 | |
|  * reducing the number false negatives.
 | |
|  */
 | |
| void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, ptr);
 | |
| 
 | |
| 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
 | |
| 		add_scan_area((unsigned long)ptr, size, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_scan_area);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_no_scan - do not scan an allocated object
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * This function notifies kmemleak not to scan the given memory block. Useful
 | |
|  * in situations where it is known that the given object does not contain any
 | |
|  * references to other objects. Kmemleak will not scan such objects reducing
 | |
|  * the number of false negatives.
 | |
|  */
 | |
| void __ref kmemleak_no_scan(const void *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, ptr);
 | |
| 
 | |
| 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 | |
| 		object_no_scan((unsigned long)ptr);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_no_scan);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
 | |
|  *			 address argument
 | |
|  * @phys:	physical address of the object
 | |
|  * @size:	size of the object
 | |
|  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 | |
|  */
 | |
| void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
 | |
| {
 | |
| 	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
 | |
| 
 | |
| 	if (kmemleak_enabled)
 | |
| 		/*
 | |
| 		 * Create object with OBJECT_PHYS flag and
 | |
| 		 * assume min_count 0.
 | |
| 		 */
 | |
| 		create_object_phys((unsigned long)phys, size, 0, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_alloc_phys);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
 | |
|  *			     physical address argument
 | |
|  * @phys:	physical address if the beginning or inside an object. This
 | |
|  *		also represents the start of the range to be freed
 | |
|  * @size:	size to be unregistered
 | |
|  */
 | |
| void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, &phys);
 | |
| 
 | |
| 	if (kmemleak_enabled)
 | |
| 		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_free_part_phys);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
 | |
|  *			  address argument
 | |
|  * @phys:	physical address of the object
 | |
|  */
 | |
| void __ref kmemleak_ignore_phys(phys_addr_t phys)
 | |
| {
 | |
| 	pr_debug("%s(0x%px)\n", __func__, &phys);
 | |
| 
 | |
| 	if (kmemleak_enabled)
 | |
| 		make_black_object((unsigned long)phys, OBJECT_PHYS);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_ignore_phys);
 | |
| 
 | |
| /*
 | |
|  * Update an object's checksum and return true if it was modified.
 | |
|  */
 | |
| static bool update_checksum(struct kmemleak_object *object)
 | |
| {
 | |
| 	u32 old_csum = object->checksum;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
 | |
| 		return false;
 | |
| 
 | |
| 	kasan_disable_current();
 | |
| 	kcsan_disable_current();
 | |
| 	if (object->flags & OBJECT_PERCPU) {
 | |
| 		unsigned int cpu;
 | |
| 
 | |
| 		object->checksum = 0;
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
 | |
| 
 | |
| 			object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
 | |
| 		}
 | |
| 	} else {
 | |
| 		object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
 | |
| 	}
 | |
| 	kasan_enable_current();
 | |
| 	kcsan_enable_current();
 | |
| 
 | |
| 	return object->checksum != old_csum;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update an object's references. object->lock must be held by the caller.
 | |
|  */
 | |
| static void update_refs(struct kmemleak_object *object)
 | |
| {
 | |
| 	if (!color_white(object)) {
 | |
| 		/* non-orphan, ignored or new */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Increase the object's reference count (number of pointers to the
 | |
| 	 * memory block). If this count reaches the required minimum, the
 | |
| 	 * object's color will become gray and it will be added to the
 | |
| 	 * gray_list.
 | |
| 	 */
 | |
| 	object->count++;
 | |
| 	if (color_gray(object)) {
 | |
| 		/* put_object() called when removing from gray_list */
 | |
| 		WARN_ON(!get_object(object));
 | |
| 		list_add_tail(&object->gray_list, &gray_list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pointer_update_refs(struct kmemleak_object *scanned,
 | |
| 			 unsigned long pointer, unsigned int objflags)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	unsigned long untagged_ptr;
 | |
| 	unsigned long excess_ref;
 | |
| 
 | |
| 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
 | |
| 	if (objflags & OBJECT_PERCPU) {
 | |
| 		if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
 | |
| 			return;
 | |
| 	} else {
 | |
| 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No need for get_object() here since we hold kmemleak_lock.
 | |
| 	 * object->use_count cannot be dropped to 0 while the object
 | |
| 	 * is still present in object_tree_root and object_list
 | |
| 	 * (with updates protected by kmemleak_lock).
 | |
| 	 */
 | |
| 	object = __lookup_object(pointer, 1, objflags);
 | |
| 	if (!object)
 | |
| 		return;
 | |
| 	if (object == scanned)
 | |
| 		/* self referenced, ignore */
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid the lockdep recursive warning on object->lock being
 | |
| 	 * previously acquired in scan_object(). These locks are
 | |
| 	 * enclosed by scan_mutex.
 | |
| 	 */
 | |
| 	raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
 | |
| 	/* only pass surplus references (object already gray) */
 | |
| 	if (color_gray(object)) {
 | |
| 		excess_ref = object->excess_ref;
 | |
| 		/* no need for update_refs() if object already gray */
 | |
| 	} else {
 | |
| 		excess_ref = 0;
 | |
| 		update_refs(object);
 | |
| 	}
 | |
| 	raw_spin_unlock(&object->lock);
 | |
| 
 | |
| 	if (excess_ref) {
 | |
| 		object = lookup_object(excess_ref, 0);
 | |
| 		if (!object)
 | |
| 			return;
 | |
| 		if (object == scanned)
 | |
| 			/* circular reference, ignore */
 | |
| 			return;
 | |
| 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
 | |
| 		update_refs(object);
 | |
| 		raw_spin_unlock(&object->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Memory scanning is a long process and it needs to be interruptible. This
 | |
|  * function checks whether such interrupt condition occurred.
 | |
|  */
 | |
| static int scan_should_stop(void)
 | |
| {
 | |
| 	if (!kmemleak_enabled)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function may be called from either process or kthread context,
 | |
| 	 * hence the need to check for both stop conditions.
 | |
| 	 */
 | |
| 	if (current->mm)
 | |
| 		return signal_pending(current);
 | |
| 	else
 | |
| 		return kthread_should_stop();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan a memory block (exclusive range) for valid pointers and add those
 | |
|  * found to the gray list.
 | |
|  */
 | |
| static void scan_block(void *_start, void *_end,
 | |
| 		       struct kmemleak_object *scanned)
 | |
| {
 | |
| 	unsigned long *ptr;
 | |
| 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
 | |
| 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 | |
| 	for (ptr = start; ptr < end; ptr++) {
 | |
| 		unsigned long pointer;
 | |
| 
 | |
| 		if (scan_should_stop())
 | |
| 			break;
 | |
| 
 | |
| 		kasan_disable_current();
 | |
| 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
 | |
| 		kasan_enable_current();
 | |
| 
 | |
| 		pointer_update_refs(scanned, pointer, 0);
 | |
| 		pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| static void scan_large_block(void *start, void *end)
 | |
| {
 | |
| 	void *next;
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		next = min(start + MAX_SCAN_SIZE, end);
 | |
| 		scan_block(start, next, NULL);
 | |
| 		start = next;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Scan a memory block corresponding to a kmemleak_object. A condition is
 | |
|  * that object->use_count >= 1.
 | |
|  */
 | |
| static void scan_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	struct kmemleak_scan_area *area;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once the object->lock is acquired, the corresponding memory block
 | |
| 	 * cannot be freed (the same lock is acquired in delete_object).
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	if (object->flags & OBJECT_NO_SCAN)
 | |
| 		goto out;
 | |
| 	if (!(object->flags & OBJECT_ALLOCATED))
 | |
| 		/* already freed object */
 | |
| 		goto out;
 | |
| 
 | |
| 	if (object->flags & OBJECT_PERCPU) {
 | |
| 		unsigned int cpu;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
 | |
| 			void *end = start + object->size;
 | |
| 
 | |
| 			scan_block(start, end, object);
 | |
| 
 | |
| 			raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 			cond_resched();
 | |
| 			raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 			if (!(object->flags & OBJECT_ALLOCATED))
 | |
| 				break;
 | |
| 		}
 | |
| 	} else if (hlist_empty(&object->area_list) ||
 | |
| 	    object->flags & OBJECT_FULL_SCAN) {
 | |
| 		void *start = object->flags & OBJECT_PHYS ?
 | |
| 				__va((phys_addr_t)object->pointer) :
 | |
| 				(void *)object->pointer;
 | |
| 		void *end = start + object->size;
 | |
| 		void *next;
 | |
| 
 | |
| 		do {
 | |
| 			next = min(start + MAX_SCAN_SIZE, end);
 | |
| 			scan_block(start, next, object);
 | |
| 
 | |
| 			start = next;
 | |
| 			if (start >= end)
 | |
| 				break;
 | |
| 
 | |
| 			raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 			cond_resched();
 | |
| 			raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 		} while (object->flags & OBJECT_ALLOCATED);
 | |
| 	} else {
 | |
| 		hlist_for_each_entry(area, &object->area_list, node)
 | |
| 			scan_block((void *)area->start,
 | |
| 				   (void *)(area->start + area->size),
 | |
| 				   object);
 | |
| 	}
 | |
| out:
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the objects already referenced (gray objects). More objects will be
 | |
|  * referenced and, if there are no memory leaks, all the objects are scanned.
 | |
|  */
 | |
| static void scan_gray_list(void)
 | |
| {
 | |
| 	struct kmemleak_object *object, *tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * The list traversal is safe for both tail additions and removals
 | |
| 	 * from inside the loop. The kmemleak objects cannot be freed from
 | |
| 	 * outside the loop because their use_count was incremented.
 | |
| 	 */
 | |
| 	object = list_entry(gray_list.next, typeof(*object), gray_list);
 | |
| 	while (&object->gray_list != &gray_list) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/* may add new objects to the list */
 | |
| 		if (!scan_should_stop())
 | |
| 			scan_object(object);
 | |
| 
 | |
| 		tmp = list_entry(object->gray_list.next, typeof(*object),
 | |
| 				 gray_list);
 | |
| 
 | |
| 		/* remove the object from the list and release it */
 | |
| 		list_del(&object->gray_list);
 | |
| 		put_object(object);
 | |
| 
 | |
| 		object = tmp;
 | |
| 	}
 | |
| 	WARN_ON(!list_empty(&gray_list));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conditionally call resched() in an object iteration loop while making sure
 | |
|  * that the given object won't go away without RCU read lock by performing a
 | |
|  * get_object() if necessaary.
 | |
|  */
 | |
| static void kmemleak_cond_resched(struct kmemleak_object *object)
 | |
| {
 | |
| 	if (!get_object(object))
 | |
| 		return;	/* Try next object */
 | |
| 
 | |
| 	raw_spin_lock_irq(&kmemleak_lock);
 | |
| 	if (object->del_state & DELSTATE_REMOVED)
 | |
| 		goto unlock_put;	/* Object removed */
 | |
| 	object->del_state |= DELSTATE_NO_DELETE;
 | |
| 	raw_spin_unlock_irq(&kmemleak_lock);
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 	cond_resched();
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	raw_spin_lock_irq(&kmemleak_lock);
 | |
| 	if (object->del_state & DELSTATE_REMOVED)
 | |
| 		list_del_rcu(&object->object_list);
 | |
| 	object->del_state &= ~DELSTATE_NO_DELETE;
 | |
| unlock_put:
 | |
| 	raw_spin_unlock_irq(&kmemleak_lock);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan data sections and all the referenced memory blocks allocated via the
 | |
|  * kernel's standard allocators. This function must be called with the
 | |
|  * scan_mutex held.
 | |
|  */
 | |
| static void kmemleak_scan(void)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	struct zone *zone;
 | |
| 	int __maybe_unused i;
 | |
| 	int new_leaks = 0;
 | |
| 
 | |
| 	jiffies_last_scan = jiffies;
 | |
| 
 | |
| 	/* prepare the kmemleak_object's */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		raw_spin_lock_irq(&object->lock);
 | |
| #ifdef DEBUG
 | |
| 		/*
 | |
| 		 * With a few exceptions there should be a maximum of
 | |
| 		 * 1 reference to any object at this point.
 | |
| 		 */
 | |
| 		if (atomic_read(&object->use_count) > 1) {
 | |
| 			pr_debug("object->use_count = %d\n",
 | |
| 				 atomic_read(&object->use_count));
 | |
| 			dump_object_info(object);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/* ignore objects outside lowmem (paint them black) */
 | |
| 		if ((object->flags & OBJECT_PHYS) &&
 | |
| 		   !(object->flags & OBJECT_NO_SCAN)) {
 | |
| 			unsigned long phys = object->pointer;
 | |
| 
 | |
| 			if (PHYS_PFN(phys) < min_low_pfn ||
 | |
| 			    PHYS_PFN(phys + object->size) > max_low_pfn)
 | |
| 				__paint_it(object, KMEMLEAK_BLACK);
 | |
| 		}
 | |
| 
 | |
| 		/* reset the reference count (whiten the object) */
 | |
| 		object->count = 0;
 | |
| 		if (color_gray(object) && get_object(object))
 | |
| 			list_add_tail(&object->gray_list, &gray_list);
 | |
| 
 | |
| 		raw_spin_unlock_irq(&object->lock);
 | |
| 
 | |
| 		if (need_resched())
 | |
| 			kmemleak_cond_resched(object);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* per-cpu sections scanning */
 | |
| 	for_each_possible_cpu(i)
 | |
| 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
 | |
| 				 __per_cpu_end + per_cpu_offset(i));
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Struct page scanning for each node.
 | |
| 	 */
 | |
| 	get_online_mems();
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		unsigned long start_pfn = zone->zone_start_pfn;
 | |
| 		unsigned long end_pfn = zone_end_pfn(zone);
 | |
| 		unsigned long pfn;
 | |
| 
 | |
| 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 | |
| 			struct page *page = pfn_to_online_page(pfn);
 | |
| 
 | |
| 			if (!(pfn & 63))
 | |
| 				cond_resched();
 | |
| 
 | |
| 			if (!page)
 | |
| 				continue;
 | |
| 
 | |
| 			/* only scan pages belonging to this zone */
 | |
| 			if (page_zone(page) != zone)
 | |
| 				continue;
 | |
| 			/* only scan if page is in use */
 | |
| 			if (page_count(page) == 0)
 | |
| 				continue;
 | |
| 			scan_block(page, page + 1, NULL);
 | |
| 		}
 | |
| 	}
 | |
| 	put_online_mems();
 | |
| 
 | |
| 	/*
 | |
| 	 * Scanning the task stacks (may introduce false negatives).
 | |
| 	 */
 | |
| 	if (kmemleak_stack_scan) {
 | |
| 		struct task_struct *p, *g;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		for_each_process_thread(g, p) {
 | |
| 			void *stack = try_get_task_stack(p);
 | |
| 			if (stack) {
 | |
| 				scan_block(stack, stack + THREAD_SIZE, NULL);
 | |
| 				put_task_stack(p);
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Scan the objects already referenced from the sections scanned
 | |
| 	 * above.
 | |
| 	 */
 | |
| 	scan_gray_list();
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for new or unreferenced objects modified since the previous
 | |
| 	 * scan and color them gray until the next scan.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		if (need_resched())
 | |
| 			kmemleak_cond_resched(object);
 | |
| 
 | |
| 		/*
 | |
| 		 * This is racy but we can save the overhead of lock/unlock
 | |
| 		 * calls. The missed objects, if any, should be caught in
 | |
| 		 * the next scan.
 | |
| 		 */
 | |
| 		if (!color_white(object))
 | |
| 			continue;
 | |
| 		raw_spin_lock_irq(&object->lock);
 | |
| 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
 | |
| 		    && update_checksum(object) && get_object(object)) {
 | |
| 			/* color it gray temporarily */
 | |
| 			object->count = object->min_count;
 | |
| 			list_add_tail(&object->gray_list, &gray_list);
 | |
| 		}
 | |
| 		raw_spin_unlock_irq(&object->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-scan the gray list for modified unreferenced objects.
 | |
| 	 */
 | |
| 	scan_gray_list();
 | |
| 
 | |
| 	/*
 | |
| 	 * If scanning was stopped do not report any new unreferenced objects.
 | |
| 	 */
 | |
| 	if (scan_should_stop())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Scanning result reporting.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		if (need_resched())
 | |
| 			kmemleak_cond_resched(object);
 | |
| 
 | |
| 		/*
 | |
| 		 * This is racy but we can save the overhead of lock/unlock
 | |
| 		 * calls. The missed objects, if any, should be caught in
 | |
| 		 * the next scan.
 | |
| 		 */
 | |
| 		if (!color_white(object))
 | |
| 			continue;
 | |
| 		raw_spin_lock_irq(&object->lock);
 | |
| 		if (unreferenced_object(object) &&
 | |
| 		    !(object->flags & OBJECT_REPORTED)) {
 | |
| 			object->flags |= OBJECT_REPORTED;
 | |
| 
 | |
| 			if (kmemleak_verbose)
 | |
| 				print_unreferenced(NULL, object);
 | |
| 
 | |
| 			new_leaks++;
 | |
| 		}
 | |
| 		raw_spin_unlock_irq(&object->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (new_leaks) {
 | |
| 		kmemleak_found_leaks = true;
 | |
| 
 | |
| 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
 | |
| 			new_leaks);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Thread function performing automatic memory scanning. Unreferenced objects
 | |
|  * at the end of a memory scan are reported but only the first time.
 | |
|  */
 | |
| static int kmemleak_scan_thread(void *arg)
 | |
| {
 | |
| 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
 | |
| 
 | |
| 	pr_info("Automatic memory scanning thread started\n");
 | |
| 	set_user_nice(current, 10);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait before the first scan to allow the system to fully initialize.
 | |
| 	 */
 | |
| 	if (first_run) {
 | |
| 		signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN);
 | |
| 		first_run = 0;
 | |
| 		while (timeout && !kthread_should_stop())
 | |
| 			timeout = schedule_timeout_interruptible(timeout);
 | |
| 	}
 | |
| 
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		signed long timeout = READ_ONCE(jiffies_scan_wait);
 | |
| 
 | |
| 		mutex_lock(&scan_mutex);
 | |
| 		kmemleak_scan();
 | |
| 		mutex_unlock(&scan_mutex);
 | |
| 
 | |
| 		/* wait before the next scan */
 | |
| 		while (timeout && !kthread_should_stop())
 | |
| 			timeout = schedule_timeout_interruptible(timeout);
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Automatic memory scanning thread ended\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start the automatic memory scanning thread. This function must be called
 | |
|  * with the scan_mutex held.
 | |
|  */
 | |
| static void start_scan_thread(void)
 | |
| {
 | |
| 	if (scan_thread)
 | |
| 		return;
 | |
| 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
 | |
| 	if (IS_ERR(scan_thread)) {
 | |
| 		pr_warn("Failed to create the scan thread\n");
 | |
| 		scan_thread = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop the automatic memory scanning thread.
 | |
|  */
 | |
| static void stop_scan_thread(void)
 | |
| {
 | |
| 	if (scan_thread) {
 | |
| 		kthread_stop(scan_thread);
 | |
| 		scan_thread = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate over the object_list and return the first valid object at or after
 | |
|  * the required position with its use_count incremented. The function triggers
 | |
|  * a memory scanning when the pos argument points to the first position.
 | |
|  */
 | |
| static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	loff_t n = *pos;
 | |
| 	int err;
 | |
| 
 | |
| 	err = mutex_lock_interruptible(&scan_mutex);
 | |
| 	if (err < 0)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		if (n-- > 0)
 | |
| 			continue;
 | |
| 		if (get_object(object))
 | |
| 			goto out;
 | |
| 	}
 | |
| 	object = NULL;
 | |
| out:
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the next object in the object_list. The function decrements the
 | |
|  * use_count of the previous object and increases that of the next one.
 | |
|  */
 | |
| static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct kmemleak_object *prev_obj = v;
 | |
| 	struct kmemleak_object *next_obj = NULL;
 | |
| 	struct kmemleak_object *obj = prev_obj;
 | |
| 
 | |
| 	++(*pos);
 | |
| 
 | |
| 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
 | |
| 		if (get_object(obj)) {
 | |
| 			next_obj = obj;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	put_object(prev_obj);
 | |
| 	return next_obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement the use_count of the last object required, if any.
 | |
|  */
 | |
| static void kmemleak_seq_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	if (!IS_ERR(v)) {
 | |
| 		/*
 | |
| 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
 | |
| 		 * waiting was interrupted, so only release it if !IS_ERR.
 | |
| 		 */
 | |
| 		rcu_read_unlock();
 | |
| 		mutex_unlock(&scan_mutex);
 | |
| 		if (v)
 | |
| 			put_object(v);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print the information for an unreferenced object to the seq file.
 | |
|  */
 | |
| static int kmemleak_seq_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct kmemleak_object *object = v;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
 | |
| 		print_unreferenced(seq, object);
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations kmemleak_seq_ops = {
 | |
| 	.start = kmemleak_seq_start,
 | |
| 	.next  = kmemleak_seq_next,
 | |
| 	.stop  = kmemleak_seq_stop,
 | |
| 	.show  = kmemleak_seq_show,
 | |
| };
 | |
| 
 | |
| static int kmemleak_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &kmemleak_seq_ops);
 | |
| }
 | |
| 
 | |
| static int dump_str_object_info(const char *str)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	if (kstrtoul(str, 0, &addr))
 | |
| 		return -EINVAL;
 | |
| 	object = find_and_get_object(addr, 0);
 | |
| 	if (!object) {
 | |
| 		pr_info("Unknown object at 0x%08lx\n", addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&object->lock, flags);
 | |
| 	dump_object_info(object);
 | |
| 	raw_spin_unlock_irqrestore(&object->lock, flags);
 | |
| 
 | |
| 	put_object(object);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use grey instead of black to ensure we can do future scans on the same
 | |
|  * objects. If we did not do future scans these black objects could
 | |
|  * potentially contain references to newly allocated objects in the future and
 | |
|  * we'd end up with false positives.
 | |
|  */
 | |
| static void kmemleak_clear(void)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		raw_spin_lock_irq(&object->lock);
 | |
| 		if ((object->flags & OBJECT_REPORTED) &&
 | |
| 		    unreferenced_object(object))
 | |
| 			__paint_it(object, KMEMLEAK_GREY);
 | |
| 		raw_spin_unlock_irq(&object->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	kmemleak_found_leaks = false;
 | |
| }
 | |
| 
 | |
| static void __kmemleak_do_cleanup(void);
 | |
| 
 | |
| /*
 | |
|  * File write operation to configure kmemleak at run-time. The following
 | |
|  * commands can be written to the /sys/kernel/debug/kmemleak file:
 | |
|  *   off	- disable kmemleak (irreversible)
 | |
|  *   stack=on	- enable the task stacks scanning
 | |
|  *   stack=off	- disable the tasks stacks scanning
 | |
|  *   scan=on	- start the automatic memory scanning thread
 | |
|  *   scan=off	- stop the automatic memory scanning thread
 | |
|  *   scan=...	- set the automatic memory scanning period in seconds (0 to
 | |
|  *		  disable it)
 | |
|  *   scan	- trigger a memory scan
 | |
|  *   clear	- mark all current reported unreferenced kmemleak objects as
 | |
|  *		  grey to ignore printing them, or free all kmemleak objects
 | |
|  *		  if kmemleak has been disabled.
 | |
|  *   dump=...	- dump information about the object found at the given address
 | |
|  */
 | |
| static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
 | |
| 			      size_t size, loff_t *ppos)
 | |
| {
 | |
| 	char buf[64];
 | |
| 	int buf_size;
 | |
| 	int ret;
 | |
| 
 | |
| 	buf_size = min(size, (sizeof(buf) - 1));
 | |
| 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
 | |
| 		return -EFAULT;
 | |
| 	buf[buf_size] = 0;
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&scan_mutex);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (strncmp(buf, "clear", 5) == 0) {
 | |
| 		if (kmemleak_enabled)
 | |
| 			kmemleak_clear();
 | |
| 		else
 | |
| 			__kmemleak_do_cleanup();
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!kmemleak_enabled) {
 | |
| 		ret = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (strncmp(buf, "off", 3) == 0)
 | |
| 		kmemleak_disable();
 | |
| 	else if (strncmp(buf, "stack=on", 8) == 0)
 | |
| 		kmemleak_stack_scan = 1;
 | |
| 	else if (strncmp(buf, "stack=off", 9) == 0)
 | |
| 		kmemleak_stack_scan = 0;
 | |
| 	else if (strncmp(buf, "scan=on", 7) == 0)
 | |
| 		start_scan_thread();
 | |
| 	else if (strncmp(buf, "scan=off", 8) == 0)
 | |
| 		stop_scan_thread();
 | |
| 	else if (strncmp(buf, "scan=", 5) == 0) {
 | |
| 		unsigned secs;
 | |
| 		unsigned long msecs;
 | |
| 
 | |
| 		ret = kstrtouint(buf + 5, 0, &secs);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		msecs = secs * MSEC_PER_SEC;
 | |
| 		if (msecs > UINT_MAX)
 | |
| 			msecs = UINT_MAX;
 | |
| 
 | |
| 		stop_scan_thread();
 | |
| 		if (msecs) {
 | |
| 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
 | |
| 			start_scan_thread();
 | |
| 		}
 | |
| 	} else if (strncmp(buf, "scan", 4) == 0)
 | |
| 		kmemleak_scan();
 | |
| 	else if (strncmp(buf, "dump=", 5) == 0)
 | |
| 		ret = dump_str_object_info(buf + 5);
 | |
| 	else
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&scan_mutex);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* ignore the rest of the buffer, only one command at a time */
 | |
| 	*ppos += size;
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static const struct file_operations kmemleak_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.open		= kmemleak_open,
 | |
| 	.read		= seq_read,
 | |
| 	.write		= kmemleak_write,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release,
 | |
| };
 | |
| 
 | |
| static void __kmemleak_do_cleanup(void)
 | |
| {
 | |
| 	struct kmemleak_object *object, *tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Kmemleak has already been disabled, no need for RCU list traversal
 | |
| 	 * or kmemleak_lock held.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
 | |
| 		__remove_object(object);
 | |
| 		__delete_object(object);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop the memory scanning thread and free the kmemleak internal objects if
 | |
|  * no previous scan thread (otherwise, kmemleak may still have some useful
 | |
|  * information on memory leaks).
 | |
|  */
 | |
| static void kmemleak_do_cleanup(struct work_struct *work)
 | |
| {
 | |
| 	stop_scan_thread();
 | |
| 
 | |
| 	mutex_lock(&scan_mutex);
 | |
| 	/*
 | |
| 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
 | |
| 	 * longer track object freeing. Ordering of the scan thread stopping and
 | |
| 	 * the memory accesses below is guaranteed by the kthread_stop()
 | |
| 	 * function.
 | |
| 	 */
 | |
| 	kmemleak_free_enabled = 0;
 | |
| 	mutex_unlock(&scan_mutex);
 | |
| 
 | |
| 	if (!kmemleak_found_leaks)
 | |
| 		__kmemleak_do_cleanup();
 | |
| 	else
 | |
| 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
 | |
| }
 | |
| 
 | |
| static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
 | |
| 
 | |
| /*
 | |
|  * Disable kmemleak. No memory allocation/freeing will be traced once this
 | |
|  * function is called. Disabling kmemleak is an irreversible operation.
 | |
|  */
 | |
| static void kmemleak_disable(void)
 | |
| {
 | |
| 	/* atomically check whether it was already invoked */
 | |
| 	if (cmpxchg(&kmemleak_error, 0, 1))
 | |
| 		return;
 | |
| 
 | |
| 	/* stop any memory operation tracing */
 | |
| 	kmemleak_enabled = 0;
 | |
| 
 | |
| 	/* check whether it is too early for a kernel thread */
 | |
| 	if (kmemleak_late_initialized)
 | |
| 		schedule_work(&cleanup_work);
 | |
| 	else
 | |
| 		kmemleak_free_enabled = 0;
 | |
| 
 | |
| 	pr_info("Kernel memory leak detector disabled\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allow boot-time kmemleak disabling (enabled by default).
 | |
|  */
 | |
| static int __init kmemleak_boot_config(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return -EINVAL;
 | |
| 	if (strcmp(str, "off") == 0)
 | |
| 		kmemleak_disable();
 | |
| 	else if (strcmp(str, "on") == 0) {
 | |
| 		kmemleak_skip_disable = 1;
 | |
| 		stack_depot_request_early_init();
 | |
| 	}
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("kmemleak", kmemleak_boot_config);
 | |
| 
 | |
| /*
 | |
|  * Kmemleak initialization.
 | |
|  */
 | |
| void __init kmemleak_init(void)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
 | |
| 	if (!kmemleak_skip_disable) {
 | |
| 		kmemleak_disable();
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (kmemleak_error)
 | |
| 		return;
 | |
| 
 | |
| 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
 | |
| 	jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT);
 | |
| 
 | |
| 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
 | |
| 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
 | |
| 
 | |
| 	/* register the data/bss sections */
 | |
| 	create_object((unsigned long)_sdata, _edata - _sdata,
 | |
| 		      KMEMLEAK_GREY, GFP_ATOMIC);
 | |
| 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
 | |
| 		      KMEMLEAK_GREY, GFP_ATOMIC);
 | |
| 	/* only register .data..ro_after_init if not within .data */
 | |
| 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
 | |
| 		create_object((unsigned long)__start_ro_after_init,
 | |
| 			      __end_ro_after_init - __start_ro_after_init,
 | |
| 			      KMEMLEAK_GREY, GFP_ATOMIC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Late initialization function.
 | |
|  */
 | |
| static int __init kmemleak_late_init(void)
 | |
| {
 | |
| 	kmemleak_late_initialized = 1;
 | |
| 
 | |
| 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
 | |
| 
 | |
| 	if (kmemleak_error) {
 | |
| 		/*
 | |
| 		 * Some error occurred and kmemleak was disabled. There is a
 | |
| 		 * small chance that kmemleak_disable() was called immediately
 | |
| 		 * after setting kmemleak_late_initialized and we may end up with
 | |
| 		 * two clean-up threads but serialized by scan_mutex.
 | |
| 		 */
 | |
| 		schedule_work(&cleanup_work);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
 | |
| 		mutex_lock(&scan_mutex);
 | |
| 		start_scan_thread();
 | |
| 		mutex_unlock(&scan_mutex);
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
 | |
| 		mem_pool_free_count);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(kmemleak_late_init);
 |