mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 c6f239796b
			
		
	
	
		c6f239796b
		
	
	
	
	
		
			
			Before SLUB initialization, various subsystems used memblock_alloc to allocate memory. In most cases, when memory allocation fails, an immediate panic is required. To simplify this behavior and reduce repetitive checks, introduce `memblock_alloc_or_panic`. This function ensures that memory allocation failures result in a panic automatically, improving code readability and consistency across subsystems that require this behavior. [guoweikang.kernel@gmail.com: arch/s390: save_area_alloc default failure behavior changed to panic] Link: https://lkml.kernel.org/r/20250109033136.2845676-1-guoweikang.kernel@gmail.com Link: https://lore.kernel.org/lkml/Z2fknmnNtiZbCc7x@kernel.org/ Link: https://lkml.kernel.org/r/20250102072528.650926-1-guoweikang.kernel@gmail.com Signed-off-by: Guo Weikang <guoweikang.kernel@gmail.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com> [s390] Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			2455 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2455 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Procedures for maintaining information about logical memory blocks.
 | |
|  *
 | |
|  * Peter Bergner, IBM Corp.	June 2001.
 | |
|  * Copyright (C) 2001 Peter Bergner.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/memblock.h>
 | |
| 
 | |
| #include <asm/sections.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| #define INIT_MEMBLOCK_REGIONS			128
 | |
| #define INIT_PHYSMEM_REGIONS			4
 | |
| 
 | |
| #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
 | |
| # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
 | |
| #endif
 | |
| 
 | |
| #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
 | |
| #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * DOC: memblock overview
 | |
|  *
 | |
|  * Memblock is a method of managing memory regions during the early
 | |
|  * boot period when the usual kernel memory allocators are not up and
 | |
|  * running.
 | |
|  *
 | |
|  * Memblock views the system memory as collections of contiguous
 | |
|  * regions. There are several types of these collections:
 | |
|  *
 | |
|  * * ``memory`` - describes the physical memory available to the
 | |
|  *   kernel; this may differ from the actual physical memory installed
 | |
|  *   in the system, for instance when the memory is restricted with
 | |
|  *   ``mem=`` command line parameter
 | |
|  * * ``reserved`` - describes the regions that were allocated
 | |
|  * * ``physmem`` - describes the actual physical memory available during
 | |
|  *   boot regardless of the possible restrictions and memory hot(un)plug;
 | |
|  *   the ``physmem`` type is only available on some architectures.
 | |
|  *
 | |
|  * Each region is represented by struct memblock_region that
 | |
|  * defines the region extents, its attributes and NUMA node id on NUMA
 | |
|  * systems. Every memory type is described by the struct memblock_type
 | |
|  * which contains an array of memory regions along with
 | |
|  * the allocator metadata. The "memory" and "reserved" types are nicely
 | |
|  * wrapped with struct memblock. This structure is statically
 | |
|  * initialized at build time. The region arrays are initially sized to
 | |
|  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
 | |
|  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
 | |
|  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
 | |
|  * The memblock_allow_resize() enables automatic resizing of the region
 | |
|  * arrays during addition of new regions. This feature should be used
 | |
|  * with care so that memory allocated for the region array will not
 | |
|  * overlap with areas that should be reserved, for example initrd.
 | |
|  *
 | |
|  * The early architecture setup should tell memblock what the physical
 | |
|  * memory layout is by using memblock_add() or memblock_add_node()
 | |
|  * functions. The first function does not assign the region to a NUMA
 | |
|  * node and it is appropriate for UMA systems. Yet, it is possible to
 | |
|  * use it on NUMA systems as well and assign the region to a NUMA node
 | |
|  * later in the setup process using memblock_set_node(). The
 | |
|  * memblock_add_node() performs such an assignment directly.
 | |
|  *
 | |
|  * Once memblock is setup the memory can be allocated using one of the
 | |
|  * API variants:
 | |
|  *
 | |
|  * * memblock_phys_alloc*() - these functions return the **physical**
 | |
|  *   address of the allocated memory
 | |
|  * * memblock_alloc*() - these functions return the **virtual** address
 | |
|  *   of the allocated memory.
 | |
|  *
 | |
|  * Note, that both API variants use implicit assumptions about allowed
 | |
|  * memory ranges and the fallback methods. Consult the documentation
 | |
|  * of memblock_alloc_internal() and memblock_alloc_range_nid()
 | |
|  * functions for more elaborate description.
 | |
|  *
 | |
|  * As the system boot progresses, the architecture specific mem_init()
 | |
|  * function frees all the memory to the buddy page allocator.
 | |
|  *
 | |
|  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
 | |
|  * memblock data structures (except "physmem") will be discarded after the
 | |
|  * system initialization completes.
 | |
|  */
 | |
| 
 | |
| #ifndef CONFIG_NUMA
 | |
| struct pglist_data __refdata contig_page_data;
 | |
| EXPORT_SYMBOL(contig_page_data);
 | |
| #endif
 | |
| 
 | |
| unsigned long max_low_pfn;
 | |
| unsigned long min_low_pfn;
 | |
| unsigned long max_pfn;
 | |
| unsigned long long max_possible_pfn;
 | |
| 
 | |
| static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
 | |
| static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | |
| static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 | |
| #endif
 | |
| 
 | |
| struct memblock memblock __initdata_memblock = {
 | |
| 	.memory.regions		= memblock_memory_init_regions,
 | |
| 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
 | |
| 	.memory.name		= "memory",
 | |
| 
 | |
| 	.reserved.regions	= memblock_reserved_init_regions,
 | |
| 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 | |
| 	.reserved.name		= "reserved",
 | |
| 
 | |
| 	.bottom_up		= false,
 | |
| 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | |
| struct memblock_type physmem = {
 | |
| 	.regions		= memblock_physmem_init_regions,
 | |
| 	.max			= INIT_PHYSMEM_REGIONS,
 | |
| 	.name			= "physmem",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * keep a pointer to &memblock.memory in the text section to use it in
 | |
|  * __next_mem_range() and its helpers.
 | |
|  *  For architectures that do not keep memblock data after init, this
 | |
|  * pointer will be reset to NULL at memblock_discard()
 | |
|  */
 | |
| static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 | |
| 
 | |
| #define for_each_memblock_type(i, memblock_type, rgn)			\
 | |
| 	for (i = 0, rgn = &memblock_type->regions[0];			\
 | |
| 	     i < memblock_type->cnt;					\
 | |
| 	     i++, rgn = &memblock_type->regions[i])
 | |
| 
 | |
| #define memblock_dbg(fmt, ...)						\
 | |
| 	do {								\
 | |
| 		if (memblock_debug)					\
 | |
| 			pr_info(fmt, ##__VA_ARGS__);			\
 | |
| 	} while (0)
 | |
| 
 | |
| static int memblock_debug __initdata_memblock;
 | |
| static bool system_has_some_mirror __initdata_memblock;
 | |
| static int memblock_can_resize __initdata_memblock;
 | |
| static int memblock_memory_in_slab __initdata_memblock;
 | |
| static int memblock_reserved_in_slab __initdata_memblock;
 | |
| 
 | |
| bool __init_memblock memblock_has_mirror(void)
 | |
| {
 | |
| 	return system_has_some_mirror;
 | |
| }
 | |
| 
 | |
| static enum memblock_flags __init_memblock choose_memblock_flags(void)
 | |
| {
 | |
| 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 | |
| }
 | |
| 
 | |
| /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 | |
| static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 | |
| {
 | |
| 	return *size = min(*size, PHYS_ADDR_MAX - base);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Address comparison utilities
 | |
|  */
 | |
| unsigned long __init_memblock
 | |
| memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
 | |
| 		       phys_addr_t size2)
 | |
| {
 | |
| 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 | |
| }
 | |
| 
 | |
| bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 | |
| 					phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	memblock_cap_size(base, &size);
 | |
| 
 | |
| 	for (i = 0; i < type->cnt; i++)
 | |
| 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 | |
| 					   type->regions[i].size))
 | |
| 			return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memblock_find_range_bottom_up - find free area utility in bottom-up
 | |
|  * @start: start of candidate range
 | |
|  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 | |
|  *       %MEMBLOCK_ALLOC_ACCESSIBLE
 | |
|  * @size: size of free area to find
 | |
|  * @align: alignment of free area to find
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  * @flags: pick from blocks based on memory attributes
 | |
|  *
 | |
|  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 | |
|  *
 | |
|  * Return:
 | |
|  * Found address on success, 0 on failure.
 | |
|  */
 | |
| static phys_addr_t __init_memblock
 | |
| __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 | |
| 				phys_addr_t size, phys_addr_t align, int nid,
 | |
| 				enum memblock_flags flags)
 | |
| {
 | |
| 	phys_addr_t this_start, this_end, cand;
 | |
| 	u64 i;
 | |
| 
 | |
| 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 | |
| 		this_start = clamp(this_start, start, end);
 | |
| 		this_end = clamp(this_end, start, end);
 | |
| 
 | |
| 		cand = round_up(this_start, align);
 | |
| 		if (cand < this_end && this_end - cand >= size)
 | |
| 			return cand;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memblock_find_range_top_down - find free area utility, in top-down
 | |
|  * @start: start of candidate range
 | |
|  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 | |
|  *       %MEMBLOCK_ALLOC_ACCESSIBLE
 | |
|  * @size: size of free area to find
 | |
|  * @align: alignment of free area to find
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  * @flags: pick from blocks based on memory attributes
 | |
|  *
 | |
|  * Utility called from memblock_find_in_range_node(), find free area top-down.
 | |
|  *
 | |
|  * Return:
 | |
|  * Found address on success, 0 on failure.
 | |
|  */
 | |
| static phys_addr_t __init_memblock
 | |
| __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 | |
| 			       phys_addr_t size, phys_addr_t align, int nid,
 | |
| 			       enum memblock_flags flags)
 | |
| {
 | |
| 	phys_addr_t this_start, this_end, cand;
 | |
| 	u64 i;
 | |
| 
 | |
| 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 | |
| 					NULL) {
 | |
| 		this_start = clamp(this_start, start, end);
 | |
| 		this_end = clamp(this_end, start, end);
 | |
| 
 | |
| 		if (this_end < size)
 | |
| 			continue;
 | |
| 
 | |
| 		cand = round_down(this_end - size, align);
 | |
| 		if (cand >= this_start)
 | |
| 			return cand;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_find_in_range_node - find free area in given range and node
 | |
|  * @size: size of free area to find
 | |
|  * @align: alignment of free area to find
 | |
|  * @start: start of candidate range
 | |
|  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 | |
|  *       %MEMBLOCK_ALLOC_ACCESSIBLE
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  * @flags: pick from blocks based on memory attributes
 | |
|  *
 | |
|  * Find @size free area aligned to @align in the specified range and node.
 | |
|  *
 | |
|  * Return:
 | |
|  * Found address on success, 0 on failure.
 | |
|  */
 | |
| static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 | |
| 					phys_addr_t align, phys_addr_t start,
 | |
| 					phys_addr_t end, int nid,
 | |
| 					enum memblock_flags flags)
 | |
| {
 | |
| 	/* pump up @end */
 | |
| 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 | |
| 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
 | |
| 		end = memblock.current_limit;
 | |
| 
 | |
| 	/* avoid allocating the first page */
 | |
| 	start = max_t(phys_addr_t, start, PAGE_SIZE);
 | |
| 	end = max(start, end);
 | |
| 
 | |
| 	if (memblock_bottom_up())
 | |
| 		return __memblock_find_range_bottom_up(start, end, size, align,
 | |
| 						       nid, flags);
 | |
| 	else
 | |
| 		return __memblock_find_range_top_down(start, end, size, align,
 | |
| 						      nid, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_find_in_range - find free area in given range
 | |
|  * @start: start of candidate range
 | |
|  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 | |
|  *       %MEMBLOCK_ALLOC_ACCESSIBLE
 | |
|  * @size: size of free area to find
 | |
|  * @align: alignment of free area to find
 | |
|  *
 | |
|  * Find @size free area aligned to @align in the specified range.
 | |
|  *
 | |
|  * Return:
 | |
|  * Found address on success, 0 on failure.
 | |
|  */
 | |
| static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 | |
| 					phys_addr_t end, phys_addr_t size,
 | |
| 					phys_addr_t align)
 | |
| {
 | |
| 	phys_addr_t ret;
 | |
| 	enum memblock_flags flags = choose_memblock_flags();
 | |
| 
 | |
| again:
 | |
| 	ret = memblock_find_in_range_node(size, align, start, end,
 | |
| 					    NUMA_NO_NODE, flags);
 | |
| 
 | |
| 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 | |
| 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 | |
| 			&size);
 | |
| 		flags &= ~MEMBLOCK_MIRROR;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 | |
| {
 | |
| 	type->total_size -= type->regions[r].size;
 | |
| 	memmove(&type->regions[r], &type->regions[r + 1],
 | |
| 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 | |
| 	type->cnt--;
 | |
| 
 | |
| 	/* Special case for empty arrays */
 | |
| 	if (type->cnt == 0) {
 | |
| 		WARN_ON(type->total_size != 0);
 | |
| 		type->regions[0].base = 0;
 | |
| 		type->regions[0].size = 0;
 | |
| 		type->regions[0].flags = 0;
 | |
| 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 | |
| /**
 | |
|  * memblock_discard - discard memory and reserved arrays if they were allocated
 | |
|  */
 | |
| void __init memblock_discard(void)
 | |
| {
 | |
| 	phys_addr_t addr, size;
 | |
| 
 | |
| 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 | |
| 		addr = __pa(memblock.reserved.regions);
 | |
| 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 | |
| 				  memblock.reserved.max);
 | |
| 		if (memblock_reserved_in_slab)
 | |
| 			kfree(memblock.reserved.regions);
 | |
| 		else
 | |
| 			memblock_free_late(addr, size);
 | |
| 	}
 | |
| 
 | |
| 	if (memblock.memory.regions != memblock_memory_init_regions) {
 | |
| 		addr = __pa(memblock.memory.regions);
 | |
| 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 | |
| 				  memblock.memory.max);
 | |
| 		if (memblock_memory_in_slab)
 | |
| 			kfree(memblock.memory.regions);
 | |
| 		else
 | |
| 			memblock_free_late(addr, size);
 | |
| 	}
 | |
| 
 | |
| 	memblock_memory = NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * memblock_double_array - double the size of the memblock regions array
 | |
|  * @type: memblock type of the regions array being doubled
 | |
|  * @new_area_start: starting address of memory range to avoid overlap with
 | |
|  * @new_area_size: size of memory range to avoid overlap with
 | |
|  *
 | |
|  * Double the size of the @type regions array. If memblock is being used to
 | |
|  * allocate memory for a new reserved regions array and there is a previously
 | |
|  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 | |
|  * waiting to be reserved, ensure the memory used by the new array does
 | |
|  * not overlap.
 | |
|  *
 | |
|  * Return:
 | |
|  * 0 on success, -1 on failure.
 | |
|  */
 | |
| static int __init_memblock memblock_double_array(struct memblock_type *type,
 | |
| 						phys_addr_t new_area_start,
 | |
| 						phys_addr_t new_area_size)
 | |
| {
 | |
| 	struct memblock_region *new_array, *old_array;
 | |
| 	phys_addr_t old_alloc_size, new_alloc_size;
 | |
| 	phys_addr_t old_size, new_size, addr, new_end;
 | |
| 	int use_slab = slab_is_available();
 | |
| 	int *in_slab;
 | |
| 
 | |
| 	/* We don't allow resizing until we know about the reserved regions
 | |
| 	 * of memory that aren't suitable for allocation
 | |
| 	 */
 | |
| 	if (!memblock_can_resize)
 | |
| 		panic("memblock: cannot resize %s array\n", type->name);
 | |
| 
 | |
| 	/* Calculate new doubled size */
 | |
| 	old_size = type->max * sizeof(struct memblock_region);
 | |
| 	new_size = old_size << 1;
 | |
| 	/*
 | |
| 	 * We need to allocated new one align to PAGE_SIZE,
 | |
| 	 *   so we can free them completely later.
 | |
| 	 */
 | |
| 	old_alloc_size = PAGE_ALIGN(old_size);
 | |
| 	new_alloc_size = PAGE_ALIGN(new_size);
 | |
| 
 | |
| 	/* Retrieve the slab flag */
 | |
| 	if (type == &memblock.memory)
 | |
| 		in_slab = &memblock_memory_in_slab;
 | |
| 	else
 | |
| 		in_slab = &memblock_reserved_in_slab;
 | |
| 
 | |
| 	/* Try to find some space for it */
 | |
| 	if (use_slab) {
 | |
| 		new_array = kmalloc(new_size, GFP_KERNEL);
 | |
| 		addr = new_array ? __pa(new_array) : 0;
 | |
| 	} else {
 | |
| 		/* only exclude range when trying to double reserved.regions */
 | |
| 		if (type != &memblock.reserved)
 | |
| 			new_area_start = new_area_size = 0;
 | |
| 
 | |
| 		addr = memblock_find_in_range(new_area_start + new_area_size,
 | |
| 						memblock.current_limit,
 | |
| 						new_alloc_size, PAGE_SIZE);
 | |
| 		if (!addr && new_area_size)
 | |
| 			addr = memblock_find_in_range(0,
 | |
| 				min(new_area_start, memblock.current_limit),
 | |
| 				new_alloc_size, PAGE_SIZE);
 | |
| 
 | |
| 		new_array = addr ? __va(addr) : NULL;
 | |
| 	}
 | |
| 	if (!addr) {
 | |
| 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 | |
| 		       type->name, type->max, type->max * 2);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	new_end = addr + new_size - 1;
 | |
| 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 | |
| 			type->name, type->max * 2, &addr, &new_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Found space, we now need to move the array over before we add the
 | |
| 	 * reserved region since it may be our reserved array itself that is
 | |
| 	 * full.
 | |
| 	 */
 | |
| 	memcpy(new_array, type->regions, old_size);
 | |
| 	memset(new_array + type->max, 0, old_size);
 | |
| 	old_array = type->regions;
 | |
| 	type->regions = new_array;
 | |
| 	type->max <<= 1;
 | |
| 
 | |
| 	/* Free old array. We needn't free it if the array is the static one */
 | |
| 	if (*in_slab)
 | |
| 		kfree(old_array);
 | |
| 	else if (old_array != memblock_memory_init_regions &&
 | |
| 		 old_array != memblock_reserved_init_regions)
 | |
| 		memblock_free(old_array, old_alloc_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 | |
| 	 * needn't do it
 | |
| 	 */
 | |
| 	if (!use_slab)
 | |
| 		BUG_ON(memblock_reserve(addr, new_alloc_size));
 | |
| 
 | |
| 	/* Update slab flag */
 | |
| 	*in_slab = use_slab;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_merge_regions - merge neighboring compatible regions
 | |
|  * @type: memblock type to scan
 | |
|  * @start_rgn: start scanning from (@start_rgn - 1)
 | |
|  * @end_rgn: end scanning at (@end_rgn - 1)
 | |
|  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
 | |
|  */
 | |
| static void __init_memblock memblock_merge_regions(struct memblock_type *type,
 | |
| 						   unsigned long start_rgn,
 | |
| 						   unsigned long end_rgn)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	if (start_rgn)
 | |
| 		i = start_rgn - 1;
 | |
| 	end_rgn = min(end_rgn, type->cnt - 1);
 | |
| 	while (i < end_rgn) {
 | |
| 		struct memblock_region *this = &type->regions[i];
 | |
| 		struct memblock_region *next = &type->regions[i + 1];
 | |
| 
 | |
| 		if (this->base + this->size != next->base ||
 | |
| 		    memblock_get_region_node(this) !=
 | |
| 		    memblock_get_region_node(next) ||
 | |
| 		    this->flags != next->flags) {
 | |
| 			BUG_ON(this->base + this->size > next->base);
 | |
| 			i++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		this->size += next->size;
 | |
| 		/* move forward from next + 1, index of which is i + 2 */
 | |
| 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 | |
| 		type->cnt--;
 | |
| 		end_rgn--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_insert_region - insert new memblock region
 | |
|  * @type:	memblock type to insert into
 | |
|  * @idx:	index for the insertion point
 | |
|  * @base:	base address of the new region
 | |
|  * @size:	size of the new region
 | |
|  * @nid:	node id of the new region
 | |
|  * @flags:	flags of the new region
 | |
|  *
 | |
|  * Insert new memblock region [@base, @base + @size) into @type at @idx.
 | |
|  * @type must already have extra room to accommodate the new region.
 | |
|  */
 | |
| static void __init_memblock memblock_insert_region(struct memblock_type *type,
 | |
| 						   int idx, phys_addr_t base,
 | |
| 						   phys_addr_t size,
 | |
| 						   int nid,
 | |
| 						   enum memblock_flags flags)
 | |
| {
 | |
| 	struct memblock_region *rgn = &type->regions[idx];
 | |
| 
 | |
| 	BUG_ON(type->cnt >= type->max);
 | |
| 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 | |
| 	rgn->base = base;
 | |
| 	rgn->size = size;
 | |
| 	rgn->flags = flags;
 | |
| 	memblock_set_region_node(rgn, nid);
 | |
| 	type->cnt++;
 | |
| 	type->total_size += size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_add_range - add new memblock region
 | |
|  * @type: memblock type to add new region into
 | |
|  * @base: base address of the new region
 | |
|  * @size: size of the new region
 | |
|  * @nid: nid of the new region
 | |
|  * @flags: flags of the new region
 | |
|  *
 | |
|  * Add new memblock region [@base, @base + @size) into @type.  The new region
 | |
|  * is allowed to overlap with existing ones - overlaps don't affect already
 | |
|  * existing regions.  @type is guaranteed to be minimal (all neighbouring
 | |
|  * compatible regions are merged) after the addition.
 | |
|  *
 | |
|  * Return:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| static int __init_memblock memblock_add_range(struct memblock_type *type,
 | |
| 				phys_addr_t base, phys_addr_t size,
 | |
| 				int nid, enum memblock_flags flags)
 | |
| {
 | |
| 	bool insert = false;
 | |
| 	phys_addr_t obase = base;
 | |
| 	phys_addr_t end = base + memblock_cap_size(base, &size);
 | |
| 	int idx, nr_new, start_rgn = -1, end_rgn;
 | |
| 	struct memblock_region *rgn;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* special case for empty array */
 | |
| 	if (type->regions[0].size == 0) {
 | |
| 		WARN_ON(type->cnt != 0 || type->total_size);
 | |
| 		type->regions[0].base = base;
 | |
| 		type->regions[0].size = size;
 | |
| 		type->regions[0].flags = flags;
 | |
| 		memblock_set_region_node(&type->regions[0], nid);
 | |
| 		type->total_size = size;
 | |
| 		type->cnt = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The worst case is when new range overlaps all existing regions,
 | |
| 	 * then we'll need type->cnt + 1 empty regions in @type. So if
 | |
| 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
 | |
| 	 * that there is enough empty regions in @type, and we can insert
 | |
| 	 * regions directly.
 | |
| 	 */
 | |
| 	if (type->cnt * 2 + 1 <= type->max)
 | |
| 		insert = true;
 | |
| 
 | |
| repeat:
 | |
| 	/*
 | |
| 	 * The following is executed twice.  Once with %false @insert and
 | |
| 	 * then with %true.  The first counts the number of regions needed
 | |
| 	 * to accommodate the new area.  The second actually inserts them.
 | |
| 	 */
 | |
| 	base = obase;
 | |
| 	nr_new = 0;
 | |
| 
 | |
| 	for_each_memblock_type(idx, type, rgn) {
 | |
| 		phys_addr_t rbase = rgn->base;
 | |
| 		phys_addr_t rend = rbase + rgn->size;
 | |
| 
 | |
| 		if (rbase >= end)
 | |
| 			break;
 | |
| 		if (rend <= base)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * @rgn overlaps.  If it separates the lower part of new
 | |
| 		 * area, insert that portion.
 | |
| 		 */
 | |
| 		if (rbase > base) {
 | |
| #ifdef CONFIG_NUMA
 | |
| 			WARN_ON(nid != memblock_get_region_node(rgn));
 | |
| #endif
 | |
| 			WARN_ON(flags != rgn->flags);
 | |
| 			nr_new++;
 | |
| 			if (insert) {
 | |
| 				if (start_rgn == -1)
 | |
| 					start_rgn = idx;
 | |
| 				end_rgn = idx + 1;
 | |
| 				memblock_insert_region(type, idx++, base,
 | |
| 						       rbase - base, nid,
 | |
| 						       flags);
 | |
| 			}
 | |
| 		}
 | |
| 		/* area below @rend is dealt with, forget about it */
 | |
| 		base = min(rend, end);
 | |
| 	}
 | |
| 
 | |
| 	/* insert the remaining portion */
 | |
| 	if (base < end) {
 | |
| 		nr_new++;
 | |
| 		if (insert) {
 | |
| 			if (start_rgn == -1)
 | |
| 				start_rgn = idx;
 | |
| 			end_rgn = idx + 1;
 | |
| 			memblock_insert_region(type, idx, base, end - base,
 | |
| 					       nid, flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_new)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this was the first round, resize array and repeat for actual
 | |
| 	 * insertions; otherwise, merge and return.
 | |
| 	 */
 | |
| 	if (!insert) {
 | |
| 		while (type->cnt + nr_new > type->max)
 | |
| 			if (memblock_double_array(type, obase, size) < 0)
 | |
| 				return -ENOMEM;
 | |
| 		insert = true;
 | |
| 		goto repeat;
 | |
| 	} else {
 | |
| 		memblock_merge_regions(type, start_rgn, end_rgn);
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_add_node - add new memblock region within a NUMA node
 | |
|  * @base: base address of the new region
 | |
|  * @size: size of the new region
 | |
|  * @nid: nid of the new region
 | |
|  * @flags: flags of the new region
 | |
|  *
 | |
|  * Add new memblock region [@base, @base + @size) to the "memory"
 | |
|  * type. See memblock_add_range() description for mode details
 | |
|  *
 | |
|  * Return:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 | |
| 				      int nid, enum memblock_flags flags)
 | |
| {
 | |
| 	phys_addr_t end = base + size - 1;
 | |
| 
 | |
| 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
 | |
| 		     &base, &end, nid, flags, (void *)_RET_IP_);
 | |
| 
 | |
| 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_add - add new memblock region
 | |
|  * @base: base address of the new region
 | |
|  * @size: size of the new region
 | |
|  *
 | |
|  * Add new memblock region [@base, @base + @size) to the "memory"
 | |
|  * type. See memblock_add_range() description for mode details
 | |
|  *
 | |
|  * Return:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	phys_addr_t end = base + size - 1;
 | |
| 
 | |
| 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 | |
| 		     &base, &end, (void *)_RET_IP_);
 | |
| 
 | |
| 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_validate_numa_coverage - check if amount of memory with
 | |
|  * no node ID assigned is less than a threshold
 | |
|  * @threshold_bytes: maximal memory size that can have unassigned node
 | |
|  * ID (in bytes).
 | |
|  *
 | |
|  * A buggy firmware may report memory that does not belong to any node.
 | |
|  * Check if amount of such memory is below @threshold_bytes.
 | |
|  *
 | |
|  * Return: true on success, false on failure.
 | |
|  */
 | |
| bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
 | |
| {
 | |
| 	unsigned long nr_pages = 0;
 | |
| 	unsigned long start_pfn, end_pfn, mem_size_mb;
 | |
| 	int nid, i;
 | |
| 
 | |
| 	/* calculate lose page */
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 | |
| 		if (!numa_valid_node(nid))
 | |
| 			nr_pages += end_pfn - start_pfn;
 | |
| 	}
 | |
| 
 | |
| 	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
 | |
| 		mem_size_mb = memblock_phys_mem_size() >> 20;
 | |
| 		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
 | |
| 		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * memblock_isolate_range - isolate given range into disjoint memblocks
 | |
|  * @type: memblock type to isolate range for
 | |
|  * @base: base of range to isolate
 | |
|  * @size: size of range to isolate
 | |
|  * @start_rgn: out parameter for the start of isolated region
 | |
|  * @end_rgn: out parameter for the end of isolated region
 | |
|  *
 | |
|  * Walk @type and ensure that regions don't cross the boundaries defined by
 | |
|  * [@base, @base + @size).  Crossing regions are split at the boundaries,
 | |
|  * which may create at most two more regions.  The index of the first
 | |
|  * region inside the range is returned in *@start_rgn and the index of the
 | |
|  * first region after the range is returned in *@end_rgn.
 | |
|  *
 | |
|  * Return:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 | |
| 					phys_addr_t base, phys_addr_t size,
 | |
| 					int *start_rgn, int *end_rgn)
 | |
| {
 | |
| 	phys_addr_t end = base + memblock_cap_size(base, &size);
 | |
| 	int idx;
 | |
| 	struct memblock_region *rgn;
 | |
| 
 | |
| 	*start_rgn = *end_rgn = 0;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* we'll create at most two more regions */
 | |
| 	while (type->cnt + 2 > type->max)
 | |
| 		if (memblock_double_array(type, base, size) < 0)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 	for_each_memblock_type(idx, type, rgn) {
 | |
| 		phys_addr_t rbase = rgn->base;
 | |
| 		phys_addr_t rend = rbase + rgn->size;
 | |
| 
 | |
| 		if (rbase >= end)
 | |
| 			break;
 | |
| 		if (rend <= base)
 | |
| 			continue;
 | |
| 
 | |
| 		if (rbase < base) {
 | |
| 			/*
 | |
| 			 * @rgn intersects from below.  Split and continue
 | |
| 			 * to process the next region - the new top half.
 | |
| 			 */
 | |
| 			rgn->base = base;
 | |
| 			rgn->size -= base - rbase;
 | |
| 			type->total_size -= base - rbase;
 | |
| 			memblock_insert_region(type, idx, rbase, base - rbase,
 | |
| 					       memblock_get_region_node(rgn),
 | |
| 					       rgn->flags);
 | |
| 		} else if (rend > end) {
 | |
| 			/*
 | |
| 			 * @rgn intersects from above.  Split and redo the
 | |
| 			 * current region - the new bottom half.
 | |
| 			 */
 | |
| 			rgn->base = end;
 | |
| 			rgn->size -= end - rbase;
 | |
| 			type->total_size -= end - rbase;
 | |
| 			memblock_insert_region(type, idx--, rbase, end - rbase,
 | |
| 					       memblock_get_region_node(rgn),
 | |
| 					       rgn->flags);
 | |
| 		} else {
 | |
| 			/* @rgn is fully contained, record it */
 | |
| 			if (!*end_rgn)
 | |
| 				*start_rgn = idx;
 | |
| 			*end_rgn = idx + 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init_memblock memblock_remove_range(struct memblock_type *type,
 | |
| 					  phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	int start_rgn, end_rgn;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = end_rgn - 1; i >= start_rgn; i--)
 | |
| 		memblock_remove_region(type, i);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	phys_addr_t end = base + size - 1;
 | |
| 
 | |
| 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 | |
| 		     &base, &end, (void *)_RET_IP_);
 | |
| 
 | |
| 	return memblock_remove_range(&memblock.memory, base, size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_free - free boot memory allocation
 | |
|  * @ptr: starting address of the  boot memory allocation
 | |
|  * @size: size of the boot memory block in bytes
 | |
|  *
 | |
|  * Free boot memory block previously allocated by memblock_alloc_xx() API.
 | |
|  * The freeing memory will not be released to the buddy allocator.
 | |
|  */
 | |
| void __init_memblock memblock_free(void *ptr, size_t size)
 | |
| {
 | |
| 	if (ptr)
 | |
| 		memblock_phys_free(__pa(ptr), size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_phys_free - free boot memory block
 | |
|  * @base: phys starting address of the  boot memory block
 | |
|  * @size: size of the boot memory block in bytes
 | |
|  *
 | |
|  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
 | |
|  * The freeing memory will not be released to the buddy allocator.
 | |
|  */
 | |
| int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	phys_addr_t end = base + size - 1;
 | |
| 
 | |
| 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 | |
| 		     &base, &end, (void *)_RET_IP_);
 | |
| 
 | |
| 	kmemleak_free_part_phys(base, size);
 | |
| 	return memblock_remove_range(&memblock.reserved, base, size);
 | |
| }
 | |
| 
 | |
| int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	phys_addr_t end = base + size - 1;
 | |
| 
 | |
| 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 | |
| 		     &base, &end, (void *)_RET_IP_);
 | |
| 
 | |
| 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | |
| int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	phys_addr_t end = base + size - 1;
 | |
| 
 | |
| 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 | |
| 		     &base, &end, (void *)_RET_IP_);
 | |
| 
 | |
| 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * memblock_setclr_flag - set or clear flag for a memory region
 | |
|  * @type: memblock type to set/clear flag for
 | |
|  * @base: base address of the region
 | |
|  * @size: size of the region
 | |
|  * @set: set or clear the flag
 | |
|  * @flag: the flag to update
 | |
|  *
 | |
|  * This function isolates region [@base, @base + @size), and sets/clears flag
 | |
|  *
 | |
|  * Return: 0 on success, -errno on failure.
 | |
|  */
 | |
| static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
 | |
| 				phys_addr_t base, phys_addr_t size, int set, int flag)
 | |
| {
 | |
| 	int i, ret, start_rgn, end_rgn;
 | |
| 
 | |
| 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = start_rgn; i < end_rgn; i++) {
 | |
| 		struct memblock_region *r = &type->regions[i];
 | |
| 
 | |
| 		if (set)
 | |
| 			r->flags |= flag;
 | |
| 		else
 | |
| 			r->flags &= ~flag;
 | |
| 	}
 | |
| 
 | |
| 	memblock_merge_regions(type, start_rgn, end_rgn);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 | |
|  * @base: the base phys addr of the region
 | |
|  * @size: the size of the region
 | |
|  *
 | |
|  * Return: 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 | |
|  * @base: the base phys addr of the region
 | |
|  * @size: the size of the region
 | |
|  *
 | |
|  * Return: 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 | |
|  * @base: the base phys addr of the region
 | |
|  * @size: the size of the region
 | |
|  *
 | |
|  * Return: 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	if (!mirrored_kernelcore)
 | |
| 		return 0;
 | |
| 
 | |
| 	system_has_some_mirror = true;
 | |
| 
 | |
| 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 | |
|  * @base: the base phys addr of the region
 | |
|  * @size: the size of the region
 | |
|  *
 | |
|  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
 | |
|  * direct mapping of the physical memory. These regions will still be
 | |
|  * covered by the memory map. The struct page representing NOMAP memory
 | |
|  * frames in the memory map will be PageReserved()
 | |
|  *
 | |
|  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
 | |
|  * memblock, the caller must inform kmemleak to ignore that memory
 | |
|  *
 | |
|  * Return: 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 | |
|  * @base: the base phys addr of the region
 | |
|  * @size: the size of the region
 | |
|  *
 | |
|  * Return: 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
 | |
|  * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
 | |
|  * for this region.
 | |
|  * @base: the base phys addr of the region
 | |
|  * @size: the size of the region
 | |
|  *
 | |
|  * struct pages will not be initialized for reserved memory regions marked with
 | |
|  * %MEMBLOCK_RSRV_NOINIT.
 | |
|  *
 | |
|  * Return: 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
 | |
| 				    MEMBLOCK_RSRV_NOINIT);
 | |
| }
 | |
| 
 | |
| static bool should_skip_region(struct memblock_type *type,
 | |
| 			       struct memblock_region *m,
 | |
| 			       int nid, int flags)
 | |
| {
 | |
| 	int m_nid = memblock_get_region_node(m);
 | |
| 
 | |
| 	/* we never skip regions when iterating memblock.reserved or physmem */
 | |
| 	if (type != memblock_memory)
 | |
| 		return false;
 | |
| 
 | |
| 	/* only memory regions are associated with nodes, check it */
 | |
| 	if (numa_valid_node(nid) && nid != m_nid)
 | |
| 		return true;
 | |
| 
 | |
| 	/* skip hotpluggable memory regions if needed */
 | |
| 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
 | |
| 	    !(flags & MEMBLOCK_HOTPLUG))
 | |
| 		return true;
 | |
| 
 | |
| 	/* if we want mirror memory skip non-mirror memory regions */
 | |
| 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 | |
| 		return true;
 | |
| 
 | |
| 	/* skip nomap memory unless we were asked for it explicitly */
 | |
| 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 | |
| 		return true;
 | |
| 
 | |
| 	/* skip driver-managed memory unless we were asked for it explicitly */
 | |
| 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __next_mem_range - next function for for_each_free_mem_range() etc.
 | |
|  * @idx: pointer to u64 loop variable
 | |
|  * @nid: node selector, %NUMA_NO_NODE for all nodes
 | |
|  * @flags: pick from blocks based on memory attributes
 | |
|  * @type_a: pointer to memblock_type from where the range is taken
 | |
|  * @type_b: pointer to memblock_type which excludes memory from being taken
 | |
|  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 | |
|  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 | |
|  * @out_nid: ptr to int for nid of the range, can be %NULL
 | |
|  *
 | |
|  * Find the first area from *@idx which matches @nid, fill the out
 | |
|  * parameters, and update *@idx for the next iteration.  The lower 32bit of
 | |
|  * *@idx contains index into type_a and the upper 32bit indexes the
 | |
|  * areas before each region in type_b.	For example, if type_b regions
 | |
|  * look like the following,
 | |
|  *
 | |
|  *	0:[0-16), 1:[32-48), 2:[128-130)
 | |
|  *
 | |
|  * The upper 32bit indexes the following regions.
 | |
|  *
 | |
|  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 | |
|  *
 | |
|  * As both region arrays are sorted, the function advances the two indices
 | |
|  * in lockstep and returns each intersection.
 | |
|  */
 | |
| void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
 | |
| 		      struct memblock_type *type_a,
 | |
| 		      struct memblock_type *type_b, phys_addr_t *out_start,
 | |
| 		      phys_addr_t *out_end, int *out_nid)
 | |
| {
 | |
| 	int idx_a = *idx & 0xffffffff;
 | |
| 	int idx_b = *idx >> 32;
 | |
| 
 | |
| 	for (; idx_a < type_a->cnt; idx_a++) {
 | |
| 		struct memblock_region *m = &type_a->regions[idx_a];
 | |
| 
 | |
| 		phys_addr_t m_start = m->base;
 | |
| 		phys_addr_t m_end = m->base + m->size;
 | |
| 		int	    m_nid = memblock_get_region_node(m);
 | |
| 
 | |
| 		if (should_skip_region(type_a, m, nid, flags))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!type_b) {
 | |
| 			if (out_start)
 | |
| 				*out_start = m_start;
 | |
| 			if (out_end)
 | |
| 				*out_end = m_end;
 | |
| 			if (out_nid)
 | |
| 				*out_nid = m_nid;
 | |
| 			idx_a++;
 | |
| 			*idx = (u32)idx_a | (u64)idx_b << 32;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* scan areas before each reservation */
 | |
| 		for (; idx_b < type_b->cnt + 1; idx_b++) {
 | |
| 			struct memblock_region *r;
 | |
| 			phys_addr_t r_start;
 | |
| 			phys_addr_t r_end;
 | |
| 
 | |
| 			r = &type_b->regions[idx_b];
 | |
| 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 | |
| 			r_end = idx_b < type_b->cnt ?
 | |
| 				r->base : PHYS_ADDR_MAX;
 | |
| 
 | |
| 			/*
 | |
| 			 * if idx_b advanced past idx_a,
 | |
| 			 * break out to advance idx_a
 | |
| 			 */
 | |
| 			if (r_start >= m_end)
 | |
| 				break;
 | |
| 			/* if the two regions intersect, we're done */
 | |
| 			if (m_start < r_end) {
 | |
| 				if (out_start)
 | |
| 					*out_start =
 | |
| 						max(m_start, r_start);
 | |
| 				if (out_end)
 | |
| 					*out_end = min(m_end, r_end);
 | |
| 				if (out_nid)
 | |
| 					*out_nid = m_nid;
 | |
| 				/*
 | |
| 				 * The region which ends first is
 | |
| 				 * advanced for the next iteration.
 | |
| 				 */
 | |
| 				if (m_end <= r_end)
 | |
| 					idx_a++;
 | |
| 				else
 | |
| 					idx_b++;
 | |
| 				*idx = (u32)idx_a | (u64)idx_b << 32;
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* signal end of iteration */
 | |
| 	*idx = ULLONG_MAX;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 | |
|  *
 | |
|  * @idx: pointer to u64 loop variable
 | |
|  * @nid: node selector, %NUMA_NO_NODE for all nodes
 | |
|  * @flags: pick from blocks based on memory attributes
 | |
|  * @type_a: pointer to memblock_type from where the range is taken
 | |
|  * @type_b: pointer to memblock_type which excludes memory from being taken
 | |
|  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 | |
|  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 | |
|  * @out_nid: ptr to int for nid of the range, can be %NULL
 | |
|  *
 | |
|  * Finds the next range from type_a which is not marked as unsuitable
 | |
|  * in type_b.
 | |
|  *
 | |
|  * Reverse of __next_mem_range().
 | |
|  */
 | |
| void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
 | |
| 					  enum memblock_flags flags,
 | |
| 					  struct memblock_type *type_a,
 | |
| 					  struct memblock_type *type_b,
 | |
| 					  phys_addr_t *out_start,
 | |
| 					  phys_addr_t *out_end, int *out_nid)
 | |
| {
 | |
| 	int idx_a = *idx & 0xffffffff;
 | |
| 	int idx_b = *idx >> 32;
 | |
| 
 | |
| 	if (*idx == (u64)ULLONG_MAX) {
 | |
| 		idx_a = type_a->cnt - 1;
 | |
| 		if (type_b != NULL)
 | |
| 			idx_b = type_b->cnt;
 | |
| 		else
 | |
| 			idx_b = 0;
 | |
| 	}
 | |
| 
 | |
| 	for (; idx_a >= 0; idx_a--) {
 | |
| 		struct memblock_region *m = &type_a->regions[idx_a];
 | |
| 
 | |
| 		phys_addr_t m_start = m->base;
 | |
| 		phys_addr_t m_end = m->base + m->size;
 | |
| 		int m_nid = memblock_get_region_node(m);
 | |
| 
 | |
| 		if (should_skip_region(type_a, m, nid, flags))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!type_b) {
 | |
| 			if (out_start)
 | |
| 				*out_start = m_start;
 | |
| 			if (out_end)
 | |
| 				*out_end = m_end;
 | |
| 			if (out_nid)
 | |
| 				*out_nid = m_nid;
 | |
| 			idx_a--;
 | |
| 			*idx = (u32)idx_a | (u64)idx_b << 32;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* scan areas before each reservation */
 | |
| 		for (; idx_b >= 0; idx_b--) {
 | |
| 			struct memblock_region *r;
 | |
| 			phys_addr_t r_start;
 | |
| 			phys_addr_t r_end;
 | |
| 
 | |
| 			r = &type_b->regions[idx_b];
 | |
| 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 | |
| 			r_end = idx_b < type_b->cnt ?
 | |
| 				r->base : PHYS_ADDR_MAX;
 | |
| 			/*
 | |
| 			 * if idx_b advanced past idx_a,
 | |
| 			 * break out to advance idx_a
 | |
| 			 */
 | |
| 
 | |
| 			if (r_end <= m_start)
 | |
| 				break;
 | |
| 			/* if the two regions intersect, we're done */
 | |
| 			if (m_end > r_start) {
 | |
| 				if (out_start)
 | |
| 					*out_start = max(m_start, r_start);
 | |
| 				if (out_end)
 | |
| 					*out_end = min(m_end, r_end);
 | |
| 				if (out_nid)
 | |
| 					*out_nid = m_nid;
 | |
| 				if (m_start >= r_start)
 | |
| 					idx_a--;
 | |
| 				else
 | |
| 					idx_b--;
 | |
| 				*idx = (u32)idx_a | (u64)idx_b << 32;
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* signal end of iteration */
 | |
| 	*idx = ULLONG_MAX;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common iterator interface used to define for_each_mem_pfn_range().
 | |
|  */
 | |
| void __init_memblock __next_mem_pfn_range(int *idx, int nid,
 | |
| 				unsigned long *out_start_pfn,
 | |
| 				unsigned long *out_end_pfn, int *out_nid)
 | |
| {
 | |
| 	struct memblock_type *type = &memblock.memory;
 | |
| 	struct memblock_region *r;
 | |
| 	int r_nid;
 | |
| 
 | |
| 	while (++*idx < type->cnt) {
 | |
| 		r = &type->regions[*idx];
 | |
| 		r_nid = memblock_get_region_node(r);
 | |
| 
 | |
| 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
 | |
| 			continue;
 | |
| 		if (!numa_valid_node(nid) || nid == r_nid)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (*idx >= type->cnt) {
 | |
| 		*idx = -1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (out_start_pfn)
 | |
| 		*out_start_pfn = PFN_UP(r->base);
 | |
| 	if (out_end_pfn)
 | |
| 		*out_end_pfn = PFN_DOWN(r->base + r->size);
 | |
| 	if (out_nid)
 | |
| 		*out_nid = r_nid;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_set_node - set node ID on memblock regions
 | |
|  * @base: base of area to set node ID for
 | |
|  * @size: size of area to set node ID for
 | |
|  * @type: memblock type to set node ID for
 | |
|  * @nid: node ID to set
 | |
|  *
 | |
|  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
 | |
|  * Regions which cross the area boundaries are split as necessary.
 | |
|  *
 | |
|  * Return:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
 | |
| 				      struct memblock_type *type, int nid)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	int start_rgn, end_rgn;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = start_rgn; i < end_rgn; i++)
 | |
| 		memblock_set_region_node(&type->regions[i], nid);
 | |
| 
 | |
| 	memblock_merge_regions(type, start_rgn, end_rgn);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| /**
 | |
|  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
 | |
|  *
 | |
|  * @idx: pointer to u64 loop variable
 | |
|  * @zone: zone in which all of the memory blocks reside
 | |
|  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
 | |
|  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
 | |
|  *
 | |
|  * This function is meant to be a zone/pfn specific wrapper for the
 | |
|  * for_each_mem_range type iterators. Specifically they are used in the
 | |
|  * deferred memory init routines and as such we were duplicating much of
 | |
|  * this logic throughout the code. So instead of having it in multiple
 | |
|  * locations it seemed like it would make more sense to centralize this to
 | |
|  * one new iterator that does everything they need.
 | |
|  */
 | |
| void __init_memblock
 | |
| __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
 | |
| 			     unsigned long *out_spfn, unsigned long *out_epfn)
 | |
| {
 | |
| 	int zone_nid = zone_to_nid(zone);
 | |
| 	phys_addr_t spa, epa;
 | |
| 
 | |
| 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
 | |
| 			 &memblock.memory, &memblock.reserved,
 | |
| 			 &spa, &epa, NULL);
 | |
| 
 | |
| 	while (*idx != U64_MAX) {
 | |
| 		unsigned long epfn = PFN_DOWN(epa);
 | |
| 		unsigned long spfn = PFN_UP(spa);
 | |
| 
 | |
| 		/*
 | |
| 		 * Verify the end is at least past the start of the zone and
 | |
| 		 * that we have at least one PFN to initialize.
 | |
| 		 */
 | |
| 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
 | |
| 			/* if we went too far just stop searching */
 | |
| 			if (zone_end_pfn(zone) <= spfn) {
 | |
| 				*idx = U64_MAX;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (out_spfn)
 | |
| 				*out_spfn = max(zone->zone_start_pfn, spfn);
 | |
| 			if (out_epfn)
 | |
| 				*out_epfn = min(zone_end_pfn(zone), epfn);
 | |
| 
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
 | |
| 				 &memblock.memory, &memblock.reserved,
 | |
| 				 &spa, &epa, NULL);
 | |
| 	}
 | |
| 
 | |
| 	/* signal end of iteration */
 | |
| 	if (out_spfn)
 | |
| 		*out_spfn = ULONG_MAX;
 | |
| 	if (out_epfn)
 | |
| 		*out_epfn = 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 | |
| 
 | |
| /**
 | |
|  * memblock_alloc_range_nid - allocate boot memory block
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @start: the lower bound of the memory region to allocate (phys address)
 | |
|  * @end: the upper bound of the memory region to allocate (phys address)
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  * @exact_nid: control the allocation fall back to other nodes
 | |
|  *
 | |
|  * The allocation is performed from memory region limited by
 | |
|  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
 | |
|  *
 | |
|  * If the specified node can not hold the requested memory and @exact_nid
 | |
|  * is false, the allocation falls back to any node in the system.
 | |
|  *
 | |
|  * For systems with memory mirroring, the allocation is attempted first
 | |
|  * from the regions with mirroring enabled and then retried from any
 | |
|  * memory region.
 | |
|  *
 | |
|  * In addition, function using kmemleak_alloc_phys for allocated boot
 | |
|  * memory block, it is never reported as leaks.
 | |
|  *
 | |
|  * Return:
 | |
|  * Physical address of allocated memory block on success, %0 on failure.
 | |
|  */
 | |
| phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
 | |
| 					phys_addr_t align, phys_addr_t start,
 | |
| 					phys_addr_t end, int nid,
 | |
| 					bool exact_nid)
 | |
| {
 | |
| 	enum memblock_flags flags = choose_memblock_flags();
 | |
| 	phys_addr_t found;
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect any accidental use of these APIs after slab is ready, as at
 | |
| 	 * this moment memblock may be deinitialized already and its
 | |
| 	 * internal data may be destroyed (after execution of memblock_free_all)
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(slab_is_available())) {
 | |
| 		void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
 | |
| 
 | |
| 		return vaddr ? virt_to_phys(vaddr) : 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!align) {
 | |
| 		/* Can't use WARNs this early in boot on powerpc */
 | |
| 		dump_stack();
 | |
| 		align = SMP_CACHE_BYTES;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	found = memblock_find_in_range_node(size, align, start, end, nid,
 | |
| 					    flags);
 | |
| 	if (found && !memblock_reserve(found, size))
 | |
| 		goto done;
 | |
| 
 | |
| 	if (numa_valid_node(nid) && !exact_nid) {
 | |
| 		found = memblock_find_in_range_node(size, align, start,
 | |
| 						    end, NUMA_NO_NODE,
 | |
| 						    flags);
 | |
| 		if (found && !memblock_reserve(found, size))
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & MEMBLOCK_MIRROR) {
 | |
| 		flags &= ~MEMBLOCK_MIRROR;
 | |
| 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 | |
| 			&size);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| done:
 | |
| 	/*
 | |
| 	 * Skip kmemleak for those places like kasan_init() and
 | |
| 	 * early_pgtable_alloc() due to high volume.
 | |
| 	 */
 | |
| 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
 | |
| 		/*
 | |
| 		 * Memblock allocated blocks are never reported as
 | |
| 		 * leaks. This is because many of these blocks are
 | |
| 		 * only referred via the physical address which is
 | |
| 		 * not looked up by kmemleak.
 | |
| 		 */
 | |
| 		kmemleak_alloc_phys(found, size, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
 | |
| 	 * require memory to be accepted before it can be used by the
 | |
| 	 * guest.
 | |
| 	 *
 | |
| 	 * Accept the memory of the allocated buffer.
 | |
| 	 */
 | |
| 	accept_memory(found, size);
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_phys_alloc_range - allocate a memory block inside specified range
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @start: the lower bound of the memory region to allocate (physical address)
 | |
|  * @end: the upper bound of the memory region to allocate (physical address)
 | |
|  *
 | |
|  * Allocate @size bytes in the between @start and @end.
 | |
|  *
 | |
|  * Return: physical address of the allocated memory block on success,
 | |
|  * %0 on failure.
 | |
|  */
 | |
| phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
 | |
| 					     phys_addr_t align,
 | |
| 					     phys_addr_t start,
 | |
| 					     phys_addr_t end)
 | |
| {
 | |
| 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
 | |
| 		     __func__, (u64)size, (u64)align, &start, &end,
 | |
| 		     (void *)_RET_IP_);
 | |
| 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
 | |
| 					false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * Allocates memory block from the specified NUMA node. If the node
 | |
|  * has no available memory, attempts to allocated from any node in the
 | |
|  * system.
 | |
|  *
 | |
|  * Return: physical address of the allocated memory block on success,
 | |
|  * %0 on failure.
 | |
|  */
 | |
| phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 | |
| {
 | |
| 	return memblock_alloc_range_nid(size, align, 0,
 | |
| 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_alloc_internal - allocate boot memory block
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @min_addr: the lower bound of the memory region to allocate (phys address)
 | |
|  * @max_addr: the upper bound of the memory region to allocate (phys address)
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  * @exact_nid: control the allocation fall back to other nodes
 | |
|  *
 | |
|  * Allocates memory block using memblock_alloc_range_nid() and
 | |
|  * converts the returned physical address to virtual.
 | |
|  *
 | |
|  * The @min_addr limit is dropped if it can not be satisfied and the allocation
 | |
|  * will fall back to memory below @min_addr. Other constraints, such
 | |
|  * as node and mirrored memory will be handled again in
 | |
|  * memblock_alloc_range_nid().
 | |
|  *
 | |
|  * Return:
 | |
|  * Virtual address of allocated memory block on success, NULL on failure.
 | |
|  */
 | |
| static void * __init memblock_alloc_internal(
 | |
| 				phys_addr_t size, phys_addr_t align,
 | |
| 				phys_addr_t min_addr, phys_addr_t max_addr,
 | |
| 				int nid, bool exact_nid)
 | |
| {
 | |
| 	phys_addr_t alloc;
 | |
| 
 | |
| 
 | |
| 	if (max_addr > memblock.current_limit)
 | |
| 		max_addr = memblock.current_limit;
 | |
| 
 | |
| 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
 | |
| 					exact_nid);
 | |
| 
 | |
| 	/* retry allocation without lower limit */
 | |
| 	if (!alloc && min_addr)
 | |
| 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
 | |
| 						exact_nid);
 | |
| 
 | |
| 	if (!alloc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return phys_to_virt(alloc);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
 | |
|  * without zeroing memory
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @min_addr: the lower bound of the memory region from where the allocation
 | |
|  *	  is preferred (phys address)
 | |
|  * @max_addr: the upper bound of the memory region from where the allocation
 | |
|  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
 | |
|  *	      allocate only from memory limited by memblock.current_limit value
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * Public function, provides additional debug information (including caller
 | |
|  * info), if enabled. Does not zero allocated memory.
 | |
|  *
 | |
|  * Return:
 | |
|  * Virtual address of allocated memory block on success, NULL on failure.
 | |
|  */
 | |
| void * __init memblock_alloc_exact_nid_raw(
 | |
| 			phys_addr_t size, phys_addr_t align,
 | |
| 			phys_addr_t min_addr, phys_addr_t max_addr,
 | |
| 			int nid)
 | |
| {
 | |
| 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
 | |
| 		     __func__, (u64)size, (u64)align, nid, &min_addr,
 | |
| 		     &max_addr, (void *)_RET_IP_);
 | |
| 
 | |
| 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
 | |
| 				       true);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
 | |
|  * memory and without panicking
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @min_addr: the lower bound of the memory region from where the allocation
 | |
|  *	  is preferred (phys address)
 | |
|  * @max_addr: the upper bound of the memory region from where the allocation
 | |
|  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
 | |
|  *	      allocate only from memory limited by memblock.current_limit value
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * Public function, provides additional debug information (including caller
 | |
|  * info), if enabled. Does not zero allocated memory, does not panic if request
 | |
|  * cannot be satisfied.
 | |
|  *
 | |
|  * Return:
 | |
|  * Virtual address of allocated memory block on success, NULL on failure.
 | |
|  */
 | |
| void * __init memblock_alloc_try_nid_raw(
 | |
| 			phys_addr_t size, phys_addr_t align,
 | |
| 			phys_addr_t min_addr, phys_addr_t max_addr,
 | |
| 			int nid)
 | |
| {
 | |
| 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
 | |
| 		     __func__, (u64)size, (u64)align, nid, &min_addr,
 | |
| 		     &max_addr, (void *)_RET_IP_);
 | |
| 
 | |
| 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
 | |
| 				       false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_alloc_try_nid - allocate boot memory block
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @min_addr: the lower bound of the memory region from where the allocation
 | |
|  *	  is preferred (phys address)
 | |
|  * @max_addr: the upper bound of the memory region from where the allocation
 | |
|  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
 | |
|  *	      allocate only from memory limited by memblock.current_limit value
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * Public function, provides additional debug information (including caller
 | |
|  * info), if enabled. This function zeroes the allocated memory.
 | |
|  *
 | |
|  * Return:
 | |
|  * Virtual address of allocated memory block on success, NULL on failure.
 | |
|  */
 | |
| void * __init memblock_alloc_try_nid(
 | |
| 			phys_addr_t size, phys_addr_t align,
 | |
| 			phys_addr_t min_addr, phys_addr_t max_addr,
 | |
| 			int nid)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
 | |
| 		     __func__, (u64)size, (u64)align, nid, &min_addr,
 | |
| 		     &max_addr, (void *)_RET_IP_);
 | |
| 	ptr = memblock_alloc_internal(size, align,
 | |
| 					   min_addr, max_addr, nid, false);
 | |
| 	if (ptr)
 | |
| 		memset(ptr, 0, size);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memblock_alloc_or_panic - Try to allocate memory and panic on failure
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @func: caller func name
 | |
|  *
 | |
|  * This function attempts to allocate memory using memblock_alloc,
 | |
|  * and in case of failure, it calls panic with the formatted message.
 | |
|  * This function should not be used directly, please use the macro memblock_alloc_or_panic.
 | |
|  */
 | |
| void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align,
 | |
| 				       const char *func)
 | |
| {
 | |
| 	void *addr = memblock_alloc(size, align);
 | |
| 
 | |
| 	if (unlikely(!addr))
 | |
| 		panic("%s: Failed to allocate %pap bytes\n", func, &size);
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_free_late - free pages directly to buddy allocator
 | |
|  * @base: phys starting address of the  boot memory block
 | |
|  * @size: size of the boot memory block in bytes
 | |
|  *
 | |
|  * This is only useful when the memblock allocator has already been torn
 | |
|  * down, but we are still initializing the system.  Pages are released directly
 | |
|  * to the buddy allocator.
 | |
|  */
 | |
| void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	phys_addr_t cursor, end;
 | |
| 
 | |
| 	end = base + size - 1;
 | |
| 	memblock_dbg("%s: [%pa-%pa] %pS\n",
 | |
| 		     __func__, &base, &end, (void *)_RET_IP_);
 | |
| 	kmemleak_free_part_phys(base, size);
 | |
| 	cursor = PFN_UP(base);
 | |
| 	end = PFN_DOWN(base + size);
 | |
| 
 | |
| 	for (; cursor < end; cursor++) {
 | |
| 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
 | |
| 		totalram_pages_inc();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remaining API functions
 | |
|  */
 | |
| 
 | |
| phys_addr_t __init_memblock memblock_phys_mem_size(void)
 | |
| {
 | |
| 	return memblock.memory.total_size;
 | |
| }
 | |
| 
 | |
| phys_addr_t __init_memblock memblock_reserved_size(void)
 | |
| {
 | |
| 	return memblock.reserved.total_size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_estimated_nr_free_pages - return estimated number of free pages
 | |
|  * from memblock point of view
 | |
|  *
 | |
|  * During bootup, subsystems might need a rough estimate of the number of free
 | |
|  * pages in the whole system, before precise numbers are available from the
 | |
|  * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
 | |
|  * obtained from the buddy might be very imprecise during bootup.
 | |
|  *
 | |
|  * Return:
 | |
|  * An estimated number of free pages from memblock point of view.
 | |
|  */
 | |
| unsigned long __init memblock_estimated_nr_free_pages(void)
 | |
| {
 | |
| 	return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
 | |
| }
 | |
| 
 | |
| /* lowest address */
 | |
| phys_addr_t __init_memblock memblock_start_of_DRAM(void)
 | |
| {
 | |
| 	return memblock.memory.regions[0].base;
 | |
| }
 | |
| 
 | |
| phys_addr_t __init_memblock memblock_end_of_DRAM(void)
 | |
| {
 | |
| 	int idx = memblock.memory.cnt - 1;
 | |
| 
 | |
| 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
 | |
| }
 | |
| 
 | |
| static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
 | |
| {
 | |
| 	phys_addr_t max_addr = PHYS_ADDR_MAX;
 | |
| 	struct memblock_region *r;
 | |
| 
 | |
| 	/*
 | |
| 	 * translate the memory @limit size into the max address within one of
 | |
| 	 * the memory memblock regions, if the @limit exceeds the total size
 | |
| 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
 | |
| 	 */
 | |
| 	for_each_mem_region(r) {
 | |
| 		if (limit <= r->size) {
 | |
| 			max_addr = r->base + limit;
 | |
| 			break;
 | |
| 		}
 | |
| 		limit -= r->size;
 | |
| 	}
 | |
| 
 | |
| 	return max_addr;
 | |
| }
 | |
| 
 | |
| void __init memblock_enforce_memory_limit(phys_addr_t limit)
 | |
| {
 | |
| 	phys_addr_t max_addr;
 | |
| 
 | |
| 	if (!limit)
 | |
| 		return;
 | |
| 
 | |
| 	max_addr = __find_max_addr(limit);
 | |
| 
 | |
| 	/* @limit exceeds the total size of the memory, do nothing */
 | |
| 	if (max_addr == PHYS_ADDR_MAX)
 | |
| 		return;
 | |
| 
 | |
| 	/* truncate both memory and reserved regions */
 | |
| 	memblock_remove_range(&memblock.memory, max_addr,
 | |
| 			      PHYS_ADDR_MAX);
 | |
| 	memblock_remove_range(&memblock.reserved, max_addr,
 | |
| 			      PHYS_ADDR_MAX);
 | |
| }
 | |
| 
 | |
| void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	int start_rgn, end_rgn;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return;
 | |
| 
 | |
| 	if (!memblock_memory->total_size) {
 | |
| 		pr_warn("%s: No memory registered yet\n", __func__);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = memblock_isolate_range(&memblock.memory, base, size,
 | |
| 						&start_rgn, &end_rgn);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	/* remove all the MAP regions */
 | |
| 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
 | |
| 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
 | |
| 			memblock_remove_region(&memblock.memory, i);
 | |
| 
 | |
| 	for (i = start_rgn - 1; i >= 0; i--)
 | |
| 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
 | |
| 			memblock_remove_region(&memblock.memory, i);
 | |
| 
 | |
| 	/* truncate the reserved regions */
 | |
| 	memblock_remove_range(&memblock.reserved, 0, base);
 | |
| 	memblock_remove_range(&memblock.reserved,
 | |
| 			base + size, PHYS_ADDR_MAX);
 | |
| }
 | |
| 
 | |
| void __init memblock_mem_limit_remove_map(phys_addr_t limit)
 | |
| {
 | |
| 	phys_addr_t max_addr;
 | |
| 
 | |
| 	if (!limit)
 | |
| 		return;
 | |
| 
 | |
| 	max_addr = __find_max_addr(limit);
 | |
| 
 | |
| 	/* @limit exceeds the total size of the memory, do nothing */
 | |
| 	if (max_addr == PHYS_ADDR_MAX)
 | |
| 		return;
 | |
| 
 | |
| 	memblock_cap_memory_range(0, max_addr);
 | |
| }
 | |
| 
 | |
| static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
 | |
| {
 | |
| 	unsigned int left = 0, right = type->cnt;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int mid = (right + left) / 2;
 | |
| 
 | |
| 		if (addr < type->regions[mid].base)
 | |
| 			right = mid;
 | |
| 		else if (addr >= (type->regions[mid].base +
 | |
| 				  type->regions[mid].size))
 | |
| 			left = mid + 1;
 | |
| 		else
 | |
| 			return mid;
 | |
| 	} while (left < right);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| bool __init_memblock memblock_is_reserved(phys_addr_t addr)
 | |
| {
 | |
| 	return memblock_search(&memblock.reserved, addr) != -1;
 | |
| }
 | |
| 
 | |
| bool __init_memblock memblock_is_memory(phys_addr_t addr)
 | |
| {
 | |
| 	return memblock_search(&memblock.memory, addr) != -1;
 | |
| }
 | |
| 
 | |
| bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
 | |
| {
 | |
| 	int i = memblock_search(&memblock.memory, addr);
 | |
| 
 | |
| 	if (i == -1)
 | |
| 		return false;
 | |
| 	return !memblock_is_nomap(&memblock.memory.regions[i]);
 | |
| }
 | |
| 
 | |
| int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
 | |
| 			 unsigned long *start_pfn, unsigned long *end_pfn)
 | |
| {
 | |
| 	struct memblock_type *type = &memblock.memory;
 | |
| 	int mid = memblock_search(type, PFN_PHYS(pfn));
 | |
| 
 | |
| 	if (mid == -1)
 | |
| 		return NUMA_NO_NODE;
 | |
| 
 | |
| 	*start_pfn = PFN_DOWN(type->regions[mid].base);
 | |
| 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
 | |
| 
 | |
| 	return memblock_get_region_node(&type->regions[mid]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_is_region_memory - check if a region is a subset of memory
 | |
|  * @base: base of region to check
 | |
|  * @size: size of region to check
 | |
|  *
 | |
|  * Check if the region [@base, @base + @size) is a subset of a memory block.
 | |
|  *
 | |
|  * Return:
 | |
|  * 0 if false, non-zero if true
 | |
|  */
 | |
| bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	int idx = memblock_search(&memblock.memory, base);
 | |
| 	phys_addr_t end = base + memblock_cap_size(base, &size);
 | |
| 
 | |
| 	if (idx == -1)
 | |
| 		return false;
 | |
| 	return (memblock.memory.regions[idx].base +
 | |
| 		 memblock.memory.regions[idx].size) >= end;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_is_region_reserved - check if a region intersects reserved memory
 | |
|  * @base: base of region to check
 | |
|  * @size: size of region to check
 | |
|  *
 | |
|  * Check if the region [@base, @base + @size) intersects a reserved
 | |
|  * memory block.
 | |
|  *
 | |
|  * Return:
 | |
|  * True if they intersect, false if not.
 | |
|  */
 | |
| bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	return memblock_overlaps_region(&memblock.reserved, base, size);
 | |
| }
 | |
| 
 | |
| void __init_memblock memblock_trim_memory(phys_addr_t align)
 | |
| {
 | |
| 	phys_addr_t start, end, orig_start, orig_end;
 | |
| 	struct memblock_region *r;
 | |
| 
 | |
| 	for_each_mem_region(r) {
 | |
| 		orig_start = r->base;
 | |
| 		orig_end = r->base + r->size;
 | |
| 		start = round_up(orig_start, align);
 | |
| 		end = round_down(orig_end, align);
 | |
| 
 | |
| 		if (start == orig_start && end == orig_end)
 | |
| 			continue;
 | |
| 
 | |
| 		if (start < end) {
 | |
| 			r->base = start;
 | |
| 			r->size = end - start;
 | |
| 		} else {
 | |
| 			memblock_remove_region(&memblock.memory,
 | |
| 					       r - memblock.memory.regions);
 | |
| 			r--;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init_memblock memblock_set_current_limit(phys_addr_t limit)
 | |
| {
 | |
| 	memblock.current_limit = limit;
 | |
| }
 | |
| 
 | |
| phys_addr_t __init_memblock memblock_get_current_limit(void)
 | |
| {
 | |
| 	return memblock.current_limit;
 | |
| }
 | |
| 
 | |
| static void __init_memblock memblock_dump(struct memblock_type *type)
 | |
| {
 | |
| 	phys_addr_t base, end, size;
 | |
| 	enum memblock_flags flags;
 | |
| 	int idx;
 | |
| 	struct memblock_region *rgn;
 | |
| 
 | |
| 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
 | |
| 
 | |
| 	for_each_memblock_type(idx, type, rgn) {
 | |
| 		char nid_buf[32] = "";
 | |
| 
 | |
| 		base = rgn->base;
 | |
| 		size = rgn->size;
 | |
| 		end = base + size - 1;
 | |
| 		flags = rgn->flags;
 | |
| #ifdef CONFIG_NUMA
 | |
| 		if (numa_valid_node(memblock_get_region_node(rgn)))
 | |
| 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
 | |
| 				 memblock_get_region_node(rgn));
 | |
| #endif
 | |
| 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
 | |
| 			type->name, idx, &base, &end, &size, nid_buf, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init_memblock __memblock_dump_all(void)
 | |
| {
 | |
| 	pr_info("MEMBLOCK configuration:\n");
 | |
| 	pr_info(" memory size = %pa reserved size = %pa\n",
 | |
| 		&memblock.memory.total_size,
 | |
| 		&memblock.reserved.total_size);
 | |
| 
 | |
| 	memblock_dump(&memblock.memory);
 | |
| 	memblock_dump(&memblock.reserved);
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | |
| 	memblock_dump(&physmem);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __init_memblock memblock_dump_all(void)
 | |
| {
 | |
| 	if (memblock_debug)
 | |
| 		__memblock_dump_all();
 | |
| }
 | |
| 
 | |
| void __init memblock_allow_resize(void)
 | |
| {
 | |
| 	memblock_can_resize = 1;
 | |
| }
 | |
| 
 | |
| static int __init early_memblock(char *p)
 | |
| {
 | |
| 	if (p && strstr(p, "debug"))
 | |
| 		memblock_debug = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("memblock", early_memblock);
 | |
| 
 | |
| static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	struct page *start_pg, *end_pg;
 | |
| 	phys_addr_t pg, pgend;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert start_pfn/end_pfn to a struct page pointer.
 | |
| 	 */
 | |
| 	start_pg = pfn_to_page(start_pfn - 1) + 1;
 | |
| 	end_pg = pfn_to_page(end_pfn - 1) + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert to physical addresses, and round start upwards and end
 | |
| 	 * downwards.
 | |
| 	 */
 | |
| 	pg = PAGE_ALIGN(__pa(start_pg));
 | |
| 	pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are free pages between these, free the section of the
 | |
| 	 * memmap array.
 | |
| 	 */
 | |
| 	if (pg < pgend)
 | |
| 		memblock_phys_free(pg, pgend - pg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The mem_map array can get very big.  Free the unused area of the memory map.
 | |
|  */
 | |
| static void __init free_unused_memmap(void)
 | |
| {
 | |
| 	unsigned long start, end, prev_end = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
 | |
| 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This relies on each bank being in address order.
 | |
| 	 * The banks are sorted previously in bootmem_init().
 | |
| 	 */
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 		/*
 | |
| 		 * Take care not to free memmap entries that don't exist
 | |
| 		 * due to SPARSEMEM sections which aren't present.
 | |
| 		 */
 | |
| 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
 | |
| #endif
 | |
| 		/*
 | |
| 		 * Align down here since many operations in VM subsystem
 | |
| 		 * presume that there are no holes in the memory map inside
 | |
| 		 * a pageblock
 | |
| 		 */
 | |
| 		start = pageblock_start_pfn(start);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we had a previous bank, and there is a space
 | |
| 		 * between the current bank and the previous, free it.
 | |
| 		 */
 | |
| 		if (prev_end && prev_end < start)
 | |
| 			free_memmap(prev_end, start);
 | |
| 
 | |
| 		/*
 | |
| 		 * Align up here since many operations in VM subsystem
 | |
| 		 * presume that there are no holes in the memory map inside
 | |
| 		 * a pageblock
 | |
| 		 */
 | |
| 		prev_end = pageblock_align(end);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
 | |
| 		prev_end = pageblock_align(end);
 | |
| 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init __free_pages_memory(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	int order;
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		/*
 | |
| 		 * Free the pages in the largest chunks alignment allows.
 | |
| 		 *
 | |
| 		 * __ffs() behaviour is undefined for 0. start == 0 is
 | |
| 		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
 | |
| 		 * the case.
 | |
| 		 */
 | |
| 		if (start)
 | |
| 			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
 | |
| 		else
 | |
| 			order = MAX_PAGE_ORDER;
 | |
| 
 | |
| 		while (start + (1UL << order) > end)
 | |
| 			order--;
 | |
| 
 | |
| 		memblock_free_pages(pfn_to_page(start), start, order);
 | |
| 
 | |
| 		start += (1UL << order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long __init __free_memory_core(phys_addr_t start,
 | |
| 				 phys_addr_t end)
 | |
| {
 | |
| 	unsigned long start_pfn = PFN_UP(start);
 | |
| 	unsigned long end_pfn = min_t(unsigned long,
 | |
| 				      PFN_DOWN(end), max_low_pfn);
 | |
| 
 | |
| 	if (start_pfn >= end_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	__free_pages_memory(start_pfn, end_pfn);
 | |
| 
 | |
| 	return end_pfn - start_pfn;
 | |
| }
 | |
| 
 | |
| static void __init memmap_init_reserved_pages(void)
 | |
| {
 | |
| 	struct memblock_region *region;
 | |
| 	phys_addr_t start, end;
 | |
| 	int nid;
 | |
| 
 | |
| 	/*
 | |
| 	 * set nid on all reserved pages and also treat struct
 | |
| 	 * pages for the NOMAP regions as PageReserved
 | |
| 	 */
 | |
| 	for_each_mem_region(region) {
 | |
| 		nid = memblock_get_region_node(region);
 | |
| 		start = region->base;
 | |
| 		end = start + region->size;
 | |
| 
 | |
| 		if (memblock_is_nomap(region))
 | |
| 			reserve_bootmem_region(start, end, nid);
 | |
| 
 | |
| 		memblock_set_node(start, end, &memblock.reserved, nid);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize struct pages for reserved regions that don't have
 | |
| 	 * the MEMBLOCK_RSRV_NOINIT flag set
 | |
| 	 */
 | |
| 	for_each_reserved_mem_region(region) {
 | |
| 		if (!memblock_is_reserved_noinit(region)) {
 | |
| 			nid = memblock_get_region_node(region);
 | |
| 			start = region->base;
 | |
| 			end = start + region->size;
 | |
| 
 | |
| 			if (!numa_valid_node(nid))
 | |
| 				nid = early_pfn_to_nid(PFN_DOWN(start));
 | |
| 
 | |
| 			reserve_bootmem_region(start, end, nid);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long __init free_low_memory_core_early(void)
 | |
| {
 | |
| 	unsigned long count = 0;
 | |
| 	phys_addr_t start, end;
 | |
| 	u64 i;
 | |
| 
 | |
| 	memblock_clear_hotplug(0, -1);
 | |
| 
 | |
| 	memmap_init_reserved_pages();
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
 | |
| 	 *  because in some case like Node0 doesn't have RAM installed
 | |
| 	 *  low ram will be on Node1
 | |
| 	 */
 | |
| 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
 | |
| 				NULL)
 | |
| 		count += __free_memory_core(start, end);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int reset_managed_pages_done __initdata;
 | |
| 
 | |
| static void __init reset_node_managed_pages(pg_data_t *pgdat)
 | |
| {
 | |
| 	struct zone *z;
 | |
| 
 | |
| 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 | |
| 		atomic_long_set(&z->managed_pages, 0);
 | |
| }
 | |
| 
 | |
| void __init reset_all_zones_managed_pages(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 
 | |
| 	if (reset_managed_pages_done)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat)
 | |
| 		reset_node_managed_pages(pgdat);
 | |
| 
 | |
| 	reset_managed_pages_done = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_free_all - release free pages to the buddy allocator
 | |
|  */
 | |
| void __init memblock_free_all(void)
 | |
| {
 | |
| 	unsigned long pages;
 | |
| 
 | |
| 	free_unused_memmap();
 | |
| 	reset_all_zones_managed_pages();
 | |
| 
 | |
| 	pages = free_low_memory_core_early();
 | |
| 	totalram_pages_add(pages);
 | |
| }
 | |
| 
 | |
| /* Keep a table to reserve named memory */
 | |
| #define RESERVE_MEM_MAX_ENTRIES		8
 | |
| #define RESERVE_MEM_NAME_SIZE		16
 | |
| struct reserve_mem_table {
 | |
| 	char			name[RESERVE_MEM_NAME_SIZE];
 | |
| 	phys_addr_t		start;
 | |
| 	phys_addr_t		size;
 | |
| };
 | |
| static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
 | |
| static int reserved_mem_count;
 | |
| 
 | |
| /* Add wildcard region with a lookup name */
 | |
| static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
 | |
| 				   const char *name)
 | |
| {
 | |
| 	struct reserve_mem_table *map;
 | |
| 
 | |
| 	map = &reserved_mem_table[reserved_mem_count++];
 | |
| 	map->start = start;
 | |
| 	map->size = size;
 | |
| 	strscpy(map->name, name);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * reserve_mem_find_by_name - Find reserved memory region with a given name
 | |
|  * @name: The name that is attached to a reserved memory region
 | |
|  * @start: If found, holds the start address
 | |
|  * @size: If found, holds the size of the address.
 | |
|  *
 | |
|  * @start and @size are only updated if @name is found.
 | |
|  *
 | |
|  * Returns: 1 if found or 0 if not found.
 | |
|  */
 | |
| int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
 | |
| {
 | |
| 	struct reserve_mem_table *map;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < reserved_mem_count; i++) {
 | |
| 		map = &reserved_mem_table[i];
 | |
| 		if (!map->size)
 | |
| 			continue;
 | |
| 		if (strcmp(name, map->name) == 0) {
 | |
| 			*start = map->start;
 | |
| 			*size = map->size;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
 | |
| 
 | |
| /*
 | |
|  * Parse reserve_mem=nn:align:name
 | |
|  */
 | |
| static int __init reserve_mem(char *p)
 | |
| {
 | |
| 	phys_addr_t start, size, align, tmp;
 | |
| 	char *name;
 | |
| 	char *oldp;
 | |
| 	int len;
 | |
| 
 | |
| 	if (!p)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Check if there's room for more reserved memory */
 | |
| 	if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	oldp = p;
 | |
| 	size = memparse(p, &p);
 | |
| 	if (!size || p == oldp)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (*p != ':')
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	align = memparse(p+1, &p);
 | |
| 	if (*p != ':')
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * memblock_phys_alloc() doesn't like a zero size align,
 | |
| 	 * but it is OK for this command to have it.
 | |
| 	 */
 | |
| 	if (align < SMP_CACHE_BYTES)
 | |
| 		align = SMP_CACHE_BYTES;
 | |
| 
 | |
| 	name = p + 1;
 | |
| 	len = strlen(name);
 | |
| 
 | |
| 	/* name needs to have length but not too big */
 | |
| 	if (!len || len >= RESERVE_MEM_NAME_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Make sure that name has text */
 | |
| 	for (p = name; *p; p++) {
 | |
| 		if (!isspace(*p))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!*p)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Make sure the name is not already used */
 | |
| 	if (reserve_mem_find_by_name(name, &start, &tmp))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	start = memblock_phys_alloc(size, align);
 | |
| 	if (!start)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	reserved_mem_add(start, size, name);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("reserve_mem=", reserve_mem);
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
 | |
| static const char * const flagname[] = {
 | |
| 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
 | |
| 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
 | |
| 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
 | |
| 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
 | |
| 	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
 | |
| };
 | |
| 
 | |
| static int memblock_debug_show(struct seq_file *m, void *private)
 | |
| {
 | |
| 	struct memblock_type *type = m->private;
 | |
| 	struct memblock_region *reg;
 | |
| 	int i, j, nid;
 | |
| 	unsigned int count = ARRAY_SIZE(flagname);
 | |
| 	phys_addr_t end;
 | |
| 
 | |
| 	for (i = 0; i < type->cnt; i++) {
 | |
| 		reg = &type->regions[i];
 | |
| 		end = reg->base + reg->size - 1;
 | |
| 		nid = memblock_get_region_node(reg);
 | |
| 
 | |
| 		seq_printf(m, "%4d: ", i);
 | |
| 		seq_printf(m, "%pa..%pa ", ®->base, &end);
 | |
| 		if (numa_valid_node(nid))
 | |
| 			seq_printf(m, "%4d ", nid);
 | |
| 		else
 | |
| 			seq_printf(m, "%4c ", 'x');
 | |
| 		if (reg->flags) {
 | |
| 			for (j = 0; j < count; j++) {
 | |
| 				if (reg->flags & (1U << j)) {
 | |
| 					seq_printf(m, "%s\n", flagname[j]);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (j == count)
 | |
| 				seq_printf(m, "%s\n", "UNKNOWN");
 | |
| 		} else {
 | |
| 			seq_printf(m, "%s\n", "NONE");
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| DEFINE_SHOW_ATTRIBUTE(memblock_debug);
 | |
| 
 | |
| static int __init memblock_init_debugfs(void)
 | |
| {
 | |
| 	struct dentry *root = debugfs_create_dir("memblock", NULL);
 | |
| 
 | |
| 	debugfs_create_file("memory", 0444, root,
 | |
| 			    &memblock.memory, &memblock_debug_fops);
 | |
| 	debugfs_create_file("reserved", 0444, root,
 | |
| 			    &memblock.reserved, &memblock_debug_fops);
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | |
| 	debugfs_create_file("physmem", 0444, root, &physmem,
 | |
| 			    &memblock_debug_fops);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(memblock_init_debugfs);
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_FS */
 |