mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 3472f639c6
			
		
	
	
		3472f639c6
		
	
	
	
	
		
			
			Remove the else block since there is already a break in the statement of if (iter->oom_lock), just set iter->oom_lock true after the if block ends. Link: https://lkml.kernel.org/r/20241115235744.1419580-4-kerensun@google.com Signed-off-by: Keren Sun <kerensun@google.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			2120 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2120 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| 
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/pagewalk.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/swap_cgroup.h>
 | |
| #include <linux/eventfd.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/seq_buf.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "swap.h"
 | |
| #include "memcontrol-v1.h"
 | |
| 
 | |
| /*
 | |
|  * Cgroups above their limits are maintained in a RB-Tree, independent of
 | |
|  * their hierarchy representation
 | |
|  */
 | |
| 
 | |
| struct mem_cgroup_tree_per_node {
 | |
| 	struct rb_root rb_root;
 | |
| 	struct rb_node *rb_rightmost;
 | |
| 	spinlock_t lock;
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_tree {
 | |
| 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 | |
| };
 | |
| 
 | |
| static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
 | |
|  * limit reclaim to prevent infinite loops, if they ever occur.
 | |
|  */
 | |
| #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 | |
| #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 | |
| 
 | |
| /* for OOM */
 | |
| struct mem_cgroup_eventfd_list {
 | |
| 	struct list_head list;
 | |
| 	struct eventfd_ctx *eventfd;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * cgroup_event represents events which userspace want to receive.
 | |
|  */
 | |
| struct mem_cgroup_event {
 | |
| 	/*
 | |
| 	 * memcg which the event belongs to.
 | |
| 	 */
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	/*
 | |
| 	 * eventfd to signal userspace about the event.
 | |
| 	 */
 | |
| 	struct eventfd_ctx *eventfd;
 | |
| 	/*
 | |
| 	 * Each of these stored in a list by the cgroup.
 | |
| 	 */
 | |
| 	struct list_head list;
 | |
| 	/*
 | |
| 	 * register_event() callback will be used to add new userspace
 | |
| 	 * waiter for changes related to this event.  Use eventfd_signal()
 | |
| 	 * on eventfd to send notification to userspace.
 | |
| 	 */
 | |
| 	int (*register_event)(struct mem_cgroup *memcg,
 | |
| 			      struct eventfd_ctx *eventfd, const char *args);
 | |
| 	/*
 | |
| 	 * unregister_event() callback will be called when userspace closes
 | |
| 	 * the eventfd or on cgroup removing.  This callback must be set,
 | |
| 	 * if you want provide notification functionality.
 | |
| 	 */
 | |
| 	void (*unregister_event)(struct mem_cgroup *memcg,
 | |
| 				 struct eventfd_ctx *eventfd);
 | |
| 	/*
 | |
| 	 * All fields below needed to unregister event when
 | |
| 	 * userspace closes eventfd.
 | |
| 	 */
 | |
| 	poll_table pt;
 | |
| 	wait_queue_head_t *wqh;
 | |
| 	wait_queue_entry_t wait;
 | |
| 	struct work_struct remove;
 | |
| };
 | |
| 
 | |
| #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 | |
| #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 | |
| #define MEMFILE_ATTR(val)	((val) & 0xffff)
 | |
| 
 | |
| enum {
 | |
| 	RES_USAGE,
 | |
| 	RES_LIMIT,
 | |
| 	RES_MAX_USAGE,
 | |
| 	RES_FAILCNT,
 | |
| 	RES_SOFT_LIMIT,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| static struct lockdep_map memcg_oom_lock_dep_map = {
 | |
| 	.name = "memcg_oom_lock",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| DEFINE_SPINLOCK(memcg_oom_lock);
 | |
| 
 | |
| static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 | |
| 					 struct mem_cgroup_tree_per_node *mctz,
 | |
| 					 unsigned long new_usage_in_excess)
 | |
| {
 | |
| 	struct rb_node **p = &mctz->rb_root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct mem_cgroup_per_node *mz_node;
 | |
| 	bool rightmost = true;
 | |
| 
 | |
| 	if (mz->on_tree)
 | |
| 		return;
 | |
| 
 | |
| 	mz->usage_in_excess = new_usage_in_excess;
 | |
| 	if (!mz->usage_in_excess)
 | |
| 		return;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 | |
| 					tree_node);
 | |
| 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 | |
| 			p = &(*p)->rb_left;
 | |
| 			rightmost = false;
 | |
| 		} else {
 | |
| 			p = &(*p)->rb_right;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rightmost)
 | |
| 		mctz->rb_rightmost = &mz->tree_node;
 | |
| 
 | |
| 	rb_link_node(&mz->tree_node, parent, p);
 | |
| 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 | |
| 	mz->on_tree = true;
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 | |
| 					 struct mem_cgroup_tree_per_node *mctz)
 | |
| {
 | |
| 	if (!mz->on_tree)
 | |
| 		return;
 | |
| 
 | |
| 	if (&mz->tree_node == mctz->rb_rightmost)
 | |
| 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 | |
| 
 | |
| 	rb_erase(&mz->tree_node, &mctz->rb_root);
 | |
| 	mz->on_tree = false;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 | |
| 				       struct mem_cgroup_tree_per_node *mctz)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&mctz->lock, flags);
 | |
| 	__mem_cgroup_remove_exceeded(mz, mctz);
 | |
| 	spin_unlock_irqrestore(&mctz->lock, flags);
 | |
| }
 | |
| 
 | |
| static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long nr_pages = page_counter_read(&memcg->memory);
 | |
| 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 | |
| 	unsigned long excess = 0;
 | |
| 
 | |
| 	if (nr_pages > soft_limit)
 | |
| 		excess = nr_pages - soft_limit;
 | |
| 
 | |
| 	return excess;
 | |
| }
 | |
| 
 | |
| static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
 | |
| {
 | |
| 	unsigned long excess;
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 	struct mem_cgroup_tree_per_node *mctz;
 | |
| 
 | |
| 	if (lru_gen_enabled()) {
 | |
| 		if (soft_limit_excess(memcg))
 | |
| 			lru_gen_soft_reclaim(memcg, nid);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mctz = soft_limit_tree.rb_tree_per_node[nid];
 | |
| 	if (!mctz)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Necessary to update all ancestors when hierarchy is used.
 | |
| 	 * because their event counter is not touched.
 | |
| 	 */
 | |
| 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 | |
| 		mz = memcg->nodeinfo[nid];
 | |
| 		excess = soft_limit_excess(memcg);
 | |
| 		/*
 | |
| 		 * We have to update the tree if mz is on RB-tree or
 | |
| 		 * mem is over its softlimit.
 | |
| 		 */
 | |
| 		if (excess || mz->on_tree) {
 | |
| 			unsigned long flags;
 | |
| 
 | |
| 			spin_lock_irqsave(&mctz->lock, flags);
 | |
| 			/* if on-tree, remove it */
 | |
| 			if (mz->on_tree)
 | |
| 				__mem_cgroup_remove_exceeded(mz, mctz);
 | |
| 			/*
 | |
| 			 * Insert again. mz->usage_in_excess will be updated.
 | |
| 			 * If excess is 0, no tree ops.
 | |
| 			 */
 | |
| 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 | |
| 			spin_unlock_irqrestore(&mctz->lock, flags);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void memcg1_remove_from_trees(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup_tree_per_node *mctz;
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 	int nid;
 | |
| 
 | |
| 	for_each_node(nid) {
 | |
| 		mz = memcg->nodeinfo[nid];
 | |
| 		mctz = soft_limit_tree.rb_tree_per_node[nid];
 | |
| 		if (mctz)
 | |
| 			mem_cgroup_remove_exceeded(mz, mctz);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_node *
 | |
| __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 
 | |
| retry:
 | |
| 	mz = NULL;
 | |
| 	if (!mctz->rb_rightmost)
 | |
| 		goto done;		/* Nothing to reclaim from */
 | |
| 
 | |
| 	mz = rb_entry(mctz->rb_rightmost,
 | |
| 		      struct mem_cgroup_per_node, tree_node);
 | |
| 	/*
 | |
| 	 * Remove the node now but someone else can add it back,
 | |
| 	 * we will to add it back at the end of reclaim to its correct
 | |
| 	 * position in the tree.
 | |
| 	 */
 | |
| 	__mem_cgroup_remove_exceeded(mz, mctz);
 | |
| 	if (!soft_limit_excess(mz->memcg) ||
 | |
| 	    !css_tryget(&mz->memcg->css))
 | |
| 		goto retry;
 | |
| done:
 | |
| 	return mz;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_node *
 | |
| mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 
 | |
| 	spin_lock_irq(&mctz->lock);
 | |
| 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 | |
| 	spin_unlock_irq(&mctz->lock);
 | |
| 	return mz;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
 | |
| 				   pg_data_t *pgdat,
 | |
| 				   gfp_t gfp_mask,
 | |
| 				   unsigned long *total_scanned)
 | |
| {
 | |
| 	struct mem_cgroup *victim = NULL;
 | |
| 	int total = 0;
 | |
| 	int loop = 0;
 | |
| 	unsigned long excess;
 | |
| 	unsigned long nr_scanned;
 | |
| 	struct mem_cgroup_reclaim_cookie reclaim = {
 | |
| 		.pgdat = pgdat,
 | |
| 	};
 | |
| 
 | |
| 	excess = soft_limit_excess(root_memcg);
 | |
| 
 | |
| 	while (1) {
 | |
| 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
 | |
| 		if (!victim) {
 | |
| 			loop++;
 | |
| 			if (loop >= 2) {
 | |
| 				/*
 | |
| 				 * If we have not been able to reclaim
 | |
| 				 * anything, it might because there are
 | |
| 				 * no reclaimable pages under this hierarchy
 | |
| 				 */
 | |
| 				if (!total)
 | |
| 					break;
 | |
| 				/*
 | |
| 				 * We want to do more targeted reclaim.
 | |
| 				 * excess >> 2 is not to excessive so as to
 | |
| 				 * reclaim too much, nor too less that we keep
 | |
| 				 * coming back to reclaim from this cgroup
 | |
| 				 */
 | |
| 				if (total >= (excess >> 2) ||
 | |
| 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
 | |
| 					break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
 | |
| 					pgdat, &nr_scanned);
 | |
| 		*total_scanned += nr_scanned;
 | |
| 		if (!soft_limit_excess(root_memcg))
 | |
| 			break;
 | |
| 	}
 | |
| 	mem_cgroup_iter_break(root_memcg, victim);
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
 | |
| 					    gfp_t gfp_mask,
 | |
| 					    unsigned long *total_scanned)
 | |
| {
 | |
| 	unsigned long nr_reclaimed = 0;
 | |
| 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
 | |
| 	unsigned long reclaimed;
 | |
| 	int loop = 0;
 | |
| 	struct mem_cgroup_tree_per_node *mctz;
 | |
| 	unsigned long excess;
 | |
| 
 | |
| 	if (lru_gen_enabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (order > 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not even bother to check the largest node if the root
 | |
| 	 * is empty. Do it lockless to prevent lock bouncing. Races
 | |
| 	 * are acceptable as soft limit is best effort anyway.
 | |
| 	 */
 | |
| 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This loop can run a while, specially if mem_cgroup's continuously
 | |
| 	 * keep exceeding their soft limit and putting the system under
 | |
| 	 * pressure
 | |
| 	 */
 | |
| 	do {
 | |
| 		if (next_mz)
 | |
| 			mz = next_mz;
 | |
| 		else
 | |
| 			mz = mem_cgroup_largest_soft_limit_node(mctz);
 | |
| 		if (!mz)
 | |
| 			break;
 | |
| 
 | |
| 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
 | |
| 						    gfp_mask, total_scanned);
 | |
| 		nr_reclaimed += reclaimed;
 | |
| 		spin_lock_irq(&mctz->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we failed to reclaim anything from this memory cgroup
 | |
| 		 * it is time to move on to the next cgroup
 | |
| 		 */
 | |
| 		next_mz = NULL;
 | |
| 		if (!reclaimed)
 | |
| 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
 | |
| 
 | |
| 		excess = soft_limit_excess(mz->memcg);
 | |
| 		/*
 | |
| 		 * One school of thought says that we should not add
 | |
| 		 * back the node to the tree if reclaim returns 0.
 | |
| 		 * But our reclaim could return 0, simply because due
 | |
| 		 * to priority we are exposing a smaller subset of
 | |
| 		 * memory to reclaim from. Consider this as a longer
 | |
| 		 * term TODO.
 | |
| 		 */
 | |
| 		/* If excess == 0, no tree ops */
 | |
| 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
 | |
| 		spin_unlock_irq(&mctz->lock);
 | |
| 		css_put(&mz->memcg->css);
 | |
| 		loop++;
 | |
| 		/*
 | |
| 		 * Could not reclaim anything and there are no more
 | |
| 		 * mem cgroups to try or we seem to be looping without
 | |
| 		 * reclaiming anything.
 | |
| 		 */
 | |
| 		if (!nr_reclaimed &&
 | |
| 			(next_mz == NULL ||
 | |
| 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
 | |
| 			break;
 | |
| 	} while (!nr_reclaimed);
 | |
| 	if (next_mz)
 | |
| 		css_put(&next_mz->memcg->css);
 | |
| 	return nr_reclaimed;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
 | |
| 				struct cftype *cft)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
 | |
| 				 struct cftype *cft, u64 val)
 | |
| {
 | |
| 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
 | |
| 		     "Please report your usecase to linux-mm@kvack.org if you "
 | |
| 		     "depend on this functionality.\n");
 | |
| 
 | |
| 	if (val != 0)
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
 | |
| 				 struct cftype *cft, u64 val)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
 | |
| {
 | |
| 	struct mem_cgroup_threshold_ary *t;
 | |
| 	unsigned long usage;
 | |
| 	int i;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!swap)
 | |
| 		t = rcu_dereference(memcg->thresholds.primary);
 | |
| 	else
 | |
| 		t = rcu_dereference(memcg->memsw_thresholds.primary);
 | |
| 
 | |
| 	if (!t)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	usage = mem_cgroup_usage(memcg, swap);
 | |
| 
 | |
| 	/*
 | |
| 	 * current_threshold points to threshold just below or equal to usage.
 | |
| 	 * If it's not true, a threshold was crossed after last
 | |
| 	 * call of __mem_cgroup_threshold().
 | |
| 	 */
 | |
| 	i = t->current_threshold;
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate backward over array of thresholds starting from
 | |
| 	 * current_threshold and check if a threshold is crossed.
 | |
| 	 * If none of thresholds below usage is crossed, we read
 | |
| 	 * only one element of the array here.
 | |
| 	 */
 | |
| 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
 | |
| 		eventfd_signal(t->entries[i].eventfd);
 | |
| 
 | |
| 	/* i = current_threshold + 1 */
 | |
| 	i++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate forward over array of thresholds starting from
 | |
| 	 * current_threshold+1 and check if a threshold is crossed.
 | |
| 	 * If none of thresholds above usage is crossed, we read
 | |
| 	 * only one element of the array here.
 | |
| 	 */
 | |
| 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
 | |
| 		eventfd_signal(t->entries[i].eventfd);
 | |
| 
 | |
| 	/* Update current_threshold */
 | |
| 	t->current_threshold = i - 1;
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_threshold(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	while (memcg) {
 | |
| 		__mem_cgroup_threshold(memcg, false);
 | |
| 		if (do_memsw_account())
 | |
| 			__mem_cgroup_threshold(memcg, true);
 | |
| 
 | |
| 		memcg = parent_mem_cgroup(memcg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Cgroup1: threshold notifications & softlimit tree updates */
 | |
| struct memcg1_events_percpu {
 | |
| 	unsigned long nr_page_events;
 | |
| 	unsigned long targets[MEM_CGROUP_NTARGETS];
 | |
| };
 | |
| 
 | |
| static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
 | |
| {
 | |
| 	/* pagein of a big page is an event. So, ignore page size */
 | |
| 	if (nr_pages > 0)
 | |
| 		__count_memcg_events(memcg, PGPGIN, 1);
 | |
| 	else {
 | |
| 		__count_memcg_events(memcg, PGPGOUT, 1);
 | |
| 		nr_pages = -nr_pages; /* for event */
 | |
| 	}
 | |
| 
 | |
| 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
 | |
| }
 | |
| 
 | |
| #define THRESHOLDS_EVENTS_TARGET 128
 | |
| #define SOFTLIMIT_EVENTS_TARGET 1024
 | |
| 
 | |
| static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
 | |
| 				enum mem_cgroup_events_target target)
 | |
| {
 | |
| 	unsigned long val, next;
 | |
| 
 | |
| 	val = __this_cpu_read(memcg->events_percpu->nr_page_events);
 | |
| 	next = __this_cpu_read(memcg->events_percpu->targets[target]);
 | |
| 	/* from time_after() in jiffies.h */
 | |
| 	if ((long)(next - val) < 0) {
 | |
| 		switch (target) {
 | |
| 		case MEM_CGROUP_TARGET_THRESH:
 | |
| 			next = val + THRESHOLDS_EVENTS_TARGET;
 | |
| 			break;
 | |
| 		case MEM_CGROUP_TARGET_SOFTLIMIT:
 | |
| 			next = val + SOFTLIMIT_EVENTS_TARGET;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		__this_cpu_write(memcg->events_percpu->targets[target], next);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check events in order.
 | |
|  *
 | |
|  */
 | |
| static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
 | |
| 		return;
 | |
| 
 | |
| 	/* threshold event is triggered in finer grain than soft limit */
 | |
| 	if (unlikely(memcg1_event_ratelimit(memcg,
 | |
| 						MEM_CGROUP_TARGET_THRESH))) {
 | |
| 		bool do_softlimit;
 | |
| 
 | |
| 		do_softlimit = memcg1_event_ratelimit(memcg,
 | |
| 						MEM_CGROUP_TARGET_SOFTLIMIT);
 | |
| 		mem_cgroup_threshold(memcg);
 | |
| 		if (unlikely(do_softlimit))
 | |
| 			memcg1_update_tree(memcg, nid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	memcg1_charge_statistics(memcg, folio_nr_pages(folio));
 | |
| 	memcg1_check_events(memcg, folio_nid(folio));
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| void memcg1_swapout(struct folio *folio, struct mem_cgroup *memcg)
 | |
| {
 | |
| 	/*
 | |
| 	 * Interrupts should be disabled here because the caller holds the
 | |
| 	 * i_pages lock which is taken with interrupts-off. It is
 | |
| 	 * important here to have the interrupts disabled because it is the
 | |
| 	 * only synchronisation we have for updating the per-CPU variables.
 | |
| 	 */
 | |
| 	preempt_disable_nested();
 | |
| 	VM_WARN_ON_IRQS_ENABLED();
 | |
| 	memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
 | |
| 	preempt_enable_nested();
 | |
| 	memcg1_check_events(memcg, folio_nid(folio));
 | |
| }
 | |
| 
 | |
| void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
 | |
| 			   unsigned long nr_memory, int nid)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	__count_memcg_events(memcg, PGPGOUT, pgpgout);
 | |
| 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
 | |
| 	memcg1_check_events(memcg, nid);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static int compare_thresholds(const void *a, const void *b)
 | |
| {
 | |
| 	const struct mem_cgroup_threshold *_a = a;
 | |
| 	const struct mem_cgroup_threshold *_b = b;
 | |
| 
 | |
| 	if (_a->threshold > _b->threshold)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (_a->threshold < _b->threshold)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup_eventfd_list *ev;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 
 | |
| 	list_for_each_entry(ev, &memcg->oom_notify, list)
 | |
| 		eventfd_signal(ev->eventfd);
 | |
| 
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 
 | |
| 	for_each_mem_cgroup_tree(iter, memcg)
 | |
| 		mem_cgroup_oom_notify_cb(iter);
 | |
| }
 | |
| 
 | |
| static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
 | |
| {
 | |
| 	struct mem_cgroup_thresholds *thresholds;
 | |
| 	struct mem_cgroup_threshold_ary *new;
 | |
| 	unsigned long threshold;
 | |
| 	unsigned long usage;
 | |
| 	int i, size, ret;
 | |
| 
 | |
| 	ret = page_counter_memparse(args, "-1", &threshold);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&memcg->thresholds_lock);
 | |
| 
 | |
| 	if (type == _MEM) {
 | |
| 		thresholds = &memcg->thresholds;
 | |
| 		usage = mem_cgroup_usage(memcg, false);
 | |
| 	} else if (type == _MEMSWAP) {
 | |
| 		thresholds = &memcg->memsw_thresholds;
 | |
| 		usage = mem_cgroup_usage(memcg, true);
 | |
| 	} else
 | |
| 		BUG();
 | |
| 
 | |
| 	/* Check if a threshold crossed before adding a new one */
 | |
| 	if (thresholds->primary)
 | |
| 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | |
| 
 | |
| 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
 | |
| 
 | |
| 	/* Allocate memory for new array of thresholds */
 | |
| 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
 | |
| 	if (!new) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	new->size = size;
 | |
| 
 | |
| 	/* Copy thresholds (if any) to new array */
 | |
| 	if (thresholds->primary)
 | |
| 		memcpy(new->entries, thresholds->primary->entries,
 | |
| 		       flex_array_size(new, entries, size - 1));
 | |
| 
 | |
| 	/* Add new threshold */
 | |
| 	new->entries[size - 1].eventfd = eventfd;
 | |
| 	new->entries[size - 1].threshold = threshold;
 | |
| 
 | |
| 	/* Sort thresholds. Registering of new threshold isn't time-critical */
 | |
| 	sort(new->entries, size, sizeof(*new->entries),
 | |
| 			compare_thresholds, NULL);
 | |
| 
 | |
| 	/* Find current threshold */
 | |
| 	new->current_threshold = -1;
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		if (new->entries[i].threshold <= usage) {
 | |
| 			/*
 | |
| 			 * new->current_threshold will not be used until
 | |
| 			 * rcu_assign_pointer(), so it's safe to increment
 | |
| 			 * it here.
 | |
| 			 */
 | |
| 			++new->current_threshold;
 | |
| 		} else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Free old spare buffer and save old primary buffer as spare */
 | |
| 	kfree(thresholds->spare);
 | |
| 	thresholds->spare = thresholds->primary;
 | |
| 
 | |
| 	rcu_assign_pointer(thresholds->primary, new);
 | |
| 
 | |
| 	/* To be sure that nobody uses thresholds */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&memcg->thresholds_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, const char *args)
 | |
| {
 | |
| 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
 | |
| }
 | |
| 
 | |
| static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, const char *args)
 | |
| {
 | |
| 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, enum res_type type)
 | |
| {
 | |
| 	struct mem_cgroup_thresholds *thresholds;
 | |
| 	struct mem_cgroup_threshold_ary *new;
 | |
| 	unsigned long usage;
 | |
| 	int i, j, size, entries;
 | |
| 
 | |
| 	mutex_lock(&memcg->thresholds_lock);
 | |
| 
 | |
| 	if (type == _MEM) {
 | |
| 		thresholds = &memcg->thresholds;
 | |
| 		usage = mem_cgroup_usage(memcg, false);
 | |
| 	} else if (type == _MEMSWAP) {
 | |
| 		thresholds = &memcg->memsw_thresholds;
 | |
| 		usage = mem_cgroup_usage(memcg, true);
 | |
| 	} else
 | |
| 		BUG();
 | |
| 
 | |
| 	if (!thresholds->primary)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/* Check if a threshold crossed before removing */
 | |
| 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | |
| 
 | |
| 	/* Calculate new number of threshold */
 | |
| 	size = entries = 0;
 | |
| 	for (i = 0; i < thresholds->primary->size; i++) {
 | |
| 		if (thresholds->primary->entries[i].eventfd != eventfd)
 | |
| 			size++;
 | |
| 		else
 | |
| 			entries++;
 | |
| 	}
 | |
| 
 | |
| 	new = thresholds->spare;
 | |
| 
 | |
| 	/* If no items related to eventfd have been cleared, nothing to do */
 | |
| 	if (!entries)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/* Set thresholds array to NULL if we don't have thresholds */
 | |
| 	if (!size) {
 | |
| 		kfree(new);
 | |
| 		new = NULL;
 | |
| 		goto swap_buffers;
 | |
| 	}
 | |
| 
 | |
| 	new->size = size;
 | |
| 
 | |
| 	/* Copy thresholds and find current threshold */
 | |
| 	new->current_threshold = -1;
 | |
| 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
 | |
| 		if (thresholds->primary->entries[i].eventfd == eventfd)
 | |
| 			continue;
 | |
| 
 | |
| 		new->entries[j] = thresholds->primary->entries[i];
 | |
| 		if (new->entries[j].threshold <= usage) {
 | |
| 			/*
 | |
| 			 * new->current_threshold will not be used
 | |
| 			 * until rcu_assign_pointer(), so it's safe to increment
 | |
| 			 * it here.
 | |
| 			 */
 | |
| 			++new->current_threshold;
 | |
| 		}
 | |
| 		j++;
 | |
| 	}
 | |
| 
 | |
| swap_buffers:
 | |
| 	/* Swap primary and spare array */
 | |
| 	thresholds->spare = thresholds->primary;
 | |
| 
 | |
| 	rcu_assign_pointer(thresholds->primary, new);
 | |
| 
 | |
| 	/* To be sure that nobody uses thresholds */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	/* If all events are unregistered, free the spare array */
 | |
| 	if (!new) {
 | |
| 		kfree(thresholds->spare);
 | |
| 		thresholds->spare = NULL;
 | |
| 	}
 | |
| unlock:
 | |
| 	mutex_unlock(&memcg->thresholds_lock);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd)
 | |
| {
 | |
| 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
 | |
| }
 | |
| 
 | |
| static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd)
 | |
| {
 | |
| 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, const char *args)
 | |
| {
 | |
| 	struct mem_cgroup_eventfd_list *event;
 | |
| 
 | |
| 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
 | |
| 	if (!event)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 
 | |
| 	event->eventfd = eventfd;
 | |
| 	list_add(&event->list, &memcg->oom_notify);
 | |
| 
 | |
| 	/* already in OOM ? */
 | |
| 	if (memcg->under_oom)
 | |
| 		eventfd_signal(eventfd);
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd)
 | |
| {
 | |
| 	struct mem_cgroup_eventfd_list *ev, *tmp;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
 | |
| 		if (ev->eventfd == eventfd) {
 | |
| 			list_del(&ev->list);
 | |
| 			kfree(ev);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DO NOT USE IN NEW FILES.
 | |
|  *
 | |
|  * "cgroup.event_control" implementation.
 | |
|  *
 | |
|  * This is way over-engineered.  It tries to support fully configurable
 | |
|  * events for each user.  Such level of flexibility is completely
 | |
|  * unnecessary especially in the light of the planned unified hierarchy.
 | |
|  *
 | |
|  * Please deprecate this and replace with something simpler if at all
 | |
|  * possible.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Unregister event and free resources.
 | |
|  *
 | |
|  * Gets called from workqueue.
 | |
|  */
 | |
| static void memcg_event_remove(struct work_struct *work)
 | |
| {
 | |
| 	struct mem_cgroup_event *event =
 | |
| 		container_of(work, struct mem_cgroup_event, remove);
 | |
| 	struct mem_cgroup *memcg = event->memcg;
 | |
| 
 | |
| 	remove_wait_queue(event->wqh, &event->wait);
 | |
| 
 | |
| 	event->unregister_event(memcg, event->eventfd);
 | |
| 
 | |
| 	/* Notify userspace the event is going away. */
 | |
| 	eventfd_signal(event->eventfd);
 | |
| 
 | |
| 	eventfd_ctx_put(event->eventfd);
 | |
| 	kfree(event);
 | |
| 	css_put(&memcg->css);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Gets called on EPOLLHUP on eventfd when user closes it.
 | |
|  *
 | |
|  * Called with wqh->lock held and interrupts disabled.
 | |
|  */
 | |
| static int memcg_event_wake(wait_queue_entry_t *wait, unsigned int mode,
 | |
| 			    int sync, void *key)
 | |
| {
 | |
| 	struct mem_cgroup_event *event =
 | |
| 		container_of(wait, struct mem_cgroup_event, wait);
 | |
| 	struct mem_cgroup *memcg = event->memcg;
 | |
| 	__poll_t flags = key_to_poll(key);
 | |
| 
 | |
| 	if (flags & EPOLLHUP) {
 | |
| 		/*
 | |
| 		 * If the event has been detached at cgroup removal, we
 | |
| 		 * can simply return knowing the other side will cleanup
 | |
| 		 * for us.
 | |
| 		 *
 | |
| 		 * We can't race against event freeing since the other
 | |
| 		 * side will require wqh->lock via remove_wait_queue(),
 | |
| 		 * which we hold.
 | |
| 		 */
 | |
| 		spin_lock(&memcg->event_list_lock);
 | |
| 		if (!list_empty(&event->list)) {
 | |
| 			list_del_init(&event->list);
 | |
| 			/*
 | |
| 			 * We are in atomic context, but cgroup_event_remove()
 | |
| 			 * may sleep, so we have to call it in workqueue.
 | |
| 			 */
 | |
| 			schedule_work(&event->remove);
 | |
| 		}
 | |
| 		spin_unlock(&memcg->event_list_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void memcg_event_ptable_queue_proc(struct file *file,
 | |
| 		wait_queue_head_t *wqh, poll_table *pt)
 | |
| {
 | |
| 	struct mem_cgroup_event *event =
 | |
| 		container_of(pt, struct mem_cgroup_event, pt);
 | |
| 
 | |
| 	event->wqh = wqh;
 | |
| 	add_wait_queue(wqh, &event->wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DO NOT USE IN NEW FILES.
 | |
|  *
 | |
|  * Parse input and register new cgroup event handler.
 | |
|  *
 | |
|  * Input must be in format '<event_fd> <control_fd> <args>'.
 | |
|  * Interpretation of args is defined by control file implementation.
 | |
|  */
 | |
| static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
 | |
| 					 char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css = of_css(of);
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 	struct mem_cgroup_event *event;
 | |
| 	struct cgroup_subsys_state *cfile_css;
 | |
| 	unsigned int efd, cfd;
 | |
| 	struct dentry *cdentry;
 | |
| 	const char *name;
 | |
| 	char *endp;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 
 | |
| 	efd = simple_strtoul(buf, &endp, 10);
 | |
| 	if (*endp != ' ')
 | |
| 		return -EINVAL;
 | |
| 	buf = endp + 1;
 | |
| 
 | |
| 	cfd = simple_strtoul(buf, &endp, 10);
 | |
| 	if (*endp == '\0')
 | |
| 		buf = endp;
 | |
| 	else if (*endp == ' ')
 | |
| 		buf = endp + 1;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	CLASS(fd, efile)(efd);
 | |
| 	if (fd_empty(efile))
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	CLASS(fd, cfile)(cfd);
 | |
| 
 | |
| 	event = kzalloc(sizeof(*event), GFP_KERNEL);
 | |
| 	if (!event)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	event->memcg = memcg;
 | |
| 	INIT_LIST_HEAD(&event->list);
 | |
| 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
 | |
| 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
 | |
| 	INIT_WORK(&event->remove, memcg_event_remove);
 | |
| 
 | |
| 	event->eventfd = eventfd_ctx_fileget(fd_file(efile));
 | |
| 	if (IS_ERR(event->eventfd)) {
 | |
| 		ret = PTR_ERR(event->eventfd);
 | |
| 		goto out_kfree;
 | |
| 	}
 | |
| 
 | |
| 	if (fd_empty(cfile)) {
 | |
| 		ret = -EBADF;
 | |
| 		goto out_put_eventfd;
 | |
| 	}
 | |
| 
 | |
| 	/* the process need read permission on control file */
 | |
| 	/* AV: shouldn't we check that it's been opened for read instead? */
 | |
| 	ret = file_permission(fd_file(cfile), MAY_READ);
 | |
| 	if (ret < 0)
 | |
| 		goto out_put_eventfd;
 | |
| 
 | |
| 	/*
 | |
| 	 * The control file must be a regular cgroup1 file. As a regular cgroup
 | |
| 	 * file can't be renamed, it's safe to access its name afterwards.
 | |
| 	 */
 | |
| 	cdentry = fd_file(cfile)->f_path.dentry;
 | |
| 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_put_eventfd;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the event callbacks and set them in @event.  This used
 | |
| 	 * to be done via struct cftype but cgroup core no longer knows
 | |
| 	 * about these events.  The following is crude but the whole thing
 | |
| 	 * is for compatibility anyway.
 | |
| 	 *
 | |
| 	 * DO NOT ADD NEW FILES.
 | |
| 	 */
 | |
| 	name = cdentry->d_name.name;
 | |
| 
 | |
| 	if (!strcmp(name, "memory.usage_in_bytes")) {
 | |
| 		event->register_event = mem_cgroup_usage_register_event;
 | |
| 		event->unregister_event = mem_cgroup_usage_unregister_event;
 | |
| 	} else if (!strcmp(name, "memory.oom_control")) {
 | |
| 		pr_warn_once("oom_control is deprecated and will be removed. "
 | |
| 			     "Please report your usecase to linux-mm-@kvack.org"
 | |
| 			     " if you depend on this functionality.\n");
 | |
| 		event->register_event = mem_cgroup_oom_register_event;
 | |
| 		event->unregister_event = mem_cgroup_oom_unregister_event;
 | |
| 	} else if (!strcmp(name, "memory.pressure_level")) {
 | |
| 		pr_warn_once("pressure_level is deprecated and will be removed. "
 | |
| 			     "Please report your usecase to linux-mm-@kvack.org "
 | |
| 			     "if you depend on this functionality.\n");
 | |
| 		event->register_event = vmpressure_register_event;
 | |
| 		event->unregister_event = vmpressure_unregister_event;
 | |
| 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
 | |
| 		event->register_event = memsw_cgroup_usage_register_event;
 | |
| 		event->unregister_event = memsw_cgroup_usage_unregister_event;
 | |
| 	} else {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_put_eventfd;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify @cfile should belong to @css.  Also, remaining events are
 | |
| 	 * automatically removed on cgroup destruction but the removal is
 | |
| 	 * asynchronous, so take an extra ref on @css.
 | |
| 	 */
 | |
| 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
 | |
| 					       &memory_cgrp_subsys);
 | |
| 	ret = -EINVAL;
 | |
| 	if (IS_ERR(cfile_css))
 | |
| 		goto out_put_eventfd;
 | |
| 	if (cfile_css != css)
 | |
| 		goto out_put_css;
 | |
| 
 | |
| 	ret = event->register_event(memcg, event->eventfd, buf);
 | |
| 	if (ret)
 | |
| 		goto out_put_css;
 | |
| 
 | |
| 	vfs_poll(fd_file(efile), &event->pt);
 | |
| 
 | |
| 	spin_lock_irq(&memcg->event_list_lock);
 | |
| 	list_add(&event->list, &memcg->event_list);
 | |
| 	spin_unlock_irq(&memcg->event_list_lock);
 | |
| 	return nbytes;
 | |
| 
 | |
| out_put_css:
 | |
| 	css_put(cfile_css);
 | |
| out_put_eventfd:
 | |
| 	eventfd_ctx_put(event->eventfd);
 | |
| out_kfree:
 | |
| 	kfree(event);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void memcg1_memcg_init(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	INIT_LIST_HEAD(&memcg->oom_notify);
 | |
| 	mutex_init(&memcg->thresholds_lock);
 | |
| 	INIT_LIST_HEAD(&memcg->event_list);
 | |
| 	spin_lock_init(&memcg->event_list_lock);
 | |
| }
 | |
| 
 | |
| void memcg1_css_offline(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup_event *event, *tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unregister events and notify userspace.
 | |
| 	 * Notify userspace about cgroup removing only after rmdir of cgroup
 | |
| 	 * directory to avoid race between userspace and kernelspace.
 | |
| 	 */
 | |
| 	spin_lock_irq(&memcg->event_list_lock);
 | |
| 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
 | |
| 		list_del_init(&event->list);
 | |
| 		schedule_work(&event->remove);
 | |
| 	}
 | |
| 	spin_unlock_irq(&memcg->event_list_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check OOM-Killer is already running under our hierarchy.
 | |
|  * If someone is running, return false.
 | |
|  */
 | |
| static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter, *failed = NULL;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 
 | |
| 	for_each_mem_cgroup_tree(iter, memcg) {
 | |
| 		if (iter->oom_lock) {
 | |
| 			/*
 | |
| 			 * this subtree of our hierarchy is already locked
 | |
| 			 * so we cannot give a lock.
 | |
| 			 */
 | |
| 			failed = iter;
 | |
| 			mem_cgroup_iter_break(memcg, iter);
 | |
| 			break;
 | |
| 		}
 | |
| 		iter->oom_lock = true;
 | |
| 	}
 | |
| 
 | |
| 	if (failed) {
 | |
| 		/*
 | |
| 		 * OK, we failed to lock the whole subtree so we have
 | |
| 		 * to clean up what we set up to the failing subtree
 | |
| 		 */
 | |
| 		for_each_mem_cgroup_tree(iter, memcg) {
 | |
| 			if (iter == failed) {
 | |
| 				mem_cgroup_iter_break(memcg, iter);
 | |
| 				break;
 | |
| 			}
 | |
| 			iter->oom_lock = false;
 | |
| 		}
 | |
| 	} else
 | |
| 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
 | |
| 
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| 
 | |
| 	return !failed;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
 | |
| 	for_each_mem_cgroup_tree(iter, memcg)
 | |
| 		iter->oom_lock = false;
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 	for_each_mem_cgroup_tree(iter, memcg)
 | |
| 		iter->under_oom++;
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 
 | |
| 	/*
 | |
| 	 * Be careful about under_oom underflows because a child memcg
 | |
| 	 * could have been added after mem_cgroup_mark_under_oom.
 | |
| 	 */
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 	for_each_mem_cgroup_tree(iter, memcg)
 | |
| 		if (iter->under_oom > 0)
 | |
| 			iter->under_oom--;
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| }
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
 | |
| 
 | |
| struct oom_wait_info {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	wait_queue_entry_t	wait;
 | |
| };
 | |
| 
 | |
| static int memcg_oom_wake_function(wait_queue_entry_t *wait,
 | |
| 	unsigned int mode, int sync, void *arg)
 | |
| {
 | |
| 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
 | |
| 	struct mem_cgroup *oom_wait_memcg;
 | |
| 	struct oom_wait_info *oom_wait_info;
 | |
| 
 | |
| 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
 | |
| 	oom_wait_memcg = oom_wait_info->memcg;
 | |
| 
 | |
| 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
 | |
| 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
 | |
| 		return 0;
 | |
| 	return autoremove_wake_function(wait, mode, sync, arg);
 | |
| }
 | |
| 
 | |
| void memcg1_oom_recover(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	/*
 | |
| 	 * For the following lockless ->under_oom test, the only required
 | |
| 	 * guarantee is that it must see the state asserted by an OOM when
 | |
| 	 * this function is called as a result of userland actions
 | |
| 	 * triggered by the notification of the OOM.  This is trivially
 | |
| 	 * achieved by invoking mem_cgroup_mark_under_oom() before
 | |
| 	 * triggering notification.
 | |
| 	 */
 | |
| 	if (memcg && memcg->under_oom)
 | |
| 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_oom_synchronize - complete memcg OOM handling
 | |
|  * @handle: actually kill/wait or just clean up the OOM state
 | |
|  *
 | |
|  * This has to be called at the end of a page fault if the memcg OOM
 | |
|  * handler was enabled.
 | |
|  *
 | |
|  * Memcg supports userspace OOM handling where failed allocations must
 | |
|  * sleep on a waitqueue until the userspace task resolves the
 | |
|  * situation.  Sleeping directly in the charge context with all kinds
 | |
|  * of locks held is not a good idea, instead we remember an OOM state
 | |
|  * in the task and mem_cgroup_oom_synchronize() has to be called at
 | |
|  * the end of the page fault to complete the OOM handling.
 | |
|  *
 | |
|  * Returns %true if an ongoing memcg OOM situation was detected and
 | |
|  * completed, %false otherwise.
 | |
|  */
 | |
| bool mem_cgroup_oom_synchronize(bool handle)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = current->memcg_in_oom;
 | |
| 	struct oom_wait_info owait;
 | |
| 	bool locked;
 | |
| 
 | |
| 	/* OOM is global, do not handle */
 | |
| 	if (!memcg)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!handle)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	owait.memcg = memcg;
 | |
| 	owait.wait.flags = 0;
 | |
| 	owait.wait.func = memcg_oom_wake_function;
 | |
| 	owait.wait.private = current;
 | |
| 	INIT_LIST_HEAD(&owait.wait.entry);
 | |
| 
 | |
| 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
 | |
| 	mem_cgroup_mark_under_oom(memcg);
 | |
| 
 | |
| 	locked = mem_cgroup_oom_trylock(memcg);
 | |
| 
 | |
| 	if (locked)
 | |
| 		mem_cgroup_oom_notify(memcg);
 | |
| 
 | |
| 	schedule();
 | |
| 	mem_cgroup_unmark_under_oom(memcg);
 | |
| 	finish_wait(&memcg_oom_waitq, &owait.wait);
 | |
| 
 | |
| 	if (locked)
 | |
| 		mem_cgroup_oom_unlock(memcg);
 | |
| cleanup:
 | |
| 	current->memcg_in_oom = NULL;
 | |
| 	css_put(&memcg->css);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
 | |
| {
 | |
| 	/*
 | |
| 	 * We are in the middle of the charge context here, so we
 | |
| 	 * don't want to block when potentially sitting on a callstack
 | |
| 	 * that holds all kinds of filesystem and mm locks.
 | |
| 	 *
 | |
| 	 * cgroup1 allows disabling the OOM killer and waiting for outside
 | |
| 	 * handling until the charge can succeed; remember the context and put
 | |
| 	 * the task to sleep at the end of the page fault when all locks are
 | |
| 	 * released.
 | |
| 	 *
 | |
| 	 * On the other hand, in-kernel OOM killer allows for an async victim
 | |
| 	 * memory reclaim (oom_reaper) and that means that we are not solely
 | |
| 	 * relying on the oom victim to make a forward progress and we can
 | |
| 	 * invoke the oom killer here.
 | |
| 	 *
 | |
| 	 * Please note that mem_cgroup_out_of_memory might fail to find a
 | |
| 	 * victim and then we have to bail out from the charge path.
 | |
| 	 */
 | |
| 	if (READ_ONCE(memcg->oom_kill_disable)) {
 | |
| 		if (current->in_user_fault) {
 | |
| 			css_get(&memcg->css);
 | |
| 			current->memcg_in_oom = memcg;
 | |
| 		}
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	mem_cgroup_mark_under_oom(memcg);
 | |
| 
 | |
| 	*locked = mem_cgroup_oom_trylock(memcg);
 | |
| 
 | |
| 	if (*locked)
 | |
| 		mem_cgroup_oom_notify(memcg);
 | |
| 
 | |
| 	mem_cgroup_unmark_under_oom(memcg);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
 | |
| {
 | |
| 	if (locked)
 | |
| 		mem_cgroup_oom_unlock(memcg);
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(memcg_max_mutex);
 | |
| 
 | |
| static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
 | |
| 				 unsigned long max, bool memsw)
 | |
| {
 | |
| 	bool enlarge = false;
 | |
| 	bool drained = false;
 | |
| 	int ret;
 | |
| 	bool limits_invariant;
 | |
| 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
 | |
| 
 | |
| 	do {
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&memcg_max_mutex);
 | |
| 		/*
 | |
| 		 * Make sure that the new limit (memsw or memory limit) doesn't
 | |
| 		 * break our basic invariant rule memory.max <= memsw.max.
 | |
| 		 */
 | |
| 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
 | |
| 					   max <= memcg->memsw.max;
 | |
| 		if (!limits_invariant) {
 | |
| 			mutex_unlock(&memcg_max_mutex);
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (max > counter->max)
 | |
| 			enlarge = true;
 | |
| 		ret = page_counter_set_max(counter, max);
 | |
| 		mutex_unlock(&memcg_max_mutex);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 
 | |
| 		if (!drained) {
 | |
| 			drain_all_stock(memcg);
 | |
| 			drained = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
 | |
| 				memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
 | |
| 			ret = -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 	} while (true);
 | |
| 
 | |
| 	if (!ret && enlarge)
 | |
| 		memcg1_oom_recover(memcg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reclaims as many pages from the given memcg as possible.
 | |
|  *
 | |
|  * Caller is responsible for holding css reference for memcg.
 | |
|  */
 | |
| static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	int nr_retries = MAX_RECLAIM_RETRIES;
 | |
| 
 | |
| 	/* we call try-to-free pages for make this cgroup empty */
 | |
| 	lru_add_drain_all();
 | |
| 
 | |
| 	drain_all_stock(memcg);
 | |
| 
 | |
| 	/* try to free all pages in this cgroup */
 | |
| 	while (nr_retries && page_counter_read(&memcg->memory)) {
 | |
| 		if (signal_pending(current))
 | |
| 			return -EINTR;
 | |
| 
 | |
| 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
 | |
| 						  MEMCG_RECLAIM_MAY_SWAP, NULL))
 | |
| 			nr_retries--;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
 | |
| 					    char *buf, size_t nbytes,
 | |
| 					    loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		return -EINVAL;
 | |
| 	return mem_cgroup_force_empty(memcg) ?: nbytes;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
 | |
| 				     struct cftype *cft)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
 | |
| 				      struct cftype *cft, u64 val)
 | |
| {
 | |
| 	if (val == 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	pr_warn_once("Non-hierarchical mode is deprecated. "
 | |
| 		     "Please report your usecase to linux-mm@kvack.org if you "
 | |
| 		     "depend on this functionality.\n");
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
 | |
| 			       struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 	struct page_counter *counter;
 | |
| 
 | |
| 	switch (MEMFILE_TYPE(cft->private)) {
 | |
| 	case _MEM:
 | |
| 		counter = &memcg->memory;
 | |
| 		break;
 | |
| 	case _MEMSWAP:
 | |
| 		counter = &memcg->memsw;
 | |
| 		break;
 | |
| 	case _KMEM:
 | |
| 		counter = &memcg->kmem;
 | |
| 		break;
 | |
| 	case _TCP:
 | |
| 		counter = &memcg->tcpmem;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	switch (MEMFILE_ATTR(cft->private)) {
 | |
| 	case RES_USAGE:
 | |
| 		if (counter == &memcg->memory)
 | |
| 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
 | |
| 		if (counter == &memcg->memsw)
 | |
| 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
 | |
| 		return (u64)page_counter_read(counter) * PAGE_SIZE;
 | |
| 	case RES_LIMIT:
 | |
| 		return (u64)counter->max * PAGE_SIZE;
 | |
| 	case RES_MAX_USAGE:
 | |
| 		return (u64)counter->watermark * PAGE_SIZE;
 | |
| 	case RES_FAILCNT:
 | |
| 		return counter->failcnt;
 | |
| 	case RES_SOFT_LIMIT:
 | |
| 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function doesn't do anything useful. Its only job is to provide a read
 | |
|  * handler for a file so that cgroup_file_mode() will add read permissions.
 | |
|  */
 | |
| static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
 | |
| 				     __always_unused void *v)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&memcg_max_mutex);
 | |
| 
 | |
| 	ret = page_counter_set_max(&memcg->tcpmem, max);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!memcg->tcpmem_active) {
 | |
| 		/*
 | |
| 		 * The active flag needs to be written after the static_key
 | |
| 		 * update. This is what guarantees that the socket activation
 | |
| 		 * function is the last one to run. See mem_cgroup_sk_alloc()
 | |
| 		 * for details, and note that we don't mark any socket as
 | |
| 		 * belonging to this memcg until that flag is up.
 | |
| 		 *
 | |
| 		 * We need to do this, because static_keys will span multiple
 | |
| 		 * sites, but we can't control their order. If we mark a socket
 | |
| 		 * as accounted, but the accounting functions are not patched in
 | |
| 		 * yet, we'll lose accounting.
 | |
| 		 *
 | |
| 		 * We never race with the readers in mem_cgroup_sk_alloc(),
 | |
| 		 * because when this value change, the code to process it is not
 | |
| 		 * patched in yet.
 | |
| 		 */
 | |
| 		static_branch_inc(&memcg_sockets_enabled_key);
 | |
| 		memcg->tcpmem_active = true;
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&memcg_max_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The user of this function is...
 | |
|  * RES_LIMIT.
 | |
|  */
 | |
| static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
 | |
| 				char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long nr_pages;
 | |
| 	int ret;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	ret = page_counter_memparse(buf, "-1", &nr_pages);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 | |
| 	case RES_LIMIT:
 | |
| 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
 | |
| 		case _MEM:
 | |
| 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
 | |
| 			break;
 | |
| 		case _MEMSWAP:
 | |
| 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
 | |
| 			break;
 | |
| 		case _KMEM:
 | |
| 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
 | |
| 				     "Writing any value to this file has no effect. "
 | |
| 				     "Please report your usecase to linux-mm@kvack.org if you "
 | |
| 				     "depend on this functionality.\n");
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		case _TCP:
 | |
| 			pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
 | |
| 				     "Please report your usecase to linux-mm@kvack.org if you "
 | |
| 				     "depend on this functionality.\n");
 | |
| 			ret = memcg_update_tcp_max(memcg, nr_pages);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case RES_SOFT_LIMIT:
 | |
| 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
 | |
| 			ret = -EOPNOTSUPP;
 | |
| 		} else {
 | |
| 			pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
 | |
| 				     "Please report your usecase to linux-mm@kvack.org if you "
 | |
| 				     "depend on this functionality.\n");
 | |
| 			WRITE_ONCE(memcg->soft_limit, nr_pages);
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret ?: nbytes;
 | |
| }
 | |
| 
 | |
| static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
 | |
| 				size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	struct page_counter *counter;
 | |
| 
 | |
| 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
 | |
| 	case _MEM:
 | |
| 		counter = &memcg->memory;
 | |
| 		break;
 | |
| 	case _MEMSWAP:
 | |
| 		counter = &memcg->memsw;
 | |
| 		break;
 | |
| 	case _KMEM:
 | |
| 		counter = &memcg->kmem;
 | |
| 		break;
 | |
| 	case _TCP:
 | |
| 		counter = &memcg->tcpmem;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 | |
| 	case RES_MAX_USAGE:
 | |
| 		page_counter_reset_watermark(counter);
 | |
| 		break;
 | |
| 	case RES_FAILCNT:
 | |
| 		counter->failcnt = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 | |
| #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 | |
| #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
 | |
| 
 | |
| static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 | |
| 				int nid, unsigned int lru_mask, bool tree)
 | |
| {
 | |
| 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
 | |
| 	unsigned long nr = 0;
 | |
| 	enum lru_list lru;
 | |
| 
 | |
| 	VM_BUG_ON((unsigned int)nid >= nr_node_ids);
 | |
| 
 | |
| 	for_each_lru(lru) {
 | |
| 		if (!(BIT(lru) & lru_mask))
 | |
| 			continue;
 | |
| 		if (tree)
 | |
| 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
 | |
| 		else
 | |
| 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
 | |
| 	}
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 | |
| 					     unsigned int lru_mask,
 | |
| 					     bool tree)
 | |
| {
 | |
| 	unsigned long nr = 0;
 | |
| 	enum lru_list lru;
 | |
| 
 | |
| 	for_each_lru(lru) {
 | |
| 		if (!(BIT(lru) & lru_mask))
 | |
| 			continue;
 | |
| 		if (tree)
 | |
| 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
 | |
| 		else
 | |
| 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
 | |
| 	}
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static int memcg_numa_stat_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct numa_stat {
 | |
| 		const char *name;
 | |
| 		unsigned int lru_mask;
 | |
| 	};
 | |
| 
 | |
| 	static const struct numa_stat stats[] = {
 | |
| 		{ "total", LRU_ALL },
 | |
| 		{ "file", LRU_ALL_FILE },
 | |
| 		{ "anon", LRU_ALL_ANON },
 | |
| 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
 | |
| 	};
 | |
| 	const struct numa_stat *stat;
 | |
| 	int nid;
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	mem_cgroup_flush_stats(memcg);
 | |
| 
 | |
| 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 | |
| 		seq_printf(m, "%s=%lu", stat->name,
 | |
| 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
 | |
| 						   false));
 | |
| 		for_each_node_state(nid, N_MEMORY)
 | |
| 			seq_printf(m, " N%d=%lu", nid,
 | |
| 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
 | |
| 							stat->lru_mask, false));
 | |
| 		seq_putc(m, '\n');
 | |
| 	}
 | |
| 
 | |
| 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 | |
| 
 | |
| 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
 | |
| 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
 | |
| 						   true));
 | |
| 		for_each_node_state(nid, N_MEMORY)
 | |
| 			seq_printf(m, " N%d=%lu", nid,
 | |
| 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
 | |
| 							stat->lru_mask, true));
 | |
| 		seq_putc(m, '\n');
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| static const unsigned int memcg1_stats[] = {
 | |
| 	NR_FILE_PAGES,
 | |
| 	NR_ANON_MAPPED,
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	NR_ANON_THPS,
 | |
| #endif
 | |
| 	NR_SHMEM,
 | |
| 	NR_FILE_MAPPED,
 | |
| 	NR_FILE_DIRTY,
 | |
| 	NR_WRITEBACK,
 | |
| 	WORKINGSET_REFAULT_ANON,
 | |
| 	WORKINGSET_REFAULT_FILE,
 | |
| #ifdef CONFIG_SWAP
 | |
| 	MEMCG_SWAP,
 | |
| 	NR_SWAPCACHE,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static const char *const memcg1_stat_names[] = {
 | |
| 	"cache",
 | |
| 	"rss",
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	"rss_huge",
 | |
| #endif
 | |
| 	"shmem",
 | |
| 	"mapped_file",
 | |
| 	"dirty",
 | |
| 	"writeback",
 | |
| 	"workingset_refault_anon",
 | |
| 	"workingset_refault_file",
 | |
| #ifdef CONFIG_SWAP
 | |
| 	"swap",
 | |
| 	"swapcached",
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* Universal VM events cgroup1 shows, original sort order */
 | |
| static const unsigned int memcg1_events[] = {
 | |
| 	PGPGIN,
 | |
| 	PGPGOUT,
 | |
| 	PGFAULT,
 | |
| 	PGMAJFAULT,
 | |
| };
 | |
| 
 | |
| void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
 | |
| {
 | |
| 	unsigned long memory, memsw;
 | |
| 	struct mem_cgroup *mi;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
 | |
| 
 | |
| 	mem_cgroup_flush_stats(memcg);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
 | |
| 		unsigned long nr;
 | |
| 
 | |
| 		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
 | |
| 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
 | |
| 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
 | |
| 			       memcg_events_local(memcg, memcg1_events[i]));
 | |
| 
 | |
| 	for (i = 0; i < NR_LRU_LISTS; i++)
 | |
| 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
 | |
| 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
 | |
| 			       PAGE_SIZE);
 | |
| 
 | |
| 	/* Hierarchical information */
 | |
| 	memory = memsw = PAGE_COUNTER_MAX;
 | |
| 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
 | |
| 		memory = min(memory, READ_ONCE(mi->memory.max));
 | |
| 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
 | |
| 	}
 | |
| 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
 | |
| 		       (u64)memory * PAGE_SIZE);
 | |
| 	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
 | |
| 		       (u64)memsw * PAGE_SIZE);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
 | |
| 		unsigned long nr;
 | |
| 
 | |
| 		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
 | |
| 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
 | |
| 			       (u64)nr);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
 | |
| 		seq_buf_printf(s, "total_%s %llu\n",
 | |
| 			       vm_event_name(memcg1_events[i]),
 | |
| 			       (u64)memcg_events(memcg, memcg1_events[i]));
 | |
| 
 | |
| 	for (i = 0; i < NR_LRU_LISTS; i++)
 | |
| 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
 | |
| 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
 | |
| 			       PAGE_SIZE);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	{
 | |
| 		pg_data_t *pgdat;
 | |
| 		struct mem_cgroup_per_node *mz;
 | |
| 		unsigned long anon_cost = 0;
 | |
| 		unsigned long file_cost = 0;
 | |
| 
 | |
| 		for_each_online_pgdat(pgdat) {
 | |
| 			mz = memcg->nodeinfo[pgdat->node_id];
 | |
| 
 | |
| 			anon_cost += mz->lruvec.anon_cost;
 | |
| 			file_cost += mz->lruvec.file_cost;
 | |
| 		}
 | |
| 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
 | |
| 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
 | |
| 				      struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	return mem_cgroup_swappiness(memcg);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
 | |
| 				       struct cftype *cft, u64 val)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	if (val > MAX_SWAPPINESS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!mem_cgroup_is_root(memcg))
 | |
| 		WRITE_ONCE(memcg->swappiness, val);
 | |
| 	else
 | |
| 		WRITE_ONCE(vm_swappiness, val);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
 | |
| 
 | |
| 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
 | |
| 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
 | |
| 	seq_printf(sf, "oom_kill %lu\n",
 | |
| 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
 | |
| 	struct cftype *cft, u64 val)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	pr_warn_once("oom_control is deprecated and will be removed. "
 | |
| 		     "Please report your usecase to linux-mm-@kvack.org if you "
 | |
| 		     "depend on this functionality.\n");
 | |
| 
 | |
| 	/* cannot set to root cgroup and only 0 and 1 are allowed */
 | |
| 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WRITE_ONCE(memcg->oom_kill_disable, val);
 | |
| 	if (!val)
 | |
| 		memcg1_oom_recover(memcg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static int mem_cgroup_slab_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Deprecated.
 | |
| 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct cftype mem_cgroup_legacy_files[] = {
 | |
| 	{
 | |
| 		.name = "usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "soft_limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "stat",
 | |
| 		.seq_show = memory_stat_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "force_empty",
 | |
| 		.write = mem_cgroup_force_empty_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "use_hierarchy",
 | |
| 		.write_u64 = mem_cgroup_hierarchy_write,
 | |
| 		.read_u64 = mem_cgroup_hierarchy_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.event_control",		/* XXX: for compat */
 | |
| 		.write = memcg_write_event_control,
 | |
| 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swappiness",
 | |
| 		.read_u64 = mem_cgroup_swappiness_read,
 | |
| 		.write_u64 = mem_cgroup_swappiness_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "move_charge_at_immigrate",
 | |
| 		.read_u64 = mem_cgroup_move_charge_read,
 | |
| 		.write_u64 = mem_cgroup_move_charge_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "oom_control",
 | |
| 		.seq_show = mem_cgroup_oom_control_read,
 | |
| 		.write_u64 = mem_cgroup_oom_control_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "pressure_level",
 | |
| 		.seq_show = mem_cgroup_dummy_seq_show,
 | |
| 	},
 | |
| #ifdef CONFIG_NUMA
 | |
| 	{
 | |
| 		.name = "numa_stat",
 | |
| 		.seq_show = memcg_numa_stat_show,
 | |
| 	},
 | |
| #endif
 | |
| 	{
 | |
| 		.name = "kmem.limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	{
 | |
| 		.name = "kmem.slabinfo",
 | |
| 		.seq_show = mem_cgroup_slab_show,
 | |
| 	},
 | |
| #endif
 | |
| 	{
 | |
| 		.name = "kmem.tcp.limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.tcp.usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.tcp.failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.tcp.max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{ },	/* terminate */
 | |
| };
 | |
| 
 | |
| struct cftype memsw_files[] = {
 | |
| 	{
 | |
| 		.name = "memsw.usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{ },	/* terminate */
 | |
| };
 | |
| 
 | |
| void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
 | |
| {
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
 | |
| 		if (nr_pages > 0)
 | |
| 			page_counter_charge(&memcg->kmem, nr_pages);
 | |
| 		else
 | |
| 			page_counter_uncharge(&memcg->kmem, -nr_pages);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
 | |
| 			 gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page_counter *fail;
 | |
| 
 | |
| 	if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
 | |
| 		memcg->tcpmem_pressure = 0;
 | |
| 		return true;
 | |
| 	}
 | |
| 	memcg->tcpmem_pressure = 1;
 | |
| 	if (gfp_mask & __GFP_NOFAIL) {
 | |
| 		page_counter_charge(&memcg->tcpmem, nr_pages);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool memcg1_alloc_events(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
 | |
| 						GFP_KERNEL_ACCOUNT);
 | |
| 	return !!memcg->events_percpu;
 | |
| }
 | |
| 
 | |
| void memcg1_free_events(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	if (memcg->events_percpu)
 | |
| 		free_percpu(memcg->events_percpu);
 | |
| }
 | |
| 
 | |
| static int __init memcg1_init(void)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node(node) {
 | |
| 		struct mem_cgroup_tree_per_node *rtpn;
 | |
| 
 | |
| 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
 | |
| 
 | |
| 		rtpn->rb_root = RB_ROOT;
 | |
| 		rtpn->rb_rightmost = NULL;
 | |
| 		spin_lock_init(&rtpn->lock);
 | |
| 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(memcg1_init);
 |