mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 e12ba74d8f
			
		
	
	
		e12ba74d8f
		
	
	
	
	
		
			
			This patch marks a number of allocations that are either short-lived such as network buffers or are reclaimable such as inode allocations. When something like updatedb is called, long-lived and unmovable kernel allocations tend to be spread throughout the address space which increases fragmentation. This patch groups these allocations together as much as possible by adding a new MIGRATE_TYPE. The MIGRATE_RECLAIMABLE type is for allocations that can be reclaimed on demand, but not moved. i.e. they can be migrated by deleting them and re-reading the information from elsewhere. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			4339 lines
		
	
	
	
		
			118 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4339 lines
		
	
	
	
		
			118 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/page_alloc.c
 | |
|  *
 | |
|  *  Manages the free list, the system allocates free pages here.
 | |
|  *  Note that kmalloc() lives in slab.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie
 | |
|  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 | |
|  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 | |
|  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 | |
|  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 | |
|  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 | |
|  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 | |
|  */
 | |
| 
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/fault-inject.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/div64.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * Array of node states.
 | |
|  */
 | |
| nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 | |
| 	[N_POSSIBLE] = NODE_MASK_ALL,
 | |
| 	[N_ONLINE] = { { [0] = 1UL } },
 | |
| #ifndef CONFIG_NUMA
 | |
| 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 | |
| #endif
 | |
| 	[N_CPU] = { { [0] = 1UL } },
 | |
| #endif	/* NUMA */
 | |
| };
 | |
| EXPORT_SYMBOL(node_states);
 | |
| 
 | |
| unsigned long totalram_pages __read_mostly;
 | |
| unsigned long totalreserve_pages __read_mostly;
 | |
| long nr_swap_pages;
 | |
| int percpu_pagelist_fraction;
 | |
| 
 | |
| static void __free_pages_ok(struct page *page, unsigned int order);
 | |
| 
 | |
| /*
 | |
|  * results with 256, 32 in the lowmem_reserve sysctl:
 | |
|  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 | |
|  *	1G machine -> (16M dma, 784M normal, 224M high)
 | |
|  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 | |
|  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 | |
|  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 | |
|  *
 | |
|  * TBD: should special case ZONE_DMA32 machines here - in those we normally
 | |
|  * don't need any ZONE_NORMAL reservation
 | |
|  */
 | |
| int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	 256,
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	 256,
 | |
| #endif
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	 32,
 | |
| #endif
 | |
| 	 32,
 | |
| };
 | |
| 
 | |
| EXPORT_SYMBOL(totalram_pages);
 | |
| 
 | |
| static char * const zone_names[MAX_NR_ZONES] = {
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	 "DMA",
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	 "DMA32",
 | |
| #endif
 | |
| 	 "Normal",
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	 "HighMem",
 | |
| #endif
 | |
| 	 "Movable",
 | |
| };
 | |
| 
 | |
| int min_free_kbytes = 1024;
 | |
| 
 | |
| unsigned long __meminitdata nr_kernel_pages;
 | |
| unsigned long __meminitdata nr_all_pages;
 | |
| static unsigned long __meminitdata dma_reserve;
 | |
| 
 | |
| #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 | |
|   /*
 | |
|    * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
 | |
|    * ranges of memory (RAM) that may be registered with add_active_range().
 | |
|    * Ranges passed to add_active_range() will be merged if possible
 | |
|    * so the number of times add_active_range() can be called is
 | |
|    * related to the number of nodes and the number of holes
 | |
|    */
 | |
|   #ifdef CONFIG_MAX_ACTIVE_REGIONS
 | |
|     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
 | |
|     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
 | |
|   #else
 | |
|     #if MAX_NUMNODES >= 32
 | |
|       /* If there can be many nodes, allow up to 50 holes per node */
 | |
|       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
 | |
|     #else
 | |
|       /* By default, allow up to 256 distinct regions */
 | |
|       #define MAX_ACTIVE_REGIONS 256
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
 | |
|   static int __meminitdata nr_nodemap_entries;
 | |
|   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 | |
|   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
 | |
|   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
 | |
|   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
 | |
|   unsigned long __initdata required_kernelcore;
 | |
|   unsigned long __initdata required_movablecore;
 | |
|   unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 | |
| 
 | |
|   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 | |
|   int movable_zone;
 | |
|   EXPORT_SYMBOL(movable_zone);
 | |
| #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| int nr_node_ids __read_mostly = MAX_NUMNODES;
 | |
| EXPORT_SYMBOL(nr_node_ids);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
 | |
| static inline int get_pageblock_migratetype(struct page *page)
 | |
| {
 | |
| 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
 | |
| }
 | |
| 
 | |
| static void set_pageblock_migratetype(struct page *page, int migratetype)
 | |
| {
 | |
| 	set_pageblock_flags_group(page, (unsigned long)migratetype,
 | |
| 					PB_migrate, PB_migrate_end);
 | |
| }
 | |
| 
 | |
| static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
 | |
| {
 | |
| 	WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
 | |
| 
 | |
| 	return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
 | |
| 		((gfp_flags & __GFP_RECLAIMABLE) != 0);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline int get_pageblock_migratetype(struct page *page)
 | |
| {
 | |
| 	return MIGRATE_UNMOVABLE;
 | |
| }
 | |
| 
 | |
| static void set_pageblock_migratetype(struct page *page, int migratetype)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
 | |
| {
 | |
| 	return MIGRATE_UNMOVABLE;
 | |
| }
 | |
| #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned seq;
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 
 | |
| 	do {
 | |
| 		seq = zone_span_seqbegin(zone);
 | |
| 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
 | |
| 			ret = 1;
 | |
| 		else if (pfn < zone->zone_start_pfn)
 | |
| 			ret = 1;
 | |
| 	} while (zone_span_seqretry(zone, seq));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int page_is_consistent(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	if (!pfn_valid_within(page_to_pfn(page)))
 | |
| 		return 0;
 | |
| 	if (zone != page_zone(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| /*
 | |
|  * Temporary debugging check for pages not lying within a given zone.
 | |
|  */
 | |
| static int bad_range(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	if (page_outside_zone_boundaries(zone, page))
 | |
| 		return 1;
 | |
| 	if (!page_is_consistent(zone, page))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static inline int bad_range(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void bad_page(struct page *page)
 | |
| {
 | |
| 	printk(KERN_EMERG "Bad page state in process '%s'\n"
 | |
| 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
 | |
| 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
 | |
| 		KERN_EMERG "Backtrace:\n",
 | |
| 		current->comm, page, (int)(2*sizeof(unsigned long)),
 | |
| 		(unsigned long)page->flags, page->mapping,
 | |
| 		page_mapcount(page), page_count(page));
 | |
| 	dump_stack();
 | |
| 	page->flags &= ~(1 << PG_lru	|
 | |
| 			1 << PG_private |
 | |
| 			1 << PG_locked	|
 | |
| 			1 << PG_active	|
 | |
| 			1 << PG_dirty	|
 | |
| 			1 << PG_reclaim |
 | |
| 			1 << PG_slab    |
 | |
| 			1 << PG_swapcache |
 | |
| 			1 << PG_writeback |
 | |
| 			1 << PG_buddy );
 | |
| 	set_page_count(page, 0);
 | |
| 	reset_page_mapcount(page);
 | |
| 	page->mapping = NULL;
 | |
| 	add_taint(TAINT_BAD_PAGE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Higher-order pages are called "compound pages".  They are structured thusly:
 | |
|  *
 | |
|  * The first PAGE_SIZE page is called the "head page".
 | |
|  *
 | |
|  * The remaining PAGE_SIZE pages are called "tail pages".
 | |
|  *
 | |
|  * All pages have PG_compound set.  All pages have their ->private pointing at
 | |
|  * the head page (even the head page has this).
 | |
|  *
 | |
|  * The first tail page's ->lru.next holds the address of the compound page's
 | |
|  * put_page() function.  Its ->lru.prev holds the order of allocation.
 | |
|  * This usage means that zero-order pages may not be compound.
 | |
|  */
 | |
| 
 | |
| static void free_compound_page(struct page *page)
 | |
| {
 | |
| 	__free_pages_ok(page, compound_order(page));
 | |
| }
 | |
| 
 | |
| static void prep_compound_page(struct page *page, unsigned long order)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages = 1 << order;
 | |
| 
 | |
| 	set_compound_page_dtor(page, free_compound_page);
 | |
| 	set_compound_order(page, order);
 | |
| 	__SetPageHead(page);
 | |
| 	for (i = 1; i < nr_pages; i++) {
 | |
| 		struct page *p = page + i;
 | |
| 
 | |
| 		__SetPageTail(p);
 | |
| 		p->first_page = page;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void destroy_compound_page(struct page *page, unsigned long order)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages = 1 << order;
 | |
| 
 | |
| 	if (unlikely(compound_order(page) != order))
 | |
| 		bad_page(page);
 | |
| 
 | |
| 	if (unlikely(!PageHead(page)))
 | |
| 			bad_page(page);
 | |
| 	__ClearPageHead(page);
 | |
| 	for (i = 1; i < nr_pages; i++) {
 | |
| 		struct page *p = page + i;
 | |
| 
 | |
| 		if (unlikely(!PageTail(p) |
 | |
| 				(p->first_page != page)))
 | |
| 			bad_page(page);
 | |
| 		__ClearPageTail(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
 | |
| 	/*
 | |
| 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 | |
| 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
 | |
| 	 */
 | |
| 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 | |
| 	for (i = 0; i < (1 << order); i++)
 | |
| 		clear_highpage(page + i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * function for dealing with page's order in buddy system.
 | |
|  * zone->lock is already acquired when we use these.
 | |
|  * So, we don't need atomic page->flags operations here.
 | |
|  */
 | |
| static inline unsigned long page_order(struct page *page)
 | |
| {
 | |
| 	return page_private(page);
 | |
| }
 | |
| 
 | |
| static inline void set_page_order(struct page *page, int order)
 | |
| {
 | |
| 	set_page_private(page, order);
 | |
| 	__SetPageBuddy(page);
 | |
| }
 | |
| 
 | |
| static inline void rmv_page_order(struct page *page)
 | |
| {
 | |
| 	__ClearPageBuddy(page);
 | |
| 	set_page_private(page, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate the struct page for both the matching buddy in our
 | |
|  * pair (buddy1) and the combined O(n+1) page they form (page).
 | |
|  *
 | |
|  * 1) Any buddy B1 will have an order O twin B2 which satisfies
 | |
|  * the following equation:
 | |
|  *     B2 = B1 ^ (1 << O)
 | |
|  * For example, if the starting buddy (buddy2) is #8 its order
 | |
|  * 1 buddy is #10:
 | |
|  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 | |
|  *
 | |
|  * 2) Any buddy B will have an order O+1 parent P which
 | |
|  * satisfies the following equation:
 | |
|  *     P = B & ~(1 << O)
 | |
|  *
 | |
|  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 | |
|  */
 | |
| static inline struct page *
 | |
| __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
 | |
| {
 | |
| 	unsigned long buddy_idx = page_idx ^ (1 << order);
 | |
| 
 | |
| 	return page + (buddy_idx - page_idx);
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| __find_combined_index(unsigned long page_idx, unsigned int order)
 | |
| {
 | |
| 	return (page_idx & ~(1 << order));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function checks whether a page is free && is the buddy
 | |
|  * we can do coalesce a page and its buddy if
 | |
|  * (a) the buddy is not in a hole &&
 | |
|  * (b) the buddy is in the buddy system &&
 | |
|  * (c) a page and its buddy have the same order &&
 | |
|  * (d) a page and its buddy are in the same zone.
 | |
|  *
 | |
|  * For recording whether a page is in the buddy system, we use PG_buddy.
 | |
|  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
 | |
|  *
 | |
|  * For recording page's order, we use page_private(page).
 | |
|  */
 | |
| static inline int page_is_buddy(struct page *page, struct page *buddy,
 | |
| 								int order)
 | |
| {
 | |
| 	if (!pfn_valid_within(page_to_pfn(buddy)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page_zone_id(page) != page_zone_id(buddy))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (PageBuddy(buddy) && page_order(buddy) == order) {
 | |
| 		BUG_ON(page_count(buddy) != 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Freeing function for a buddy system allocator.
 | |
|  *
 | |
|  * The concept of a buddy system is to maintain direct-mapped table
 | |
|  * (containing bit values) for memory blocks of various "orders".
 | |
|  * The bottom level table contains the map for the smallest allocatable
 | |
|  * units of memory (here, pages), and each level above it describes
 | |
|  * pairs of units from the levels below, hence, "buddies".
 | |
|  * At a high level, all that happens here is marking the table entry
 | |
|  * at the bottom level available, and propagating the changes upward
 | |
|  * as necessary, plus some accounting needed to play nicely with other
 | |
|  * parts of the VM system.
 | |
|  * At each level, we keep a list of pages, which are heads of continuous
 | |
|  * free pages of length of (1 << order) and marked with PG_buddy. Page's
 | |
|  * order is recorded in page_private(page) field.
 | |
|  * So when we are allocating or freeing one, we can derive the state of the
 | |
|  * other.  That is, if we allocate a small block, and both were   
 | |
|  * free, the remainder of the region must be split into blocks.   
 | |
|  * If a block is freed, and its buddy is also free, then this
 | |
|  * triggers coalescing into a block of larger size.            
 | |
|  *
 | |
|  * -- wli
 | |
|  */
 | |
| 
 | |
| static inline void __free_one_page(struct page *page,
 | |
| 		struct zone *zone, unsigned int order)
 | |
| {
 | |
| 	unsigned long page_idx;
 | |
| 	int order_size = 1 << order;
 | |
| 	int migratetype = get_pageblock_migratetype(page);
 | |
| 
 | |
| 	if (unlikely(PageCompound(page)))
 | |
| 		destroy_compound_page(page, order);
 | |
| 
 | |
| 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 | |
| 
 | |
| 	VM_BUG_ON(page_idx & (order_size - 1));
 | |
| 	VM_BUG_ON(bad_range(zone, page));
 | |
| 
 | |
| 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
 | |
| 	while (order < MAX_ORDER-1) {
 | |
| 		unsigned long combined_idx;
 | |
| 		struct page *buddy;
 | |
| 
 | |
| 		buddy = __page_find_buddy(page, page_idx, order);
 | |
| 		if (!page_is_buddy(page, buddy, order))
 | |
| 			break;		/* Move the buddy up one level. */
 | |
| 
 | |
| 		list_del(&buddy->lru);
 | |
| 		zone->free_area[order].nr_free--;
 | |
| 		rmv_page_order(buddy);
 | |
| 		combined_idx = __find_combined_index(page_idx, order);
 | |
| 		page = page + (combined_idx - page_idx);
 | |
| 		page_idx = combined_idx;
 | |
| 		order++;
 | |
| 	}
 | |
| 	set_page_order(page, order);
 | |
| 	list_add(&page->lru,
 | |
| 		&zone->free_area[order].free_list[migratetype]);
 | |
| 	zone->free_area[order].nr_free++;
 | |
| }
 | |
| 
 | |
| static inline int free_pages_check(struct page *page)
 | |
| {
 | |
| 	if (unlikely(page_mapcount(page) |
 | |
| 		(page->mapping != NULL)  |
 | |
| 		(page_count(page) != 0)  |
 | |
| 		(page->flags & (
 | |
| 			1 << PG_lru	|
 | |
| 			1 << PG_private |
 | |
| 			1 << PG_locked	|
 | |
| 			1 << PG_active	|
 | |
| 			1 << PG_slab	|
 | |
| 			1 << PG_swapcache |
 | |
| 			1 << PG_writeback |
 | |
| 			1 << PG_reserved |
 | |
| 			1 << PG_buddy ))))
 | |
| 		bad_page(page);
 | |
| 	if (PageDirty(page))
 | |
| 		__ClearPageDirty(page);
 | |
| 	/*
 | |
| 	 * For now, we report if PG_reserved was found set, but do not
 | |
| 	 * clear it, and do not free the page.  But we shall soon need
 | |
| 	 * to do more, for when the ZERO_PAGE count wraps negative.
 | |
| 	 */
 | |
| 	return PageReserved(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Frees a list of pages. 
 | |
|  * Assumes all pages on list are in same zone, and of same order.
 | |
|  * count is the number of pages to free.
 | |
|  *
 | |
|  * If the zone was previously in an "all pages pinned" state then look to
 | |
|  * see if this freeing clears that state.
 | |
|  *
 | |
|  * And clear the zone's pages_scanned counter, to hold off the "all pages are
 | |
|  * pinned" detection logic.
 | |
|  */
 | |
| static void free_pages_bulk(struct zone *zone, int count,
 | |
| 					struct list_head *list, int order)
 | |
| {
 | |
| 	spin_lock(&zone->lock);
 | |
| 	zone->all_unreclaimable = 0;
 | |
| 	zone->pages_scanned = 0;
 | |
| 	while (count--) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		VM_BUG_ON(list_empty(list));
 | |
| 		page = list_entry(list->prev, struct page, lru);
 | |
| 		/* have to delete it as __free_one_page list manipulates */
 | |
| 		list_del(&page->lru);
 | |
| 		__free_one_page(page, zone, order);
 | |
| 	}
 | |
| 	spin_unlock(&zone->lock);
 | |
| }
 | |
| 
 | |
| static void free_one_page(struct zone *zone, struct page *page, int order)
 | |
| {
 | |
| 	spin_lock(&zone->lock);
 | |
| 	zone->all_unreclaimable = 0;
 | |
| 	zone->pages_scanned = 0;
 | |
| 	__free_one_page(page, zone, order);
 | |
| 	spin_unlock(&zone->lock);
 | |
| }
 | |
| 
 | |
| static void __free_pages_ok(struct page *page, unsigned int order)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 	int reserved = 0;
 | |
| 
 | |
| 	for (i = 0 ; i < (1 << order) ; ++i)
 | |
| 		reserved += free_pages_check(page + i);
 | |
| 	if (reserved)
 | |
| 		return;
 | |
| 
 | |
| 	if (!PageHighMem(page))
 | |
| 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
 | |
| 	arch_free_page(page, order);
 | |
| 	kernel_map_pages(page, 1 << order, 0);
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	__count_vm_events(PGFREE, 1 << order);
 | |
| 	free_one_page(page_zone(page), page, order);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * permit the bootmem allocator to evade page validation on high-order frees
 | |
|  */
 | |
| void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
 | |
| {
 | |
| 	if (order == 0) {
 | |
| 		__ClearPageReserved(page);
 | |
| 		set_page_count(page, 0);
 | |
| 		set_page_refcounted(page);
 | |
| 		__free_page(page);
 | |
| 	} else {
 | |
| 		int loop;
 | |
| 
 | |
| 		prefetchw(page);
 | |
| 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
 | |
| 			struct page *p = &page[loop];
 | |
| 
 | |
| 			if (loop + 1 < BITS_PER_LONG)
 | |
| 				prefetchw(p + 1);
 | |
| 			__ClearPageReserved(p);
 | |
| 			set_page_count(p, 0);
 | |
| 		}
 | |
| 
 | |
| 		set_page_refcounted(page);
 | |
| 		__free_pages(page, order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The order of subdivision here is critical for the IO subsystem.
 | |
|  * Please do not alter this order without good reasons and regression
 | |
|  * testing. Specifically, as large blocks of memory are subdivided,
 | |
|  * the order in which smaller blocks are delivered depends on the order
 | |
|  * they're subdivided in this function. This is the primary factor
 | |
|  * influencing the order in which pages are delivered to the IO
 | |
|  * subsystem according to empirical testing, and this is also justified
 | |
|  * by considering the behavior of a buddy system containing a single
 | |
|  * large block of memory acted on by a series of small allocations.
 | |
|  * This behavior is a critical factor in sglist merging's success.
 | |
|  *
 | |
|  * -- wli
 | |
|  */
 | |
| static inline void expand(struct zone *zone, struct page *page,
 | |
| 	int low, int high, struct free_area *area,
 | |
| 	int migratetype)
 | |
| {
 | |
| 	unsigned long size = 1 << high;
 | |
| 
 | |
| 	while (high > low) {
 | |
| 		area--;
 | |
| 		high--;
 | |
| 		size >>= 1;
 | |
| 		VM_BUG_ON(bad_range(zone, &page[size]));
 | |
| 		list_add(&page[size].lru, &area->free_list[migratetype]);
 | |
| 		area->nr_free++;
 | |
| 		set_page_order(&page[size], high);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This page is about to be returned from the page allocator
 | |
|  */
 | |
| static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 | |
| {
 | |
| 	if (unlikely(page_mapcount(page) |
 | |
| 		(page->mapping != NULL)  |
 | |
| 		(page_count(page) != 0)  |
 | |
| 		(page->flags & (
 | |
| 			1 << PG_lru	|
 | |
| 			1 << PG_private	|
 | |
| 			1 << PG_locked	|
 | |
| 			1 << PG_active	|
 | |
| 			1 << PG_dirty	|
 | |
| 			1 << PG_slab    |
 | |
| 			1 << PG_swapcache |
 | |
| 			1 << PG_writeback |
 | |
| 			1 << PG_reserved |
 | |
| 			1 << PG_buddy ))))
 | |
| 		bad_page(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * For now, we report if PG_reserved was found set, but do not
 | |
| 	 * clear it, and do not allocate the page: as a safety net.
 | |
| 	 */
 | |
| 	if (PageReserved(page))
 | |
| 		return 1;
 | |
| 
 | |
| 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
 | |
| 			1 << PG_referenced | 1 << PG_arch_1 |
 | |
| 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
 | |
| 	set_page_private(page, 0);
 | |
| 	set_page_refcounted(page);
 | |
| 
 | |
| 	arch_alloc_page(page, order);
 | |
| 	kernel_map_pages(page, 1 << order, 1);
 | |
| 
 | |
| 	if (gfp_flags & __GFP_ZERO)
 | |
| 		prep_zero_page(page, order, gfp_flags);
 | |
| 
 | |
| 	if (order && (gfp_flags & __GFP_COMP))
 | |
| 		prep_compound_page(page, order);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
 | |
| /*
 | |
|  * This array describes the order lists are fallen back to when
 | |
|  * the free lists for the desirable migrate type are depleted
 | |
|  */
 | |
| static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
 | |
| 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
 | |
| 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
 | |
| 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Move the free pages in a range to the free lists of the requested type.
 | |
|  * Note that start_page and end_pages are not aligned in a MAX_ORDER_NR_PAGES
 | |
|  * boundary. If alignment is required, use move_freepages_block()
 | |
|  */
 | |
| int move_freepages(struct zone *zone,
 | |
| 			struct page *start_page, struct page *end_page,
 | |
| 			int migratetype)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned long order;
 | |
| 	int blocks_moved = 0;
 | |
| 
 | |
| #ifndef CONFIG_HOLES_IN_ZONE
 | |
| 	/*
 | |
| 	 * page_zone is not safe to call in this context when
 | |
| 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 | |
| 	 * anyway as we check zone boundaries in move_freepages_block().
 | |
| 	 * Remove at a later date when no bug reports exist related to
 | |
| 	 * CONFIG_PAGE_GROUP_BY_MOBILITY
 | |
| 	 */
 | |
| 	BUG_ON(page_zone(start_page) != page_zone(end_page));
 | |
| #endif
 | |
| 
 | |
| 	for (page = start_page; page <= end_page;) {
 | |
| 		if (!pfn_valid_within(page_to_pfn(page))) {
 | |
| 			page++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!PageBuddy(page)) {
 | |
| 			page++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		order = page_order(page);
 | |
| 		list_del(&page->lru);
 | |
| 		list_add(&page->lru,
 | |
| 			&zone->free_area[order].free_list[migratetype]);
 | |
| 		page += 1 << order;
 | |
| 		blocks_moved++;
 | |
| 	}
 | |
| 
 | |
| 	return blocks_moved;
 | |
| }
 | |
| 
 | |
| int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	struct page *start_page, *end_page;
 | |
| 
 | |
| 	start_pfn = page_to_pfn(page);
 | |
| 	start_pfn = start_pfn & ~(MAX_ORDER_NR_PAGES-1);
 | |
| 	start_page = pfn_to_page(start_pfn);
 | |
| 	end_page = start_page + MAX_ORDER_NR_PAGES - 1;
 | |
| 	end_pfn = start_pfn + MAX_ORDER_NR_PAGES - 1;
 | |
| 
 | |
| 	/* Do not cross zone boundaries */
 | |
| 	if (start_pfn < zone->zone_start_pfn)
 | |
| 		start_page = page;
 | |
| 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	return move_freepages(zone, start_page, end_page, migratetype);
 | |
| }
 | |
| 
 | |
| /* Remove an element from the buddy allocator from the fallback list */
 | |
| static struct page *__rmqueue_fallback(struct zone *zone, int order,
 | |
| 						int start_migratetype)
 | |
| {
 | |
| 	struct free_area * area;
 | |
| 	int current_order;
 | |
| 	struct page *page;
 | |
| 	int migratetype, i;
 | |
| 
 | |
| 	/* Find the largest possible block of pages in the other list */
 | |
| 	for (current_order = MAX_ORDER-1; current_order >= order;
 | |
| 						--current_order) {
 | |
| 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
 | |
| 			migratetype = fallbacks[start_migratetype][i];
 | |
| 
 | |
| 			area = &(zone->free_area[current_order]);
 | |
| 			if (list_empty(&area->free_list[migratetype]))
 | |
| 				continue;
 | |
| 
 | |
| 			page = list_entry(area->free_list[migratetype].next,
 | |
| 					struct page, lru);
 | |
| 			area->nr_free--;
 | |
| 
 | |
| 			/*
 | |
| 			 * If breaking a large block of pages, move all free
 | |
| 			 * pages to the preferred allocation list
 | |
| 			 */
 | |
| 			if (unlikely(current_order >= MAX_ORDER / 2)) {
 | |
| 				migratetype = start_migratetype;
 | |
| 				move_freepages_block(zone, page, migratetype);
 | |
| 			}
 | |
| 
 | |
| 			/* Remove the page from the freelists */
 | |
| 			list_del(&page->lru);
 | |
| 			rmv_page_order(page);
 | |
| 			__mod_zone_page_state(zone, NR_FREE_PAGES,
 | |
| 							-(1UL << order));
 | |
| 
 | |
| 			if (current_order == MAX_ORDER - 1)
 | |
| 				set_pageblock_migratetype(page,
 | |
| 							start_migratetype);
 | |
| 
 | |
| 			expand(zone, page, order, current_order, area, migratetype);
 | |
| 			return page;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| #else
 | |
| static struct page *__rmqueue_fallback(struct zone *zone, int order,
 | |
| 						int start_migratetype)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
 | |
| 
 | |
| /* 
 | |
|  * Do the hard work of removing an element from the buddy allocator.
 | |
|  * Call me with the zone->lock already held.
 | |
|  */
 | |
| static struct page *__rmqueue(struct zone *zone, unsigned int order,
 | |
| 						int migratetype)
 | |
| {
 | |
| 	struct free_area * area;
 | |
| 	unsigned int current_order;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/* Find a page of the appropriate size in the preferred list */
 | |
| 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 | |
| 		area = &(zone->free_area[current_order]);
 | |
| 		if (list_empty(&area->free_list[migratetype]))
 | |
| 			continue;
 | |
| 
 | |
| 		page = list_entry(area->free_list[migratetype].next,
 | |
| 							struct page, lru);
 | |
| 		list_del(&page->lru);
 | |
| 		rmv_page_order(page);
 | |
| 		area->nr_free--;
 | |
| 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
 | |
| 		expand(zone, page, order, current_order, area, migratetype);
 | |
| 		goto got_page;
 | |
| 	}
 | |
| 
 | |
| 	page = __rmqueue_fallback(zone, order, migratetype);
 | |
| 
 | |
| got_page:
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * Obtain a specified number of elements from the buddy allocator, all under
 | |
|  * a single hold of the lock, for efficiency.  Add them to the supplied list.
 | |
|  * Returns the number of new pages which were placed at *list.
 | |
|  */
 | |
| static int rmqueue_bulk(struct zone *zone, unsigned int order, 
 | |
| 			unsigned long count, struct list_head *list,
 | |
| 			int migratetype)
 | |
| {
 | |
| 	int i;
 | |
| 	
 | |
| 	spin_lock(&zone->lock);
 | |
| 	for (i = 0; i < count; ++i) {
 | |
| 		struct page *page = __rmqueue(zone, order, migratetype);
 | |
| 		if (unlikely(page == NULL))
 | |
| 			break;
 | |
| 		list_add(&page->lru, list);
 | |
| 		set_page_private(page, migratetype);
 | |
| 	}
 | |
| 	spin_unlock(&zone->lock);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Called from the vmstat counter updater to drain pagesets of this
 | |
|  * currently executing processor on remote nodes after they have
 | |
|  * expired.
 | |
|  *
 | |
|  * Note that this function must be called with the thread pinned to
 | |
|  * a single processor.
 | |
|  */
 | |
| void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int to_drain;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	if (pcp->count >= pcp->batch)
 | |
| 		to_drain = pcp->batch;
 | |
| 	else
 | |
| 		to_drain = pcp->count;
 | |
| 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
 | |
| 	pcp->count -= to_drain;
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __drain_pages(unsigned int cpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct zone *zone;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		struct per_cpu_pageset *pset;
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		pset = zone_pcp(zone, cpu);
 | |
| 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
 | |
| 			struct per_cpu_pages *pcp;
 | |
| 
 | |
| 			pcp = &pset->pcp[i];
 | |
| 			local_irq_save(flags);
 | |
| 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
 | |
| 			pcp->count = 0;
 | |
| 			local_irq_restore(flags);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| 
 | |
| void mark_free_pages(struct zone *zone)
 | |
| {
 | |
| 	unsigned long pfn, max_zone_pfn;
 | |
| 	unsigned long flags;
 | |
| 	int order, t;
 | |
| 	struct list_head *curr;
 | |
| 
 | |
| 	if (!zone->spanned_pages)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lock, flags);
 | |
| 
 | |
| 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
 | |
| 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 | |
| 		if (pfn_valid(pfn)) {
 | |
| 			struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 			if (!swsusp_page_is_forbidden(page))
 | |
| 				swsusp_unset_page_free(page);
 | |
| 		}
 | |
| 
 | |
| 	for_each_migratetype_order(order, t) {
 | |
| 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
 | |
| 			unsigned long i;
 | |
| 
 | |
| 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
 | |
| 			for (i = 0; i < (1UL << order); i++)
 | |
| 				swsusp_set_page_free(pfn_to_page(pfn + i));
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&zone->lock, flags);
 | |
| }
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| #if defined(CONFIG_HIBERNATION) || defined(CONFIG_PAGE_GROUP_BY_MOBILITY)
 | |
| /*
 | |
|  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 | |
|  */
 | |
| void drain_local_pages(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);	
 | |
| 	__drain_pages(smp_processor_id());
 | |
| 	local_irq_restore(flags);	
 | |
| }
 | |
| 
 | |
| void smp_drain_local_pages(void *arg)
 | |
| {
 | |
| 	drain_local_pages();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
 | |
|  */
 | |
| void drain_all_local_pages(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	__drain_pages(smp_processor_id());
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	smp_call_function(smp_drain_local_pages, NULL, 0, 1);
 | |
| }
 | |
| #else
 | |
| void drain_all_local_pages(void) {}
 | |
| #endif /* CONFIG_HIBERNATION || CONFIG_PAGE_GROUP_BY_MOBILITY */
 | |
| 
 | |
| /*
 | |
|  * Free a 0-order page
 | |
|  */
 | |
| static void fastcall free_hot_cold_page(struct page *page, int cold)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (PageAnon(page))
 | |
| 		page->mapping = NULL;
 | |
| 	if (free_pages_check(page))
 | |
| 		return;
 | |
| 
 | |
| 	if (!PageHighMem(page))
 | |
| 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
 | |
| 	arch_free_page(page, 0);
 | |
| 	kernel_map_pages(page, 1, 0);
 | |
| 
 | |
| 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
 | |
| 	local_irq_save(flags);
 | |
| 	__count_vm_event(PGFREE);
 | |
| 	list_add(&page->lru, &pcp->list);
 | |
| 	set_page_private(page, get_pageblock_migratetype(page));
 | |
| 	pcp->count++;
 | |
| 	if (pcp->count >= pcp->high) {
 | |
| 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
 | |
| 		pcp->count -= pcp->batch;
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| void fastcall free_hot_page(struct page *page)
 | |
| {
 | |
| 	free_hot_cold_page(page, 0);
 | |
| }
 | |
| 	
 | |
| void fastcall free_cold_page(struct page *page)
 | |
| {
 | |
| 	free_hot_cold_page(page, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * split_page takes a non-compound higher-order page, and splits it into
 | |
|  * n (1<<order) sub-pages: page[0..n]
 | |
|  * Each sub-page must be freed individually.
 | |
|  *
 | |
|  * Note: this is probably too low level an operation for use in drivers.
 | |
|  * Please consult with lkml before using this in your driver.
 | |
|  */
 | |
| void split_page(struct page *page, unsigned int order)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	VM_BUG_ON(PageCompound(page));
 | |
| 	VM_BUG_ON(!page_count(page));
 | |
| 	for (i = 1; i < (1 << order); i++)
 | |
| 		set_page_refcounted(page + i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
 | |
|  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
 | |
|  * or two.
 | |
|  */
 | |
| static struct page *buffered_rmqueue(struct zonelist *zonelist,
 | |
| 			struct zone *zone, int order, gfp_t gfp_flags)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct page *page;
 | |
| 	int cold = !!(gfp_flags & __GFP_COLD);
 | |
| 	int cpu;
 | |
| 	int migratetype = gfpflags_to_migratetype(gfp_flags);
 | |
| 
 | |
| again:
 | |
| 	cpu  = get_cpu();
 | |
| 	if (likely(order == 0)) {
 | |
| 		struct per_cpu_pages *pcp;
 | |
| 
 | |
| 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
 | |
| 		local_irq_save(flags);
 | |
| 		if (!pcp->count) {
 | |
| 			pcp->count = rmqueue_bulk(zone, 0,
 | |
| 					pcp->batch, &pcp->list, migratetype);
 | |
| 			if (unlikely(!pcp->count))
 | |
| 				goto failed;
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
 | |
| 		/* Find a page of the appropriate migrate type */
 | |
| 		list_for_each_entry(page, &pcp->list, lru)
 | |
| 			if (page_private(page) == migratetype)
 | |
| 				break;
 | |
| 
 | |
| 		/* Allocate more to the pcp list if necessary */
 | |
| 		if (unlikely(&page->lru == &pcp->list)) {
 | |
| 			pcp->count += rmqueue_bulk(zone, 0,
 | |
| 					pcp->batch, &pcp->list, migratetype);
 | |
| 			page = list_entry(pcp->list.next, struct page, lru);
 | |
| 		}
 | |
| #else
 | |
| 		page = list_entry(pcp->list.next, struct page, lru);
 | |
| #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
 | |
| 
 | |
| 		list_del(&page->lru);
 | |
| 		pcp->count--;
 | |
| 	} else {
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		page = __rmqueue(zone, order, migratetype);
 | |
| 		spin_unlock(&zone->lock);
 | |
| 		if (!page)
 | |
| 			goto failed;
 | |
| 	}
 | |
| 
 | |
| 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
 | |
| 	zone_statistics(zonelist, zone);
 | |
| 	local_irq_restore(flags);
 | |
| 	put_cpu();
 | |
| 
 | |
| 	VM_BUG_ON(bad_range(zone, page));
 | |
| 	if (prep_new_page(page, order, gfp_flags))
 | |
| 		goto again;
 | |
| 	return page;
 | |
| 
 | |
| failed:
 | |
| 	local_irq_restore(flags);
 | |
| 	put_cpu();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
 | |
| #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
 | |
| #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
 | |
| #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
 | |
| #define ALLOC_HARDER		0x10 /* try to alloc harder */
 | |
| #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
 | |
| #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
 | |
| 
 | |
| #ifdef CONFIG_FAIL_PAGE_ALLOC
 | |
| 
 | |
| static struct fail_page_alloc_attr {
 | |
| 	struct fault_attr attr;
 | |
| 
 | |
| 	u32 ignore_gfp_highmem;
 | |
| 	u32 ignore_gfp_wait;
 | |
| 	u32 min_order;
 | |
| 
 | |
| #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 | |
| 
 | |
| 	struct dentry *ignore_gfp_highmem_file;
 | |
| 	struct dentry *ignore_gfp_wait_file;
 | |
| 	struct dentry *min_order_file;
 | |
| 
 | |
| #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 | |
| 
 | |
| } fail_page_alloc = {
 | |
| 	.attr = FAULT_ATTR_INITIALIZER,
 | |
| 	.ignore_gfp_wait = 1,
 | |
| 	.ignore_gfp_highmem = 1,
 | |
| 	.min_order = 1,
 | |
| };
 | |
| 
 | |
| static int __init setup_fail_page_alloc(char *str)
 | |
| {
 | |
| 	return setup_fault_attr(&fail_page_alloc.attr, str);
 | |
| }
 | |
| __setup("fail_page_alloc=", setup_fail_page_alloc);
 | |
| 
 | |
| static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	if (order < fail_page_alloc.min_order)
 | |
| 		return 0;
 | |
| 	if (gfp_mask & __GFP_NOFAIL)
 | |
| 		return 0;
 | |
| 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
 | |
| 		return 0;
 | |
| 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
 | |
| 		return 0;
 | |
| 
 | |
| 	return should_fail(&fail_page_alloc.attr, 1 << order);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 | |
| 
 | |
| static int __init fail_page_alloc_debugfs(void)
 | |
| {
 | |
| 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 | |
| 	struct dentry *dir;
 | |
| 	int err;
 | |
| 
 | |
| 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
 | |
| 				       "fail_page_alloc");
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	dir = fail_page_alloc.attr.dentries.dir;
 | |
| 
 | |
| 	fail_page_alloc.ignore_gfp_wait_file =
 | |
| 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
 | |
| 				      &fail_page_alloc.ignore_gfp_wait);
 | |
| 
 | |
| 	fail_page_alloc.ignore_gfp_highmem_file =
 | |
| 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
 | |
| 				      &fail_page_alloc.ignore_gfp_highmem);
 | |
| 	fail_page_alloc.min_order_file =
 | |
| 		debugfs_create_u32("min-order", mode, dir,
 | |
| 				   &fail_page_alloc.min_order);
 | |
| 
 | |
| 	if (!fail_page_alloc.ignore_gfp_wait_file ||
 | |
|             !fail_page_alloc.ignore_gfp_highmem_file ||
 | |
|             !fail_page_alloc.min_order_file) {
 | |
| 		err = -ENOMEM;
 | |
| 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
 | |
| 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
 | |
| 		debugfs_remove(fail_page_alloc.min_order_file);
 | |
| 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| late_initcall(fail_page_alloc_debugfs);
 | |
| 
 | |
| #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 | |
| 
 | |
| #else /* CONFIG_FAIL_PAGE_ALLOC */
 | |
| 
 | |
| static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_FAIL_PAGE_ALLOC */
 | |
| 
 | |
| /*
 | |
|  * Return 1 if free pages are above 'mark'. This takes into account the order
 | |
|  * of the allocation.
 | |
|  */
 | |
| int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
 | |
| 		      int classzone_idx, int alloc_flags)
 | |
| {
 | |
| 	/* free_pages my go negative - that's OK */
 | |
| 	long min = mark;
 | |
| 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
 | |
| 	int o;
 | |
| 
 | |
| 	if (alloc_flags & ALLOC_HIGH)
 | |
| 		min -= min / 2;
 | |
| 	if (alloc_flags & ALLOC_HARDER)
 | |
| 		min -= min / 4;
 | |
| 
 | |
| 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
 | |
| 		return 0;
 | |
| 	for (o = 0; o < order; o++) {
 | |
| 		/* At the next order, this order's pages become unavailable */
 | |
| 		free_pages -= z->free_area[o].nr_free << o;
 | |
| 
 | |
| 		/* Require fewer higher order pages to be free */
 | |
| 		min >>= 1;
 | |
| 
 | |
| 		if (free_pages <= min)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
 | |
|  * skip over zones that are not allowed by the cpuset, or that have
 | |
|  * been recently (in last second) found to be nearly full.  See further
 | |
|  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
 | |
|  * that have to skip over alot of full or unallowed zones.
 | |
|  *
 | |
|  * If the zonelist cache is present in the passed in zonelist, then
 | |
|  * returns a pointer to the allowed node mask (either the current
 | |
|  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
 | |
|  *
 | |
|  * If the zonelist cache is not available for this zonelist, does
 | |
|  * nothing and returns NULL.
 | |
|  *
 | |
|  * If the fullzones BITMAP in the zonelist cache is stale (more than
 | |
|  * a second since last zap'd) then we zap it out (clear its bits.)
 | |
|  *
 | |
|  * We hold off even calling zlc_setup, until after we've checked the
 | |
|  * first zone in the zonelist, on the theory that most allocations will
 | |
|  * be satisfied from that first zone, so best to examine that zone as
 | |
|  * quickly as we can.
 | |
|  */
 | |
| static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
 | |
| {
 | |
| 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
 | |
| 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
 | |
| 
 | |
| 	zlc = zonelist->zlcache_ptr;
 | |
| 	if (!zlc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
 | |
| 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
 | |
| 		zlc->last_full_zap = jiffies;
 | |
| 	}
 | |
| 
 | |
| 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
 | |
| 					&cpuset_current_mems_allowed :
 | |
| 					&node_states[N_HIGH_MEMORY];
 | |
| 	return allowednodes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given 'z' scanning a zonelist, run a couple of quick checks to see
 | |
|  * if it is worth looking at further for free memory:
 | |
|  *  1) Check that the zone isn't thought to be full (doesn't have its
 | |
|  *     bit set in the zonelist_cache fullzones BITMAP).
 | |
|  *  2) Check that the zones node (obtained from the zonelist_cache
 | |
|  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
 | |
|  * Return true (non-zero) if zone is worth looking at further, or
 | |
|  * else return false (zero) if it is not.
 | |
|  *
 | |
|  * This check -ignores- the distinction between various watermarks,
 | |
|  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
 | |
|  * found to be full for any variation of these watermarks, it will
 | |
|  * be considered full for up to one second by all requests, unless
 | |
|  * we are so low on memory on all allowed nodes that we are forced
 | |
|  * into the second scan of the zonelist.
 | |
|  *
 | |
|  * In the second scan we ignore this zonelist cache and exactly
 | |
|  * apply the watermarks to all zones, even it is slower to do so.
 | |
|  * We are low on memory in the second scan, and should leave no stone
 | |
|  * unturned looking for a free page.
 | |
|  */
 | |
| static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
 | |
| 						nodemask_t *allowednodes)
 | |
| {
 | |
| 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
 | |
| 	int i;				/* index of *z in zonelist zones */
 | |
| 	int n;				/* node that zone *z is on */
 | |
| 
 | |
| 	zlc = zonelist->zlcache_ptr;
 | |
| 	if (!zlc)
 | |
| 		return 1;
 | |
| 
 | |
| 	i = z - zonelist->zones;
 | |
| 	n = zlc->z_to_n[i];
 | |
| 
 | |
| 	/* This zone is worth trying if it is allowed but not full */
 | |
| 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given 'z' scanning a zonelist, set the corresponding bit in
 | |
|  * zlc->fullzones, so that subsequent attempts to allocate a page
 | |
|  * from that zone don't waste time re-examining it.
 | |
|  */
 | |
| static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
 | |
| {
 | |
| 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
 | |
| 	int i;				/* index of *z in zonelist zones */
 | |
| 
 | |
| 	zlc = zonelist->zlcache_ptr;
 | |
| 	if (!zlc)
 | |
| 		return;
 | |
| 
 | |
| 	i = z - zonelist->zones;
 | |
| 
 | |
| 	set_bit(i, zlc->fullzones);
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_NUMA */
 | |
| 
 | |
| static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
 | |
| 				nodemask_t *allowednodes)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
 | |
| {
 | |
| }
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * get_page_from_freelist goes through the zonelist trying to allocate
 | |
|  * a page.
 | |
|  */
 | |
| static struct page *
 | |
| get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
 | |
| 		struct zonelist *zonelist, int alloc_flags)
 | |
| {
 | |
| 	struct zone **z;
 | |
| 	struct page *page = NULL;
 | |
| 	int classzone_idx = zone_idx(zonelist->zones[0]);
 | |
| 	struct zone *zone;
 | |
| 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
 | |
| 	int zlc_active = 0;		/* set if using zonelist_cache */
 | |
| 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
 | |
| 	enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
 | |
| 
 | |
| zonelist_scan:
 | |
| 	/*
 | |
| 	 * Scan zonelist, looking for a zone with enough free.
 | |
| 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
 | |
| 	 */
 | |
| 	z = zonelist->zones;
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * In NUMA, this could be a policy zonelist which contains
 | |
| 		 * zones that may not be allowed by the current gfp_mask.
 | |
| 		 * Check the zone is allowed by the current flags
 | |
| 		 */
 | |
| 		if (unlikely(alloc_should_filter_zonelist(zonelist))) {
 | |
| 			if (highest_zoneidx == -1)
 | |
| 				highest_zoneidx = gfp_zone(gfp_mask);
 | |
| 			if (zone_idx(*z) > highest_zoneidx)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		if (NUMA_BUILD && zlc_active &&
 | |
| 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
 | |
| 				continue;
 | |
| 		zone = *z;
 | |
| 		if ((alloc_flags & ALLOC_CPUSET) &&
 | |
| 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
 | |
| 				goto try_next_zone;
 | |
| 
 | |
| 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
 | |
| 			unsigned long mark;
 | |
| 			if (alloc_flags & ALLOC_WMARK_MIN)
 | |
| 				mark = zone->pages_min;
 | |
| 			else if (alloc_flags & ALLOC_WMARK_LOW)
 | |
| 				mark = zone->pages_low;
 | |
| 			else
 | |
| 				mark = zone->pages_high;
 | |
| 			if (!zone_watermark_ok(zone, order, mark,
 | |
| 				    classzone_idx, alloc_flags)) {
 | |
| 				if (!zone_reclaim_mode ||
 | |
| 				    !zone_reclaim(zone, gfp_mask, order))
 | |
| 					goto this_zone_full;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
 | |
| 		if (page)
 | |
| 			break;
 | |
| this_zone_full:
 | |
| 		if (NUMA_BUILD)
 | |
| 			zlc_mark_zone_full(zonelist, z);
 | |
| try_next_zone:
 | |
| 		if (NUMA_BUILD && !did_zlc_setup) {
 | |
| 			/* we do zlc_setup after the first zone is tried */
 | |
| 			allowednodes = zlc_setup(zonelist, alloc_flags);
 | |
| 			zlc_active = 1;
 | |
| 			did_zlc_setup = 1;
 | |
| 		}
 | |
| 	} while (*(++z) != NULL);
 | |
| 
 | |
| 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
 | |
| 		/* Disable zlc cache for second zonelist scan */
 | |
| 		zlc_active = 0;
 | |
| 		goto zonelist_scan;
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the 'heart' of the zoned buddy allocator.
 | |
|  */
 | |
| struct page * fastcall
 | |
| __alloc_pages(gfp_t gfp_mask, unsigned int order,
 | |
| 		struct zonelist *zonelist)
 | |
| {
 | |
| 	const gfp_t wait = gfp_mask & __GFP_WAIT;
 | |
| 	struct zone **z;
 | |
| 	struct page *page;
 | |
| 	struct reclaim_state reclaim_state;
 | |
| 	struct task_struct *p = current;
 | |
| 	int do_retry;
 | |
| 	int alloc_flags;
 | |
| 	int did_some_progress;
 | |
| 
 | |
| 	might_sleep_if(wait);
 | |
| 
 | |
| 	if (should_fail_alloc_page(gfp_mask, order))
 | |
| 		return NULL;
 | |
| 
 | |
| restart:
 | |
| 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
 | |
| 
 | |
| 	if (unlikely(*z == NULL)) {
 | |
| 		/*
 | |
| 		 * Happens if we have an empty zonelist as a result of
 | |
| 		 * GFP_THISNODE being used on a memoryless node
 | |
| 		 */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
 | |
| 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	/*
 | |
| 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
 | |
| 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
 | |
| 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
 | |
| 	 * using a larger set of nodes after it has established that the
 | |
| 	 * allowed per node queues are empty and that nodes are
 | |
| 	 * over allocated.
 | |
| 	 */
 | |
| 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
 | |
| 		goto nopage;
 | |
| 
 | |
| 	for (z = zonelist->zones; *z; z++)
 | |
| 		wakeup_kswapd(*z, order);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, we're below the kswapd watermark and have kicked background
 | |
| 	 * reclaim. Now things get more complex, so set up alloc_flags according
 | |
| 	 * to how we want to proceed.
 | |
| 	 *
 | |
| 	 * The caller may dip into page reserves a bit more if the caller
 | |
| 	 * cannot run direct reclaim, or if the caller has realtime scheduling
 | |
| 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
 | |
| 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
 | |
| 	 */
 | |
| 	alloc_flags = ALLOC_WMARK_MIN;
 | |
| 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
 | |
| 		alloc_flags |= ALLOC_HARDER;
 | |
| 	if (gfp_mask & __GFP_HIGH)
 | |
| 		alloc_flags |= ALLOC_HIGH;
 | |
| 	if (wait)
 | |
| 		alloc_flags |= ALLOC_CPUSET;
 | |
| 
 | |
| 	/*
 | |
| 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
 | |
| 	 * coming from realtime tasks go deeper into reserves.
 | |
| 	 *
 | |
| 	 * This is the last chance, in general, before the goto nopage.
 | |
| 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
 | |
| 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
 | |
| 	 */
 | |
| 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	/* This allocation should allow future memory freeing. */
 | |
| 
 | |
| rebalance:
 | |
| 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
 | |
| 			&& !in_interrupt()) {
 | |
| 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
 | |
| nofail_alloc:
 | |
| 			/* go through the zonelist yet again, ignoring mins */
 | |
| 			page = get_page_from_freelist(gfp_mask, order,
 | |
| 				zonelist, ALLOC_NO_WATERMARKS);
 | |
| 			if (page)
 | |
| 				goto got_pg;
 | |
| 			if (gfp_mask & __GFP_NOFAIL) {
 | |
| 				congestion_wait(WRITE, HZ/50);
 | |
| 				goto nofail_alloc;
 | |
| 			}
 | |
| 		}
 | |
| 		goto nopage;
 | |
| 	}
 | |
| 
 | |
| 	/* Atomic allocations - we can't balance anything */
 | |
| 	if (!wait)
 | |
| 		goto nopage;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	/* We now go into synchronous reclaim */
 | |
| 	cpuset_memory_pressure_bump();
 | |
| 	p->flags |= PF_MEMALLOC;
 | |
| 	reclaim_state.reclaimed_slab = 0;
 | |
| 	p->reclaim_state = &reclaim_state;
 | |
| 
 | |
| 	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
 | |
| 
 | |
| 	p->reclaim_state = NULL;
 | |
| 	p->flags &= ~PF_MEMALLOC;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	if (order != 0)
 | |
| 		drain_all_local_pages();
 | |
| 
 | |
| 	if (likely(did_some_progress)) {
 | |
| 		page = get_page_from_freelist(gfp_mask, order,
 | |
| 						zonelist, alloc_flags);
 | |
| 		if (page)
 | |
| 			goto got_pg;
 | |
| 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
 | |
| 		/*
 | |
| 		 * Go through the zonelist yet one more time, keep
 | |
| 		 * very high watermark here, this is only to catch
 | |
| 		 * a parallel oom killing, we must fail if we're still
 | |
| 		 * under heavy pressure.
 | |
| 		 */
 | |
| 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
 | |
| 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
 | |
| 		if (page)
 | |
| 			goto got_pg;
 | |
| 
 | |
| 		/* The OOM killer will not help higher order allocs so fail */
 | |
| 		if (order > PAGE_ALLOC_COSTLY_ORDER)
 | |
| 			goto nopage;
 | |
| 
 | |
| 		out_of_memory(zonelist, gfp_mask, order);
 | |
| 		goto restart;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't let big-order allocations loop unless the caller explicitly
 | |
| 	 * requests that.  Wait for some write requests to complete then retry.
 | |
| 	 *
 | |
| 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
 | |
| 	 * <= 3, but that may not be true in other implementations.
 | |
| 	 */
 | |
| 	do_retry = 0;
 | |
| 	if (!(gfp_mask & __GFP_NORETRY)) {
 | |
| 		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
 | |
| 						(gfp_mask & __GFP_REPEAT))
 | |
| 			do_retry = 1;
 | |
| 		if (gfp_mask & __GFP_NOFAIL)
 | |
| 			do_retry = 1;
 | |
| 	}
 | |
| 	if (do_retry) {
 | |
| 		congestion_wait(WRITE, HZ/50);
 | |
| 		goto rebalance;
 | |
| 	}
 | |
| 
 | |
| nopage:
 | |
| 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
 | |
| 		printk(KERN_WARNING "%s: page allocation failure."
 | |
| 			" order:%d, mode:0x%x\n",
 | |
| 			p->comm, order, gfp_mask);
 | |
| 		dump_stack();
 | |
| 		show_mem();
 | |
| 	}
 | |
| got_pg:
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__alloc_pages);
 | |
| 
 | |
| /*
 | |
|  * Common helper functions.
 | |
|  */
 | |
| fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	struct page * page;
 | |
| 	page = alloc_pages(gfp_mask, order);
 | |
| 	if (!page)
 | |
| 		return 0;
 | |
| 	return (unsigned long) page_address(page);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__get_free_pages);
 | |
| 
 | |
| fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page * page;
 | |
| 
 | |
| 	/*
 | |
| 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
 | |
| 	 * a highmem page
 | |
| 	 */
 | |
| 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
 | |
| 
 | |
| 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
 | |
| 	if (page)
 | |
| 		return (unsigned long) page_address(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(get_zeroed_page);
 | |
| 
 | |
| void __pagevec_free(struct pagevec *pvec)
 | |
| {
 | |
| 	int i = pagevec_count(pvec);
 | |
| 
 | |
| 	while (--i >= 0)
 | |
| 		free_hot_cold_page(pvec->pages[i], pvec->cold);
 | |
| }
 | |
| 
 | |
| fastcall void __free_pages(struct page *page, unsigned int order)
 | |
| {
 | |
| 	if (put_page_testzero(page)) {
 | |
| 		if (order == 0)
 | |
| 			free_hot_page(page);
 | |
| 		else
 | |
| 			__free_pages_ok(page, order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__free_pages);
 | |
| 
 | |
| fastcall void free_pages(unsigned long addr, unsigned int order)
 | |
| {
 | |
| 	if (addr != 0) {
 | |
| 		VM_BUG_ON(!virt_addr_valid((void *)addr));
 | |
| 		__free_pages(virt_to_page((void *)addr), order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(free_pages);
 | |
| 
 | |
| static unsigned int nr_free_zone_pages(int offset)
 | |
| {
 | |
| 	/* Just pick one node, since fallback list is circular */
 | |
| 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
 | |
| 	unsigned int sum = 0;
 | |
| 
 | |
| 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
 | |
| 	struct zone **zonep = zonelist->zones;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for (zone = *zonep++; zone; zone = *zonep++) {
 | |
| 		unsigned long size = zone->present_pages;
 | |
| 		unsigned long high = zone->pages_high;
 | |
| 		if (size > high)
 | |
| 			sum += size - high;
 | |
| 	}
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
 | |
|  */
 | |
| unsigned int nr_free_buffer_pages(void)
 | |
| {
 | |
| 	return nr_free_zone_pages(gfp_zone(GFP_USER));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
 | |
| 
 | |
| /*
 | |
|  * Amount of free RAM allocatable within all zones
 | |
|  */
 | |
| unsigned int nr_free_pagecache_pages(void)
 | |
| {
 | |
| 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
 | |
| }
 | |
| 
 | |
| static inline void show_node(struct zone *zone)
 | |
| {
 | |
| 	if (NUMA_BUILD)
 | |
| 		printk("Node %d ", zone_to_nid(zone));
 | |
| }
 | |
| 
 | |
| void si_meminfo(struct sysinfo *val)
 | |
| {
 | |
| 	val->totalram = totalram_pages;
 | |
| 	val->sharedram = 0;
 | |
| 	val->freeram = global_page_state(NR_FREE_PAGES);
 | |
| 	val->bufferram = nr_blockdev_pages();
 | |
| 	val->totalhigh = totalhigh_pages;
 | |
| 	val->freehigh = nr_free_highpages();
 | |
| 	val->mem_unit = PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(si_meminfo);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void si_meminfo_node(struct sysinfo *val, int nid)
 | |
| {
 | |
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 
 | |
| 	val->totalram = pgdat->node_present_pages;
 | |
| 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
 | |
| 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
 | |
| 			NR_FREE_PAGES);
 | |
| #else
 | |
| 	val->totalhigh = 0;
 | |
| 	val->freehigh = 0;
 | |
| #endif
 | |
| 	val->mem_unit = PAGE_SIZE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define K(x) ((x) << (PAGE_SHIFT-10))
 | |
| 
 | |
| /*
 | |
|  * Show free area list (used inside shift_scroll-lock stuff)
 | |
|  * We also calculate the percentage fragmentation. We do this by counting the
 | |
|  * memory on each free list with the exception of the first item on the list.
 | |
|  */
 | |
| void show_free_areas(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		show_node(zone);
 | |
| 		printk("%s per-cpu:\n", zone->name);
 | |
| 
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			struct per_cpu_pageset *pageset;
 | |
| 
 | |
| 			pageset = zone_pcp(zone, cpu);
 | |
| 
 | |
| 			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
 | |
| 			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
 | |
| 			       cpu, pageset->pcp[0].high,
 | |
| 			       pageset->pcp[0].batch, pageset->pcp[0].count,
 | |
| 			       pageset->pcp[1].high, pageset->pcp[1].batch,
 | |
| 			       pageset->pcp[1].count);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
 | |
| 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
 | |
| 		global_page_state(NR_ACTIVE),
 | |
| 		global_page_state(NR_INACTIVE),
 | |
| 		global_page_state(NR_FILE_DIRTY),
 | |
| 		global_page_state(NR_WRITEBACK),
 | |
| 		global_page_state(NR_UNSTABLE_NFS),
 | |
| 		global_page_state(NR_FREE_PAGES),
 | |
| 		global_page_state(NR_SLAB_RECLAIMABLE) +
 | |
| 			global_page_state(NR_SLAB_UNRECLAIMABLE),
 | |
| 		global_page_state(NR_FILE_MAPPED),
 | |
| 		global_page_state(NR_PAGETABLE),
 | |
| 		global_page_state(NR_BOUNCE));
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		show_node(zone);
 | |
| 		printk("%s"
 | |
| 			" free:%lukB"
 | |
| 			" min:%lukB"
 | |
| 			" low:%lukB"
 | |
| 			" high:%lukB"
 | |
| 			" active:%lukB"
 | |
| 			" inactive:%lukB"
 | |
| 			" present:%lukB"
 | |
| 			" pages_scanned:%lu"
 | |
| 			" all_unreclaimable? %s"
 | |
| 			"\n",
 | |
| 			zone->name,
 | |
| 			K(zone_page_state(zone, NR_FREE_PAGES)),
 | |
| 			K(zone->pages_min),
 | |
| 			K(zone->pages_low),
 | |
| 			K(zone->pages_high),
 | |
| 			K(zone_page_state(zone, NR_ACTIVE)),
 | |
| 			K(zone_page_state(zone, NR_INACTIVE)),
 | |
| 			K(zone->present_pages),
 | |
| 			zone->pages_scanned,
 | |
| 			(zone->all_unreclaimable ? "yes" : "no")
 | |
| 			);
 | |
| 		printk("lowmem_reserve[]:");
 | |
| 		for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 			printk(" %lu", zone->lowmem_reserve[i]);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
|  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		show_node(zone);
 | |
| 		printk("%s: ", zone->name);
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		for (order = 0; order < MAX_ORDER; order++) {
 | |
| 			nr[order] = zone->free_area[order].nr_free;
 | |
| 			total += nr[order] << order;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 		for (order = 0; order < MAX_ORDER; order++)
 | |
| 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
 | |
| 		printk("= %lukB\n", K(total));
 | |
| 	}
 | |
| 
 | |
| 	show_swap_cache_info();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Builds allocation fallback zone lists.
 | |
|  *
 | |
|  * Add all populated zones of a node to the zonelist.
 | |
|  */
 | |
| static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
 | |
| 				int nr_zones, enum zone_type zone_type)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	BUG_ON(zone_type >= MAX_NR_ZONES);
 | |
| 	zone_type++;
 | |
| 
 | |
| 	do {
 | |
| 		zone_type--;
 | |
| 		zone = pgdat->node_zones + zone_type;
 | |
| 		if (populated_zone(zone)) {
 | |
| 			zonelist->zones[nr_zones++] = zone;
 | |
| 			check_highest_zone(zone_type);
 | |
| 		}
 | |
| 
 | |
| 	} while (zone_type);
 | |
| 	return nr_zones;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  zonelist_order:
 | |
|  *  0 = automatic detection of better ordering.
 | |
|  *  1 = order by ([node] distance, -zonetype)
 | |
|  *  2 = order by (-zonetype, [node] distance)
 | |
|  *
 | |
|  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 | |
|  *  the same zonelist. So only NUMA can configure this param.
 | |
|  */
 | |
| #define ZONELIST_ORDER_DEFAULT  0
 | |
| #define ZONELIST_ORDER_NODE     1
 | |
| #define ZONELIST_ORDER_ZONE     2
 | |
| 
 | |
| /* zonelist order in the kernel.
 | |
|  * set_zonelist_order() will set this to NODE or ZONE.
 | |
|  */
 | |
| static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | |
| static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /* The value user specified ....changed by config */
 | |
| static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | |
| /* string for sysctl */
 | |
| #define NUMA_ZONELIST_ORDER_LEN	16
 | |
| char numa_zonelist_order[16] = "default";
 | |
| 
 | |
| /*
 | |
|  * interface for configure zonelist ordering.
 | |
|  * command line option "numa_zonelist_order"
 | |
|  *	= "[dD]efault	- default, automatic configuration.
 | |
|  *	= "[nN]ode 	- order by node locality, then by zone within node
 | |
|  *	= "[zZ]one      - order by zone, then by locality within zone
 | |
|  */
 | |
| 
 | |
| static int __parse_numa_zonelist_order(char *s)
 | |
| {
 | |
| 	if (*s == 'd' || *s == 'D') {
 | |
| 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | |
| 	} else if (*s == 'n' || *s == 'N') {
 | |
| 		user_zonelist_order = ZONELIST_ORDER_NODE;
 | |
| 	} else if (*s == 'z' || *s == 'Z') {
 | |
| 		user_zonelist_order = ZONELIST_ORDER_ZONE;
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING
 | |
| 			"Ignoring invalid numa_zonelist_order value:  "
 | |
| 			"%s\n", s);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __init int setup_numa_zonelist_order(char *s)
 | |
| {
 | |
| 	if (s)
 | |
| 		return __parse_numa_zonelist_order(s);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("numa_zonelist_order", setup_numa_zonelist_order);
 | |
| 
 | |
| /*
 | |
|  * sysctl handler for numa_zonelist_order
 | |
|  */
 | |
| int numa_zonelist_order_handler(ctl_table *table, int write,
 | |
| 		struct file *file, void __user *buffer, size_t *length,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
 | |
| 	int ret;
 | |
| 
 | |
| 	if (write)
 | |
| 		strncpy(saved_string, (char*)table->data,
 | |
| 			NUMA_ZONELIST_ORDER_LEN);
 | |
| 	ret = proc_dostring(table, write, file, buffer, length, ppos);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	if (write) {
 | |
| 		int oldval = user_zonelist_order;
 | |
| 		if (__parse_numa_zonelist_order((char*)table->data)) {
 | |
| 			/*
 | |
| 			 * bogus value.  restore saved string
 | |
| 			 */
 | |
| 			strncpy((char*)table->data, saved_string,
 | |
| 				NUMA_ZONELIST_ORDER_LEN);
 | |
| 			user_zonelist_order = oldval;
 | |
| 		} else if (oldval != user_zonelist_order)
 | |
| 			build_all_zonelists();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define MAX_NODE_LOAD (num_online_nodes())
 | |
| static int node_load[MAX_NUMNODES];
 | |
| 
 | |
| /**
 | |
|  * find_next_best_node - find the next node that should appear in a given node's fallback list
 | |
|  * @node: node whose fallback list we're appending
 | |
|  * @used_node_mask: nodemask_t of already used nodes
 | |
|  *
 | |
|  * We use a number of factors to determine which is the next node that should
 | |
|  * appear on a given node's fallback list.  The node should not have appeared
 | |
|  * already in @node's fallback list, and it should be the next closest node
 | |
|  * according to the distance array (which contains arbitrary distance values
 | |
|  * from each node to each node in the system), and should also prefer nodes
 | |
|  * with no CPUs, since presumably they'll have very little allocation pressure
 | |
|  * on them otherwise.
 | |
|  * It returns -1 if no node is found.
 | |
|  */
 | |
| static int find_next_best_node(int node, nodemask_t *used_node_mask)
 | |
| {
 | |
| 	int n, val;
 | |
| 	int min_val = INT_MAX;
 | |
| 	int best_node = -1;
 | |
| 
 | |
| 	/* Use the local node if we haven't already */
 | |
| 	if (!node_isset(node, *used_node_mask)) {
 | |
| 		node_set(node, *used_node_mask);
 | |
| 		return node;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node_state(n, N_HIGH_MEMORY) {
 | |
| 		cpumask_t tmp;
 | |
| 
 | |
| 		/* Don't want a node to appear more than once */
 | |
| 		if (node_isset(n, *used_node_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Use the distance array to find the distance */
 | |
| 		val = node_distance(node, n);
 | |
| 
 | |
| 		/* Penalize nodes under us ("prefer the next node") */
 | |
| 		val += (n < node);
 | |
| 
 | |
| 		/* Give preference to headless and unused nodes */
 | |
| 		tmp = node_to_cpumask(n);
 | |
| 		if (!cpus_empty(tmp))
 | |
| 			val += PENALTY_FOR_NODE_WITH_CPUS;
 | |
| 
 | |
| 		/* Slight preference for less loaded node */
 | |
| 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
 | |
| 		val += node_load[n];
 | |
| 
 | |
| 		if (val < min_val) {
 | |
| 			min_val = val;
 | |
| 			best_node = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (best_node >= 0)
 | |
| 		node_set(best_node, *used_node_mask);
 | |
| 
 | |
| 	return best_node;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Build zonelists ordered by node and zones within node.
 | |
|  * This results in maximum locality--normal zone overflows into local
 | |
|  * DMA zone, if any--but risks exhausting DMA zone.
 | |
|  */
 | |
| static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 | |
| {
 | |
| 	enum zone_type i;
 | |
| 	int j;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		zonelist = pgdat->node_zonelists + i;
 | |
| 		for (j = 0; zonelist->zones[j] != NULL; j++)
 | |
| 			;
 | |
|  		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
 | |
| 		zonelist->zones[j] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build gfp_thisnode zonelists
 | |
|  */
 | |
| static void build_thisnode_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	enum zone_type i;
 | |
| 	int j;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
 | |
| 		j = build_zonelists_node(pgdat, zonelist, 0, i);
 | |
| 		zonelist->zones[j] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build zonelists ordered by zone and nodes within zones.
 | |
|  * This results in conserving DMA zone[s] until all Normal memory is
 | |
|  * exhausted, but results in overflowing to remote node while memory
 | |
|  * may still exist in local DMA zone.
 | |
|  */
 | |
| static int node_order[MAX_NUMNODES];
 | |
| 
 | |
| static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
 | |
| {
 | |
| 	enum zone_type i;
 | |
| 	int pos, j, node;
 | |
| 	int zone_type;		/* needs to be signed */
 | |
| 	struct zone *z;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		zonelist = pgdat->node_zonelists + i;
 | |
| 		pos = 0;
 | |
| 		for (zone_type = i; zone_type >= 0; zone_type--) {
 | |
| 			for (j = 0; j < nr_nodes; j++) {
 | |
| 				node = node_order[j];
 | |
| 				z = &NODE_DATA(node)->node_zones[zone_type];
 | |
| 				if (populated_zone(z)) {
 | |
| 					zonelist->zones[pos++] = z;
 | |
| 					check_highest_zone(zone_type);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		zonelist->zones[pos] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int default_zonelist_order(void)
 | |
| {
 | |
| 	int nid, zone_type;
 | |
| 	unsigned long low_kmem_size,total_size;
 | |
| 	struct zone *z;
 | |
| 	int average_size;
 | |
| 	/*
 | |
|          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
 | |
| 	 * If they are really small and used heavily, the system can fall
 | |
| 	 * into OOM very easily.
 | |
| 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
 | |
| 	 */
 | |
| 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
 | |
| 	low_kmem_size = 0;
 | |
| 	total_size = 0;
 | |
| 	for_each_online_node(nid) {
 | |
| 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
 | |
| 			z = &NODE_DATA(nid)->node_zones[zone_type];
 | |
| 			if (populated_zone(z)) {
 | |
| 				if (zone_type < ZONE_NORMAL)
 | |
| 					low_kmem_size += z->present_pages;
 | |
| 				total_size += z->present_pages;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (!low_kmem_size ||  /* there are no DMA area. */
 | |
| 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
 | |
| 		return ZONELIST_ORDER_NODE;
 | |
| 	/*
 | |
| 	 * look into each node's config.
 | |
|   	 * If there is a node whose DMA/DMA32 memory is very big area on
 | |
|  	 * local memory, NODE_ORDER may be suitable.
 | |
|          */
 | |
| 	average_size = total_size /
 | |
| 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
 | |
| 	for_each_online_node(nid) {
 | |
| 		low_kmem_size = 0;
 | |
| 		total_size = 0;
 | |
| 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
 | |
| 			z = &NODE_DATA(nid)->node_zones[zone_type];
 | |
| 			if (populated_zone(z)) {
 | |
| 				if (zone_type < ZONE_NORMAL)
 | |
| 					low_kmem_size += z->present_pages;
 | |
| 				total_size += z->present_pages;
 | |
| 			}
 | |
| 		}
 | |
| 		if (low_kmem_size &&
 | |
| 		    total_size > average_size && /* ignore small node */
 | |
| 		    low_kmem_size > total_size * 70/100)
 | |
| 			return ZONELIST_ORDER_NODE;
 | |
| 	}
 | |
| 	return ZONELIST_ORDER_ZONE;
 | |
| }
 | |
| 
 | |
| static void set_zonelist_order(void)
 | |
| {
 | |
| 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
 | |
| 		current_zonelist_order = default_zonelist_order();
 | |
| 	else
 | |
| 		current_zonelist_order = user_zonelist_order;
 | |
| }
 | |
| 
 | |
| static void build_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int j, node, load;
 | |
| 	enum zone_type i;
 | |
| 	nodemask_t used_mask;
 | |
| 	int local_node, prev_node;
 | |
| 	struct zonelist *zonelist;
 | |
| 	int order = current_zonelist_order;
 | |
| 
 | |
| 	/* initialize zonelists */
 | |
| 	for (i = 0; i < MAX_ZONELISTS; i++) {
 | |
| 		zonelist = pgdat->node_zonelists + i;
 | |
| 		zonelist->zones[0] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* NUMA-aware ordering of nodes */
 | |
| 	local_node = pgdat->node_id;
 | |
| 	load = num_online_nodes();
 | |
| 	prev_node = local_node;
 | |
| 	nodes_clear(used_mask);
 | |
| 
 | |
| 	memset(node_load, 0, sizeof(node_load));
 | |
| 	memset(node_order, 0, sizeof(node_order));
 | |
| 	j = 0;
 | |
| 
 | |
| 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
 | |
| 		int distance = node_distance(local_node, node);
 | |
| 
 | |
| 		/*
 | |
| 		 * If another node is sufficiently far away then it is better
 | |
| 		 * to reclaim pages in a zone before going off node.
 | |
| 		 */
 | |
| 		if (distance > RECLAIM_DISTANCE)
 | |
| 			zone_reclaim_mode = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't want to pressure a particular node.
 | |
| 		 * So adding penalty to the first node in same
 | |
| 		 * distance group to make it round-robin.
 | |
| 		 */
 | |
| 		if (distance != node_distance(local_node, prev_node))
 | |
| 			node_load[node] = load;
 | |
| 
 | |
| 		prev_node = node;
 | |
| 		load--;
 | |
| 		if (order == ZONELIST_ORDER_NODE)
 | |
| 			build_zonelists_in_node_order(pgdat, node);
 | |
| 		else
 | |
| 			node_order[j++] = node;	/* remember order */
 | |
| 	}
 | |
| 
 | |
| 	if (order == ZONELIST_ORDER_ZONE) {
 | |
| 		/* calculate node order -- i.e., DMA last! */
 | |
| 		build_zonelists_in_zone_order(pgdat, j);
 | |
| 	}
 | |
| 
 | |
| 	build_thisnode_zonelists(pgdat);
 | |
| }
 | |
| 
 | |
| /* Construct the zonelist performance cache - see further mmzone.h */
 | |
| static void build_zonelist_cache(pg_data_t *pgdat)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		struct zonelist *zonelist;
 | |
| 		struct zonelist_cache *zlc;
 | |
| 		struct zone **z;
 | |
| 
 | |
| 		zonelist = pgdat->node_zonelists + i;
 | |
| 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
 | |
| 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
 | |
| 		for (z = zonelist->zones; *z; z++)
 | |
| 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| #else	/* CONFIG_NUMA */
 | |
| 
 | |
| static void set_zonelist_order(void)
 | |
| {
 | |
| 	current_zonelist_order = ZONELIST_ORDER_ZONE;
 | |
| }
 | |
| 
 | |
| static void build_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int node, local_node;
 | |
| 	enum zone_type i,j;
 | |
| 
 | |
| 	local_node = pgdat->node_id;
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		struct zonelist *zonelist;
 | |
| 
 | |
| 		zonelist = pgdat->node_zonelists + i;
 | |
| 
 | |
|  		j = build_zonelists_node(pgdat, zonelist, 0, i);
 | |
|  		/*
 | |
|  		 * Now we build the zonelist so that it contains the zones
 | |
|  		 * of all the other nodes.
 | |
|  		 * We don't want to pressure a particular node, so when
 | |
|  		 * building the zones for node N, we make sure that the
 | |
|  		 * zones coming right after the local ones are those from
 | |
|  		 * node N+1 (modulo N)
 | |
|  		 */
 | |
| 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
 | |
| 			if (!node_online(node))
 | |
| 				continue;
 | |
| 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
 | |
| 		}
 | |
| 		for (node = 0; node < local_node; node++) {
 | |
| 			if (!node_online(node))
 | |
| 				continue;
 | |
| 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
 | |
| 		}
 | |
| 
 | |
| 		zonelist->zones[j] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
 | |
| static void build_zonelist_cache(pg_data_t *pgdat)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 
 | |
| /* return values int ....just for stop_machine_run() */
 | |
| static int __build_all_zonelists(void *dummy)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 
 | |
| 		build_zonelists(pgdat);
 | |
| 		build_zonelist_cache(pgdat);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void build_all_zonelists(void)
 | |
| {
 | |
| 	set_zonelist_order();
 | |
| 
 | |
| 	if (system_state == SYSTEM_BOOTING) {
 | |
| 		__build_all_zonelists(NULL);
 | |
| 		cpuset_init_current_mems_allowed();
 | |
| 	} else {
 | |
| 		/* we have to stop all cpus to guaranntee there is no user
 | |
| 		   of zonelist */
 | |
| 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
 | |
| 		/* cpuset refresh routine should be here */
 | |
| 	}
 | |
| 	vm_total_pages = nr_free_pagecache_pages();
 | |
| 	printk("Built %i zonelists in %s order.  Total pages: %ld\n",
 | |
| 			num_online_nodes(),
 | |
| 			zonelist_order_name[current_zonelist_order],
 | |
| 			vm_total_pages);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	printk("Policy zone: %s\n", zone_names[policy_zone]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper functions to size the waitqueue hash table.
 | |
|  * Essentially these want to choose hash table sizes sufficiently
 | |
|  * large so that collisions trying to wait on pages are rare.
 | |
|  * But in fact, the number of active page waitqueues on typical
 | |
|  * systems is ridiculously low, less than 200. So this is even
 | |
|  * conservative, even though it seems large.
 | |
|  *
 | |
|  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
 | |
|  * waitqueues, i.e. the size of the waitq table given the number of pages.
 | |
|  */
 | |
| #define PAGES_PER_WAITQUEUE	256
 | |
| 
 | |
| #ifndef CONFIG_MEMORY_HOTPLUG
 | |
| static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
 | |
| {
 | |
| 	unsigned long size = 1;
 | |
| 
 | |
| 	pages /= PAGES_PER_WAITQUEUE;
 | |
| 
 | |
| 	while (size < pages)
 | |
| 		size <<= 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once we have dozens or even hundreds of threads sleeping
 | |
| 	 * on IO we've got bigger problems than wait queue collision.
 | |
| 	 * Limit the size of the wait table to a reasonable size.
 | |
| 	 */
 | |
| 	size = min(size, 4096UL);
 | |
| 
 | |
| 	return max(size, 4UL);
 | |
| }
 | |
| #else
 | |
| /*
 | |
|  * A zone's size might be changed by hot-add, so it is not possible to determine
 | |
|  * a suitable size for its wait_table.  So we use the maximum size now.
 | |
|  *
 | |
|  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
 | |
|  *
 | |
|  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
 | |
|  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
 | |
|  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
 | |
|  *
 | |
|  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
 | |
|  * or more by the traditional way. (See above).  It equals:
 | |
|  *
 | |
|  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
 | |
|  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
 | |
|  *    powerpc (64K page size)             : =  (32G +16M)byte.
 | |
|  */
 | |
| static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
 | |
| {
 | |
| 	return 4096UL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This is an integer logarithm so that shifts can be used later
 | |
|  * to extract the more random high bits from the multiplicative
 | |
|  * hash function before the remainder is taken.
 | |
|  */
 | |
| static inline unsigned long wait_table_bits(unsigned long size)
 | |
| {
 | |
| 	return ffz(~size);
 | |
| }
 | |
| 
 | |
| #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
 | |
| 
 | |
| /*
 | |
|  * Initially all pages are reserved - free ones are freed
 | |
|  * up by free_all_bootmem() once the early boot process is
 | |
|  * done. Non-atomic initialization, single-pass.
 | |
|  */
 | |
| void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
 | |
| 		unsigned long start_pfn, enum memmap_context context)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned long end_pfn = start_pfn + size;
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 | |
| 		/*
 | |
| 		 * There can be holes in boot-time mem_map[]s
 | |
| 		 * handed to this function.  They do not
 | |
| 		 * exist on hotplugged memory.
 | |
| 		 */
 | |
| 		if (context == MEMMAP_EARLY) {
 | |
| 			if (!early_pfn_valid(pfn))
 | |
| 				continue;
 | |
| 			if (!early_pfn_in_nid(pfn, nid))
 | |
| 				continue;
 | |
| 		}
 | |
| 		page = pfn_to_page(pfn);
 | |
| 		set_page_links(page, zone, nid, pfn);
 | |
| 		init_page_count(page);
 | |
| 		reset_page_mapcount(page);
 | |
| 		SetPageReserved(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * Mark the block movable so that blocks are reserved for
 | |
| 		 * movable at startup. This will force kernel allocations
 | |
| 		 * to reserve their blocks rather than leaking throughout
 | |
| 		 * the address space during boot when many long-lived
 | |
| 		 * kernel allocations are made
 | |
| 		 */
 | |
| 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 | |
| 
 | |
| 		INIT_LIST_HEAD(&page->lru);
 | |
| #ifdef WANT_PAGE_VIRTUAL
 | |
| 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
 | |
| 		if (!is_highmem_idx(zone))
 | |
| 			set_page_address(page, __va(pfn << PAGE_SHIFT));
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
 | |
| 				struct zone *zone, unsigned long size)
 | |
| {
 | |
| 	int order, t;
 | |
| 	for_each_migratetype_order(order, t) {
 | |
| 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
 | |
| 		zone->free_area[order].nr_free = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef __HAVE_ARCH_MEMMAP_INIT
 | |
| #define memmap_init(size, nid, zone, start_pfn) \
 | |
| 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
 | |
| #endif
 | |
| 
 | |
| static int __devinit zone_batchsize(struct zone *zone)
 | |
| {
 | |
| 	int batch;
 | |
| 
 | |
| 	/*
 | |
| 	 * The per-cpu-pages pools are set to around 1000th of the
 | |
| 	 * size of the zone.  But no more than 1/2 of a meg.
 | |
| 	 *
 | |
| 	 * OK, so we don't know how big the cache is.  So guess.
 | |
| 	 */
 | |
| 	batch = zone->present_pages / 1024;
 | |
| 	if (batch * PAGE_SIZE > 512 * 1024)
 | |
| 		batch = (512 * 1024) / PAGE_SIZE;
 | |
| 	batch /= 4;		/* We effectively *= 4 below */
 | |
| 	if (batch < 1)
 | |
| 		batch = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clamp the batch to a 2^n - 1 value. Having a power
 | |
| 	 * of 2 value was found to be more likely to have
 | |
| 	 * suboptimal cache aliasing properties in some cases.
 | |
| 	 *
 | |
| 	 * For example if 2 tasks are alternately allocating
 | |
| 	 * batches of pages, one task can end up with a lot
 | |
| 	 * of pages of one half of the possible page colors
 | |
| 	 * and the other with pages of the other colors.
 | |
| 	 */
 | |
| 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
 | |
| 
 | |
| 	return batch;
 | |
| }
 | |
| 
 | |
| inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
 | |
| {
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 
 | |
| 	memset(p, 0, sizeof(*p));
 | |
| 
 | |
| 	pcp = &p->pcp[0];		/* hot */
 | |
| 	pcp->count = 0;
 | |
| 	pcp->high = 6 * batch;
 | |
| 	pcp->batch = max(1UL, 1 * batch);
 | |
| 	INIT_LIST_HEAD(&pcp->list);
 | |
| 
 | |
| 	pcp = &p->pcp[1];		/* cold*/
 | |
| 	pcp->count = 0;
 | |
| 	pcp->high = 2 * batch;
 | |
| 	pcp->batch = max(1UL, batch/2);
 | |
| 	INIT_LIST_HEAD(&pcp->list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
 | |
|  * to the value high for the pageset p.
 | |
|  */
 | |
| 
 | |
| static void setup_pagelist_highmark(struct per_cpu_pageset *p,
 | |
| 				unsigned long high)
 | |
| {
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 
 | |
| 	pcp = &p->pcp[0]; /* hot list */
 | |
| 	pcp->high = high;
 | |
| 	pcp->batch = max(1UL, high/4);
 | |
| 	if ((high/4) > (PAGE_SHIFT * 8))
 | |
| 		pcp->batch = PAGE_SHIFT * 8;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Boot pageset table. One per cpu which is going to be used for all
 | |
|  * zones and all nodes. The parameters will be set in such a way
 | |
|  * that an item put on a list will immediately be handed over to
 | |
|  * the buddy list. This is safe since pageset manipulation is done
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * Some NUMA counter updates may also be caught by the boot pagesets.
 | |
|  *
 | |
|  * The boot_pagesets must be kept even after bootup is complete for
 | |
|  * unused processors and/or zones. They do play a role for bootstrapping
 | |
|  * hotplugged processors.
 | |
|  *
 | |
|  * zoneinfo_show() and maybe other functions do
 | |
|  * not check if the processor is online before following the pageset pointer.
 | |
|  * Other parts of the kernel may not check if the zone is available.
 | |
|  */
 | |
| static struct per_cpu_pageset boot_pageset[NR_CPUS];
 | |
| 
 | |
| /*
 | |
|  * Dynamically allocate memory for the
 | |
|  * per cpu pageset array in struct zone.
 | |
|  */
 | |
| static int __cpuinit process_zones(int cpu)
 | |
| {
 | |
| 	struct zone *zone, *dzone;
 | |
| 	int node = cpu_to_node(cpu);
 | |
| 
 | |
| 	node_set_state(node, N_CPU);	/* this node has a cpu */
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
 | |
| 					 GFP_KERNEL, node);
 | |
| 		if (!zone_pcp(zone, cpu))
 | |
| 			goto bad;
 | |
| 
 | |
| 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
 | |
| 
 | |
| 		if (percpu_pagelist_fraction)
 | |
| 			setup_pagelist_highmark(zone_pcp(zone, cpu),
 | |
| 			 	(zone->present_pages / percpu_pagelist_fraction));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| bad:
 | |
| 	for_each_zone(dzone) {
 | |
| 		if (!populated_zone(dzone))
 | |
| 			continue;
 | |
| 		if (dzone == zone)
 | |
| 			break;
 | |
| 		kfree(zone_pcp(dzone, cpu));
 | |
| 		zone_pcp(dzone, cpu) = NULL;
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static inline void free_zone_pagesets(int cpu)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
 | |
| 
 | |
| 		/* Free per_cpu_pageset if it is slab allocated */
 | |
| 		if (pset != &boot_pageset[cpu])
 | |
| 			kfree(pset);
 | |
| 		zone_pcp(zone, cpu) = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
 | |
| 		unsigned long action,
 | |
| 		void *hcpu)
 | |
| {
 | |
| 	int cpu = (long)hcpu;
 | |
| 	int ret = NOTIFY_OK;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		if (process_zones(cpu))
 | |
| 			ret = NOTIFY_BAD;
 | |
| 		break;
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_UP_CANCELED_FROZEN:
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 		free_zone_pagesets(cpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct notifier_block __cpuinitdata pageset_notifier =
 | |
| 	{ &pageset_cpuup_callback, NULL, 0 };
 | |
| 
 | |
| void __init setup_per_cpu_pageset(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* Initialize per_cpu_pageset for cpu 0.
 | |
| 	 * A cpuup callback will do this for every cpu
 | |
| 	 * as it comes online
 | |
| 	 */
 | |
| 	err = process_zones(smp_processor_id());
 | |
| 	BUG_ON(err);
 | |
| 	register_cpu_notifier(&pageset_notifier);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static noinline __init_refok
 | |
| int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
 | |
| {
 | |
| 	int i;
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 	size_t alloc_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * The per-page waitqueue mechanism uses hashed waitqueues
 | |
| 	 * per zone.
 | |
| 	 */
 | |
| 	zone->wait_table_hash_nr_entries =
 | |
| 		 wait_table_hash_nr_entries(zone_size_pages);
 | |
| 	zone->wait_table_bits =
 | |
| 		wait_table_bits(zone->wait_table_hash_nr_entries);
 | |
| 	alloc_size = zone->wait_table_hash_nr_entries
 | |
| 					* sizeof(wait_queue_head_t);
 | |
| 
 | |
|  	if (system_state == SYSTEM_BOOTING) {
 | |
| 		zone->wait_table = (wait_queue_head_t *)
 | |
| 			alloc_bootmem_node(pgdat, alloc_size);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * This case means that a zone whose size was 0 gets new memory
 | |
| 		 * via memory hot-add.
 | |
| 		 * But it may be the case that a new node was hot-added.  In
 | |
| 		 * this case vmalloc() will not be able to use this new node's
 | |
| 		 * memory - this wait_table must be initialized to use this new
 | |
| 		 * node itself as well.
 | |
| 		 * To use this new node's memory, further consideration will be
 | |
| 		 * necessary.
 | |
| 		 */
 | |
| 		zone->wait_table = vmalloc(alloc_size);
 | |
| 	}
 | |
| 	if (!zone->wait_table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
 | |
| 		init_waitqueue_head(zone->wait_table + i);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __meminit void zone_pcp_init(struct zone *zone)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long batch = zone_batchsize(zone);
 | |
| 
 | |
| 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
 | |
| #ifdef CONFIG_NUMA
 | |
| 		/* Early boot. Slab allocator not functional yet */
 | |
| 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
 | |
| 		setup_pageset(&boot_pageset[cpu],0);
 | |
| #else
 | |
| 		setup_pageset(zone_pcp(zone,cpu), batch);
 | |
| #endif
 | |
| 	}
 | |
| 	if (zone->present_pages)
 | |
| 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
 | |
| 			zone->name, zone->present_pages, batch);
 | |
| }
 | |
| 
 | |
| __meminit int init_currently_empty_zone(struct zone *zone,
 | |
| 					unsigned long zone_start_pfn,
 | |
| 					unsigned long size,
 | |
| 					enum memmap_context context)
 | |
| {
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 	int ret;
 | |
| 	ret = zone_wait_table_init(zone, size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	pgdat->nr_zones = zone_idx(zone) + 1;
 | |
| 
 | |
| 	zone->zone_start_pfn = zone_start_pfn;
 | |
| 
 | |
| 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
 | |
| 
 | |
| 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 | |
| /*
 | |
|  * Basic iterator support. Return the first range of PFNs for a node
 | |
|  * Note: nid == MAX_NUMNODES returns first region regardless of node
 | |
|  */
 | |
| static int __meminit first_active_region_index_in_nid(int nid)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_nodemap_entries; i++)
 | |
| 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
 | |
| 			return i;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Basic iterator support. Return the next active range of PFNs for a node
 | |
|  * Note: nid == MAX_NUMNODES returns next region regardles of node
 | |
|  */
 | |
| static int __meminit next_active_region_index_in_nid(int index, int nid)
 | |
| {
 | |
| 	for (index = index + 1; index < nr_nodemap_entries; index++)
 | |
| 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
 | |
| 			return index;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
 | |
| /*
 | |
|  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 | |
|  * Architectures may implement their own version but if add_active_range()
 | |
|  * was used and there are no special requirements, this is a convenient
 | |
|  * alternative
 | |
|  */
 | |
| int __meminit early_pfn_to_nid(unsigned long pfn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_nodemap_entries; i++) {
 | |
| 		unsigned long start_pfn = early_node_map[i].start_pfn;
 | |
| 		unsigned long end_pfn = early_node_map[i].end_pfn;
 | |
| 
 | |
| 		if (start_pfn <= pfn && pfn < end_pfn)
 | |
| 			return early_node_map[i].nid;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
 | |
| 
 | |
| /* Basic iterator support to walk early_node_map[] */
 | |
| #define for_each_active_range_index_in_nid(i, nid) \
 | |
| 	for (i = first_active_region_index_in_nid(nid); i != -1; \
 | |
| 				i = next_active_region_index_in_nid(i, nid))
 | |
| 
 | |
| /**
 | |
|  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
 | |
|  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
 | |
|  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
 | |
|  *
 | |
|  * If an architecture guarantees that all ranges registered with
 | |
|  * add_active_ranges() contain no holes and may be freed, this
 | |
|  * this function may be used instead of calling free_bootmem() manually.
 | |
|  */
 | |
| void __init free_bootmem_with_active_regions(int nid,
 | |
| 						unsigned long max_low_pfn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_active_range_index_in_nid(i, nid) {
 | |
| 		unsigned long size_pages = 0;
 | |
| 		unsigned long end_pfn = early_node_map[i].end_pfn;
 | |
| 
 | |
| 		if (early_node_map[i].start_pfn >= max_low_pfn)
 | |
| 			continue;
 | |
| 
 | |
| 		if (end_pfn > max_low_pfn)
 | |
| 			end_pfn = max_low_pfn;
 | |
| 
 | |
| 		size_pages = end_pfn - early_node_map[i].start_pfn;
 | |
| 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
 | |
| 				PFN_PHYS(early_node_map[i].start_pfn),
 | |
| 				size_pages << PAGE_SHIFT);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sparse_memory_present_with_active_regions - Call memory_present for each active range
 | |
|  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
 | |
|  *
 | |
|  * If an architecture guarantees that all ranges registered with
 | |
|  * add_active_ranges() contain no holes and may be freed, this
 | |
|  * function may be used instead of calling memory_present() manually.
 | |
|  */
 | |
| void __init sparse_memory_present_with_active_regions(int nid)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_active_range_index_in_nid(i, nid)
 | |
| 		memory_present(early_node_map[i].nid,
 | |
| 				early_node_map[i].start_pfn,
 | |
| 				early_node_map[i].end_pfn);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * push_node_boundaries - Push node boundaries to at least the requested boundary
 | |
|  * @nid: The nid of the node to push the boundary for
 | |
|  * @start_pfn: The start pfn of the node
 | |
|  * @end_pfn: The end pfn of the node
 | |
|  *
 | |
|  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
 | |
|  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
 | |
|  * be hotplugged even though no physical memory exists. This function allows
 | |
|  * an arch to push out the node boundaries so mem_map is allocated that can
 | |
|  * be used later.
 | |
|  */
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
 | |
| void __init push_node_boundaries(unsigned int nid,
 | |
| 		unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
 | |
| 			nid, start_pfn, end_pfn);
 | |
| 
 | |
| 	/* Initialise the boundary for this node if necessary */
 | |
| 	if (node_boundary_end_pfn[nid] == 0)
 | |
| 		node_boundary_start_pfn[nid] = -1UL;
 | |
| 
 | |
| 	/* Update the boundaries */
 | |
| 	if (node_boundary_start_pfn[nid] > start_pfn)
 | |
| 		node_boundary_start_pfn[nid] = start_pfn;
 | |
| 	if (node_boundary_end_pfn[nid] < end_pfn)
 | |
| 		node_boundary_end_pfn[nid] = end_pfn;
 | |
| }
 | |
| 
 | |
| /* If necessary, push the node boundary out for reserve hotadd */
 | |
| static void __meminit account_node_boundary(unsigned int nid,
 | |
| 		unsigned long *start_pfn, unsigned long *end_pfn)
 | |
| {
 | |
| 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
 | |
| 			nid, *start_pfn, *end_pfn);
 | |
| 
 | |
| 	/* Return if boundary information has not been provided */
 | |
| 	if (node_boundary_end_pfn[nid] == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Check the boundaries and update if necessary */
 | |
| 	if (node_boundary_start_pfn[nid] < *start_pfn)
 | |
| 		*start_pfn = node_boundary_start_pfn[nid];
 | |
| 	if (node_boundary_end_pfn[nid] > *end_pfn)
 | |
| 		*end_pfn = node_boundary_end_pfn[nid];
 | |
| }
 | |
| #else
 | |
| void __init push_node_boundaries(unsigned int nid,
 | |
| 		unsigned long start_pfn, unsigned long end_pfn) {}
 | |
| 
 | |
| static void __meminit account_node_boundary(unsigned int nid,
 | |
| 		unsigned long *start_pfn, unsigned long *end_pfn) {}
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * get_pfn_range_for_nid - Return the start and end page frames for a node
 | |
|  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 | |
|  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 | |
|  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
 | |
|  *
 | |
|  * It returns the start and end page frame of a node based on information
 | |
|  * provided by an arch calling add_active_range(). If called for a node
 | |
|  * with no available memory, a warning is printed and the start and end
 | |
|  * PFNs will be 0.
 | |
|  */
 | |
| void __meminit get_pfn_range_for_nid(unsigned int nid,
 | |
| 			unsigned long *start_pfn, unsigned long *end_pfn)
 | |
| {
 | |
| 	int i;
 | |
| 	*start_pfn = -1UL;
 | |
| 	*end_pfn = 0;
 | |
| 
 | |
| 	for_each_active_range_index_in_nid(i, nid) {
 | |
| 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
 | |
| 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
 | |
| 	}
 | |
| 
 | |
| 	if (*start_pfn == -1UL)
 | |
| 		*start_pfn = 0;
 | |
| 
 | |
| 	/* Push the node boundaries out if requested */
 | |
| 	account_node_boundary(nid, start_pfn, end_pfn);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This finds a zone that can be used for ZONE_MOVABLE pages. The
 | |
|  * assumption is made that zones within a node are ordered in monotonic
 | |
|  * increasing memory addresses so that the "highest" populated zone is used
 | |
|  */
 | |
| void __init find_usable_zone_for_movable(void)
 | |
| {
 | |
| 	int zone_index;
 | |
| 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
 | |
| 		if (zone_index == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (arch_zone_highest_possible_pfn[zone_index] >
 | |
| 				arch_zone_lowest_possible_pfn[zone_index])
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(zone_index == -1);
 | |
| 	movable_zone = zone_index;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
 | |
|  * because it is sized independant of architecture. Unlike the other zones,
 | |
|  * the starting point for ZONE_MOVABLE is not fixed. It may be different
 | |
|  * in each node depending on the size of each node and how evenly kernelcore
 | |
|  * is distributed. This helper function adjusts the zone ranges
 | |
|  * provided by the architecture for a given node by using the end of the
 | |
|  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 | |
|  * zones within a node are in order of monotonic increases memory addresses
 | |
|  */
 | |
| void __meminit adjust_zone_range_for_zone_movable(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *zone_start_pfn,
 | |
| 					unsigned long *zone_end_pfn)
 | |
| {
 | |
| 	/* Only adjust if ZONE_MOVABLE is on this node */
 | |
| 	if (zone_movable_pfn[nid]) {
 | |
| 		/* Size ZONE_MOVABLE */
 | |
| 		if (zone_type == ZONE_MOVABLE) {
 | |
| 			*zone_start_pfn = zone_movable_pfn[nid];
 | |
| 			*zone_end_pfn = min(node_end_pfn,
 | |
| 				arch_zone_highest_possible_pfn[movable_zone]);
 | |
| 
 | |
| 		/* Adjust for ZONE_MOVABLE starting within this range */
 | |
| 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
 | |
| 				*zone_end_pfn > zone_movable_pfn[nid]) {
 | |
| 			*zone_end_pfn = zone_movable_pfn[nid];
 | |
| 
 | |
| 		/* Check if this whole range is within ZONE_MOVABLE */
 | |
| 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
 | |
| 			*zone_start_pfn = *zone_end_pfn;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of pages a zone spans in a node, including holes
 | |
|  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 | |
|  */
 | |
| static unsigned long __meminit zone_spanned_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long *ignored)
 | |
| {
 | |
| 	unsigned long node_start_pfn, node_end_pfn;
 | |
| 	unsigned long zone_start_pfn, zone_end_pfn;
 | |
| 
 | |
| 	/* Get the start and end of the node and zone */
 | |
| 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
 | |
| 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
 | |
| 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
 | |
| 	adjust_zone_range_for_zone_movable(nid, zone_type,
 | |
| 				node_start_pfn, node_end_pfn,
 | |
| 				&zone_start_pfn, &zone_end_pfn);
 | |
| 
 | |
| 	/* Check that this node has pages within the zone's required range */
 | |
| 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Move the zone boundaries inside the node if necessary */
 | |
| 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
 | |
| 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
 | |
| 
 | |
| 	/* Return the spanned pages */
 | |
| 	return zone_end_pfn - zone_start_pfn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
 | |
|  * then all holes in the requested range will be accounted for.
 | |
|  */
 | |
| unsigned long __meminit __absent_pages_in_range(int nid,
 | |
| 				unsigned long range_start_pfn,
 | |
| 				unsigned long range_end_pfn)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	unsigned long prev_end_pfn = 0, hole_pages = 0;
 | |
| 	unsigned long start_pfn;
 | |
| 
 | |
| 	/* Find the end_pfn of the first active range of pfns in the node */
 | |
| 	i = first_active_region_index_in_nid(nid);
 | |
| 	if (i == -1)
 | |
| 		return 0;
 | |
| 
 | |
| 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
 | |
| 
 | |
| 	/* Account for ranges before physical memory on this node */
 | |
| 	if (early_node_map[i].start_pfn > range_start_pfn)
 | |
| 		hole_pages = prev_end_pfn - range_start_pfn;
 | |
| 
 | |
| 	/* Find all holes for the zone within the node */
 | |
| 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
 | |
| 
 | |
| 		/* No need to continue if prev_end_pfn is outside the zone */
 | |
| 		if (prev_end_pfn >= range_end_pfn)
 | |
| 			break;
 | |
| 
 | |
| 		/* Make sure the end of the zone is not within the hole */
 | |
| 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
 | |
| 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
 | |
| 
 | |
| 		/* Update the hole size cound and move on */
 | |
| 		if (start_pfn > range_start_pfn) {
 | |
| 			BUG_ON(prev_end_pfn > start_pfn);
 | |
| 			hole_pages += start_pfn - prev_end_pfn;
 | |
| 		}
 | |
| 		prev_end_pfn = early_node_map[i].end_pfn;
 | |
| 	}
 | |
| 
 | |
| 	/* Account for ranges past physical memory on this node */
 | |
| 	if (range_end_pfn > prev_end_pfn)
 | |
| 		hole_pages += range_end_pfn -
 | |
| 				max(range_start_pfn, prev_end_pfn);
 | |
| 
 | |
| 	return hole_pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * absent_pages_in_range - Return number of page frames in holes within a range
 | |
|  * @start_pfn: The start PFN to start searching for holes
 | |
|  * @end_pfn: The end PFN to stop searching for holes
 | |
|  *
 | |
|  * It returns the number of pages frames in memory holes within a range.
 | |
|  */
 | |
| unsigned long __init absent_pages_in_range(unsigned long start_pfn,
 | |
| 							unsigned long end_pfn)
 | |
| {
 | |
| 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
 | |
| }
 | |
| 
 | |
| /* Return the number of page frames in holes in a zone on a node */
 | |
| static unsigned long __meminit zone_absent_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long *ignored)
 | |
| {
 | |
| 	unsigned long node_start_pfn, node_end_pfn;
 | |
| 	unsigned long zone_start_pfn, zone_end_pfn;
 | |
| 
 | |
| 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
 | |
| 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
 | |
| 							node_start_pfn);
 | |
| 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
 | |
| 							node_end_pfn);
 | |
| 
 | |
| 	adjust_zone_range_for_zone_movable(nid, zone_type,
 | |
| 			node_start_pfn, node_end_pfn,
 | |
| 			&zone_start_pfn, &zone_end_pfn);
 | |
| 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long *zones_size)
 | |
| {
 | |
| 	return zones_size[zone_type];
 | |
| }
 | |
| 
 | |
| static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
 | |
| 						unsigned long zone_type,
 | |
| 						unsigned long *zholes_size)
 | |
| {
 | |
| 	if (!zholes_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	return zholes_size[zone_type];
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
 | |
| 		unsigned long *zones_size, unsigned long *zholes_size)
 | |
| {
 | |
| 	unsigned long realtotalpages, totalpages = 0;
 | |
| 	enum zone_type i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
 | |
| 								zones_size);
 | |
| 	pgdat->node_spanned_pages = totalpages;
 | |
| 
 | |
| 	realtotalpages = totalpages;
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 		realtotalpages -=
 | |
| 			zone_absent_pages_in_node(pgdat->node_id, i,
 | |
| 								zholes_size);
 | |
| 	pgdat->node_present_pages = realtotalpages;
 | |
| 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
 | |
| 							realtotalpages);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPARSEMEM
 | |
| /*
 | |
|  * Calculate the size of the zone->blockflags rounded to an unsigned long
 | |
|  * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
 | |
|  * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
 | |
|  * round what is now in bits to nearest long in bits, then return it in
 | |
|  * bytes.
 | |
|  */
 | |
| static unsigned long __init usemap_size(unsigned long zonesize)
 | |
| {
 | |
| 	unsigned long usemapsize;
 | |
| 
 | |
| 	usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
 | |
| 	usemapsize = usemapsize >> (MAX_ORDER-1);
 | |
| 	usemapsize *= NR_PAGEBLOCK_BITS;
 | |
| 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
 | |
| 
 | |
| 	return usemapsize / 8;
 | |
| }
 | |
| 
 | |
| static void __init setup_usemap(struct pglist_data *pgdat,
 | |
| 				struct zone *zone, unsigned long zonesize)
 | |
| {
 | |
| 	unsigned long usemapsize = usemap_size(zonesize);
 | |
| 	zone->pageblock_flags = NULL;
 | |
| 	if (usemapsize) {
 | |
| 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
 | |
| 		memset(zone->pageblock_flags, 0, usemapsize);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void inline setup_usemap(struct pglist_data *pgdat,
 | |
| 				struct zone *zone, unsigned long zonesize) {}
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| 
 | |
| /*
 | |
|  * Set up the zone data structures:
 | |
|  *   - mark all pages reserved
 | |
|  *   - mark all memory queues empty
 | |
|  *   - clear the memory bitmaps
 | |
|  */
 | |
| static void __meminit free_area_init_core(struct pglist_data *pgdat,
 | |
| 		unsigned long *zones_size, unsigned long *zholes_size)
 | |
| {
 | |
| 	enum zone_type j;
 | |
| 	int nid = pgdat->node_id;
 | |
| 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
 | |
| 	int ret;
 | |
| 
 | |
| 	pgdat_resize_init(pgdat);
 | |
| 	pgdat->nr_zones = 0;
 | |
| 	init_waitqueue_head(&pgdat->kswapd_wait);
 | |
| 	pgdat->kswapd_max_order = 0;
 | |
| 	
 | |
| 	for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 		struct zone *zone = pgdat->node_zones + j;
 | |
| 		unsigned long size, realsize, memmap_pages;
 | |
| 
 | |
| 		size = zone_spanned_pages_in_node(nid, j, zones_size);
 | |
| 		realsize = size - zone_absent_pages_in_node(nid, j,
 | |
| 								zholes_size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust realsize so that it accounts for how much memory
 | |
| 		 * is used by this zone for memmap. This affects the watermark
 | |
| 		 * and per-cpu initialisations
 | |
| 		 */
 | |
| 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
 | |
| 		if (realsize >= memmap_pages) {
 | |
| 			realsize -= memmap_pages;
 | |
| 			printk(KERN_DEBUG
 | |
| 				"  %s zone: %lu pages used for memmap\n",
 | |
| 				zone_names[j], memmap_pages);
 | |
| 		} else
 | |
| 			printk(KERN_WARNING
 | |
| 				"  %s zone: %lu pages exceeds realsize %lu\n",
 | |
| 				zone_names[j], memmap_pages, realsize);
 | |
| 
 | |
| 		/* Account for reserved pages */
 | |
| 		if (j == 0 && realsize > dma_reserve) {
 | |
| 			realsize -= dma_reserve;
 | |
| 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
 | |
| 					zone_names[0], dma_reserve);
 | |
| 		}
 | |
| 
 | |
| 		if (!is_highmem_idx(j))
 | |
| 			nr_kernel_pages += realsize;
 | |
| 		nr_all_pages += realsize;
 | |
| 
 | |
| 		zone->spanned_pages = size;
 | |
| 		zone->present_pages = realsize;
 | |
| #ifdef CONFIG_NUMA
 | |
| 		zone->node = nid;
 | |
| 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
 | |
| 						/ 100;
 | |
| 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
 | |
| #endif
 | |
| 		zone->name = zone_names[j];
 | |
| 		spin_lock_init(&zone->lock);
 | |
| 		spin_lock_init(&zone->lru_lock);
 | |
| 		zone_seqlock_init(zone);
 | |
| 		zone->zone_pgdat = pgdat;
 | |
| 
 | |
| 		zone->prev_priority = DEF_PRIORITY;
 | |
| 
 | |
| 		zone_pcp_init(zone);
 | |
| 		INIT_LIST_HEAD(&zone->active_list);
 | |
| 		INIT_LIST_HEAD(&zone->inactive_list);
 | |
| 		zone->nr_scan_active = 0;
 | |
| 		zone->nr_scan_inactive = 0;
 | |
| 		zap_zone_vm_stats(zone);
 | |
| 		atomic_set(&zone->reclaim_in_progress, 0);
 | |
| 		if (!size)
 | |
| 			continue;
 | |
| 
 | |
| 		setup_usemap(pgdat, zone, size);
 | |
| 		ret = init_currently_empty_zone(zone, zone_start_pfn,
 | |
| 						size, MEMMAP_EARLY);
 | |
| 		BUG_ON(ret);
 | |
| 		zone_start_pfn += size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
 | |
| {
 | |
| 	/* Skip empty nodes */
 | |
| 	if (!pgdat->node_spanned_pages)
 | |
| 		return;
 | |
| 
 | |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP
 | |
| 	/* ia64 gets its own node_mem_map, before this, without bootmem */
 | |
| 	if (!pgdat->node_mem_map) {
 | |
| 		unsigned long size, start, end;
 | |
| 		struct page *map;
 | |
| 
 | |
| 		/*
 | |
| 		 * The zone's endpoints aren't required to be MAX_ORDER
 | |
| 		 * aligned but the node_mem_map endpoints must be in order
 | |
| 		 * for the buddy allocator to function correctly.
 | |
| 		 */
 | |
| 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
 | |
| 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
 | |
| 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
 | |
| 		size =  (end - start) * sizeof(struct page);
 | |
| 		map = alloc_remap(pgdat->node_id, size);
 | |
| 		if (!map)
 | |
| 			map = alloc_bootmem_node(pgdat, size);
 | |
| 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
 | |
| 	}
 | |
| #ifndef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	/*
 | |
| 	 * With no DISCONTIG, the global mem_map is just set as node 0's
 | |
| 	 */
 | |
| 	if (pgdat == NODE_DATA(0)) {
 | |
| 		mem_map = NODE_DATA(0)->node_mem_map;
 | |
| #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 | |
| 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
 | |
| 			mem_map -= pgdat->node_start_pfn;
 | |
| #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 | |
| 	}
 | |
| #endif
 | |
| #endif /* CONFIG_FLAT_NODE_MEM_MAP */
 | |
| }
 | |
| 
 | |
| void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
 | |
| 		unsigned long *zones_size, unsigned long node_start_pfn,
 | |
| 		unsigned long *zholes_size)
 | |
| {
 | |
| 	pgdat->node_id = nid;
 | |
| 	pgdat->node_start_pfn = node_start_pfn;
 | |
| 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
 | |
| 
 | |
| 	alloc_node_mem_map(pgdat);
 | |
| 
 | |
| 	free_area_init_core(pgdat, zones_size, zholes_size);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| /*
 | |
|  * Figure out the number of possible node ids.
 | |
|  */
 | |
| static void __init setup_nr_node_ids(void)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 	unsigned int highest = 0;
 | |
| 
 | |
| 	for_each_node_mask(node, node_possible_map)
 | |
| 		highest = node;
 | |
| 	nr_node_ids = highest + 1;
 | |
| }
 | |
| #else
 | |
| static inline void setup_nr_node_ids(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * add_active_range - Register a range of PFNs backed by physical memory
 | |
|  * @nid: The node ID the range resides on
 | |
|  * @start_pfn: The start PFN of the available physical memory
 | |
|  * @end_pfn: The end PFN of the available physical memory
 | |
|  *
 | |
|  * These ranges are stored in an early_node_map[] and later used by
 | |
|  * free_area_init_nodes() to calculate zone sizes and holes. If the
 | |
|  * range spans a memory hole, it is up to the architecture to ensure
 | |
|  * the memory is not freed by the bootmem allocator. If possible
 | |
|  * the range being registered will be merged with existing ranges.
 | |
|  */
 | |
| void __init add_active_range(unsigned int nid, unsigned long start_pfn,
 | |
| 						unsigned long end_pfn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
 | |
| 			  "%d entries of %d used\n",
 | |
| 			  nid, start_pfn, end_pfn,
 | |
| 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
 | |
| 
 | |
| 	/* Merge with existing active regions if possible */
 | |
| 	for (i = 0; i < nr_nodemap_entries; i++) {
 | |
| 		if (early_node_map[i].nid != nid)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Skip if an existing region covers this new one */
 | |
| 		if (start_pfn >= early_node_map[i].start_pfn &&
 | |
| 				end_pfn <= early_node_map[i].end_pfn)
 | |
| 			return;
 | |
| 
 | |
| 		/* Merge forward if suitable */
 | |
| 		if (start_pfn <= early_node_map[i].end_pfn &&
 | |
| 				end_pfn > early_node_map[i].end_pfn) {
 | |
| 			early_node_map[i].end_pfn = end_pfn;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Merge backward if suitable */
 | |
| 		if (start_pfn < early_node_map[i].end_pfn &&
 | |
| 				end_pfn >= early_node_map[i].start_pfn) {
 | |
| 			early_node_map[i].start_pfn = start_pfn;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check that early_node_map is large enough */
 | |
| 	if (i >= MAX_ACTIVE_REGIONS) {
 | |
| 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
 | |
| 							MAX_ACTIVE_REGIONS);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	early_node_map[i].nid = nid;
 | |
| 	early_node_map[i].start_pfn = start_pfn;
 | |
| 	early_node_map[i].end_pfn = end_pfn;
 | |
| 	nr_nodemap_entries = i + 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * shrink_active_range - Shrink an existing registered range of PFNs
 | |
|  * @nid: The node id the range is on that should be shrunk
 | |
|  * @old_end_pfn: The old end PFN of the range
 | |
|  * @new_end_pfn: The new PFN of the range
 | |
|  *
 | |
|  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
 | |
|  * The map is kept at the end physical page range that has already been
 | |
|  * registered with add_active_range(). This function allows an arch to shrink
 | |
|  * an existing registered range.
 | |
|  */
 | |
| void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
 | |
| 						unsigned long new_end_pfn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Find the old active region end and shrink */
 | |
| 	for_each_active_range_index_in_nid(i, nid)
 | |
| 		if (early_node_map[i].end_pfn == old_end_pfn) {
 | |
| 			early_node_map[i].end_pfn = new_end_pfn;
 | |
| 			break;
 | |
| 		}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * remove_all_active_ranges - Remove all currently registered regions
 | |
|  *
 | |
|  * During discovery, it may be found that a table like SRAT is invalid
 | |
|  * and an alternative discovery method must be used. This function removes
 | |
|  * all currently registered regions.
 | |
|  */
 | |
| void __init remove_all_active_ranges(void)
 | |
| {
 | |
| 	memset(early_node_map, 0, sizeof(early_node_map));
 | |
| 	nr_nodemap_entries = 0;
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
 | |
| 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
 | |
| 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
 | |
| }
 | |
| 
 | |
| /* Compare two active node_active_regions */
 | |
| static int __init cmp_node_active_region(const void *a, const void *b)
 | |
| {
 | |
| 	struct node_active_region *arange = (struct node_active_region *)a;
 | |
| 	struct node_active_region *brange = (struct node_active_region *)b;
 | |
| 
 | |
| 	/* Done this way to avoid overflows */
 | |
| 	if (arange->start_pfn > brange->start_pfn)
 | |
| 		return 1;
 | |
| 	if (arange->start_pfn < brange->start_pfn)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* sort the node_map by start_pfn */
 | |
| static void __init sort_node_map(void)
 | |
| {
 | |
| 	sort(early_node_map, (size_t)nr_nodemap_entries,
 | |
| 			sizeof(struct node_active_region),
 | |
| 			cmp_node_active_region, NULL);
 | |
| }
 | |
| 
 | |
| /* Find the lowest pfn for a node */
 | |
| unsigned long __init find_min_pfn_for_node(unsigned long nid)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long min_pfn = ULONG_MAX;
 | |
| 
 | |
| 	/* Assuming a sorted map, the first range found has the starting pfn */
 | |
| 	for_each_active_range_index_in_nid(i, nid)
 | |
| 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
 | |
| 
 | |
| 	if (min_pfn == ULONG_MAX) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"Could not find start_pfn for node %lu\n", nid);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return min_pfn;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_min_pfn_with_active_regions - Find the minimum PFN registered
 | |
|  *
 | |
|  * It returns the minimum PFN based on information provided via
 | |
|  * add_active_range().
 | |
|  */
 | |
| unsigned long __init find_min_pfn_with_active_regions(void)
 | |
| {
 | |
| 	return find_min_pfn_for_node(MAX_NUMNODES);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_max_pfn_with_active_regions - Find the maximum PFN registered
 | |
|  *
 | |
|  * It returns the maximum PFN based on information provided via
 | |
|  * add_active_range().
 | |
|  */
 | |
| unsigned long __init find_max_pfn_with_active_regions(void)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long max_pfn = 0;
 | |
| 
 | |
| 	for (i = 0; i < nr_nodemap_entries; i++)
 | |
| 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
 | |
| 
 | |
| 	return max_pfn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * early_calculate_totalpages()
 | |
|  * Sum pages in active regions for movable zone.
 | |
|  * Populate N_HIGH_MEMORY for calculating usable_nodes.
 | |
|  */
 | |
| unsigned long __init early_calculate_totalpages(void)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long totalpages = 0;
 | |
| 
 | |
| 	for (i = 0; i < nr_nodemap_entries; i++) {
 | |
| 		unsigned long pages = early_node_map[i].end_pfn -
 | |
| 						early_node_map[i].start_pfn;
 | |
| 		totalpages += pages;
 | |
| 		if (pages)
 | |
| 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
 | |
| 	}
 | |
|   	return totalpages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the PFN the Movable zone begins in each node. Kernel memory
 | |
|  * is spread evenly between nodes as long as the nodes have enough
 | |
|  * memory. When they don't, some nodes will have more kernelcore than
 | |
|  * others
 | |
|  */
 | |
| void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
 | |
| {
 | |
| 	int i, nid;
 | |
| 	unsigned long usable_startpfn;
 | |
| 	unsigned long kernelcore_node, kernelcore_remaining;
 | |
| 	unsigned long totalpages = early_calculate_totalpages();
 | |
| 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
 | |
| 
 | |
| 	/*
 | |
| 	 * If movablecore was specified, calculate what size of
 | |
| 	 * kernelcore that corresponds so that memory usable for
 | |
| 	 * any allocation type is evenly spread. If both kernelcore
 | |
| 	 * and movablecore are specified, then the value of kernelcore
 | |
| 	 * will be used for required_kernelcore if it's greater than
 | |
| 	 * what movablecore would have allowed.
 | |
| 	 */
 | |
| 	if (required_movablecore) {
 | |
| 		unsigned long corepages;
 | |
| 
 | |
| 		/*
 | |
| 		 * Round-up so that ZONE_MOVABLE is at least as large as what
 | |
| 		 * was requested by the user
 | |
| 		 */
 | |
| 		required_movablecore =
 | |
| 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
 | |
| 		corepages = totalpages - required_movablecore;
 | |
| 
 | |
| 		required_kernelcore = max(required_kernelcore, corepages);
 | |
| 	}
 | |
| 
 | |
| 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
 | |
| 	if (!required_kernelcore)
 | |
| 		return;
 | |
| 
 | |
| 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
 | |
| 	find_usable_zone_for_movable();
 | |
| 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
 | |
| 
 | |
| restart:
 | |
| 	/* Spread kernelcore memory as evenly as possible throughout nodes */
 | |
| 	kernelcore_node = required_kernelcore / usable_nodes;
 | |
| 	for_each_node_state(nid, N_HIGH_MEMORY) {
 | |
| 		/*
 | |
| 		 * Recalculate kernelcore_node if the division per node
 | |
| 		 * now exceeds what is necessary to satisfy the requested
 | |
| 		 * amount of memory for the kernel
 | |
| 		 */
 | |
| 		if (required_kernelcore < kernelcore_node)
 | |
| 			kernelcore_node = required_kernelcore / usable_nodes;
 | |
| 
 | |
| 		/*
 | |
| 		 * As the map is walked, we track how much memory is usable
 | |
| 		 * by the kernel using kernelcore_remaining. When it is
 | |
| 		 * 0, the rest of the node is usable by ZONE_MOVABLE
 | |
| 		 */
 | |
| 		kernelcore_remaining = kernelcore_node;
 | |
| 
 | |
| 		/* Go through each range of PFNs within this node */
 | |
| 		for_each_active_range_index_in_nid(i, nid) {
 | |
| 			unsigned long start_pfn, end_pfn;
 | |
| 			unsigned long size_pages;
 | |
| 
 | |
| 			start_pfn = max(early_node_map[i].start_pfn,
 | |
| 						zone_movable_pfn[nid]);
 | |
| 			end_pfn = early_node_map[i].end_pfn;
 | |
| 			if (start_pfn >= end_pfn)
 | |
| 				continue;
 | |
| 
 | |
| 			/* Account for what is only usable for kernelcore */
 | |
| 			if (start_pfn < usable_startpfn) {
 | |
| 				unsigned long kernel_pages;
 | |
| 				kernel_pages = min(end_pfn, usable_startpfn)
 | |
| 								- start_pfn;
 | |
| 
 | |
| 				kernelcore_remaining -= min(kernel_pages,
 | |
| 							kernelcore_remaining);
 | |
| 				required_kernelcore -= min(kernel_pages,
 | |
| 							required_kernelcore);
 | |
| 
 | |
| 				/* Continue if range is now fully accounted */
 | |
| 				if (end_pfn <= usable_startpfn) {
 | |
| 
 | |
| 					/*
 | |
| 					 * Push zone_movable_pfn to the end so
 | |
| 					 * that if we have to rebalance
 | |
| 					 * kernelcore across nodes, we will
 | |
| 					 * not double account here
 | |
| 					 */
 | |
| 					zone_movable_pfn[nid] = end_pfn;
 | |
| 					continue;
 | |
| 				}
 | |
| 				start_pfn = usable_startpfn;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * The usable PFN range for ZONE_MOVABLE is from
 | |
| 			 * start_pfn->end_pfn. Calculate size_pages as the
 | |
| 			 * number of pages used as kernelcore
 | |
| 			 */
 | |
| 			size_pages = end_pfn - start_pfn;
 | |
| 			if (size_pages > kernelcore_remaining)
 | |
| 				size_pages = kernelcore_remaining;
 | |
| 			zone_movable_pfn[nid] = start_pfn + size_pages;
 | |
| 
 | |
| 			/*
 | |
| 			 * Some kernelcore has been met, update counts and
 | |
| 			 * break if the kernelcore for this node has been
 | |
| 			 * satisified
 | |
| 			 */
 | |
| 			required_kernelcore -= min(required_kernelcore,
 | |
| 								size_pages);
 | |
| 			kernelcore_remaining -= size_pages;
 | |
| 			if (!kernelcore_remaining)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is still required_kernelcore, we do another pass with one
 | |
| 	 * less node in the count. This will push zone_movable_pfn[nid] further
 | |
| 	 * along on the nodes that still have memory until kernelcore is
 | |
| 	 * satisified
 | |
| 	 */
 | |
| 	usable_nodes--;
 | |
| 	if (usable_nodes && required_kernelcore > usable_nodes)
 | |
| 		goto restart;
 | |
| 
 | |
| 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
 | |
| 	for (nid = 0; nid < MAX_NUMNODES; nid++)
 | |
| 		zone_movable_pfn[nid] =
 | |
| 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
 | |
| }
 | |
| 
 | |
| /* Any regular memory on that node ? */
 | |
| static void check_for_regular_memory(pg_data_t *pgdat)
 | |
| {
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	enum zone_type zone_type;
 | |
| 
 | |
| 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
 | |
| 		struct zone *zone = &pgdat->node_zones[zone_type];
 | |
| 		if (zone->present_pages)
 | |
| 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_area_init_nodes - Initialise all pg_data_t and zone data
 | |
|  * @max_zone_pfn: an array of max PFNs for each zone
 | |
|  *
 | |
|  * This will call free_area_init_node() for each active node in the system.
 | |
|  * Using the page ranges provided by add_active_range(), the size of each
 | |
|  * zone in each node and their holes is calculated. If the maximum PFN
 | |
|  * between two adjacent zones match, it is assumed that the zone is empty.
 | |
|  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 | |
|  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 | |
|  * starts where the previous one ended. For example, ZONE_DMA32 starts
 | |
|  * at arch_max_dma_pfn.
 | |
|  */
 | |
| void __init free_area_init_nodes(unsigned long *max_zone_pfn)
 | |
| {
 | |
| 	unsigned long nid;
 | |
| 	enum zone_type i;
 | |
| 
 | |
| 	/* Sort early_node_map as initialisation assumes it is sorted */
 | |
| 	sort_node_map();
 | |
| 
 | |
| 	/* Record where the zone boundaries are */
 | |
| 	memset(arch_zone_lowest_possible_pfn, 0,
 | |
| 				sizeof(arch_zone_lowest_possible_pfn));
 | |
| 	memset(arch_zone_highest_possible_pfn, 0,
 | |
| 				sizeof(arch_zone_highest_possible_pfn));
 | |
| 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
 | |
| 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
 | |
| 	for (i = 1; i < MAX_NR_ZONES; i++) {
 | |
| 		if (i == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 		arch_zone_lowest_possible_pfn[i] =
 | |
| 			arch_zone_highest_possible_pfn[i-1];
 | |
| 		arch_zone_highest_possible_pfn[i] =
 | |
| 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
 | |
| 	}
 | |
| 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
 | |
| 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
 | |
| 
 | |
| 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
 | |
| 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
 | |
| 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
 | |
| 
 | |
| 	/* Print out the zone ranges */
 | |
| 	printk("Zone PFN ranges:\n");
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		if (i == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 		printk("  %-8s %8lu -> %8lu\n",
 | |
| 				zone_names[i],
 | |
| 				arch_zone_lowest_possible_pfn[i],
 | |
| 				arch_zone_highest_possible_pfn[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
 | |
| 	printk("Movable zone start PFN for each node\n");
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		if (zone_movable_pfn[i])
 | |
| 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* Print out the early_node_map[] */
 | |
| 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
 | |
| 	for (i = 0; i < nr_nodemap_entries; i++)
 | |
| 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
 | |
| 						early_node_map[i].start_pfn,
 | |
| 						early_node_map[i].end_pfn);
 | |
| 
 | |
| 	/* Initialise every node */
 | |
| 	setup_nr_node_ids();
 | |
| 	for_each_online_node(nid) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 		free_area_init_node(nid, pgdat, NULL,
 | |
| 				find_min_pfn_for_node(nid), NULL);
 | |
| 
 | |
| 		/* Any memory on that node */
 | |
| 		if (pgdat->node_present_pages)
 | |
| 			node_set_state(nid, N_HIGH_MEMORY);
 | |
| 		check_for_regular_memory(pgdat);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init cmdline_parse_core(char *p, unsigned long *core)
 | |
| {
 | |
| 	unsigned long long coremem;
 | |
| 	if (!p)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	coremem = memparse(p, &p);
 | |
| 	*core = coremem >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Paranoid check that UL is enough for the coremem value */
 | |
| 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kernelcore=size sets the amount of memory for use for allocations that
 | |
|  * cannot be reclaimed or migrated.
 | |
|  */
 | |
| static int __init cmdline_parse_kernelcore(char *p)
 | |
| {
 | |
| 	return cmdline_parse_core(p, &required_kernelcore);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * movablecore=size sets the amount of memory for use for allocations that
 | |
|  * can be reclaimed or migrated.
 | |
|  */
 | |
| static int __init cmdline_parse_movablecore(char *p)
 | |
| {
 | |
| 	return cmdline_parse_core(p, &required_movablecore);
 | |
| }
 | |
| 
 | |
| early_param("kernelcore", cmdline_parse_kernelcore);
 | |
| early_param("movablecore", cmdline_parse_movablecore);
 | |
| 
 | |
| #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 | |
| 
 | |
| /**
 | |
|  * set_dma_reserve - set the specified number of pages reserved in the first zone
 | |
|  * @new_dma_reserve: The number of pages to mark reserved
 | |
|  *
 | |
|  * The per-cpu batchsize and zone watermarks are determined by present_pages.
 | |
|  * In the DMA zone, a significant percentage may be consumed by kernel image
 | |
|  * and other unfreeable allocations which can skew the watermarks badly. This
 | |
|  * function may optionally be used to account for unfreeable pages in the
 | |
|  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 | |
|  * smaller per-cpu batchsize.
 | |
|  */
 | |
| void __init set_dma_reserve(unsigned long new_dma_reserve)
 | |
| {
 | |
| 	dma_reserve = new_dma_reserve;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NEED_MULTIPLE_NODES
 | |
| static bootmem_data_t contig_bootmem_data;
 | |
| struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
 | |
| 
 | |
| EXPORT_SYMBOL(contig_page_data);
 | |
| #endif
 | |
| 
 | |
| void __init free_area_init(unsigned long *zones_size)
 | |
| {
 | |
| 	free_area_init_node(0, NODE_DATA(0), zones_size,
 | |
| 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
 | |
| }
 | |
| 
 | |
| static int page_alloc_cpu_notify(struct notifier_block *self,
 | |
| 				 unsigned long action, void *hcpu)
 | |
| {
 | |
| 	int cpu = (unsigned long)hcpu;
 | |
| 
 | |
| 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
 | |
| 		local_irq_disable();
 | |
| 		__drain_pages(cpu);
 | |
| 		vm_events_fold_cpu(cpu);
 | |
| 		local_irq_enable();
 | |
| 		refresh_cpu_vm_stats(cpu);
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| void __init page_alloc_init(void)
 | |
| {
 | |
| 	hotcpu_notifier(page_alloc_cpu_notify, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
 | |
|  *	or min_free_kbytes changes.
 | |
|  */
 | |
| static void calculate_totalreserve_pages(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 	unsigned long reserve_pages = 0;
 | |
| 	enum zone_type i, j;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 			struct zone *zone = pgdat->node_zones + i;
 | |
| 			unsigned long max = 0;
 | |
| 
 | |
| 			/* Find valid and maximum lowmem_reserve in the zone */
 | |
| 			for (j = i; j < MAX_NR_ZONES; j++) {
 | |
| 				if (zone->lowmem_reserve[j] > max)
 | |
| 					max = zone->lowmem_reserve[j];
 | |
| 			}
 | |
| 
 | |
| 			/* we treat pages_high as reserved pages. */
 | |
| 			max += zone->pages_high;
 | |
| 
 | |
| 			if (max > zone->present_pages)
 | |
| 				max = zone->present_pages;
 | |
| 			reserve_pages += max;
 | |
| 		}
 | |
| 	}
 | |
| 	totalreserve_pages = reserve_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_per_zone_lowmem_reserve - called whenever
 | |
|  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
 | |
|  *	has a correct pages reserved value, so an adequate number of
 | |
|  *	pages are left in the zone after a successful __alloc_pages().
 | |
|  */
 | |
| static void setup_per_zone_lowmem_reserve(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 	enum zone_type j, idx;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 			struct zone *zone = pgdat->node_zones + j;
 | |
| 			unsigned long present_pages = zone->present_pages;
 | |
| 
 | |
| 			zone->lowmem_reserve[j] = 0;
 | |
| 
 | |
| 			idx = j;
 | |
| 			while (idx) {
 | |
| 				struct zone *lower_zone;
 | |
| 
 | |
| 				idx--;
 | |
| 
 | |
| 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
 | |
| 					sysctl_lowmem_reserve_ratio[idx] = 1;
 | |
| 
 | |
| 				lower_zone = pgdat->node_zones + idx;
 | |
| 				lower_zone->lowmem_reserve[j] = present_pages /
 | |
| 					sysctl_lowmem_reserve_ratio[idx];
 | |
| 				present_pages += lower_zone->present_pages;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* update totalreserve_pages */
 | |
| 	calculate_totalreserve_pages();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * setup_per_zone_pages_min - called when min_free_kbytes changes.
 | |
|  *
 | |
|  * Ensures that the pages_{min,low,high} values for each zone are set correctly
 | |
|  * with respect to min_free_kbytes.
 | |
|  */
 | |
| void setup_per_zone_pages_min(void)
 | |
| {
 | |
| 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
 | |
| 	unsigned long lowmem_pages = 0;
 | |
| 	struct zone *zone;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Calculate total number of !ZONE_HIGHMEM pages */
 | |
| 	for_each_zone(zone) {
 | |
| 		if (!is_highmem(zone))
 | |
| 			lowmem_pages += zone->present_pages;
 | |
| 	}
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		u64 tmp;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 		tmp = (u64)pages_min * zone->present_pages;
 | |
| 		do_div(tmp, lowmem_pages);
 | |
| 		if (is_highmem(zone)) {
 | |
| 			/*
 | |
| 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
 | |
| 			 * need highmem pages, so cap pages_min to a small
 | |
| 			 * value here.
 | |
| 			 *
 | |
| 			 * The (pages_high-pages_low) and (pages_low-pages_min)
 | |
| 			 * deltas controls asynch page reclaim, and so should
 | |
| 			 * not be capped for highmem.
 | |
| 			 */
 | |
| 			int min_pages;
 | |
| 
 | |
| 			min_pages = zone->present_pages / 1024;
 | |
| 			if (min_pages < SWAP_CLUSTER_MAX)
 | |
| 				min_pages = SWAP_CLUSTER_MAX;
 | |
| 			if (min_pages > 128)
 | |
| 				min_pages = 128;
 | |
| 			zone->pages_min = min_pages;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If it's a lowmem zone, reserve a number of pages
 | |
| 			 * proportionate to the zone's size.
 | |
| 			 */
 | |
| 			zone->pages_min = tmp;
 | |
| 		}
 | |
| 
 | |
| 		zone->pages_low   = zone->pages_min + (tmp >> 2);
 | |
| 		zone->pages_high  = zone->pages_min + (tmp >> 1);
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* update totalreserve_pages */
 | |
| 	calculate_totalreserve_pages();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialise min_free_kbytes.
 | |
|  *
 | |
|  * For small machines we want it small (128k min).  For large machines
 | |
|  * we want it large (64MB max).  But it is not linear, because network
 | |
|  * bandwidth does not increase linearly with machine size.  We use
 | |
|  *
 | |
|  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
 | |
|  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 | |
|  *
 | |
|  * which yields
 | |
|  *
 | |
|  * 16MB:	512k
 | |
|  * 32MB:	724k
 | |
|  * 64MB:	1024k
 | |
|  * 128MB:	1448k
 | |
|  * 256MB:	2048k
 | |
|  * 512MB:	2896k
 | |
|  * 1024MB:	4096k
 | |
|  * 2048MB:	5792k
 | |
|  * 4096MB:	8192k
 | |
|  * 8192MB:	11584k
 | |
|  * 16384MB:	16384k
 | |
|  */
 | |
| static int __init init_per_zone_pages_min(void)
 | |
| {
 | |
| 	unsigned long lowmem_kbytes;
 | |
| 
 | |
| 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
 | |
| 
 | |
| 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
 | |
| 	if (min_free_kbytes < 128)
 | |
| 		min_free_kbytes = 128;
 | |
| 	if (min_free_kbytes > 65536)
 | |
| 		min_free_kbytes = 65536;
 | |
| 	setup_per_zone_pages_min();
 | |
| 	setup_per_zone_lowmem_reserve();
 | |
| 	return 0;
 | |
| }
 | |
| module_init(init_per_zone_pages_min)
 | |
| 
 | |
| /*
 | |
|  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 
 | |
|  *	that we can call two helper functions whenever min_free_kbytes
 | |
|  *	changes.
 | |
|  */
 | |
| int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 
 | |
| 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_dointvec(table, write, file, buffer, length, ppos);
 | |
| 	if (write)
 | |
| 		setup_per_zone_pages_min();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
 | |
| 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for_each_zone(zone)
 | |
| 		zone->min_unmapped_pages = (zone->present_pages *
 | |
| 				sysctl_min_unmapped_ratio) / 100;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
 | |
| 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for_each_zone(zone)
 | |
| 		zone->min_slab_pages = (zone->present_pages *
 | |
| 				sysctl_min_slab_ratio) / 100;
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 | |
|  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 | |
|  *	whenever sysctl_lowmem_reserve_ratio changes.
 | |
|  *
 | |
|  * The reserve ratio obviously has absolutely no relation with the
 | |
|  * pages_min watermarks. The lowmem reserve ratio can only make sense
 | |
|  * if in function of the boot time zone sizes.
 | |
|  */
 | |
| int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
 | |
| 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
 | |
| 	setup_per_zone_lowmem_reserve();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
 | |
|  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
 | |
|  * can have before it gets flushed back to buddy allocator.
 | |
|  */
 | |
| 
 | |
| int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
 | |
| 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned int cpu;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
 | |
| 	if (!write || (ret == -EINVAL))
 | |
| 		return ret;
 | |
| 	for_each_zone(zone) {
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			unsigned long  high;
 | |
| 			high = zone->present_pages / percpu_pagelist_fraction;
 | |
| 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int hashdist = HASHDIST_DEFAULT;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static int __init set_hashdist(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 	hashdist = simple_strtoul(str, &str, 0);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("hashdist=", set_hashdist);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * allocate a large system hash table from bootmem
 | |
|  * - it is assumed that the hash table must contain an exact power-of-2
 | |
|  *   quantity of entries
 | |
|  * - limit is the number of hash buckets, not the total allocation size
 | |
|  */
 | |
| void *__init alloc_large_system_hash(const char *tablename,
 | |
| 				     unsigned long bucketsize,
 | |
| 				     unsigned long numentries,
 | |
| 				     int scale,
 | |
| 				     int flags,
 | |
| 				     unsigned int *_hash_shift,
 | |
| 				     unsigned int *_hash_mask,
 | |
| 				     unsigned long limit)
 | |
| {
 | |
| 	unsigned long long max = limit;
 | |
| 	unsigned long log2qty, size;
 | |
| 	void *table = NULL;
 | |
| 
 | |
| 	/* allow the kernel cmdline to have a say */
 | |
| 	if (!numentries) {
 | |
| 		/* round applicable memory size up to nearest megabyte */
 | |
| 		numentries = nr_kernel_pages;
 | |
| 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
 | |
| 		numentries >>= 20 - PAGE_SHIFT;
 | |
| 		numentries <<= 20 - PAGE_SHIFT;
 | |
| 
 | |
| 		/* limit to 1 bucket per 2^scale bytes of low memory */
 | |
| 		if (scale > PAGE_SHIFT)
 | |
| 			numentries >>= (scale - PAGE_SHIFT);
 | |
| 		else
 | |
| 			numentries <<= (PAGE_SHIFT - scale);
 | |
| 
 | |
| 		/* Make sure we've got at least a 0-order allocation.. */
 | |
| 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
 | |
| 			numentries = PAGE_SIZE / bucketsize;
 | |
| 	}
 | |
| 	numentries = roundup_pow_of_two(numentries);
 | |
| 
 | |
| 	/* limit allocation size to 1/16 total memory by default */
 | |
| 	if (max == 0) {
 | |
| 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
 | |
| 		do_div(max, bucketsize);
 | |
| 	}
 | |
| 
 | |
| 	if (numentries > max)
 | |
| 		numentries = max;
 | |
| 
 | |
| 	log2qty = ilog2(numentries);
 | |
| 
 | |
| 	do {
 | |
| 		size = bucketsize << log2qty;
 | |
| 		if (flags & HASH_EARLY)
 | |
| 			table = alloc_bootmem(size);
 | |
| 		else if (hashdist)
 | |
| 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
 | |
| 		else {
 | |
| 			unsigned long order;
 | |
| 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
 | |
| 				;
 | |
| 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
 | |
| 			/*
 | |
| 			 * If bucketsize is not a power-of-two, we may free
 | |
| 			 * some pages at the end of hash table.
 | |
| 			 */
 | |
| 			if (table) {
 | |
| 				unsigned long alloc_end = (unsigned long)table +
 | |
| 						(PAGE_SIZE << order);
 | |
| 				unsigned long used = (unsigned long)table +
 | |
| 						PAGE_ALIGN(size);
 | |
| 				split_page(virt_to_page(table), order);
 | |
| 				while (used < alloc_end) {
 | |
| 					free_page(used);
 | |
| 					used += PAGE_SIZE;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} while (!table && size > PAGE_SIZE && --log2qty);
 | |
| 
 | |
| 	if (!table)
 | |
| 		panic("Failed to allocate %s hash table\n", tablename);
 | |
| 
 | |
| 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
 | |
| 	       tablename,
 | |
| 	       (1U << log2qty),
 | |
| 	       ilog2(size) - PAGE_SHIFT,
 | |
| 	       size);
 | |
| 
 | |
| 	if (_hash_shift)
 | |
| 		*_hash_shift = log2qty;
 | |
| 	if (_hash_mask)
 | |
| 		*_hash_mask = (1 << log2qty) - 1;
 | |
| 
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
 | |
| struct page *pfn_to_page(unsigned long pfn)
 | |
| {
 | |
| 	return __pfn_to_page(pfn);
 | |
| }
 | |
| unsigned long page_to_pfn(struct page *page)
 | |
| {
 | |
| 	return __page_to_pfn(page);
 | |
| }
 | |
| EXPORT_SYMBOL(pfn_to_page);
 | |
| EXPORT_SYMBOL(page_to_pfn);
 | |
| #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
 | |
| 
 | |
| /* Return a pointer to the bitmap storing bits affecting a block of pages */
 | |
| static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
 | |
| 							unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 	return __pfn_to_section(pfn)->pageblock_flags;
 | |
| #else
 | |
| 	return zone->pageblock_flags;
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| }
 | |
| 
 | |
| static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 	pfn &= (PAGES_PER_SECTION-1);
 | |
| 	return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
 | |
| #else
 | |
| 	pfn = pfn - zone->zone_start_pfn;
 | |
| 	return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
 | |
|  * @page: The page within the block of interest
 | |
|  * @start_bitidx: The first bit of interest to retrieve
 | |
|  * @end_bitidx: The last bit of interest
 | |
|  * returns pageblock_bits flags
 | |
|  */
 | |
| unsigned long get_pageblock_flags_group(struct page *page,
 | |
| 					int start_bitidx, int end_bitidx)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long *bitmap;
 | |
| 	unsigned long pfn, bitidx;
 | |
| 	unsigned long flags = 0;
 | |
| 	unsigned long value = 1;
 | |
| 
 | |
| 	zone = page_zone(page);
 | |
| 	pfn = page_to_pfn(page);
 | |
| 	bitmap = get_pageblock_bitmap(zone, pfn);
 | |
| 	bitidx = pfn_to_bitidx(zone, pfn);
 | |
| 
 | |
| 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
 | |
| 		if (test_bit(bitidx + start_bitidx, bitmap))
 | |
| 			flags |= value;
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
 | |
|  * @page: The page within the block of interest
 | |
|  * @start_bitidx: The first bit of interest
 | |
|  * @end_bitidx: The last bit of interest
 | |
|  * @flags: The flags to set
 | |
|  */
 | |
| void set_pageblock_flags_group(struct page *page, unsigned long flags,
 | |
| 					int start_bitidx, int end_bitidx)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long *bitmap;
 | |
| 	unsigned long pfn, bitidx;
 | |
| 	unsigned long value = 1;
 | |
| 
 | |
| 	zone = page_zone(page);
 | |
| 	pfn = page_to_pfn(page);
 | |
| 	bitmap = get_pageblock_bitmap(zone, pfn);
 | |
| 	bitidx = pfn_to_bitidx(zone, pfn);
 | |
| 
 | |
| 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
 | |
| 		if (flags & value)
 | |
| 			__set_bit(bitidx + start_bitidx, bitmap);
 | |
| 		else
 | |
| 			__clear_bit(bitidx + start_bitidx, bitmap);
 | |
| }
 |