mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	The function __group_send_sig_info is just a light wrapper around send_signal_locked with one parameter fixed to a constant value. As the wrapper adds no real value update the code to directly call the wrapped function. Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-2-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
		
			
				
	
	
		
			1640 lines
		
	
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1640 lines
		
	
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Implement CPU time clocks for the POSIX clock interface.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <linux/sched/cputime.h>
 | 
						|
#include <linux/posix-timers.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/math64.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <trace/events/timer.h>
 | 
						|
#include <linux/tick.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <linux/compat.h>
 | 
						|
#include <linux/sched/deadline.h>
 | 
						|
#include <linux/task_work.h>
 | 
						|
 | 
						|
#include "posix-timers.h"
 | 
						|
 | 
						|
static void posix_cpu_timer_rearm(struct k_itimer *timer);
 | 
						|
 | 
						|
void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
 | 
						|
{
 | 
						|
	posix_cputimers_init(pct);
 | 
						|
	if (cpu_limit != RLIM_INFINITY) {
 | 
						|
		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
 | 
						|
		pct->timers_active = true;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called after updating RLIMIT_CPU to run cpu timer and update
 | 
						|
 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
 | 
						|
 * necessary. Needs siglock protection since other code may update the
 | 
						|
 * expiration cache as well.
 | 
						|
 *
 | 
						|
 * Returns 0 on success, -ESRCH on failure.  Can fail if the task is exiting and
 | 
						|
 * we cannot lock_task_sighand.  Cannot fail if task is current.
 | 
						|
 */
 | 
						|
int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
 | 
						|
{
 | 
						|
	u64 nsecs = rlim_new * NSEC_PER_SEC;
 | 
						|
	unsigned long irq_fl;
 | 
						|
 | 
						|
	if (!lock_task_sighand(task, &irq_fl))
 | 
						|
		return -ESRCH;
 | 
						|
	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
 | 
						|
	unlock_task_sighand(task, &irq_fl);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Functions for validating access to tasks.
 | 
						|
 */
 | 
						|
static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
 | 
						|
{
 | 
						|
	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
 | 
						|
	const pid_t upid = CPUCLOCK_PID(clock);
 | 
						|
	struct pid *pid;
 | 
						|
 | 
						|
	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the encoded PID is 0, then the timer is targeted at current
 | 
						|
	 * or the process to which current belongs.
 | 
						|
	 */
 | 
						|
	if (upid == 0)
 | 
						|
		return thread ? task_pid(current) : task_tgid(current);
 | 
						|
 | 
						|
	pid = find_vpid(upid);
 | 
						|
	if (!pid)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (thread) {
 | 
						|
		struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
 | 
						|
		return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For clock_gettime(PROCESS) allow finding the process by
 | 
						|
	 * with the pid of the current task.  The code needs the tgid
 | 
						|
	 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
 | 
						|
	 * used to find the process.
 | 
						|
	 */
 | 
						|
	if (gettime && (pid == task_pid(current)))
 | 
						|
		return task_tgid(current);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For processes require that pid identifies a process.
 | 
						|
	 */
 | 
						|
	return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
 | 
						|
}
 | 
						|
 | 
						|
static inline int validate_clock_permissions(const clockid_t clock)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline enum pid_type clock_pid_type(const clockid_t clock)
 | 
						|
{
 | 
						|
	return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update expiry time from increment, and increase overrun count,
 | 
						|
 * given the current clock sample.
 | 
						|
 */
 | 
						|
static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
 | 
						|
{
 | 
						|
	u64 delta, incr, expires = timer->it.cpu.node.expires;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!timer->it_interval)
 | 
						|
		return expires;
 | 
						|
 | 
						|
	if (now < expires)
 | 
						|
		return expires;
 | 
						|
 | 
						|
	incr = timer->it_interval;
 | 
						|
	delta = now + incr - expires;
 | 
						|
 | 
						|
	/* Don't use (incr*2 < delta), incr*2 might overflow. */
 | 
						|
	for (i = 0; incr < delta - incr; i++)
 | 
						|
		incr = incr << 1;
 | 
						|
 | 
						|
	for (; i >= 0; incr >>= 1, i--) {
 | 
						|
		if (delta < incr)
 | 
						|
			continue;
 | 
						|
 | 
						|
		timer->it.cpu.node.expires += incr;
 | 
						|
		timer->it_overrun += 1LL << i;
 | 
						|
		delta -= incr;
 | 
						|
	}
 | 
						|
	return timer->it.cpu.node.expires;
 | 
						|
}
 | 
						|
 | 
						|
/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
 | 
						|
static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
 | 
						|
{
 | 
						|
	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
 | 
						|
		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
 | 
						|
		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	int error = validate_clock_permissions(which_clock);
 | 
						|
 | 
						|
	if (!error) {
 | 
						|
		tp->tv_sec = 0;
 | 
						|
		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 | 
						|
		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | 
						|
			/*
 | 
						|
			 * If sched_clock is using a cycle counter, we
 | 
						|
			 * don't have any idea of its true resolution
 | 
						|
			 * exported, but it is much more than 1s/HZ.
 | 
						|
			 */
 | 
						|
			tp->tv_nsec = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
 | 
						|
{
 | 
						|
	int error = validate_clock_permissions(clock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * You can never reset a CPU clock, but we check for other errors
 | 
						|
	 * in the call before failing with EPERM.
 | 
						|
	 */
 | 
						|
	return error ? : -EPERM;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sample a per-thread clock for the given task. clkid is validated.
 | 
						|
 */
 | 
						|
static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
 | 
						|
{
 | 
						|
	u64 utime, stime;
 | 
						|
 | 
						|
	if (clkid == CPUCLOCK_SCHED)
 | 
						|
		return task_sched_runtime(p);
 | 
						|
 | 
						|
	task_cputime(p, &utime, &stime);
 | 
						|
 | 
						|
	switch (clkid) {
 | 
						|
	case CPUCLOCK_PROF:
 | 
						|
		return utime + stime;
 | 
						|
	case CPUCLOCK_VIRT:
 | 
						|
		return utime;
 | 
						|
	default:
 | 
						|
		WARN_ON_ONCE(1);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
 | 
						|
{
 | 
						|
	samples[CPUCLOCK_PROF] = stime + utime;
 | 
						|
	samples[CPUCLOCK_VIRT] = utime;
 | 
						|
	samples[CPUCLOCK_SCHED] = rtime;
 | 
						|
}
 | 
						|
 | 
						|
static void task_sample_cputime(struct task_struct *p, u64 *samples)
 | 
						|
{
 | 
						|
	u64 stime, utime;
 | 
						|
 | 
						|
	task_cputime(p, &utime, &stime);
 | 
						|
	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
 | 
						|
}
 | 
						|
 | 
						|
static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
 | 
						|
				       u64 *samples)
 | 
						|
{
 | 
						|
	u64 stime, utime, rtime;
 | 
						|
 | 
						|
	utime = atomic64_read(&at->utime);
 | 
						|
	stime = atomic64_read(&at->stime);
 | 
						|
	rtime = atomic64_read(&at->sum_exec_runtime);
 | 
						|
	store_samples(samples, stime, utime, rtime);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 | 
						|
 * to avoid race conditions with concurrent updates to cputime.
 | 
						|
 */
 | 
						|
static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 | 
						|
{
 | 
						|
	u64 curr_cputime;
 | 
						|
retry:
 | 
						|
	curr_cputime = atomic64_read(cputime);
 | 
						|
	if (sum_cputime > curr_cputime) {
 | 
						|
		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 | 
						|
			goto retry;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
 | 
						|
			      struct task_cputime *sum)
 | 
						|
{
 | 
						|
	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 | 
						|
	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 | 
						|
	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * thread_group_sample_cputime - Sample cputime for a given task
 | 
						|
 * @tsk:	Task for which cputime needs to be started
 | 
						|
 * @samples:	Storage for time samples
 | 
						|
 *
 | 
						|
 * Called from sys_getitimer() to calculate the expiry time of an active
 | 
						|
 * timer. That means group cputime accounting is already active. Called
 | 
						|
 * with task sighand lock held.
 | 
						|
 *
 | 
						|
 * Updates @times with an uptodate sample of the thread group cputimes.
 | 
						|
 */
 | 
						|
void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
 | 
						|
{
 | 
						|
	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 | 
						|
	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 | 
						|
 | 
						|
	WARN_ON_ONCE(!pct->timers_active);
 | 
						|
 | 
						|
	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * thread_group_start_cputime - Start cputime and return a sample
 | 
						|
 * @tsk:	Task for which cputime needs to be started
 | 
						|
 * @samples:	Storage for time samples
 | 
						|
 *
 | 
						|
 * The thread group cputime accounting is avoided when there are no posix
 | 
						|
 * CPU timers armed. Before starting a timer it's required to check whether
 | 
						|
 * the time accounting is active. If not, a full update of the atomic
 | 
						|
 * accounting store needs to be done and the accounting enabled.
 | 
						|
 *
 | 
						|
 * Updates @times with an uptodate sample of the thread group cputimes.
 | 
						|
 */
 | 
						|
static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
 | 
						|
{
 | 
						|
	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 | 
						|
	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 | 
						|
 | 
						|
	lockdep_assert_task_sighand_held(tsk);
 | 
						|
 | 
						|
	/* Check if cputimer isn't running. This is accessed without locking. */
 | 
						|
	if (!READ_ONCE(pct->timers_active)) {
 | 
						|
		struct task_cputime sum;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The POSIX timer interface allows for absolute time expiry
 | 
						|
		 * values through the TIMER_ABSTIME flag, therefore we have
 | 
						|
		 * to synchronize the timer to the clock every time we start it.
 | 
						|
		 */
 | 
						|
		thread_group_cputime(tsk, &sum);
 | 
						|
		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We're setting timers_active without a lock. Ensure this
 | 
						|
		 * only gets written to in one operation. We set it after
 | 
						|
		 * update_gt_cputime() as a small optimization, but
 | 
						|
		 * barriers are not required because update_gt_cputime()
 | 
						|
		 * can handle concurrent updates.
 | 
						|
		 */
 | 
						|
		WRITE_ONCE(pct->timers_active, true);
 | 
						|
	}
 | 
						|
	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 | 
						|
}
 | 
						|
 | 
						|
static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
 | 
						|
{
 | 
						|
	struct task_cputime ct;
 | 
						|
 | 
						|
	thread_group_cputime(tsk, &ct);
 | 
						|
	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sample a process (thread group) clock for the given task clkid. If the
 | 
						|
 * group's cputime accounting is already enabled, read the atomic
 | 
						|
 * store. Otherwise a full update is required.  clkid is already validated.
 | 
						|
 */
 | 
						|
static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
 | 
						|
				  bool start)
 | 
						|
{
 | 
						|
	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
 | 
						|
	struct posix_cputimers *pct = &p->signal->posix_cputimers;
 | 
						|
	u64 samples[CPUCLOCK_MAX];
 | 
						|
 | 
						|
	if (!READ_ONCE(pct->timers_active)) {
 | 
						|
		if (start)
 | 
						|
			thread_group_start_cputime(p, samples);
 | 
						|
		else
 | 
						|
			__thread_group_cputime(p, samples);
 | 
						|
	} else {
 | 
						|
		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 | 
						|
	}
 | 
						|
 | 
						|
	return samples[clkid];
 | 
						|
}
 | 
						|
 | 
						|
static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	const clockid_t clkid = CPUCLOCK_WHICH(clock);
 | 
						|
	struct task_struct *tsk;
 | 
						|
	u64 t;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
 | 
						|
	if (!tsk) {
 | 
						|
		rcu_read_unlock();
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (CPUCLOCK_PERTHREAD(clock))
 | 
						|
		t = cpu_clock_sample(clkid, tsk);
 | 
						|
	else
 | 
						|
		t = cpu_clock_sample_group(clkid, tsk, false);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	*tp = ns_to_timespec64(t);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 | 
						|
 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 | 
						|
 * new timer already all-zeros initialized.
 | 
						|
 */
 | 
						|
static int posix_cpu_timer_create(struct k_itimer *new_timer)
 | 
						|
{
 | 
						|
	static struct lock_class_key posix_cpu_timers_key;
 | 
						|
	struct pid *pid;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	pid = pid_for_clock(new_timer->it_clock, false);
 | 
						|
	if (!pid) {
 | 
						|
		rcu_read_unlock();
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If posix timer expiry is handled in task work context then
 | 
						|
	 * timer::it_lock can be taken without disabling interrupts as all
 | 
						|
	 * other locking happens in task context. This requires a separate
 | 
						|
	 * lock class key otherwise regular posix timer expiry would record
 | 
						|
	 * the lock class being taken in interrupt context and generate a
 | 
						|
	 * false positive warning.
 | 
						|
	 */
 | 
						|
	if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
 | 
						|
		lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
 | 
						|
 | 
						|
	new_timer->kclock = &clock_posix_cpu;
 | 
						|
	timerqueue_init(&new_timer->it.cpu.node);
 | 
						|
	new_timer->it.cpu.pid = get_pid(pid);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
 | 
						|
					      struct task_struct *tsk)
 | 
						|
{
 | 
						|
	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
 | 
						|
 | 
						|
	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | 
						|
		return tsk->posix_cputimers.bases + clkidx;
 | 
						|
	else
 | 
						|
		return tsk->signal->posix_cputimers.bases + clkidx;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Force recalculating the base earliest expiration on the next tick.
 | 
						|
 * This will also re-evaluate the need to keep around the process wide
 | 
						|
 * cputime counter and tick dependency and eventually shut these down
 | 
						|
 * if necessary.
 | 
						|
 */
 | 
						|
static void trigger_base_recalc_expires(struct k_itimer *timer,
 | 
						|
					struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct posix_cputimer_base *base = timer_base(timer, tsk);
 | 
						|
 | 
						|
	base->nextevt = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dequeue the timer and reset the base if it was its earliest expiration.
 | 
						|
 * It makes sure the next tick recalculates the base next expiration so we
 | 
						|
 * don't keep the costly process wide cputime counter around for a random
 | 
						|
 * amount of time, along with the tick dependency.
 | 
						|
 *
 | 
						|
 * If another timer gets queued between this and the next tick, its
 | 
						|
 * expiration will update the base next event if necessary on the next
 | 
						|
 * tick.
 | 
						|
 */
 | 
						|
static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
 | 
						|
{
 | 
						|
	struct cpu_timer *ctmr = &timer->it.cpu;
 | 
						|
	struct posix_cputimer_base *base;
 | 
						|
 | 
						|
	if (!cpu_timer_dequeue(ctmr))
 | 
						|
		return;
 | 
						|
 | 
						|
	base = timer_base(timer, p);
 | 
						|
	if (cpu_timer_getexpires(ctmr) == base->nextevt)
 | 
						|
		trigger_base_recalc_expires(timer, p);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Clean up a CPU-clock timer that is about to be destroyed.
 | 
						|
 * This is called from timer deletion with the timer already locked.
 | 
						|
 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | 
						|
 * and try again.  (This happens when the timer is in the middle of firing.)
 | 
						|
 */
 | 
						|
static int posix_cpu_timer_del(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	struct cpu_timer *ctmr = &timer->it.cpu;
 | 
						|
	struct sighand_struct *sighand;
 | 
						|
	struct task_struct *p;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	p = cpu_timer_task_rcu(timer);
 | 
						|
	if (!p)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Protect against sighand release/switch in exit/exec and process/
 | 
						|
	 * thread timer list entry concurrent read/writes.
 | 
						|
	 */
 | 
						|
	sighand = lock_task_sighand(p, &flags);
 | 
						|
	if (unlikely(sighand == NULL)) {
 | 
						|
		/*
 | 
						|
		 * This raced with the reaping of the task. The exit cleanup
 | 
						|
		 * should have removed this timer from the timer queue.
 | 
						|
		 */
 | 
						|
		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
 | 
						|
	} else {
 | 
						|
		if (timer->it.cpu.firing)
 | 
						|
			ret = TIMER_RETRY;
 | 
						|
		else
 | 
						|
			disarm_timer(timer, p);
 | 
						|
 | 
						|
		unlock_task_sighand(p, &flags);
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
	if (!ret)
 | 
						|
		put_pid(ctmr->pid);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void cleanup_timerqueue(struct timerqueue_head *head)
 | 
						|
{
 | 
						|
	struct timerqueue_node *node;
 | 
						|
	struct cpu_timer *ctmr;
 | 
						|
 | 
						|
	while ((node = timerqueue_getnext(head))) {
 | 
						|
		timerqueue_del(head, node);
 | 
						|
		ctmr = container_of(node, struct cpu_timer, node);
 | 
						|
		ctmr->head = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clean out CPU timers which are still armed when a thread exits. The
 | 
						|
 * timers are only removed from the list. No other updates are done. The
 | 
						|
 * corresponding posix timers are still accessible, but cannot be rearmed.
 | 
						|
 *
 | 
						|
 * This must be called with the siglock held.
 | 
						|
 */
 | 
						|
static void cleanup_timers(struct posix_cputimers *pct)
 | 
						|
{
 | 
						|
	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
 | 
						|
	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
 | 
						|
	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * These are both called with the siglock held, when the current thread
 | 
						|
 * is being reaped.  When the final (leader) thread in the group is reaped,
 | 
						|
 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 | 
						|
 */
 | 
						|
void posix_cpu_timers_exit(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	cleanup_timers(&tsk->posix_cputimers);
 | 
						|
}
 | 
						|
void posix_cpu_timers_exit_group(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	cleanup_timers(&tsk->signal->posix_cputimers);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Insert the timer on the appropriate list before any timers that
 | 
						|
 * expire later.  This must be called with the sighand lock held.
 | 
						|
 */
 | 
						|
static void arm_timer(struct k_itimer *timer, struct task_struct *p)
 | 
						|
{
 | 
						|
	struct posix_cputimer_base *base = timer_base(timer, p);
 | 
						|
	struct cpu_timer *ctmr = &timer->it.cpu;
 | 
						|
	u64 newexp = cpu_timer_getexpires(ctmr);
 | 
						|
 | 
						|
	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We are the new earliest-expiring POSIX 1.b timer, hence
 | 
						|
	 * need to update expiration cache. Take into account that
 | 
						|
	 * for process timers we share expiration cache with itimers
 | 
						|
	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 | 
						|
	 */
 | 
						|
	if (newexp < base->nextevt)
 | 
						|
		base->nextevt = newexp;
 | 
						|
 | 
						|
	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | 
						|
		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 | 
						|
	else
 | 
						|
		tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The timer is locked, fire it and arrange for its reload.
 | 
						|
 */
 | 
						|
static void cpu_timer_fire(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	struct cpu_timer *ctmr = &timer->it.cpu;
 | 
						|
 | 
						|
	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 | 
						|
		/*
 | 
						|
		 * User don't want any signal.
 | 
						|
		 */
 | 
						|
		cpu_timer_setexpires(ctmr, 0);
 | 
						|
	} else if (unlikely(timer->sigq == NULL)) {
 | 
						|
		/*
 | 
						|
		 * This a special case for clock_nanosleep,
 | 
						|
		 * not a normal timer from sys_timer_create.
 | 
						|
		 */
 | 
						|
		wake_up_process(timer->it_process);
 | 
						|
		cpu_timer_setexpires(ctmr, 0);
 | 
						|
	} else if (!timer->it_interval) {
 | 
						|
		/*
 | 
						|
		 * One-shot timer.  Clear it as soon as it's fired.
 | 
						|
		 */
 | 
						|
		posix_timer_event(timer, 0);
 | 
						|
		cpu_timer_setexpires(ctmr, 0);
 | 
						|
	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 | 
						|
		/*
 | 
						|
		 * The signal did not get queued because the signal
 | 
						|
		 * was ignored, so we won't get any callback to
 | 
						|
		 * reload the timer.  But we need to keep it
 | 
						|
		 * ticking in case the signal is deliverable next time.
 | 
						|
		 */
 | 
						|
		posix_cpu_timer_rearm(timer);
 | 
						|
		++timer->it_requeue_pending;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Guts of sys_timer_settime for CPU timers.
 | 
						|
 * This is called with the timer locked and interrupts disabled.
 | 
						|
 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | 
						|
 * and try again.  (This happens when the timer is in the middle of firing.)
 | 
						|
 */
 | 
						|
static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 | 
						|
			       struct itimerspec64 *new, struct itimerspec64 *old)
 | 
						|
{
 | 
						|
	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 | 
						|
	u64 old_expires, new_expires, old_incr, val;
 | 
						|
	struct cpu_timer *ctmr = &timer->it.cpu;
 | 
						|
	struct sighand_struct *sighand;
 | 
						|
	struct task_struct *p;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	p = cpu_timer_task_rcu(timer);
 | 
						|
	if (!p) {
 | 
						|
		/*
 | 
						|
		 * If p has just been reaped, we can no
 | 
						|
		 * longer get any information about it at all.
 | 
						|
		 */
 | 
						|
		rcu_read_unlock();
 | 
						|
		return -ESRCH;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use the to_ktime conversion because that clamps the maximum
 | 
						|
	 * value to KTIME_MAX and avoid multiplication overflows.
 | 
						|
	 */
 | 
						|
	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 | 
						|
	 * and p->signal->cpu_timers read/write in arm_timer()
 | 
						|
	 */
 | 
						|
	sighand = lock_task_sighand(p, &flags);
 | 
						|
	/*
 | 
						|
	 * If p has just been reaped, we can no
 | 
						|
	 * longer get any information about it at all.
 | 
						|
	 */
 | 
						|
	if (unlikely(sighand == NULL)) {
 | 
						|
		rcu_read_unlock();
 | 
						|
		return -ESRCH;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Disarm any old timer after extracting its expiry time.
 | 
						|
	 */
 | 
						|
	old_incr = timer->it_interval;
 | 
						|
	old_expires = cpu_timer_getexpires(ctmr);
 | 
						|
 | 
						|
	if (unlikely(timer->it.cpu.firing)) {
 | 
						|
		timer->it.cpu.firing = -1;
 | 
						|
		ret = TIMER_RETRY;
 | 
						|
	} else {
 | 
						|
		cpu_timer_dequeue(ctmr);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to sample the current value to convert the new
 | 
						|
	 * value from to relative and absolute, and to convert the
 | 
						|
	 * old value from absolute to relative.  To set a process
 | 
						|
	 * timer, we need a sample to balance the thread expiry
 | 
						|
	 * times (in arm_timer).  With an absolute time, we must
 | 
						|
	 * check if it's already passed.  In short, we need a sample.
 | 
						|
	 */
 | 
						|
	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | 
						|
		val = cpu_clock_sample(clkid, p);
 | 
						|
	else
 | 
						|
		val = cpu_clock_sample_group(clkid, p, true);
 | 
						|
 | 
						|
	if (old) {
 | 
						|
		if (old_expires == 0) {
 | 
						|
			old->it_value.tv_sec = 0;
 | 
						|
			old->it_value.tv_nsec = 0;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Update the timer in case it has overrun already.
 | 
						|
			 * If it has, we'll report it as having overrun and
 | 
						|
			 * with the next reloaded timer already ticking,
 | 
						|
			 * though we are swallowing that pending
 | 
						|
			 * notification here to install the new setting.
 | 
						|
			 */
 | 
						|
			u64 exp = bump_cpu_timer(timer, val);
 | 
						|
 | 
						|
			if (val < exp) {
 | 
						|
				old_expires = exp - val;
 | 
						|
				old->it_value = ns_to_timespec64(old_expires);
 | 
						|
			} else {
 | 
						|
				old->it_value.tv_nsec = 1;
 | 
						|
				old->it_value.tv_sec = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(ret)) {
 | 
						|
		/*
 | 
						|
		 * We are colliding with the timer actually firing.
 | 
						|
		 * Punt after filling in the timer's old value, and
 | 
						|
		 * disable this firing since we are already reporting
 | 
						|
		 * it as an overrun (thanks to bump_cpu_timer above).
 | 
						|
		 */
 | 
						|
		unlock_task_sighand(p, &flags);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 | 
						|
		new_expires += val;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Install the new expiry time (or zero).
 | 
						|
	 * For a timer with no notification action, we don't actually
 | 
						|
	 * arm the timer (we'll just fake it for timer_gettime).
 | 
						|
	 */
 | 
						|
	cpu_timer_setexpires(ctmr, new_expires);
 | 
						|
	if (new_expires != 0 && val < new_expires) {
 | 
						|
		arm_timer(timer, p);
 | 
						|
	}
 | 
						|
 | 
						|
	unlock_task_sighand(p, &flags);
 | 
						|
	/*
 | 
						|
	 * Install the new reload setting, and
 | 
						|
	 * set up the signal and overrun bookkeeping.
 | 
						|
	 */
 | 
						|
	timer->it_interval = timespec64_to_ktime(new->it_interval);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This acts as a modification timestamp for the timer,
 | 
						|
	 * so any automatic reload attempt will punt on seeing
 | 
						|
	 * that we have reset the timer manually.
 | 
						|
	 */
 | 
						|
	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 | 
						|
		~REQUEUE_PENDING;
 | 
						|
	timer->it_overrun_last = 0;
 | 
						|
	timer->it_overrun = -1;
 | 
						|
 | 
						|
	if (val >= new_expires) {
 | 
						|
		if (new_expires != 0) {
 | 
						|
			/*
 | 
						|
			 * The designated time already passed, so we notify
 | 
						|
			 * immediately, even if the thread never runs to
 | 
						|
			 * accumulate more time on this clock.
 | 
						|
			 */
 | 
						|
			cpu_timer_fire(timer);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Make sure we don't keep around the process wide cputime
 | 
						|
		 * counter or the tick dependency if they are not necessary.
 | 
						|
		 */
 | 
						|
		sighand = lock_task_sighand(p, &flags);
 | 
						|
		if (!sighand)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		if (!cpu_timer_queued(ctmr))
 | 
						|
			trigger_base_recalc_expires(timer, p);
 | 
						|
 | 
						|
		unlock_task_sighand(p, &flags);
 | 
						|
	}
 | 
						|
 out:
 | 
						|
	rcu_read_unlock();
 | 
						|
	if (old)
 | 
						|
		old->it_interval = ns_to_timespec64(old_incr);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 | 
						|
{
 | 
						|
	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 | 
						|
	struct cpu_timer *ctmr = &timer->it.cpu;
 | 
						|
	u64 now, expires = cpu_timer_getexpires(ctmr);
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	p = cpu_timer_task_rcu(timer);
 | 
						|
	if (!p)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Easy part: convert the reload time.
 | 
						|
	 */
 | 
						|
	itp->it_interval = ktime_to_timespec64(timer->it_interval);
 | 
						|
 | 
						|
	if (!expires)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Sample the clock to take the difference with the expiry time.
 | 
						|
	 */
 | 
						|
	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | 
						|
		now = cpu_clock_sample(clkid, p);
 | 
						|
	else
 | 
						|
		now = cpu_clock_sample_group(clkid, p, false);
 | 
						|
 | 
						|
	if (now < expires) {
 | 
						|
		itp->it_value = ns_to_timespec64(expires - now);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * The timer should have expired already, but the firing
 | 
						|
		 * hasn't taken place yet.  Say it's just about to expire.
 | 
						|
		 */
 | 
						|
		itp->it_value.tv_nsec = 1;
 | 
						|
		itp->it_value.tv_sec = 0;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
#define MAX_COLLECTED	20
 | 
						|
 | 
						|
static u64 collect_timerqueue(struct timerqueue_head *head,
 | 
						|
			      struct list_head *firing, u64 now)
 | 
						|
{
 | 
						|
	struct timerqueue_node *next;
 | 
						|
	int i = 0;
 | 
						|
 | 
						|
	while ((next = timerqueue_getnext(head))) {
 | 
						|
		struct cpu_timer *ctmr;
 | 
						|
		u64 expires;
 | 
						|
 | 
						|
		ctmr = container_of(next, struct cpu_timer, node);
 | 
						|
		expires = cpu_timer_getexpires(ctmr);
 | 
						|
		/* Limit the number of timers to expire at once */
 | 
						|
		if (++i == MAX_COLLECTED || now < expires)
 | 
						|
			return expires;
 | 
						|
 | 
						|
		ctmr->firing = 1;
 | 
						|
		cpu_timer_dequeue(ctmr);
 | 
						|
		list_add_tail(&ctmr->elist, firing);
 | 
						|
	}
 | 
						|
 | 
						|
	return U64_MAX;
 | 
						|
}
 | 
						|
 | 
						|
static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
 | 
						|
				    struct list_head *firing)
 | 
						|
{
 | 
						|
	struct posix_cputimer_base *base = pct->bases;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
 | 
						|
		base->nextevt = collect_timerqueue(&base->tqhead, firing,
 | 
						|
						    samples[i]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline void check_dl_overrun(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	if (tsk->dl.dl_overrun) {
 | 
						|
		tsk->dl.dl_overrun = 0;
 | 
						|
		send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
 | 
						|
{
 | 
						|
	if (time < limit)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (print_fatal_signals) {
 | 
						|
		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
 | 
						|
			rt ? "RT" : "CPU", hard ? "hard" : "soft",
 | 
						|
			current->comm, task_pid_nr(current));
 | 
						|
	}
 | 
						|
	send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check for any per-thread CPU timers that have fired and move them off
 | 
						|
 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 | 
						|
 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 | 
						|
 */
 | 
						|
static void check_thread_timers(struct task_struct *tsk,
 | 
						|
				struct list_head *firing)
 | 
						|
{
 | 
						|
	struct posix_cputimers *pct = &tsk->posix_cputimers;
 | 
						|
	u64 samples[CPUCLOCK_MAX];
 | 
						|
	unsigned long soft;
 | 
						|
 | 
						|
	if (dl_task(tsk))
 | 
						|
		check_dl_overrun(tsk);
 | 
						|
 | 
						|
	if (expiry_cache_is_inactive(pct))
 | 
						|
		return;
 | 
						|
 | 
						|
	task_sample_cputime(tsk, samples);
 | 
						|
	collect_posix_cputimers(pct, samples, firing);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for the special case thread timers.
 | 
						|
	 */
 | 
						|
	soft = task_rlimit(tsk, RLIMIT_RTTIME);
 | 
						|
	if (soft != RLIM_INFINITY) {
 | 
						|
		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
 | 
						|
		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
 | 
						|
		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
 | 
						|
 | 
						|
		/* At the hard limit, send SIGKILL. No further action. */
 | 
						|
		if (hard != RLIM_INFINITY &&
 | 
						|
		    check_rlimit(rttime, hard, SIGKILL, true, true))
 | 
						|
			return;
 | 
						|
 | 
						|
		/* At the soft limit, send a SIGXCPU every second */
 | 
						|
		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
 | 
						|
			soft += USEC_PER_SEC;
 | 
						|
			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (expiry_cache_is_inactive(pct))
 | 
						|
		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 | 
						|
}
 | 
						|
 | 
						|
static inline void stop_process_timers(struct signal_struct *sig)
 | 
						|
{
 | 
						|
	struct posix_cputimers *pct = &sig->posix_cputimers;
 | 
						|
 | 
						|
	/* Turn off the active flag. This is done without locking. */
 | 
						|
	WRITE_ONCE(pct->timers_active, false);
 | 
						|
	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 | 
						|
}
 | 
						|
 | 
						|
static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 | 
						|
			     u64 *expires, u64 cur_time, int signo)
 | 
						|
{
 | 
						|
	if (!it->expires)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (cur_time >= it->expires) {
 | 
						|
		if (it->incr)
 | 
						|
			it->expires += it->incr;
 | 
						|
		else
 | 
						|
			it->expires = 0;
 | 
						|
 | 
						|
		trace_itimer_expire(signo == SIGPROF ?
 | 
						|
				    ITIMER_PROF : ITIMER_VIRTUAL,
 | 
						|
				    task_tgid(tsk), cur_time);
 | 
						|
		send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
 | 
						|
	}
 | 
						|
 | 
						|
	if (it->expires && it->expires < *expires)
 | 
						|
		*expires = it->expires;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check for any per-thread CPU timers that have fired and move them
 | 
						|
 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 | 
						|
 * have already been taken off.
 | 
						|
 */
 | 
						|
static void check_process_timers(struct task_struct *tsk,
 | 
						|
				 struct list_head *firing)
 | 
						|
{
 | 
						|
	struct signal_struct *const sig = tsk->signal;
 | 
						|
	struct posix_cputimers *pct = &sig->posix_cputimers;
 | 
						|
	u64 samples[CPUCLOCK_MAX];
 | 
						|
	unsigned long soft;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there are no active process wide timers (POSIX 1.b, itimers,
 | 
						|
	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
 | 
						|
	 * processing when there is already another task handling them.
 | 
						|
	 */
 | 
						|
	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Signify that a thread is checking for process timers.
 | 
						|
	 * Write access to this field is protected by the sighand lock.
 | 
						|
	 */
 | 
						|
	pct->expiry_active = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Collect the current process totals. Group accounting is active
 | 
						|
	 * so the sample can be taken directly.
 | 
						|
	 */
 | 
						|
	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
 | 
						|
	collect_posix_cputimers(pct, samples, firing);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for the special case process timers.
 | 
						|
	 */
 | 
						|
	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
 | 
						|
			 &pct->bases[CPUCLOCK_PROF].nextevt,
 | 
						|
			 samples[CPUCLOCK_PROF], SIGPROF);
 | 
						|
	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
 | 
						|
			 &pct->bases[CPUCLOCK_VIRT].nextevt,
 | 
						|
			 samples[CPUCLOCK_VIRT], SIGVTALRM);
 | 
						|
 | 
						|
	soft = task_rlimit(tsk, RLIMIT_CPU);
 | 
						|
	if (soft != RLIM_INFINITY) {
 | 
						|
		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
 | 
						|
		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
 | 
						|
		u64 ptime = samples[CPUCLOCK_PROF];
 | 
						|
		u64 softns = (u64)soft * NSEC_PER_SEC;
 | 
						|
		u64 hardns = (u64)hard * NSEC_PER_SEC;
 | 
						|
 | 
						|
		/* At the hard limit, send SIGKILL. No further action. */
 | 
						|
		if (hard != RLIM_INFINITY &&
 | 
						|
		    check_rlimit(ptime, hardns, SIGKILL, false, true))
 | 
						|
			return;
 | 
						|
 | 
						|
		/* At the soft limit, send a SIGXCPU every second */
 | 
						|
		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
 | 
						|
			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
 | 
						|
			softns += NSEC_PER_SEC;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Update the expiry cache */
 | 
						|
		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
 | 
						|
			pct->bases[CPUCLOCK_PROF].nextevt = softns;
 | 
						|
	}
 | 
						|
 | 
						|
	if (expiry_cache_is_inactive(pct))
 | 
						|
		stop_process_timers(sig);
 | 
						|
 | 
						|
	pct->expiry_active = false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called from the signal code (via posixtimer_rearm)
 | 
						|
 * when the last timer signal was delivered and we have to reload the timer.
 | 
						|
 */
 | 
						|
static void posix_cpu_timer_rearm(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 | 
						|
	struct task_struct *p;
 | 
						|
	struct sighand_struct *sighand;
 | 
						|
	unsigned long flags;
 | 
						|
	u64 now;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	p = cpu_timer_task_rcu(timer);
 | 
						|
	if (!p)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Protect timer list r/w in arm_timer() */
 | 
						|
	sighand = lock_task_sighand(p, &flags);
 | 
						|
	if (unlikely(sighand == NULL))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Fetch the current sample and update the timer's expiry time.
 | 
						|
	 */
 | 
						|
	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 | 
						|
		now = cpu_clock_sample(clkid, p);
 | 
						|
	else
 | 
						|
		now = cpu_clock_sample_group(clkid, p, true);
 | 
						|
 | 
						|
	bump_cpu_timer(timer, now);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now re-arm for the new expiry time.
 | 
						|
	 */
 | 
						|
	arm_timer(timer, p);
 | 
						|
	unlock_task_sighand(p, &flags);
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * task_cputimers_expired - Check whether posix CPU timers are expired
 | 
						|
 *
 | 
						|
 * @samples:	Array of current samples for the CPUCLOCK clocks
 | 
						|
 * @pct:	Pointer to a posix_cputimers container
 | 
						|
 *
 | 
						|
 * Returns true if any member of @samples is greater than the corresponding
 | 
						|
 * member of @pct->bases[CLK].nextevt. False otherwise
 | 
						|
 */
 | 
						|
static inline bool
 | 
						|
task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < CPUCLOCK_MAX; i++) {
 | 
						|
		if (samples[i] >= pct->bases[i].nextevt)
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * fastpath_timer_check - POSIX CPU timers fast path.
 | 
						|
 *
 | 
						|
 * @tsk:	The task (thread) being checked.
 | 
						|
 *
 | 
						|
 * Check the task and thread group timers.  If both are zero (there are no
 | 
						|
 * timers set) return false.  Otherwise snapshot the task and thread group
 | 
						|
 * timers and compare them with the corresponding expiration times.  Return
 | 
						|
 * true if a timer has expired, else return false.
 | 
						|
 */
 | 
						|
static inline bool fastpath_timer_check(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct posix_cputimers *pct = &tsk->posix_cputimers;
 | 
						|
	struct signal_struct *sig;
 | 
						|
 | 
						|
	if (!expiry_cache_is_inactive(pct)) {
 | 
						|
		u64 samples[CPUCLOCK_MAX];
 | 
						|
 | 
						|
		task_sample_cputime(tsk, samples);
 | 
						|
		if (task_cputimers_expired(samples, pct))
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	sig = tsk->signal;
 | 
						|
	pct = &sig->posix_cputimers;
 | 
						|
	/*
 | 
						|
	 * Check if thread group timers expired when timers are active and
 | 
						|
	 * no other thread in the group is already handling expiry for
 | 
						|
	 * thread group cputimers. These fields are read without the
 | 
						|
	 * sighand lock. However, this is fine because this is meant to be
 | 
						|
	 * a fastpath heuristic to determine whether we should try to
 | 
						|
	 * acquire the sighand lock to handle timer expiry.
 | 
						|
	 *
 | 
						|
	 * In the worst case scenario, if concurrently timers_active is set
 | 
						|
	 * or expiry_active is cleared, but the current thread doesn't see
 | 
						|
	 * the change yet, the timer checks are delayed until the next
 | 
						|
	 * thread in the group gets a scheduler interrupt to handle the
 | 
						|
	 * timer. This isn't an issue in practice because these types of
 | 
						|
	 * delays with signals actually getting sent are expected.
 | 
						|
	 */
 | 
						|
	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
 | 
						|
		u64 samples[CPUCLOCK_MAX];
 | 
						|
 | 
						|
		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
 | 
						|
					   samples);
 | 
						|
 | 
						|
		if (task_cputimers_expired(samples, pct))
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dl_task(tsk) && tsk->dl.dl_overrun)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static void handle_posix_cpu_timers(struct task_struct *tsk);
 | 
						|
 | 
						|
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
 | 
						|
static void posix_cpu_timers_work(struct callback_head *work)
 | 
						|
{
 | 
						|
	handle_posix_cpu_timers(current);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear existing posix CPU timers task work.
 | 
						|
 */
 | 
						|
void clear_posix_cputimers_work(struct task_struct *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * A copied work entry from the old task is not meaningful, clear it.
 | 
						|
	 * N.B. init_task_work will not do this.
 | 
						|
	 */
 | 
						|
	memset(&p->posix_cputimers_work.work, 0,
 | 
						|
	       sizeof(p->posix_cputimers_work.work));
 | 
						|
	init_task_work(&p->posix_cputimers_work.work,
 | 
						|
		       posix_cpu_timers_work);
 | 
						|
	p->posix_cputimers_work.scheduled = false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize posix CPU timers task work in init task. Out of line to
 | 
						|
 * keep the callback static and to avoid header recursion hell.
 | 
						|
 */
 | 
						|
void __init posix_cputimers_init_work(void)
 | 
						|
{
 | 
						|
	clear_posix_cputimers_work(current);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
 | 
						|
 * in hard interrupt context or in task context with interrupts
 | 
						|
 * disabled. Aside of that the writer/reader interaction is always in the
 | 
						|
 * context of the current task, which means they are strict per CPU.
 | 
						|
 */
 | 
						|
static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	return tsk->posix_cputimers_work.scheduled;
 | 
						|
}
 | 
						|
 | 
						|
static inline void __run_posix_cpu_timers(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Schedule task work to actually expire the timers */
 | 
						|
	tsk->posix_cputimers_work.scheduled = true;
 | 
						|
	task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
 | 
						|
						unsigned long start)
 | 
						|
{
 | 
						|
	bool ret = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On !RT kernels interrupts are disabled while collecting expired
 | 
						|
	 * timers, so no tick can happen and the fast path check can be
 | 
						|
	 * reenabled without further checks.
 | 
						|
	 */
 | 
						|
	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
 | 
						|
		tsk->posix_cputimers_work.scheduled = false;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On RT enabled kernels ticks can happen while the expired timers
 | 
						|
	 * are collected under sighand lock. But any tick which observes
 | 
						|
	 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
 | 
						|
	 * checks. So reenabling the tick work has do be done carefully:
 | 
						|
	 *
 | 
						|
	 * Disable interrupts and run the fast path check if jiffies have
 | 
						|
	 * advanced since the collecting of expired timers started. If
 | 
						|
	 * jiffies have not advanced or the fast path check did not find
 | 
						|
	 * newly expired timers, reenable the fast path check in the timer
 | 
						|
	 * interrupt. If there are newly expired timers, return false and
 | 
						|
	 * let the collection loop repeat.
 | 
						|
	 */
 | 
						|
	local_irq_disable();
 | 
						|
	if (start != jiffies && fastpath_timer_check(tsk))
 | 
						|
		ret = false;
 | 
						|
	else
 | 
						|
		tsk->posix_cputimers_work.scheduled = false;
 | 
						|
	local_irq_enable();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
 | 
						|
static inline void __run_posix_cpu_timers(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	lockdep_posixtimer_enter();
 | 
						|
	handle_posix_cpu_timers(tsk);
 | 
						|
	lockdep_posixtimer_exit();
 | 
						|
}
 | 
						|
 | 
						|
static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
 | 
						|
						unsigned long start)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
 | 
						|
 | 
						|
static void handle_posix_cpu_timers(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct k_itimer *timer, *next;
 | 
						|
	unsigned long flags, start;
 | 
						|
	LIST_HEAD(firing);
 | 
						|
 | 
						|
	if (!lock_task_sighand(tsk, &flags))
 | 
						|
		return;
 | 
						|
 | 
						|
	do {
 | 
						|
		/*
 | 
						|
		 * On RT locking sighand lock does not disable interrupts,
 | 
						|
		 * so this needs to be careful vs. ticks. Store the current
 | 
						|
		 * jiffies value.
 | 
						|
		 */
 | 
						|
		start = READ_ONCE(jiffies);
 | 
						|
		barrier();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Here we take off tsk->signal->cpu_timers[N] and
 | 
						|
		 * tsk->cpu_timers[N] all the timers that are firing, and
 | 
						|
		 * put them on the firing list.
 | 
						|
		 */
 | 
						|
		check_thread_timers(tsk, &firing);
 | 
						|
 | 
						|
		check_process_timers(tsk, &firing);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The above timer checks have updated the expiry cache and
 | 
						|
		 * because nothing can have queued or modified timers after
 | 
						|
		 * sighand lock was taken above it is guaranteed to be
 | 
						|
		 * consistent. So the next timer interrupt fastpath check
 | 
						|
		 * will find valid data.
 | 
						|
		 *
 | 
						|
		 * If timer expiry runs in the timer interrupt context then
 | 
						|
		 * the loop is not relevant as timers will be directly
 | 
						|
		 * expired in interrupt context. The stub function below
 | 
						|
		 * returns always true which allows the compiler to
 | 
						|
		 * optimize the loop out.
 | 
						|
		 *
 | 
						|
		 * If timer expiry is deferred to task work context then
 | 
						|
		 * the following rules apply:
 | 
						|
		 *
 | 
						|
		 * - On !RT kernels no tick can have happened on this CPU
 | 
						|
		 *   after sighand lock was acquired because interrupts are
 | 
						|
		 *   disabled. So reenabling task work before dropping
 | 
						|
		 *   sighand lock and reenabling interrupts is race free.
 | 
						|
		 *
 | 
						|
		 * - On RT kernels ticks might have happened but the tick
 | 
						|
		 *   work ignored posix CPU timer handling because the
 | 
						|
		 *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
 | 
						|
		 *   must be done very carefully including a check whether
 | 
						|
		 *   ticks have happened since the start of the timer
 | 
						|
		 *   expiry checks. posix_cpu_timers_enable_work() takes
 | 
						|
		 *   care of that and eventually lets the expiry checks
 | 
						|
		 *   run again.
 | 
						|
		 */
 | 
						|
	} while (!posix_cpu_timers_enable_work(tsk, start));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We must release sighand lock before taking any timer's lock.
 | 
						|
	 * There is a potential race with timer deletion here, as the
 | 
						|
	 * siglock now protects our private firing list.  We have set
 | 
						|
	 * the firing flag in each timer, so that a deletion attempt
 | 
						|
	 * that gets the timer lock before we do will give it up and
 | 
						|
	 * spin until we've taken care of that timer below.
 | 
						|
	 */
 | 
						|
	unlock_task_sighand(tsk, &flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that all the timers on our list have the firing flag,
 | 
						|
	 * no one will touch their list entries but us.  We'll take
 | 
						|
	 * each timer's lock before clearing its firing flag, so no
 | 
						|
	 * timer call will interfere.
 | 
						|
	 */
 | 
						|
	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
 | 
						|
		int cpu_firing;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * spin_lock() is sufficient here even independent of the
 | 
						|
		 * expiry context. If expiry happens in hard interrupt
 | 
						|
		 * context it's obvious. For task work context it's safe
 | 
						|
		 * because all other operations on timer::it_lock happen in
 | 
						|
		 * task context (syscall or exit).
 | 
						|
		 */
 | 
						|
		spin_lock(&timer->it_lock);
 | 
						|
		list_del_init(&timer->it.cpu.elist);
 | 
						|
		cpu_firing = timer->it.cpu.firing;
 | 
						|
		timer->it.cpu.firing = 0;
 | 
						|
		/*
 | 
						|
		 * The firing flag is -1 if we collided with a reset
 | 
						|
		 * of the timer, which already reported this
 | 
						|
		 * almost-firing as an overrun.  So don't generate an event.
 | 
						|
		 */
 | 
						|
		if (likely(cpu_firing >= 0))
 | 
						|
			cpu_timer_fire(timer);
 | 
						|
		spin_unlock(&timer->it_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called from the timer interrupt handler.  The irq handler has
 | 
						|
 * already updated our counts.  We need to check if any timers fire now.
 | 
						|
 * Interrupts are disabled.
 | 
						|
 */
 | 
						|
void run_posix_cpu_timers(void)
 | 
						|
{
 | 
						|
	struct task_struct *tsk = current;
 | 
						|
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the actual expiry is deferred to task work context and the
 | 
						|
	 * work is already scheduled there is no point to do anything here.
 | 
						|
	 */
 | 
						|
	if (posix_cpu_timers_work_scheduled(tsk))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The fast path checks that there are no expired thread or thread
 | 
						|
	 * group timers.  If that's so, just return.
 | 
						|
	 */
 | 
						|
	if (!fastpath_timer_check(tsk))
 | 
						|
		return;
 | 
						|
 | 
						|
	__run_posix_cpu_timers(tsk);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
 | 
						|
 * The tsk->sighand->siglock must be held by the caller.
 | 
						|
 */
 | 
						|
void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
 | 
						|
			   u64 *newval, u64 *oldval)
 | 
						|
{
 | 
						|
	u64 now, *nextevt;
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
 | 
						|
		return;
 | 
						|
 | 
						|
	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
 | 
						|
	now = cpu_clock_sample_group(clkid, tsk, true);
 | 
						|
 | 
						|
	if (oldval) {
 | 
						|
		/*
 | 
						|
		 * We are setting itimer. The *oldval is absolute and we update
 | 
						|
		 * it to be relative, *newval argument is relative and we update
 | 
						|
		 * it to be absolute.
 | 
						|
		 */
 | 
						|
		if (*oldval) {
 | 
						|
			if (*oldval <= now) {
 | 
						|
				/* Just about to fire. */
 | 
						|
				*oldval = TICK_NSEC;
 | 
						|
			} else {
 | 
						|
				*oldval -= now;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (*newval)
 | 
						|
			*newval += now;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
 | 
						|
	 * expiry cache is also used by RLIMIT_CPU!.
 | 
						|
	 */
 | 
						|
	if (*newval < *nextevt)
 | 
						|
		*nextevt = *newval;
 | 
						|
 | 
						|
	tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
 | 
						|
}
 | 
						|
 | 
						|
static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
 | 
						|
			    const struct timespec64 *rqtp)
 | 
						|
{
 | 
						|
	struct itimerspec64 it;
 | 
						|
	struct k_itimer timer;
 | 
						|
	u64 expires;
 | 
						|
	int error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set up a temporary timer and then wait for it to go off.
 | 
						|
	 */
 | 
						|
	memset(&timer, 0, sizeof timer);
 | 
						|
	spin_lock_init(&timer.it_lock);
 | 
						|
	timer.it_clock = which_clock;
 | 
						|
	timer.it_overrun = -1;
 | 
						|
	error = posix_cpu_timer_create(&timer);
 | 
						|
	timer.it_process = current;
 | 
						|
 | 
						|
	if (!error) {
 | 
						|
		static struct itimerspec64 zero_it;
 | 
						|
		struct restart_block *restart;
 | 
						|
 | 
						|
		memset(&it, 0, sizeof(it));
 | 
						|
		it.it_value = *rqtp;
 | 
						|
 | 
						|
		spin_lock_irq(&timer.it_lock);
 | 
						|
		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
 | 
						|
		if (error) {
 | 
						|
			spin_unlock_irq(&timer.it_lock);
 | 
						|
			return error;
 | 
						|
		}
 | 
						|
 | 
						|
		while (!signal_pending(current)) {
 | 
						|
			if (!cpu_timer_getexpires(&timer.it.cpu)) {
 | 
						|
				/*
 | 
						|
				 * Our timer fired and was reset, below
 | 
						|
				 * deletion can not fail.
 | 
						|
				 */
 | 
						|
				posix_cpu_timer_del(&timer);
 | 
						|
				spin_unlock_irq(&timer.it_lock);
 | 
						|
				return 0;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Block until cpu_timer_fire (or a signal) wakes us.
 | 
						|
			 */
 | 
						|
			__set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
			spin_unlock_irq(&timer.it_lock);
 | 
						|
			schedule();
 | 
						|
			spin_lock_irq(&timer.it_lock);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We were interrupted by a signal.
 | 
						|
		 */
 | 
						|
		expires = cpu_timer_getexpires(&timer.it.cpu);
 | 
						|
		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
 | 
						|
		if (!error) {
 | 
						|
			/*
 | 
						|
			 * Timer is now unarmed, deletion can not fail.
 | 
						|
			 */
 | 
						|
			posix_cpu_timer_del(&timer);
 | 
						|
		}
 | 
						|
		spin_unlock_irq(&timer.it_lock);
 | 
						|
 | 
						|
		while (error == TIMER_RETRY) {
 | 
						|
			/*
 | 
						|
			 * We need to handle case when timer was or is in the
 | 
						|
			 * middle of firing. In other cases we already freed
 | 
						|
			 * resources.
 | 
						|
			 */
 | 
						|
			spin_lock_irq(&timer.it_lock);
 | 
						|
			error = posix_cpu_timer_del(&timer);
 | 
						|
			spin_unlock_irq(&timer.it_lock);
 | 
						|
		}
 | 
						|
 | 
						|
		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
 | 
						|
			/*
 | 
						|
			 * It actually did fire already.
 | 
						|
			 */
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		error = -ERESTART_RESTARTBLOCK;
 | 
						|
		/*
 | 
						|
		 * Report back to the user the time still remaining.
 | 
						|
		 */
 | 
						|
		restart = ¤t->restart_block;
 | 
						|
		restart->nanosleep.expires = expires;
 | 
						|
		if (restart->nanosleep.type != TT_NONE)
 | 
						|
			error = nanosleep_copyout(restart, &it.it_value);
 | 
						|
	}
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
 | 
						|
 | 
						|
static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
 | 
						|
			    const struct timespec64 *rqtp)
 | 
						|
{
 | 
						|
	struct restart_block *restart_block = ¤t->restart_block;
 | 
						|
	int error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Diagnose required errors first.
 | 
						|
	 */
 | 
						|
	if (CPUCLOCK_PERTHREAD(which_clock) &&
 | 
						|
	    (CPUCLOCK_PID(which_clock) == 0 ||
 | 
						|
	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	error = do_cpu_nanosleep(which_clock, flags, rqtp);
 | 
						|
 | 
						|
	if (error == -ERESTART_RESTARTBLOCK) {
 | 
						|
 | 
						|
		if (flags & TIMER_ABSTIME)
 | 
						|
			return -ERESTARTNOHAND;
 | 
						|
 | 
						|
		restart_block->nanosleep.clockid = which_clock;
 | 
						|
		set_restart_fn(restart_block, posix_cpu_nsleep_restart);
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
 | 
						|
{
 | 
						|
	clockid_t which_clock = restart_block->nanosleep.clockid;
 | 
						|
	struct timespec64 t;
 | 
						|
 | 
						|
	t = ns_to_timespec64(restart_block->nanosleep.expires);
 | 
						|
 | 
						|
	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
 | 
						|
}
 | 
						|
 | 
						|
#define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
 | 
						|
#define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
 | 
						|
 | 
						|
static int process_cpu_clock_getres(const clockid_t which_clock,
 | 
						|
				    struct timespec64 *tp)
 | 
						|
{
 | 
						|
	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
 | 
						|
}
 | 
						|
static int process_cpu_clock_get(const clockid_t which_clock,
 | 
						|
				 struct timespec64 *tp)
 | 
						|
{
 | 
						|
	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
 | 
						|
}
 | 
						|
static int process_cpu_timer_create(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	timer->it_clock = PROCESS_CLOCK;
 | 
						|
	return posix_cpu_timer_create(timer);
 | 
						|
}
 | 
						|
static int process_cpu_nsleep(const clockid_t which_clock, int flags,
 | 
						|
			      const struct timespec64 *rqtp)
 | 
						|
{
 | 
						|
	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
 | 
						|
}
 | 
						|
static int thread_cpu_clock_getres(const clockid_t which_clock,
 | 
						|
				   struct timespec64 *tp)
 | 
						|
{
 | 
						|
	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
 | 
						|
}
 | 
						|
static int thread_cpu_clock_get(const clockid_t which_clock,
 | 
						|
				struct timespec64 *tp)
 | 
						|
{
 | 
						|
	return posix_cpu_clock_get(THREAD_CLOCK, tp);
 | 
						|
}
 | 
						|
static int thread_cpu_timer_create(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	timer->it_clock = THREAD_CLOCK;
 | 
						|
	return posix_cpu_timer_create(timer);
 | 
						|
}
 | 
						|
 | 
						|
const struct k_clock clock_posix_cpu = {
 | 
						|
	.clock_getres		= posix_cpu_clock_getres,
 | 
						|
	.clock_set		= posix_cpu_clock_set,
 | 
						|
	.clock_get_timespec	= posix_cpu_clock_get,
 | 
						|
	.timer_create		= posix_cpu_timer_create,
 | 
						|
	.nsleep			= posix_cpu_nsleep,
 | 
						|
	.timer_set		= posix_cpu_timer_set,
 | 
						|
	.timer_del		= posix_cpu_timer_del,
 | 
						|
	.timer_get		= posix_cpu_timer_get,
 | 
						|
	.timer_rearm		= posix_cpu_timer_rearm,
 | 
						|
};
 | 
						|
 | 
						|
const struct k_clock clock_process = {
 | 
						|
	.clock_getres		= process_cpu_clock_getres,
 | 
						|
	.clock_get_timespec	= process_cpu_clock_get,
 | 
						|
	.timer_create		= process_cpu_timer_create,
 | 
						|
	.nsleep			= process_cpu_nsleep,
 | 
						|
};
 | 
						|
 | 
						|
const struct k_clock clock_thread = {
 | 
						|
	.clock_getres		= thread_cpu_clock_getres,
 | 
						|
	.clock_get_timespec	= thread_cpu_clock_get,
 | 
						|
	.timer_create		= thread_cpu_timer_create,
 | 
						|
};
 |