mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	local_db_save() is called at the start of exc_debug_kernel(), reads DR7 and
disables breakpoints to prevent recursion.
When running in a guest (X86_FEATURE_HYPERVISOR), local_db_save() reads the
per-cpu variable cpu_dr7 to check whether a breakpoint is active or not
before it accesses DR7.
A data breakpoint on cpu_dr7 therefore results in infinite #DB recursion.
Disallow data breakpoints on cpu_dr7 to prevent that.
Fixes: 84b6a3491567a("x86/entry: Optimize local_db_save() for virt")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210204152708.21308-2-jiangshanlai@gmail.com
		
	
			
		
			
				
	
	
		
			592 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			592 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 *
 | 
						|
 * Copyright (C) 2007 Alan Stern
 | 
						|
 * Copyright (C) 2009 IBM Corporation
 | 
						|
 * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
 | 
						|
 *
 | 
						|
 * Authors: Alan Stern <stern@rowland.harvard.edu>
 | 
						|
 *          K.Prasad <prasad@linux.vnet.ibm.com>
 | 
						|
 *          Frederic Weisbecker <fweisbec@gmail.com>
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
 | 
						|
 * using the CPU's debug registers.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/perf_event.h>
 | 
						|
#include <linux/hw_breakpoint.h>
 | 
						|
#include <linux/irqflags.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/kallsyms.h>
 | 
						|
#include <linux/kprobes.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/kdebug.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
 | 
						|
#include <asm/hw_breakpoint.h>
 | 
						|
#include <asm/processor.h>
 | 
						|
#include <asm/debugreg.h>
 | 
						|
#include <asm/user.h>
 | 
						|
#include <asm/desc.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
 | 
						|
/* Per cpu debug control register value */
 | 
						|
DEFINE_PER_CPU(unsigned long, cpu_dr7);
 | 
						|
EXPORT_PER_CPU_SYMBOL(cpu_dr7);
 | 
						|
 | 
						|
/* Per cpu debug address registers values */
 | 
						|
static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
 | 
						|
 | 
						|
/*
 | 
						|
 * Stores the breakpoints currently in use on each breakpoint address
 | 
						|
 * register for each cpus
 | 
						|
 */
 | 
						|
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
 | 
						|
 | 
						|
 | 
						|
static inline unsigned long
 | 
						|
__encode_dr7(int drnum, unsigned int len, unsigned int type)
 | 
						|
{
 | 
						|
	unsigned long bp_info;
 | 
						|
 | 
						|
	bp_info = (len | type) & 0xf;
 | 
						|
	bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
 | 
						|
	bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
 | 
						|
 | 
						|
	return bp_info;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Encode the length, type, Exact, and Enable bits for a particular breakpoint
 | 
						|
 * as stored in debug register 7.
 | 
						|
 */
 | 
						|
unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
 | 
						|
{
 | 
						|
	return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Decode the length and type bits for a particular breakpoint as
 | 
						|
 * stored in debug register 7.  Return the "enabled" status.
 | 
						|
 */
 | 
						|
int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
 | 
						|
{
 | 
						|
	int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
 | 
						|
 | 
						|
	*len = (bp_info & 0xc) | 0x40;
 | 
						|
	*type = (bp_info & 0x3) | 0x80;
 | 
						|
 | 
						|
	return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Install a perf counter breakpoint.
 | 
						|
 *
 | 
						|
 * We seek a free debug address register and use it for this
 | 
						|
 * breakpoint. Eventually we enable it in the debug control register.
 | 
						|
 *
 | 
						|
 * Atomic: we hold the counter->ctx->lock and we only handle variables
 | 
						|
 * and registers local to this cpu.
 | 
						|
 */
 | 
						|
int arch_install_hw_breakpoint(struct perf_event *bp)
 | 
						|
{
 | 
						|
	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 | 
						|
	unsigned long *dr7;
 | 
						|
	int i;
 | 
						|
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
 | 
						|
	for (i = 0; i < HBP_NUM; i++) {
 | 
						|
		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
 | 
						|
 | 
						|
		if (!*slot) {
 | 
						|
			*slot = bp;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	set_debugreg(info->address, i);
 | 
						|
	__this_cpu_write(cpu_debugreg[i], info->address);
 | 
						|
 | 
						|
	dr7 = this_cpu_ptr(&cpu_dr7);
 | 
						|
	*dr7 |= encode_dr7(i, info->len, info->type);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure we first write cpu_dr7 before we set the DR7 register.
 | 
						|
	 * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
 | 
						|
	set_debugreg(*dr7, 7);
 | 
						|
	if (info->mask)
 | 
						|
		set_dr_addr_mask(info->mask, i);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Uninstall the breakpoint contained in the given counter.
 | 
						|
 *
 | 
						|
 * First we search the debug address register it uses and then we disable
 | 
						|
 * it.
 | 
						|
 *
 | 
						|
 * Atomic: we hold the counter->ctx->lock and we only handle variables
 | 
						|
 * and registers local to this cpu.
 | 
						|
 */
 | 
						|
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
 | 
						|
{
 | 
						|
	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 | 
						|
	unsigned long dr7;
 | 
						|
	int i;
 | 
						|
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
 | 
						|
	for (i = 0; i < HBP_NUM; i++) {
 | 
						|
		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
 | 
						|
 | 
						|
		if (*slot == bp) {
 | 
						|
			*slot = NULL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
 | 
						|
		return;
 | 
						|
 | 
						|
	dr7 = this_cpu_read(cpu_dr7);
 | 
						|
	dr7 &= ~__encode_dr7(i, info->len, info->type);
 | 
						|
 | 
						|
	set_debugreg(dr7, 7);
 | 
						|
	if (info->mask)
 | 
						|
		set_dr_addr_mask(0, i);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure the write to cpu_dr7 is after we've set the DR7 register.
 | 
						|
	 * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
 | 
						|
	this_cpu_write(cpu_dr7, dr7);
 | 
						|
}
 | 
						|
 | 
						|
static int arch_bp_generic_len(int x86_len)
 | 
						|
{
 | 
						|
	switch (x86_len) {
 | 
						|
	case X86_BREAKPOINT_LEN_1:
 | 
						|
		return HW_BREAKPOINT_LEN_1;
 | 
						|
	case X86_BREAKPOINT_LEN_2:
 | 
						|
		return HW_BREAKPOINT_LEN_2;
 | 
						|
	case X86_BREAKPOINT_LEN_4:
 | 
						|
		return HW_BREAKPOINT_LEN_4;
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	case X86_BREAKPOINT_LEN_8:
 | 
						|
		return HW_BREAKPOINT_LEN_8;
 | 
						|
#endif
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int arch_bp_generic_fields(int x86_len, int x86_type,
 | 
						|
			   int *gen_len, int *gen_type)
 | 
						|
{
 | 
						|
	int len;
 | 
						|
 | 
						|
	/* Type */
 | 
						|
	switch (x86_type) {
 | 
						|
	case X86_BREAKPOINT_EXECUTE:
 | 
						|
		if (x86_len != X86_BREAKPOINT_LEN_X)
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		*gen_type = HW_BREAKPOINT_X;
 | 
						|
		*gen_len = sizeof(long);
 | 
						|
		return 0;
 | 
						|
	case X86_BREAKPOINT_WRITE:
 | 
						|
		*gen_type = HW_BREAKPOINT_W;
 | 
						|
		break;
 | 
						|
	case X86_BREAKPOINT_RW:
 | 
						|
		*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Len */
 | 
						|
	len = arch_bp_generic_len(x86_len);
 | 
						|
	if (len < 0)
 | 
						|
		return -EINVAL;
 | 
						|
	*gen_len = len;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check for virtual address in kernel space.
 | 
						|
 */
 | 
						|
int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
 | 
						|
{
 | 
						|
	unsigned long va;
 | 
						|
	int len;
 | 
						|
 | 
						|
	va = hw->address;
 | 
						|
	len = arch_bp_generic_len(hw->len);
 | 
						|
	WARN_ON_ONCE(len < 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't need to worry about va + len - 1 overflowing:
 | 
						|
	 * we already require that va is aligned to a multiple of len.
 | 
						|
	 */
 | 
						|
	return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Checks whether the range [addr, end], overlaps the area [base, base + size).
 | 
						|
 */
 | 
						|
static inline bool within_area(unsigned long addr, unsigned long end,
 | 
						|
			       unsigned long base, unsigned long size)
 | 
						|
{
 | 
						|
	return end >= base && addr < (base + size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Checks whether the range from addr to end, inclusive, overlaps the fixed
 | 
						|
 * mapped CPU entry area range or other ranges used for CPU entry.
 | 
						|
 */
 | 
						|
static inline bool within_cpu_entry(unsigned long addr, unsigned long end)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	/* CPU entry erea is always used for CPU entry */
 | 
						|
	if (within_area(addr, end, CPU_ENTRY_AREA_BASE,
 | 
						|
			CPU_ENTRY_AREA_TOTAL_SIZE))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU
 | 
						|
	 * GSBASE value via __per_cpu_offset or pcpu_unit_offsets.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (within_area(addr, end, (unsigned long)__per_cpu_offset,
 | 
						|
			sizeof(unsigned long) * nr_cpu_ids))
 | 
						|
		return true;
 | 
						|
#else
 | 
						|
	if (within_area(addr, end, (unsigned long)&pcpu_unit_offsets,
 | 
						|
			sizeof(pcpu_unit_offsets)))
 | 
						|
		return true;
 | 
						|
#endif
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		/* The original rw GDT is being used after load_direct_gdt() */
 | 
						|
		if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu),
 | 
						|
				GDT_SIZE))
 | 
						|
			return true;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * cpu_tss_rw is not directly referenced by hardware, but
 | 
						|
		 * cpu_tss_rw is also used in CPU entry code,
 | 
						|
		 */
 | 
						|
		if (within_area(addr, end,
 | 
						|
				(unsigned long)&per_cpu(cpu_tss_rw, cpu),
 | 
						|
				sizeof(struct tss_struct)))
 | 
						|
			return true;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * cpu_tlbstate.user_pcid_flush_mask is used for CPU entry.
 | 
						|
		 * If a data breakpoint on it, it will cause an unwanted #DB.
 | 
						|
		 * Protect the full cpu_tlbstate structure to be sure.
 | 
						|
		 */
 | 
						|
		if (within_area(addr, end,
 | 
						|
				(unsigned long)&per_cpu(cpu_tlbstate, cpu),
 | 
						|
				sizeof(struct tlb_state)))
 | 
						|
			return true;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * When in guest (X86_FEATURE_HYPERVISOR), local_db_save()
 | 
						|
		 * will read per-cpu cpu_dr7 before clear dr7 register.
 | 
						|
		 */
 | 
						|
		if (within_area(addr, end, (unsigned long)&per_cpu(cpu_dr7, cpu),
 | 
						|
				sizeof(cpu_dr7)))
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static int arch_build_bp_info(struct perf_event *bp,
 | 
						|
			      const struct perf_event_attr *attr,
 | 
						|
			      struct arch_hw_breakpoint *hw)
 | 
						|
{
 | 
						|
	unsigned long bp_end;
 | 
						|
 | 
						|
	bp_end = attr->bp_addr + attr->bp_len - 1;
 | 
						|
	if (bp_end < attr->bp_addr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Prevent any breakpoint of any type that overlaps the CPU
 | 
						|
	 * entry area and data.  This protects the IST stacks and also
 | 
						|
	 * reduces the chance that we ever find out what happens if
 | 
						|
	 * there's a data breakpoint on the GDT, IDT, or TSS.
 | 
						|
	 */
 | 
						|
	if (within_cpu_entry(attr->bp_addr, bp_end))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	hw->address = attr->bp_addr;
 | 
						|
	hw->mask = 0;
 | 
						|
 | 
						|
	/* Type */
 | 
						|
	switch (attr->bp_type) {
 | 
						|
	case HW_BREAKPOINT_W:
 | 
						|
		hw->type = X86_BREAKPOINT_WRITE;
 | 
						|
		break;
 | 
						|
	case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
 | 
						|
		hw->type = X86_BREAKPOINT_RW;
 | 
						|
		break;
 | 
						|
	case HW_BREAKPOINT_X:
 | 
						|
		/*
 | 
						|
		 * We don't allow kernel breakpoints in places that are not
 | 
						|
		 * acceptable for kprobes.  On non-kprobes kernels, we don't
 | 
						|
		 * allow kernel breakpoints at all.
 | 
						|
		 */
 | 
						|
		if (attr->bp_addr >= TASK_SIZE_MAX) {
 | 
						|
			if (within_kprobe_blacklist(attr->bp_addr))
 | 
						|
				return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		hw->type = X86_BREAKPOINT_EXECUTE;
 | 
						|
		/*
 | 
						|
		 * x86 inst breakpoints need to have a specific undefined len.
 | 
						|
		 * But we still need to check userspace is not trying to setup
 | 
						|
		 * an unsupported length, to get a range breakpoint for example.
 | 
						|
		 */
 | 
						|
		if (attr->bp_len == sizeof(long)) {
 | 
						|
			hw->len = X86_BREAKPOINT_LEN_X;
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		fallthrough;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Len */
 | 
						|
	switch (attr->bp_len) {
 | 
						|
	case HW_BREAKPOINT_LEN_1:
 | 
						|
		hw->len = X86_BREAKPOINT_LEN_1;
 | 
						|
		break;
 | 
						|
	case HW_BREAKPOINT_LEN_2:
 | 
						|
		hw->len = X86_BREAKPOINT_LEN_2;
 | 
						|
		break;
 | 
						|
	case HW_BREAKPOINT_LEN_4:
 | 
						|
		hw->len = X86_BREAKPOINT_LEN_4;
 | 
						|
		break;
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	case HW_BREAKPOINT_LEN_8:
 | 
						|
		hw->len = X86_BREAKPOINT_LEN_8;
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
	default:
 | 
						|
		/* AMD range breakpoint */
 | 
						|
		if (!is_power_of_2(attr->bp_len))
 | 
						|
			return -EINVAL;
 | 
						|
		if (attr->bp_addr & (attr->bp_len - 1))
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		if (!boot_cpu_has(X86_FEATURE_BPEXT))
 | 
						|
			return -EOPNOTSUPP;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * It's impossible to use a range breakpoint to fake out
 | 
						|
		 * user vs kernel detection because bp_len - 1 can't
 | 
						|
		 * have the high bit set.  If we ever allow range instruction
 | 
						|
		 * breakpoints, then we'll have to check for kprobe-blacklisted
 | 
						|
		 * addresses anywhere in the range.
 | 
						|
		 */
 | 
						|
		hw->mask = attr->bp_len - 1;
 | 
						|
		hw->len = X86_BREAKPOINT_LEN_1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Validate the arch-specific HW Breakpoint register settings
 | 
						|
 */
 | 
						|
int hw_breakpoint_arch_parse(struct perf_event *bp,
 | 
						|
			     const struct perf_event_attr *attr,
 | 
						|
			     struct arch_hw_breakpoint *hw)
 | 
						|
{
 | 
						|
	unsigned int align;
 | 
						|
	int ret;
 | 
						|
 | 
						|
 | 
						|
	ret = arch_build_bp_info(bp, attr, hw);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	switch (hw->len) {
 | 
						|
	case X86_BREAKPOINT_LEN_1:
 | 
						|
		align = 0;
 | 
						|
		if (hw->mask)
 | 
						|
			align = hw->mask;
 | 
						|
		break;
 | 
						|
	case X86_BREAKPOINT_LEN_2:
 | 
						|
		align = 1;
 | 
						|
		break;
 | 
						|
	case X86_BREAKPOINT_LEN_4:
 | 
						|
		align = 3;
 | 
						|
		break;
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	case X86_BREAKPOINT_LEN_8:
 | 
						|
		align = 7;
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
	default:
 | 
						|
		WARN_ON_ONCE(1);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check that the low-order bits of the address are appropriate
 | 
						|
	 * for the alignment implied by len.
 | 
						|
	 */
 | 
						|
	if (hw->address & align)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Release the user breakpoints used by ptrace
 | 
						|
 */
 | 
						|
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct thread_struct *t = &tsk->thread;
 | 
						|
 | 
						|
	for (i = 0; i < HBP_NUM; i++) {
 | 
						|
		unregister_hw_breakpoint(t->ptrace_bps[i]);
 | 
						|
		t->ptrace_bps[i] = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	t->virtual_dr6 = 0;
 | 
						|
	t->ptrace_dr7 = 0;
 | 
						|
}
 | 
						|
 | 
						|
void hw_breakpoint_restore(void)
 | 
						|
{
 | 
						|
	set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
 | 
						|
	set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
 | 
						|
	set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
 | 
						|
	set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
 | 
						|
	set_debugreg(DR6_RESERVED, 6);
 | 
						|
	set_debugreg(__this_cpu_read(cpu_dr7), 7);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
 | 
						|
 | 
						|
/*
 | 
						|
 * Handle debug exception notifications.
 | 
						|
 *
 | 
						|
 * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
 | 
						|
 *
 | 
						|
 * NOTIFY_DONE returned if one of the following conditions is true.
 | 
						|
 * i) When the causative address is from user-space and the exception
 | 
						|
 * is a valid one, i.e. not triggered as a result of lazy debug register
 | 
						|
 * switching
 | 
						|
 * ii) When there are more bits than trap<n> set in DR6 register (such
 | 
						|
 * as BD, BS or BT) indicating that more than one debug condition is
 | 
						|
 * met and requires some more action in do_debug().
 | 
						|
 *
 | 
						|
 * NOTIFY_STOP returned for all other cases
 | 
						|
 *
 | 
						|
 */
 | 
						|
static int hw_breakpoint_handler(struct die_args *args)
 | 
						|
{
 | 
						|
	int i, rc = NOTIFY_STOP;
 | 
						|
	struct perf_event *bp;
 | 
						|
	unsigned long *dr6_p;
 | 
						|
	unsigned long dr6;
 | 
						|
	bool bpx;
 | 
						|
 | 
						|
	/* The DR6 value is pointed by args->err */
 | 
						|
	dr6_p = (unsigned long *)ERR_PTR(args->err);
 | 
						|
	dr6 = *dr6_p;
 | 
						|
 | 
						|
	/* Do an early return if no trap bits are set in DR6 */
 | 
						|
	if ((dr6 & DR_TRAP_BITS) == 0)
 | 
						|
		return NOTIFY_DONE;
 | 
						|
 | 
						|
	/* Handle all the breakpoints that were triggered */
 | 
						|
	for (i = 0; i < HBP_NUM; ++i) {
 | 
						|
		if (likely(!(dr6 & (DR_TRAP0 << i))))
 | 
						|
			continue;
 | 
						|
 | 
						|
		bp = this_cpu_read(bp_per_reg[i]);
 | 
						|
		if (!bp)
 | 
						|
			continue;
 | 
						|
 | 
						|
		bpx = bp->hw.info.type == X86_BREAKPOINT_EXECUTE;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * TF and data breakpoints are traps and can be merged, however
 | 
						|
		 * instruction breakpoints are faults and will be raised
 | 
						|
		 * separately.
 | 
						|
		 *
 | 
						|
		 * However DR6 can indicate both TF and instruction
 | 
						|
		 * breakpoints. In that case take TF as that has precedence and
 | 
						|
		 * delay the instruction breakpoint for the next exception.
 | 
						|
		 */
 | 
						|
		if (bpx && (dr6 & DR_STEP))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Reset the 'i'th TRAP bit in dr6 to denote completion of
 | 
						|
		 * exception handling
 | 
						|
		 */
 | 
						|
		(*dr6_p) &= ~(DR_TRAP0 << i);
 | 
						|
 | 
						|
		perf_bp_event(bp, args->regs);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Set up resume flag to avoid breakpoint recursion when
 | 
						|
		 * returning back to origin.
 | 
						|
		 */
 | 
						|
		if (bpx)
 | 
						|
			args->regs->flags |= X86_EFLAGS_RF;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Further processing in do_debug() is needed for a) user-space
 | 
						|
	 * breakpoints (to generate signals) and b) when the system has
 | 
						|
	 * taken exception due to multiple causes
 | 
						|
	 */
 | 
						|
	if ((current->thread.virtual_dr6 & DR_TRAP_BITS) ||
 | 
						|
	    (dr6 & (~DR_TRAP_BITS)))
 | 
						|
		rc = NOTIFY_DONE;
 | 
						|
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Handle debug exception notifications.
 | 
						|
 */
 | 
						|
int hw_breakpoint_exceptions_notify(
 | 
						|
		struct notifier_block *unused, unsigned long val, void *data)
 | 
						|
{
 | 
						|
	if (val != DIE_DEBUG)
 | 
						|
		return NOTIFY_DONE;
 | 
						|
 | 
						|
	return hw_breakpoint_handler(data);
 | 
						|
}
 | 
						|
 | 
						|
void hw_breakpoint_pmu_read(struct perf_event *bp)
 | 
						|
{
 | 
						|
	/* TODO */
 | 
						|
}
 |