mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			7025 lines
		
	
	
	
		
			186 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7025 lines
		
	
	
	
		
			186 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* memcontrol.c - Memory Controller
 | 
						|
 *
 | 
						|
 * Copyright IBM Corporation, 2007
 | 
						|
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 | 
						|
 *
 | 
						|
 * Copyright 2007 OpenVZ SWsoft Inc
 | 
						|
 * Author: Pavel Emelianov <xemul@openvz.org>
 | 
						|
 *
 | 
						|
 * Memory thresholds
 | 
						|
 * Copyright (C) 2009 Nokia Corporation
 | 
						|
 * Author: Kirill A. Shutemov
 | 
						|
 *
 | 
						|
 * Kernel Memory Controller
 | 
						|
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 | 
						|
 * Authors: Glauber Costa and Suleiman Souhlal
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/res_counter.h>
 | 
						|
#include <linux/memcontrol.h>
 | 
						|
#include <linux/cgroup.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/page-flags.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/bit_spinlock.h>
 | 
						|
#include <linux/rcupdate.h>
 | 
						|
#include <linux/limits.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/rbtree.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/eventfd.h>
 | 
						|
#include <linux/sort.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/vmpressure.h>
 | 
						|
#include <linux/mm_inline.h>
 | 
						|
#include <linux/page_cgroup.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/oom.h>
 | 
						|
#include <linux/lockdep.h>
 | 
						|
#include "internal.h"
 | 
						|
#include <net/sock.h>
 | 
						|
#include <net/ip.h>
 | 
						|
#include <net/tcp_memcontrol.h>
 | 
						|
#include "slab.h"
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
 | 
						|
#include <trace/events/vmscan.h>
 | 
						|
 | 
						|
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
 | 
						|
EXPORT_SYMBOL(mem_cgroup_subsys);
 | 
						|
 | 
						|
#define MEM_CGROUP_RECLAIM_RETRIES	5
 | 
						|
static struct mem_cgroup *root_mem_cgroup __read_mostly;
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_SWAP
 | 
						|
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
 | 
						|
int do_swap_account __read_mostly;
 | 
						|
 | 
						|
/* for remember boot option*/
 | 
						|
#ifdef CONFIG_MEMCG_SWAP_ENABLED
 | 
						|
static int really_do_swap_account __initdata = 1;
 | 
						|
#else
 | 
						|
static int really_do_swap_account __initdata = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
#else
 | 
						|
#define do_swap_account		0
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
static const char * const mem_cgroup_stat_names[] = {
 | 
						|
	"cache",
 | 
						|
	"rss",
 | 
						|
	"rss_huge",
 | 
						|
	"mapped_file",
 | 
						|
	"writeback",
 | 
						|
	"swap",
 | 
						|
};
 | 
						|
 | 
						|
enum mem_cgroup_events_index {
 | 
						|
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
 | 
						|
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
 | 
						|
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
 | 
						|
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
 | 
						|
	MEM_CGROUP_EVENTS_NSTATS,
 | 
						|
};
 | 
						|
 | 
						|
static const char * const mem_cgroup_events_names[] = {
 | 
						|
	"pgpgin",
 | 
						|
	"pgpgout",
 | 
						|
	"pgfault",
 | 
						|
	"pgmajfault",
 | 
						|
};
 | 
						|
 | 
						|
static const char * const mem_cgroup_lru_names[] = {
 | 
						|
	"inactive_anon",
 | 
						|
	"active_anon",
 | 
						|
	"inactive_file",
 | 
						|
	"active_file",
 | 
						|
	"unevictable",
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 | 
						|
 * it will be incremated by the number of pages. This counter is used for
 | 
						|
 * for trigger some periodic events. This is straightforward and better
 | 
						|
 * than using jiffies etc. to handle periodic memcg event.
 | 
						|
 */
 | 
						|
enum mem_cgroup_events_target {
 | 
						|
	MEM_CGROUP_TARGET_THRESH,
 | 
						|
	MEM_CGROUP_TARGET_SOFTLIMIT,
 | 
						|
	MEM_CGROUP_TARGET_NUMAINFO,
 | 
						|
	MEM_CGROUP_NTARGETS,
 | 
						|
};
 | 
						|
#define THRESHOLDS_EVENTS_TARGET 128
 | 
						|
#define SOFTLIMIT_EVENTS_TARGET 1024
 | 
						|
#define NUMAINFO_EVENTS_TARGET	1024
 | 
						|
 | 
						|
struct mem_cgroup_stat_cpu {
 | 
						|
	long count[MEM_CGROUP_STAT_NSTATS];
 | 
						|
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
 | 
						|
	unsigned long nr_page_events;
 | 
						|
	unsigned long targets[MEM_CGROUP_NTARGETS];
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_reclaim_iter {
 | 
						|
	/*
 | 
						|
	 * last scanned hierarchy member. Valid only if last_dead_count
 | 
						|
	 * matches memcg->dead_count of the hierarchy root group.
 | 
						|
	 */
 | 
						|
	struct mem_cgroup *last_visited;
 | 
						|
	unsigned long last_dead_count;
 | 
						|
 | 
						|
	/* scan generation, increased every round-trip */
 | 
						|
	unsigned int generation;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * per-zone information in memory controller.
 | 
						|
 */
 | 
						|
struct mem_cgroup_per_zone {
 | 
						|
	struct lruvec		lruvec;
 | 
						|
	unsigned long		lru_size[NR_LRU_LISTS];
 | 
						|
 | 
						|
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
 | 
						|
 | 
						|
	struct rb_node		tree_node;	/* RB tree node */
 | 
						|
	unsigned long long	usage_in_excess;/* Set to the value by which */
 | 
						|
						/* the soft limit is exceeded*/
 | 
						|
	bool			on_tree;
 | 
						|
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
 | 
						|
						/* use container_of	   */
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_per_node {
 | 
						|
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 | 
						|
 * their hierarchy representation
 | 
						|
 */
 | 
						|
 | 
						|
struct mem_cgroup_tree_per_zone {
 | 
						|
	struct rb_root rb_root;
 | 
						|
	spinlock_t lock;
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_tree_per_node {
 | 
						|
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_tree {
 | 
						|
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 | 
						|
};
 | 
						|
 | 
						|
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 | 
						|
 | 
						|
struct mem_cgroup_threshold {
 | 
						|
	struct eventfd_ctx *eventfd;
 | 
						|
	u64 threshold;
 | 
						|
};
 | 
						|
 | 
						|
/* For threshold */
 | 
						|
struct mem_cgroup_threshold_ary {
 | 
						|
	/* An array index points to threshold just below or equal to usage. */
 | 
						|
	int current_threshold;
 | 
						|
	/* Size of entries[] */
 | 
						|
	unsigned int size;
 | 
						|
	/* Array of thresholds */
 | 
						|
	struct mem_cgroup_threshold entries[0];
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_thresholds {
 | 
						|
	/* Primary thresholds array */
 | 
						|
	struct mem_cgroup_threshold_ary *primary;
 | 
						|
	/*
 | 
						|
	 * Spare threshold array.
 | 
						|
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
 | 
						|
	 * It must be able to store at least primary->size - 1 entries.
 | 
						|
	 */
 | 
						|
	struct mem_cgroup_threshold_ary *spare;
 | 
						|
};
 | 
						|
 | 
						|
/* for OOM */
 | 
						|
struct mem_cgroup_eventfd_list {
 | 
						|
	struct list_head list;
 | 
						|
	struct eventfd_ctx *eventfd;
 | 
						|
};
 | 
						|
 | 
						|
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 | 
						|
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 | 
						|
 | 
						|
/*
 | 
						|
 * The memory controller data structure. The memory controller controls both
 | 
						|
 * page cache and RSS per cgroup. We would eventually like to provide
 | 
						|
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 | 
						|
 * to help the administrator determine what knobs to tune.
 | 
						|
 *
 | 
						|
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 | 
						|
 * we hit the water mark. May be even add a low water mark, such that
 | 
						|
 * no reclaim occurs from a cgroup at it's low water mark, this is
 | 
						|
 * a feature that will be implemented much later in the future.
 | 
						|
 */
 | 
						|
struct mem_cgroup {
 | 
						|
	struct cgroup_subsys_state css;
 | 
						|
	/*
 | 
						|
	 * the counter to account for memory usage
 | 
						|
	 */
 | 
						|
	struct res_counter res;
 | 
						|
 | 
						|
	/* vmpressure notifications */
 | 
						|
	struct vmpressure vmpressure;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * the counter to account for mem+swap usage.
 | 
						|
	 */
 | 
						|
	struct res_counter memsw;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * the counter to account for kernel memory usage.
 | 
						|
	 */
 | 
						|
	struct res_counter kmem;
 | 
						|
	/*
 | 
						|
	 * Should the accounting and control be hierarchical, per subtree?
 | 
						|
	 */
 | 
						|
	bool use_hierarchy;
 | 
						|
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
 | 
						|
 | 
						|
	bool		oom_lock;
 | 
						|
	atomic_t	under_oom;
 | 
						|
	atomic_t	oom_wakeups;
 | 
						|
 | 
						|
	int	swappiness;
 | 
						|
	/* OOM-Killer disable */
 | 
						|
	int		oom_kill_disable;
 | 
						|
 | 
						|
	/* set when res.limit == memsw.limit */
 | 
						|
	bool		memsw_is_minimum;
 | 
						|
 | 
						|
	/* protect arrays of thresholds */
 | 
						|
	struct mutex thresholds_lock;
 | 
						|
 | 
						|
	/* thresholds for memory usage. RCU-protected */
 | 
						|
	struct mem_cgroup_thresholds thresholds;
 | 
						|
 | 
						|
	/* thresholds for mem+swap usage. RCU-protected */
 | 
						|
	struct mem_cgroup_thresholds memsw_thresholds;
 | 
						|
 | 
						|
	/* For oom notifier event fd */
 | 
						|
	struct list_head oom_notify;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Should we move charges of a task when a task is moved into this
 | 
						|
	 * mem_cgroup ? And what type of charges should we move ?
 | 
						|
	 */
 | 
						|
	unsigned long move_charge_at_immigrate;
 | 
						|
	/*
 | 
						|
	 * set > 0 if pages under this cgroup are moving to other cgroup.
 | 
						|
	 */
 | 
						|
	atomic_t	moving_account;
 | 
						|
	/* taken only while moving_account > 0 */
 | 
						|
	spinlock_t	move_lock;
 | 
						|
	/*
 | 
						|
	 * percpu counter.
 | 
						|
	 */
 | 
						|
	struct mem_cgroup_stat_cpu __percpu *stat;
 | 
						|
	/*
 | 
						|
	 * used when a cpu is offlined or other synchronizations
 | 
						|
	 * See mem_cgroup_read_stat().
 | 
						|
	 */
 | 
						|
	struct mem_cgroup_stat_cpu nocpu_base;
 | 
						|
	spinlock_t pcp_counter_lock;
 | 
						|
 | 
						|
	atomic_t	dead_count;
 | 
						|
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
 | 
						|
	struct cg_proto tcp_mem;
 | 
						|
#endif
 | 
						|
#if defined(CONFIG_MEMCG_KMEM)
 | 
						|
	/* analogous to slab_common's slab_caches list. per-memcg */
 | 
						|
	struct list_head memcg_slab_caches;
 | 
						|
	/* Not a spinlock, we can take a lot of time walking the list */
 | 
						|
	struct mutex slab_caches_mutex;
 | 
						|
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
 | 
						|
	int kmemcg_id;
 | 
						|
#endif
 | 
						|
 | 
						|
	int last_scanned_node;
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
	nodemask_t	scan_nodes;
 | 
						|
	atomic_t	numainfo_events;
 | 
						|
	atomic_t	numainfo_updating;
 | 
						|
#endif
 | 
						|
 | 
						|
	struct mem_cgroup_per_node *nodeinfo[0];
 | 
						|
	/* WARNING: nodeinfo must be the last member here */
 | 
						|
};
 | 
						|
 | 
						|
static size_t memcg_size(void)
 | 
						|
{
 | 
						|
	return sizeof(struct mem_cgroup) +
 | 
						|
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
 | 
						|
}
 | 
						|
 | 
						|
/* internal only representation about the status of kmem accounting. */
 | 
						|
enum {
 | 
						|
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
 | 
						|
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
 | 
						|
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
 | 
						|
};
 | 
						|
 | 
						|
/* We account when limit is on, but only after call sites are patched */
 | 
						|
#define KMEM_ACCOUNTED_MASK \
 | 
						|
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
 | 
						|
}
 | 
						|
 | 
						|
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
 | 
						|
	 * will call css_put() if it sees the memcg is dead.
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
 | 
						|
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
 | 
						|
}
 | 
						|
 | 
						|
static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
 | 
						|
				  &memcg->kmem_account_flags);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Stuffs for move charges at task migration. */
 | 
						|
/*
 | 
						|
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 | 
						|
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
 | 
						|
 */
 | 
						|
enum move_type {
 | 
						|
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
 | 
						|
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
 | 
						|
	NR_MOVE_TYPE,
 | 
						|
};
 | 
						|
 | 
						|
/* "mc" and its members are protected by cgroup_mutex */
 | 
						|
static struct move_charge_struct {
 | 
						|
	spinlock_t	  lock; /* for from, to */
 | 
						|
	struct mem_cgroup *from;
 | 
						|
	struct mem_cgroup *to;
 | 
						|
	unsigned long immigrate_flags;
 | 
						|
	unsigned long precharge;
 | 
						|
	unsigned long moved_charge;
 | 
						|
	unsigned long moved_swap;
 | 
						|
	struct task_struct *moving_task;	/* a task moving charges */
 | 
						|
	wait_queue_head_t waitq;		/* a waitq for other context */
 | 
						|
} mc = {
 | 
						|
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 | 
						|
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 | 
						|
};
 | 
						|
 | 
						|
static bool move_anon(void)
 | 
						|
{
 | 
						|
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
 | 
						|
}
 | 
						|
 | 
						|
static bool move_file(void)
 | 
						|
{
 | 
						|
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 | 
						|
 * limit reclaim to prevent infinite loops, if they ever occur.
 | 
						|
 */
 | 
						|
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 | 
						|
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 | 
						|
 | 
						|
enum charge_type {
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_ANON,
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 | 
						|
	NR_CHARGE_TYPE,
 | 
						|
};
 | 
						|
 | 
						|
/* for encoding cft->private value on file */
 | 
						|
enum res_type {
 | 
						|
	_MEM,
 | 
						|
	_MEMSWAP,
 | 
						|
	_OOM_TYPE,
 | 
						|
	_KMEM,
 | 
						|
};
 | 
						|
 | 
						|
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 | 
						|
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 | 
						|
#define MEMFILE_ATTR(val)	((val) & 0xffff)
 | 
						|
/* Used for OOM nofiier */
 | 
						|
#define OOM_CONTROL		(0)
 | 
						|
 | 
						|
/*
 | 
						|
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 | 
						|
 */
 | 
						|
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
 | 
						|
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 | 
						|
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
 | 
						|
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 | 
						|
 | 
						|
/*
 | 
						|
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 | 
						|
 * As a consequence, any change that needs to protect against new child cgroups
 | 
						|
 * appearing has to hold it as well.
 | 
						|
 */
 | 
						|
static DEFINE_MUTEX(memcg_create_mutex);
 | 
						|
 | 
						|
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
 | 
						|
{
 | 
						|
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Some nice accessors for the vmpressure. */
 | 
						|
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (!memcg)
 | 
						|
		memcg = root_mem_cgroup;
 | 
						|
	return &memcg->vmpressure;
 | 
						|
}
 | 
						|
 | 
						|
struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 | 
						|
{
 | 
						|
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 | 
						|
}
 | 
						|
 | 
						|
struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
 | 
						|
{
 | 
						|
	return &mem_cgroup_from_css(css)->vmpressure;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return (memcg == root_mem_cgroup);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We restrict the id in the range of [1, 65535], so it can fit into
 | 
						|
 * an unsigned short.
 | 
						|
 */
 | 
						|
#define MEM_CGROUP_ID_MAX	USHRT_MAX
 | 
						|
 | 
						|
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
 | 
						|
	 * invalid ID, so we return (cgroup_id + 1).
 | 
						|
	 */
 | 
						|
	return memcg->css.cgroup->id + 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 | 
						|
{
 | 
						|
	struct cgroup_subsys_state *css;
 | 
						|
 | 
						|
	css = css_from_id(id - 1, &mem_cgroup_subsys);
 | 
						|
	return mem_cgroup_from_css(css);
 | 
						|
}
 | 
						|
 | 
						|
/* Writing them here to avoid exposing memcg's inner layout */
 | 
						|
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
 | 
						|
 | 
						|
void sock_update_memcg(struct sock *sk)
 | 
						|
{
 | 
						|
	if (mem_cgroup_sockets_enabled) {
 | 
						|
		struct mem_cgroup *memcg;
 | 
						|
		struct cg_proto *cg_proto;
 | 
						|
 | 
						|
		BUG_ON(!sk->sk_prot->proto_cgroup);
 | 
						|
 | 
						|
		/* Socket cloning can throw us here with sk_cgrp already
 | 
						|
		 * filled. It won't however, necessarily happen from
 | 
						|
		 * process context. So the test for root memcg given
 | 
						|
		 * the current task's memcg won't help us in this case.
 | 
						|
		 *
 | 
						|
		 * Respecting the original socket's memcg is a better
 | 
						|
		 * decision in this case.
 | 
						|
		 */
 | 
						|
		if (sk->sk_cgrp) {
 | 
						|
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
 | 
						|
			css_get(&sk->sk_cgrp->memcg->css);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		rcu_read_lock();
 | 
						|
		memcg = mem_cgroup_from_task(current);
 | 
						|
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
 | 
						|
		if (!mem_cgroup_is_root(memcg) &&
 | 
						|
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
 | 
						|
			sk->sk_cgrp = cg_proto;
 | 
						|
		}
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(sock_update_memcg);
 | 
						|
 | 
						|
void sock_release_memcg(struct sock *sk)
 | 
						|
{
 | 
						|
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
 | 
						|
		struct mem_cgroup *memcg;
 | 
						|
		WARN_ON(!sk->sk_cgrp->memcg);
 | 
						|
		memcg = sk->sk_cgrp->memcg;
 | 
						|
		css_put(&sk->sk_cgrp->memcg->css);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (!memcg || mem_cgroup_is_root(memcg))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return &memcg->tcp_mem;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(tcp_proto_cgroup);
 | 
						|
 | 
						|
static void disarm_sock_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (!memcg_proto_activated(&memcg->tcp_mem))
 | 
						|
		return;
 | 
						|
	static_key_slow_dec(&memcg_socket_limit_enabled);
 | 
						|
}
 | 
						|
#else
 | 
						|
static void disarm_sock_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
/*
 | 
						|
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 | 
						|
 * The main reason for not using cgroup id for this:
 | 
						|
 *  this works better in sparse environments, where we have a lot of memcgs,
 | 
						|
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 | 
						|
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 | 
						|
 *  200 entry array for that.
 | 
						|
 *
 | 
						|
 * The current size of the caches array is stored in
 | 
						|
 * memcg_limited_groups_array_size.  It will double each time we have to
 | 
						|
 * increase it.
 | 
						|
 */
 | 
						|
static DEFINE_IDA(kmem_limited_groups);
 | 
						|
int memcg_limited_groups_array_size;
 | 
						|
 | 
						|
/*
 | 
						|
 * MIN_SIZE is different than 1, because we would like to avoid going through
 | 
						|
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 | 
						|
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 | 
						|
 * tunable, but that is strictly not necessary.
 | 
						|
 *
 | 
						|
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 | 
						|
 * this constant directly from cgroup, but it is understandable that this is
 | 
						|
 * better kept as an internal representation in cgroup.c. In any case, the
 | 
						|
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 | 
						|
 * increase ours as well if it increases.
 | 
						|
 */
 | 
						|
#define MEMCG_CACHES_MIN_SIZE 4
 | 
						|
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 | 
						|
 | 
						|
/*
 | 
						|
 * A lot of the calls to the cache allocation functions are expected to be
 | 
						|
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 | 
						|
 * conditional to this static branch, we'll have to allow modules that does
 | 
						|
 * kmem_cache_alloc and the such to see this symbol as well
 | 
						|
 */
 | 
						|
struct static_key memcg_kmem_enabled_key;
 | 
						|
EXPORT_SYMBOL(memcg_kmem_enabled_key);
 | 
						|
 | 
						|
static void disarm_kmem_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (memcg_kmem_is_active(memcg)) {
 | 
						|
		static_key_slow_dec(&memcg_kmem_enabled_key);
 | 
						|
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * This check can't live in kmem destruction function,
 | 
						|
	 * since the charges will outlive the cgroup
 | 
						|
	 */
 | 
						|
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
 | 
						|
}
 | 
						|
#else
 | 
						|
static void disarm_kmem_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMCG_KMEM */
 | 
						|
 | 
						|
static void disarm_static_keys(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	disarm_sock_keys(memcg);
 | 
						|
	disarm_kmem_keys(memcg);
 | 
						|
}
 | 
						|
 | 
						|
static void drain_all_stock_async(struct mem_cgroup *memcg);
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
 | 
						|
{
 | 
						|
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 | 
						|
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
 | 
						|
}
 | 
						|
 | 
						|
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return &memcg->css;
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 | 
						|
{
 | 
						|
	int nid = page_to_nid(page);
 | 
						|
	int zid = page_zonenum(page);
 | 
						|
 | 
						|
	return mem_cgroup_zoneinfo(memcg, nid, zid);
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_tree_per_zone *
 | 
						|
soft_limit_tree_node_zone(int nid, int zid)
 | 
						|
{
 | 
						|
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_tree_per_zone *
 | 
						|
soft_limit_tree_from_page(struct page *page)
 | 
						|
{
 | 
						|
	int nid = page_to_nid(page);
 | 
						|
	int zid = page_zonenum(page);
 | 
						|
 | 
						|
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
 | 
						|
				struct mem_cgroup_per_zone *mz,
 | 
						|
				struct mem_cgroup_tree_per_zone *mctz,
 | 
						|
				unsigned long long new_usage_in_excess)
 | 
						|
{
 | 
						|
	struct rb_node **p = &mctz->rb_root.rb_node;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	struct mem_cgroup_per_zone *mz_node;
 | 
						|
 | 
						|
	if (mz->on_tree)
 | 
						|
		return;
 | 
						|
 | 
						|
	mz->usage_in_excess = new_usage_in_excess;
 | 
						|
	if (!mz->usage_in_excess)
 | 
						|
		return;
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 | 
						|
					tree_node);
 | 
						|
		if (mz->usage_in_excess < mz_node->usage_in_excess)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		/*
 | 
						|
		 * We can't avoid mem cgroups that are over their soft
 | 
						|
		 * limit by the same amount
 | 
						|
		 */
 | 
						|
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
	}
 | 
						|
	rb_link_node(&mz->tree_node, parent, p);
 | 
						|
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 | 
						|
	mz->on_tree = true;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 | 
						|
				struct mem_cgroup_per_zone *mz,
 | 
						|
				struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	if (!mz->on_tree)
 | 
						|
		return;
 | 
						|
	rb_erase(&mz->tree_node, &mctz->rb_root);
 | 
						|
	mz->on_tree = false;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 | 
						|
				struct mem_cgroup_per_zone *mz,
 | 
						|
				struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	spin_lock(&mctz->lock);
 | 
						|
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
 | 
						|
	spin_unlock(&mctz->lock);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 | 
						|
{
 | 
						|
	unsigned long long excess;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct mem_cgroup_tree_per_zone *mctz;
 | 
						|
	int nid = page_to_nid(page);
 | 
						|
	int zid = page_zonenum(page);
 | 
						|
	mctz = soft_limit_tree_from_page(page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Necessary to update all ancestors when hierarchy is used.
 | 
						|
	 * because their event counter is not touched.
 | 
						|
	 */
 | 
						|
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 | 
						|
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 | 
						|
		excess = res_counter_soft_limit_excess(&memcg->res);
 | 
						|
		/*
 | 
						|
		 * We have to update the tree if mz is on RB-tree or
 | 
						|
		 * mem is over its softlimit.
 | 
						|
		 */
 | 
						|
		if (excess || mz->on_tree) {
 | 
						|
			spin_lock(&mctz->lock);
 | 
						|
			/* if on-tree, remove it */
 | 
						|
			if (mz->on_tree)
 | 
						|
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
 | 
						|
			/*
 | 
						|
			 * Insert again. mz->usage_in_excess will be updated.
 | 
						|
			 * If excess is 0, no tree ops.
 | 
						|
			 */
 | 
						|
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
 | 
						|
			spin_unlock(&mctz->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int node, zone;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct mem_cgroup_tree_per_zone *mctz;
 | 
						|
 | 
						|
	for_each_node(node) {
 | 
						|
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | 
						|
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
 | 
						|
			mctz = soft_limit_tree_node_zone(node, zone);
 | 
						|
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	struct rb_node *rightmost = NULL;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
retry:
 | 
						|
	mz = NULL;
 | 
						|
	rightmost = rb_last(&mctz->rb_root);
 | 
						|
	if (!rightmost)
 | 
						|
		goto done;		/* Nothing to reclaim from */
 | 
						|
 | 
						|
	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 | 
						|
	/*
 | 
						|
	 * Remove the node now but someone else can add it back,
 | 
						|
	 * we will to add it back at the end of reclaim to its correct
 | 
						|
	 * position in the tree.
 | 
						|
	 */
 | 
						|
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
 | 
						|
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
 | 
						|
		!css_tryget(&mz->memcg->css))
 | 
						|
		goto retry;
 | 
						|
done:
 | 
						|
	return mz;
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
	spin_lock(&mctz->lock);
 | 
						|
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 | 
						|
	spin_unlock(&mctz->lock);
 | 
						|
	return mz;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Implementation Note: reading percpu statistics for memcg.
 | 
						|
 *
 | 
						|
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 | 
						|
 * synchronization to implement "quick" read. There are trade-off between
 | 
						|
 * reading cost and precision of value. Then, we may have a chance to implement
 | 
						|
 * a periodic synchronizion of counter in memcg's counter.
 | 
						|
 *
 | 
						|
 * But this _read() function is used for user interface now. The user accounts
 | 
						|
 * memory usage by memory cgroup and he _always_ requires exact value because
 | 
						|
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 | 
						|
 * have to visit all online cpus and make sum. So, for now, unnecessary
 | 
						|
 * synchronization is not implemented. (just implemented for cpu hotplug)
 | 
						|
 *
 | 
						|
 * If there are kernel internal actions which can make use of some not-exact
 | 
						|
 * value, and reading all cpu value can be performance bottleneck in some
 | 
						|
 * common workload, threashold and synchonization as vmstat[] should be
 | 
						|
 * implemented.
 | 
						|
 */
 | 
						|
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
 | 
						|
				 enum mem_cgroup_stat_index idx)
 | 
						|
{
 | 
						|
	long val = 0;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	for_each_online_cpu(cpu)
 | 
						|
		val += per_cpu(memcg->stat->count[idx], cpu);
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
	spin_lock(&memcg->pcp_counter_lock);
 | 
						|
	val += memcg->nocpu_base.count[idx];
 | 
						|
	spin_unlock(&memcg->pcp_counter_lock);
 | 
						|
#endif
 | 
						|
	put_online_cpus();
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
 | 
						|
					 bool charge)
 | 
						|
{
 | 
						|
	int val = (charge) ? 1 : -1;
 | 
						|
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 | 
						|
					    enum mem_cgroup_events_index idx)
 | 
						|
{
 | 
						|
	unsigned long val = 0;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	for_each_online_cpu(cpu)
 | 
						|
		val += per_cpu(memcg->stat->events[idx], cpu);
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
	spin_lock(&memcg->pcp_counter_lock);
 | 
						|
	val += memcg->nocpu_base.events[idx];
 | 
						|
	spin_unlock(&memcg->pcp_counter_lock);
 | 
						|
#endif
 | 
						|
	put_online_cpus();
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 | 
						|
					 struct page *page,
 | 
						|
					 bool anon, int nr_pages)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 | 
						|
	 * counted as CACHE even if it's on ANON LRU.
 | 
						|
	 */
 | 
						|
	if (anon)
 | 
						|
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 | 
						|
				nr_pages);
 | 
						|
	else
 | 
						|
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 | 
						|
				nr_pages);
 | 
						|
 | 
						|
	if (PageTransHuge(page))
 | 
						|
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 | 
						|
				nr_pages);
 | 
						|
 | 
						|
	/* pagein of a big page is an event. So, ignore page size */
 | 
						|
	if (nr_pages > 0)
 | 
						|
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 | 
						|
	else {
 | 
						|
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 | 
						|
		nr_pages = -nr_pages; /* for event */
 | 
						|
	}
 | 
						|
 | 
						|
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 | 
						|
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 | 
						|
	return mz->lru_size[lru];
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
 | 
						|
			unsigned int lru_mask)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	enum lru_list lru;
 | 
						|
	unsigned long ret = 0;
 | 
						|
 | 
						|
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 | 
						|
 | 
						|
	for_each_lru(lru) {
 | 
						|
		if (BIT(lru) & lru_mask)
 | 
						|
			ret += mz->lru_size[lru];
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 | 
						|
			int nid, unsigned int lru_mask)
 | 
						|
{
 | 
						|
	u64 total = 0;
 | 
						|
	int zid;
 | 
						|
 | 
						|
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
 | 
						|
		total += mem_cgroup_zone_nr_lru_pages(memcg,
 | 
						|
						nid, zid, lru_mask);
 | 
						|
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 | 
						|
			unsigned int lru_mask)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
	u64 total = 0;
 | 
						|
 | 
						|
	for_each_node_state(nid, N_MEMORY)
 | 
						|
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 | 
						|
				       enum mem_cgroup_events_target target)
 | 
						|
{
 | 
						|
	unsigned long val, next;
 | 
						|
 | 
						|
	val = __this_cpu_read(memcg->stat->nr_page_events);
 | 
						|
	next = __this_cpu_read(memcg->stat->targets[target]);
 | 
						|
	/* from time_after() in jiffies.h */
 | 
						|
	if ((long)next - (long)val < 0) {
 | 
						|
		switch (target) {
 | 
						|
		case MEM_CGROUP_TARGET_THRESH:
 | 
						|
			next = val + THRESHOLDS_EVENTS_TARGET;
 | 
						|
			break;
 | 
						|
		case MEM_CGROUP_TARGET_SOFTLIMIT:
 | 
						|
			next = val + SOFTLIMIT_EVENTS_TARGET;
 | 
						|
			break;
 | 
						|
		case MEM_CGROUP_TARGET_NUMAINFO:
 | 
						|
			next = val + NUMAINFO_EVENTS_TARGET;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		__this_cpu_write(memcg->stat->targets[target], next);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check events in order.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
	/* threshold event is triggered in finer grain than soft limit */
 | 
						|
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 | 
						|
						MEM_CGROUP_TARGET_THRESH))) {
 | 
						|
		bool do_softlimit;
 | 
						|
		bool do_numainfo __maybe_unused;
 | 
						|
 | 
						|
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 | 
						|
						MEM_CGROUP_TARGET_SOFTLIMIT);
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 | 
						|
						MEM_CGROUP_TARGET_NUMAINFO);
 | 
						|
#endif
 | 
						|
		preempt_enable();
 | 
						|
 | 
						|
		mem_cgroup_threshold(memcg);
 | 
						|
		if (unlikely(do_softlimit))
 | 
						|
			mem_cgroup_update_tree(memcg, page);
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
		if (unlikely(do_numainfo))
 | 
						|
			atomic_inc(&memcg->numainfo_events);
 | 
						|
#endif
 | 
						|
	} else
 | 
						|
		preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * mm_update_next_owner() may clear mm->owner to NULL
 | 
						|
	 * if it races with swapoff, page migration, etc.
 | 
						|
	 * So this can be called with p == NULL.
 | 
						|
	 */
 | 
						|
	if (unlikely(!p))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
 | 
						|
}
 | 
						|
 | 
						|
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
 | 
						|
	if (!mm)
 | 
						|
		return NULL;
 | 
						|
	/*
 | 
						|
	 * Because we have no locks, mm->owner's may be being moved to other
 | 
						|
	 * cgroup. We use css_tryget() here even if this looks
 | 
						|
	 * pessimistic (rather than adding locks here).
 | 
						|
	 */
 | 
						|
	rcu_read_lock();
 | 
						|
	do {
 | 
						|
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | 
						|
		if (unlikely(!memcg))
 | 
						|
			break;
 | 
						|
	} while (!css_tryget(&memcg->css));
 | 
						|
	rcu_read_unlock();
 | 
						|
	return memcg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 | 
						|
 * ref. count) or NULL if the whole root's subtree has been visited.
 | 
						|
 *
 | 
						|
 * helper function to be used by mem_cgroup_iter
 | 
						|
 */
 | 
						|
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
 | 
						|
		struct mem_cgroup *last_visited)
 | 
						|
{
 | 
						|
	struct cgroup_subsys_state *prev_css, *next_css;
 | 
						|
 | 
						|
	prev_css = last_visited ? &last_visited->css : NULL;
 | 
						|
skip_node:
 | 
						|
	next_css = css_next_descendant_pre(prev_css, &root->css);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Even if we found a group we have to make sure it is
 | 
						|
	 * alive. css && !memcg means that the groups should be
 | 
						|
	 * skipped and we should continue the tree walk.
 | 
						|
	 * last_visited css is safe to use because it is
 | 
						|
	 * protected by css_get and the tree walk is rcu safe.
 | 
						|
	 */
 | 
						|
	if (next_css) {
 | 
						|
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
 | 
						|
 | 
						|
		if (css_tryget(&mem->css))
 | 
						|
			return mem;
 | 
						|
		else {
 | 
						|
			prev_css = next_css;
 | 
						|
			goto skip_node;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * When a group in the hierarchy below root is destroyed, the
 | 
						|
	 * hierarchy iterator can no longer be trusted since it might
 | 
						|
	 * have pointed to the destroyed group.  Invalidate it.
 | 
						|
	 */
 | 
						|
	atomic_inc(&root->dead_count);
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup *
 | 
						|
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
 | 
						|
		     struct mem_cgroup *root,
 | 
						|
		     int *sequence)
 | 
						|
{
 | 
						|
	struct mem_cgroup *position = NULL;
 | 
						|
	/*
 | 
						|
	 * A cgroup destruction happens in two stages: offlining and
 | 
						|
	 * release.  They are separated by a RCU grace period.
 | 
						|
	 *
 | 
						|
	 * If the iterator is valid, we may still race with an
 | 
						|
	 * offlining.  The RCU lock ensures the object won't be
 | 
						|
	 * released, tryget will fail if we lost the race.
 | 
						|
	 */
 | 
						|
	*sequence = atomic_read(&root->dead_count);
 | 
						|
	if (iter->last_dead_count == *sequence) {
 | 
						|
		smp_rmb();
 | 
						|
		position = iter->last_visited;
 | 
						|
		if (position && !css_tryget(&position->css))
 | 
						|
			position = NULL;
 | 
						|
	}
 | 
						|
	return position;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
 | 
						|
				   struct mem_cgroup *last_visited,
 | 
						|
				   struct mem_cgroup *new_position,
 | 
						|
				   int sequence)
 | 
						|
{
 | 
						|
	if (last_visited)
 | 
						|
		css_put(&last_visited->css);
 | 
						|
	/*
 | 
						|
	 * We store the sequence count from the time @last_visited was
 | 
						|
	 * loaded successfully instead of rereading it here so that we
 | 
						|
	 * don't lose destruction events in between.  We could have
 | 
						|
	 * raced with the destruction of @new_position after all.
 | 
						|
	 */
 | 
						|
	iter->last_visited = new_position;
 | 
						|
	smp_wmb();
 | 
						|
	iter->last_dead_count = sequence;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 | 
						|
 * @root: hierarchy root
 | 
						|
 * @prev: previously returned memcg, NULL on first invocation
 | 
						|
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 | 
						|
 *
 | 
						|
 * Returns references to children of the hierarchy below @root, or
 | 
						|
 * @root itself, or %NULL after a full round-trip.
 | 
						|
 *
 | 
						|
 * Caller must pass the return value in @prev on subsequent
 | 
						|
 * invocations for reference counting, or use mem_cgroup_iter_break()
 | 
						|
 * to cancel a hierarchy walk before the round-trip is complete.
 | 
						|
 *
 | 
						|
 * Reclaimers can specify a zone and a priority level in @reclaim to
 | 
						|
 * divide up the memcgs in the hierarchy among all concurrent
 | 
						|
 * reclaimers operating on the same zone and priority.
 | 
						|
 */
 | 
						|
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 | 
						|
				   struct mem_cgroup *prev,
 | 
						|
				   struct mem_cgroup_reclaim_cookie *reclaim)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	struct mem_cgroup *last_visited = NULL;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (!root)
 | 
						|
		root = root_mem_cgroup;
 | 
						|
 | 
						|
	if (prev && !reclaim)
 | 
						|
		last_visited = prev;
 | 
						|
 | 
						|
	if (!root->use_hierarchy && root != root_mem_cgroup) {
 | 
						|
		if (prev)
 | 
						|
			goto out_css_put;
 | 
						|
		return root;
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	while (!memcg) {
 | 
						|
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 | 
						|
		int uninitialized_var(seq);
 | 
						|
 | 
						|
		if (reclaim) {
 | 
						|
			int nid = zone_to_nid(reclaim->zone);
 | 
						|
			int zid = zone_idx(reclaim->zone);
 | 
						|
			struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
			mz = mem_cgroup_zoneinfo(root, nid, zid);
 | 
						|
			iter = &mz->reclaim_iter[reclaim->priority];
 | 
						|
			if (prev && reclaim->generation != iter->generation) {
 | 
						|
				iter->last_visited = NULL;
 | 
						|
				goto out_unlock;
 | 
						|
			}
 | 
						|
 | 
						|
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
 | 
						|
		}
 | 
						|
 | 
						|
		memcg = __mem_cgroup_iter_next(root, last_visited);
 | 
						|
 | 
						|
		if (reclaim) {
 | 
						|
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
 | 
						|
 | 
						|
			if (!memcg)
 | 
						|
				iter->generation++;
 | 
						|
			else if (!prev && memcg)
 | 
						|
				reclaim->generation = iter->generation;
 | 
						|
		}
 | 
						|
 | 
						|
		if (prev && !memcg)
 | 
						|
			goto out_unlock;
 | 
						|
	}
 | 
						|
out_unlock:
 | 
						|
	rcu_read_unlock();
 | 
						|
out_css_put:
 | 
						|
	if (prev && prev != root)
 | 
						|
		css_put(&prev->css);
 | 
						|
 | 
						|
	return memcg;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 | 
						|
 * @root: hierarchy root
 | 
						|
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 | 
						|
 */
 | 
						|
void mem_cgroup_iter_break(struct mem_cgroup *root,
 | 
						|
			   struct mem_cgroup *prev)
 | 
						|
{
 | 
						|
	if (!root)
 | 
						|
		root = root_mem_cgroup;
 | 
						|
	if (prev && prev != root)
 | 
						|
		css_put(&prev->css);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iteration constructs for visiting all cgroups (under a tree).  If
 | 
						|
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 | 
						|
 * be used for reference counting.
 | 
						|
 */
 | 
						|
#define for_each_mem_cgroup_tree(iter, root)		\
 | 
						|
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 | 
						|
	     iter != NULL;				\
 | 
						|
	     iter = mem_cgroup_iter(root, iter, NULL))
 | 
						|
 | 
						|
#define for_each_mem_cgroup(iter)			\
 | 
						|
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 | 
						|
	     iter != NULL;				\
 | 
						|
	     iter = mem_cgroup_iter(NULL, iter, NULL))
 | 
						|
 | 
						|
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | 
						|
	if (unlikely(!memcg))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	switch (idx) {
 | 
						|
	case PGFAULT:
 | 
						|
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
 | 
						|
		break;
 | 
						|
	case PGMAJFAULT:
 | 
						|
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 | 
						|
 * @zone: zone of the wanted lruvec
 | 
						|
 * @memcg: memcg of the wanted lruvec
 | 
						|
 *
 | 
						|
 * Returns the lru list vector holding pages for the given @zone and
 | 
						|
 * @mem.  This can be the global zone lruvec, if the memory controller
 | 
						|
 * is disabled.
 | 
						|
 */
 | 
						|
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
 | 
						|
				      struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct lruvec *lruvec;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled()) {
 | 
						|
		lruvec = &zone->lruvec;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
 | 
						|
	lruvec = &mz->lruvec;
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * Since a node can be onlined after the mem_cgroup was created,
 | 
						|
	 * we have to be prepared to initialize lruvec->zone here;
 | 
						|
	 * and if offlined then reonlined, we need to reinitialize it.
 | 
						|
	 */
 | 
						|
	if (unlikely(lruvec->zone != zone))
 | 
						|
		lruvec->zone = zone;
 | 
						|
	return lruvec;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Following LRU functions are allowed to be used without PCG_LOCK.
 | 
						|
 * Operations are called by routine of global LRU independently from memcg.
 | 
						|
 * What we have to take care of here is validness of pc->mem_cgroup.
 | 
						|
 *
 | 
						|
 * Changes to pc->mem_cgroup happens when
 | 
						|
 * 1. charge
 | 
						|
 * 2. moving account
 | 
						|
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 | 
						|
 * It is added to LRU before charge.
 | 
						|
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 | 
						|
 * When moving account, the page is not on LRU. It's isolated.
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
 | 
						|
 * @page: the page
 | 
						|
 * @zone: zone of the page
 | 
						|
 */
 | 
						|
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	struct lruvec *lruvec;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled()) {
 | 
						|
		lruvec = &zone->lruvec;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	memcg = pc->mem_cgroup;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Surreptitiously switch any uncharged offlist page to root:
 | 
						|
	 * an uncharged page off lru does nothing to secure
 | 
						|
	 * its former mem_cgroup from sudden removal.
 | 
						|
	 *
 | 
						|
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
 | 
						|
	 * under page_cgroup lock: between them, they make all uses
 | 
						|
	 * of pc->mem_cgroup safe.
 | 
						|
	 */
 | 
						|
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
 | 
						|
		pc->mem_cgroup = memcg = root_mem_cgroup;
 | 
						|
 | 
						|
	mz = page_cgroup_zoneinfo(memcg, page);
 | 
						|
	lruvec = &mz->lruvec;
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * Since a node can be onlined after the mem_cgroup was created,
 | 
						|
	 * we have to be prepared to initialize lruvec->zone here;
 | 
						|
	 * and if offlined then reonlined, we need to reinitialize it.
 | 
						|
	 */
 | 
						|
	if (unlikely(lruvec->zone != zone))
 | 
						|
		lruvec->zone = zone;
 | 
						|
	return lruvec;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 | 
						|
 * @lruvec: mem_cgroup per zone lru vector
 | 
						|
 * @lru: index of lru list the page is sitting on
 | 
						|
 * @nr_pages: positive when adding or negative when removing
 | 
						|
 *
 | 
						|
 * This function must be called when a page is added to or removed from an
 | 
						|
 * lru list.
 | 
						|
 */
 | 
						|
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 | 
						|
				int nr_pages)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	unsigned long *lru_size;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 | 
						|
	lru_size = mz->lru_size + lru;
 | 
						|
	*lru_size += nr_pages;
 | 
						|
	VM_BUG_ON((long)(*lru_size) < 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Checks whether given mem is same or in the root_mem_cgroup's
 | 
						|
 * hierarchy subtree
 | 
						|
 */
 | 
						|
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
 | 
						|
				  struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (root_memcg == memcg)
 | 
						|
		return true;
 | 
						|
	if (!root_memcg->use_hierarchy || !memcg)
 | 
						|
		return false;
 | 
						|
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
 | 
						|
}
 | 
						|
 | 
						|
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
 | 
						|
				       struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
bool task_in_mem_cgroup(struct task_struct *task,
 | 
						|
			const struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *curr = NULL;
 | 
						|
	struct task_struct *p;
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	p = find_lock_task_mm(task);
 | 
						|
	if (p) {
 | 
						|
		curr = try_get_mem_cgroup_from_mm(p->mm);
 | 
						|
		task_unlock(p);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * All threads may have already detached their mm's, but the oom
 | 
						|
		 * killer still needs to detect if they have already been oom
 | 
						|
		 * killed to prevent needlessly killing additional tasks.
 | 
						|
		 */
 | 
						|
		rcu_read_lock();
 | 
						|
		curr = mem_cgroup_from_task(task);
 | 
						|
		if (curr)
 | 
						|
			css_get(&curr->css);
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
	if (!curr)
 | 
						|
		return false;
 | 
						|
	/*
 | 
						|
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
 | 
						|
	 * use_hierarchy of "curr" here make this function true if hierarchy is
 | 
						|
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
 | 
						|
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
 | 
						|
	 */
 | 
						|
	ret = mem_cgroup_same_or_subtree(memcg, curr);
 | 
						|
	css_put(&curr->css);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
 | 
						|
{
 | 
						|
	unsigned long inactive_ratio;
 | 
						|
	unsigned long inactive;
 | 
						|
	unsigned long active;
 | 
						|
	unsigned long gb;
 | 
						|
 | 
						|
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
 | 
						|
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
 | 
						|
 | 
						|
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
 | 
						|
	if (gb)
 | 
						|
		inactive_ratio = int_sqrt(10 * gb);
 | 
						|
	else
 | 
						|
		inactive_ratio = 1;
 | 
						|
 | 
						|
	return inactive * inactive_ratio < active;
 | 
						|
}
 | 
						|
 | 
						|
#define mem_cgroup_from_res_counter(counter, member)	\
 | 
						|
	container_of(counter, struct mem_cgroup, member)
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 | 
						|
 * @memcg: the memory cgroup
 | 
						|
 *
 | 
						|
 * Returns the maximum amount of memory @mem can be charged with, in
 | 
						|
 * pages.
 | 
						|
 */
 | 
						|
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	unsigned long long margin;
 | 
						|
 | 
						|
	margin = res_counter_margin(&memcg->res);
 | 
						|
	if (do_swap_account)
 | 
						|
		margin = min(margin, res_counter_margin(&memcg->memsw));
 | 
						|
	return margin >> PAGE_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	/* root ? */
 | 
						|
	if (!css_parent(&memcg->css))
 | 
						|
		return vm_swappiness;
 | 
						|
 | 
						|
	return memcg->swappiness;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * memcg->moving_account is used for checking possibility that some thread is
 | 
						|
 * calling move_account(). When a thread on CPU-A starts moving pages under
 | 
						|
 * a memcg, other threads should check memcg->moving_account under
 | 
						|
 * rcu_read_lock(), like this:
 | 
						|
 *
 | 
						|
 *         CPU-A                                    CPU-B
 | 
						|
 *                                              rcu_read_lock()
 | 
						|
 *         memcg->moving_account+1              if (memcg->mocing_account)
 | 
						|
 *                                                   take heavy locks.
 | 
						|
 *         synchronize_rcu()                    update something.
 | 
						|
 *                                              rcu_read_unlock()
 | 
						|
 *         start move here.
 | 
						|
 */
 | 
						|
 | 
						|
/* for quick checking without looking up memcg */
 | 
						|
atomic_t memcg_moving __read_mostly;
 | 
						|
 | 
						|
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	atomic_inc(&memcg_moving);
 | 
						|
	atomic_inc(&memcg->moving_account);
 | 
						|
	synchronize_rcu();
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
 | 
						|
	 * We check NULL in callee rather than caller.
 | 
						|
	 */
 | 
						|
	if (memcg) {
 | 
						|
		atomic_dec(&memcg_moving);
 | 
						|
		atomic_dec(&memcg->moving_account);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * 2 routines for checking "mem" is under move_account() or not.
 | 
						|
 *
 | 
						|
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 | 
						|
 *			  is used for avoiding races in accounting.  If true,
 | 
						|
 *			  pc->mem_cgroup may be overwritten.
 | 
						|
 *
 | 
						|
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 | 
						|
 *			  under hierarchy of moving cgroups. This is for
 | 
						|
 *			  waiting at hith-memory prressure caused by "move".
 | 
						|
 */
 | 
						|
 | 
						|
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	VM_BUG_ON(!rcu_read_lock_held());
 | 
						|
	return atomic_read(&memcg->moving_account) > 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *from;
 | 
						|
	struct mem_cgroup *to;
 | 
						|
	bool ret = false;
 | 
						|
	/*
 | 
						|
	 * Unlike task_move routines, we access mc.to, mc.from not under
 | 
						|
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
 | 
						|
	 */
 | 
						|
	spin_lock(&mc.lock);
 | 
						|
	from = mc.from;
 | 
						|
	to = mc.to;
 | 
						|
	if (!from)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	ret = mem_cgroup_same_or_subtree(memcg, from)
 | 
						|
		|| mem_cgroup_same_or_subtree(memcg, to);
 | 
						|
unlock:
 | 
						|
	spin_unlock(&mc.lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (mc.moving_task && current != mc.moving_task) {
 | 
						|
		if (mem_cgroup_under_move(memcg)) {
 | 
						|
			DEFINE_WAIT(wait);
 | 
						|
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
 | 
						|
			/* moving charge context might have finished. */
 | 
						|
			if (mc.moving_task)
 | 
						|
				schedule();
 | 
						|
			finish_wait(&mc.waitq, &wait);
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Take this lock when
 | 
						|
 * - a code tries to modify page's memcg while it's USED.
 | 
						|
 * - a code tries to modify page state accounting in a memcg.
 | 
						|
 * see mem_cgroup_stolen(), too.
 | 
						|
 */
 | 
						|
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
 | 
						|
				  unsigned long *flags)
 | 
						|
{
 | 
						|
	spin_lock_irqsave(&memcg->move_lock, *flags);
 | 
						|
}
 | 
						|
 | 
						|
static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
 | 
						|
				unsigned long *flags)
 | 
						|
{
 | 
						|
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
 | 
						|
}
 | 
						|
 | 
						|
#define K(x) ((x) << (PAGE_SHIFT-10))
 | 
						|
/**
 | 
						|
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
 | 
						|
 * @memcg: The memory cgroup that went over limit
 | 
						|
 * @p: Task that is going to be killed
 | 
						|
 *
 | 
						|
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 | 
						|
 * enabled
 | 
						|
 */
 | 
						|
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
 | 
						|
{
 | 
						|
	struct cgroup *task_cgrp;
 | 
						|
	struct cgroup *mem_cgrp;
 | 
						|
	/*
 | 
						|
	 * Need a buffer in BSS, can't rely on allocations. The code relies
 | 
						|
	 * on the assumption that OOM is serialized for memory controller.
 | 
						|
	 * If this assumption is broken, revisit this code.
 | 
						|
	 */
 | 
						|
	static char memcg_name[PATH_MAX];
 | 
						|
	int ret;
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	if (!p)
 | 
						|
		return;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	mem_cgrp = memcg->css.cgroup;
 | 
						|
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
 | 
						|
 | 
						|
	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
 | 
						|
	if (ret < 0) {
 | 
						|
		/*
 | 
						|
		 * Unfortunately, we are unable to convert to a useful name
 | 
						|
		 * But we'll still print out the usage information
 | 
						|
		 */
 | 
						|
		rcu_read_unlock();
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	pr_info("Task in %s killed", memcg_name);
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
 | 
						|
	if (ret < 0) {
 | 
						|
		rcu_read_unlock();
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Continues from above, so we don't need an KERN_ level
 | 
						|
	 */
 | 
						|
	pr_cont(" as a result of limit of %s\n", memcg_name);
 | 
						|
done:
 | 
						|
 | 
						|
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
 | 
						|
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
 | 
						|
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
 | 
						|
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
 | 
						|
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
 | 
						|
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg) {
 | 
						|
		pr_info("Memory cgroup stats");
 | 
						|
 | 
						|
		rcu_read_lock();
 | 
						|
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
 | 
						|
		if (!ret)
 | 
						|
			pr_cont(" for %s", memcg_name);
 | 
						|
		rcu_read_unlock();
 | 
						|
		pr_cont(":");
 | 
						|
 | 
						|
		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 | 
						|
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
 | 
						|
				continue;
 | 
						|
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
 | 
						|
				K(mem_cgroup_read_stat(iter, i)));
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; i < NR_LRU_LISTS; i++)
 | 
						|
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
 | 
						|
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
 | 
						|
 | 
						|
		pr_cont("\n");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function returns the number of memcg under hierarchy tree. Returns
 | 
						|
 * 1(self count) if no children.
 | 
						|
 */
 | 
						|
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int num = 0;
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		num++;
 | 
						|
	return num;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the memory (and swap, if configured) limit for a memcg.
 | 
						|
 */
 | 
						|
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	u64 limit;
 | 
						|
 | 
						|
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do not consider swap space if we cannot swap due to swappiness
 | 
						|
	 */
 | 
						|
	if (mem_cgroup_swappiness(memcg)) {
 | 
						|
		u64 memsw;
 | 
						|
 | 
						|
		limit += total_swap_pages << PAGE_SHIFT;
 | 
						|
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If memsw is finite and limits the amount of swap space
 | 
						|
		 * available to this memcg, return that limit.
 | 
						|
		 */
 | 
						|
		limit = min(limit, memsw);
 | 
						|
	}
 | 
						|
 | 
						|
	return limit;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
 | 
						|
				     int order)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
	unsigned long chosen_points = 0;
 | 
						|
	unsigned long totalpages;
 | 
						|
	unsigned int points = 0;
 | 
						|
	struct task_struct *chosen = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If current has a pending SIGKILL or is exiting, then automatically
 | 
						|
	 * select it.  The goal is to allow it to allocate so that it may
 | 
						|
	 * quickly exit and free its memory.
 | 
						|
	 */
 | 
						|
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
 | 
						|
		set_thread_flag(TIF_MEMDIE);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
 | 
						|
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg) {
 | 
						|
		struct css_task_iter it;
 | 
						|
		struct task_struct *task;
 | 
						|
 | 
						|
		css_task_iter_start(&iter->css, &it);
 | 
						|
		while ((task = css_task_iter_next(&it))) {
 | 
						|
			switch (oom_scan_process_thread(task, totalpages, NULL,
 | 
						|
							false)) {
 | 
						|
			case OOM_SCAN_SELECT:
 | 
						|
				if (chosen)
 | 
						|
					put_task_struct(chosen);
 | 
						|
				chosen = task;
 | 
						|
				chosen_points = ULONG_MAX;
 | 
						|
				get_task_struct(chosen);
 | 
						|
				/* fall through */
 | 
						|
			case OOM_SCAN_CONTINUE:
 | 
						|
				continue;
 | 
						|
			case OOM_SCAN_ABORT:
 | 
						|
				css_task_iter_end(&it);
 | 
						|
				mem_cgroup_iter_break(memcg, iter);
 | 
						|
				if (chosen)
 | 
						|
					put_task_struct(chosen);
 | 
						|
				return;
 | 
						|
			case OOM_SCAN_OK:
 | 
						|
				break;
 | 
						|
			};
 | 
						|
			points = oom_badness(task, memcg, NULL, totalpages);
 | 
						|
			if (points > chosen_points) {
 | 
						|
				if (chosen)
 | 
						|
					put_task_struct(chosen);
 | 
						|
				chosen = task;
 | 
						|
				chosen_points = points;
 | 
						|
				get_task_struct(chosen);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		css_task_iter_end(&it);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!chosen)
 | 
						|
		return;
 | 
						|
	points = chosen_points * 1000 / totalpages;
 | 
						|
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
 | 
						|
			 NULL, "Memory cgroup out of memory");
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
 | 
						|
					gfp_t gfp_mask,
 | 
						|
					unsigned long flags)
 | 
						|
{
 | 
						|
	unsigned long total = 0;
 | 
						|
	bool noswap = false;
 | 
						|
	int loop;
 | 
						|
 | 
						|
	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
 | 
						|
		noswap = true;
 | 
						|
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
 | 
						|
		noswap = true;
 | 
						|
 | 
						|
	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
 | 
						|
		if (loop)
 | 
						|
			drain_all_stock_async(memcg);
 | 
						|
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
 | 
						|
		/*
 | 
						|
		 * Allow limit shrinkers, which are triggered directly
 | 
						|
		 * by userspace, to catch signals and stop reclaim
 | 
						|
		 * after minimal progress, regardless of the margin.
 | 
						|
		 */
 | 
						|
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
 | 
						|
			break;
 | 
						|
		if (mem_cgroup_margin(memcg))
 | 
						|
			break;
 | 
						|
		/*
 | 
						|
		 * If nothing was reclaimed after two attempts, there
 | 
						|
		 * may be no reclaimable pages in this hierarchy.
 | 
						|
		 */
 | 
						|
		if (loop && !total)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * test_mem_cgroup_node_reclaimable
 | 
						|
 * @memcg: the target memcg
 | 
						|
 * @nid: the node ID to be checked.
 | 
						|
 * @noswap : specify true here if the user wants flle only information.
 | 
						|
 *
 | 
						|
 * This function returns whether the specified memcg contains any
 | 
						|
 * reclaimable pages on a node. Returns true if there are any reclaimable
 | 
						|
 * pages in the node.
 | 
						|
 */
 | 
						|
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
 | 
						|
		int nid, bool noswap)
 | 
						|
{
 | 
						|
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
 | 
						|
		return true;
 | 
						|
	if (noswap || !total_swap_pages)
 | 
						|
		return false;
 | 
						|
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
 | 
						|
		return true;
 | 
						|
	return false;
 | 
						|
 | 
						|
}
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
 | 
						|
/*
 | 
						|
 * Always updating the nodemask is not very good - even if we have an empty
 | 
						|
 * list or the wrong list here, we can start from some node and traverse all
 | 
						|
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
	/*
 | 
						|
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
 | 
						|
	 * pagein/pageout changes since the last update.
 | 
						|
	 */
 | 
						|
	if (!atomic_read(&memcg->numainfo_events))
 | 
						|
		return;
 | 
						|
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* make a nodemask where this memcg uses memory from */
 | 
						|
	memcg->scan_nodes = node_states[N_MEMORY];
 | 
						|
 | 
						|
	for_each_node_mask(nid, node_states[N_MEMORY]) {
 | 
						|
 | 
						|
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
 | 
						|
			node_clear(nid, memcg->scan_nodes);
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_set(&memcg->numainfo_events, 0);
 | 
						|
	atomic_set(&memcg->numainfo_updating, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Selecting a node where we start reclaim from. Because what we need is just
 | 
						|
 * reducing usage counter, start from anywhere is O,K. Considering
 | 
						|
 * memory reclaim from current node, there are pros. and cons.
 | 
						|
 *
 | 
						|
 * Freeing memory from current node means freeing memory from a node which
 | 
						|
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 | 
						|
 * hit limits, it will see a contention on a node. But freeing from remote
 | 
						|
 * node means more costs for memory reclaim because of memory latency.
 | 
						|
 *
 | 
						|
 * Now, we use round-robin. Better algorithm is welcomed.
 | 
						|
 */
 | 
						|
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
 | 
						|
	mem_cgroup_may_update_nodemask(memcg);
 | 
						|
	node = memcg->last_scanned_node;
 | 
						|
 | 
						|
	node = next_node(node, memcg->scan_nodes);
 | 
						|
	if (node == MAX_NUMNODES)
 | 
						|
		node = first_node(memcg->scan_nodes);
 | 
						|
	/*
 | 
						|
	 * We call this when we hit limit, not when pages are added to LRU.
 | 
						|
	 * No LRU may hold pages because all pages are UNEVICTABLE or
 | 
						|
	 * memcg is too small and all pages are not on LRU. In that case,
 | 
						|
	 * we use curret node.
 | 
						|
	 */
 | 
						|
	if (unlikely(node == MAX_NUMNODES))
 | 
						|
		node = numa_node_id();
 | 
						|
 | 
						|
	memcg->last_scanned_node = node;
 | 
						|
	return node;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check all nodes whether it contains reclaimable pages or not.
 | 
						|
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 | 
						|
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 | 
						|
 * enough new information. We need to do double check.
 | 
						|
 */
 | 
						|
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * quick check...making use of scan_node.
 | 
						|
	 * We can skip unused nodes.
 | 
						|
	 */
 | 
						|
	if (!nodes_empty(memcg->scan_nodes)) {
 | 
						|
		for (nid = first_node(memcg->scan_nodes);
 | 
						|
		     nid < MAX_NUMNODES;
 | 
						|
		     nid = next_node(nid, memcg->scan_nodes)) {
 | 
						|
 | 
						|
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
 | 
						|
				return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Check rest of nodes.
 | 
						|
	 */
 | 
						|
	for_each_node_state(nid, N_MEMORY) {
 | 
						|
		if (node_isset(nid, memcg->scan_nodes))
 | 
						|
			continue;
 | 
						|
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
 | 
						|
{
 | 
						|
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
 | 
						|
				   struct zone *zone,
 | 
						|
				   gfp_t gfp_mask,
 | 
						|
				   unsigned long *total_scanned)
 | 
						|
{
 | 
						|
	struct mem_cgroup *victim = NULL;
 | 
						|
	int total = 0;
 | 
						|
	int loop = 0;
 | 
						|
	unsigned long excess;
 | 
						|
	unsigned long nr_scanned;
 | 
						|
	struct mem_cgroup_reclaim_cookie reclaim = {
 | 
						|
		.zone = zone,
 | 
						|
		.priority = 0,
 | 
						|
	};
 | 
						|
 | 
						|
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
 | 
						|
		if (!victim) {
 | 
						|
			loop++;
 | 
						|
			if (loop >= 2) {
 | 
						|
				/*
 | 
						|
				 * If we have not been able to reclaim
 | 
						|
				 * anything, it might because there are
 | 
						|
				 * no reclaimable pages under this hierarchy
 | 
						|
				 */
 | 
						|
				if (!total)
 | 
						|
					break;
 | 
						|
				/*
 | 
						|
				 * We want to do more targeted reclaim.
 | 
						|
				 * excess >> 2 is not to excessive so as to
 | 
						|
				 * reclaim too much, nor too less that we keep
 | 
						|
				 * coming back to reclaim from this cgroup
 | 
						|
				 */
 | 
						|
				if (total >= (excess >> 2) ||
 | 
						|
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (!mem_cgroup_reclaimable(victim, false))
 | 
						|
			continue;
 | 
						|
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
 | 
						|
						     zone, &nr_scanned);
 | 
						|
		*total_scanned += nr_scanned;
 | 
						|
		if (!res_counter_soft_limit_excess(&root_memcg->res))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	mem_cgroup_iter_break(root_memcg, victim);
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_LOCKDEP
 | 
						|
static struct lockdep_map memcg_oom_lock_dep_map = {
 | 
						|
	.name = "memcg_oom_lock",
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
static DEFINE_SPINLOCK(memcg_oom_lock);
 | 
						|
 | 
						|
/*
 | 
						|
 * Check OOM-Killer is already running under our hierarchy.
 | 
						|
 * If someone is running, return false.
 | 
						|
 */
 | 
						|
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter, *failed = NULL;
 | 
						|
 | 
						|
	spin_lock(&memcg_oom_lock);
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg) {
 | 
						|
		if (iter->oom_lock) {
 | 
						|
			/*
 | 
						|
			 * this subtree of our hierarchy is already locked
 | 
						|
			 * so we cannot give a lock.
 | 
						|
			 */
 | 
						|
			failed = iter;
 | 
						|
			mem_cgroup_iter_break(memcg, iter);
 | 
						|
			break;
 | 
						|
		} else
 | 
						|
			iter->oom_lock = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (failed) {
 | 
						|
		/*
 | 
						|
		 * OK, we failed to lock the whole subtree so we have
 | 
						|
		 * to clean up what we set up to the failing subtree
 | 
						|
		 */
 | 
						|
		for_each_mem_cgroup_tree(iter, memcg) {
 | 
						|
			if (iter == failed) {
 | 
						|
				mem_cgroup_iter_break(memcg, iter);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			iter->oom_lock = false;
 | 
						|
		}
 | 
						|
	} else
 | 
						|
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
 | 
						|
 | 
						|
	spin_unlock(&memcg_oom_lock);
 | 
						|
 | 
						|
	return !failed;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	spin_lock(&memcg_oom_lock);
 | 
						|
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		iter->oom_lock = false;
 | 
						|
	spin_unlock(&memcg_oom_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		atomic_inc(&iter->under_oom);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When a new child is created while the hierarchy is under oom,
 | 
						|
	 * mem_cgroup_oom_lock() may not be called. We have to use
 | 
						|
	 * atomic_add_unless() here.
 | 
						|
	 */
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		atomic_add_unless(&iter->under_oom, -1, 0);
 | 
						|
}
 | 
						|
 | 
						|
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
 | 
						|
 | 
						|
struct oom_wait_info {
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	wait_queue_t	wait;
 | 
						|
};
 | 
						|
 | 
						|
static int memcg_oom_wake_function(wait_queue_t *wait,
 | 
						|
	unsigned mode, int sync, void *arg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
 | 
						|
	struct mem_cgroup *oom_wait_memcg;
 | 
						|
	struct oom_wait_info *oom_wait_info;
 | 
						|
 | 
						|
	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
 | 
						|
	oom_wait_memcg = oom_wait_info->memcg;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
 | 
						|
	 * Then we can use css_is_ancestor without taking care of RCU.
 | 
						|
	 */
 | 
						|
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
 | 
						|
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
 | 
						|
		return 0;
 | 
						|
	return autoremove_wake_function(wait, mode, sync, arg);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	atomic_inc(&memcg->oom_wakeups);
 | 
						|
	/* for filtering, pass "memcg" as argument. */
 | 
						|
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_oom_recover(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (memcg && atomic_read(&memcg->under_oom))
 | 
						|
		memcg_wakeup_oom(memcg);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
 | 
						|
{
 | 
						|
	if (!current->memcg_oom.may_oom)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * We are in the middle of the charge context here, so we
 | 
						|
	 * don't want to block when potentially sitting on a callstack
 | 
						|
	 * that holds all kinds of filesystem and mm locks.
 | 
						|
	 *
 | 
						|
	 * Also, the caller may handle a failed allocation gracefully
 | 
						|
	 * (like optional page cache readahead) and so an OOM killer
 | 
						|
	 * invocation might not even be necessary.
 | 
						|
	 *
 | 
						|
	 * That's why we don't do anything here except remember the
 | 
						|
	 * OOM context and then deal with it at the end of the page
 | 
						|
	 * fault when the stack is unwound, the locks are released,
 | 
						|
	 * and when we know whether the fault was overall successful.
 | 
						|
	 */
 | 
						|
	css_get(&memcg->css);
 | 
						|
	current->memcg_oom.memcg = memcg;
 | 
						|
	current->memcg_oom.gfp_mask = mask;
 | 
						|
	current->memcg_oom.order = order;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 | 
						|
 * @handle: actually kill/wait or just clean up the OOM state
 | 
						|
 *
 | 
						|
 * This has to be called at the end of a page fault if the memcg OOM
 | 
						|
 * handler was enabled.
 | 
						|
 *
 | 
						|
 * Memcg supports userspace OOM handling where failed allocations must
 | 
						|
 * sleep on a waitqueue until the userspace task resolves the
 | 
						|
 * situation.  Sleeping directly in the charge context with all kinds
 | 
						|
 * of locks held is not a good idea, instead we remember an OOM state
 | 
						|
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 | 
						|
 * the end of the page fault to complete the OOM handling.
 | 
						|
 *
 | 
						|
 * Returns %true if an ongoing memcg OOM situation was detected and
 | 
						|
 * completed, %false otherwise.
 | 
						|
 */
 | 
						|
bool mem_cgroup_oom_synchronize(bool handle)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
 | 
						|
	struct oom_wait_info owait;
 | 
						|
	bool locked;
 | 
						|
 | 
						|
	/* OOM is global, do not handle */
 | 
						|
	if (!memcg)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (!handle)
 | 
						|
		goto cleanup;
 | 
						|
 | 
						|
	owait.memcg = memcg;
 | 
						|
	owait.wait.flags = 0;
 | 
						|
	owait.wait.func = memcg_oom_wake_function;
 | 
						|
	owait.wait.private = current;
 | 
						|
	INIT_LIST_HEAD(&owait.wait.task_list);
 | 
						|
 | 
						|
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
 | 
						|
	mem_cgroup_mark_under_oom(memcg);
 | 
						|
 | 
						|
	locked = mem_cgroup_oom_trylock(memcg);
 | 
						|
 | 
						|
	if (locked)
 | 
						|
		mem_cgroup_oom_notify(memcg);
 | 
						|
 | 
						|
	if (locked && !memcg->oom_kill_disable) {
 | 
						|
		mem_cgroup_unmark_under_oom(memcg);
 | 
						|
		finish_wait(&memcg_oom_waitq, &owait.wait);
 | 
						|
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
 | 
						|
					 current->memcg_oom.order);
 | 
						|
	} else {
 | 
						|
		schedule();
 | 
						|
		mem_cgroup_unmark_under_oom(memcg);
 | 
						|
		finish_wait(&memcg_oom_waitq, &owait.wait);
 | 
						|
	}
 | 
						|
 | 
						|
	if (locked) {
 | 
						|
		mem_cgroup_oom_unlock(memcg);
 | 
						|
		/*
 | 
						|
		 * There is no guarantee that an OOM-lock contender
 | 
						|
		 * sees the wakeups triggered by the OOM kill
 | 
						|
		 * uncharges.  Wake any sleepers explicitely.
 | 
						|
		 */
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
	}
 | 
						|
cleanup:
 | 
						|
	current->memcg_oom.memcg = NULL;
 | 
						|
	css_put(&memcg->css);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Currently used to update mapped file statistics, but the routine can be
 | 
						|
 * generalized to update other statistics as well.
 | 
						|
 *
 | 
						|
 * Notes: Race condition
 | 
						|
 *
 | 
						|
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 | 
						|
 * it tends to be costly. But considering some conditions, we doesn't need
 | 
						|
 * to do so _always_.
 | 
						|
 *
 | 
						|
 * Considering "charge", lock_page_cgroup() is not required because all
 | 
						|
 * file-stat operations happen after a page is attached to radix-tree. There
 | 
						|
 * are no race with "charge".
 | 
						|
 *
 | 
						|
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 | 
						|
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 | 
						|
 * if there are race with "uncharge". Statistics itself is properly handled
 | 
						|
 * by flags.
 | 
						|
 *
 | 
						|
 * Considering "move", this is an only case we see a race. To make the race
 | 
						|
 * small, we check mm->moving_account and detect there are possibility of race
 | 
						|
 * If there is, we take a lock.
 | 
						|
 */
 | 
						|
 | 
						|
void __mem_cgroup_begin_update_page_stat(struct page *page,
 | 
						|
				bool *locked, unsigned long *flags)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
again:
 | 
						|
	memcg = pc->mem_cgroup;
 | 
						|
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * If this memory cgroup is not under account moving, we don't
 | 
						|
	 * need to take move_lock_mem_cgroup(). Because we already hold
 | 
						|
	 * rcu_read_lock(), any calls to move_account will be delayed until
 | 
						|
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
 | 
						|
	 */
 | 
						|
	if (!mem_cgroup_stolen(memcg))
 | 
						|
		return;
 | 
						|
 | 
						|
	move_lock_mem_cgroup(memcg, flags);
 | 
						|
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
 | 
						|
		move_unlock_mem_cgroup(memcg, flags);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	*locked = true;
 | 
						|
}
 | 
						|
 | 
						|
void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc = lookup_page_cgroup(page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It's guaranteed that pc->mem_cgroup never changes while
 | 
						|
	 * lock is held because a routine modifies pc->mem_cgroup
 | 
						|
	 * should take move_lock_mem_cgroup().
 | 
						|
	 */
 | 
						|
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_update_page_stat(struct page *page,
 | 
						|
				 enum mem_cgroup_stat_index idx, int val)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	struct page_cgroup *pc = lookup_page_cgroup(page);
 | 
						|
	unsigned long uninitialized_var(flags);
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	VM_BUG_ON(!rcu_read_lock_held());
 | 
						|
	memcg = pc->mem_cgroup;
 | 
						|
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
 | 
						|
		return;
 | 
						|
 | 
						|
	this_cpu_add(memcg->stat->count[idx], val);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 | 
						|
 * TODO: maybe necessary to use big numbers in big irons.
 | 
						|
 */
 | 
						|
#define CHARGE_BATCH	32U
 | 
						|
struct memcg_stock_pcp {
 | 
						|
	struct mem_cgroup *cached; /* this never be root cgroup */
 | 
						|
	unsigned int nr_pages;
 | 
						|
	struct work_struct work;
 | 
						|
	unsigned long flags;
 | 
						|
#define FLUSHING_CACHED_CHARGE	0
 | 
						|
};
 | 
						|
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
 | 
						|
static DEFINE_MUTEX(percpu_charge_mutex);
 | 
						|
 | 
						|
/**
 | 
						|
 * consume_stock: Try to consume stocked charge on this cpu.
 | 
						|
 * @memcg: memcg to consume from.
 | 
						|
 * @nr_pages: how many pages to charge.
 | 
						|
 *
 | 
						|
 * The charges will only happen if @memcg matches the current cpu's memcg
 | 
						|
 * stock, and at least @nr_pages are available in that stock.  Failure to
 | 
						|
 * service an allocation will refill the stock.
 | 
						|
 *
 | 
						|
 * returns true if successful, false otherwise.
 | 
						|
 */
 | 
						|
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 | 
						|
{
 | 
						|
	struct memcg_stock_pcp *stock;
 | 
						|
	bool ret = true;
 | 
						|
 | 
						|
	if (nr_pages > CHARGE_BATCH)
 | 
						|
		return false;
 | 
						|
 | 
						|
	stock = &get_cpu_var(memcg_stock);
 | 
						|
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
 | 
						|
		stock->nr_pages -= nr_pages;
 | 
						|
	else /* need to call res_counter_charge */
 | 
						|
		ret = false;
 | 
						|
	put_cpu_var(memcg_stock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns stocks cached in percpu to res_counter and reset cached information.
 | 
						|
 */
 | 
						|
static void drain_stock(struct memcg_stock_pcp *stock)
 | 
						|
{
 | 
						|
	struct mem_cgroup *old = stock->cached;
 | 
						|
 | 
						|
	if (stock->nr_pages) {
 | 
						|
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
 | 
						|
 | 
						|
		res_counter_uncharge(&old->res, bytes);
 | 
						|
		if (do_swap_account)
 | 
						|
			res_counter_uncharge(&old->memsw, bytes);
 | 
						|
		stock->nr_pages = 0;
 | 
						|
	}
 | 
						|
	stock->cached = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This must be called under preempt disabled or must be called by
 | 
						|
 * a thread which is pinned to local cpu.
 | 
						|
 */
 | 
						|
static void drain_local_stock(struct work_struct *dummy)
 | 
						|
{
 | 
						|
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
 | 
						|
	drain_stock(stock);
 | 
						|
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 | 
						|
}
 | 
						|
 | 
						|
static void __init memcg_stock_init(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct memcg_stock_pcp *stock =
 | 
						|
					&per_cpu(memcg_stock, cpu);
 | 
						|
		INIT_WORK(&stock->work, drain_local_stock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Cache charges(val) which is from res_counter, to local per_cpu area.
 | 
						|
 * This will be consumed by consume_stock() function, later.
 | 
						|
 */
 | 
						|
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 | 
						|
{
 | 
						|
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
 | 
						|
 | 
						|
	if (stock->cached != memcg) { /* reset if necessary */
 | 
						|
		drain_stock(stock);
 | 
						|
		stock->cached = memcg;
 | 
						|
	}
 | 
						|
	stock->nr_pages += nr_pages;
 | 
						|
	put_cpu_var(memcg_stock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
 | 
						|
 * of the hierarchy under it. sync flag says whether we should block
 | 
						|
 * until the work is done.
 | 
						|
 */
 | 
						|
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
 | 
						|
{
 | 
						|
	int cpu, curcpu;
 | 
						|
 | 
						|
	/* Notify other cpus that system-wide "drain" is running */
 | 
						|
	get_online_cpus();
 | 
						|
	curcpu = get_cpu();
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
 | 
						|
		struct mem_cgroup *memcg;
 | 
						|
 | 
						|
		memcg = stock->cached;
 | 
						|
		if (!memcg || !stock->nr_pages)
 | 
						|
			continue;
 | 
						|
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
 | 
						|
			continue;
 | 
						|
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 | 
						|
			if (cpu == curcpu)
 | 
						|
				drain_local_stock(&stock->work);
 | 
						|
			else
 | 
						|
				schedule_work_on(cpu, &stock->work);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	put_cpu();
 | 
						|
 | 
						|
	if (!sync)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
 | 
						|
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
 | 
						|
			flush_work(&stock->work);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	put_online_cpus();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 | 
						|
 * and just put a work per cpu for draining localy on each cpu. Caller can
 | 
						|
 * expects some charges will be back to res_counter later but cannot wait for
 | 
						|
 * it.
 | 
						|
 */
 | 
						|
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If someone calls draining, avoid adding more kworker runs.
 | 
						|
	 */
 | 
						|
	if (!mutex_trylock(&percpu_charge_mutex))
 | 
						|
		return;
 | 
						|
	drain_all_stock(root_memcg, false);
 | 
						|
	mutex_unlock(&percpu_charge_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/* This is a synchronous drain interface. */
 | 
						|
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
 | 
						|
{
 | 
						|
	/* called when force_empty is called */
 | 
						|
	mutex_lock(&percpu_charge_mutex);
 | 
						|
	drain_all_stock(root_memcg, true);
 | 
						|
	mutex_unlock(&percpu_charge_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function drains percpu counter value from DEAD cpu and
 | 
						|
 * move it to local cpu. Note that this function can be preempted.
 | 
						|
 */
 | 
						|
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock(&memcg->pcp_counter_lock);
 | 
						|
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 | 
						|
		long x = per_cpu(memcg->stat->count[i], cpu);
 | 
						|
 | 
						|
		per_cpu(memcg->stat->count[i], cpu) = 0;
 | 
						|
		memcg->nocpu_base.count[i] += x;
 | 
						|
	}
 | 
						|
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
 | 
						|
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
 | 
						|
 | 
						|
		per_cpu(memcg->stat->events[i], cpu) = 0;
 | 
						|
		memcg->nocpu_base.events[i] += x;
 | 
						|
	}
 | 
						|
	spin_unlock(&memcg->pcp_counter_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
 | 
						|
					unsigned long action,
 | 
						|
					void *hcpu)
 | 
						|
{
 | 
						|
	int cpu = (unsigned long)hcpu;
 | 
						|
	struct memcg_stock_pcp *stock;
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	if (action == CPU_ONLINE)
 | 
						|
		return NOTIFY_OK;
 | 
						|
 | 
						|
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
 | 
						|
		return NOTIFY_OK;
 | 
						|
 | 
						|
	for_each_mem_cgroup(iter)
 | 
						|
		mem_cgroup_drain_pcp_counter(iter, cpu);
 | 
						|
 | 
						|
	stock = &per_cpu(memcg_stock, cpu);
 | 
						|
	drain_stock(stock);
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* See __mem_cgroup_try_charge() for details */
 | 
						|
enum {
 | 
						|
	CHARGE_OK,		/* success */
 | 
						|
	CHARGE_RETRY,		/* need to retry but retry is not bad */
 | 
						|
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
 | 
						|
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
 | 
						|
};
 | 
						|
 | 
						|
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
 | 
						|
				unsigned int nr_pages, unsigned int min_pages,
 | 
						|
				bool invoke_oom)
 | 
						|
{
 | 
						|
	unsigned long csize = nr_pages * PAGE_SIZE;
 | 
						|
	struct mem_cgroup *mem_over_limit;
 | 
						|
	struct res_counter *fail_res;
 | 
						|
	unsigned long flags = 0;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
 | 
						|
 | 
						|
	if (likely(!ret)) {
 | 
						|
		if (!do_swap_account)
 | 
						|
			return CHARGE_OK;
 | 
						|
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
 | 
						|
		if (likely(!ret))
 | 
						|
			return CHARGE_OK;
 | 
						|
 | 
						|
		res_counter_uncharge(&memcg->res, csize);
 | 
						|
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
 | 
						|
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
 | 
						|
	} else
 | 
						|
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
 | 
						|
	/*
 | 
						|
	 * Never reclaim on behalf of optional batching, retry with a
 | 
						|
	 * single page instead.
 | 
						|
	 */
 | 
						|
	if (nr_pages > min_pages)
 | 
						|
		return CHARGE_RETRY;
 | 
						|
 | 
						|
	if (!(gfp_mask & __GFP_WAIT))
 | 
						|
		return CHARGE_WOULDBLOCK;
 | 
						|
 | 
						|
	if (gfp_mask & __GFP_NORETRY)
 | 
						|
		return CHARGE_NOMEM;
 | 
						|
 | 
						|
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
 | 
						|
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
 | 
						|
		return CHARGE_RETRY;
 | 
						|
	/*
 | 
						|
	 * Even though the limit is exceeded at this point, reclaim
 | 
						|
	 * may have been able to free some pages.  Retry the charge
 | 
						|
	 * before killing the task.
 | 
						|
	 *
 | 
						|
	 * Only for regular pages, though: huge pages are rather
 | 
						|
	 * unlikely to succeed so close to the limit, and we fall back
 | 
						|
	 * to regular pages anyway in case of failure.
 | 
						|
	 */
 | 
						|
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
 | 
						|
		return CHARGE_RETRY;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At task move, charge accounts can be doubly counted. So, it's
 | 
						|
	 * better to wait until the end of task_move if something is going on.
 | 
						|
	 */
 | 
						|
	if (mem_cgroup_wait_acct_move(mem_over_limit))
 | 
						|
		return CHARGE_RETRY;
 | 
						|
 | 
						|
	if (invoke_oom)
 | 
						|
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
 | 
						|
 | 
						|
	return CHARGE_NOMEM;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __mem_cgroup_try_charge() does
 | 
						|
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 | 
						|
 * 2. update res_counter
 | 
						|
 * 3. call memory reclaim if necessary.
 | 
						|
 *
 | 
						|
 * In some special case, if the task is fatal, fatal_signal_pending() or
 | 
						|
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 | 
						|
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 | 
						|
 * as possible without any hazards. 2: all pages should have a valid
 | 
						|
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 | 
						|
 * pointer, that is treated as a charge to root_mem_cgroup.
 | 
						|
 *
 | 
						|
 * So __mem_cgroup_try_charge() will return
 | 
						|
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 | 
						|
 *  -ENOMEM ...  charge failure because of resource limits.
 | 
						|
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 | 
						|
 *
 | 
						|
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 | 
						|
 * the oom-killer can be invoked.
 | 
						|
 */
 | 
						|
static int __mem_cgroup_try_charge(struct mm_struct *mm,
 | 
						|
				   gfp_t gfp_mask,
 | 
						|
				   unsigned int nr_pages,
 | 
						|
				   struct mem_cgroup **ptr,
 | 
						|
				   bool oom)
 | 
						|
{
 | 
						|
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
 | 
						|
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
 | 
						|
	 * in system level. So, allow to go ahead dying process in addition to
 | 
						|
	 * MEMDIE process.
 | 
						|
	 */
 | 
						|
	if (unlikely(test_thread_flag(TIF_MEMDIE)
 | 
						|
		     || fatal_signal_pending(current)))
 | 
						|
		goto bypass;
 | 
						|
 | 
						|
	if (unlikely(task_in_memcg_oom(current)))
 | 
						|
		goto bypass;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We always charge the cgroup the mm_struct belongs to.
 | 
						|
	 * The mm_struct's mem_cgroup changes on task migration if the
 | 
						|
	 * thread group leader migrates. It's possible that mm is not
 | 
						|
	 * set, if so charge the root memcg (happens for pagecache usage).
 | 
						|
	 */
 | 
						|
	if (!*ptr && !mm)
 | 
						|
		*ptr = root_mem_cgroup;
 | 
						|
again:
 | 
						|
	if (*ptr) { /* css should be a valid one */
 | 
						|
		memcg = *ptr;
 | 
						|
		if (mem_cgroup_is_root(memcg))
 | 
						|
			goto done;
 | 
						|
		if (consume_stock(memcg, nr_pages))
 | 
						|
			goto done;
 | 
						|
		css_get(&memcg->css);
 | 
						|
	} else {
 | 
						|
		struct task_struct *p;
 | 
						|
 | 
						|
		rcu_read_lock();
 | 
						|
		p = rcu_dereference(mm->owner);
 | 
						|
		/*
 | 
						|
		 * Because we don't have task_lock(), "p" can exit.
 | 
						|
		 * In that case, "memcg" can point to root or p can be NULL with
 | 
						|
		 * race with swapoff. Then, we have small risk of mis-accouning.
 | 
						|
		 * But such kind of mis-account by race always happens because
 | 
						|
		 * we don't have cgroup_mutex(). It's overkill and we allo that
 | 
						|
		 * small race, here.
 | 
						|
		 * (*) swapoff at el will charge against mm-struct not against
 | 
						|
		 * task-struct. So, mm->owner can be NULL.
 | 
						|
		 */
 | 
						|
		memcg = mem_cgroup_from_task(p);
 | 
						|
		if (!memcg)
 | 
						|
			memcg = root_mem_cgroup;
 | 
						|
		if (mem_cgroup_is_root(memcg)) {
 | 
						|
			rcu_read_unlock();
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
		if (consume_stock(memcg, nr_pages)) {
 | 
						|
			/*
 | 
						|
			 * It seems dagerous to access memcg without css_get().
 | 
						|
			 * But considering how consume_stok works, it's not
 | 
						|
			 * necessary. If consume_stock success, some charges
 | 
						|
			 * from this memcg are cached on this cpu. So, we
 | 
						|
			 * don't need to call css_get()/css_tryget() before
 | 
						|
			 * calling consume_stock().
 | 
						|
			 */
 | 
						|
			rcu_read_unlock();
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
		/* after here, we may be blocked. we need to get refcnt */
 | 
						|
		if (!css_tryget(&memcg->css)) {
 | 
						|
			rcu_read_unlock();
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
 | 
						|
	do {
 | 
						|
		bool invoke_oom = oom && !nr_oom_retries;
 | 
						|
 | 
						|
		/* If killed, bypass charge */
 | 
						|
		if (fatal_signal_pending(current)) {
 | 
						|
			css_put(&memcg->css);
 | 
						|
			goto bypass;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
 | 
						|
					   nr_pages, invoke_oom);
 | 
						|
		switch (ret) {
 | 
						|
		case CHARGE_OK:
 | 
						|
			break;
 | 
						|
		case CHARGE_RETRY: /* not in OOM situation but retry */
 | 
						|
			batch = nr_pages;
 | 
						|
			css_put(&memcg->css);
 | 
						|
			memcg = NULL;
 | 
						|
			goto again;
 | 
						|
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
 | 
						|
			css_put(&memcg->css);
 | 
						|
			goto nomem;
 | 
						|
		case CHARGE_NOMEM: /* OOM routine works */
 | 
						|
			if (!oom || invoke_oom) {
 | 
						|
				css_put(&memcg->css);
 | 
						|
				goto nomem;
 | 
						|
			}
 | 
						|
			nr_oom_retries--;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	} while (ret != CHARGE_OK);
 | 
						|
 | 
						|
	if (batch > nr_pages)
 | 
						|
		refill_stock(memcg, batch - nr_pages);
 | 
						|
	css_put(&memcg->css);
 | 
						|
done:
 | 
						|
	*ptr = memcg;
 | 
						|
	return 0;
 | 
						|
nomem:
 | 
						|
	if (!(gfp_mask & __GFP_NOFAIL)) {
 | 
						|
		*ptr = NULL;
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
bypass:
 | 
						|
	*ptr = root_mem_cgroup;
 | 
						|
	return -EINTR;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Somemtimes we have to undo a charge we got by try_charge().
 | 
						|
 * This function is for that and do uncharge, put css's refcnt.
 | 
						|
 * gotten by try_charge().
 | 
						|
 */
 | 
						|
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
 | 
						|
				       unsigned int nr_pages)
 | 
						|
{
 | 
						|
	if (!mem_cgroup_is_root(memcg)) {
 | 
						|
		unsigned long bytes = nr_pages * PAGE_SIZE;
 | 
						|
 | 
						|
		res_counter_uncharge(&memcg->res, bytes);
 | 
						|
		if (do_swap_account)
 | 
						|
			res_counter_uncharge(&memcg->memsw, bytes);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 | 
						|
 * This is useful when moving usage to parent cgroup.
 | 
						|
 */
 | 
						|
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
 | 
						|
					unsigned int nr_pages)
 | 
						|
{
 | 
						|
	unsigned long bytes = nr_pages * PAGE_SIZE;
 | 
						|
 | 
						|
	if (mem_cgroup_is_root(memcg))
 | 
						|
		return;
 | 
						|
 | 
						|
	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
 | 
						|
	if (do_swap_account)
 | 
						|
		res_counter_uncharge_until(&memcg->memsw,
 | 
						|
						memcg->memsw.parent, bytes);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A helper function to get mem_cgroup from ID. must be called under
 | 
						|
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 | 
						|
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 | 
						|
 * called against removed memcg.)
 | 
						|
 */
 | 
						|
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
 | 
						|
{
 | 
						|
	/* ID 0 is unused ID */
 | 
						|
	if (!id)
 | 
						|
		return NULL;
 | 
						|
	return mem_cgroup_from_id(id);
 | 
						|
}
 | 
						|
 | 
						|
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	unsigned short id;
 | 
						|
	swp_entry_t ent;
 | 
						|
 | 
						|
	VM_BUG_ON(!PageLocked(page));
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	if (PageCgroupUsed(pc)) {
 | 
						|
		memcg = pc->mem_cgroup;
 | 
						|
		if (memcg && !css_tryget(&memcg->css))
 | 
						|
			memcg = NULL;
 | 
						|
	} else if (PageSwapCache(page)) {
 | 
						|
		ent.val = page_private(page);
 | 
						|
		id = lookup_swap_cgroup_id(ent);
 | 
						|
		rcu_read_lock();
 | 
						|
		memcg = mem_cgroup_lookup(id);
 | 
						|
		if (memcg && !css_tryget(&memcg->css))
 | 
						|
			memcg = NULL;
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
	return memcg;
 | 
						|
}
 | 
						|
 | 
						|
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
 | 
						|
				       struct page *page,
 | 
						|
				       unsigned int nr_pages,
 | 
						|
				       enum charge_type ctype,
 | 
						|
				       bool lrucare)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc = lookup_page_cgroup(page);
 | 
						|
	struct zone *uninitialized_var(zone);
 | 
						|
	struct lruvec *lruvec;
 | 
						|
	bool was_on_lru = false;
 | 
						|
	bool anon;
 | 
						|
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	VM_BUG_ON(PageCgroupUsed(pc));
 | 
						|
	/*
 | 
						|
	 * we don't need page_cgroup_lock about tail pages, becase they are not
 | 
						|
	 * accessed by any other context at this point.
 | 
						|
	 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
 | 
						|
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
 | 
						|
	 */
 | 
						|
	if (lrucare) {
 | 
						|
		zone = page_zone(page);
 | 
						|
		spin_lock_irq(&zone->lru_lock);
 | 
						|
		if (PageLRU(page)) {
 | 
						|
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
 | 
						|
			ClearPageLRU(page);
 | 
						|
			del_page_from_lru_list(page, lruvec, page_lru(page));
 | 
						|
			was_on_lru = true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pc->mem_cgroup = memcg;
 | 
						|
	/*
 | 
						|
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
 | 
						|
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
 | 
						|
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
 | 
						|
	 * before USED bit, we need memory barrier here.
 | 
						|
	 * See mem_cgroup_add_lru_list(), etc.
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
	SetPageCgroupUsed(pc);
 | 
						|
 | 
						|
	if (lrucare) {
 | 
						|
		if (was_on_lru) {
 | 
						|
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
 | 
						|
			VM_BUG_ON(PageLRU(page));
 | 
						|
			SetPageLRU(page);
 | 
						|
			add_page_to_lru_list(page, lruvec, page_lru(page));
 | 
						|
		}
 | 
						|
		spin_unlock_irq(&zone->lru_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
 | 
						|
		anon = true;
 | 
						|
	else
 | 
						|
		anon = false;
 | 
						|
 | 
						|
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * "charge_statistics" updated event counter. Then, check it.
 | 
						|
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
 | 
						|
	 * if they exceeds softlimit.
 | 
						|
	 */
 | 
						|
	memcg_check_events(memcg, page);
 | 
						|
}
 | 
						|
 | 
						|
static DEFINE_MUTEX(set_limit_mutex);
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
 | 
						|
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 | 
						|
 * in the memcg_cache_params struct.
 | 
						|
 */
 | 
						|
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
 | 
						|
{
 | 
						|
	struct kmem_cache *cachep;
 | 
						|
 | 
						|
	VM_BUG_ON(p->is_root_cache);
 | 
						|
	cachep = p->root_cache;
 | 
						|
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SLABINFO
 | 
						|
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
 | 
						|
				    struct cftype *cft, struct seq_file *m)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct memcg_cache_params *params;
 | 
						|
 | 
						|
	if (!memcg_can_account_kmem(memcg))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	print_slabinfo_header(m);
 | 
						|
 | 
						|
	mutex_lock(&memcg->slab_caches_mutex);
 | 
						|
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
 | 
						|
		cache_show(memcg_params_to_cache(params), m);
 | 
						|
	mutex_unlock(&memcg->slab_caches_mutex);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
 | 
						|
{
 | 
						|
	struct res_counter *fail_res;
 | 
						|
	struct mem_cgroup *_memcg;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	_memcg = memcg;
 | 
						|
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
 | 
						|
				      &_memcg, oom_gfp_allowed(gfp));
 | 
						|
 | 
						|
	if (ret == -EINTR)  {
 | 
						|
		/*
 | 
						|
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
 | 
						|
		 * OOM kill or fatal signal.  Since our only options are to
 | 
						|
		 * either fail the allocation or charge it to this cgroup, do
 | 
						|
		 * it as a temporary condition. But we can't fail. From a
 | 
						|
		 * kmem/slab perspective, the cache has already been selected,
 | 
						|
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
 | 
						|
		 * our minds.
 | 
						|
		 *
 | 
						|
		 * This condition will only trigger if the task entered
 | 
						|
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
 | 
						|
		 * __mem_cgroup_try_charge() above. Tasks that were already
 | 
						|
		 * dying when the allocation triggers should have been already
 | 
						|
		 * directed to the root cgroup in memcontrol.h
 | 
						|
		 */
 | 
						|
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
 | 
						|
		if (do_swap_account)
 | 
						|
			res_counter_charge_nofail(&memcg->memsw, size,
 | 
						|
						  &fail_res);
 | 
						|
		ret = 0;
 | 
						|
	} else if (ret)
 | 
						|
		res_counter_uncharge(&memcg->kmem, size);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
 | 
						|
{
 | 
						|
	res_counter_uncharge(&memcg->res, size);
 | 
						|
	if (do_swap_account)
 | 
						|
		res_counter_uncharge(&memcg->memsw, size);
 | 
						|
 | 
						|
	/* Not down to 0 */
 | 
						|
	if (res_counter_uncharge(&memcg->kmem, size))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Releases a reference taken in kmem_cgroup_css_offline in case
 | 
						|
	 * this last uncharge is racing with the offlining code or it is
 | 
						|
	 * outliving the memcg existence.
 | 
						|
	 *
 | 
						|
	 * The memory barrier imposed by test&clear is paired with the
 | 
						|
	 * explicit one in memcg_kmem_mark_dead().
 | 
						|
	 */
 | 
						|
	if (memcg_kmem_test_and_clear_dead(memcg))
 | 
						|
		css_put(&memcg->css);
 | 
						|
}
 | 
						|
 | 
						|
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_lock(&memcg->slab_caches_mutex);
 | 
						|
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
 | 
						|
	mutex_unlock(&memcg->slab_caches_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper for acessing a memcg's index. It will be used as an index in the
 | 
						|
 * child cache array in kmem_cache, and also to derive its name. This function
 | 
						|
 * will return -1 when this is not a kmem-limited memcg.
 | 
						|
 */
 | 
						|
int memcg_cache_id(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	return memcg ? memcg->kmemcg_id : -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This ends up being protected by the set_limit mutex, during normal
 | 
						|
 * operation, because that is its main call site.
 | 
						|
 *
 | 
						|
 * But when we create a new cache, we can call this as well if its parent
 | 
						|
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 | 
						|
 */
 | 
						|
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int num, ret;
 | 
						|
 | 
						|
	num = ida_simple_get(&kmem_limited_groups,
 | 
						|
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
 | 
						|
	if (num < 0)
 | 
						|
		return num;
 | 
						|
	/*
 | 
						|
	 * After this point, kmem_accounted (that we test atomically in
 | 
						|
	 * the beginning of this conditional), is no longer 0. This
 | 
						|
	 * guarantees only one process will set the following boolean
 | 
						|
	 * to true. We don't need test_and_set because we're protected
 | 
						|
	 * by the set_limit_mutex anyway.
 | 
						|
	 */
 | 
						|
	memcg_kmem_set_activated(memcg);
 | 
						|
 | 
						|
	ret = memcg_update_all_caches(num+1);
 | 
						|
	if (ret) {
 | 
						|
		ida_simple_remove(&kmem_limited_groups, num);
 | 
						|
		memcg_kmem_clear_activated(memcg);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	memcg->kmemcg_id = num;
 | 
						|
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
 | 
						|
	mutex_init(&memcg->slab_caches_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static size_t memcg_caches_array_size(int num_groups)
 | 
						|
{
 | 
						|
	ssize_t size;
 | 
						|
	if (num_groups <= 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	size = 2 * num_groups;
 | 
						|
	if (size < MEMCG_CACHES_MIN_SIZE)
 | 
						|
		size = MEMCG_CACHES_MIN_SIZE;
 | 
						|
	else if (size > MEMCG_CACHES_MAX_SIZE)
 | 
						|
		size = MEMCG_CACHES_MAX_SIZE;
 | 
						|
 | 
						|
	return size;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We should update the current array size iff all caches updates succeed. This
 | 
						|
 * can only be done from the slab side. The slab mutex needs to be held when
 | 
						|
 * calling this.
 | 
						|
 */
 | 
						|
void memcg_update_array_size(int num)
 | 
						|
{
 | 
						|
	if (num > memcg_limited_groups_array_size)
 | 
						|
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
 | 
						|
}
 | 
						|
 | 
						|
static void kmem_cache_destroy_work_func(struct work_struct *w);
 | 
						|
 | 
						|
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
 | 
						|
{
 | 
						|
	struct memcg_cache_params *cur_params = s->memcg_params;
 | 
						|
 | 
						|
	VM_BUG_ON(!is_root_cache(s));
 | 
						|
 | 
						|
	if (num_groups > memcg_limited_groups_array_size) {
 | 
						|
		int i;
 | 
						|
		ssize_t size = memcg_caches_array_size(num_groups);
 | 
						|
 | 
						|
		size *= sizeof(void *);
 | 
						|
		size += offsetof(struct memcg_cache_params, memcg_caches);
 | 
						|
 | 
						|
		s->memcg_params = kzalloc(size, GFP_KERNEL);
 | 
						|
		if (!s->memcg_params) {
 | 
						|
			s->memcg_params = cur_params;
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
 | 
						|
		s->memcg_params->is_root_cache = true;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * There is the chance it will be bigger than
 | 
						|
		 * memcg_limited_groups_array_size, if we failed an allocation
 | 
						|
		 * in a cache, in which case all caches updated before it, will
 | 
						|
		 * have a bigger array.
 | 
						|
		 *
 | 
						|
		 * But if that is the case, the data after
 | 
						|
		 * memcg_limited_groups_array_size is certainly unused
 | 
						|
		 */
 | 
						|
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
 | 
						|
			if (!cur_params->memcg_caches[i])
 | 
						|
				continue;
 | 
						|
			s->memcg_params->memcg_caches[i] =
 | 
						|
						cur_params->memcg_caches[i];
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Ideally, we would wait until all caches succeed, and only
 | 
						|
		 * then free the old one. But this is not worth the extra
 | 
						|
		 * pointer per-cache we'd have to have for this.
 | 
						|
		 *
 | 
						|
		 * It is not a big deal if some caches are left with a size
 | 
						|
		 * bigger than the others. And all updates will reset this
 | 
						|
		 * anyway.
 | 
						|
		 */
 | 
						|
		kfree(cur_params);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
 | 
						|
			 struct kmem_cache *root_cache)
 | 
						|
{
 | 
						|
	size_t size;
 | 
						|
 | 
						|
	if (!memcg_kmem_enabled())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!memcg) {
 | 
						|
		size = offsetof(struct memcg_cache_params, memcg_caches);
 | 
						|
		size += memcg_limited_groups_array_size * sizeof(void *);
 | 
						|
	} else
 | 
						|
		size = sizeof(struct memcg_cache_params);
 | 
						|
 | 
						|
	s->memcg_params = kzalloc(size, GFP_KERNEL);
 | 
						|
	if (!s->memcg_params)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	if (memcg) {
 | 
						|
		s->memcg_params->memcg = memcg;
 | 
						|
		s->memcg_params->root_cache = root_cache;
 | 
						|
		INIT_WORK(&s->memcg_params->destroy,
 | 
						|
				kmem_cache_destroy_work_func);
 | 
						|
	} else
 | 
						|
		s->memcg_params->is_root_cache = true;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void memcg_release_cache(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	struct kmem_cache *root;
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int id;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This happens, for instance, when a root cache goes away before we
 | 
						|
	 * add any memcg.
 | 
						|
	 */
 | 
						|
	if (!s->memcg_params)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (s->memcg_params->is_root_cache)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	memcg = s->memcg_params->memcg;
 | 
						|
	id  = memcg_cache_id(memcg);
 | 
						|
 | 
						|
	root = s->memcg_params->root_cache;
 | 
						|
	root->memcg_params->memcg_caches[id] = NULL;
 | 
						|
 | 
						|
	mutex_lock(&memcg->slab_caches_mutex);
 | 
						|
	list_del(&s->memcg_params->list);
 | 
						|
	mutex_unlock(&memcg->slab_caches_mutex);
 | 
						|
 | 
						|
	css_put(&memcg->css);
 | 
						|
out:
 | 
						|
	kfree(s->memcg_params);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * During the creation a new cache, we need to disable our accounting mechanism
 | 
						|
 * altogether. This is true even if we are not creating, but rather just
 | 
						|
 * enqueing new caches to be created.
 | 
						|
 *
 | 
						|
 * This is because that process will trigger allocations; some visible, like
 | 
						|
 * explicit kmallocs to auxiliary data structures, name strings and internal
 | 
						|
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 | 
						|
 * objects during debug.
 | 
						|
 *
 | 
						|
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 | 
						|
 * to it. This may not be a bounded recursion: since the first cache creation
 | 
						|
 * failed to complete (waiting on the allocation), we'll just try to create the
 | 
						|
 * cache again, failing at the same point.
 | 
						|
 *
 | 
						|
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 | 
						|
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 | 
						|
 * inside the following two functions.
 | 
						|
 */
 | 
						|
static inline void memcg_stop_kmem_account(void)
 | 
						|
{
 | 
						|
	VM_BUG_ON(!current->mm);
 | 
						|
	current->memcg_kmem_skip_account++;
 | 
						|
}
 | 
						|
 | 
						|
static inline void memcg_resume_kmem_account(void)
 | 
						|
{
 | 
						|
	VM_BUG_ON(!current->mm);
 | 
						|
	current->memcg_kmem_skip_account--;
 | 
						|
}
 | 
						|
 | 
						|
static void kmem_cache_destroy_work_func(struct work_struct *w)
 | 
						|
{
 | 
						|
	struct kmem_cache *cachep;
 | 
						|
	struct memcg_cache_params *p;
 | 
						|
 | 
						|
	p = container_of(w, struct memcg_cache_params, destroy);
 | 
						|
 | 
						|
	cachep = memcg_params_to_cache(p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we get down to 0 after shrink, we could delete right away.
 | 
						|
	 * However, memcg_release_pages() already puts us back in the workqueue
 | 
						|
	 * in that case. If we proceed deleting, we'll get a dangling
 | 
						|
	 * reference, and removing the object from the workqueue in that case
 | 
						|
	 * is unnecessary complication. We are not a fast path.
 | 
						|
	 *
 | 
						|
	 * Note that this case is fundamentally different from racing with
 | 
						|
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
 | 
						|
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
 | 
						|
	 * into the queue, but doing so from inside the worker racing to
 | 
						|
	 * destroy it.
 | 
						|
	 *
 | 
						|
	 * So if we aren't down to zero, we'll just schedule a worker and try
 | 
						|
	 * again
 | 
						|
	 */
 | 
						|
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
 | 
						|
		kmem_cache_shrink(cachep);
 | 
						|
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
 | 
						|
			return;
 | 
						|
	} else
 | 
						|
		kmem_cache_destroy(cachep);
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	if (!cachep->memcg_params->dead)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There are many ways in which we can get here.
 | 
						|
	 *
 | 
						|
	 * We can get to a memory-pressure situation while the delayed work is
 | 
						|
	 * still pending to run. The vmscan shrinkers can then release all
 | 
						|
	 * cache memory and get us to destruction. If this is the case, we'll
 | 
						|
	 * be executed twice, which is a bug (the second time will execute over
 | 
						|
	 * bogus data). In this case, cancelling the work should be fine.
 | 
						|
	 *
 | 
						|
	 * But we can also get here from the worker itself, if
 | 
						|
	 * kmem_cache_shrink is enough to shake all the remaining objects and
 | 
						|
	 * get the page count to 0. In this case, we'll deadlock if we try to
 | 
						|
	 * cancel the work (the worker runs with an internal lock held, which
 | 
						|
	 * is the same lock we would hold for cancel_work_sync().)
 | 
						|
	 *
 | 
						|
	 * Since we can't possibly know who got us here, just refrain from
 | 
						|
	 * running if there is already work pending
 | 
						|
	 */
 | 
						|
	if (work_pending(&cachep->memcg_params->destroy))
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * We have to defer the actual destroying to a workqueue, because
 | 
						|
	 * we might currently be in a context that cannot sleep.
 | 
						|
	 */
 | 
						|
	schedule_work(&cachep->memcg_params->destroy);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This lock protects updaters, not readers. We want readers to be as fast as
 | 
						|
 * they can, and they will either see NULL or a valid cache value. Our model
 | 
						|
 * allow them to see NULL, in which case the root memcg will be selected.
 | 
						|
 *
 | 
						|
 * We need this lock because multiple allocations to the same cache from a non
 | 
						|
 * will span more than one worker. Only one of them can create the cache.
 | 
						|
 */
 | 
						|
static DEFINE_MUTEX(memcg_cache_mutex);
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with memcg_cache_mutex held
 | 
						|
 */
 | 
						|
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
 | 
						|
					 struct kmem_cache *s)
 | 
						|
{
 | 
						|
	struct kmem_cache *new;
 | 
						|
	static char *tmp_name = NULL;
 | 
						|
 | 
						|
	lockdep_assert_held(&memcg_cache_mutex);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * kmem_cache_create_memcg duplicates the given name and
 | 
						|
	 * cgroup_name for this name requires RCU context.
 | 
						|
	 * This static temporary buffer is used to prevent from
 | 
						|
	 * pointless shortliving allocation.
 | 
						|
	 */
 | 
						|
	if (!tmp_name) {
 | 
						|
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
 | 
						|
		if (!tmp_name)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
 | 
						|
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
 | 
						|
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
 | 
						|
 | 
						|
	if (new)
 | 
						|
		new->allocflags |= __GFP_KMEMCG;
 | 
						|
 | 
						|
	return new;
 | 
						|
}
 | 
						|
 | 
						|
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
 | 
						|
						  struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	struct kmem_cache *new_cachep;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	BUG_ON(!memcg_can_account_kmem(memcg));
 | 
						|
 | 
						|
	idx = memcg_cache_id(memcg);
 | 
						|
 | 
						|
	mutex_lock(&memcg_cache_mutex);
 | 
						|
	new_cachep = cache_from_memcg_idx(cachep, idx);
 | 
						|
	if (new_cachep) {
 | 
						|
		css_put(&memcg->css);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	new_cachep = kmem_cache_dup(memcg, cachep);
 | 
						|
	if (new_cachep == NULL) {
 | 
						|
		new_cachep = cachep;
 | 
						|
		css_put(&memcg->css);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
 | 
						|
 | 
						|
	cachep->memcg_params->memcg_caches[idx] = new_cachep;
 | 
						|
	/*
 | 
						|
	 * the readers won't lock, make sure everybody sees the updated value,
 | 
						|
	 * so they won't put stuff in the queue again for no reason
 | 
						|
	 */
 | 
						|
	wmb();
 | 
						|
out:
 | 
						|
	mutex_unlock(&memcg_cache_mutex);
 | 
						|
	return new_cachep;
 | 
						|
}
 | 
						|
 | 
						|
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	struct kmem_cache *c;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!s->memcg_params)
 | 
						|
		return;
 | 
						|
	if (!s->memcg_params->is_root_cache)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the cache is being destroyed, we trust that there is no one else
 | 
						|
	 * requesting objects from it. Even if there are, the sanity checks in
 | 
						|
	 * kmem_cache_destroy should caught this ill-case.
 | 
						|
	 *
 | 
						|
	 * Still, we don't want anyone else freeing memcg_caches under our
 | 
						|
	 * noses, which can happen if a new memcg comes to life. As usual,
 | 
						|
	 * we'll take the set_limit_mutex to protect ourselves against this.
 | 
						|
	 */
 | 
						|
	mutex_lock(&set_limit_mutex);
 | 
						|
	for_each_memcg_cache_index(i) {
 | 
						|
		c = cache_from_memcg_idx(s, i);
 | 
						|
		if (!c)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We will now manually delete the caches, so to avoid races
 | 
						|
		 * we need to cancel all pending destruction workers and
 | 
						|
		 * proceed with destruction ourselves.
 | 
						|
		 *
 | 
						|
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
 | 
						|
		 * and that could spawn the workers again: it is likely that
 | 
						|
		 * the cache still have active pages until this very moment.
 | 
						|
		 * This would lead us back to mem_cgroup_destroy_cache.
 | 
						|
		 *
 | 
						|
		 * But that will not execute at all if the "dead" flag is not
 | 
						|
		 * set, so flip it down to guarantee we are in control.
 | 
						|
		 */
 | 
						|
		c->memcg_params->dead = false;
 | 
						|
		cancel_work_sync(&c->memcg_params->destroy);
 | 
						|
		kmem_cache_destroy(c);
 | 
						|
	}
 | 
						|
	mutex_unlock(&set_limit_mutex);
 | 
						|
}
 | 
						|
 | 
						|
struct create_work {
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	struct kmem_cache *cachep;
 | 
						|
	struct work_struct work;
 | 
						|
};
 | 
						|
 | 
						|
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct kmem_cache *cachep;
 | 
						|
	struct memcg_cache_params *params;
 | 
						|
 | 
						|
	if (!memcg_kmem_is_active(memcg))
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_lock(&memcg->slab_caches_mutex);
 | 
						|
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
 | 
						|
		cachep = memcg_params_to_cache(params);
 | 
						|
		cachep->memcg_params->dead = true;
 | 
						|
		schedule_work(&cachep->memcg_params->destroy);
 | 
						|
	}
 | 
						|
	mutex_unlock(&memcg->slab_caches_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_create_cache_work_func(struct work_struct *w)
 | 
						|
{
 | 
						|
	struct create_work *cw;
 | 
						|
 | 
						|
	cw = container_of(w, struct create_work, work);
 | 
						|
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
 | 
						|
	kfree(cw);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Enqueue the creation of a per-memcg kmem_cache.
 | 
						|
 */
 | 
						|
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
 | 
						|
					 struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	struct create_work *cw;
 | 
						|
 | 
						|
	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
 | 
						|
	if (cw == NULL) {
 | 
						|
		css_put(&memcg->css);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	cw->memcg = memcg;
 | 
						|
	cw->cachep = cachep;
 | 
						|
 | 
						|
	INIT_WORK(&cw->work, memcg_create_cache_work_func);
 | 
						|
	schedule_work(&cw->work);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
 | 
						|
				       struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We need to stop accounting when we kmalloc, because if the
 | 
						|
	 * corresponding kmalloc cache is not yet created, the first allocation
 | 
						|
	 * in __memcg_create_cache_enqueue will recurse.
 | 
						|
	 *
 | 
						|
	 * However, it is better to enclose the whole function. Depending on
 | 
						|
	 * the debugging options enabled, INIT_WORK(), for instance, can
 | 
						|
	 * trigger an allocation. This too, will make us recurse. Because at
 | 
						|
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
 | 
						|
	 * the safest choice is to do it like this, wrapping the whole function.
 | 
						|
	 */
 | 
						|
	memcg_stop_kmem_account();
 | 
						|
	__memcg_create_cache_enqueue(memcg, cachep);
 | 
						|
	memcg_resume_kmem_account();
 | 
						|
}
 | 
						|
/*
 | 
						|
 * Return the kmem_cache we're supposed to use for a slab allocation.
 | 
						|
 * We try to use the current memcg's version of the cache.
 | 
						|
 *
 | 
						|
 * If the cache does not exist yet, if we are the first user of it,
 | 
						|
 * we either create it immediately, if possible, or create it asynchronously
 | 
						|
 * in a workqueue.
 | 
						|
 * In the latter case, we will let the current allocation go through with
 | 
						|
 * the original cache.
 | 
						|
 *
 | 
						|
 * Can't be called in interrupt context or from kernel threads.
 | 
						|
 * This function needs to be called with rcu_read_lock() held.
 | 
						|
 */
 | 
						|
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
 | 
						|
					  gfp_t gfp)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	VM_BUG_ON(!cachep->memcg_params);
 | 
						|
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
 | 
						|
 | 
						|
	if (!current->mm || current->memcg_kmem_skip_account)
 | 
						|
		return cachep;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
 | 
						|
 | 
						|
	if (!memcg_can_account_kmem(memcg))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	idx = memcg_cache_id(memcg);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * barrier to mare sure we're always seeing the up to date value.  The
 | 
						|
	 * code updating memcg_caches will issue a write barrier to match this.
 | 
						|
	 */
 | 
						|
	read_barrier_depends();
 | 
						|
	if (likely(cache_from_memcg_idx(cachep, idx))) {
 | 
						|
		cachep = cache_from_memcg_idx(cachep, idx);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The corresponding put will be done in the workqueue. */
 | 
						|
	if (!css_tryget(&memcg->css))
 | 
						|
		goto out;
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are in a safe context (can wait, and not in interrupt
 | 
						|
	 * context), we could be be predictable and return right away.
 | 
						|
	 * This would guarantee that the allocation being performed
 | 
						|
	 * already belongs in the new cache.
 | 
						|
	 *
 | 
						|
	 * However, there are some clashes that can arrive from locking.
 | 
						|
	 * For instance, because we acquire the slab_mutex while doing
 | 
						|
	 * kmem_cache_dup, this means no further allocation could happen
 | 
						|
	 * with the slab_mutex held.
 | 
						|
	 *
 | 
						|
	 * Also, because cache creation issue get_online_cpus(), this
 | 
						|
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
 | 
						|
	 * that ends up reversed during cpu hotplug. (cpuset allocates
 | 
						|
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
 | 
						|
	 * better to defer everything.
 | 
						|
	 */
 | 
						|
	memcg_create_cache_enqueue(memcg, cachep);
 | 
						|
	return cachep;
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
	return cachep;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__memcg_kmem_get_cache);
 | 
						|
 | 
						|
/*
 | 
						|
 * We need to verify if the allocation against current->mm->owner's memcg is
 | 
						|
 * possible for the given order. But the page is not allocated yet, so we'll
 | 
						|
 * need a further commit step to do the final arrangements.
 | 
						|
 *
 | 
						|
 * It is possible for the task to switch cgroups in this mean time, so at
 | 
						|
 * commit time, we can't rely on task conversion any longer.  We'll then use
 | 
						|
 * the handle argument to return to the caller which cgroup we should commit
 | 
						|
 * against. We could also return the memcg directly and avoid the pointer
 | 
						|
 * passing, but a boolean return value gives better semantics considering
 | 
						|
 * the compiled-out case as well.
 | 
						|
 *
 | 
						|
 * Returning true means the allocation is possible.
 | 
						|
 */
 | 
						|
bool
 | 
						|
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	*_memcg = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Disabling accounting is only relevant for some specific memcg
 | 
						|
	 * internal allocations. Therefore we would initially not have such
 | 
						|
	 * check here, since direct calls to the page allocator that are marked
 | 
						|
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
 | 
						|
	 * concerned with cache allocations, and by having this test at
 | 
						|
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
 | 
						|
	 * the root cache and bypass the memcg cache altogether.
 | 
						|
	 *
 | 
						|
	 * There is one exception, though: the SLUB allocator does not create
 | 
						|
	 * large order caches, but rather service large kmallocs directly from
 | 
						|
	 * the page allocator. Therefore, the following sequence when backed by
 | 
						|
	 * the SLUB allocator:
 | 
						|
	 *
 | 
						|
	 *	memcg_stop_kmem_account();
 | 
						|
	 *	kmalloc(<large_number>)
 | 
						|
	 *	memcg_resume_kmem_account();
 | 
						|
	 *
 | 
						|
	 * would effectively ignore the fact that we should skip accounting,
 | 
						|
	 * since it will drive us directly to this function without passing
 | 
						|
	 * through the cache selector memcg_kmem_get_cache. Such large
 | 
						|
	 * allocations are extremely rare but can happen, for instance, for the
 | 
						|
	 * cache arrays. We bring this test here.
 | 
						|
	 */
 | 
						|
	if (!current->mm || current->memcg_kmem_skip_account)
 | 
						|
		return true;
 | 
						|
 | 
						|
	memcg = try_get_mem_cgroup_from_mm(current->mm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
 | 
						|
	 * isn't much we can do without complicating this too much, and it would
 | 
						|
	 * be gfp-dependent anyway. Just let it go
 | 
						|
	 */
 | 
						|
	if (unlikely(!memcg))
 | 
						|
		return true;
 | 
						|
 | 
						|
	if (!memcg_can_account_kmem(memcg)) {
 | 
						|
		css_put(&memcg->css);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
 | 
						|
	if (!ret)
 | 
						|
		*_memcg = memcg;
 | 
						|
 | 
						|
	css_put(&memcg->css);
 | 
						|
	return (ret == 0);
 | 
						|
}
 | 
						|
 | 
						|
void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
 | 
						|
			      int order)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc;
 | 
						|
 | 
						|
	VM_BUG_ON(mem_cgroup_is_root(memcg));
 | 
						|
 | 
						|
	/* The page allocation failed. Revert */
 | 
						|
	if (!page) {
 | 
						|
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	pc->mem_cgroup = memcg;
 | 
						|
	SetPageCgroupUsed(pc);
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
}
 | 
						|
 | 
						|
void __memcg_kmem_uncharge_pages(struct page *page, int order)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	/*
 | 
						|
	 * Fast unlocked return. Theoretically might have changed, have to
 | 
						|
	 * check again after locking.
 | 
						|
	 */
 | 
						|
	if (!PageCgroupUsed(pc))
 | 
						|
		return;
 | 
						|
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	if (PageCgroupUsed(pc)) {
 | 
						|
		memcg = pc->mem_cgroup;
 | 
						|
		ClearPageCgroupUsed(pc);
 | 
						|
	}
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We trust that only if there is a memcg associated with the page, it
 | 
						|
	 * is a valid allocation
 | 
						|
	 */
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	VM_BUG_ON(mem_cgroup_is_root(memcg));
 | 
						|
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMCG_KMEM */
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
 | 
						|
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
 | 
						|
/*
 | 
						|
 * Because tail pages are not marked as "used", set it. We're under
 | 
						|
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 | 
						|
 * charge/uncharge will be never happen and move_account() is done under
 | 
						|
 * compound_lock(), so we don't have to take care of races.
 | 
						|
 */
 | 
						|
void mem_cgroup_split_huge_fixup(struct page *head)
 | 
						|
{
 | 
						|
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	memcg = head_pc->mem_cgroup;
 | 
						|
	for (i = 1; i < HPAGE_PMD_NR; i++) {
 | 
						|
		pc = head_pc + i;
 | 
						|
		pc->mem_cgroup = memcg;
 | 
						|
		smp_wmb();/* see __commit_charge() */
 | 
						|
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
 | 
						|
	}
 | 
						|
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 | 
						|
		       HPAGE_PMD_NR);
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
 | 
						|
static inline
 | 
						|
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
 | 
						|
					struct mem_cgroup *to,
 | 
						|
					unsigned int nr_pages,
 | 
						|
					enum mem_cgroup_stat_index idx)
 | 
						|
{
 | 
						|
	/* Update stat data for mem_cgroup */
 | 
						|
	preempt_disable();
 | 
						|
	__this_cpu_sub(from->stat->count[idx], nr_pages);
 | 
						|
	__this_cpu_add(to->stat->count[idx], nr_pages);
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_move_account - move account of the page
 | 
						|
 * @page: the page
 | 
						|
 * @nr_pages: number of regular pages (>1 for huge pages)
 | 
						|
 * @pc:	page_cgroup of the page.
 | 
						|
 * @from: mem_cgroup which the page is moved from.
 | 
						|
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 | 
						|
 *
 | 
						|
 * The caller must confirm following.
 | 
						|
 * - page is not on LRU (isolate_page() is useful.)
 | 
						|
 * - compound_lock is held when nr_pages > 1
 | 
						|
 *
 | 
						|
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 | 
						|
 * from old cgroup.
 | 
						|
 */
 | 
						|
static int mem_cgroup_move_account(struct page *page,
 | 
						|
				   unsigned int nr_pages,
 | 
						|
				   struct page_cgroup *pc,
 | 
						|
				   struct mem_cgroup *from,
 | 
						|
				   struct mem_cgroup *to)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
	bool anon = PageAnon(page);
 | 
						|
 | 
						|
	VM_BUG_ON(from == to);
 | 
						|
	VM_BUG_ON(PageLRU(page));
 | 
						|
	/*
 | 
						|
	 * The page is isolated from LRU. So, collapse function
 | 
						|
	 * will not handle this page. But page splitting can happen.
 | 
						|
	 * Do this check under compound_page_lock(). The caller should
 | 
						|
	 * hold it.
 | 
						|
	 */
 | 
						|
	ret = -EBUSY;
 | 
						|
	if (nr_pages > 1 && !PageTransHuge(page))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
 | 
						|
	ret = -EINVAL;
 | 
						|
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	move_lock_mem_cgroup(from, &flags);
 | 
						|
 | 
						|
	if (!anon && page_mapped(page))
 | 
						|
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
 | 
						|
			MEM_CGROUP_STAT_FILE_MAPPED);
 | 
						|
 | 
						|
	if (PageWriteback(page))
 | 
						|
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
 | 
						|
			MEM_CGROUP_STAT_WRITEBACK);
 | 
						|
 | 
						|
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
 | 
						|
 | 
						|
	/* caller should have done css_get */
 | 
						|
	pc->mem_cgroup = to;
 | 
						|
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
 | 
						|
	move_unlock_mem_cgroup(from, &flags);
 | 
						|
	ret = 0;
 | 
						|
unlock:
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
	/*
 | 
						|
	 * check events
 | 
						|
	 */
 | 
						|
	memcg_check_events(to, page);
 | 
						|
	memcg_check_events(from, page);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_move_parent - moves page to the parent group
 | 
						|
 * @page: the page to move
 | 
						|
 * @pc: page_cgroup of the page
 | 
						|
 * @child: page's cgroup
 | 
						|
 *
 | 
						|
 * move charges to its parent or the root cgroup if the group has no
 | 
						|
 * parent (aka use_hierarchy==0).
 | 
						|
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 | 
						|
 * mem_cgroup_move_account fails) the failure is always temporary and
 | 
						|
 * it signals a race with a page removal/uncharge or migration. In the
 | 
						|
 * first case the page is on the way out and it will vanish from the LRU
 | 
						|
 * on the next attempt and the call should be retried later.
 | 
						|
 * Isolation from the LRU fails only if page has been isolated from
 | 
						|
 * the LRU since we looked at it and that usually means either global
 | 
						|
 * reclaim or migration going on. The page will either get back to the
 | 
						|
 * LRU or vanish.
 | 
						|
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 | 
						|
 * (!PageCgroupUsed) or moved to a different group. The page will
 | 
						|
 * disappear in the next attempt.
 | 
						|
 */
 | 
						|
static int mem_cgroup_move_parent(struct page *page,
 | 
						|
				  struct page_cgroup *pc,
 | 
						|
				  struct mem_cgroup *child)
 | 
						|
{
 | 
						|
	struct mem_cgroup *parent;
 | 
						|
	unsigned int nr_pages;
 | 
						|
	unsigned long uninitialized_var(flags);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	VM_BUG_ON(mem_cgroup_is_root(child));
 | 
						|
 | 
						|
	ret = -EBUSY;
 | 
						|
	if (!get_page_unless_zero(page))
 | 
						|
		goto out;
 | 
						|
	if (isolate_lru_page(page))
 | 
						|
		goto put;
 | 
						|
 | 
						|
	nr_pages = hpage_nr_pages(page);
 | 
						|
 | 
						|
	parent = parent_mem_cgroup(child);
 | 
						|
	/*
 | 
						|
	 * If no parent, move charges to root cgroup.
 | 
						|
	 */
 | 
						|
	if (!parent)
 | 
						|
		parent = root_mem_cgroup;
 | 
						|
 | 
						|
	if (nr_pages > 1) {
 | 
						|
		VM_BUG_ON(!PageTransHuge(page));
 | 
						|
		flags = compound_lock_irqsave(page);
 | 
						|
	}
 | 
						|
 | 
						|
	ret = mem_cgroup_move_account(page, nr_pages,
 | 
						|
				pc, child, parent);
 | 
						|
	if (!ret)
 | 
						|
		__mem_cgroup_cancel_local_charge(child, nr_pages);
 | 
						|
 | 
						|
	if (nr_pages > 1)
 | 
						|
		compound_unlock_irqrestore(page, flags);
 | 
						|
	putback_lru_page(page);
 | 
						|
put:
 | 
						|
	put_page(page);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Charge the memory controller for page usage.
 | 
						|
 * Return
 | 
						|
 * 0 if the charge was successful
 | 
						|
 * < 0 if the cgroup is over its limit
 | 
						|
 */
 | 
						|
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
 | 
						|
				gfp_t gfp_mask, enum charge_type ctype)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	unsigned int nr_pages = 1;
 | 
						|
	bool oom = true;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (PageTransHuge(page)) {
 | 
						|
		nr_pages <<= compound_order(page);
 | 
						|
		VM_BUG_ON(!PageTransHuge(page));
 | 
						|
		/*
 | 
						|
		 * Never OOM-kill a process for a huge page.  The
 | 
						|
		 * fault handler will fall back to regular pages.
 | 
						|
		 */
 | 
						|
		oom = false;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
 | 
						|
	if (ret == -ENOMEM)
 | 
						|
		return ret;
 | 
						|
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_newpage_charge(struct page *page,
 | 
						|
			      struct mm_struct *mm, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return 0;
 | 
						|
	VM_BUG_ON(page_mapped(page));
 | 
						|
	VM_BUG_ON(page->mapping && !PageAnon(page));
 | 
						|
	VM_BUG_ON(!mm);
 | 
						|
	return mem_cgroup_charge_common(page, mm, gfp_mask,
 | 
						|
					MEM_CGROUP_CHARGE_TYPE_ANON);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 | 
						|
 * And when try_charge() successfully returns, one refcnt to memcg without
 | 
						|
 * struct page_cgroup is acquired. This refcnt will be consumed by
 | 
						|
 * "commit()" or removed by "cancel()"
 | 
						|
 */
 | 
						|
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
 | 
						|
					  struct page *page,
 | 
						|
					  gfp_t mask,
 | 
						|
					  struct mem_cgroup **memcgp)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	/*
 | 
						|
	 * Every swap fault against a single page tries to charge the
 | 
						|
	 * page, bail as early as possible.  shmem_unuse() encounters
 | 
						|
	 * already charged pages, too.  The USED bit is protected by
 | 
						|
	 * the page lock, which serializes swap cache removal, which
 | 
						|
	 * in turn serializes uncharging.
 | 
						|
	 */
 | 
						|
	if (PageCgroupUsed(pc))
 | 
						|
		return 0;
 | 
						|
	if (!do_swap_account)
 | 
						|
		goto charge_cur_mm;
 | 
						|
	memcg = try_get_mem_cgroup_from_page(page);
 | 
						|
	if (!memcg)
 | 
						|
		goto charge_cur_mm;
 | 
						|
	*memcgp = memcg;
 | 
						|
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
 | 
						|
	css_put(&memcg->css);
 | 
						|
	if (ret == -EINTR)
 | 
						|
		ret = 0;
 | 
						|
	return ret;
 | 
						|
charge_cur_mm:
 | 
						|
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
 | 
						|
	if (ret == -EINTR)
 | 
						|
		ret = 0;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
 | 
						|
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
 | 
						|
{
 | 
						|
	*memcgp = NULL;
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return 0;
 | 
						|
	/*
 | 
						|
	 * A racing thread's fault, or swapoff, may have already
 | 
						|
	 * updated the pte, and even removed page from swap cache: in
 | 
						|
	 * those cases unuse_pte()'s pte_same() test will fail; but
 | 
						|
	 * there's also a KSM case which does need to charge the page.
 | 
						|
	 */
 | 
						|
	if (!PageSwapCache(page)) {
 | 
						|
		int ret;
 | 
						|
 | 
						|
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
 | 
						|
		if (ret == -EINTR)
 | 
						|
			ret = 0;
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
	__mem_cgroup_cancel_charge(memcg, 1);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
 | 
						|
					enum charge_type ctype)
 | 
						|
{
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
 | 
						|
	/*
 | 
						|
	 * Now swap is on-memory. This means this page may be
 | 
						|
	 * counted both as mem and swap....double count.
 | 
						|
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
 | 
						|
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
 | 
						|
	 * may call delete_from_swap_cache() before reach here.
 | 
						|
	 */
 | 
						|
	if (do_swap_account && PageSwapCache(page)) {
 | 
						|
		swp_entry_t ent = {.val = page_private(page)};
 | 
						|
		mem_cgroup_uncharge_swap(ent);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_commit_charge_swapin(struct page *page,
 | 
						|
				     struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	__mem_cgroup_commit_charge_swapin(page, memcg,
 | 
						|
					  MEM_CGROUP_CHARGE_TYPE_ANON);
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
 | 
						|
				gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return 0;
 | 
						|
	if (PageCompound(page))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!PageSwapCache(page))
 | 
						|
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
 | 
						|
	else { /* page is swapcache/shmem */
 | 
						|
		ret = __mem_cgroup_try_charge_swapin(mm, page,
 | 
						|
						     gfp_mask, &memcg);
 | 
						|
		if (!ret)
 | 
						|
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
 | 
						|
				   unsigned int nr_pages,
 | 
						|
				   const enum charge_type ctype)
 | 
						|
{
 | 
						|
	struct memcg_batch_info *batch = NULL;
 | 
						|
	bool uncharge_memsw = true;
 | 
						|
 | 
						|
	/* If swapout, usage of swap doesn't decrease */
 | 
						|
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
 | 
						|
		uncharge_memsw = false;
 | 
						|
 | 
						|
	batch = ¤t->memcg_batch;
 | 
						|
	/*
 | 
						|
	 * In usual, we do css_get() when we remember memcg pointer.
 | 
						|
	 * But in this case, we keep res->usage until end of a series of
 | 
						|
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
 | 
						|
	 */
 | 
						|
	if (!batch->memcg)
 | 
						|
		batch->memcg = memcg;
 | 
						|
	/*
 | 
						|
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
 | 
						|
	 * In those cases, all pages freed continuously can be expected to be in
 | 
						|
	 * the same cgroup and we have chance to coalesce uncharges.
 | 
						|
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
 | 
						|
	 * because we want to do uncharge as soon as possible.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
 | 
						|
		goto direct_uncharge;
 | 
						|
 | 
						|
	if (nr_pages > 1)
 | 
						|
		goto direct_uncharge;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In typical case, batch->memcg == mem. This means we can
 | 
						|
	 * merge a series of uncharges to an uncharge of res_counter.
 | 
						|
	 * If not, we uncharge res_counter ony by one.
 | 
						|
	 */
 | 
						|
	if (batch->memcg != memcg)
 | 
						|
		goto direct_uncharge;
 | 
						|
	/* remember freed charge and uncharge it later */
 | 
						|
	batch->nr_pages++;
 | 
						|
	if (uncharge_memsw)
 | 
						|
		batch->memsw_nr_pages++;
 | 
						|
	return;
 | 
						|
direct_uncharge:
 | 
						|
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
 | 
						|
	if (uncharge_memsw)
 | 
						|
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
 | 
						|
	if (unlikely(batch->memcg != memcg))
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * uncharge if !page_mapped(page)
 | 
						|
 */
 | 
						|
static struct mem_cgroup *
 | 
						|
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
 | 
						|
			     bool end_migration)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	unsigned int nr_pages = 1;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	bool anon;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (PageTransHuge(page)) {
 | 
						|
		nr_pages <<= compound_order(page);
 | 
						|
		VM_BUG_ON(!PageTransHuge(page));
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Check if our page_cgroup is valid
 | 
						|
	 */
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	if (unlikely(!PageCgroupUsed(pc)))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
 | 
						|
	memcg = pc->mem_cgroup;
 | 
						|
 | 
						|
	if (!PageCgroupUsed(pc))
 | 
						|
		goto unlock_out;
 | 
						|
 | 
						|
	anon = PageAnon(page);
 | 
						|
 | 
						|
	switch (ctype) {
 | 
						|
	case MEM_CGROUP_CHARGE_TYPE_ANON:
 | 
						|
		/*
 | 
						|
		 * Generally PageAnon tells if it's the anon statistics to be
 | 
						|
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
 | 
						|
		 * used before page reached the stage of being marked PageAnon.
 | 
						|
		 */
 | 
						|
		anon = true;
 | 
						|
		/* fallthrough */
 | 
						|
	case MEM_CGROUP_CHARGE_TYPE_DROP:
 | 
						|
		/* See mem_cgroup_prepare_migration() */
 | 
						|
		if (page_mapped(page))
 | 
						|
			goto unlock_out;
 | 
						|
		/*
 | 
						|
		 * Pages under migration may not be uncharged.  But
 | 
						|
		 * end_migration() /must/ be the one uncharging the
 | 
						|
		 * unused post-migration page and so it has to call
 | 
						|
		 * here with the migration bit still set.  See the
 | 
						|
		 * res_counter handling below.
 | 
						|
		 */
 | 
						|
		if (!end_migration && PageCgroupMigration(pc))
 | 
						|
			goto unlock_out;
 | 
						|
		break;
 | 
						|
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
 | 
						|
		if (!PageAnon(page)) {	/* Shared memory */
 | 
						|
			if (page->mapping && !page_is_file_cache(page))
 | 
						|
				goto unlock_out;
 | 
						|
		} else if (page_mapped(page)) /* Anon */
 | 
						|
				goto unlock_out;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
 | 
						|
 | 
						|
	ClearPageCgroupUsed(pc);
 | 
						|
	/*
 | 
						|
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
 | 
						|
	 * freed from LRU. This is safe because uncharged page is expected not
 | 
						|
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
 | 
						|
	 * special functions.
 | 
						|
	 */
 | 
						|
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
	/*
 | 
						|
	 * even after unlock, we have memcg->res.usage here and this memcg
 | 
						|
	 * will never be freed, so it's safe to call css_get().
 | 
						|
	 */
 | 
						|
	memcg_check_events(memcg, page);
 | 
						|
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
 | 
						|
		mem_cgroup_swap_statistics(memcg, true);
 | 
						|
		css_get(&memcg->css);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Migration does not charge the res_counter for the
 | 
						|
	 * replacement page, so leave it alone when phasing out the
 | 
						|
	 * page that is unused after the migration.
 | 
						|
	 */
 | 
						|
	if (!end_migration && !mem_cgroup_is_root(memcg))
 | 
						|
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
 | 
						|
 | 
						|
	return memcg;
 | 
						|
 | 
						|
unlock_out:
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_uncharge_page(struct page *page)
 | 
						|
{
 | 
						|
	/* early check. */
 | 
						|
	if (page_mapped(page))
 | 
						|
		return;
 | 
						|
	VM_BUG_ON(page->mapping && !PageAnon(page));
 | 
						|
	/*
 | 
						|
	 * If the page is in swap cache, uncharge should be deferred
 | 
						|
	 * to the swap path, which also properly accounts swap usage
 | 
						|
	 * and handles memcg lifetime.
 | 
						|
	 *
 | 
						|
	 * Note that this check is not stable and reclaim may add the
 | 
						|
	 * page to swap cache at any time after this.  However, if the
 | 
						|
	 * page is not in swap cache by the time page->mapcount hits
 | 
						|
	 * 0, there won't be any page table references to the swap
 | 
						|
	 * slot, and reclaim will free it and not actually write the
 | 
						|
	 * page to disk.
 | 
						|
	 */
 | 
						|
	if (PageSwapCache(page))
 | 
						|
		return;
 | 
						|
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_uncharge_cache_page(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON(page_mapped(page));
 | 
						|
	VM_BUG_ON(page->mapping);
 | 
						|
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 | 
						|
 * In that cases, pages are freed continuously and we can expect pages
 | 
						|
 * are in the same memcg. All these calls itself limits the number of
 | 
						|
 * pages freed at once, then uncharge_start/end() is called properly.
 | 
						|
 * This may be called prural(2) times in a context,
 | 
						|
 */
 | 
						|
 | 
						|
void mem_cgroup_uncharge_start(void)
 | 
						|
{
 | 
						|
	current->memcg_batch.do_batch++;
 | 
						|
	/* We can do nest. */
 | 
						|
	if (current->memcg_batch.do_batch == 1) {
 | 
						|
		current->memcg_batch.memcg = NULL;
 | 
						|
		current->memcg_batch.nr_pages = 0;
 | 
						|
		current->memcg_batch.memsw_nr_pages = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_uncharge_end(void)
 | 
						|
{
 | 
						|
	struct memcg_batch_info *batch = ¤t->memcg_batch;
 | 
						|
 | 
						|
	if (!batch->do_batch)
 | 
						|
		return;
 | 
						|
 | 
						|
	batch->do_batch--;
 | 
						|
	if (batch->do_batch) /* If stacked, do nothing. */
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!batch->memcg)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * This "batch->memcg" is valid without any css_get/put etc...
 | 
						|
	 * bacause we hide charges behind us.
 | 
						|
	 */
 | 
						|
	if (batch->nr_pages)
 | 
						|
		res_counter_uncharge(&batch->memcg->res,
 | 
						|
				     batch->nr_pages * PAGE_SIZE);
 | 
						|
	if (batch->memsw_nr_pages)
 | 
						|
		res_counter_uncharge(&batch->memcg->memsw,
 | 
						|
				     batch->memsw_nr_pages * PAGE_SIZE);
 | 
						|
	memcg_oom_recover(batch->memcg);
 | 
						|
	/* forget this pointer (for sanity check) */
 | 
						|
	batch->memcg = NULL;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SWAP
 | 
						|
/*
 | 
						|
 * called after __delete_from_swap_cache() and drop "page" account.
 | 
						|
 * memcg information is recorded to swap_cgroup of "ent"
 | 
						|
 */
 | 
						|
void
 | 
						|
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
 | 
						|
 | 
						|
	if (!swapout) /* this was a swap cache but the swap is unused ! */
 | 
						|
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
 | 
						|
 | 
						|
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * record memcg information,  if swapout && memcg != NULL,
 | 
						|
	 * css_get() was called in uncharge().
 | 
						|
	 */
 | 
						|
	if (do_swap_account && swapout && memcg)
 | 
						|
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_SWAP
 | 
						|
/*
 | 
						|
 * called from swap_entry_free(). remove record in swap_cgroup and
 | 
						|
 * uncharge "memsw" account.
 | 
						|
 */
 | 
						|
void mem_cgroup_uncharge_swap(swp_entry_t ent)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	unsigned short id;
 | 
						|
 | 
						|
	if (!do_swap_account)
 | 
						|
		return;
 | 
						|
 | 
						|
	id = swap_cgroup_record(ent, 0);
 | 
						|
	rcu_read_lock();
 | 
						|
	memcg = mem_cgroup_lookup(id);
 | 
						|
	if (memcg) {
 | 
						|
		/*
 | 
						|
		 * We uncharge this because swap is freed.
 | 
						|
		 * This memcg can be obsolete one. We avoid calling css_tryget
 | 
						|
		 */
 | 
						|
		if (!mem_cgroup_is_root(memcg))
 | 
						|
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
 | 
						|
		mem_cgroup_swap_statistics(memcg, false);
 | 
						|
		css_put(&memcg->css);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 | 
						|
 * @entry: swap entry to be moved
 | 
						|
 * @from:  mem_cgroup which the entry is moved from
 | 
						|
 * @to:  mem_cgroup which the entry is moved to
 | 
						|
 *
 | 
						|
 * It succeeds only when the swap_cgroup's record for this entry is the same
 | 
						|
 * as the mem_cgroup's id of @from.
 | 
						|
 *
 | 
						|
 * Returns 0 on success, -EINVAL on failure.
 | 
						|
 *
 | 
						|
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 | 
						|
 * both res and memsw, and called css_get().
 | 
						|
 */
 | 
						|
static int mem_cgroup_move_swap_account(swp_entry_t entry,
 | 
						|
				struct mem_cgroup *from, struct mem_cgroup *to)
 | 
						|
{
 | 
						|
	unsigned short old_id, new_id;
 | 
						|
 | 
						|
	old_id = mem_cgroup_id(from);
 | 
						|
	new_id = mem_cgroup_id(to);
 | 
						|
 | 
						|
	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
 | 
						|
		mem_cgroup_swap_statistics(from, false);
 | 
						|
		mem_cgroup_swap_statistics(to, true);
 | 
						|
		/*
 | 
						|
		 * This function is only called from task migration context now.
 | 
						|
		 * It postpones res_counter and refcount handling till the end
 | 
						|
		 * of task migration(mem_cgroup_clear_mc()) for performance
 | 
						|
		 * improvement. But we cannot postpone css_get(to)  because if
 | 
						|
		 * the process that has been moved to @to does swap-in, the
 | 
						|
		 * refcount of @to might be decreased to 0.
 | 
						|
		 *
 | 
						|
		 * We are in attach() phase, so the cgroup is guaranteed to be
 | 
						|
		 * alive, so we can just call css_get().
 | 
						|
		 */
 | 
						|
		css_get(&to->css);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
 | 
						|
				struct mem_cgroup *from, struct mem_cgroup *to)
 | 
						|
{
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 | 
						|
 * page belongs to.
 | 
						|
 */
 | 
						|
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
 | 
						|
				  struct mem_cgroup **memcgp)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	unsigned int nr_pages = 1;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	enum charge_type ctype;
 | 
						|
 | 
						|
	*memcgp = NULL;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	if (PageTransHuge(page))
 | 
						|
		nr_pages <<= compound_order(page);
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	if (PageCgroupUsed(pc)) {
 | 
						|
		memcg = pc->mem_cgroup;
 | 
						|
		css_get(&memcg->css);
 | 
						|
		/*
 | 
						|
		 * At migrating an anonymous page, its mapcount goes down
 | 
						|
		 * to 0 and uncharge() will be called. But, even if it's fully
 | 
						|
		 * unmapped, migration may fail and this page has to be
 | 
						|
		 * charged again. We set MIGRATION flag here and delay uncharge
 | 
						|
		 * until end_migration() is called
 | 
						|
		 *
 | 
						|
		 * Corner Case Thinking
 | 
						|
		 * A)
 | 
						|
		 * When the old page was mapped as Anon and it's unmap-and-freed
 | 
						|
		 * while migration was ongoing.
 | 
						|
		 * If unmap finds the old page, uncharge() of it will be delayed
 | 
						|
		 * until end_migration(). If unmap finds a new page, it's
 | 
						|
		 * uncharged when it make mapcount to be 1->0. If unmap code
 | 
						|
		 * finds swap_migration_entry, the new page will not be mapped
 | 
						|
		 * and end_migration() will find it(mapcount==0).
 | 
						|
		 *
 | 
						|
		 * B)
 | 
						|
		 * When the old page was mapped but migraion fails, the kernel
 | 
						|
		 * remaps it. A charge for it is kept by MIGRATION flag even
 | 
						|
		 * if mapcount goes down to 0. We can do remap successfully
 | 
						|
		 * without charging it again.
 | 
						|
		 *
 | 
						|
		 * C)
 | 
						|
		 * The "old" page is under lock_page() until the end of
 | 
						|
		 * migration, so, the old page itself will not be swapped-out.
 | 
						|
		 * If the new page is swapped out before end_migraton, our
 | 
						|
		 * hook to usual swap-out path will catch the event.
 | 
						|
		 */
 | 
						|
		if (PageAnon(page))
 | 
						|
			SetPageCgroupMigration(pc);
 | 
						|
	}
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
	/*
 | 
						|
	 * If the page is not charged at this point,
 | 
						|
	 * we return here.
 | 
						|
	 */
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	*memcgp = memcg;
 | 
						|
	/*
 | 
						|
	 * We charge new page before it's used/mapped. So, even if unlock_page()
 | 
						|
	 * is called before end_migration, we can catch all events on this new
 | 
						|
	 * page. In the case new page is migrated but not remapped, new page's
 | 
						|
	 * mapcount will be finally 0 and we call uncharge in end_migration().
 | 
						|
	 */
 | 
						|
	if (PageAnon(page))
 | 
						|
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
 | 
						|
	else
 | 
						|
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
 | 
						|
	/*
 | 
						|
	 * The page is committed to the memcg, but it's not actually
 | 
						|
	 * charged to the res_counter since we plan on replacing the
 | 
						|
	 * old one and only one page is going to be left afterwards.
 | 
						|
	 */
 | 
						|
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
 | 
						|
}
 | 
						|
 | 
						|
/* remove redundant charge if migration failed*/
 | 
						|
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
 | 
						|
	struct page *oldpage, struct page *newpage, bool migration_ok)
 | 
						|
{
 | 
						|
	struct page *used, *unused;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	bool anon;
 | 
						|
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!migration_ok) {
 | 
						|
		used = oldpage;
 | 
						|
		unused = newpage;
 | 
						|
	} else {
 | 
						|
		used = newpage;
 | 
						|
		unused = oldpage;
 | 
						|
	}
 | 
						|
	anon = PageAnon(used);
 | 
						|
	__mem_cgroup_uncharge_common(unused,
 | 
						|
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
 | 
						|
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
 | 
						|
				     true);
 | 
						|
	css_put(&memcg->css);
 | 
						|
	/*
 | 
						|
	 * We disallowed uncharge of pages under migration because mapcount
 | 
						|
	 * of the page goes down to zero, temporarly.
 | 
						|
	 * Clear the flag and check the page should be charged.
 | 
						|
	 */
 | 
						|
	pc = lookup_page_cgroup(oldpage);
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	ClearPageCgroupMigration(pc);
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If a page is a file cache, radix-tree replacement is very atomic
 | 
						|
	 * and we can skip this check. When it was an Anon page, its mapcount
 | 
						|
	 * goes down to 0. But because we added MIGRATION flage, it's not
 | 
						|
	 * uncharged yet. There are several case but page->mapcount check
 | 
						|
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
 | 
						|
	 * check. (see prepare_charge() also)
 | 
						|
	 */
 | 
						|
	if (anon)
 | 
						|
		mem_cgroup_uncharge_page(used);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * At replace page cache, newpage is not under any memcg but it's on
 | 
						|
 * LRU. So, this function doesn't touch res_counter but handles LRU
 | 
						|
 * in correct way. Both pages are locked so we cannot race with uncharge.
 | 
						|
 */
 | 
						|
void mem_cgroup_replace_page_cache(struct page *oldpage,
 | 
						|
				  struct page *newpage)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(oldpage);
 | 
						|
	/* fix accounting on old pages */
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	if (PageCgroupUsed(pc)) {
 | 
						|
		memcg = pc->mem_cgroup;
 | 
						|
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
 | 
						|
		ClearPageCgroupUsed(pc);
 | 
						|
	}
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When called from shmem_replace_page(), in some cases the
 | 
						|
	 * oldpage has already been charged, and in some cases not.
 | 
						|
	 */
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * Even if newpage->mapping was NULL before starting replacement,
 | 
						|
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
 | 
						|
	 * LRU while we overwrite pc->mem_cgroup.
 | 
						|
	 */
 | 
						|
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	/*
 | 
						|
	 * Can be NULL while feeding pages into the page allocator for
 | 
						|
	 * the first time, i.e. during boot or memory hotplug;
 | 
						|
	 * or when mem_cgroup_disabled().
 | 
						|
	 */
 | 
						|
	if (likely(pc) && PageCgroupUsed(pc))
 | 
						|
		return pc;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
bool mem_cgroup_bad_page_check(struct page *page)
 | 
						|
{
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return false;
 | 
						|
 | 
						|
	return lookup_page_cgroup_used(page) != NULL;
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_print_bad_page(struct page *page)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup_used(page);
 | 
						|
	if (pc) {
 | 
						|
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
 | 
						|
			 pc, pc->flags, pc->mem_cgroup);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
 | 
						|
				unsigned long long val)
 | 
						|
{
 | 
						|
	int retry_count;
 | 
						|
	u64 memswlimit, memlimit;
 | 
						|
	int ret = 0;
 | 
						|
	int children = mem_cgroup_count_children(memcg);
 | 
						|
	u64 curusage, oldusage;
 | 
						|
	int enlarge;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For keeping hierarchical_reclaim simple, how long we should retry
 | 
						|
	 * is depends on callers. We set our retry-count to be function
 | 
						|
	 * of # of children which we should visit in this loop.
 | 
						|
	 */
 | 
						|
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
 | 
						|
 | 
						|
	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
 | 
						|
 | 
						|
	enlarge = 0;
 | 
						|
	while (retry_count) {
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Rather than hide all in some function, I do this in
 | 
						|
		 * open coded manner. You see what this really does.
 | 
						|
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
 | 
						|
		 */
 | 
						|
		mutex_lock(&set_limit_mutex);
 | 
						|
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | 
						|
		if (memswlimit < val) {
 | 
						|
			ret = -EINVAL;
 | 
						|
			mutex_unlock(&set_limit_mutex);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | 
						|
		if (memlimit < val)
 | 
						|
			enlarge = 1;
 | 
						|
 | 
						|
		ret = res_counter_set_limit(&memcg->res, val);
 | 
						|
		if (!ret) {
 | 
						|
			if (memswlimit == val)
 | 
						|
				memcg->memsw_is_minimum = true;
 | 
						|
			else
 | 
						|
				memcg->memsw_is_minimum = false;
 | 
						|
		}
 | 
						|
		mutex_unlock(&set_limit_mutex);
 | 
						|
 | 
						|
		if (!ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
 | 
						|
				   MEM_CGROUP_RECLAIM_SHRINK);
 | 
						|
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
 | 
						|
		/* Usage is reduced ? */
 | 
						|
		if (curusage >= oldusage)
 | 
						|
			retry_count--;
 | 
						|
		else
 | 
						|
			oldusage = curusage;
 | 
						|
	}
 | 
						|
	if (!ret && enlarge)
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
 | 
						|
					unsigned long long val)
 | 
						|
{
 | 
						|
	int retry_count;
 | 
						|
	u64 memlimit, memswlimit, oldusage, curusage;
 | 
						|
	int children = mem_cgroup_count_children(memcg);
 | 
						|
	int ret = -EBUSY;
 | 
						|
	int enlarge = 0;
 | 
						|
 | 
						|
	/* see mem_cgroup_resize_res_limit */
 | 
						|
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
 | 
						|
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 | 
						|
	while (retry_count) {
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Rather than hide all in some function, I do this in
 | 
						|
		 * open coded manner. You see what this really does.
 | 
						|
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
 | 
						|
		 */
 | 
						|
		mutex_lock(&set_limit_mutex);
 | 
						|
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | 
						|
		if (memlimit > val) {
 | 
						|
			ret = -EINVAL;
 | 
						|
			mutex_unlock(&set_limit_mutex);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | 
						|
		if (memswlimit < val)
 | 
						|
			enlarge = 1;
 | 
						|
		ret = res_counter_set_limit(&memcg->memsw, val);
 | 
						|
		if (!ret) {
 | 
						|
			if (memlimit == val)
 | 
						|
				memcg->memsw_is_minimum = true;
 | 
						|
			else
 | 
						|
				memcg->memsw_is_minimum = false;
 | 
						|
		}
 | 
						|
		mutex_unlock(&set_limit_mutex);
 | 
						|
 | 
						|
		if (!ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
 | 
						|
				   MEM_CGROUP_RECLAIM_NOSWAP |
 | 
						|
				   MEM_CGROUP_RECLAIM_SHRINK);
 | 
						|
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 | 
						|
		/* Usage is reduced ? */
 | 
						|
		if (curusage >= oldusage)
 | 
						|
			retry_count--;
 | 
						|
		else
 | 
						|
			oldusage = curusage;
 | 
						|
	}
 | 
						|
	if (!ret && enlarge)
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
 | 
						|
					    gfp_t gfp_mask,
 | 
						|
					    unsigned long *total_scanned)
 | 
						|
{
 | 
						|
	unsigned long nr_reclaimed = 0;
 | 
						|
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
 | 
						|
	unsigned long reclaimed;
 | 
						|
	int loop = 0;
 | 
						|
	struct mem_cgroup_tree_per_zone *mctz;
 | 
						|
	unsigned long long excess;
 | 
						|
	unsigned long nr_scanned;
 | 
						|
 | 
						|
	if (order > 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
 | 
						|
	/*
 | 
						|
	 * This loop can run a while, specially if mem_cgroup's continuously
 | 
						|
	 * keep exceeding their soft limit and putting the system under
 | 
						|
	 * pressure
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		if (next_mz)
 | 
						|
			mz = next_mz;
 | 
						|
		else
 | 
						|
			mz = mem_cgroup_largest_soft_limit_node(mctz);
 | 
						|
		if (!mz)
 | 
						|
			break;
 | 
						|
 | 
						|
		nr_scanned = 0;
 | 
						|
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
 | 
						|
						    gfp_mask, &nr_scanned);
 | 
						|
		nr_reclaimed += reclaimed;
 | 
						|
		*total_scanned += nr_scanned;
 | 
						|
		spin_lock(&mctz->lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we failed to reclaim anything from this memory cgroup
 | 
						|
		 * it is time to move on to the next cgroup
 | 
						|
		 */
 | 
						|
		next_mz = NULL;
 | 
						|
		if (!reclaimed) {
 | 
						|
			do {
 | 
						|
				/*
 | 
						|
				 * Loop until we find yet another one.
 | 
						|
				 *
 | 
						|
				 * By the time we get the soft_limit lock
 | 
						|
				 * again, someone might have aded the
 | 
						|
				 * group back on the RB tree. Iterate to
 | 
						|
				 * make sure we get a different mem.
 | 
						|
				 * mem_cgroup_largest_soft_limit_node returns
 | 
						|
				 * NULL if no other cgroup is present on
 | 
						|
				 * the tree
 | 
						|
				 */
 | 
						|
				next_mz =
 | 
						|
				__mem_cgroup_largest_soft_limit_node(mctz);
 | 
						|
				if (next_mz == mz)
 | 
						|
					css_put(&next_mz->memcg->css);
 | 
						|
				else /* next_mz == NULL or other memcg */
 | 
						|
					break;
 | 
						|
			} while (1);
 | 
						|
		}
 | 
						|
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
 | 
						|
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
 | 
						|
		/*
 | 
						|
		 * One school of thought says that we should not add
 | 
						|
		 * back the node to the tree if reclaim returns 0.
 | 
						|
		 * But our reclaim could return 0, simply because due
 | 
						|
		 * to priority we are exposing a smaller subset of
 | 
						|
		 * memory to reclaim from. Consider this as a longer
 | 
						|
		 * term TODO.
 | 
						|
		 */
 | 
						|
		/* If excess == 0, no tree ops */
 | 
						|
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
 | 
						|
		spin_unlock(&mctz->lock);
 | 
						|
		css_put(&mz->memcg->css);
 | 
						|
		loop++;
 | 
						|
		/*
 | 
						|
		 * Could not reclaim anything and there are no more
 | 
						|
		 * mem cgroups to try or we seem to be looping without
 | 
						|
		 * reclaiming anything.
 | 
						|
		 */
 | 
						|
		if (!nr_reclaimed &&
 | 
						|
			(next_mz == NULL ||
 | 
						|
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
 | 
						|
			break;
 | 
						|
	} while (!nr_reclaimed);
 | 
						|
	if (next_mz)
 | 
						|
		css_put(&next_mz->memcg->css);
 | 
						|
	return nr_reclaimed;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_force_empty_list - clears LRU of a group
 | 
						|
 * @memcg: group to clear
 | 
						|
 * @node: NUMA node
 | 
						|
 * @zid: zone id
 | 
						|
 * @lru: lru to to clear
 | 
						|
 *
 | 
						|
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 | 
						|
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 | 
						|
 * group.
 | 
						|
 */
 | 
						|
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
 | 
						|
				int node, int zid, enum lru_list lru)
 | 
						|
{
 | 
						|
	struct lruvec *lruvec;
 | 
						|
	unsigned long flags;
 | 
						|
	struct list_head *list;
 | 
						|
	struct page *busy;
 | 
						|
	struct zone *zone;
 | 
						|
 | 
						|
	zone = &NODE_DATA(node)->node_zones[zid];
 | 
						|
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 | 
						|
	list = &lruvec->lists[lru];
 | 
						|
 | 
						|
	busy = NULL;
 | 
						|
	do {
 | 
						|
		struct page_cgroup *pc;
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		spin_lock_irqsave(&zone->lru_lock, flags);
 | 
						|
		if (list_empty(list)) {
 | 
						|
			spin_unlock_irqrestore(&zone->lru_lock, flags);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		page = list_entry(list->prev, struct page, lru);
 | 
						|
		if (busy == page) {
 | 
						|
			list_move(&page->lru, list);
 | 
						|
			busy = NULL;
 | 
						|
			spin_unlock_irqrestore(&zone->lru_lock, flags);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | 
						|
 | 
						|
		pc = lookup_page_cgroup(page);
 | 
						|
 | 
						|
		if (mem_cgroup_move_parent(page, pc, memcg)) {
 | 
						|
			/* found lock contention or "pc" is obsolete. */
 | 
						|
			busy = page;
 | 
						|
			cond_resched();
 | 
						|
		} else
 | 
						|
			busy = NULL;
 | 
						|
	} while (!list_empty(list));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * make mem_cgroup's charge to be 0 if there is no task by moving
 | 
						|
 * all the charges and pages to the parent.
 | 
						|
 * This enables deleting this mem_cgroup.
 | 
						|
 *
 | 
						|
 * Caller is responsible for holding css reference on the memcg.
 | 
						|
 */
 | 
						|
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int node, zid;
 | 
						|
	u64 usage;
 | 
						|
 | 
						|
	do {
 | 
						|
		/* This is for making all *used* pages to be on LRU. */
 | 
						|
		lru_add_drain_all();
 | 
						|
		drain_all_stock_sync(memcg);
 | 
						|
		mem_cgroup_start_move(memcg);
 | 
						|
		for_each_node_state(node, N_MEMORY) {
 | 
						|
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | 
						|
				enum lru_list lru;
 | 
						|
				for_each_lru(lru) {
 | 
						|
					mem_cgroup_force_empty_list(memcg,
 | 
						|
							node, zid, lru);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		mem_cgroup_end_move(memcg);
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Kernel memory may not necessarily be trackable to a specific
 | 
						|
		 * process. So they are not migrated, and therefore we can't
 | 
						|
		 * expect their value to drop to 0 here.
 | 
						|
		 * Having res filled up with kmem only is enough.
 | 
						|
		 *
 | 
						|
		 * This is a safety check because mem_cgroup_force_empty_list
 | 
						|
		 * could have raced with mem_cgroup_replace_page_cache callers
 | 
						|
		 * so the lru seemed empty but the page could have been added
 | 
						|
		 * right after the check. RES_USAGE should be safe as we always
 | 
						|
		 * charge before adding to the LRU.
 | 
						|
		 */
 | 
						|
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
 | 
						|
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
 | 
						|
	} while (usage > 0);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool memcg_has_children(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	lockdep_assert_held(&memcg_create_mutex);
 | 
						|
	/*
 | 
						|
	 * The lock does not prevent addition or deletion to the list
 | 
						|
	 * of children, but it prevents a new child from being
 | 
						|
	 * initialized based on this parent in css_online(), so it's
 | 
						|
	 * enough to decide whether hierarchically inherited
 | 
						|
	 * attributes can still be changed or not.
 | 
						|
	 */
 | 
						|
	return memcg->use_hierarchy &&
 | 
						|
		!list_empty(&memcg->css.cgroup->children);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reclaims as many pages from the given memcg as possible and moves
 | 
						|
 * the rest to the parent.
 | 
						|
 *
 | 
						|
 * Caller is responsible for holding css reference for memcg.
 | 
						|
 */
 | 
						|
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | 
						|
	struct cgroup *cgrp = memcg->css.cgroup;
 | 
						|
 | 
						|
	/* returns EBUSY if there is a task or if we come here twice. */
 | 
						|
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	/* we call try-to-free pages for make this cgroup empty */
 | 
						|
	lru_add_drain_all();
 | 
						|
	/* try to free all pages in this cgroup */
 | 
						|
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
 | 
						|
		int progress;
 | 
						|
 | 
						|
		if (signal_pending(current))
 | 
						|
			return -EINTR;
 | 
						|
 | 
						|
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
 | 
						|
						false);
 | 
						|
		if (!progress) {
 | 
						|
			nr_retries--;
 | 
						|
			/* maybe some writeback is necessary */
 | 
						|
			congestion_wait(BLK_RW_ASYNC, HZ/10);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	lru_add_drain();
 | 
						|
	mem_cgroup_reparent_charges(memcg);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
 | 
						|
					unsigned int event)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	if (mem_cgroup_is_root(memcg))
 | 
						|
		return -EINVAL;
 | 
						|
	return mem_cgroup_force_empty(memcg);
 | 
						|
}
 | 
						|
 | 
						|
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
 | 
						|
				     struct cftype *cft)
 | 
						|
{
 | 
						|
	return mem_cgroup_from_css(css)->use_hierarchy;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
 | 
						|
				      struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	int retval = 0;
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
 | 
						|
 | 
						|
	mutex_lock(&memcg_create_mutex);
 | 
						|
 | 
						|
	if (memcg->use_hierarchy == val)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If parent's use_hierarchy is set, we can't make any modifications
 | 
						|
	 * in the child subtrees. If it is unset, then the change can
 | 
						|
	 * occur, provided the current cgroup has no children.
 | 
						|
	 *
 | 
						|
	 * For the root cgroup, parent_mem is NULL, we allow value to be
 | 
						|
	 * set if there are no children.
 | 
						|
	 */
 | 
						|
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
 | 
						|
				(val == 1 || val == 0)) {
 | 
						|
		if (list_empty(&memcg->css.cgroup->children))
 | 
						|
			memcg->use_hierarchy = val;
 | 
						|
		else
 | 
						|
			retval = -EBUSY;
 | 
						|
	} else
 | 
						|
		retval = -EINVAL;
 | 
						|
 | 
						|
out:
 | 
						|
	mutex_unlock(&memcg_create_mutex);
 | 
						|
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
 | 
						|
					       enum mem_cgroup_stat_index idx)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
	long val = 0;
 | 
						|
 | 
						|
	/* Per-cpu values can be negative, use a signed accumulator */
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		val += mem_cgroup_read_stat(iter, idx);
 | 
						|
 | 
						|
	if (val < 0) /* race ? */
 | 
						|
		val = 0;
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
 | 
						|
{
 | 
						|
	u64 val;
 | 
						|
 | 
						|
	if (!mem_cgroup_is_root(memcg)) {
 | 
						|
		if (!swap)
 | 
						|
			return res_counter_read_u64(&memcg->res, RES_USAGE);
 | 
						|
		else
 | 
						|
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
 | 
						|
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
 | 
						|
	 */
 | 
						|
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
 | 
						|
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
 | 
						|
 | 
						|
	if (swap)
 | 
						|
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
 | 
						|
 | 
						|
	return val << PAGE_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
 | 
						|
			       struct cftype *cft, struct file *file,
 | 
						|
			       char __user *buf, size_t nbytes, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	char str[64];
 | 
						|
	u64 val;
 | 
						|
	int name, len;
 | 
						|
	enum res_type type;
 | 
						|
 | 
						|
	type = MEMFILE_TYPE(cft->private);
 | 
						|
	name = MEMFILE_ATTR(cft->private);
 | 
						|
 | 
						|
	switch (type) {
 | 
						|
	case _MEM:
 | 
						|
		if (name == RES_USAGE)
 | 
						|
			val = mem_cgroup_usage(memcg, false);
 | 
						|
		else
 | 
						|
			val = res_counter_read_u64(&memcg->res, name);
 | 
						|
		break;
 | 
						|
	case _MEMSWAP:
 | 
						|
		if (name == RES_USAGE)
 | 
						|
			val = mem_cgroup_usage(memcg, true);
 | 
						|
		else
 | 
						|
			val = res_counter_read_u64(&memcg->memsw, name);
 | 
						|
		break;
 | 
						|
	case _KMEM:
 | 
						|
		val = res_counter_read_u64(&memcg->kmem, name);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
 | 
						|
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
 | 
						|
}
 | 
						|
 | 
						|
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
 | 
						|
{
 | 
						|
	int ret = -EINVAL;
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	/*
 | 
						|
	 * For simplicity, we won't allow this to be disabled.  It also can't
 | 
						|
	 * be changed if the cgroup has children already, or if tasks had
 | 
						|
	 * already joined.
 | 
						|
	 *
 | 
						|
	 * If tasks join before we set the limit, a person looking at
 | 
						|
	 * kmem.usage_in_bytes will have no way to determine when it took
 | 
						|
	 * place, which makes the value quite meaningless.
 | 
						|
	 *
 | 
						|
	 * After it first became limited, changes in the value of the limit are
 | 
						|
	 * of course permitted.
 | 
						|
	 */
 | 
						|
	mutex_lock(&memcg_create_mutex);
 | 
						|
	mutex_lock(&set_limit_mutex);
 | 
						|
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
 | 
						|
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
 | 
						|
			ret = -EBUSY;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		ret = res_counter_set_limit(&memcg->kmem, val);
 | 
						|
		VM_BUG_ON(ret);
 | 
						|
 | 
						|
		ret = memcg_update_cache_sizes(memcg);
 | 
						|
		if (ret) {
 | 
						|
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		static_key_slow_inc(&memcg_kmem_enabled_key);
 | 
						|
		/*
 | 
						|
		 * setting the active bit after the inc will guarantee no one
 | 
						|
		 * starts accounting before all call sites are patched
 | 
						|
		 */
 | 
						|
		memcg_kmem_set_active(memcg);
 | 
						|
	} else
 | 
						|
		ret = res_counter_set_limit(&memcg->kmem, val);
 | 
						|
out:
 | 
						|
	mutex_unlock(&set_limit_mutex);
 | 
						|
	mutex_unlock(&memcg_create_mutex);
 | 
						|
#endif
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
 | 
						|
	if (!parent)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	memcg->kmem_account_flags = parent->kmem_account_flags;
 | 
						|
	/*
 | 
						|
	 * When that happen, we need to disable the static branch only on those
 | 
						|
	 * memcgs that enabled it. To achieve this, we would be forced to
 | 
						|
	 * complicate the code by keeping track of which memcgs were the ones
 | 
						|
	 * that actually enabled limits, and which ones got it from its
 | 
						|
	 * parents.
 | 
						|
	 *
 | 
						|
	 * It is a lot simpler just to do static_key_slow_inc() on every child
 | 
						|
	 * that is accounted.
 | 
						|
	 */
 | 
						|
	if (!memcg_kmem_is_active(memcg))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
 | 
						|
	 * memcg is active already. If the later initialization fails then the
 | 
						|
	 * cgroup core triggers the cleanup so we do not have to do it here.
 | 
						|
	 */
 | 
						|
	static_key_slow_inc(&memcg_kmem_enabled_key);
 | 
						|
 | 
						|
	mutex_lock(&set_limit_mutex);
 | 
						|
	memcg_stop_kmem_account();
 | 
						|
	ret = memcg_update_cache_sizes(memcg);
 | 
						|
	memcg_resume_kmem_account();
 | 
						|
	mutex_unlock(&set_limit_mutex);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMCG_KMEM */
 | 
						|
 | 
						|
/*
 | 
						|
 * The user of this function is...
 | 
						|
 * RES_LIMIT.
 | 
						|
 */
 | 
						|
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
 | 
						|
			    const char *buffer)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	enum res_type type;
 | 
						|
	int name;
 | 
						|
	unsigned long long val;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	type = MEMFILE_TYPE(cft->private);
 | 
						|
	name = MEMFILE_ATTR(cft->private);
 | 
						|
 | 
						|
	switch (name) {
 | 
						|
	case RES_LIMIT:
 | 
						|
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
 | 
						|
			ret = -EINVAL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/* This function does all necessary parse...reuse it */
 | 
						|
		ret = res_counter_memparse_write_strategy(buffer, &val);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
		if (type == _MEM)
 | 
						|
			ret = mem_cgroup_resize_limit(memcg, val);
 | 
						|
		else if (type == _MEMSWAP)
 | 
						|
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
 | 
						|
		else if (type == _KMEM)
 | 
						|
			ret = memcg_update_kmem_limit(css, val);
 | 
						|
		else
 | 
						|
			return -EINVAL;
 | 
						|
		break;
 | 
						|
	case RES_SOFT_LIMIT:
 | 
						|
		ret = res_counter_memparse_write_strategy(buffer, &val);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
		/*
 | 
						|
		 * For memsw, soft limits are hard to implement in terms
 | 
						|
		 * of semantics, for now, we support soft limits for
 | 
						|
		 * control without swap
 | 
						|
		 */
 | 
						|
		if (type == _MEM)
 | 
						|
			ret = res_counter_set_soft_limit(&memcg->res, val);
 | 
						|
		else
 | 
						|
			ret = -EINVAL;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		ret = -EINVAL; /* should be BUG() ? */
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
 | 
						|
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
 | 
						|
{
 | 
						|
	unsigned long long min_limit, min_memsw_limit, tmp;
 | 
						|
 | 
						|
	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | 
						|
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | 
						|
	if (!memcg->use_hierarchy)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	while (css_parent(&memcg->css)) {
 | 
						|
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
 | 
						|
		if (!memcg->use_hierarchy)
 | 
						|
			break;
 | 
						|
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | 
						|
		min_limit = min(min_limit, tmp);
 | 
						|
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | 
						|
		min_memsw_limit = min(min_memsw_limit, tmp);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	*mem_limit = min_limit;
 | 
						|
	*memsw_limit = min_memsw_limit;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	int name;
 | 
						|
	enum res_type type;
 | 
						|
 | 
						|
	type = MEMFILE_TYPE(event);
 | 
						|
	name = MEMFILE_ATTR(event);
 | 
						|
 | 
						|
	switch (name) {
 | 
						|
	case RES_MAX_USAGE:
 | 
						|
		if (type == _MEM)
 | 
						|
			res_counter_reset_max(&memcg->res);
 | 
						|
		else if (type == _MEMSWAP)
 | 
						|
			res_counter_reset_max(&memcg->memsw);
 | 
						|
		else if (type == _KMEM)
 | 
						|
			res_counter_reset_max(&memcg->kmem);
 | 
						|
		else
 | 
						|
			return -EINVAL;
 | 
						|
		break;
 | 
						|
	case RES_FAILCNT:
 | 
						|
		if (type == _MEM)
 | 
						|
			res_counter_reset_failcnt(&memcg->res);
 | 
						|
		else if (type == _MEMSWAP)
 | 
						|
			res_counter_reset_failcnt(&memcg->memsw);
 | 
						|
		else if (type == _KMEM)
 | 
						|
			res_counter_reset_failcnt(&memcg->kmem);
 | 
						|
		else
 | 
						|
			return -EINVAL;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
 | 
						|
					struct cftype *cft)
 | 
						|
{
 | 
						|
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
 | 
						|
					struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	if (val >= (1 << NR_MOVE_TYPE))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No kind of locking is needed in here, because ->can_attach() will
 | 
						|
	 * check this value once in the beginning of the process, and then carry
 | 
						|
	 * on with stale data. This means that changes to this value will only
 | 
						|
	 * affect task migrations starting after the change.
 | 
						|
	 */
 | 
						|
	memcg->move_charge_at_immigrate = val;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
 | 
						|
					struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	return -ENOSYS;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
 | 
						|
				struct cftype *cft, struct seq_file *m)
 | 
						|
{
 | 
						|
	struct numa_stat {
 | 
						|
		const char *name;
 | 
						|
		unsigned int lru_mask;
 | 
						|
	};
 | 
						|
 | 
						|
	static const struct numa_stat stats[] = {
 | 
						|
		{ "total", LRU_ALL },
 | 
						|
		{ "file", LRU_ALL_FILE },
 | 
						|
		{ "anon", LRU_ALL_ANON },
 | 
						|
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
 | 
						|
	};
 | 
						|
	const struct numa_stat *stat;
 | 
						|
	int nid;
 | 
						|
	unsigned long nr;
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 | 
						|
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
 | 
						|
		seq_printf(m, "%s=%lu", stat->name, nr);
 | 
						|
		for_each_node_state(nid, N_MEMORY) {
 | 
						|
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
 | 
						|
							  stat->lru_mask);
 | 
						|
			seq_printf(m, " N%d=%lu", nid, nr);
 | 
						|
		}
 | 
						|
		seq_putc(m, '\n');
 | 
						|
	}
 | 
						|
 | 
						|
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 | 
						|
		struct mem_cgroup *iter;
 | 
						|
 | 
						|
		nr = 0;
 | 
						|
		for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
 | 
						|
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
 | 
						|
		for_each_node_state(nid, N_MEMORY) {
 | 
						|
			nr = 0;
 | 
						|
			for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
				nr += mem_cgroup_node_nr_lru_pages(
 | 
						|
					iter, nid, stat->lru_mask);
 | 
						|
			seq_printf(m, " N%d=%lu", nid, nr);
 | 
						|
		}
 | 
						|
		seq_putc(m, '\n');
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_NUMA */
 | 
						|
 | 
						|
static inline void mem_cgroup_lru_names_not_uptodate(void)
 | 
						|
{
 | 
						|
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
 | 
						|
}
 | 
						|
 | 
						|
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
 | 
						|
				 struct seq_file *m)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup *mi;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 | 
						|
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
 | 
						|
			continue;
 | 
						|
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
 | 
						|
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
 | 
						|
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
 | 
						|
			   mem_cgroup_read_events(memcg, i));
 | 
						|
 | 
						|
	for (i = 0; i < NR_LRU_LISTS; i++)
 | 
						|
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
 | 
						|
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
 | 
						|
 | 
						|
	/* Hierarchical information */
 | 
						|
	{
 | 
						|
		unsigned long long limit, memsw_limit;
 | 
						|
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
 | 
						|
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
 | 
						|
		if (do_swap_account)
 | 
						|
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
 | 
						|
				   memsw_limit);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 | 
						|
		long long val = 0;
 | 
						|
 | 
						|
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
 | 
						|
			continue;
 | 
						|
		for_each_mem_cgroup_tree(mi, memcg)
 | 
						|
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
 | 
						|
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
 | 
						|
		unsigned long long val = 0;
 | 
						|
 | 
						|
		for_each_mem_cgroup_tree(mi, memcg)
 | 
						|
			val += mem_cgroup_read_events(mi, i);
 | 
						|
		seq_printf(m, "total_%s %llu\n",
 | 
						|
			   mem_cgroup_events_names[i], val);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < NR_LRU_LISTS; i++) {
 | 
						|
		unsigned long long val = 0;
 | 
						|
 | 
						|
		for_each_mem_cgroup_tree(mi, memcg)
 | 
						|
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
 | 
						|
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
	{
 | 
						|
		int nid, zid;
 | 
						|
		struct mem_cgroup_per_zone *mz;
 | 
						|
		struct zone_reclaim_stat *rstat;
 | 
						|
		unsigned long recent_rotated[2] = {0, 0};
 | 
						|
		unsigned long recent_scanned[2] = {0, 0};
 | 
						|
 | 
						|
		for_each_online_node(nid)
 | 
						|
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | 
						|
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 | 
						|
				rstat = &mz->lruvec.reclaim_stat;
 | 
						|
 | 
						|
				recent_rotated[0] += rstat->recent_rotated[0];
 | 
						|
				recent_rotated[1] += rstat->recent_rotated[1];
 | 
						|
				recent_scanned[0] += rstat->recent_scanned[0];
 | 
						|
				recent_scanned[1] += rstat->recent_scanned[1];
 | 
						|
			}
 | 
						|
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
 | 
						|
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
 | 
						|
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
 | 
						|
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
 | 
						|
				      struct cftype *cft)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	return mem_cgroup_swappiness(memcg);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
 | 
						|
				       struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
 | 
						|
 | 
						|
	if (val > 100 || !parent)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	mutex_lock(&memcg_create_mutex);
 | 
						|
 | 
						|
	/* If under hierarchy, only empty-root can set this value */
 | 
						|
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
 | 
						|
		mutex_unlock(&memcg_create_mutex);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	memcg->swappiness = val;
 | 
						|
 | 
						|
	mutex_unlock(&memcg_create_mutex);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
 | 
						|
{
 | 
						|
	struct mem_cgroup_threshold_ary *t;
 | 
						|
	u64 usage;
 | 
						|
	int i;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	if (!swap)
 | 
						|
		t = rcu_dereference(memcg->thresholds.primary);
 | 
						|
	else
 | 
						|
		t = rcu_dereference(memcg->memsw_thresholds.primary);
 | 
						|
 | 
						|
	if (!t)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	usage = mem_cgroup_usage(memcg, swap);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * current_threshold points to threshold just below or equal to usage.
 | 
						|
	 * If it's not true, a threshold was crossed after last
 | 
						|
	 * call of __mem_cgroup_threshold().
 | 
						|
	 */
 | 
						|
	i = t->current_threshold;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate backward over array of thresholds starting from
 | 
						|
	 * current_threshold and check if a threshold is crossed.
 | 
						|
	 * If none of thresholds below usage is crossed, we read
 | 
						|
	 * only one element of the array here.
 | 
						|
	 */
 | 
						|
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
 | 
						|
		eventfd_signal(t->entries[i].eventfd, 1);
 | 
						|
 | 
						|
	/* i = current_threshold + 1 */
 | 
						|
	i++;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate forward over array of thresholds starting from
 | 
						|
	 * current_threshold+1 and check if a threshold is crossed.
 | 
						|
	 * If none of thresholds above usage is crossed, we read
 | 
						|
	 * only one element of the array here.
 | 
						|
	 */
 | 
						|
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
 | 
						|
		eventfd_signal(t->entries[i].eventfd, 1);
 | 
						|
 | 
						|
	/* Update current_threshold */
 | 
						|
	t->current_threshold = i - 1;
 | 
						|
unlock:
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_threshold(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	while (memcg) {
 | 
						|
		__mem_cgroup_threshold(memcg, false);
 | 
						|
		if (do_swap_account)
 | 
						|
			__mem_cgroup_threshold(memcg, true);
 | 
						|
 | 
						|
		memcg = parent_mem_cgroup(memcg);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int compare_thresholds(const void *a, const void *b)
 | 
						|
{
 | 
						|
	const struct mem_cgroup_threshold *_a = a;
 | 
						|
	const struct mem_cgroup_threshold *_b = b;
 | 
						|
 | 
						|
	if (_a->threshold > _b->threshold)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (_a->threshold < _b->threshold)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup_eventfd_list *ev;
 | 
						|
 | 
						|
	list_for_each_entry(ev, &memcg->oom_notify, list)
 | 
						|
		eventfd_signal(ev->eventfd, 1);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *iter;
 | 
						|
 | 
						|
	for_each_mem_cgroup_tree(iter, memcg)
 | 
						|
		mem_cgroup_oom_notify_cb(iter);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
 | 
						|
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup_thresholds *thresholds;
 | 
						|
	struct mem_cgroup_threshold_ary *new;
 | 
						|
	enum res_type type = MEMFILE_TYPE(cft->private);
 | 
						|
	u64 threshold, usage;
 | 
						|
	int i, size, ret;
 | 
						|
 | 
						|
	ret = res_counter_memparse_write_strategy(args, &threshold);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	mutex_lock(&memcg->thresholds_lock);
 | 
						|
 | 
						|
	if (type == _MEM)
 | 
						|
		thresholds = &memcg->thresholds;
 | 
						|
	else if (type == _MEMSWAP)
 | 
						|
		thresholds = &memcg->memsw_thresholds;
 | 
						|
	else
 | 
						|
		BUG();
 | 
						|
 | 
						|
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
 | 
						|
 | 
						|
	/* Check if a threshold crossed before adding a new one */
 | 
						|
	if (thresholds->primary)
 | 
						|
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | 
						|
 | 
						|
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
 | 
						|
 | 
						|
	/* Allocate memory for new array of thresholds */
 | 
						|
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
 | 
						|
			GFP_KERNEL);
 | 
						|
	if (!new) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto unlock;
 | 
						|
	}
 | 
						|
	new->size = size;
 | 
						|
 | 
						|
	/* Copy thresholds (if any) to new array */
 | 
						|
	if (thresholds->primary) {
 | 
						|
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
 | 
						|
				sizeof(struct mem_cgroup_threshold));
 | 
						|
	}
 | 
						|
 | 
						|
	/* Add new threshold */
 | 
						|
	new->entries[size - 1].eventfd = eventfd;
 | 
						|
	new->entries[size - 1].threshold = threshold;
 | 
						|
 | 
						|
	/* Sort thresholds. Registering of new threshold isn't time-critical */
 | 
						|
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
 | 
						|
			compare_thresholds, NULL);
 | 
						|
 | 
						|
	/* Find current threshold */
 | 
						|
	new->current_threshold = -1;
 | 
						|
	for (i = 0; i < size; i++) {
 | 
						|
		if (new->entries[i].threshold <= usage) {
 | 
						|
			/*
 | 
						|
			 * new->current_threshold will not be used until
 | 
						|
			 * rcu_assign_pointer(), so it's safe to increment
 | 
						|
			 * it here.
 | 
						|
			 */
 | 
						|
			++new->current_threshold;
 | 
						|
		} else
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Free old spare buffer and save old primary buffer as spare */
 | 
						|
	kfree(thresholds->spare);
 | 
						|
	thresholds->spare = thresholds->primary;
 | 
						|
 | 
						|
	rcu_assign_pointer(thresholds->primary, new);
 | 
						|
 | 
						|
	/* To be sure that nobody uses thresholds */
 | 
						|
	synchronize_rcu();
 | 
						|
 | 
						|
unlock:
 | 
						|
	mutex_unlock(&memcg->thresholds_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
 | 
						|
	struct cftype *cft, struct eventfd_ctx *eventfd)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup_thresholds *thresholds;
 | 
						|
	struct mem_cgroup_threshold_ary *new;
 | 
						|
	enum res_type type = MEMFILE_TYPE(cft->private);
 | 
						|
	u64 usage;
 | 
						|
	int i, j, size;
 | 
						|
 | 
						|
	mutex_lock(&memcg->thresholds_lock);
 | 
						|
	if (type == _MEM)
 | 
						|
		thresholds = &memcg->thresholds;
 | 
						|
	else if (type == _MEMSWAP)
 | 
						|
		thresholds = &memcg->memsw_thresholds;
 | 
						|
	else
 | 
						|
		BUG();
 | 
						|
 | 
						|
	if (!thresholds->primary)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
 | 
						|
 | 
						|
	/* Check if a threshold crossed before removing */
 | 
						|
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | 
						|
 | 
						|
	/* Calculate new number of threshold */
 | 
						|
	size = 0;
 | 
						|
	for (i = 0; i < thresholds->primary->size; i++) {
 | 
						|
		if (thresholds->primary->entries[i].eventfd != eventfd)
 | 
						|
			size++;
 | 
						|
	}
 | 
						|
 | 
						|
	new = thresholds->spare;
 | 
						|
 | 
						|
	/* Set thresholds array to NULL if we don't have thresholds */
 | 
						|
	if (!size) {
 | 
						|
		kfree(new);
 | 
						|
		new = NULL;
 | 
						|
		goto swap_buffers;
 | 
						|
	}
 | 
						|
 | 
						|
	new->size = size;
 | 
						|
 | 
						|
	/* Copy thresholds and find current threshold */
 | 
						|
	new->current_threshold = -1;
 | 
						|
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
 | 
						|
		if (thresholds->primary->entries[i].eventfd == eventfd)
 | 
						|
			continue;
 | 
						|
 | 
						|
		new->entries[j] = thresholds->primary->entries[i];
 | 
						|
		if (new->entries[j].threshold <= usage) {
 | 
						|
			/*
 | 
						|
			 * new->current_threshold will not be used
 | 
						|
			 * until rcu_assign_pointer(), so it's safe to increment
 | 
						|
			 * it here.
 | 
						|
			 */
 | 
						|
			++new->current_threshold;
 | 
						|
		}
 | 
						|
		j++;
 | 
						|
	}
 | 
						|
 | 
						|
swap_buffers:
 | 
						|
	/* Swap primary and spare array */
 | 
						|
	thresholds->spare = thresholds->primary;
 | 
						|
	/* If all events are unregistered, free the spare array */
 | 
						|
	if (!new) {
 | 
						|
		kfree(thresholds->spare);
 | 
						|
		thresholds->spare = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_assign_pointer(thresholds->primary, new);
 | 
						|
 | 
						|
	/* To be sure that nobody uses thresholds */
 | 
						|
	synchronize_rcu();
 | 
						|
unlock:
 | 
						|
	mutex_unlock(&memcg->thresholds_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
 | 
						|
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup_eventfd_list *event;
 | 
						|
	enum res_type type = MEMFILE_TYPE(cft->private);
 | 
						|
 | 
						|
	BUG_ON(type != _OOM_TYPE);
 | 
						|
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
 | 
						|
	if (!event)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	spin_lock(&memcg_oom_lock);
 | 
						|
 | 
						|
	event->eventfd = eventfd;
 | 
						|
	list_add(&event->list, &memcg->oom_notify);
 | 
						|
 | 
						|
	/* already in OOM ? */
 | 
						|
	if (atomic_read(&memcg->under_oom))
 | 
						|
		eventfd_signal(eventfd, 1);
 | 
						|
	spin_unlock(&memcg_oom_lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
 | 
						|
	struct cftype *cft, struct eventfd_ctx *eventfd)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup_eventfd_list *ev, *tmp;
 | 
						|
	enum res_type type = MEMFILE_TYPE(cft->private);
 | 
						|
 | 
						|
	BUG_ON(type != _OOM_TYPE);
 | 
						|
 | 
						|
	spin_lock(&memcg_oom_lock);
 | 
						|
 | 
						|
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
 | 
						|
		if (ev->eventfd == eventfd) {
 | 
						|
			list_del(&ev->list);
 | 
						|
			kfree(ev);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&memcg_oom_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
 | 
						|
	struct cftype *cft,  struct cgroup_map_cb *cb)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
 | 
						|
 | 
						|
	if (atomic_read(&memcg->under_oom))
 | 
						|
		cb->fill(cb, "under_oom", 1);
 | 
						|
	else
 | 
						|
		cb->fill(cb, "under_oom", 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
 | 
						|
	struct cftype *cft, u64 val)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
 | 
						|
 | 
						|
	/* cannot set to root cgroup and only 0 and 1 are allowed */
 | 
						|
	if (!parent || !((val == 0) || (val == 1)))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	mutex_lock(&memcg_create_mutex);
 | 
						|
	/* oom-kill-disable is a flag for subhierarchy. */
 | 
						|
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
 | 
						|
		mutex_unlock(&memcg_create_mutex);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	memcg->oom_kill_disable = val;
 | 
						|
	if (!val)
 | 
						|
		memcg_oom_recover(memcg);
 | 
						|
	mutex_unlock(&memcg_create_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	memcg->kmemcg_id = -1;
 | 
						|
	ret = memcg_propagate_kmem(memcg);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return mem_cgroup_sockets_init(memcg, ss);
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	mem_cgroup_sockets_destroy(memcg);
 | 
						|
}
 | 
						|
 | 
						|
static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (!memcg_kmem_is_active(memcg))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * kmem charges can outlive the cgroup. In the case of slab
 | 
						|
	 * pages, for instance, a page contain objects from various
 | 
						|
	 * processes. As we prevent from taking a reference for every
 | 
						|
	 * such allocation we have to be careful when doing uncharge
 | 
						|
	 * (see memcg_uncharge_kmem) and here during offlining.
 | 
						|
	 *
 | 
						|
	 * The idea is that that only the _last_ uncharge which sees
 | 
						|
	 * the dead memcg will drop the last reference. An additional
 | 
						|
	 * reference is taken here before the group is marked dead
 | 
						|
	 * which is then paired with css_put during uncharge resp. here.
 | 
						|
	 *
 | 
						|
	 * Although this might sound strange as this path is called from
 | 
						|
	 * css_offline() when the referencemight have dropped down to 0
 | 
						|
	 * and shouldn't be incremented anymore (css_tryget would fail)
 | 
						|
	 * we do not have other options because of the kmem allocations
 | 
						|
	 * lifetime.
 | 
						|
	 */
 | 
						|
	css_get(&memcg->css);
 | 
						|
 | 
						|
	memcg_kmem_mark_dead(memcg);
 | 
						|
 | 
						|
	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (memcg_kmem_test_and_clear_dead(memcg))
 | 
						|
		css_put(&memcg->css);
 | 
						|
}
 | 
						|
#else
 | 
						|
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static struct cftype mem_cgroup_files[] = {
 | 
						|
	{
 | 
						|
		.name = "usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
		.register_event = mem_cgroup_usage_register_event,
 | 
						|
		.unregister_event = mem_cgroup_usage_unregister_event,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "max_usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
 | 
						|
		.write_string = mem_cgroup_write,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "soft_limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
 | 
						|
		.write_string = mem_cgroup_write,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "failcnt",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "stat",
 | 
						|
		.read_seq_string = memcg_stat_show,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "force_empty",
 | 
						|
		.trigger = mem_cgroup_force_empty_write,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "use_hierarchy",
 | 
						|
		.flags = CFTYPE_INSANE,
 | 
						|
		.write_u64 = mem_cgroup_hierarchy_write,
 | 
						|
		.read_u64 = mem_cgroup_hierarchy_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "swappiness",
 | 
						|
		.read_u64 = mem_cgroup_swappiness_read,
 | 
						|
		.write_u64 = mem_cgroup_swappiness_write,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "move_charge_at_immigrate",
 | 
						|
		.read_u64 = mem_cgroup_move_charge_read,
 | 
						|
		.write_u64 = mem_cgroup_move_charge_write,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "oom_control",
 | 
						|
		.read_map = mem_cgroup_oom_control_read,
 | 
						|
		.write_u64 = mem_cgroup_oom_control_write,
 | 
						|
		.register_event = mem_cgroup_oom_register_event,
 | 
						|
		.unregister_event = mem_cgroup_oom_unregister_event,
 | 
						|
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "pressure_level",
 | 
						|
		.register_event = vmpressure_register_event,
 | 
						|
		.unregister_event = vmpressure_unregister_event,
 | 
						|
	},
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	{
 | 
						|
		.name = "numa_stat",
 | 
						|
		.read_seq_string = memcg_numa_stat_show,
 | 
						|
	},
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
	{
 | 
						|
		.name = "kmem.limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
 | 
						|
		.write_string = mem_cgroup_write,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "kmem.usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "kmem.failcnt",
 | 
						|
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "kmem.max_usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
#ifdef CONFIG_SLABINFO
 | 
						|
	{
 | 
						|
		.name = "kmem.slabinfo",
 | 
						|
		.read_seq_string = mem_cgroup_slabinfo_read,
 | 
						|
	},
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
	{ },	/* terminate */
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_SWAP
 | 
						|
static struct cftype memsw_cgroup_files[] = {
 | 
						|
	{
 | 
						|
		.name = "memsw.usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
		.register_event = mem_cgroup_usage_register_event,
 | 
						|
		.unregister_event = mem_cgroup_usage_unregister_event,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "memsw.max_usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "memsw.limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
 | 
						|
		.write_string = mem_cgroup_write,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "memsw.failcnt",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{ },	/* terminate */
 | 
						|
};
 | 
						|
#endif
 | 
						|
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_node *pn;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	int zone, tmp = node;
 | 
						|
	/*
 | 
						|
	 * This routine is called against possible nodes.
 | 
						|
	 * But it's BUG to call kmalloc() against offline node.
 | 
						|
	 *
 | 
						|
	 * TODO: this routine can waste much memory for nodes which will
 | 
						|
	 *       never be onlined. It's better to use memory hotplug callback
 | 
						|
	 *       function.
 | 
						|
	 */
 | 
						|
	if (!node_state(node, N_NORMAL_MEMORY))
 | 
						|
		tmp = -1;
 | 
						|
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
 | 
						|
	if (!pn)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | 
						|
		mz = &pn->zoneinfo[zone];
 | 
						|
		lruvec_init(&mz->lruvec);
 | 
						|
		mz->usage_in_excess = 0;
 | 
						|
		mz->on_tree = false;
 | 
						|
		mz->memcg = memcg;
 | 
						|
	}
 | 
						|
	memcg->nodeinfo[node] = pn;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
 | 
						|
{
 | 
						|
	kfree(memcg->nodeinfo[node]);
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup *mem_cgroup_alloc(void)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	size_t size = memcg_size();
 | 
						|
 | 
						|
	/* Can be very big if nr_node_ids is very big */
 | 
						|
	if (size < PAGE_SIZE)
 | 
						|
		memcg = kzalloc(size, GFP_KERNEL);
 | 
						|
	else
 | 
						|
		memcg = vzalloc(size);
 | 
						|
 | 
						|
	if (!memcg)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
 | 
						|
	if (!memcg->stat)
 | 
						|
		goto out_free;
 | 
						|
	spin_lock_init(&memcg->pcp_counter_lock);
 | 
						|
	return memcg;
 | 
						|
 | 
						|
out_free:
 | 
						|
	if (size < PAGE_SIZE)
 | 
						|
		kfree(memcg);
 | 
						|
	else
 | 
						|
		vfree(memcg);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 | 
						|
 * (scanning all at force_empty is too costly...)
 | 
						|
 *
 | 
						|
 * Instead of clearing all references at force_empty, we remember
 | 
						|
 * the number of reference from swap_cgroup and free mem_cgroup when
 | 
						|
 * it goes down to 0.
 | 
						|
 *
 | 
						|
 * Removal of cgroup itself succeeds regardless of refs from swap.
 | 
						|
 */
 | 
						|
 | 
						|
static void __mem_cgroup_free(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
	size_t size = memcg_size();
 | 
						|
 | 
						|
	mem_cgroup_remove_from_trees(memcg);
 | 
						|
 | 
						|
	for_each_node(node)
 | 
						|
		free_mem_cgroup_per_zone_info(memcg, node);
 | 
						|
 | 
						|
	free_percpu(memcg->stat);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to make sure that (at least for now), the jump label
 | 
						|
	 * destruction code runs outside of the cgroup lock. This is because
 | 
						|
	 * get_online_cpus(), which is called from the static_branch update,
 | 
						|
	 * can't be called inside the cgroup_lock. cpusets are the ones
 | 
						|
	 * enforcing this dependency, so if they ever change, we might as well.
 | 
						|
	 *
 | 
						|
	 * schedule_work() will guarantee this happens. Be careful if you need
 | 
						|
	 * to move this code around, and make sure it is outside
 | 
						|
	 * the cgroup_lock.
 | 
						|
	 */
 | 
						|
	disarm_static_keys(memcg);
 | 
						|
	if (size < PAGE_SIZE)
 | 
						|
		kfree(memcg);
 | 
						|
	else
 | 
						|
		vfree(memcg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 | 
						|
 */
 | 
						|
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	if (!memcg->res.parent)
 | 
						|
		return NULL;
 | 
						|
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(parent_mem_cgroup);
 | 
						|
 | 
						|
static void __init mem_cgroup_soft_limit_tree_init(void)
 | 
						|
{
 | 
						|
	struct mem_cgroup_tree_per_node *rtpn;
 | 
						|
	struct mem_cgroup_tree_per_zone *rtpz;
 | 
						|
	int tmp, node, zone;
 | 
						|
 | 
						|
	for_each_node(node) {
 | 
						|
		tmp = node;
 | 
						|
		if (!node_state(node, N_NORMAL_MEMORY))
 | 
						|
			tmp = -1;
 | 
						|
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
 | 
						|
		BUG_ON(!rtpn);
 | 
						|
 | 
						|
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
 | 
						|
 | 
						|
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | 
						|
			rtpz = &rtpn->rb_tree_per_zone[zone];
 | 
						|
			rtpz->rb_root = RB_ROOT;
 | 
						|
			spin_lock_init(&rtpz->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct cgroup_subsys_state * __ref
 | 
						|
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	long error = -ENOMEM;
 | 
						|
	int node;
 | 
						|
 | 
						|
	memcg = mem_cgroup_alloc();
 | 
						|
	if (!memcg)
 | 
						|
		return ERR_PTR(error);
 | 
						|
 | 
						|
	for_each_node(node)
 | 
						|
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
 | 
						|
			goto free_out;
 | 
						|
 | 
						|
	/* root ? */
 | 
						|
	if (parent_css == NULL) {
 | 
						|
		root_mem_cgroup = memcg;
 | 
						|
		res_counter_init(&memcg->res, NULL);
 | 
						|
		res_counter_init(&memcg->memsw, NULL);
 | 
						|
		res_counter_init(&memcg->kmem, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	memcg->last_scanned_node = MAX_NUMNODES;
 | 
						|
	INIT_LIST_HEAD(&memcg->oom_notify);
 | 
						|
	memcg->move_charge_at_immigrate = 0;
 | 
						|
	mutex_init(&memcg->thresholds_lock);
 | 
						|
	spin_lock_init(&memcg->move_lock);
 | 
						|
	vmpressure_init(&memcg->vmpressure);
 | 
						|
 | 
						|
	return &memcg->css;
 | 
						|
 | 
						|
free_out:
 | 
						|
	__mem_cgroup_free(memcg);
 | 
						|
	return ERR_PTR(error);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
mem_cgroup_css_online(struct cgroup_subsys_state *css)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
 | 
						|
		return -ENOSPC;
 | 
						|
 | 
						|
	if (!parent)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mutex_lock(&memcg_create_mutex);
 | 
						|
 | 
						|
	memcg->use_hierarchy = parent->use_hierarchy;
 | 
						|
	memcg->oom_kill_disable = parent->oom_kill_disable;
 | 
						|
	memcg->swappiness = mem_cgroup_swappiness(parent);
 | 
						|
 | 
						|
	if (parent->use_hierarchy) {
 | 
						|
		res_counter_init(&memcg->res, &parent->res);
 | 
						|
		res_counter_init(&memcg->memsw, &parent->memsw);
 | 
						|
		res_counter_init(&memcg->kmem, &parent->kmem);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * No need to take a reference to the parent because cgroup
 | 
						|
		 * core guarantees its existence.
 | 
						|
		 */
 | 
						|
	} else {
 | 
						|
		res_counter_init(&memcg->res, NULL);
 | 
						|
		res_counter_init(&memcg->memsw, NULL);
 | 
						|
		res_counter_init(&memcg->kmem, NULL);
 | 
						|
		/*
 | 
						|
		 * Deeper hierachy with use_hierarchy == false doesn't make
 | 
						|
		 * much sense so let cgroup subsystem know about this
 | 
						|
		 * unfortunate state in our controller.
 | 
						|
		 */
 | 
						|
		if (parent != root_mem_cgroup)
 | 
						|
			mem_cgroup_subsys.broken_hierarchy = true;
 | 
						|
	}
 | 
						|
 | 
						|
	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
 | 
						|
	mutex_unlock(&memcg_create_mutex);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Announce all parents that a group from their hierarchy is gone.
 | 
						|
 */
 | 
						|
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *parent = memcg;
 | 
						|
 | 
						|
	while ((parent = parent_mem_cgroup(parent)))
 | 
						|
		mem_cgroup_iter_invalidate(parent);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if the root memcg is not hierarchical we have to check it
 | 
						|
	 * explicitely.
 | 
						|
	 */
 | 
						|
	if (!root_mem_cgroup->use_hierarchy)
 | 
						|
		mem_cgroup_iter_invalidate(root_mem_cgroup);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	kmem_cgroup_css_offline(memcg);
 | 
						|
 | 
						|
	mem_cgroup_invalidate_reclaim_iterators(memcg);
 | 
						|
	mem_cgroup_reparent_charges(memcg);
 | 
						|
	mem_cgroup_destroy_all_caches(memcg);
 | 
						|
	vmpressure_cleanup(&memcg->vmpressure);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
 | 
						|
	memcg_destroy_kmem(memcg);
 | 
						|
	__mem_cgroup_free(memcg);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
/* Handlers for move charge at task migration. */
 | 
						|
#define PRECHARGE_COUNT_AT_ONCE	256
 | 
						|
static int mem_cgroup_do_precharge(unsigned long count)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
 | 
						|
	struct mem_cgroup *memcg = mc.to;
 | 
						|
 | 
						|
	if (mem_cgroup_is_root(memcg)) {
 | 
						|
		mc.precharge += count;
 | 
						|
		/* we don't need css_get for root */
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	/* try to charge at once */
 | 
						|
	if (count > 1) {
 | 
						|
		struct res_counter *dummy;
 | 
						|
		/*
 | 
						|
		 * "memcg" cannot be under rmdir() because we've already checked
 | 
						|
		 * by cgroup_lock_live_cgroup() that it is not removed and we
 | 
						|
		 * are still under the same cgroup_mutex. So we can postpone
 | 
						|
		 * css_get().
 | 
						|
		 */
 | 
						|
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
 | 
						|
			goto one_by_one;
 | 
						|
		if (do_swap_account && res_counter_charge(&memcg->memsw,
 | 
						|
						PAGE_SIZE * count, &dummy)) {
 | 
						|
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
 | 
						|
			goto one_by_one;
 | 
						|
		}
 | 
						|
		mc.precharge += count;
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
one_by_one:
 | 
						|
	/* fall back to one by one charge */
 | 
						|
	while (count--) {
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (!batch_count--) {
 | 
						|
			batch_count = PRECHARGE_COUNT_AT_ONCE;
 | 
						|
			cond_resched();
 | 
						|
		}
 | 
						|
		ret = __mem_cgroup_try_charge(NULL,
 | 
						|
					GFP_KERNEL, 1, &memcg, false);
 | 
						|
		if (ret)
 | 
						|
			/* mem_cgroup_clear_mc() will do uncharge later */
 | 
						|
			return ret;
 | 
						|
		mc.precharge++;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * get_mctgt_type - get target type of moving charge
 | 
						|
 * @vma: the vma the pte to be checked belongs
 | 
						|
 * @addr: the address corresponding to the pte to be checked
 | 
						|
 * @ptent: the pte to be checked
 | 
						|
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 | 
						|
 *
 | 
						|
 * Returns
 | 
						|
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 | 
						|
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 | 
						|
 *     move charge. if @target is not NULL, the page is stored in target->page
 | 
						|
 *     with extra refcnt got(Callers should handle it).
 | 
						|
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 | 
						|
 *     target for charge migration. if @target is not NULL, the entry is stored
 | 
						|
 *     in target->ent.
 | 
						|
 *
 | 
						|
 * Called with pte lock held.
 | 
						|
 */
 | 
						|
union mc_target {
 | 
						|
	struct page	*page;
 | 
						|
	swp_entry_t	ent;
 | 
						|
};
 | 
						|
 | 
						|
enum mc_target_type {
 | 
						|
	MC_TARGET_NONE = 0,
 | 
						|
	MC_TARGET_PAGE,
 | 
						|
	MC_TARGET_SWAP,
 | 
						|
};
 | 
						|
 | 
						|
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
 | 
						|
						unsigned long addr, pte_t ptent)
 | 
						|
{
 | 
						|
	struct page *page = vm_normal_page(vma, addr, ptent);
 | 
						|
 | 
						|
	if (!page || !page_mapped(page))
 | 
						|
		return NULL;
 | 
						|
	if (PageAnon(page)) {
 | 
						|
		/* we don't move shared anon */
 | 
						|
		if (!move_anon())
 | 
						|
			return NULL;
 | 
						|
	} else if (!move_file())
 | 
						|
		/* we ignore mapcount for file pages */
 | 
						|
		return NULL;
 | 
						|
	if (!get_page_unless_zero(page))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SWAP
 | 
						|
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
 | 
						|
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	swp_entry_t ent = pte_to_swp_entry(ptent);
 | 
						|
 | 
						|
	if (!move_anon() || non_swap_entry(ent))
 | 
						|
		return NULL;
 | 
						|
	/*
 | 
						|
	 * Because lookup_swap_cache() updates some statistics counter,
 | 
						|
	 * we call find_get_page() with swapper_space directly.
 | 
						|
	 */
 | 
						|
	page = find_get_page(swap_address_space(ent), ent.val);
 | 
						|
	if (do_swap_account)
 | 
						|
		entry->val = ent.val;
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
#else
 | 
						|
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
 | 
						|
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
 | 
						|
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	struct address_space *mapping;
 | 
						|
	pgoff_t pgoff;
 | 
						|
 | 
						|
	if (!vma->vm_file) /* anonymous vma */
 | 
						|
		return NULL;
 | 
						|
	if (!move_file())
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	mapping = vma->vm_file->f_mapping;
 | 
						|
	if (pte_none(ptent))
 | 
						|
		pgoff = linear_page_index(vma, addr);
 | 
						|
	else /* pte_file(ptent) is true */
 | 
						|
		pgoff = pte_to_pgoff(ptent);
 | 
						|
 | 
						|
	/* page is moved even if it's not RSS of this task(page-faulted). */
 | 
						|
	page = find_get_page(mapping, pgoff);
 | 
						|
 | 
						|
#ifdef CONFIG_SWAP
 | 
						|
	/* shmem/tmpfs may report page out on swap: account for that too. */
 | 
						|
	if (radix_tree_exceptional_entry(page)) {
 | 
						|
		swp_entry_t swap = radix_to_swp_entry(page);
 | 
						|
		if (do_swap_account)
 | 
						|
			*entry = swap;
 | 
						|
		page = find_get_page(swap_address_space(swap), swap.val);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
 | 
						|
		unsigned long addr, pte_t ptent, union mc_target *target)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	enum mc_target_type ret = MC_TARGET_NONE;
 | 
						|
	swp_entry_t ent = { .val = 0 };
 | 
						|
 | 
						|
	if (pte_present(ptent))
 | 
						|
		page = mc_handle_present_pte(vma, addr, ptent);
 | 
						|
	else if (is_swap_pte(ptent))
 | 
						|
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
 | 
						|
	else if (pte_none(ptent) || pte_file(ptent))
 | 
						|
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
 | 
						|
 | 
						|
	if (!page && !ent.val)
 | 
						|
		return ret;
 | 
						|
	if (page) {
 | 
						|
		pc = lookup_page_cgroup(page);
 | 
						|
		/*
 | 
						|
		 * Do only loose check w/o page_cgroup lock.
 | 
						|
		 * mem_cgroup_move_account() checks the pc is valid or not under
 | 
						|
		 * the lock.
 | 
						|
		 */
 | 
						|
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
 | 
						|
			ret = MC_TARGET_PAGE;
 | 
						|
			if (target)
 | 
						|
				target->page = page;
 | 
						|
		}
 | 
						|
		if (!ret || !target)
 | 
						|
			put_page(page);
 | 
						|
	}
 | 
						|
	/* There is a swap entry and a page doesn't exist or isn't charged */
 | 
						|
	if (ent.val && !ret &&
 | 
						|
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
 | 
						|
		ret = MC_TARGET_SWAP;
 | 
						|
		if (target)
 | 
						|
			target->ent = ent;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
/*
 | 
						|
 * We don't consider swapping or file mapped pages because THP does not
 | 
						|
 * support them for now.
 | 
						|
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 | 
						|
 */
 | 
						|
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
 | 
						|
		unsigned long addr, pmd_t pmd, union mc_target *target)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	enum mc_target_type ret = MC_TARGET_NONE;
 | 
						|
 | 
						|
	page = pmd_page(pmd);
 | 
						|
	VM_BUG_ON(!page || !PageHead(page));
 | 
						|
	if (!move_anon())
 | 
						|
		return ret;
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
 | 
						|
		ret = MC_TARGET_PAGE;
 | 
						|
		if (target) {
 | 
						|
			get_page(page);
 | 
						|
			target->page = page;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
 | 
						|
		unsigned long addr, pmd_t pmd, union mc_target *target)
 | 
						|
{
 | 
						|
	return MC_TARGET_NONE;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
 | 
						|
					unsigned long addr, unsigned long end,
 | 
						|
					struct mm_walk *walk)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = walk->private;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
 | 
						|
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
 | 
						|
			mc.precharge += HPAGE_PMD_NR;
 | 
						|
		spin_unlock(ptl);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pmd_trans_unstable(pmd))
 | 
						|
		return 0;
 | 
						|
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | 
						|
	for (; addr != end; pte++, addr += PAGE_SIZE)
 | 
						|
		if (get_mctgt_type(vma, addr, *pte, NULL))
 | 
						|
			mc.precharge++;	/* increment precharge temporarily */
 | 
						|
	pte_unmap_unlock(pte - 1, ptl);
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	unsigned long precharge;
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
 | 
						|
	down_read(&mm->mmap_sem);
 | 
						|
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | 
						|
		struct mm_walk mem_cgroup_count_precharge_walk = {
 | 
						|
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
 | 
						|
			.mm = mm,
 | 
						|
			.private = vma,
 | 
						|
		};
 | 
						|
		if (is_vm_hugetlb_page(vma))
 | 
						|
			continue;
 | 
						|
		walk_page_range(vma->vm_start, vma->vm_end,
 | 
						|
					&mem_cgroup_count_precharge_walk);
 | 
						|
	}
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
 | 
						|
	precharge = mc.precharge;
 | 
						|
	mc.precharge = 0;
 | 
						|
 | 
						|
	return precharge;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_precharge_mc(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	unsigned long precharge = mem_cgroup_count_precharge(mm);
 | 
						|
 | 
						|
	VM_BUG_ON(mc.moving_task);
 | 
						|
	mc.moving_task = current;
 | 
						|
	return mem_cgroup_do_precharge(precharge);
 | 
						|
}
 | 
						|
 | 
						|
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
 | 
						|
static void __mem_cgroup_clear_mc(void)
 | 
						|
{
 | 
						|
	struct mem_cgroup *from = mc.from;
 | 
						|
	struct mem_cgroup *to = mc.to;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* we must uncharge all the leftover precharges from mc.to */
 | 
						|
	if (mc.precharge) {
 | 
						|
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
 | 
						|
		mc.precharge = 0;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
 | 
						|
	 * we must uncharge here.
 | 
						|
	 */
 | 
						|
	if (mc.moved_charge) {
 | 
						|
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
 | 
						|
		mc.moved_charge = 0;
 | 
						|
	}
 | 
						|
	/* we must fixup refcnts and charges */
 | 
						|
	if (mc.moved_swap) {
 | 
						|
		/* uncharge swap account from the old cgroup */
 | 
						|
		if (!mem_cgroup_is_root(mc.from))
 | 
						|
			res_counter_uncharge(&mc.from->memsw,
 | 
						|
						PAGE_SIZE * mc.moved_swap);
 | 
						|
 | 
						|
		for (i = 0; i < mc.moved_swap; i++)
 | 
						|
			css_put(&mc.from->css);
 | 
						|
 | 
						|
		if (!mem_cgroup_is_root(mc.to)) {
 | 
						|
			/*
 | 
						|
			 * we charged both to->res and to->memsw, so we should
 | 
						|
			 * uncharge to->res.
 | 
						|
			 */
 | 
						|
			res_counter_uncharge(&mc.to->res,
 | 
						|
						PAGE_SIZE * mc.moved_swap);
 | 
						|
		}
 | 
						|
		/* we've already done css_get(mc.to) */
 | 
						|
		mc.moved_swap = 0;
 | 
						|
	}
 | 
						|
	memcg_oom_recover(from);
 | 
						|
	memcg_oom_recover(to);
 | 
						|
	wake_up_all(&mc.waitq);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_clear_mc(void)
 | 
						|
{
 | 
						|
	struct mem_cgroup *from = mc.from;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we must clear moving_task before waking up waiters at the end of
 | 
						|
	 * task migration.
 | 
						|
	 */
 | 
						|
	mc.moving_task = NULL;
 | 
						|
	__mem_cgroup_clear_mc();
 | 
						|
	spin_lock(&mc.lock);
 | 
						|
	mc.from = NULL;
 | 
						|
	mc.to = NULL;
 | 
						|
	spin_unlock(&mc.lock);
 | 
						|
	mem_cgroup_end_move(from);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
 | 
						|
				 struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
	struct task_struct *p = cgroup_taskset_first(tset);
 | 
						|
	int ret = 0;
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | 
						|
	unsigned long move_charge_at_immigrate;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We are now commited to this value whatever it is. Changes in this
 | 
						|
	 * tunable will only affect upcoming migrations, not the current one.
 | 
						|
	 * So we need to save it, and keep it going.
 | 
						|
	 */
 | 
						|
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
 | 
						|
	if (move_charge_at_immigrate) {
 | 
						|
		struct mm_struct *mm;
 | 
						|
		struct mem_cgroup *from = mem_cgroup_from_task(p);
 | 
						|
 | 
						|
		VM_BUG_ON(from == memcg);
 | 
						|
 | 
						|
		mm = get_task_mm(p);
 | 
						|
		if (!mm)
 | 
						|
			return 0;
 | 
						|
		/* We move charges only when we move a owner of the mm */
 | 
						|
		if (mm->owner == p) {
 | 
						|
			VM_BUG_ON(mc.from);
 | 
						|
			VM_BUG_ON(mc.to);
 | 
						|
			VM_BUG_ON(mc.precharge);
 | 
						|
			VM_BUG_ON(mc.moved_charge);
 | 
						|
			VM_BUG_ON(mc.moved_swap);
 | 
						|
			mem_cgroup_start_move(from);
 | 
						|
			spin_lock(&mc.lock);
 | 
						|
			mc.from = from;
 | 
						|
			mc.to = memcg;
 | 
						|
			mc.immigrate_flags = move_charge_at_immigrate;
 | 
						|
			spin_unlock(&mc.lock);
 | 
						|
			/* We set mc.moving_task later */
 | 
						|
 | 
						|
			ret = mem_cgroup_precharge_mc(mm);
 | 
						|
			if (ret)
 | 
						|
				mem_cgroup_clear_mc();
 | 
						|
		}
 | 
						|
		mmput(mm);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
 | 
						|
				     struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
	mem_cgroup_clear_mc();
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
 | 
						|
				unsigned long addr, unsigned long end,
 | 
						|
				struct mm_walk *walk)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct vm_area_struct *vma = walk->private;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	enum mc_target_type target_type;
 | 
						|
	union mc_target target;
 | 
						|
	struct page *page;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't take compound_lock() here but no race with splitting thp
 | 
						|
	 * happens because:
 | 
						|
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
 | 
						|
	 *    under splitting, which means there's no concurrent thp split,
 | 
						|
	 *  - if another thread runs into split_huge_page() just after we
 | 
						|
	 *    entered this if-block, the thread must wait for page table lock
 | 
						|
	 *    to be unlocked in __split_huge_page_splitting(), where the main
 | 
						|
	 *    part of thp split is not executed yet.
 | 
						|
	 */
 | 
						|
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
 | 
						|
		if (mc.precharge < HPAGE_PMD_NR) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
 | 
						|
		if (target_type == MC_TARGET_PAGE) {
 | 
						|
			page = target.page;
 | 
						|
			if (!isolate_lru_page(page)) {
 | 
						|
				pc = lookup_page_cgroup(page);
 | 
						|
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
 | 
						|
							pc, mc.from, mc.to)) {
 | 
						|
					mc.precharge -= HPAGE_PMD_NR;
 | 
						|
					mc.moved_charge += HPAGE_PMD_NR;
 | 
						|
				}
 | 
						|
				putback_lru_page(page);
 | 
						|
			}
 | 
						|
			put_page(page);
 | 
						|
		}
 | 
						|
		spin_unlock(ptl);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pmd_trans_unstable(pmd))
 | 
						|
		return 0;
 | 
						|
retry:
 | 
						|
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | 
						|
	for (; addr != end; addr += PAGE_SIZE) {
 | 
						|
		pte_t ptent = *(pte++);
 | 
						|
		swp_entry_t ent;
 | 
						|
 | 
						|
		if (!mc.precharge)
 | 
						|
			break;
 | 
						|
 | 
						|
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
 | 
						|
		case MC_TARGET_PAGE:
 | 
						|
			page = target.page;
 | 
						|
			if (isolate_lru_page(page))
 | 
						|
				goto put;
 | 
						|
			pc = lookup_page_cgroup(page);
 | 
						|
			if (!mem_cgroup_move_account(page, 1, pc,
 | 
						|
						     mc.from, mc.to)) {
 | 
						|
				mc.precharge--;
 | 
						|
				/* we uncharge from mc.from later. */
 | 
						|
				mc.moved_charge++;
 | 
						|
			}
 | 
						|
			putback_lru_page(page);
 | 
						|
put:			/* get_mctgt_type() gets the page */
 | 
						|
			put_page(page);
 | 
						|
			break;
 | 
						|
		case MC_TARGET_SWAP:
 | 
						|
			ent = target.ent;
 | 
						|
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
 | 
						|
				mc.precharge--;
 | 
						|
				/* we fixup refcnts and charges later. */
 | 
						|
				mc.moved_swap++;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pte_unmap_unlock(pte - 1, ptl);
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	if (addr != end) {
 | 
						|
		/*
 | 
						|
		 * We have consumed all precharges we got in can_attach().
 | 
						|
		 * We try charge one by one, but don't do any additional
 | 
						|
		 * charges to mc.to if we have failed in charge once in attach()
 | 
						|
		 * phase.
 | 
						|
		 */
 | 
						|
		ret = mem_cgroup_do_precharge(1);
 | 
						|
		if (!ret)
 | 
						|
			goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_move_charge(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
 | 
						|
	lru_add_drain_all();
 | 
						|
retry:
 | 
						|
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
 | 
						|
		/*
 | 
						|
		 * Someone who are holding the mmap_sem might be waiting in
 | 
						|
		 * waitq. So we cancel all extra charges, wake up all waiters,
 | 
						|
		 * and retry. Because we cancel precharges, we might not be able
 | 
						|
		 * to move enough charges, but moving charge is a best-effort
 | 
						|
		 * feature anyway, so it wouldn't be a big problem.
 | 
						|
		 */
 | 
						|
		__mem_cgroup_clear_mc();
 | 
						|
		cond_resched();
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | 
						|
		int ret;
 | 
						|
		struct mm_walk mem_cgroup_move_charge_walk = {
 | 
						|
			.pmd_entry = mem_cgroup_move_charge_pte_range,
 | 
						|
			.mm = mm,
 | 
						|
			.private = vma,
 | 
						|
		};
 | 
						|
		if (is_vm_hugetlb_page(vma))
 | 
						|
			continue;
 | 
						|
		ret = walk_page_range(vma->vm_start, vma->vm_end,
 | 
						|
						&mem_cgroup_move_charge_walk);
 | 
						|
		if (ret)
 | 
						|
			/*
 | 
						|
			 * means we have consumed all precharges and failed in
 | 
						|
			 * doing additional charge. Just abandon here.
 | 
						|
			 */
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
 | 
						|
				 struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
	struct task_struct *p = cgroup_taskset_first(tset);
 | 
						|
	struct mm_struct *mm = get_task_mm(p);
 | 
						|
 | 
						|
	if (mm) {
 | 
						|
		if (mc.to)
 | 
						|
			mem_cgroup_move_charge(mm);
 | 
						|
		mmput(mm);
 | 
						|
	}
 | 
						|
	if (mc.to)
 | 
						|
		mem_cgroup_clear_mc();
 | 
						|
}
 | 
						|
#else	/* !CONFIG_MMU */
 | 
						|
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
 | 
						|
				 struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
 | 
						|
				     struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
}
 | 
						|
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
 | 
						|
				 struct cgroup_taskset *tset)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 | 
						|
 * to verify sane_behavior flag on each mount attempt.
 | 
						|
 */
 | 
						|
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * use_hierarchy is forced with sane_behavior.  cgroup core
 | 
						|
	 * guarantees that @root doesn't have any children, so turning it
 | 
						|
	 * on for the root memcg is enough.
 | 
						|
	 */
 | 
						|
	if (cgroup_sane_behavior(root_css->cgroup))
 | 
						|
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
 | 
						|
}
 | 
						|
 | 
						|
struct cgroup_subsys mem_cgroup_subsys = {
 | 
						|
	.name = "memory",
 | 
						|
	.subsys_id = mem_cgroup_subsys_id,
 | 
						|
	.css_alloc = mem_cgroup_css_alloc,
 | 
						|
	.css_online = mem_cgroup_css_online,
 | 
						|
	.css_offline = mem_cgroup_css_offline,
 | 
						|
	.css_free = mem_cgroup_css_free,
 | 
						|
	.can_attach = mem_cgroup_can_attach,
 | 
						|
	.cancel_attach = mem_cgroup_cancel_attach,
 | 
						|
	.attach = mem_cgroup_move_task,
 | 
						|
	.bind = mem_cgroup_bind,
 | 
						|
	.base_cftypes = mem_cgroup_files,
 | 
						|
	.early_init = 0,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_SWAP
 | 
						|
static int __init enable_swap_account(char *s)
 | 
						|
{
 | 
						|
	if (!strcmp(s, "1"))
 | 
						|
		really_do_swap_account = 1;
 | 
						|
	else if (!strcmp(s, "0"))
 | 
						|
		really_do_swap_account = 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("swapaccount=", enable_swap_account);
 | 
						|
 | 
						|
static void __init memsw_file_init(void)
 | 
						|
{
 | 
						|
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
 | 
						|
}
 | 
						|
 | 
						|
static void __init enable_swap_cgroup(void)
 | 
						|
{
 | 
						|
	if (!mem_cgroup_disabled() && really_do_swap_account) {
 | 
						|
		do_swap_account = 1;
 | 
						|
		memsw_file_init();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static void __init enable_swap_cgroup(void)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * subsys_initcall() for memory controller.
 | 
						|
 *
 | 
						|
 * Some parts like hotcpu_notifier() have to be initialized from this context
 | 
						|
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 | 
						|
 * everything that doesn't depend on a specific mem_cgroup structure should
 | 
						|
 * be initialized from here.
 | 
						|
 */
 | 
						|
static int __init mem_cgroup_init(void)
 | 
						|
{
 | 
						|
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
 | 
						|
	enable_swap_cgroup();
 | 
						|
	mem_cgroup_soft_limit_tree_init();
 | 
						|
	memcg_stock_init();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
subsys_initcall(mem_cgroup_init);
 |