mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	This customizes the subset of the Rust standard library `alloc` that
was just imported as-is, mainly by:
  - Adding SPDX license identifiers.
  - Skipping modules (e.g. `rc` and `sync`) via new `cfg`s.
  - Adding fallible (`try_*`) versions of existing infallible methods
    (i.e. returning a `Result` instead of panicking).
    Since the standard library requires stable/unstable attributes,
    these additions are annotated with:
        #[stable(feature = "kernel", since = "1.0.0")]
    Using "kernel" as the feature allows to have the additions
    clearly marked. The "1.0.0" version is just a placeholder.
    (At the moment, only one is needed, but in the future more
    fallible methods will be added).
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com>
Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com>
Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com>
Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com>
Co-developed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Gary Guo <gary@garyguo.net>
Co-developed-by: Matthew Bakhtiari <dev@mtbk.me>
Signed-off-by: Matthew Bakhtiari <dev@mtbk.me>
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
		
	
			
		
			
				
	
	
		
			1204 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1204 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
// SPDX-License-Identifier: Apache-2.0 OR MIT
 | 
						|
 | 
						|
//! A dynamically-sized view into a contiguous sequence, `[T]`.
 | 
						|
//!
 | 
						|
//! *[See also the slice primitive type](slice).*
 | 
						|
//!
 | 
						|
//! Slices are a view into a block of memory represented as a pointer and a
 | 
						|
//! length.
 | 
						|
//!
 | 
						|
//! ```
 | 
						|
//! // slicing a Vec
 | 
						|
//! let vec = vec![1, 2, 3];
 | 
						|
//! let int_slice = &vec[..];
 | 
						|
//! // coercing an array to a slice
 | 
						|
//! let str_slice: &[&str] = &["one", "two", "three"];
 | 
						|
//! ```
 | 
						|
//!
 | 
						|
//! Slices are either mutable or shared. The shared slice type is `&[T]`,
 | 
						|
//! while the mutable slice type is `&mut [T]`, where `T` represents the element
 | 
						|
//! type. For example, you can mutate the block of memory that a mutable slice
 | 
						|
//! points to:
 | 
						|
//!
 | 
						|
//! ```
 | 
						|
//! let x = &mut [1, 2, 3];
 | 
						|
//! x[1] = 7;
 | 
						|
//! assert_eq!(x, &[1, 7, 3]);
 | 
						|
//! ```
 | 
						|
//!
 | 
						|
//! Here are some of the things this module contains:
 | 
						|
//!
 | 
						|
//! ## Structs
 | 
						|
//!
 | 
						|
//! There are several structs that are useful for slices, such as [`Iter`], which
 | 
						|
//! represents iteration over a slice.
 | 
						|
//!
 | 
						|
//! ## Trait Implementations
 | 
						|
//!
 | 
						|
//! There are several implementations of common traits for slices. Some examples
 | 
						|
//! include:
 | 
						|
//!
 | 
						|
//! * [`Clone`]
 | 
						|
//! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`].
 | 
						|
//! * [`Hash`] - for slices whose element type is [`Hash`].
 | 
						|
//!
 | 
						|
//! ## Iteration
 | 
						|
//!
 | 
						|
//! The slices implement `IntoIterator`. The iterator yields references to the
 | 
						|
//! slice elements.
 | 
						|
//!
 | 
						|
//! ```
 | 
						|
//! let numbers = &[0, 1, 2];
 | 
						|
//! for n in numbers {
 | 
						|
//!     println!("{n} is a number!");
 | 
						|
//! }
 | 
						|
//! ```
 | 
						|
//!
 | 
						|
//! The mutable slice yields mutable references to the elements:
 | 
						|
//!
 | 
						|
//! ```
 | 
						|
//! let mut scores = [7, 8, 9];
 | 
						|
//! for score in &mut scores[..] {
 | 
						|
//!     *score += 1;
 | 
						|
//! }
 | 
						|
//! ```
 | 
						|
//!
 | 
						|
//! This iterator yields mutable references to the slice's elements, so while
 | 
						|
//! the element type of the slice is `i32`, the element type of the iterator is
 | 
						|
//! `&mut i32`.
 | 
						|
//!
 | 
						|
//! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default
 | 
						|
//!   iterators.
 | 
						|
//! * Further methods that return iterators are [`.split`], [`.splitn`],
 | 
						|
//!   [`.chunks`], [`.windows`] and more.
 | 
						|
//!
 | 
						|
//! [`Hash`]: core::hash::Hash
 | 
						|
//! [`.iter`]: slice::iter
 | 
						|
//! [`.iter_mut`]: slice::iter_mut
 | 
						|
//! [`.split`]: slice::split
 | 
						|
//! [`.splitn`]: slice::splitn
 | 
						|
//! [`.chunks`]: slice::chunks
 | 
						|
//! [`.windows`]: slice::windows
 | 
						|
#![stable(feature = "rust1", since = "1.0.0")]
 | 
						|
// Many of the usings in this module are only used in the test configuration.
 | 
						|
// It's cleaner to just turn off the unused_imports warning than to fix them.
 | 
						|
#![cfg_attr(test, allow(unused_imports, dead_code))]
 | 
						|
 | 
						|
use core::borrow::{Borrow, BorrowMut};
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
use core::cmp::Ordering::{self, Less};
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
use core::mem;
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
use core::mem::size_of;
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
use core::ptr;
 | 
						|
 | 
						|
use crate::alloc::Allocator;
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
use crate::alloc::Global;
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
use crate::borrow::ToOwned;
 | 
						|
use crate::boxed::Box;
 | 
						|
use crate::vec::Vec;
 | 
						|
 | 
						|
#[unstable(feature = "slice_range", issue = "76393")]
 | 
						|
pub use core::slice::range;
 | 
						|
#[unstable(feature = "array_chunks", issue = "74985")]
 | 
						|
pub use core::slice::ArrayChunks;
 | 
						|
#[unstable(feature = "array_chunks", issue = "74985")]
 | 
						|
pub use core::slice::ArrayChunksMut;
 | 
						|
#[unstable(feature = "array_windows", issue = "75027")]
 | 
						|
pub use core::slice::ArrayWindows;
 | 
						|
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
 | 
						|
pub use core::slice::EscapeAscii;
 | 
						|
#[stable(feature = "slice_get_slice", since = "1.28.0")]
 | 
						|
pub use core::slice::SliceIndex;
 | 
						|
#[stable(feature = "from_ref", since = "1.28.0")]
 | 
						|
pub use core::slice::{from_mut, from_ref};
 | 
						|
#[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
pub use core::slice::{from_raw_parts, from_raw_parts_mut};
 | 
						|
#[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
pub use core::slice::{Chunks, Windows};
 | 
						|
#[stable(feature = "chunks_exact", since = "1.31.0")]
 | 
						|
pub use core::slice::{ChunksExact, ChunksExactMut};
 | 
						|
#[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
pub use core::slice::{ChunksMut, Split, SplitMut};
 | 
						|
#[unstable(feature = "slice_group_by", issue = "80552")]
 | 
						|
pub use core::slice::{GroupBy, GroupByMut};
 | 
						|
#[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
pub use core::slice::{Iter, IterMut};
 | 
						|
#[stable(feature = "rchunks", since = "1.31.0")]
 | 
						|
pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
 | 
						|
#[stable(feature = "slice_rsplit", since = "1.27.0")]
 | 
						|
pub use core::slice::{RSplit, RSplitMut};
 | 
						|
#[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
 | 
						|
#[stable(feature = "split_inclusive", since = "1.51.0")]
 | 
						|
pub use core::slice::{SplitInclusive, SplitInclusiveMut};
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Basic slice extension methods
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
// HACK(japaric) needed for the implementation of `vec!` macro during testing
 | 
						|
// N.B., see the `hack` module in this file for more details.
 | 
						|
#[cfg(test)]
 | 
						|
pub use hack::into_vec;
 | 
						|
 | 
						|
// HACK(japaric) needed for the implementation of `Vec::clone` during testing
 | 
						|
// N.B., see the `hack` module in this file for more details.
 | 
						|
#[cfg(test)]
 | 
						|
pub use hack::to_vec;
 | 
						|
 | 
						|
// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
 | 
						|
// functions are actually methods that are in `impl [T]` but not in
 | 
						|
// `core::slice::SliceExt` - we need to supply these functions for the
 | 
						|
// `test_permutations` test
 | 
						|
pub(crate) mod hack {
 | 
						|
    use core::alloc::Allocator;
 | 
						|
 | 
						|
    use crate::boxed::Box;
 | 
						|
    use crate::vec::Vec;
 | 
						|
 | 
						|
    // We shouldn't add inline attribute to this since this is used in
 | 
						|
    // `vec!` macro mostly and causes perf regression. See #71204 for
 | 
						|
    // discussion and perf results.
 | 
						|
    pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> {
 | 
						|
        unsafe {
 | 
						|
            let len = b.len();
 | 
						|
            let (b, alloc) = Box::into_raw_with_allocator(b);
 | 
						|
            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[inline]
 | 
						|
    pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> {
 | 
						|
        T::to_vec(s, alloc)
 | 
						|
    }
 | 
						|
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    pub trait ConvertVec {
 | 
						|
        fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
 | 
						|
        where
 | 
						|
            Self: Sized;
 | 
						|
    }
 | 
						|
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    impl<T: Clone> ConvertVec for T {
 | 
						|
        #[inline]
 | 
						|
        default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
 | 
						|
            struct DropGuard<'a, T, A: Allocator> {
 | 
						|
                vec: &'a mut Vec<T, A>,
 | 
						|
                num_init: usize,
 | 
						|
            }
 | 
						|
            impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
 | 
						|
                #[inline]
 | 
						|
                fn drop(&mut self) {
 | 
						|
                    // SAFETY:
 | 
						|
                    // items were marked initialized in the loop below
 | 
						|
                    unsafe {
 | 
						|
                        self.vec.set_len(self.num_init);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            let mut vec = Vec::with_capacity_in(s.len(), alloc);
 | 
						|
            let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
 | 
						|
            let slots = guard.vec.spare_capacity_mut();
 | 
						|
            // .take(slots.len()) is necessary for LLVM to remove bounds checks
 | 
						|
            // and has better codegen than zip.
 | 
						|
            for (i, b) in s.iter().enumerate().take(slots.len()) {
 | 
						|
                guard.num_init = i;
 | 
						|
                slots[i].write(b.clone());
 | 
						|
            }
 | 
						|
            core::mem::forget(guard);
 | 
						|
            // SAFETY:
 | 
						|
            // the vec was allocated and initialized above to at least this length.
 | 
						|
            unsafe {
 | 
						|
                vec.set_len(s.len());
 | 
						|
            }
 | 
						|
            vec
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    impl<T: Copy> ConvertVec for T {
 | 
						|
        #[inline]
 | 
						|
        fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
 | 
						|
            let mut v = Vec::with_capacity_in(s.len(), alloc);
 | 
						|
            // SAFETY:
 | 
						|
            // allocated above with the capacity of `s`, and initialize to `s.len()` in
 | 
						|
            // ptr::copy_to_non_overlapping below.
 | 
						|
            unsafe {
 | 
						|
                s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
 | 
						|
                v.set_len(s.len());
 | 
						|
            }
 | 
						|
            v
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[cfg(not(test))]
 | 
						|
impl<T> [T] {
 | 
						|
    /// Sorts the slice.
 | 
						|
    ///
 | 
						|
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
 | 
						|
    ///
 | 
						|
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
 | 
						|
    /// sorting and it doesn't allocate auxiliary memory.
 | 
						|
    /// See [`sort_unstable`](slice::sort_unstable).
 | 
						|
    ///
 | 
						|
    /// # Current implementation
 | 
						|
    ///
 | 
						|
    /// The current algorithm is an adaptive, iterative merge sort inspired by
 | 
						|
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
 | 
						|
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
 | 
						|
    /// two or more sorted sequences concatenated one after another.
 | 
						|
    ///
 | 
						|
    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
 | 
						|
    /// non-allocating insertion sort is used instead.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// let mut v = [-5, 4, 1, -3, 2];
 | 
						|
    ///
 | 
						|
    /// v.sort();
 | 
						|
    /// assert!(v == [-5, -3, 1, 2, 4]);
 | 
						|
    /// ```
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
    #[inline]
 | 
						|
    pub fn sort(&mut self)
 | 
						|
    where
 | 
						|
        T: Ord,
 | 
						|
    {
 | 
						|
        merge_sort(self, |a, b| a.lt(b));
 | 
						|
    }
 | 
						|
 | 
						|
    /// Sorts the slice with a comparator function.
 | 
						|
    ///
 | 
						|
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
 | 
						|
    ///
 | 
						|
    /// The comparator function must define a total ordering for the elements in the slice. If
 | 
						|
    /// the ordering is not total, the order of the elements is unspecified. An order is a
 | 
						|
    /// total order if it is (for all `a`, `b` and `c`):
 | 
						|
    ///
 | 
						|
    /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
 | 
						|
    /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
 | 
						|
    ///
 | 
						|
    /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
 | 
						|
    /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
 | 
						|
    /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
 | 
						|
    /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
 | 
						|
    /// ```
 | 
						|
    ///
 | 
						|
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
 | 
						|
    /// sorting and it doesn't allocate auxiliary memory.
 | 
						|
    /// See [`sort_unstable_by`](slice::sort_unstable_by).
 | 
						|
    ///
 | 
						|
    /// # Current implementation
 | 
						|
    ///
 | 
						|
    /// The current algorithm is an adaptive, iterative merge sort inspired by
 | 
						|
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
 | 
						|
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
 | 
						|
    /// two or more sorted sequences concatenated one after another.
 | 
						|
    ///
 | 
						|
    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
 | 
						|
    /// non-allocating insertion sort is used instead.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// let mut v = [5, 4, 1, 3, 2];
 | 
						|
    /// v.sort_by(|a, b| a.cmp(b));
 | 
						|
    /// assert!(v == [1, 2, 3, 4, 5]);
 | 
						|
    ///
 | 
						|
    /// // reverse sorting
 | 
						|
    /// v.sort_by(|a, b| b.cmp(a));
 | 
						|
    /// assert!(v == [5, 4, 3, 2, 1]);
 | 
						|
    /// ```
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
    #[inline]
 | 
						|
    pub fn sort_by<F>(&mut self, mut compare: F)
 | 
						|
    where
 | 
						|
        F: FnMut(&T, &T) -> Ordering,
 | 
						|
    {
 | 
						|
        merge_sort(self, |a, b| compare(a, b) == Less);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Sorts the slice with a key extraction function.
 | 
						|
    ///
 | 
						|
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
 | 
						|
    /// worst-case, where the key function is *O*(*m*).
 | 
						|
    ///
 | 
						|
    /// For expensive key functions (e.g. functions that are not simple property accesses or
 | 
						|
    /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be
 | 
						|
    /// significantly faster, as it does not recompute element keys.
 | 
						|
    ///
 | 
						|
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
 | 
						|
    /// sorting and it doesn't allocate auxiliary memory.
 | 
						|
    /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key).
 | 
						|
    ///
 | 
						|
    /// # Current implementation
 | 
						|
    ///
 | 
						|
    /// The current algorithm is an adaptive, iterative merge sort inspired by
 | 
						|
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
 | 
						|
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
 | 
						|
    /// two or more sorted sequences concatenated one after another.
 | 
						|
    ///
 | 
						|
    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
 | 
						|
    /// non-allocating insertion sort is used instead.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// let mut v = [-5i32, 4, 1, -3, 2];
 | 
						|
    ///
 | 
						|
    /// v.sort_by_key(|k| k.abs());
 | 
						|
    /// assert!(v == [1, 2, -3, 4, -5]);
 | 
						|
    /// ```
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
 | 
						|
    #[inline]
 | 
						|
    pub fn sort_by_key<K, F>(&mut self, mut f: F)
 | 
						|
    where
 | 
						|
        F: FnMut(&T) -> K,
 | 
						|
        K: Ord,
 | 
						|
    {
 | 
						|
        merge_sort(self, |a, b| f(a).lt(&f(b)));
 | 
						|
    }
 | 
						|
 | 
						|
    /// Sorts the slice with a key extraction function.
 | 
						|
    ///
 | 
						|
    /// During sorting, the key function is called at most once per element, by using
 | 
						|
    /// temporary storage to remember the results of key evaluation.
 | 
						|
    /// The order of calls to the key function is unspecified and may change in future versions
 | 
						|
    /// of the standard library.
 | 
						|
    ///
 | 
						|
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*))
 | 
						|
    /// worst-case, where the key function is *O*(*m*).
 | 
						|
    ///
 | 
						|
    /// For simple key functions (e.g., functions that are property accesses or
 | 
						|
    /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be
 | 
						|
    /// faster.
 | 
						|
    ///
 | 
						|
    /// # Current implementation
 | 
						|
    ///
 | 
						|
    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
 | 
						|
    /// which combines the fast average case of randomized quicksort with the fast worst case of
 | 
						|
    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
 | 
						|
    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
 | 
						|
    /// deterministic behavior.
 | 
						|
    ///
 | 
						|
    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
 | 
						|
    /// length of the slice.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// let mut v = [-5i32, 4, 32, -3, 2];
 | 
						|
    ///
 | 
						|
    /// v.sort_by_cached_key(|k| k.to_string());
 | 
						|
    /// assert!(v == [-3, -5, 2, 32, 4]);
 | 
						|
    /// ```
 | 
						|
    ///
 | 
						|
    /// [pdqsort]: https://github.com/orlp/pdqsort
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
 | 
						|
    #[inline]
 | 
						|
    pub fn sort_by_cached_key<K, F>(&mut self, f: F)
 | 
						|
    where
 | 
						|
        F: FnMut(&T) -> K,
 | 
						|
        K: Ord,
 | 
						|
    {
 | 
						|
        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
 | 
						|
        macro_rules! sort_by_key {
 | 
						|
            ($t:ty, $slice:ident, $f:ident) => {{
 | 
						|
                let mut indices: Vec<_> =
 | 
						|
                    $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
 | 
						|
                // The elements of `indices` are unique, as they are indexed, so any sort will be
 | 
						|
                // stable with respect to the original slice. We use `sort_unstable` here because
 | 
						|
                // it requires less memory allocation.
 | 
						|
                indices.sort_unstable();
 | 
						|
                for i in 0..$slice.len() {
 | 
						|
                    let mut index = indices[i].1;
 | 
						|
                    while (index as usize) < i {
 | 
						|
                        index = indices[index as usize].1;
 | 
						|
                    }
 | 
						|
                    indices[i].1 = index;
 | 
						|
                    $slice.swap(i, index as usize);
 | 
						|
                }
 | 
						|
            }};
 | 
						|
        }
 | 
						|
 | 
						|
        let sz_u8 = mem::size_of::<(K, u8)>();
 | 
						|
        let sz_u16 = mem::size_of::<(K, u16)>();
 | 
						|
        let sz_u32 = mem::size_of::<(K, u32)>();
 | 
						|
        let sz_usize = mem::size_of::<(K, usize)>();
 | 
						|
 | 
						|
        let len = self.len();
 | 
						|
        if len < 2 {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if sz_u8 < sz_u16 && len <= (u8::MAX as usize) {
 | 
						|
            return sort_by_key!(u8, self, f);
 | 
						|
        }
 | 
						|
        if sz_u16 < sz_u32 && len <= (u16::MAX as usize) {
 | 
						|
            return sort_by_key!(u16, self, f);
 | 
						|
        }
 | 
						|
        if sz_u32 < sz_usize && len <= (u32::MAX as usize) {
 | 
						|
            return sort_by_key!(u32, self, f);
 | 
						|
        }
 | 
						|
        sort_by_key!(usize, self, f)
 | 
						|
    }
 | 
						|
 | 
						|
    /// Copies `self` into a new `Vec`.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// let s = [10, 40, 30];
 | 
						|
    /// let x = s.to_vec();
 | 
						|
    /// // Here, `s` and `x` can be modified independently.
 | 
						|
    /// ```
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[rustc_conversion_suggestion]
 | 
						|
    #[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
    #[inline]
 | 
						|
    pub fn to_vec(&self) -> Vec<T>
 | 
						|
    where
 | 
						|
        T: Clone,
 | 
						|
    {
 | 
						|
        self.to_vec_in(Global)
 | 
						|
    }
 | 
						|
 | 
						|
    /// Copies `self` into a new `Vec` with an allocator.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// #![feature(allocator_api)]
 | 
						|
    ///
 | 
						|
    /// use std::alloc::System;
 | 
						|
    ///
 | 
						|
    /// let s = [10, 40, 30];
 | 
						|
    /// let x = s.to_vec_in(System);
 | 
						|
    /// // Here, `s` and `x` can be modified independently.
 | 
						|
    /// ```
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[inline]
 | 
						|
    #[unstable(feature = "allocator_api", issue = "32838")]
 | 
						|
    pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
 | 
						|
    where
 | 
						|
        T: Clone,
 | 
						|
    {
 | 
						|
        // N.B., see the `hack` module in this file for more details.
 | 
						|
        hack::to_vec(self, alloc)
 | 
						|
    }
 | 
						|
 | 
						|
    /// Converts `self` into a vector without clones or allocation.
 | 
						|
    ///
 | 
						|
    /// The resulting vector can be converted back into a box via
 | 
						|
    /// `Vec<T>`'s `into_boxed_slice` method.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
 | 
						|
    /// let x = s.into_vec();
 | 
						|
    /// // `s` cannot be used anymore because it has been converted into `x`.
 | 
						|
    ///
 | 
						|
    /// assert_eq!(x, vec![10, 40, 30]);
 | 
						|
    /// ```
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
    #[inline]
 | 
						|
    pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
 | 
						|
        // N.B., see the `hack` module in this file for more details.
 | 
						|
        hack::into_vec(self)
 | 
						|
    }
 | 
						|
 | 
						|
    /// Creates a vector by repeating a slice `n` times.
 | 
						|
    ///
 | 
						|
    /// # Panics
 | 
						|
    ///
 | 
						|
    /// This function will panic if the capacity would overflow.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// Basic usage:
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
 | 
						|
    /// ```
 | 
						|
    ///
 | 
						|
    /// A panic upon overflow:
 | 
						|
    ///
 | 
						|
    /// ```should_panic
 | 
						|
    /// // this will panic at runtime
 | 
						|
    /// b"0123456789abcdef".repeat(usize::MAX);
 | 
						|
    /// ```
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
 | 
						|
    pub fn repeat(&self, n: usize) -> Vec<T>
 | 
						|
    where
 | 
						|
        T: Copy,
 | 
						|
    {
 | 
						|
        if n == 0 {
 | 
						|
            return Vec::new();
 | 
						|
        }
 | 
						|
 | 
						|
        // If `n` is larger than zero, it can be split as
 | 
						|
        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
 | 
						|
        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
 | 
						|
        // and `rem` is the remaining part of `n`.
 | 
						|
 | 
						|
        // Using `Vec` to access `set_len()`.
 | 
						|
        let capacity = self.len().checked_mul(n).expect("capacity overflow");
 | 
						|
        let mut buf = Vec::with_capacity(capacity);
 | 
						|
 | 
						|
        // `2^expn` repetition is done by doubling `buf` `expn`-times.
 | 
						|
        buf.extend(self);
 | 
						|
        {
 | 
						|
            let mut m = n >> 1;
 | 
						|
            // If `m > 0`, there are remaining bits up to the leftmost '1'.
 | 
						|
            while m > 0 {
 | 
						|
                // `buf.extend(buf)`:
 | 
						|
                unsafe {
 | 
						|
                    ptr::copy_nonoverlapping(
 | 
						|
                        buf.as_ptr(),
 | 
						|
                        (buf.as_mut_ptr() as *mut T).add(buf.len()),
 | 
						|
                        buf.len(),
 | 
						|
                    );
 | 
						|
                    // `buf` has capacity of `self.len() * n`.
 | 
						|
                    let buf_len = buf.len();
 | 
						|
                    buf.set_len(buf_len * 2);
 | 
						|
                }
 | 
						|
 | 
						|
                m >>= 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // `rem` (`= n - 2^expn`) repetition is done by copying
 | 
						|
        // first `rem` repetitions from `buf` itself.
 | 
						|
        let rem_len = capacity - buf.len(); // `self.len() * rem`
 | 
						|
        if rem_len > 0 {
 | 
						|
            // `buf.extend(buf[0 .. rem_len])`:
 | 
						|
            unsafe {
 | 
						|
                // This is non-overlapping since `2^expn > rem`.
 | 
						|
                ptr::copy_nonoverlapping(
 | 
						|
                    buf.as_ptr(),
 | 
						|
                    (buf.as_mut_ptr() as *mut T).add(buf.len()),
 | 
						|
                    rem_len,
 | 
						|
                );
 | 
						|
                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
 | 
						|
                buf.set_len(capacity);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        buf
 | 
						|
    }
 | 
						|
 | 
						|
    /// Flattens a slice of `T` into a single value `Self::Output`.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// assert_eq!(["hello", "world"].concat(), "helloworld");
 | 
						|
    /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
 | 
						|
    /// ```
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
    pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
 | 
						|
    where
 | 
						|
        Self: Concat<Item>,
 | 
						|
    {
 | 
						|
        Concat::concat(self)
 | 
						|
    }
 | 
						|
 | 
						|
    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
 | 
						|
    /// given separator between each.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// assert_eq!(["hello", "world"].join(" "), "hello world");
 | 
						|
    /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
 | 
						|
    /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
 | 
						|
    /// ```
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
 | 
						|
    pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
 | 
						|
    where
 | 
						|
        Self: Join<Separator>,
 | 
						|
    {
 | 
						|
        Join::join(self, sep)
 | 
						|
    }
 | 
						|
 | 
						|
    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
 | 
						|
    /// given separator between each.
 | 
						|
    ///
 | 
						|
    /// # Examples
 | 
						|
    ///
 | 
						|
    /// ```
 | 
						|
    /// # #![allow(deprecated)]
 | 
						|
    /// assert_eq!(["hello", "world"].connect(" "), "hello world");
 | 
						|
    /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
 | 
						|
    /// ```
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
    #[deprecated(since = "1.3.0", note = "renamed to join")]
 | 
						|
    pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
 | 
						|
    where
 | 
						|
        Self: Join<Separator>,
 | 
						|
    {
 | 
						|
        Join::join(self, sep)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[cfg(not(test))]
 | 
						|
impl [u8] {
 | 
						|
    /// Returns a vector containing a copy of this slice where each byte
 | 
						|
    /// is mapped to its ASCII upper case equivalent.
 | 
						|
    ///
 | 
						|
    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
 | 
						|
    /// but non-ASCII letters are unchanged.
 | 
						|
    ///
 | 
						|
    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
 | 
						|
    ///
 | 
						|
    /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[must_use = "this returns the uppercase bytes as a new Vec, \
 | 
						|
                  without modifying the original"]
 | 
						|
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
 | 
						|
    #[inline]
 | 
						|
    pub fn to_ascii_uppercase(&self) -> Vec<u8> {
 | 
						|
        let mut me = self.to_vec();
 | 
						|
        me.make_ascii_uppercase();
 | 
						|
        me
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns a vector containing a copy of this slice where each byte
 | 
						|
    /// is mapped to its ASCII lower case equivalent.
 | 
						|
    ///
 | 
						|
    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
 | 
						|
    /// but non-ASCII letters are unchanged.
 | 
						|
    ///
 | 
						|
    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
 | 
						|
    ///
 | 
						|
    /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
 | 
						|
    #[cfg(not(no_global_oom_handling))]
 | 
						|
    #[rustc_allow_incoherent_impl]
 | 
						|
    #[must_use = "this returns the lowercase bytes as a new Vec, \
 | 
						|
                  without modifying the original"]
 | 
						|
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
 | 
						|
    #[inline]
 | 
						|
    pub fn to_ascii_lowercase(&self) -> Vec<u8> {
 | 
						|
        let mut me = self.to_vec();
 | 
						|
        me.make_ascii_lowercase();
 | 
						|
        me
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Extension traits for slices over specific kinds of data
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
/// Helper trait for [`[T]::concat`](slice::concat).
 | 
						|
///
 | 
						|
/// Note: the `Item` type parameter is not used in this trait,
 | 
						|
/// but it allows impls to be more generic.
 | 
						|
/// Without it, we get this error:
 | 
						|
///
 | 
						|
/// ```error
 | 
						|
/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
 | 
						|
///    --> src/liballoc/slice.rs:608:6
 | 
						|
///     |
 | 
						|
/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
 | 
						|
///     |      ^ unconstrained type parameter
 | 
						|
/// ```
 | 
						|
///
 | 
						|
/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
 | 
						|
/// such that multiple `T` types would apply:
 | 
						|
///
 | 
						|
/// ```
 | 
						|
/// # #[allow(dead_code)]
 | 
						|
/// pub struct Foo(Vec<u32>, Vec<String>);
 | 
						|
///
 | 
						|
/// impl std::borrow::Borrow<[u32]> for Foo {
 | 
						|
///     fn borrow(&self) -> &[u32] { &self.0 }
 | 
						|
/// }
 | 
						|
///
 | 
						|
/// impl std::borrow::Borrow<[String]> for Foo {
 | 
						|
///     fn borrow(&self) -> &[String] { &self.1 }
 | 
						|
/// }
 | 
						|
/// ```
 | 
						|
#[unstable(feature = "slice_concat_trait", issue = "27747")]
 | 
						|
pub trait Concat<Item: ?Sized> {
 | 
						|
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
 | 
						|
    /// The resulting type after concatenation
 | 
						|
    type Output;
 | 
						|
 | 
						|
    /// Implementation of [`[T]::concat`](slice::concat)
 | 
						|
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
 | 
						|
    fn concat(slice: &Self) -> Self::Output;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper trait for [`[T]::join`](slice::join)
 | 
						|
#[unstable(feature = "slice_concat_trait", issue = "27747")]
 | 
						|
pub trait Join<Separator> {
 | 
						|
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
 | 
						|
    /// The resulting type after concatenation
 | 
						|
    type Output;
 | 
						|
 | 
						|
    /// Implementation of [`[T]::join`](slice::join)
 | 
						|
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
 | 
						|
    fn join(slice: &Self, sep: Separator) -> Self::Output;
 | 
						|
}
 | 
						|
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
#[unstable(feature = "slice_concat_ext", issue = "27747")]
 | 
						|
impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
 | 
						|
    type Output = Vec<T>;
 | 
						|
 | 
						|
    fn concat(slice: &Self) -> Vec<T> {
 | 
						|
        let size = slice.iter().map(|slice| slice.borrow().len()).sum();
 | 
						|
        let mut result = Vec::with_capacity(size);
 | 
						|
        for v in slice {
 | 
						|
            result.extend_from_slice(v.borrow())
 | 
						|
        }
 | 
						|
        result
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
#[unstable(feature = "slice_concat_ext", issue = "27747")]
 | 
						|
impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
 | 
						|
    type Output = Vec<T>;
 | 
						|
 | 
						|
    fn join(slice: &Self, sep: &T) -> Vec<T> {
 | 
						|
        let mut iter = slice.iter();
 | 
						|
        let first = match iter.next() {
 | 
						|
            Some(first) => first,
 | 
						|
            None => return vec![],
 | 
						|
        };
 | 
						|
        let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
 | 
						|
        let mut result = Vec::with_capacity(size);
 | 
						|
        result.extend_from_slice(first.borrow());
 | 
						|
 | 
						|
        for v in iter {
 | 
						|
            result.push(sep.clone());
 | 
						|
            result.extend_from_slice(v.borrow())
 | 
						|
        }
 | 
						|
        result
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
#[unstable(feature = "slice_concat_ext", issue = "27747")]
 | 
						|
impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
 | 
						|
    type Output = Vec<T>;
 | 
						|
 | 
						|
    fn join(slice: &Self, sep: &[T]) -> Vec<T> {
 | 
						|
        let mut iter = slice.iter();
 | 
						|
        let first = match iter.next() {
 | 
						|
            Some(first) => first,
 | 
						|
            None => return vec![],
 | 
						|
        };
 | 
						|
        let size =
 | 
						|
            slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
 | 
						|
        let mut result = Vec::with_capacity(size);
 | 
						|
        result.extend_from_slice(first.borrow());
 | 
						|
 | 
						|
        for v in iter {
 | 
						|
            result.extend_from_slice(sep);
 | 
						|
            result.extend_from_slice(v.borrow())
 | 
						|
        }
 | 
						|
        result
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Standard trait implementations for slices
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
impl<T> Borrow<[T]> for Vec<T> {
 | 
						|
    fn borrow(&self) -> &[T] {
 | 
						|
        &self[..]
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
impl<T> BorrowMut<[T]> for Vec<T> {
 | 
						|
    fn borrow_mut(&mut self) -> &mut [T] {
 | 
						|
        &mut self[..]
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
#[stable(feature = "rust1", since = "1.0.0")]
 | 
						|
impl<T: Clone> ToOwned for [T] {
 | 
						|
    type Owned = Vec<T>;
 | 
						|
    #[cfg(not(test))]
 | 
						|
    fn to_owned(&self) -> Vec<T> {
 | 
						|
        self.to_vec()
 | 
						|
    }
 | 
						|
 | 
						|
    #[cfg(test)]
 | 
						|
    fn to_owned(&self) -> Vec<T> {
 | 
						|
        hack::to_vec(self, Global)
 | 
						|
    }
 | 
						|
 | 
						|
    fn clone_into(&self, target: &mut Vec<T>) {
 | 
						|
        // drop anything in target that will not be overwritten
 | 
						|
        target.truncate(self.len());
 | 
						|
 | 
						|
        // target.len <= self.len due to the truncate above, so the
 | 
						|
        // slices here are always in-bounds.
 | 
						|
        let (init, tail) = self.split_at(target.len());
 | 
						|
 | 
						|
        // reuse the contained values' allocations/resources.
 | 
						|
        target.clone_from_slice(init);
 | 
						|
        target.extend_from_slice(tail);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Sorting
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
 | 
						|
///
 | 
						|
/// This is the integral subroutine of insertion sort.
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
 | 
						|
where
 | 
						|
    F: FnMut(&T, &T) -> bool,
 | 
						|
{
 | 
						|
    if v.len() >= 2 && is_less(&v[1], &v[0]) {
 | 
						|
        unsafe {
 | 
						|
            // There are three ways to implement insertion here:
 | 
						|
            //
 | 
						|
            // 1. Swap adjacent elements until the first one gets to its final destination.
 | 
						|
            //    However, this way we copy data around more than is necessary. If elements are big
 | 
						|
            //    structures (costly to copy), this method will be slow.
 | 
						|
            //
 | 
						|
            // 2. Iterate until the right place for the first element is found. Then shift the
 | 
						|
            //    elements succeeding it to make room for it and finally place it into the
 | 
						|
            //    remaining hole. This is a good method.
 | 
						|
            //
 | 
						|
            // 3. Copy the first element into a temporary variable. Iterate until the right place
 | 
						|
            //    for it is found. As we go along, copy every traversed element into the slot
 | 
						|
            //    preceding it. Finally, copy data from the temporary variable into the remaining
 | 
						|
            //    hole. This method is very good. Benchmarks demonstrated slightly better
 | 
						|
            //    performance than with the 2nd method.
 | 
						|
            //
 | 
						|
            // All methods were benchmarked, and the 3rd showed best results. So we chose that one.
 | 
						|
            let tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
 | 
						|
 | 
						|
            // Intermediate state of the insertion process is always tracked by `hole`, which
 | 
						|
            // serves two purposes:
 | 
						|
            // 1. Protects integrity of `v` from panics in `is_less`.
 | 
						|
            // 2. Fills the remaining hole in `v` in the end.
 | 
						|
            //
 | 
						|
            // Panic safety:
 | 
						|
            //
 | 
						|
            // If `is_less` panics at any point during the process, `hole` will get dropped and
 | 
						|
            // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
 | 
						|
            // initially held exactly once.
 | 
						|
            let mut hole = InsertionHole { src: &*tmp, dest: &mut v[1] };
 | 
						|
            ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
 | 
						|
 | 
						|
            for i in 2..v.len() {
 | 
						|
                if !is_less(&v[i], &*tmp) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
 | 
						|
                hole.dest = &mut v[i];
 | 
						|
            }
 | 
						|
            // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // When dropped, copies from `src` into `dest`.
 | 
						|
    struct InsertionHole<T> {
 | 
						|
        src: *const T,
 | 
						|
        dest: *mut T,
 | 
						|
    }
 | 
						|
 | 
						|
    impl<T> Drop for InsertionHole<T> {
 | 
						|
        fn drop(&mut self) {
 | 
						|
            unsafe {
 | 
						|
                ptr::copy_nonoverlapping(self.src, self.dest, 1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
 | 
						|
/// stores the result into `v[..]`.
 | 
						|
///
 | 
						|
/// # Safety
 | 
						|
///
 | 
						|
/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
 | 
						|
/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
 | 
						|
where
 | 
						|
    F: FnMut(&T, &T) -> bool,
 | 
						|
{
 | 
						|
    let len = v.len();
 | 
						|
    let v = v.as_mut_ptr();
 | 
						|
    let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) };
 | 
						|
 | 
						|
    // The merge process first copies the shorter run into `buf`. Then it traces the newly copied
 | 
						|
    // run and the longer run forwards (or backwards), comparing their next unconsumed elements and
 | 
						|
    // copying the lesser (or greater) one into `v`.
 | 
						|
    //
 | 
						|
    // As soon as the shorter run is fully consumed, the process is done. If the longer run gets
 | 
						|
    // consumed first, then we must copy whatever is left of the shorter run into the remaining
 | 
						|
    // hole in `v`.
 | 
						|
    //
 | 
						|
    // Intermediate state of the process is always tracked by `hole`, which serves two purposes:
 | 
						|
    // 1. Protects integrity of `v` from panics in `is_less`.
 | 
						|
    // 2. Fills the remaining hole in `v` if the longer run gets consumed first.
 | 
						|
    //
 | 
						|
    // Panic safety:
 | 
						|
    //
 | 
						|
    // If `is_less` panics at any point during the process, `hole` will get dropped and fill the
 | 
						|
    // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
 | 
						|
    // object it initially held exactly once.
 | 
						|
    let mut hole;
 | 
						|
 | 
						|
    if mid <= len - mid {
 | 
						|
        // The left run is shorter.
 | 
						|
        unsafe {
 | 
						|
            ptr::copy_nonoverlapping(v, buf, mid);
 | 
						|
            hole = MergeHole { start: buf, end: buf.add(mid), dest: v };
 | 
						|
        }
 | 
						|
 | 
						|
        // Initially, these pointers point to the beginnings of their arrays.
 | 
						|
        let left = &mut hole.start;
 | 
						|
        let mut right = v_mid;
 | 
						|
        let out = &mut hole.dest;
 | 
						|
 | 
						|
        while *left < hole.end && right < v_end {
 | 
						|
            // Consume the lesser side.
 | 
						|
            // If equal, prefer the left run to maintain stability.
 | 
						|
            unsafe {
 | 
						|
                let to_copy = if is_less(&*right, &**left) {
 | 
						|
                    get_and_increment(&mut right)
 | 
						|
                } else {
 | 
						|
                    get_and_increment(left)
 | 
						|
                };
 | 
						|
                ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        // The right run is shorter.
 | 
						|
        unsafe {
 | 
						|
            ptr::copy_nonoverlapping(v_mid, buf, len - mid);
 | 
						|
            hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid };
 | 
						|
        }
 | 
						|
 | 
						|
        // Initially, these pointers point past the ends of their arrays.
 | 
						|
        let left = &mut hole.dest;
 | 
						|
        let right = &mut hole.end;
 | 
						|
        let mut out = v_end;
 | 
						|
 | 
						|
        while v < *left && buf < *right {
 | 
						|
            // Consume the greater side.
 | 
						|
            // If equal, prefer the right run to maintain stability.
 | 
						|
            unsafe {
 | 
						|
                let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
 | 
						|
                    decrement_and_get(left)
 | 
						|
                } else {
 | 
						|
                    decrement_and_get(right)
 | 
						|
                };
 | 
						|
                ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
 | 
						|
    // it will now be copied into the hole in `v`.
 | 
						|
 | 
						|
    unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
 | 
						|
        let old = *ptr;
 | 
						|
        *ptr = unsafe { ptr.offset(1) };
 | 
						|
        old
 | 
						|
    }
 | 
						|
 | 
						|
    unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
 | 
						|
        *ptr = unsafe { ptr.offset(-1) };
 | 
						|
        *ptr
 | 
						|
    }
 | 
						|
 | 
						|
    // When dropped, copies the range `start..end` into `dest..`.
 | 
						|
    struct MergeHole<T> {
 | 
						|
        start: *mut T,
 | 
						|
        end: *mut T,
 | 
						|
        dest: *mut T,
 | 
						|
    }
 | 
						|
 | 
						|
    impl<T> Drop for MergeHole<T> {
 | 
						|
        fn drop(&mut self) {
 | 
						|
            // `T` is not a zero-sized type, and these are pointers into a slice's elements.
 | 
						|
            unsafe {
 | 
						|
                let len = self.end.sub_ptr(self.start);
 | 
						|
                ptr::copy_nonoverlapping(self.start, self.dest, len);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
 | 
						|
/// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt).
 | 
						|
///
 | 
						|
/// The algorithm identifies strictly descending and non-descending subsequences, which are called
 | 
						|
/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
 | 
						|
/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
 | 
						|
/// satisfied:
 | 
						|
///
 | 
						|
/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
 | 
						|
/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
 | 
						|
///
 | 
						|
/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
 | 
						|
#[cfg(not(no_global_oom_handling))]
 | 
						|
fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
 | 
						|
where
 | 
						|
    F: FnMut(&T, &T) -> bool,
 | 
						|
{
 | 
						|
    // Slices of up to this length get sorted using insertion sort.
 | 
						|
    const MAX_INSERTION: usize = 20;
 | 
						|
    // Very short runs are extended using insertion sort to span at least this many elements.
 | 
						|
    const MIN_RUN: usize = 10;
 | 
						|
 | 
						|
    // Sorting has no meaningful behavior on zero-sized types.
 | 
						|
    if size_of::<T>() == 0 {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    let len = v.len();
 | 
						|
 | 
						|
    // Short arrays get sorted in-place via insertion sort to avoid allocations.
 | 
						|
    if len <= MAX_INSERTION {
 | 
						|
        if len >= 2 {
 | 
						|
            for i in (0..len - 1).rev() {
 | 
						|
                insert_head(&mut v[i..], &mut is_less);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
 | 
						|
    // shallow copies of the contents of `v` without risking the dtors running on copies if
 | 
						|
    // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
 | 
						|
    // which will always have length at most `len / 2`.
 | 
						|
    let mut buf = Vec::with_capacity(len / 2);
 | 
						|
 | 
						|
    // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
 | 
						|
    // strange decision, but consider the fact that merges more often go in the opposite direction
 | 
						|
    // (forwards). According to benchmarks, merging forwards is slightly faster than merging
 | 
						|
    // backwards. To conclude, identifying runs by traversing backwards improves performance.
 | 
						|
    let mut runs = vec![];
 | 
						|
    let mut end = len;
 | 
						|
    while end > 0 {
 | 
						|
        // Find the next natural run, and reverse it if it's strictly descending.
 | 
						|
        let mut start = end - 1;
 | 
						|
        if start > 0 {
 | 
						|
            start -= 1;
 | 
						|
            unsafe {
 | 
						|
                if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
 | 
						|
                    while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
 | 
						|
                        start -= 1;
 | 
						|
                    }
 | 
						|
                    v[start..end].reverse();
 | 
						|
                } else {
 | 
						|
                    while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1))
 | 
						|
                    {
 | 
						|
                        start -= 1;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Insert some more elements into the run if it's too short. Insertion sort is faster than
 | 
						|
        // merge sort on short sequences, so this significantly improves performance.
 | 
						|
        while start > 0 && end - start < MIN_RUN {
 | 
						|
            start -= 1;
 | 
						|
            insert_head(&mut v[start..end], &mut is_less);
 | 
						|
        }
 | 
						|
 | 
						|
        // Push this run onto the stack.
 | 
						|
        runs.push(Run { start, len: end - start });
 | 
						|
        end = start;
 | 
						|
 | 
						|
        // Merge some pairs of adjacent runs to satisfy the invariants.
 | 
						|
        while let Some(r) = collapse(&runs) {
 | 
						|
            let left = runs[r + 1];
 | 
						|
            let right = runs[r];
 | 
						|
            unsafe {
 | 
						|
                merge(
 | 
						|
                    &mut v[left.start..right.start + right.len],
 | 
						|
                    left.len,
 | 
						|
                    buf.as_mut_ptr(),
 | 
						|
                    &mut is_less,
 | 
						|
                );
 | 
						|
            }
 | 
						|
            runs[r] = Run { start: left.start, len: left.len + right.len };
 | 
						|
            runs.remove(r + 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, exactly one run must remain in the stack.
 | 
						|
    debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
 | 
						|
 | 
						|
    // Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
 | 
						|
    // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
 | 
						|
    // algorithm should continue building a new run instead, `None` is returned.
 | 
						|
    //
 | 
						|
    // TimSort is infamous for its buggy implementations, as described here:
 | 
						|
    // http://envisage-project.eu/timsort-specification-and-verification/
 | 
						|
    //
 | 
						|
    // The gist of the story is: we must enforce the invariants on the top four runs on the stack.
 | 
						|
    // Enforcing them on just top three is not sufficient to ensure that the invariants will still
 | 
						|
    // hold for *all* runs in the stack.
 | 
						|
    //
 | 
						|
    // This function correctly checks invariants for the top four runs. Additionally, if the top
 | 
						|
    // run starts at index 0, it will always demand a merge operation until the stack is fully
 | 
						|
    // collapsed, in order to complete the sort.
 | 
						|
    #[inline]
 | 
						|
    fn collapse(runs: &[Run]) -> Option<usize> {
 | 
						|
        let n = runs.len();
 | 
						|
        if n >= 2
 | 
						|
            && (runs[n - 1].start == 0
 | 
						|
                || runs[n - 2].len <= runs[n - 1].len
 | 
						|
                || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
 | 
						|
                || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
 | 
						|
        {
 | 
						|
            if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) }
 | 
						|
        } else {
 | 
						|
            None
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    #[derive(Clone, Copy)]
 | 
						|
    struct Run {
 | 
						|
        start: usize,
 | 
						|
        len: usize,
 | 
						|
    }
 | 
						|
}
 |