mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	switching from a user process to a kernel thread.
 
 - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
 
 - zsmalloc performance improvements from Sergey Senozhatsky.
 
 - Yue Zhao has found and fixed some data race issues around the
   alteration of memcg userspace tunables.
 
 - VFS rationalizations from Christoph Hellwig:
 
   - removal of most of the callers of write_one_page().
 
   - make __filemap_get_folio()'s return value more useful
 
 - Luis Chamberlain has changed tmpfs so it no longer requires swap
   backing.  Use `mount -o noswap'.
 
 - Qi Zheng has made the slab shrinkers operate locklessly, providing
   some scalability benefits.
 
 - Keith Busch has improved dmapool's performance, making part of its
   operations O(1) rather than O(n).
 
 - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
   permitting userspace to wr-protect anon memory unpopulated ptes.
 
 - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
   than exclusive, and has fixed a bunch of errors which were caused by its
   unintuitive meaning.
 
 - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
   which causes minor faults to install a write-protected pte.
 
 - Vlastimil Babka has done some maintenance work on vma_merge():
   cleanups to the kernel code and improvements to our userspace test
   harness.
 
 - Cleanups to do_fault_around() by Lorenzo Stoakes.
 
 - Mike Rapoport has moved a lot of initialization code out of various
   mm/ files and into mm/mm_init.c.
 
 - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
   DRM, but DRM doesn't use it any more.
 
 - Lorenzo has also coverted read_kcore() and vread() to use iterators
   and has thereby removed the use of bounce buffers in some cases.
 
 - Lorenzo has also contributed further cleanups of vma_merge().
 
 - Chaitanya Prakash provides some fixes to the mmap selftesting code.
 
 - Matthew Wilcox changes xfs and afs so they no longer take sleeping
   locks in ->map_page(), a step towards RCUification of pagefaults.
 
 - Suren Baghdasaryan has improved mmap_lock scalability by switching to
   per-VMA locking.
 
 - Frederic Weisbecker has reworked the percpu cache draining so that it
   no longer causes latency glitches on cpu isolated workloads.
 
 - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
   logic.
 
 - Liu Shixin has changed zswap's initialization so we no longer waste a
   chunk of memory if zswap is not being used.
 
 - Yosry Ahmed has improved the performance of memcg statistics flushing.
 
 - David Stevens has fixed several issues involving khugepaged,
   userfaultfd and shmem.
 
 - Christoph Hellwig has provided some cleanup work to zram's IO-related
   code paths.
 
 - David Hildenbrand has fixed up some issues in the selftest code's
   testing of our pte state changing.
 
 - Pankaj Raghav has made page_endio() unneeded and has removed it.
 
 - Peter Xu contributed some rationalizations of the userfaultfd
   selftests.
 
 - Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
 
 - Chaitanya Prakash has fixed some arm-related issues in the
   selftests/mm code.
 
 - Longlong Xia has improved the way in which KSM handles hwpoisoned
   pages.
 
 - Peter Xu fixes a few issues with uffd-wp at fork() time.
 
 - Stefan Roesch has changed KSM so that it may now be used on a
   per-process and per-cgroup basis.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
 jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
 eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
 =J+Dj
 -----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
 - Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
   switching from a user process to a kernel thread.
 - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
   Raghav.
 - zsmalloc performance improvements from Sergey Senozhatsky.
 - Yue Zhao has found and fixed some data race issues around the
   alteration of memcg userspace tunables.
 - VFS rationalizations from Christoph Hellwig:
     - removal of most of the callers of write_one_page()
     - make __filemap_get_folio()'s return value more useful
 - Luis Chamberlain has changed tmpfs so it no longer requires swap
   backing. Use `mount -o noswap'.
 - Qi Zheng has made the slab shrinkers operate locklessly, providing
   some scalability benefits.
 - Keith Busch has improved dmapool's performance, making part of its
   operations O(1) rather than O(n).
 - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
   permitting userspace to wr-protect anon memory unpopulated ptes.
 - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
   rather than exclusive, and has fixed a bunch of errors which were
   caused by its unintuitive meaning.
 - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
   which causes minor faults to install a write-protected pte.
 - Vlastimil Babka has done some maintenance work on vma_merge():
   cleanups to the kernel code and improvements to our userspace test
   harness.
 - Cleanups to do_fault_around() by Lorenzo Stoakes.
 - Mike Rapoport has moved a lot of initialization code out of various
   mm/ files and into mm/mm_init.c.
 - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
   DRM, but DRM doesn't use it any more.
 - Lorenzo has also coverted read_kcore() and vread() to use iterators
   and has thereby removed the use of bounce buffers in some cases.
 - Lorenzo has also contributed further cleanups of vma_merge().
 - Chaitanya Prakash provides some fixes to the mmap selftesting code.
 - Matthew Wilcox changes xfs and afs so they no longer take sleeping
   locks in ->map_page(), a step towards RCUification of pagefaults.
 - Suren Baghdasaryan has improved mmap_lock scalability by switching to
   per-VMA locking.
 - Frederic Weisbecker has reworked the percpu cache draining so that it
   no longer causes latency glitches on cpu isolated workloads.
 - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
   logic.
 - Liu Shixin has changed zswap's initialization so we no longer waste a
   chunk of memory if zswap is not being used.
 - Yosry Ahmed has improved the performance of memcg statistics
   flushing.
 - David Stevens has fixed several issues involving khugepaged,
   userfaultfd and shmem.
 - Christoph Hellwig has provided some cleanup work to zram's IO-related
   code paths.
 - David Hildenbrand has fixed up some issues in the selftest code's
   testing of our pte state changing.
 - Pankaj Raghav has made page_endio() unneeded and has removed it.
 - Peter Xu contributed some rationalizations of the userfaultfd
   selftests.
 - Yosry Ahmed has fixed an issue around memcg's page recalim
   accounting.
 - Chaitanya Prakash has fixed some arm-related issues in the
   selftests/mm code.
 - Longlong Xia has improved the way in which KSM handles hwpoisoned
   pages.
 - Peter Xu fixes a few issues with uffd-wp at fork() time.
 - Stefan Roesch has changed KSM so that it may now be used on a
   per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
  mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
  shmem: restrict noswap option to initial user namespace
  mm/khugepaged: fix conflicting mods to collapse_file()
  sparse: remove unnecessary 0 values from rc
  mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
  hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
  maple_tree: fix allocation in mas_sparse_area()
  mm: do not increment pgfault stats when page fault handler retries
  zsmalloc: allow only one active pool compaction context
  selftests/mm: add new selftests for KSM
  mm: add new KSM process and sysfs knobs
  mm: add new api to enable ksm per process
  mm: shrinkers: fix debugfs file permissions
  mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
  migrate_pages_batch: fix statistics for longterm pin retry
  userfaultfd: use helper function range_in_vma()
  lib/show_mem.c: use for_each_populated_zone() simplify code
  mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
  fs/buffer: convert create_page_buffers to folio_create_buffers
  fs/buffer: add folio_create_empty_buffers helper
  ...
		
	
			
		
			
				
	
	
		
			7640 lines
		
	
	
	
		
			211 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7640 lines
		
	
	
	
		
			211 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * Generic hugetlb support.
 | 
						|
 * (C) Nadia Yvette Chambers, April 2004
 | 
						|
 */
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/sysctl.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/mmu_notifier.h>
 | 
						|
#include <linux/nodemask.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/mempolicy.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/cpuset.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/memblock.h>
 | 
						|
#include <linux/sysfs.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/sched/mm.h>
 | 
						|
#include <linux/mmdebug.h>
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/string_helpers.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/jhash.h>
 | 
						|
#include <linux/numa.h>
 | 
						|
#include <linux/llist.h>
 | 
						|
#include <linux/cma.h>
 | 
						|
#include <linux/migrate.h>
 | 
						|
#include <linux/nospec.h>
 | 
						|
#include <linux/delayacct.h>
 | 
						|
#include <linux/memory.h>
 | 
						|
 | 
						|
#include <asm/page.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/tlb.h>
 | 
						|
 | 
						|
#include <linux/io.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/hugetlb_cgroup.h>
 | 
						|
#include <linux/node.h>
 | 
						|
#include <linux/page_owner.h>
 | 
						|
#include "internal.h"
 | 
						|
#include "hugetlb_vmemmap.h"
 | 
						|
 | 
						|
int hugetlb_max_hstate __read_mostly;
 | 
						|
unsigned int default_hstate_idx;
 | 
						|
struct hstate hstates[HUGE_MAX_HSTATE];
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
static struct cma *hugetlb_cma[MAX_NUMNODES];
 | 
						|
static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
 | 
						|
static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
 | 
						|
{
 | 
						|
	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
 | 
						|
				1 << order);
 | 
						|
}
 | 
						|
#else
 | 
						|
static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static unsigned long hugetlb_cma_size __initdata;
 | 
						|
 | 
						|
__initdata LIST_HEAD(huge_boot_pages);
 | 
						|
 | 
						|
/* for command line parsing */
 | 
						|
static struct hstate * __initdata parsed_hstate;
 | 
						|
static unsigned long __initdata default_hstate_max_huge_pages;
 | 
						|
static bool __initdata parsed_valid_hugepagesz = true;
 | 
						|
static bool __initdata parsed_default_hugepagesz;
 | 
						|
static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
 | 
						|
 | 
						|
/*
 | 
						|
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 | 
						|
 * free_huge_pages, and surplus_huge_pages.
 | 
						|
 */
 | 
						|
DEFINE_SPINLOCK(hugetlb_lock);
 | 
						|
 | 
						|
/*
 | 
						|
 * Serializes faults on the same logical page.  This is used to
 | 
						|
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 | 
						|
 */
 | 
						|
static int num_fault_mutexes;
 | 
						|
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
 | 
						|
 | 
						|
/* Forward declaration */
 | 
						|
static int hugetlb_acct_memory(struct hstate *h, long delta);
 | 
						|
static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
 | 
						|
static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
 | 
						|
static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
 | 
						|
static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
 | 
						|
		unsigned long start, unsigned long end);
 | 
						|
 | 
						|
static inline bool subpool_is_free(struct hugepage_subpool *spool)
 | 
						|
{
 | 
						|
	if (spool->count)
 | 
						|
		return false;
 | 
						|
	if (spool->max_hpages != -1)
 | 
						|
		return spool->used_hpages == 0;
 | 
						|
	if (spool->min_hpages != -1)
 | 
						|
		return spool->rsv_hpages == spool->min_hpages;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
 | 
						|
						unsigned long irq_flags)
 | 
						|
{
 | 
						|
	spin_unlock_irqrestore(&spool->lock, irq_flags);
 | 
						|
 | 
						|
	/* If no pages are used, and no other handles to the subpool
 | 
						|
	 * remain, give up any reservations based on minimum size and
 | 
						|
	 * free the subpool */
 | 
						|
	if (subpool_is_free(spool)) {
 | 
						|
		if (spool->min_hpages != -1)
 | 
						|
			hugetlb_acct_memory(spool->hstate,
 | 
						|
						-spool->min_hpages);
 | 
						|
		kfree(spool);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 | 
						|
						long min_hpages)
 | 
						|
{
 | 
						|
	struct hugepage_subpool *spool;
 | 
						|
 | 
						|
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 | 
						|
	if (!spool)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	spin_lock_init(&spool->lock);
 | 
						|
	spool->count = 1;
 | 
						|
	spool->max_hpages = max_hpages;
 | 
						|
	spool->hstate = h;
 | 
						|
	spool->min_hpages = min_hpages;
 | 
						|
 | 
						|
	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 | 
						|
		kfree(spool);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	spool->rsv_hpages = min_hpages;
 | 
						|
 | 
						|
	return spool;
 | 
						|
}
 | 
						|
 | 
						|
void hugepage_put_subpool(struct hugepage_subpool *spool)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&spool->lock, flags);
 | 
						|
	BUG_ON(!spool->count);
 | 
						|
	spool->count--;
 | 
						|
	unlock_or_release_subpool(spool, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Subpool accounting for allocating and reserving pages.
 | 
						|
 * Return -ENOMEM if there are not enough resources to satisfy the
 | 
						|
 * request.  Otherwise, return the number of pages by which the
 | 
						|
 * global pools must be adjusted (upward).  The returned value may
 | 
						|
 * only be different than the passed value (delta) in the case where
 | 
						|
 * a subpool minimum size must be maintained.
 | 
						|
 */
 | 
						|
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 | 
						|
				      long delta)
 | 
						|
{
 | 
						|
	long ret = delta;
 | 
						|
 | 
						|
	if (!spool)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	spin_lock_irq(&spool->lock);
 | 
						|
 | 
						|
	if (spool->max_hpages != -1) {		/* maximum size accounting */
 | 
						|
		if ((spool->used_hpages + delta) <= spool->max_hpages)
 | 
						|
			spool->used_hpages += delta;
 | 
						|
		else {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto unlock_ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* minimum size accounting */
 | 
						|
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 | 
						|
		if (delta > spool->rsv_hpages) {
 | 
						|
			/*
 | 
						|
			 * Asking for more reserves than those already taken on
 | 
						|
			 * behalf of subpool.  Return difference.
 | 
						|
			 */
 | 
						|
			ret = delta - spool->rsv_hpages;
 | 
						|
			spool->rsv_hpages = 0;
 | 
						|
		} else {
 | 
						|
			ret = 0;	/* reserves already accounted for */
 | 
						|
			spool->rsv_hpages -= delta;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
unlock_ret:
 | 
						|
	spin_unlock_irq(&spool->lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Subpool accounting for freeing and unreserving pages.
 | 
						|
 * Return the number of global page reservations that must be dropped.
 | 
						|
 * The return value may only be different than the passed value (delta)
 | 
						|
 * in the case where a subpool minimum size must be maintained.
 | 
						|
 */
 | 
						|
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 | 
						|
				       long delta)
 | 
						|
{
 | 
						|
	long ret = delta;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (!spool)
 | 
						|
		return delta;
 | 
						|
 | 
						|
	spin_lock_irqsave(&spool->lock, flags);
 | 
						|
 | 
						|
	if (spool->max_hpages != -1)		/* maximum size accounting */
 | 
						|
		spool->used_hpages -= delta;
 | 
						|
 | 
						|
	 /* minimum size accounting */
 | 
						|
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 | 
						|
		if (spool->rsv_hpages + delta <= spool->min_hpages)
 | 
						|
			ret = 0;
 | 
						|
		else
 | 
						|
			ret = spool->rsv_hpages + delta - spool->min_hpages;
 | 
						|
 | 
						|
		spool->rsv_hpages += delta;
 | 
						|
		if (spool->rsv_hpages > spool->min_hpages)
 | 
						|
			spool->rsv_hpages = spool->min_hpages;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 | 
						|
	 * quota reference, free it now.
 | 
						|
	 */
 | 
						|
	unlock_or_release_subpool(spool, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	return HUGETLBFS_SB(inode->i_sb)->spool;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return subpool_inode(file_inode(vma->vm_file));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * hugetlb vma_lock helper routines
 | 
						|
 */
 | 
						|
void hugetlb_vma_lock_read(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (__vma_shareable_lock(vma)) {
 | 
						|
		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
		down_read(&vma_lock->rw_sema);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (__vma_shareable_lock(vma)) {
 | 
						|
		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
		up_read(&vma_lock->rw_sema);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_vma_lock_write(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (__vma_shareable_lock(vma)) {
 | 
						|
		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
		down_write(&vma_lock->rw_sema);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (__vma_shareable_lock(vma)) {
 | 
						|
		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
		up_write(&vma_lock->rw_sema);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
	if (!__vma_shareable_lock(vma))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return down_write_trylock(&vma_lock->rw_sema);
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (__vma_shareable_lock(vma)) {
 | 
						|
		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
		lockdep_assert_held(&vma_lock->rw_sema);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_vma_lock_release(struct kref *kref)
 | 
						|
{
 | 
						|
	struct hugetlb_vma_lock *vma_lock = container_of(kref,
 | 
						|
			struct hugetlb_vma_lock, refs);
 | 
						|
 | 
						|
	kfree(vma_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = vma_lock->vma;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vma_lock structure may or not be released as a result of put,
 | 
						|
	 * it certainly will no longer be attached to vma so clear pointer.
 | 
						|
	 * Semaphore synchronizes access to vma_lock->vma field.
 | 
						|
	 */
 | 
						|
	vma_lock->vma = NULL;
 | 
						|
	vma->vm_private_data = NULL;
 | 
						|
	up_write(&vma_lock->rw_sema);
 | 
						|
	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
 | 
						|
}
 | 
						|
 | 
						|
static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (__vma_shareable_lock(vma)) {
 | 
						|
		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
		__hugetlb_vma_unlock_write_put(vma_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Only present in sharable vmas.
 | 
						|
	 */
 | 
						|
	if (!vma || !__vma_shareable_lock(vma))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (vma->vm_private_data) {
 | 
						|
		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
		down_write(&vma_lock->rw_sema);
 | 
						|
		__hugetlb_vma_unlock_write_put(vma_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct hugetlb_vma_lock *vma_lock;
 | 
						|
 | 
						|
	/* Only establish in (flags) sharable vmas */
 | 
						|
	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Should never get here with non-NULL vm_private_data */
 | 
						|
	if (vma->vm_private_data)
 | 
						|
		return;
 | 
						|
 | 
						|
	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
 | 
						|
	if (!vma_lock) {
 | 
						|
		/*
 | 
						|
		 * If we can not allocate structure, then vma can not
 | 
						|
		 * participate in pmd sharing.  This is only a possible
 | 
						|
		 * performance enhancement and memory saving issue.
 | 
						|
		 * However, the lock is also used to synchronize page
 | 
						|
		 * faults with truncation.  If the lock is not present,
 | 
						|
		 * unlikely races could leave pages in a file past i_size
 | 
						|
		 * until the file is removed.  Warn in the unlikely case of
 | 
						|
		 * allocation failure.
 | 
						|
		 */
 | 
						|
		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	kref_init(&vma_lock->refs);
 | 
						|
	init_rwsem(&vma_lock->rw_sema);
 | 
						|
	vma_lock->vma = vma;
 | 
						|
	vma->vm_private_data = vma_lock;
 | 
						|
}
 | 
						|
 | 
						|
/* Helper that removes a struct file_region from the resv_map cache and returns
 | 
						|
 * it for use.
 | 
						|
 */
 | 
						|
static struct file_region *
 | 
						|
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 | 
						|
{
 | 
						|
	struct file_region *nrg;
 | 
						|
 | 
						|
	VM_BUG_ON(resv->region_cache_count <= 0);
 | 
						|
 | 
						|
	resv->region_cache_count--;
 | 
						|
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 | 
						|
	list_del(&nrg->link);
 | 
						|
 | 
						|
	nrg->from = from;
 | 
						|
	nrg->to = to;
 | 
						|
 | 
						|
	return nrg;
 | 
						|
}
 | 
						|
 | 
						|
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 | 
						|
					      struct file_region *rg)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUP_HUGETLB
 | 
						|
	nrg->reservation_counter = rg->reservation_counter;
 | 
						|
	nrg->css = rg->css;
 | 
						|
	if (rg->css)
 | 
						|
		css_get(rg->css);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Helper that records hugetlb_cgroup uncharge info. */
 | 
						|
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 | 
						|
						struct hstate *h,
 | 
						|
						struct resv_map *resv,
 | 
						|
						struct file_region *nrg)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUP_HUGETLB
 | 
						|
	if (h_cg) {
 | 
						|
		nrg->reservation_counter =
 | 
						|
			&h_cg->rsvd_hugepage[hstate_index(h)];
 | 
						|
		nrg->css = &h_cg->css;
 | 
						|
		/*
 | 
						|
		 * The caller will hold exactly one h_cg->css reference for the
 | 
						|
		 * whole contiguous reservation region. But this area might be
 | 
						|
		 * scattered when there are already some file_regions reside in
 | 
						|
		 * it. As a result, many file_regions may share only one css
 | 
						|
		 * reference. In order to ensure that one file_region must hold
 | 
						|
		 * exactly one h_cg->css reference, we should do css_get for
 | 
						|
		 * each file_region and leave the reference held by caller
 | 
						|
		 * untouched.
 | 
						|
		 */
 | 
						|
		css_get(&h_cg->css);
 | 
						|
		if (!resv->pages_per_hpage)
 | 
						|
			resv->pages_per_hpage = pages_per_huge_page(h);
 | 
						|
		/* pages_per_hpage should be the same for all entries in
 | 
						|
		 * a resv_map.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 | 
						|
	} else {
 | 
						|
		nrg->reservation_counter = NULL;
 | 
						|
		nrg->css = NULL;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void put_uncharge_info(struct file_region *rg)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUP_HUGETLB
 | 
						|
	if (rg->css)
 | 
						|
		css_put(rg->css);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static bool has_same_uncharge_info(struct file_region *rg,
 | 
						|
				   struct file_region *org)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUP_HUGETLB
 | 
						|
	return rg->reservation_counter == org->reservation_counter &&
 | 
						|
	       rg->css == org->css;
 | 
						|
 | 
						|
#else
 | 
						|
	return true;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 | 
						|
{
 | 
						|
	struct file_region *nrg, *prg;
 | 
						|
 | 
						|
	prg = list_prev_entry(rg, link);
 | 
						|
	if (&prg->link != &resv->regions && prg->to == rg->from &&
 | 
						|
	    has_same_uncharge_info(prg, rg)) {
 | 
						|
		prg->to = rg->to;
 | 
						|
 | 
						|
		list_del(&rg->link);
 | 
						|
		put_uncharge_info(rg);
 | 
						|
		kfree(rg);
 | 
						|
 | 
						|
		rg = prg;
 | 
						|
	}
 | 
						|
 | 
						|
	nrg = list_next_entry(rg, link);
 | 
						|
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 | 
						|
	    has_same_uncharge_info(nrg, rg)) {
 | 
						|
		nrg->from = rg->from;
 | 
						|
 | 
						|
		list_del(&rg->link);
 | 
						|
		put_uncharge_info(rg);
 | 
						|
		kfree(rg);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline long
 | 
						|
hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
 | 
						|
		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
 | 
						|
		     long *regions_needed)
 | 
						|
{
 | 
						|
	struct file_region *nrg;
 | 
						|
 | 
						|
	if (!regions_needed) {
 | 
						|
		nrg = get_file_region_entry_from_cache(map, from, to);
 | 
						|
		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
 | 
						|
		list_add(&nrg->link, rg);
 | 
						|
		coalesce_file_region(map, nrg);
 | 
						|
	} else
 | 
						|
		*regions_needed += 1;
 | 
						|
 | 
						|
	return to - from;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Must be called with resv->lock held.
 | 
						|
 *
 | 
						|
 * Calling this with regions_needed != NULL will count the number of pages
 | 
						|
 * to be added but will not modify the linked list. And regions_needed will
 | 
						|
 * indicate the number of file_regions needed in the cache to carry out to add
 | 
						|
 * the regions for this range.
 | 
						|
 */
 | 
						|
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 | 
						|
				     struct hugetlb_cgroup *h_cg,
 | 
						|
				     struct hstate *h, long *regions_needed)
 | 
						|
{
 | 
						|
	long add = 0;
 | 
						|
	struct list_head *head = &resv->regions;
 | 
						|
	long last_accounted_offset = f;
 | 
						|
	struct file_region *iter, *trg = NULL;
 | 
						|
	struct list_head *rg = NULL;
 | 
						|
 | 
						|
	if (regions_needed)
 | 
						|
		*regions_needed = 0;
 | 
						|
 | 
						|
	/* In this loop, we essentially handle an entry for the range
 | 
						|
	 * [last_accounted_offset, iter->from), at every iteration, with some
 | 
						|
	 * bounds checking.
 | 
						|
	 */
 | 
						|
	list_for_each_entry_safe(iter, trg, head, link) {
 | 
						|
		/* Skip irrelevant regions that start before our range. */
 | 
						|
		if (iter->from < f) {
 | 
						|
			/* If this region ends after the last accounted offset,
 | 
						|
			 * then we need to update last_accounted_offset.
 | 
						|
			 */
 | 
						|
			if (iter->to > last_accounted_offset)
 | 
						|
				last_accounted_offset = iter->to;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* When we find a region that starts beyond our range, we've
 | 
						|
		 * finished.
 | 
						|
		 */
 | 
						|
		if (iter->from >= t) {
 | 
						|
			rg = iter->link.prev;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Add an entry for last_accounted_offset -> iter->from, and
 | 
						|
		 * update last_accounted_offset.
 | 
						|
		 */
 | 
						|
		if (iter->from > last_accounted_offset)
 | 
						|
			add += hugetlb_resv_map_add(resv, iter->link.prev,
 | 
						|
						    last_accounted_offset,
 | 
						|
						    iter->from, h, h_cg,
 | 
						|
						    regions_needed);
 | 
						|
 | 
						|
		last_accounted_offset = iter->to;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Handle the case where our range extends beyond
 | 
						|
	 * last_accounted_offset.
 | 
						|
	 */
 | 
						|
	if (!rg)
 | 
						|
		rg = head->prev;
 | 
						|
	if (last_accounted_offset < t)
 | 
						|
		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
 | 
						|
					    t, h, h_cg, regions_needed);
 | 
						|
 | 
						|
	return add;
 | 
						|
}
 | 
						|
 | 
						|
/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 | 
						|
 */
 | 
						|
static int allocate_file_region_entries(struct resv_map *resv,
 | 
						|
					int regions_needed)
 | 
						|
	__must_hold(&resv->lock)
 | 
						|
{
 | 
						|
	LIST_HEAD(allocated_regions);
 | 
						|
	int to_allocate = 0, i = 0;
 | 
						|
	struct file_region *trg = NULL, *rg = NULL;
 | 
						|
 | 
						|
	VM_BUG_ON(regions_needed < 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for sufficient descriptors in the cache to accommodate
 | 
						|
	 * the number of in progress add operations plus regions_needed.
 | 
						|
	 *
 | 
						|
	 * This is a while loop because when we drop the lock, some other call
 | 
						|
	 * to region_add or region_del may have consumed some region_entries,
 | 
						|
	 * so we keep looping here until we finally have enough entries for
 | 
						|
	 * (adds_in_progress + regions_needed).
 | 
						|
	 */
 | 
						|
	while (resv->region_cache_count <
 | 
						|
	       (resv->adds_in_progress + regions_needed)) {
 | 
						|
		to_allocate = resv->adds_in_progress + regions_needed -
 | 
						|
			      resv->region_cache_count;
 | 
						|
 | 
						|
		/* At this point, we should have enough entries in the cache
 | 
						|
		 * for all the existing adds_in_progress. We should only be
 | 
						|
		 * needing to allocate for regions_needed.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 | 
						|
 | 
						|
		spin_unlock(&resv->lock);
 | 
						|
		for (i = 0; i < to_allocate; i++) {
 | 
						|
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 | 
						|
			if (!trg)
 | 
						|
				goto out_of_memory;
 | 
						|
			list_add(&trg->link, &allocated_regions);
 | 
						|
		}
 | 
						|
 | 
						|
		spin_lock(&resv->lock);
 | 
						|
 | 
						|
		list_splice(&allocated_regions, &resv->region_cache);
 | 
						|
		resv->region_cache_count += to_allocate;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_of_memory:
 | 
						|
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 | 
						|
		list_del(&rg->link);
 | 
						|
		kfree(rg);
 | 
						|
	}
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add the huge page range represented by [f, t) to the reserve
 | 
						|
 * map.  Regions will be taken from the cache to fill in this range.
 | 
						|
 * Sufficient regions should exist in the cache due to the previous
 | 
						|
 * call to region_chg with the same range, but in some cases the cache will not
 | 
						|
 * have sufficient entries due to races with other code doing region_add or
 | 
						|
 * region_del.  The extra needed entries will be allocated.
 | 
						|
 *
 | 
						|
 * regions_needed is the out value provided by a previous call to region_chg.
 | 
						|
 *
 | 
						|
 * Return the number of new huge pages added to the map.  This number is greater
 | 
						|
 * than or equal to zero.  If file_region entries needed to be allocated for
 | 
						|
 * this operation and we were not able to allocate, it returns -ENOMEM.
 | 
						|
 * region_add of regions of length 1 never allocate file_regions and cannot
 | 
						|
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 | 
						|
 * 1 page will only require at most 1 entry.
 | 
						|
 */
 | 
						|
static long region_add(struct resv_map *resv, long f, long t,
 | 
						|
		       long in_regions_needed, struct hstate *h,
 | 
						|
		       struct hugetlb_cgroup *h_cg)
 | 
						|
{
 | 
						|
	long add = 0, actual_regions_needed = 0;
 | 
						|
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
retry:
 | 
						|
 | 
						|
	/* Count how many regions are actually needed to execute this add. */
 | 
						|
	add_reservation_in_range(resv, f, t, NULL, NULL,
 | 
						|
				 &actual_regions_needed);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for sufficient descriptors in the cache to accommodate
 | 
						|
	 * this add operation. Note that actual_regions_needed may be greater
 | 
						|
	 * than in_regions_needed, as the resv_map may have been modified since
 | 
						|
	 * the region_chg call. In this case, we need to make sure that we
 | 
						|
	 * allocate extra entries, such that we have enough for all the
 | 
						|
	 * existing adds_in_progress, plus the excess needed for this
 | 
						|
	 * operation.
 | 
						|
	 */
 | 
						|
	if (actual_regions_needed > in_regions_needed &&
 | 
						|
	    resv->region_cache_count <
 | 
						|
		    resv->adds_in_progress +
 | 
						|
			    (actual_regions_needed - in_regions_needed)) {
 | 
						|
		/* region_add operation of range 1 should never need to
 | 
						|
		 * allocate file_region entries.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON(t - f <= 1);
 | 
						|
 | 
						|
		if (allocate_file_region_entries(
 | 
						|
			    resv, actual_regions_needed - in_regions_needed)) {
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 | 
						|
 | 
						|
	resv->adds_in_progress -= in_regions_needed;
 | 
						|
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
	return add;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Examine the existing reserve map and determine how many
 | 
						|
 * huge pages in the specified range [f, t) are NOT currently
 | 
						|
 * represented.  This routine is called before a subsequent
 | 
						|
 * call to region_add that will actually modify the reserve
 | 
						|
 * map to add the specified range [f, t).  region_chg does
 | 
						|
 * not change the number of huge pages represented by the
 | 
						|
 * map.  A number of new file_region structures is added to the cache as a
 | 
						|
 * placeholder, for the subsequent region_add call to use. At least 1
 | 
						|
 * file_region structure is added.
 | 
						|
 *
 | 
						|
 * out_regions_needed is the number of regions added to the
 | 
						|
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 | 
						|
 * to region_add or region_abort for proper accounting.
 | 
						|
 *
 | 
						|
 * Returns the number of huge pages that need to be added to the existing
 | 
						|
 * reservation map for the range [f, t).  This number is greater or equal to
 | 
						|
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 | 
						|
 * is needed and can not be allocated.
 | 
						|
 */
 | 
						|
static long region_chg(struct resv_map *resv, long f, long t,
 | 
						|
		       long *out_regions_needed)
 | 
						|
{
 | 
						|
	long chg = 0;
 | 
						|
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
 | 
						|
	/* Count how many hugepages in this range are NOT represented. */
 | 
						|
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 | 
						|
				       out_regions_needed);
 | 
						|
 | 
						|
	if (*out_regions_needed == 0)
 | 
						|
		*out_regions_needed = 1;
 | 
						|
 | 
						|
	if (allocate_file_region_entries(resv, *out_regions_needed))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	resv->adds_in_progress += *out_regions_needed;
 | 
						|
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
	return chg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Abort the in progress add operation.  The adds_in_progress field
 | 
						|
 * of the resv_map keeps track of the operations in progress between
 | 
						|
 * calls to region_chg and region_add.  Operations are sometimes
 | 
						|
 * aborted after the call to region_chg.  In such cases, region_abort
 | 
						|
 * is called to decrement the adds_in_progress counter. regions_needed
 | 
						|
 * is the value returned by the region_chg call, it is used to decrement
 | 
						|
 * the adds_in_progress counter.
 | 
						|
 *
 | 
						|
 * NOTE: The range arguments [f, t) are not needed or used in this
 | 
						|
 * routine.  They are kept to make reading the calling code easier as
 | 
						|
 * arguments will match the associated region_chg call.
 | 
						|
 */
 | 
						|
static void region_abort(struct resv_map *resv, long f, long t,
 | 
						|
			 long regions_needed)
 | 
						|
{
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
	VM_BUG_ON(!resv->region_cache_count);
 | 
						|
	resv->adds_in_progress -= regions_needed;
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Delete the specified range [f, t) from the reserve map.  If the
 | 
						|
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 | 
						|
 * should be deleted.  Locate the regions which intersect [f, t)
 | 
						|
 * and either trim, delete or split the existing regions.
 | 
						|
 *
 | 
						|
 * Returns the number of huge pages deleted from the reserve map.
 | 
						|
 * In the normal case, the return value is zero or more.  In the
 | 
						|
 * case where a region must be split, a new region descriptor must
 | 
						|
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 | 
						|
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 | 
						|
 * a region and possibly return -ENOMEM.  Callers specifying
 | 
						|
 * t == LONG_MAX do not need to check for -ENOMEM error.
 | 
						|
 */
 | 
						|
static long region_del(struct resv_map *resv, long f, long t)
 | 
						|
{
 | 
						|
	struct list_head *head = &resv->regions;
 | 
						|
	struct file_region *rg, *trg;
 | 
						|
	struct file_region *nrg = NULL;
 | 
						|
	long del = 0;
 | 
						|
 | 
						|
retry:
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
	list_for_each_entry_safe(rg, trg, head, link) {
 | 
						|
		/*
 | 
						|
		 * Skip regions before the range to be deleted.  file_region
 | 
						|
		 * ranges are normally of the form [from, to).  However, there
 | 
						|
		 * may be a "placeholder" entry in the map which is of the form
 | 
						|
		 * (from, to) with from == to.  Check for placeholder entries
 | 
						|
		 * at the beginning of the range to be deleted.
 | 
						|
		 */
 | 
						|
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (rg->from >= t)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (f > rg->from && t < rg->to) { /* Must split region */
 | 
						|
			/*
 | 
						|
			 * Check for an entry in the cache before dropping
 | 
						|
			 * lock and attempting allocation.
 | 
						|
			 */
 | 
						|
			if (!nrg &&
 | 
						|
			    resv->region_cache_count > resv->adds_in_progress) {
 | 
						|
				nrg = list_first_entry(&resv->region_cache,
 | 
						|
							struct file_region,
 | 
						|
							link);
 | 
						|
				list_del(&nrg->link);
 | 
						|
				resv->region_cache_count--;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!nrg) {
 | 
						|
				spin_unlock(&resv->lock);
 | 
						|
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 | 
						|
				if (!nrg)
 | 
						|
					return -ENOMEM;
 | 
						|
				goto retry;
 | 
						|
			}
 | 
						|
 | 
						|
			del += t - f;
 | 
						|
			hugetlb_cgroup_uncharge_file_region(
 | 
						|
				resv, rg, t - f, false);
 | 
						|
 | 
						|
			/* New entry for end of split region */
 | 
						|
			nrg->from = t;
 | 
						|
			nrg->to = rg->to;
 | 
						|
 | 
						|
			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 | 
						|
 | 
						|
			INIT_LIST_HEAD(&nrg->link);
 | 
						|
 | 
						|
			/* Original entry is trimmed */
 | 
						|
			rg->to = f;
 | 
						|
 | 
						|
			list_add(&nrg->link, &rg->link);
 | 
						|
			nrg = NULL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 | 
						|
			del += rg->to - rg->from;
 | 
						|
			hugetlb_cgroup_uncharge_file_region(resv, rg,
 | 
						|
							    rg->to - rg->from, true);
 | 
						|
			list_del(&rg->link);
 | 
						|
			kfree(rg);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (f <= rg->from) {	/* Trim beginning of region */
 | 
						|
			hugetlb_cgroup_uncharge_file_region(resv, rg,
 | 
						|
							    t - rg->from, false);
 | 
						|
 | 
						|
			del += t - rg->from;
 | 
						|
			rg->from = t;
 | 
						|
		} else {		/* Trim end of region */
 | 
						|
			hugetlb_cgroup_uncharge_file_region(resv, rg,
 | 
						|
							    rg->to - f, false);
 | 
						|
 | 
						|
			del += rg->to - f;
 | 
						|
			rg->to = f;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
	kfree(nrg);
 | 
						|
	return del;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A rare out of memory error was encountered which prevented removal of
 | 
						|
 * the reserve map region for a page.  The huge page itself was free'ed
 | 
						|
 * and removed from the page cache.  This routine will adjust the subpool
 | 
						|
 * usage count, and the global reserve count if needed.  By incrementing
 | 
						|
 * these counts, the reserve map entry which could not be deleted will
 | 
						|
 * appear as a "reserved" entry instead of simply dangling with incorrect
 | 
						|
 * counts.
 | 
						|
 */
 | 
						|
void hugetlb_fix_reserve_counts(struct inode *inode)
 | 
						|
{
 | 
						|
	struct hugepage_subpool *spool = subpool_inode(inode);
 | 
						|
	long rsv_adjust;
 | 
						|
	bool reserved = false;
 | 
						|
 | 
						|
	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 | 
						|
	if (rsv_adjust > 0) {
 | 
						|
		struct hstate *h = hstate_inode(inode);
 | 
						|
 | 
						|
		if (!hugetlb_acct_memory(h, 1))
 | 
						|
			reserved = true;
 | 
						|
	} else if (!rsv_adjust) {
 | 
						|
		reserved = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!reserved)
 | 
						|
		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Count and return the number of huge pages in the reserve map
 | 
						|
 * that intersect with the range [f, t).
 | 
						|
 */
 | 
						|
static long region_count(struct resv_map *resv, long f, long t)
 | 
						|
{
 | 
						|
	struct list_head *head = &resv->regions;
 | 
						|
	struct file_region *rg;
 | 
						|
	long chg = 0;
 | 
						|
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
	/* Locate each segment we overlap with, and count that overlap. */
 | 
						|
	list_for_each_entry(rg, head, link) {
 | 
						|
		long seg_from;
 | 
						|
		long seg_to;
 | 
						|
 | 
						|
		if (rg->to <= f)
 | 
						|
			continue;
 | 
						|
		if (rg->from >= t)
 | 
						|
			break;
 | 
						|
 | 
						|
		seg_from = max(rg->from, f);
 | 
						|
		seg_to = min(rg->to, t);
 | 
						|
 | 
						|
		chg += seg_to - seg_from;
 | 
						|
	}
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
 | 
						|
	return chg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert the address within this vma to the page offset within
 | 
						|
 * the mapping, in pagecache page units; huge pages here.
 | 
						|
 */
 | 
						|
static pgoff_t vma_hugecache_offset(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long address)
 | 
						|
{
 | 
						|
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 | 
						|
			(vma->vm_pgoff >> huge_page_order(h));
 | 
						|
}
 | 
						|
 | 
						|
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 | 
						|
				     unsigned long address)
 | 
						|
{
 | 
						|
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(linear_hugepage_index);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the size of the pages allocated when backing a VMA. In the majority
 | 
						|
 * cases this will be same size as used by the page table entries.
 | 
						|
 */
 | 
						|
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (vma->vm_ops && vma->vm_ops->pagesize)
 | 
						|
		return vma->vm_ops->pagesize(vma);
 | 
						|
	return PAGE_SIZE;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the page size being used by the MMU to back a VMA. In the majority
 | 
						|
 * of cases, the page size used by the kernel matches the MMU size. On
 | 
						|
 * architectures where it differs, an architecture-specific 'strong'
 | 
						|
 * version of this symbol is required.
 | 
						|
 */
 | 
						|
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return vma_kernel_pagesize(vma);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 | 
						|
 * bits of the reservation map pointer, which are always clear due to
 | 
						|
 * alignment.
 | 
						|
 */
 | 
						|
#define HPAGE_RESV_OWNER    (1UL << 0)
 | 
						|
#define HPAGE_RESV_UNMAPPED (1UL << 1)
 | 
						|
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 | 
						|
 | 
						|
/*
 | 
						|
 * These helpers are used to track how many pages are reserved for
 | 
						|
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 | 
						|
 * is guaranteed to have their future faults succeed.
 | 
						|
 *
 | 
						|
 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
 | 
						|
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 | 
						|
 * to reset the VMA at fork() time as it is not in use yet and there is no
 | 
						|
 * chance of the global counters getting corrupted as a result of the values.
 | 
						|
 *
 | 
						|
 * The private mapping reservation is represented in a subtly different
 | 
						|
 * manner to a shared mapping.  A shared mapping has a region map associated
 | 
						|
 * with the underlying file, this region map represents the backing file
 | 
						|
 * pages which have ever had a reservation assigned which this persists even
 | 
						|
 * after the page is instantiated.  A private mapping has a region map
 | 
						|
 * associated with the original mmap which is attached to all VMAs which
 | 
						|
 * reference it, this region map represents those offsets which have consumed
 | 
						|
 * reservation ie. where pages have been instantiated.
 | 
						|
 */
 | 
						|
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return (unsigned long)vma->vm_private_data;
 | 
						|
}
 | 
						|
 | 
						|
static void set_vma_private_data(struct vm_area_struct *vma,
 | 
						|
							unsigned long value)
 | 
						|
{
 | 
						|
	vma->vm_private_data = (void *)value;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 | 
						|
					  struct hugetlb_cgroup *h_cg,
 | 
						|
					  struct hstate *h)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUP_HUGETLB
 | 
						|
	if (!h_cg || !h) {
 | 
						|
		resv_map->reservation_counter = NULL;
 | 
						|
		resv_map->pages_per_hpage = 0;
 | 
						|
		resv_map->css = NULL;
 | 
						|
	} else {
 | 
						|
		resv_map->reservation_counter =
 | 
						|
			&h_cg->rsvd_hugepage[hstate_index(h)];
 | 
						|
		resv_map->pages_per_hpage = pages_per_huge_page(h);
 | 
						|
		resv_map->css = &h_cg->css;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
struct resv_map *resv_map_alloc(void)
 | 
						|
{
 | 
						|
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 | 
						|
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 | 
						|
 | 
						|
	if (!resv_map || !rg) {
 | 
						|
		kfree(resv_map);
 | 
						|
		kfree(rg);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	kref_init(&resv_map->refs);
 | 
						|
	spin_lock_init(&resv_map->lock);
 | 
						|
	INIT_LIST_HEAD(&resv_map->regions);
 | 
						|
 | 
						|
	resv_map->adds_in_progress = 0;
 | 
						|
	/*
 | 
						|
	 * Initialize these to 0. On shared mappings, 0's here indicate these
 | 
						|
	 * fields don't do cgroup accounting. On private mappings, these will be
 | 
						|
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
 | 
						|
	 * reservations are to be un-charged from here.
 | 
						|
	 */
 | 
						|
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&resv_map->region_cache);
 | 
						|
	list_add(&rg->link, &resv_map->region_cache);
 | 
						|
	resv_map->region_cache_count = 1;
 | 
						|
 | 
						|
	return resv_map;
 | 
						|
}
 | 
						|
 | 
						|
void resv_map_release(struct kref *ref)
 | 
						|
{
 | 
						|
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 | 
						|
	struct list_head *head = &resv_map->region_cache;
 | 
						|
	struct file_region *rg, *trg;
 | 
						|
 | 
						|
	/* Clear out any active regions before we release the map. */
 | 
						|
	region_del(resv_map, 0, LONG_MAX);
 | 
						|
 | 
						|
	/* ... and any entries left in the cache */
 | 
						|
	list_for_each_entry_safe(rg, trg, head, link) {
 | 
						|
		list_del(&rg->link);
 | 
						|
		kfree(rg);
 | 
						|
	}
 | 
						|
 | 
						|
	VM_BUG_ON(resv_map->adds_in_progress);
 | 
						|
 | 
						|
	kfree(resv_map);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct resv_map *inode_resv_map(struct inode *inode)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * At inode evict time, i_mapping may not point to the original
 | 
						|
	 * address space within the inode.  This original address space
 | 
						|
	 * contains the pointer to the resv_map.  So, always use the
 | 
						|
	 * address space embedded within the inode.
 | 
						|
	 * The VERY common case is inode->mapping == &inode->i_data but,
 | 
						|
	 * this may not be true for device special inodes.
 | 
						|
	 */
 | 
						|
	return (struct resv_map *)(&inode->i_data)->private_data;
 | 
						|
}
 | 
						|
 | 
						|
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		struct address_space *mapping = vma->vm_file->f_mapping;
 | 
						|
		struct inode *inode = mapping->host;
 | 
						|
 | 
						|
		return inode_resv_map(inode);
 | 
						|
 | 
						|
	} else {
 | 
						|
		return (struct resv_map *)(get_vma_private_data(vma) &
 | 
						|
							~HPAGE_RESV_MASK);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 | 
						|
 | 
						|
	set_vma_private_data(vma, (get_vma_private_data(vma) &
 | 
						|
				HPAGE_RESV_MASK) | (unsigned long)map);
 | 
						|
}
 | 
						|
 | 
						|
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 | 
						|
 | 
						|
	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 | 
						|
}
 | 
						|
 | 
						|
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
 | 
						|
	return (get_vma_private_data(vma) & flag) != 0;
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_dup_vma_private(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
	/*
 | 
						|
	 * Clear vm_private_data
 | 
						|
	 * - For shared mappings this is a per-vma semaphore that may be
 | 
						|
	 *   allocated in a subsequent call to hugetlb_vm_op_open.
 | 
						|
	 *   Before clearing, make sure pointer is not associated with vma
 | 
						|
	 *   as this will leak the structure.  This is the case when called
 | 
						|
	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
 | 
						|
	 *   been called to allocate a new structure.
 | 
						|
	 * - For MAP_PRIVATE mappings, this is the reserve map which does
 | 
						|
	 *   not apply to children.  Faults generated by the children are
 | 
						|
	 *   not guaranteed to succeed, even if read-only.
 | 
						|
	 */
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
		if (vma_lock && vma_lock->vma != vma)
 | 
						|
			vma->vm_private_data = NULL;
 | 
						|
	} else
 | 
						|
		vma->vm_private_data = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reset and decrement one ref on hugepage private reservation.
 | 
						|
 * Called with mm->mmap_lock writer semaphore held.
 | 
						|
 * This function should be only used by move_vma() and operate on
 | 
						|
 * same sized vma. It should never come here with last ref on the
 | 
						|
 * reservation.
 | 
						|
 */
 | 
						|
void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Clear the old hugetlb private page reservation.
 | 
						|
	 * It has already been transferred to new_vma.
 | 
						|
	 *
 | 
						|
	 * During a mremap() operation of a hugetlb vma we call move_vma()
 | 
						|
	 * which copies vma into new_vma and unmaps vma. After the copy
 | 
						|
	 * operation both new_vma and vma share a reference to the resv_map
 | 
						|
	 * struct, and at that point vma is about to be unmapped. We don't
 | 
						|
	 * want to return the reservation to the pool at unmap of vma because
 | 
						|
	 * the reservation still lives on in new_vma, so simply decrement the
 | 
						|
	 * ref here and remove the resv_map reference from this vma.
 | 
						|
	 */
 | 
						|
	struct resv_map *reservations = vma_resv_map(vma);
 | 
						|
 | 
						|
	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 | 
						|
		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
 | 
						|
		kref_put(&reservations->refs, resv_map_release);
 | 
						|
	}
 | 
						|
 | 
						|
	hugetlb_dup_vma_private(vma);
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if the VMA has associated reserve pages */
 | 
						|
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 | 
						|
{
 | 
						|
	if (vma->vm_flags & VM_NORESERVE) {
 | 
						|
		/*
 | 
						|
		 * This address is already reserved by other process(chg == 0),
 | 
						|
		 * so, we should decrement reserved count. Without decrementing,
 | 
						|
		 * reserve count remains after releasing inode, because this
 | 
						|
		 * allocated page will go into page cache and is regarded as
 | 
						|
		 * coming from reserved pool in releasing step.  Currently, we
 | 
						|
		 * don't have any other solution to deal with this situation
 | 
						|
		 * properly, so add work-around here.
 | 
						|
		 */
 | 
						|
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 | 
						|
			return true;
 | 
						|
		else
 | 
						|
			return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Shared mappings always use reserves */
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		/*
 | 
						|
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 | 
						|
		 * be a region map for all pages.  The only situation where
 | 
						|
		 * there is no region map is if a hole was punched via
 | 
						|
		 * fallocate.  In this case, there really are no reserves to
 | 
						|
		 * use.  This situation is indicated if chg != 0.
 | 
						|
		 */
 | 
						|
		if (chg)
 | 
						|
			return false;
 | 
						|
		else
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only the process that called mmap() has reserves for
 | 
						|
	 * private mappings.
 | 
						|
	 */
 | 
						|
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 | 
						|
		/*
 | 
						|
		 * Like the shared case above, a hole punch or truncate
 | 
						|
		 * could have been performed on the private mapping.
 | 
						|
		 * Examine the value of chg to determine if reserves
 | 
						|
		 * actually exist or were previously consumed.
 | 
						|
		 * Very Subtle - The value of chg comes from a previous
 | 
						|
		 * call to vma_needs_reserves().  The reserve map for
 | 
						|
		 * private mappings has different (opposite) semantics
 | 
						|
		 * than that of shared mappings.  vma_needs_reserves()
 | 
						|
		 * has already taken this difference in semantics into
 | 
						|
		 * account.  Therefore, the meaning of chg is the same
 | 
						|
		 * as in the shared case above.  Code could easily be
 | 
						|
		 * combined, but keeping it separate draws attention to
 | 
						|
		 * subtle differences.
 | 
						|
		 */
 | 
						|
		if (chg)
 | 
						|
			return false;
 | 
						|
		else
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
 | 
						|
{
 | 
						|
	int nid = folio_nid(folio);
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
 | 
						|
 | 
						|
	list_move(&folio->lru, &h->hugepage_freelists[nid]);
 | 
						|
	h->free_huge_pages++;
 | 
						|
	h->free_huge_pages_node[nid]++;
 | 
						|
	folio_set_hugetlb_freed(folio);
 | 
						|
}
 | 
						|
 | 
						|
static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
 | 
						|
								int nid)
 | 
						|
{
 | 
						|
	struct folio *folio;
 | 
						|
	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
 | 
						|
		if (pin && !folio_is_longterm_pinnable(folio))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (folio_test_hwpoison(folio))
 | 
						|
			continue;
 | 
						|
 | 
						|
		list_move(&folio->lru, &h->hugepage_activelist);
 | 
						|
		folio_ref_unfreeze(folio, 1);
 | 
						|
		folio_clear_hugetlb_freed(folio);
 | 
						|
		h->free_huge_pages--;
 | 
						|
		h->free_huge_pages_node[nid]--;
 | 
						|
		return folio;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
 | 
						|
							int nid, nodemask_t *nmask)
 | 
						|
{
 | 
						|
	unsigned int cpuset_mems_cookie;
 | 
						|
	struct zonelist *zonelist;
 | 
						|
	struct zone *zone;
 | 
						|
	struct zoneref *z;
 | 
						|
	int node = NUMA_NO_NODE;
 | 
						|
 | 
						|
	zonelist = node_zonelist(nid, gfp_mask);
 | 
						|
 | 
						|
retry_cpuset:
 | 
						|
	cpuset_mems_cookie = read_mems_allowed_begin();
 | 
						|
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 | 
						|
		struct folio *folio;
 | 
						|
 | 
						|
		if (!cpuset_zone_allowed(zone, gfp_mask))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * no need to ask again on the same node. Pool is node rather than
 | 
						|
		 * zone aware
 | 
						|
		 */
 | 
						|
		if (zone_to_nid(zone) == node)
 | 
						|
			continue;
 | 
						|
		node = zone_to_nid(zone);
 | 
						|
 | 
						|
		folio = dequeue_hugetlb_folio_node_exact(h, node);
 | 
						|
		if (folio)
 | 
						|
			return folio;
 | 
						|
	}
 | 
						|
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 | 
						|
		goto retry_cpuset;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long available_huge_pages(struct hstate *h)
 | 
						|
{
 | 
						|
	return h->free_huge_pages - h->resv_huge_pages;
 | 
						|
}
 | 
						|
 | 
						|
static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
 | 
						|
				struct vm_area_struct *vma,
 | 
						|
				unsigned long address, int avoid_reserve,
 | 
						|
				long chg)
 | 
						|
{
 | 
						|
	struct folio *folio = NULL;
 | 
						|
	struct mempolicy *mpol;
 | 
						|
	gfp_t gfp_mask;
 | 
						|
	nodemask_t *nodemask;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A child process with MAP_PRIVATE mappings created by their parent
 | 
						|
	 * have no page reserves. This check ensures that reservations are
 | 
						|
	 * not "stolen". The child may still get SIGKILLed
 | 
						|
	 */
 | 
						|
	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
 | 
						|
		goto err;
 | 
						|
 | 
						|
	/* If reserves cannot be used, ensure enough pages are in the pool */
 | 
						|
	if (avoid_reserve && !available_huge_pages(h))
 | 
						|
		goto err;
 | 
						|
 | 
						|
	gfp_mask = htlb_alloc_mask(h);
 | 
						|
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 | 
						|
 | 
						|
	if (mpol_is_preferred_many(mpol)) {
 | 
						|
		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
 | 
						|
							nid, nodemask);
 | 
						|
 | 
						|
		/* Fallback to all nodes if page==NULL */
 | 
						|
		nodemask = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!folio)
 | 
						|
		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
 | 
						|
							nid, nodemask);
 | 
						|
 | 
						|
	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
 | 
						|
		folio_set_hugetlb_restore_reserve(folio);
 | 
						|
		h->resv_huge_pages--;
 | 
						|
	}
 | 
						|
 | 
						|
	mpol_cond_put(mpol);
 | 
						|
	return folio;
 | 
						|
 | 
						|
err:
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * common helper functions for hstate_next_node_to_{alloc|free}.
 | 
						|
 * We may have allocated or freed a huge page based on a different
 | 
						|
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 | 
						|
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 | 
						|
 * node for alloc or free.
 | 
						|
 */
 | 
						|
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	nid = next_node_in(nid, *nodes_allowed);
 | 
						|
	VM_BUG_ON(nid >= MAX_NUMNODES);
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	if (!node_isset(nid, *nodes_allowed))
 | 
						|
		nid = next_node_allowed(nid, nodes_allowed);
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * returns the previously saved node ["this node"] from which to
 | 
						|
 * allocate a persistent huge page for the pool and advance the
 | 
						|
 * next node from which to allocate, handling wrap at end of node
 | 
						|
 * mask.
 | 
						|
 */
 | 
						|
static int hstate_next_node_to_alloc(struct hstate *h,
 | 
						|
					nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	VM_BUG_ON(!nodes_allowed);
 | 
						|
 | 
						|
	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 | 
						|
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper for remove_pool_huge_page() - return the previously saved
 | 
						|
 * node ["this node"] from which to free a huge page.  Advance the
 | 
						|
 * next node id whether or not we find a free huge page to free so
 | 
						|
 * that the next attempt to free addresses the next node.
 | 
						|
 */
 | 
						|
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	VM_BUG_ON(!nodes_allowed);
 | 
						|
 | 
						|
	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 | 
						|
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
 | 
						|
	for (nr_nodes = nodes_weight(*mask);				\
 | 
						|
		nr_nodes > 0 &&						\
 | 
						|
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
 | 
						|
		nr_nodes--)
 | 
						|
 | 
						|
#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
 | 
						|
	for (nr_nodes = nodes_weight(*mask);				\
 | 
						|
		nr_nodes > 0 &&						\
 | 
						|
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
 | 
						|
		nr_nodes--)
 | 
						|
 | 
						|
/* used to demote non-gigantic_huge pages as well */
 | 
						|
static void __destroy_compound_gigantic_folio(struct folio *folio,
 | 
						|
					unsigned int order, bool demote)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int nr_pages = 1 << order;
 | 
						|
	struct page *p;
 | 
						|
 | 
						|
	atomic_set(&folio->_entire_mapcount, 0);
 | 
						|
	atomic_set(&folio->_nr_pages_mapped, 0);
 | 
						|
	atomic_set(&folio->_pincount, 0);
 | 
						|
 | 
						|
	for (i = 1; i < nr_pages; i++) {
 | 
						|
		p = folio_page(folio, i);
 | 
						|
		p->mapping = NULL;
 | 
						|
		clear_compound_head(p);
 | 
						|
		if (!demote)
 | 
						|
			set_page_refcounted(p);
 | 
						|
	}
 | 
						|
 | 
						|
	folio_set_order(folio, 0);
 | 
						|
	__folio_clear_head(folio);
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
 | 
						|
					unsigned int order)
 | 
						|
{
 | 
						|
	__destroy_compound_gigantic_folio(folio, order, true);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
 | 
						|
static void destroy_compound_gigantic_folio(struct folio *folio,
 | 
						|
					unsigned int order)
 | 
						|
{
 | 
						|
	__destroy_compound_gigantic_folio(folio, order, false);
 | 
						|
}
 | 
						|
 | 
						|
static void free_gigantic_folio(struct folio *folio, unsigned int order)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If the page isn't allocated using the cma allocator,
 | 
						|
	 * cma_release() returns false.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
	int nid = folio_nid(folio);
 | 
						|
 | 
						|
	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
 | 
						|
		return;
 | 
						|
#endif
 | 
						|
 | 
						|
	free_contig_range(folio_pfn(folio), 1 << order);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_CONTIG_ALLOC
 | 
						|
static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
 | 
						|
		int nid, nodemask_t *nodemask)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	unsigned long nr_pages = pages_per_huge_page(h);
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		nid = numa_mem_id();
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
	{
 | 
						|
		int node;
 | 
						|
 | 
						|
		if (hugetlb_cma[nid]) {
 | 
						|
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
 | 
						|
					huge_page_order(h), true);
 | 
						|
			if (page)
 | 
						|
				return page_folio(page);
 | 
						|
		}
 | 
						|
 | 
						|
		if (!(gfp_mask & __GFP_THISNODE)) {
 | 
						|
			for_each_node_mask(node, *nodemask) {
 | 
						|
				if (node == nid || !hugetlb_cma[node])
 | 
						|
					continue;
 | 
						|
 | 
						|
				page = cma_alloc(hugetlb_cma[node], nr_pages,
 | 
						|
						huge_page_order(h), true);
 | 
						|
				if (page)
 | 
						|
					return page_folio(page);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
 | 
						|
	return page ? page_folio(page) : NULL;
 | 
						|
}
 | 
						|
 | 
						|
#else /* !CONFIG_CONTIG_ALLOC */
 | 
						|
static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
 | 
						|
					int nid, nodemask_t *nodemask)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
#endif /* CONFIG_CONTIG_ALLOC */
 | 
						|
 | 
						|
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
 | 
						|
static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
 | 
						|
					int nid, nodemask_t *nodemask)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
static inline void free_gigantic_folio(struct folio *folio,
 | 
						|
						unsigned int order) { }
 | 
						|
static inline void destroy_compound_gigantic_folio(struct folio *folio,
 | 
						|
						unsigned int order) { }
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove hugetlb folio from lists, and update dtor so that the folio appears
 | 
						|
 * as just a compound page.
 | 
						|
 *
 | 
						|
 * A reference is held on the folio, except in the case of demote.
 | 
						|
 *
 | 
						|
 * Must be called with hugetlb lock held.
 | 
						|
 */
 | 
						|
static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
 | 
						|
							bool adjust_surplus,
 | 
						|
							bool demote)
 | 
						|
{
 | 
						|
	int nid = folio_nid(folio);
 | 
						|
 | 
						|
	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
 | 
						|
	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
 | 
						|
		return;
 | 
						|
 | 
						|
	list_del(&folio->lru);
 | 
						|
 | 
						|
	if (folio_test_hugetlb_freed(folio)) {
 | 
						|
		h->free_huge_pages--;
 | 
						|
		h->free_huge_pages_node[nid]--;
 | 
						|
	}
 | 
						|
	if (adjust_surplus) {
 | 
						|
		h->surplus_huge_pages--;
 | 
						|
		h->surplus_huge_pages_node[nid]--;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Very subtle
 | 
						|
	 *
 | 
						|
	 * For non-gigantic pages set the destructor to the normal compound
 | 
						|
	 * page dtor.  This is needed in case someone takes an additional
 | 
						|
	 * temporary ref to the page, and freeing is delayed until they drop
 | 
						|
	 * their reference.
 | 
						|
	 *
 | 
						|
	 * For gigantic pages set the destructor to the null dtor.  This
 | 
						|
	 * destructor will never be called.  Before freeing the gigantic
 | 
						|
	 * page destroy_compound_gigantic_folio will turn the folio into a
 | 
						|
	 * simple group of pages.  After this the destructor does not
 | 
						|
	 * apply.
 | 
						|
	 *
 | 
						|
	 * This handles the case where more than one ref is held when and
 | 
						|
	 * after update_and_free_hugetlb_folio is called.
 | 
						|
	 *
 | 
						|
	 * In the case of demote we do not ref count the page as it will soon
 | 
						|
	 * be turned into a page of smaller size.
 | 
						|
	 */
 | 
						|
	if (!demote)
 | 
						|
		folio_ref_unfreeze(folio, 1);
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
 | 
						|
	else
 | 
						|
		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
 | 
						|
 | 
						|
	h->nr_huge_pages--;
 | 
						|
	h->nr_huge_pages_node[nid]--;
 | 
						|
}
 | 
						|
 | 
						|
static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
 | 
						|
							bool adjust_surplus)
 | 
						|
{
 | 
						|
	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
 | 
						|
}
 | 
						|
 | 
						|
static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
 | 
						|
							bool adjust_surplus)
 | 
						|
{
 | 
						|
	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
 | 
						|
}
 | 
						|
 | 
						|
static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
 | 
						|
			     bool adjust_surplus)
 | 
						|
{
 | 
						|
	int zeroed;
 | 
						|
	int nid = folio_nid(folio);
 | 
						|
 | 
						|
	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&folio->lru);
 | 
						|
	h->nr_huge_pages++;
 | 
						|
	h->nr_huge_pages_node[nid]++;
 | 
						|
 | 
						|
	if (adjust_surplus) {
 | 
						|
		h->surplus_huge_pages++;
 | 
						|
		h->surplus_huge_pages_node[nid]++;
 | 
						|
	}
 | 
						|
 | 
						|
	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
 | 
						|
	folio_change_private(folio, NULL);
 | 
						|
	/*
 | 
						|
	 * We have to set hugetlb_vmemmap_optimized again as above
 | 
						|
	 * folio_change_private(folio, NULL) cleared it.
 | 
						|
	 */
 | 
						|
	folio_set_hugetlb_vmemmap_optimized(folio);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This folio is about to be managed by the hugetlb allocator and
 | 
						|
	 * should have no users.  Drop our reference, and check for others
 | 
						|
	 * just in case.
 | 
						|
	 */
 | 
						|
	zeroed = folio_put_testzero(folio);
 | 
						|
	if (unlikely(!zeroed))
 | 
						|
		/*
 | 
						|
		 * It is VERY unlikely soneone else has taken a ref on
 | 
						|
		 * the page.  In this case, we simply return as the
 | 
						|
		 * hugetlb destructor (free_huge_page) will be called
 | 
						|
		 * when this other ref is dropped.
 | 
						|
		 */
 | 
						|
		return;
 | 
						|
 | 
						|
	arch_clear_hugepage_flags(&folio->page);
 | 
						|
	enqueue_hugetlb_folio(h, folio);
 | 
						|
}
 | 
						|
 | 
						|
static void __update_and_free_hugetlb_folio(struct hstate *h,
 | 
						|
						struct folio *folio)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct page *subpage;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we don't know which subpages are hwpoisoned, we can't free
 | 
						|
	 * the hugepage, so it's leaked intentionally.
 | 
						|
	 */
 | 
						|
	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (hugetlb_vmemmap_restore(h, &folio->page)) {
 | 
						|
		spin_lock_irq(&hugetlb_lock);
 | 
						|
		/*
 | 
						|
		 * If we cannot allocate vmemmap pages, just refuse to free the
 | 
						|
		 * page and put the page back on the hugetlb free list and treat
 | 
						|
		 * as a surplus page.
 | 
						|
		 */
 | 
						|
		add_hugetlb_folio(h, folio, true);
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Move PageHWPoison flag from head page to the raw error pages,
 | 
						|
	 * which makes any healthy subpages reusable.
 | 
						|
	 */
 | 
						|
	if (unlikely(folio_test_hwpoison(folio)))
 | 
						|
		folio_clear_hugetlb_hwpoison(folio);
 | 
						|
 | 
						|
	for (i = 0; i < pages_per_huge_page(h); i++) {
 | 
						|
		subpage = folio_page(folio, i);
 | 
						|
		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
 | 
						|
				1 << PG_referenced | 1 << PG_dirty |
 | 
						|
				1 << PG_active | 1 << PG_private |
 | 
						|
				1 << PG_writeback);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Non-gigantic pages demoted from CMA allocated gigantic pages
 | 
						|
	 * need to be given back to CMA in free_gigantic_folio.
 | 
						|
	 */
 | 
						|
	if (hstate_is_gigantic(h) ||
 | 
						|
	    hugetlb_cma_folio(folio, huge_page_order(h))) {
 | 
						|
		destroy_compound_gigantic_folio(folio, huge_page_order(h));
 | 
						|
		free_gigantic_folio(folio, huge_page_order(h));
 | 
						|
	} else {
 | 
						|
		__free_pages(&folio->page, huge_page_order(h));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
 | 
						|
 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
 | 
						|
 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
 | 
						|
 * the vmemmap pages.
 | 
						|
 *
 | 
						|
 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
 | 
						|
 * freed and frees them one-by-one. As the page->mapping pointer is going
 | 
						|
 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
 | 
						|
 * structure of a lockless linked list of huge pages to be freed.
 | 
						|
 */
 | 
						|
static LLIST_HEAD(hpage_freelist);
 | 
						|
 | 
						|
static void free_hpage_workfn(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct llist_node *node;
 | 
						|
 | 
						|
	node = llist_del_all(&hpage_freelist);
 | 
						|
 | 
						|
	while (node) {
 | 
						|
		struct page *page;
 | 
						|
		struct hstate *h;
 | 
						|
 | 
						|
		page = container_of((struct address_space **)node,
 | 
						|
				     struct page, mapping);
 | 
						|
		node = node->next;
 | 
						|
		page->mapping = NULL;
 | 
						|
		/*
 | 
						|
		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
 | 
						|
		 * is going to trigger because a previous call to
 | 
						|
		 * remove_hugetlb_folio() will call folio_set_compound_dtor
 | 
						|
		 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
 | 
						|
		 * directly.
 | 
						|
		 */
 | 
						|
		h = size_to_hstate(page_size(page));
 | 
						|
 | 
						|
		__update_and_free_hugetlb_folio(h, page_folio(page));
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
}
 | 
						|
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
 | 
						|
 | 
						|
static inline void flush_free_hpage_work(struct hstate *h)
 | 
						|
{
 | 
						|
	if (hugetlb_vmemmap_optimizable(h))
 | 
						|
		flush_work(&free_hpage_work);
 | 
						|
}
 | 
						|
 | 
						|
static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
 | 
						|
				 bool atomic)
 | 
						|
{
 | 
						|
	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
 | 
						|
		__update_and_free_hugetlb_folio(h, folio);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
 | 
						|
	 *
 | 
						|
	 * Only call schedule_work() if hpage_freelist is previously
 | 
						|
	 * empty. Otherwise, schedule_work() had been called but the workfn
 | 
						|
	 * hasn't retrieved the list yet.
 | 
						|
	 */
 | 
						|
	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
 | 
						|
		schedule_work(&free_hpage_work);
 | 
						|
}
 | 
						|
 | 
						|
static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
 | 
						|
{
 | 
						|
	struct page *page, *t_page;
 | 
						|
	struct folio *folio;
 | 
						|
 | 
						|
	list_for_each_entry_safe(page, t_page, list, lru) {
 | 
						|
		folio = page_folio(page);
 | 
						|
		update_and_free_hugetlb_folio(h, folio, false);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct hstate *size_to_hstate(unsigned long size)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		if (huge_page_size(h) == size)
 | 
						|
			return h;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void free_huge_page(struct page *page)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Can't pass hstate in here because it is called from the
 | 
						|
	 * compound page destructor.
 | 
						|
	 */
 | 
						|
	struct folio *folio = page_folio(page);
 | 
						|
	struct hstate *h = folio_hstate(folio);
 | 
						|
	int nid = folio_nid(folio);
 | 
						|
	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
 | 
						|
	bool restore_reserve;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
 | 
						|
	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
 | 
						|
 | 
						|
	hugetlb_set_folio_subpool(folio, NULL);
 | 
						|
	if (folio_test_anon(folio))
 | 
						|
		__ClearPageAnonExclusive(&folio->page);
 | 
						|
	folio->mapping = NULL;
 | 
						|
	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
 | 
						|
	folio_clear_hugetlb_restore_reserve(folio);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If HPageRestoreReserve was set on page, page allocation consumed a
 | 
						|
	 * reservation.  If the page was associated with a subpool, there
 | 
						|
	 * would have been a page reserved in the subpool before allocation
 | 
						|
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
 | 
						|
	 * reservation, do not call hugepage_subpool_put_pages() as this will
 | 
						|
	 * remove the reserved page from the subpool.
 | 
						|
	 */
 | 
						|
	if (!restore_reserve) {
 | 
						|
		/*
 | 
						|
		 * A return code of zero implies that the subpool will be
 | 
						|
		 * under its minimum size if the reservation is not restored
 | 
						|
		 * after page is free.  Therefore, force restore_reserve
 | 
						|
		 * operation.
 | 
						|
		 */
 | 
						|
		if (hugepage_subpool_put_pages(spool, 1) == 0)
 | 
						|
			restore_reserve = true;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_irqsave(&hugetlb_lock, flags);
 | 
						|
	folio_clear_hugetlb_migratable(folio);
 | 
						|
	hugetlb_cgroup_uncharge_folio(hstate_index(h),
 | 
						|
				     pages_per_huge_page(h), folio);
 | 
						|
	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
 | 
						|
					  pages_per_huge_page(h), folio);
 | 
						|
	if (restore_reserve)
 | 
						|
		h->resv_huge_pages++;
 | 
						|
 | 
						|
	if (folio_test_hugetlb_temporary(folio)) {
 | 
						|
		remove_hugetlb_folio(h, folio, false);
 | 
						|
		spin_unlock_irqrestore(&hugetlb_lock, flags);
 | 
						|
		update_and_free_hugetlb_folio(h, folio, true);
 | 
						|
	} else if (h->surplus_huge_pages_node[nid]) {
 | 
						|
		/* remove the page from active list */
 | 
						|
		remove_hugetlb_folio(h, folio, true);
 | 
						|
		spin_unlock_irqrestore(&hugetlb_lock, flags);
 | 
						|
		update_and_free_hugetlb_folio(h, folio, true);
 | 
						|
	} else {
 | 
						|
		arch_clear_hugepage_flags(page);
 | 
						|
		enqueue_hugetlb_folio(h, folio);
 | 
						|
		spin_unlock_irqrestore(&hugetlb_lock, flags);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Must be called with the hugetlb lock held
 | 
						|
 */
 | 
						|
static void __prep_account_new_huge_page(struct hstate *h, int nid)
 | 
						|
{
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
	h->nr_huge_pages++;
 | 
						|
	h->nr_huge_pages_node[nid]++;
 | 
						|
}
 | 
						|
 | 
						|
static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
 | 
						|
{
 | 
						|
	hugetlb_vmemmap_optimize(h, &folio->page);
 | 
						|
	INIT_LIST_HEAD(&folio->lru);
 | 
						|
	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
 | 
						|
	hugetlb_set_folio_subpool(folio, NULL);
 | 
						|
	set_hugetlb_cgroup(folio, NULL);
 | 
						|
	set_hugetlb_cgroup_rsvd(folio, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
 | 
						|
{
 | 
						|
	__prep_new_hugetlb_folio(h, folio);
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	__prep_account_new_huge_page(h, nid);
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
}
 | 
						|
 | 
						|
static bool __prep_compound_gigantic_folio(struct folio *folio,
 | 
						|
					unsigned int order, bool demote)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	int nr_pages = 1 << order;
 | 
						|
	struct page *p;
 | 
						|
 | 
						|
	__folio_clear_reserved(folio);
 | 
						|
	__folio_set_head(folio);
 | 
						|
	/* we rely on prep_new_hugetlb_folio to set the destructor */
 | 
						|
	folio_set_order(folio, order);
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		p = folio_page(folio, i);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * For gigantic hugepages allocated through bootmem at
 | 
						|
		 * boot, it's safer to be consistent with the not-gigantic
 | 
						|
		 * hugepages and clear the PG_reserved bit from all tail pages
 | 
						|
		 * too.  Otherwise drivers using get_user_pages() to access tail
 | 
						|
		 * pages may get the reference counting wrong if they see
 | 
						|
		 * PG_reserved set on a tail page (despite the head page not
 | 
						|
		 * having PG_reserved set).  Enforcing this consistency between
 | 
						|
		 * head and tail pages allows drivers to optimize away a check
 | 
						|
		 * on the head page when they need know if put_page() is needed
 | 
						|
		 * after get_user_pages().
 | 
						|
		 */
 | 
						|
		if (i != 0)	/* head page cleared above */
 | 
						|
			__ClearPageReserved(p);
 | 
						|
		/*
 | 
						|
		 * Subtle and very unlikely
 | 
						|
		 *
 | 
						|
		 * Gigantic 'page allocators' such as memblock or cma will
 | 
						|
		 * return a set of pages with each page ref counted.  We need
 | 
						|
		 * to turn this set of pages into a compound page with tail
 | 
						|
		 * page ref counts set to zero.  Code such as speculative page
 | 
						|
		 * cache adding could take a ref on a 'to be' tail page.
 | 
						|
		 * We need to respect any increased ref count, and only set
 | 
						|
		 * the ref count to zero if count is currently 1.  If count
 | 
						|
		 * is not 1, we return an error.  An error return indicates
 | 
						|
		 * the set of pages can not be converted to a gigantic page.
 | 
						|
		 * The caller who allocated the pages should then discard the
 | 
						|
		 * pages using the appropriate free interface.
 | 
						|
		 *
 | 
						|
		 * In the case of demote, the ref count will be zero.
 | 
						|
		 */
 | 
						|
		if (!demote) {
 | 
						|
			if (!page_ref_freeze(p, 1)) {
 | 
						|
				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
 | 
						|
				goto out_error;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			VM_BUG_ON_PAGE(page_count(p), p);
 | 
						|
		}
 | 
						|
		if (i != 0)
 | 
						|
			set_compound_head(p, &folio->page);
 | 
						|
	}
 | 
						|
	atomic_set(&folio->_entire_mapcount, -1);
 | 
						|
	atomic_set(&folio->_nr_pages_mapped, 0);
 | 
						|
	atomic_set(&folio->_pincount, 0);
 | 
						|
	return true;
 | 
						|
 | 
						|
out_error:
 | 
						|
	/* undo page modifications made above */
 | 
						|
	for (j = 0; j < i; j++) {
 | 
						|
		p = folio_page(folio, j);
 | 
						|
		if (j != 0)
 | 
						|
			clear_compound_head(p);
 | 
						|
		set_page_refcounted(p);
 | 
						|
	}
 | 
						|
	/* need to clear PG_reserved on remaining tail pages  */
 | 
						|
	for (; j < nr_pages; j++) {
 | 
						|
		p = folio_page(folio, j);
 | 
						|
		__ClearPageReserved(p);
 | 
						|
	}
 | 
						|
	folio_set_order(folio, 0);
 | 
						|
	__folio_clear_head(folio);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool prep_compound_gigantic_folio(struct folio *folio,
 | 
						|
							unsigned int order)
 | 
						|
{
 | 
						|
	return __prep_compound_gigantic_folio(folio, order, false);
 | 
						|
}
 | 
						|
 | 
						|
static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
 | 
						|
							unsigned int order)
 | 
						|
{
 | 
						|
	return __prep_compound_gigantic_folio(folio, order, true);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 | 
						|
 * transparent huge pages.  See the PageTransHuge() documentation for more
 | 
						|
 * details.
 | 
						|
 */
 | 
						|
int PageHuge(struct page *page)
 | 
						|
{
 | 
						|
	struct folio *folio;
 | 
						|
 | 
						|
	if (!PageCompound(page))
 | 
						|
		return 0;
 | 
						|
	folio = page_folio(page);
 | 
						|
	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(PageHuge);
 | 
						|
 | 
						|
/**
 | 
						|
 * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
 | 
						|
 * @folio: The folio to test.
 | 
						|
 *
 | 
						|
 * Context: Any context.  Caller should have a reference on the folio to
 | 
						|
 * prevent it from being turned into a tail page.
 | 
						|
 * Return: True for hugetlbfs folios, false for anon folios or folios
 | 
						|
 * belonging to other filesystems.
 | 
						|
 */
 | 
						|
bool folio_test_hugetlb(struct folio *folio)
 | 
						|
{
 | 
						|
	if (!folio_test_large(folio))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(folio_test_hugetlb);
 | 
						|
 | 
						|
/*
 | 
						|
 * Find and lock address space (mapping) in write mode.
 | 
						|
 *
 | 
						|
 * Upon entry, the page is locked which means that page_mapping() is
 | 
						|
 * stable.  Due to locking order, we can only trylock_write.  If we can
 | 
						|
 * not get the lock, simply return NULL to caller.
 | 
						|
 */
 | 
						|
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
 | 
						|
{
 | 
						|
	struct address_space *mapping = page_mapping(hpage);
 | 
						|
 | 
						|
	if (!mapping)
 | 
						|
		return mapping;
 | 
						|
 | 
						|
	if (i_mmap_trylock_write(mapping))
 | 
						|
		return mapping;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
pgoff_t hugetlb_basepage_index(struct page *page)
 | 
						|
{
 | 
						|
	struct page *page_head = compound_head(page);
 | 
						|
	pgoff_t index = page_index(page_head);
 | 
						|
	unsigned long compound_idx;
 | 
						|
 | 
						|
	if (compound_order(page_head) > MAX_ORDER)
 | 
						|
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
 | 
						|
	else
 | 
						|
		compound_idx = page - page_head;
 | 
						|
 | 
						|
	return (index << compound_order(page_head)) + compound_idx;
 | 
						|
}
 | 
						|
 | 
						|
static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
 | 
						|
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
 | 
						|
		nodemask_t *node_alloc_noretry)
 | 
						|
{
 | 
						|
	int order = huge_page_order(h);
 | 
						|
	struct page *page;
 | 
						|
	bool alloc_try_hard = true;
 | 
						|
	bool retry = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * By default we always try hard to allocate the page with
 | 
						|
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
 | 
						|
	 * a loop (to adjust global huge page counts) and previous allocation
 | 
						|
	 * failed, do not continue to try hard on the same node.  Use the
 | 
						|
	 * node_alloc_noretry bitmap to manage this state information.
 | 
						|
	 */
 | 
						|
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
 | 
						|
		alloc_try_hard = false;
 | 
						|
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
 | 
						|
	if (alloc_try_hard)
 | 
						|
		gfp_mask |= __GFP_RETRY_MAYFAIL;
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		nid = numa_mem_id();
 | 
						|
retry:
 | 
						|
	page = __alloc_pages(gfp_mask, order, nid, nmask);
 | 
						|
 | 
						|
	/* Freeze head page */
 | 
						|
	if (page && !page_ref_freeze(page, 1)) {
 | 
						|
		__free_pages(page, order);
 | 
						|
		if (retry) {	/* retry once */
 | 
						|
			retry = false;
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
		/* WOW!  twice in a row. */
 | 
						|
		pr_warn("HugeTLB head page unexpected inflated ref count\n");
 | 
						|
		page = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
 | 
						|
	 * indicates an overall state change.  Clear bit so that we resume
 | 
						|
	 * normal 'try hard' allocations.
 | 
						|
	 */
 | 
						|
	if (node_alloc_noretry && page && !alloc_try_hard)
 | 
						|
		node_clear(nid, *node_alloc_noretry);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we tried hard to get a page but failed, set bit so that
 | 
						|
	 * subsequent attempts will not try as hard until there is an
 | 
						|
	 * overall state change.
 | 
						|
	 */
 | 
						|
	if (node_alloc_noretry && !page && alloc_try_hard)
 | 
						|
		node_set(nid, *node_alloc_noretry);
 | 
						|
 | 
						|
	if (!page) {
 | 
						|
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	__count_vm_event(HTLB_BUDDY_PGALLOC);
 | 
						|
	return page_folio(page);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 | 
						|
 * should use this function to get new hugetlb pages
 | 
						|
 *
 | 
						|
 * Note that returned page is 'frozen':  ref count of head page and all tail
 | 
						|
 * pages is zero.
 | 
						|
 */
 | 
						|
static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
 | 
						|
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
 | 
						|
		nodemask_t *node_alloc_noretry)
 | 
						|
{
 | 
						|
	struct folio *folio;
 | 
						|
	bool retry = false;
 | 
						|
 | 
						|
retry:
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
 | 
						|
	else
 | 
						|
		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
 | 
						|
				nid, nmask, node_alloc_noretry);
 | 
						|
	if (!folio)
 | 
						|
		return NULL;
 | 
						|
	if (hstate_is_gigantic(h)) {
 | 
						|
		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
 | 
						|
			/*
 | 
						|
			 * Rare failure to convert pages to compound page.
 | 
						|
			 * Free pages and try again - ONCE!
 | 
						|
			 */
 | 
						|
			free_gigantic_folio(folio, huge_page_order(h));
 | 
						|
			if (!retry) {
 | 
						|
				retry = true;
 | 
						|
				goto retry;
 | 
						|
			}
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
 | 
						|
 | 
						|
	return folio;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 | 
						|
 * manner.
 | 
						|
 */
 | 
						|
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
 | 
						|
				nodemask_t *node_alloc_noretry)
 | 
						|
{
 | 
						|
	struct folio *folio;
 | 
						|
	int nr_nodes, node;
 | 
						|
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
 | 
						|
 | 
						|
	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 | 
						|
		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
 | 
						|
					nodes_allowed, node_alloc_noretry);
 | 
						|
		if (folio) {
 | 
						|
			free_huge_page(&folio->page); /* free it into the hugepage allocator */
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove huge page from pool from next node to free.  Attempt to keep
 | 
						|
 * persistent huge pages more or less balanced over allowed nodes.
 | 
						|
 * This routine only 'removes' the hugetlb page.  The caller must make
 | 
						|
 * an additional call to free the page to low level allocators.
 | 
						|
 * Called with hugetlb_lock locked.
 | 
						|
 */
 | 
						|
static struct page *remove_pool_huge_page(struct hstate *h,
 | 
						|
						nodemask_t *nodes_allowed,
 | 
						|
						 bool acct_surplus)
 | 
						|
{
 | 
						|
	int nr_nodes, node;
 | 
						|
	struct page *page = NULL;
 | 
						|
	struct folio *folio;
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 | 
						|
		/*
 | 
						|
		 * If we're returning unused surplus pages, only examine
 | 
						|
		 * nodes with surplus pages.
 | 
						|
		 */
 | 
						|
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
 | 
						|
		    !list_empty(&h->hugepage_freelists[node])) {
 | 
						|
			page = list_entry(h->hugepage_freelists[node].next,
 | 
						|
					  struct page, lru);
 | 
						|
			folio = page_folio(page);
 | 
						|
			remove_hugetlb_folio(h, folio, acct_surplus);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dissolve a given free hugepage into free buddy pages. This function does
 | 
						|
 * nothing for in-use hugepages and non-hugepages.
 | 
						|
 * This function returns values like below:
 | 
						|
 *
 | 
						|
 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
 | 
						|
 *           when the system is under memory pressure and the feature of
 | 
						|
 *           freeing unused vmemmap pages associated with each hugetlb page
 | 
						|
 *           is enabled.
 | 
						|
 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
 | 
						|
 *           (allocated or reserved.)
 | 
						|
 *       0:  successfully dissolved free hugepages or the page is not a
 | 
						|
 *           hugepage (considered as already dissolved)
 | 
						|
 */
 | 
						|
int dissolve_free_huge_page(struct page *page)
 | 
						|
{
 | 
						|
	int rc = -EBUSY;
 | 
						|
	struct folio *folio = page_folio(page);
 | 
						|
 | 
						|
retry:
 | 
						|
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
 | 
						|
	if (!folio_test_hugetlb(folio))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	if (!folio_test_hugetlb(folio)) {
 | 
						|
		rc = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!folio_ref_count(folio)) {
 | 
						|
		struct hstate *h = folio_hstate(folio);
 | 
						|
		if (!available_huge_pages(h))
 | 
						|
			goto out;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We should make sure that the page is already on the free list
 | 
						|
		 * when it is dissolved.
 | 
						|
		 */
 | 
						|
		if (unlikely(!folio_test_hugetlb_freed(folio))) {
 | 
						|
			spin_unlock_irq(&hugetlb_lock);
 | 
						|
			cond_resched();
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Theoretically, we should return -EBUSY when we
 | 
						|
			 * encounter this race. In fact, we have a chance
 | 
						|
			 * to successfully dissolve the page if we do a
 | 
						|
			 * retry. Because the race window is quite small.
 | 
						|
			 * If we seize this opportunity, it is an optimization
 | 
						|
			 * for increasing the success rate of dissolving page.
 | 
						|
			 */
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
 | 
						|
		remove_hugetlb_folio(h, folio, false);
 | 
						|
		h->max_huge_pages--;
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
 | 
						|
		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
 | 
						|
		 * free the page if it can not allocate required vmemmap.  We
 | 
						|
		 * need to adjust max_huge_pages if the page is not freed.
 | 
						|
		 * Attempt to allocate vmemmmap here so that we can take
 | 
						|
		 * appropriate action on failure.
 | 
						|
		 */
 | 
						|
		rc = hugetlb_vmemmap_restore(h, &folio->page);
 | 
						|
		if (!rc) {
 | 
						|
			update_and_free_hugetlb_folio(h, folio, false);
 | 
						|
		} else {
 | 
						|
			spin_lock_irq(&hugetlb_lock);
 | 
						|
			add_hugetlb_folio(h, folio, false);
 | 
						|
			h->max_huge_pages++;
 | 
						|
			spin_unlock_irq(&hugetlb_lock);
 | 
						|
		}
 | 
						|
 | 
						|
		return rc;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 | 
						|
 * make specified memory blocks removable from the system.
 | 
						|
 * Note that this will dissolve a free gigantic hugepage completely, if any
 | 
						|
 * part of it lies within the given range.
 | 
						|
 * Also note that if dissolve_free_huge_page() returns with an error, all
 | 
						|
 * free hugepages that were dissolved before that error are lost.
 | 
						|
 */
 | 
						|
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
 | 
						|
{
 | 
						|
	unsigned long pfn;
 | 
						|
	struct page *page;
 | 
						|
	int rc = 0;
 | 
						|
	unsigned int order;
 | 
						|
	struct hstate *h;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return rc;
 | 
						|
 | 
						|
	order = huge_page_order(&default_hstate);
 | 
						|
	for_each_hstate(h)
 | 
						|
		order = min(order, huge_page_order(h));
 | 
						|
 | 
						|
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
 | 
						|
		page = pfn_to_page(pfn);
 | 
						|
		rc = dissolve_free_huge_page(page);
 | 
						|
		if (rc)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocates a fresh surplus page from the page allocator.
 | 
						|
 */
 | 
						|
static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
 | 
						|
				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
 | 
						|
{
 | 
						|
	struct folio *folio = NULL;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
 | 
						|
		goto out_unlock;
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
 | 
						|
	if (!folio)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	/*
 | 
						|
	 * We could have raced with the pool size change.
 | 
						|
	 * Double check that and simply deallocate the new page
 | 
						|
	 * if we would end up overcommiting the surpluses. Abuse
 | 
						|
	 * temporary page to workaround the nasty free_huge_page
 | 
						|
	 * codeflow
 | 
						|
	 */
 | 
						|
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
 | 
						|
		folio_set_hugetlb_temporary(folio);
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
		free_huge_page(&folio->page);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	h->surplus_huge_pages++;
 | 
						|
	h->surplus_huge_pages_node[folio_nid(folio)]++;
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	return folio;
 | 
						|
}
 | 
						|
 | 
						|
static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
 | 
						|
				     int nid, nodemask_t *nmask)
 | 
						|
{
 | 
						|
	struct folio *folio;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
 | 
						|
	if (!folio)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* fresh huge pages are frozen */
 | 
						|
	folio_ref_unfreeze(folio, 1);
 | 
						|
	/*
 | 
						|
	 * We do not account these pages as surplus because they are only
 | 
						|
	 * temporary and will be released properly on the last reference
 | 
						|
	 */
 | 
						|
	folio_set_hugetlb_temporary(folio);
 | 
						|
 | 
						|
	return folio;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 | 
						|
 */
 | 
						|
static
 | 
						|
struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
 | 
						|
		struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	struct folio *folio = NULL;
 | 
						|
	struct mempolicy *mpol;
 | 
						|
	gfp_t gfp_mask = htlb_alloc_mask(h);
 | 
						|
	int nid;
 | 
						|
	nodemask_t *nodemask;
 | 
						|
 | 
						|
	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
 | 
						|
	if (mpol_is_preferred_many(mpol)) {
 | 
						|
		gfp_t gfp = gfp_mask | __GFP_NOWARN;
 | 
						|
 | 
						|
		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
 | 
						|
		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
 | 
						|
 | 
						|
		/* Fallback to all nodes if page==NULL */
 | 
						|
		nodemask = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!folio)
 | 
						|
		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
 | 
						|
	mpol_cond_put(mpol);
 | 
						|
	return folio;
 | 
						|
}
 | 
						|
 | 
						|
/* folio migration callback function */
 | 
						|
struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
 | 
						|
		nodemask_t *nmask, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	if (available_huge_pages(h)) {
 | 
						|
		struct folio *folio;
 | 
						|
 | 
						|
		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
 | 
						|
						preferred_nid, nmask);
 | 
						|
		if (folio) {
 | 
						|
			spin_unlock_irq(&hugetlb_lock);
 | 
						|
			return folio;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
 | 
						|
}
 | 
						|
 | 
						|
/* mempolicy aware migration callback */
 | 
						|
struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
 | 
						|
		unsigned long address)
 | 
						|
{
 | 
						|
	struct mempolicy *mpol;
 | 
						|
	nodemask_t *nodemask;
 | 
						|
	struct folio *folio;
 | 
						|
	gfp_t gfp_mask;
 | 
						|
	int node;
 | 
						|
 | 
						|
	gfp_mask = htlb_alloc_mask(h);
 | 
						|
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 | 
						|
	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
 | 
						|
	mpol_cond_put(mpol);
 | 
						|
 | 
						|
	return folio;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Increase the hugetlb pool such that it can accommodate a reservation
 | 
						|
 * of size 'delta'.
 | 
						|
 */
 | 
						|
static int gather_surplus_pages(struct hstate *h, long delta)
 | 
						|
	__must_hold(&hugetlb_lock)
 | 
						|
{
 | 
						|
	LIST_HEAD(surplus_list);
 | 
						|
	struct folio *folio;
 | 
						|
	struct page *page, *tmp;
 | 
						|
	int ret;
 | 
						|
	long i;
 | 
						|
	long needed, allocated;
 | 
						|
	bool alloc_ok = true;
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
 | 
						|
	if (needed <= 0) {
 | 
						|
		h->resv_huge_pages += delta;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	allocated = 0;
 | 
						|
 | 
						|
	ret = -ENOMEM;
 | 
						|
retry:
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	for (i = 0; i < needed; i++) {
 | 
						|
		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
 | 
						|
				NUMA_NO_NODE, NULL);
 | 
						|
		if (!folio) {
 | 
						|
			alloc_ok = false;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		list_add(&folio->lru, &surplus_list);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	allocated += i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
 | 
						|
	 * because either resv_huge_pages or free_huge_pages may have changed.
 | 
						|
	 */
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	needed = (h->resv_huge_pages + delta) -
 | 
						|
			(h->free_huge_pages + allocated);
 | 
						|
	if (needed > 0) {
 | 
						|
		if (alloc_ok)
 | 
						|
			goto retry;
 | 
						|
		/*
 | 
						|
		 * We were not able to allocate enough pages to
 | 
						|
		 * satisfy the entire reservation so we free what
 | 
						|
		 * we've allocated so far.
 | 
						|
		 */
 | 
						|
		goto free;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * The surplus_list now contains _at_least_ the number of extra pages
 | 
						|
	 * needed to accommodate the reservation.  Add the appropriate number
 | 
						|
	 * of pages to the hugetlb pool and free the extras back to the buddy
 | 
						|
	 * allocator.  Commit the entire reservation here to prevent another
 | 
						|
	 * process from stealing the pages as they are added to the pool but
 | 
						|
	 * before they are reserved.
 | 
						|
	 */
 | 
						|
	needed += allocated;
 | 
						|
	h->resv_huge_pages += delta;
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	/* Free the needed pages to the hugetlb pool */
 | 
						|
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 | 
						|
		if ((--needed) < 0)
 | 
						|
			break;
 | 
						|
		/* Add the page to the hugetlb allocator */
 | 
						|
		enqueue_hugetlb_folio(h, page_folio(page));
 | 
						|
	}
 | 
						|
free:
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Free unnecessary surplus pages to the buddy allocator.
 | 
						|
	 * Pages have no ref count, call free_huge_page directly.
 | 
						|
	 */
 | 
						|
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
 | 
						|
		free_huge_page(page);
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine has two main purposes:
 | 
						|
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 | 
						|
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 | 
						|
 *    to the associated reservation map.
 | 
						|
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 | 
						|
 *    the reservation.  As many as unused_resv_pages may be freed.
 | 
						|
 */
 | 
						|
static void return_unused_surplus_pages(struct hstate *h,
 | 
						|
					unsigned long unused_resv_pages)
 | 
						|
{
 | 
						|
	unsigned long nr_pages;
 | 
						|
	struct page *page;
 | 
						|
	LIST_HEAD(page_list);
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
	/* Uncommit the reservation */
 | 
						|
	h->resv_huge_pages -= unused_resv_pages;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Part (or even all) of the reservation could have been backed
 | 
						|
	 * by pre-allocated pages. Only free surplus pages.
 | 
						|
	 */
 | 
						|
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We want to release as many surplus pages as possible, spread
 | 
						|
	 * evenly across all nodes with memory. Iterate across these nodes
 | 
						|
	 * until we can no longer free unreserved surplus pages. This occurs
 | 
						|
	 * when the nodes with surplus pages have no free pages.
 | 
						|
	 * remove_pool_huge_page() will balance the freed pages across the
 | 
						|
	 * on-line nodes with memory and will handle the hstate accounting.
 | 
						|
	 */
 | 
						|
	while (nr_pages--) {
 | 
						|
		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
 | 
						|
		if (!page)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		list_add(&page->lru, &page_list);
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	update_and_free_pages_bulk(h, &page_list);
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
 | 
						|
 * are used by the huge page allocation routines to manage reservations.
 | 
						|
 *
 | 
						|
 * vma_needs_reservation is called to determine if the huge page at addr
 | 
						|
 * within the vma has an associated reservation.  If a reservation is
 | 
						|
 * needed, the value 1 is returned.  The caller is then responsible for
 | 
						|
 * managing the global reservation and subpool usage counts.  After
 | 
						|
 * the huge page has been allocated, vma_commit_reservation is called
 | 
						|
 * to add the page to the reservation map.  If the page allocation fails,
 | 
						|
 * the reservation must be ended instead of committed.  vma_end_reservation
 | 
						|
 * is called in such cases.
 | 
						|
 *
 | 
						|
 * In the normal case, vma_commit_reservation returns the same value
 | 
						|
 * as the preceding vma_needs_reservation call.  The only time this
 | 
						|
 * is not the case is if a reserve map was changed between calls.  It
 | 
						|
 * is the responsibility of the caller to notice the difference and
 | 
						|
 * take appropriate action.
 | 
						|
 *
 | 
						|
 * vma_add_reservation is used in error paths where a reservation must
 | 
						|
 * be restored when a newly allocated huge page must be freed.  It is
 | 
						|
 * to be called after calling vma_needs_reservation to determine if a
 | 
						|
 * reservation exists.
 | 
						|
 *
 | 
						|
 * vma_del_reservation is used in error paths where an entry in the reserve
 | 
						|
 * map was created during huge page allocation and must be removed.  It is to
 | 
						|
 * be called after calling vma_needs_reservation to determine if a reservation
 | 
						|
 * exists.
 | 
						|
 */
 | 
						|
enum vma_resv_mode {
 | 
						|
	VMA_NEEDS_RESV,
 | 
						|
	VMA_COMMIT_RESV,
 | 
						|
	VMA_END_RESV,
 | 
						|
	VMA_ADD_RESV,
 | 
						|
	VMA_DEL_RESV,
 | 
						|
};
 | 
						|
static long __vma_reservation_common(struct hstate *h,
 | 
						|
				struct vm_area_struct *vma, unsigned long addr,
 | 
						|
				enum vma_resv_mode mode)
 | 
						|
{
 | 
						|
	struct resv_map *resv;
 | 
						|
	pgoff_t idx;
 | 
						|
	long ret;
 | 
						|
	long dummy_out_regions_needed;
 | 
						|
 | 
						|
	resv = vma_resv_map(vma);
 | 
						|
	if (!resv)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	idx = vma_hugecache_offset(h, vma, addr);
 | 
						|
	switch (mode) {
 | 
						|
	case VMA_NEEDS_RESV:
 | 
						|
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
 | 
						|
		/* We assume that vma_reservation_* routines always operate on
 | 
						|
		 * 1 page, and that adding to resv map a 1 page entry can only
 | 
						|
		 * ever require 1 region.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON(dummy_out_regions_needed != 1);
 | 
						|
		break;
 | 
						|
	case VMA_COMMIT_RESV:
 | 
						|
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
 | 
						|
		/* region_add calls of range 1 should never fail. */
 | 
						|
		VM_BUG_ON(ret < 0);
 | 
						|
		break;
 | 
						|
	case VMA_END_RESV:
 | 
						|
		region_abort(resv, idx, idx + 1, 1);
 | 
						|
		ret = 0;
 | 
						|
		break;
 | 
						|
	case VMA_ADD_RESV:
 | 
						|
		if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
 | 
						|
			/* region_add calls of range 1 should never fail. */
 | 
						|
			VM_BUG_ON(ret < 0);
 | 
						|
		} else {
 | 
						|
			region_abort(resv, idx, idx + 1, 1);
 | 
						|
			ret = region_del(resv, idx, idx + 1);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case VMA_DEL_RESV:
 | 
						|
		if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
			region_abort(resv, idx, idx + 1, 1);
 | 
						|
			ret = region_del(resv, idx, idx + 1);
 | 
						|
		} else {
 | 
						|
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
 | 
						|
			/* region_add calls of range 1 should never fail. */
 | 
						|
			VM_BUG_ON(ret < 0);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
 | 
						|
		return ret;
 | 
						|
	/*
 | 
						|
	 * We know private mapping must have HPAGE_RESV_OWNER set.
 | 
						|
	 *
 | 
						|
	 * In most cases, reserves always exist for private mappings.
 | 
						|
	 * However, a file associated with mapping could have been
 | 
						|
	 * hole punched or truncated after reserves were consumed.
 | 
						|
	 * As subsequent fault on such a range will not use reserves.
 | 
						|
	 * Subtle - The reserve map for private mappings has the
 | 
						|
	 * opposite meaning than that of shared mappings.  If NO
 | 
						|
	 * entry is in the reserve map, it means a reservation exists.
 | 
						|
	 * If an entry exists in the reserve map, it means the
 | 
						|
	 * reservation has already been consumed.  As a result, the
 | 
						|
	 * return value of this routine is the opposite of the
 | 
						|
	 * value returned from reserve map manipulation routines above.
 | 
						|
	 */
 | 
						|
	if (ret > 0)
 | 
						|
		return 0;
 | 
						|
	if (ret == 0)
 | 
						|
		return 1;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static long vma_needs_reservation(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
 | 
						|
}
 | 
						|
 | 
						|
static long vma_commit_reservation(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
 | 
						|
}
 | 
						|
 | 
						|
static void vma_end_reservation(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
 | 
						|
}
 | 
						|
 | 
						|
static long vma_add_reservation(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
 | 
						|
}
 | 
						|
 | 
						|
static long vma_del_reservation(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine is called to restore reservation information on error paths.
 | 
						|
 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
 | 
						|
 * and the hugetlb mutex should remain held when calling this routine.
 | 
						|
 *
 | 
						|
 * It handles two specific cases:
 | 
						|
 * 1) A reservation was in place and the folio consumed the reservation.
 | 
						|
 *    hugetlb_restore_reserve is set in the folio.
 | 
						|
 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
 | 
						|
 *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
 | 
						|
 *
 | 
						|
 * In case 1, free_huge_page later in the error path will increment the
 | 
						|
 * global reserve count.  But, free_huge_page does not have enough context
 | 
						|
 * to adjust the reservation map.  This case deals primarily with private
 | 
						|
 * mappings.  Adjust the reserve map here to be consistent with global
 | 
						|
 * reserve count adjustments to be made by free_huge_page.  Make sure the
 | 
						|
 * reserve map indicates there is a reservation present.
 | 
						|
 *
 | 
						|
 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
 | 
						|
 */
 | 
						|
void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
 | 
						|
			unsigned long address, struct folio *folio)
 | 
						|
{
 | 
						|
	long rc = vma_needs_reservation(h, vma, address);
 | 
						|
 | 
						|
	if (folio_test_hugetlb_restore_reserve(folio)) {
 | 
						|
		if (unlikely(rc < 0))
 | 
						|
			/*
 | 
						|
			 * Rare out of memory condition in reserve map
 | 
						|
			 * manipulation.  Clear hugetlb_restore_reserve so
 | 
						|
			 * that global reserve count will not be incremented
 | 
						|
			 * by free_huge_page.  This will make it appear
 | 
						|
			 * as though the reservation for this folio was
 | 
						|
			 * consumed.  This may prevent the task from
 | 
						|
			 * faulting in the folio at a later time.  This
 | 
						|
			 * is better than inconsistent global huge page
 | 
						|
			 * accounting of reserve counts.
 | 
						|
			 */
 | 
						|
			folio_clear_hugetlb_restore_reserve(folio);
 | 
						|
		else if (rc)
 | 
						|
			(void)vma_add_reservation(h, vma, address);
 | 
						|
		else
 | 
						|
			vma_end_reservation(h, vma, address);
 | 
						|
	} else {
 | 
						|
		if (!rc) {
 | 
						|
			/*
 | 
						|
			 * This indicates there is an entry in the reserve map
 | 
						|
			 * not added by alloc_hugetlb_folio.  We know it was added
 | 
						|
			 * before the alloc_hugetlb_folio call, otherwise
 | 
						|
			 * hugetlb_restore_reserve would be set on the folio.
 | 
						|
			 * Remove the entry so that a subsequent allocation
 | 
						|
			 * does not consume a reservation.
 | 
						|
			 */
 | 
						|
			rc = vma_del_reservation(h, vma, address);
 | 
						|
			if (rc < 0)
 | 
						|
				/*
 | 
						|
				 * VERY rare out of memory condition.  Since
 | 
						|
				 * we can not delete the entry, set
 | 
						|
				 * hugetlb_restore_reserve so that the reserve
 | 
						|
				 * count will be incremented when the folio
 | 
						|
				 * is freed.  This reserve will be consumed
 | 
						|
				 * on a subsequent allocation.
 | 
						|
				 */
 | 
						|
				folio_set_hugetlb_restore_reserve(folio);
 | 
						|
		} else if (rc < 0) {
 | 
						|
			/*
 | 
						|
			 * Rare out of memory condition from
 | 
						|
			 * vma_needs_reservation call.  Memory allocation is
 | 
						|
			 * only attempted if a new entry is needed.  Therefore,
 | 
						|
			 * this implies there is not an entry in the
 | 
						|
			 * reserve map.
 | 
						|
			 *
 | 
						|
			 * For shared mappings, no entry in the map indicates
 | 
						|
			 * no reservation.  We are done.
 | 
						|
			 */
 | 
						|
			if (!(vma->vm_flags & VM_MAYSHARE))
 | 
						|
				/*
 | 
						|
				 * For private mappings, no entry indicates
 | 
						|
				 * a reservation is present.  Since we can
 | 
						|
				 * not add an entry, set hugetlb_restore_reserve
 | 
						|
				 * on the folio so reserve count will be
 | 
						|
				 * incremented when freed.  This reserve will
 | 
						|
				 * be consumed on a subsequent allocation.
 | 
						|
				 */
 | 
						|
				folio_set_hugetlb_restore_reserve(folio);
 | 
						|
		} else
 | 
						|
			/*
 | 
						|
			 * No reservation present, do nothing
 | 
						|
			 */
 | 
						|
			 vma_end_reservation(h, vma, address);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
 | 
						|
 * the old one
 | 
						|
 * @h: struct hstate old page belongs to
 | 
						|
 * @old_folio: Old folio to dissolve
 | 
						|
 * @list: List to isolate the page in case we need to
 | 
						|
 * Returns 0 on success, otherwise negated error.
 | 
						|
 */
 | 
						|
static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
 | 
						|
			struct folio *old_folio, struct list_head *list)
 | 
						|
{
 | 
						|
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
 | 
						|
	int nid = folio_nid(old_folio);
 | 
						|
	struct folio *new_folio;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Before dissolving the folio, we need to allocate a new one for the
 | 
						|
	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
 | 
						|
	 * by doing everything but actually updating counters and adding to
 | 
						|
	 * the pool.  This simplifies and let us do most of the processing
 | 
						|
	 * under the lock.
 | 
						|
	 */
 | 
						|
	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
 | 
						|
	if (!new_folio)
 | 
						|
		return -ENOMEM;
 | 
						|
	__prep_new_hugetlb_folio(h, new_folio);
 | 
						|
 | 
						|
retry:
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	if (!folio_test_hugetlb(old_folio)) {
 | 
						|
		/*
 | 
						|
		 * Freed from under us. Drop new_folio too.
 | 
						|
		 */
 | 
						|
		goto free_new;
 | 
						|
	} else if (folio_ref_count(old_folio)) {
 | 
						|
		bool isolated;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Someone has grabbed the folio, try to isolate it here.
 | 
						|
		 * Fail with -EBUSY if not possible.
 | 
						|
		 */
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
		isolated = isolate_hugetlb(old_folio, list);
 | 
						|
		ret = isolated ? 0 : -EBUSY;
 | 
						|
		spin_lock_irq(&hugetlb_lock);
 | 
						|
		goto free_new;
 | 
						|
	} else if (!folio_test_hugetlb_freed(old_folio)) {
 | 
						|
		/*
 | 
						|
		 * Folio's refcount is 0 but it has not been enqueued in the
 | 
						|
		 * freelist yet. Race window is small, so we can succeed here if
 | 
						|
		 * we retry.
 | 
						|
		 */
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
		cond_resched();
 | 
						|
		goto retry;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Ok, old_folio is still a genuine free hugepage. Remove it from
 | 
						|
		 * the freelist and decrease the counters. These will be
 | 
						|
		 * incremented again when calling __prep_account_new_huge_page()
 | 
						|
		 * and enqueue_hugetlb_folio() for new_folio. The counters will
 | 
						|
		 * remain stable since this happens under the lock.
 | 
						|
		 */
 | 
						|
		remove_hugetlb_folio(h, old_folio, false);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Ref count on new_folio is already zero as it was dropped
 | 
						|
		 * earlier.  It can be directly added to the pool free list.
 | 
						|
		 */
 | 
						|
		__prep_account_new_huge_page(h, nid);
 | 
						|
		enqueue_hugetlb_folio(h, new_folio);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Folio has been replaced, we can safely free the old one.
 | 
						|
		 */
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
		update_and_free_hugetlb_folio(h, old_folio, false);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
 | 
						|
free_new:
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	/* Folio has a zero ref count, but needs a ref to be freed */
 | 
						|
	folio_ref_unfreeze(new_folio, 1);
 | 
						|
	update_and_free_hugetlb_folio(h, new_folio, false);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	struct folio *folio = page_folio(page);
 | 
						|
	int ret = -EBUSY;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The page might have been dissolved from under our feet, so make sure
 | 
						|
	 * to carefully check the state under the lock.
 | 
						|
	 * Return success when racing as if we dissolved the page ourselves.
 | 
						|
	 */
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	if (folio_test_hugetlb(folio)) {
 | 
						|
		h = folio_hstate(folio);
 | 
						|
	} else {
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Fence off gigantic pages as there is a cyclic dependency between
 | 
						|
	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
 | 
						|
	 * of bailing out right away without further retrying.
 | 
						|
	 */
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
 | 
						|
		ret = 0;
 | 
						|
	else if (!folio_ref_count(folio))
 | 
						|
		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
 | 
						|
				    unsigned long addr, int avoid_reserve)
 | 
						|
{
 | 
						|
	struct hugepage_subpool *spool = subpool_vma(vma);
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct folio *folio;
 | 
						|
	long map_chg, map_commit;
 | 
						|
	long gbl_chg;
 | 
						|
	int ret, idx;
 | 
						|
	struct hugetlb_cgroup *h_cg = NULL;
 | 
						|
	bool deferred_reserve;
 | 
						|
 | 
						|
	idx = hstate_index(h);
 | 
						|
	/*
 | 
						|
	 * Examine the region/reserve map to determine if the process
 | 
						|
	 * has a reservation for the page to be allocated.  A return
 | 
						|
	 * code of zero indicates a reservation exists (no change).
 | 
						|
	 */
 | 
						|
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
 | 
						|
	if (map_chg < 0)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Processes that did not create the mapping will have no
 | 
						|
	 * reserves as indicated by the region/reserve map. Check
 | 
						|
	 * that the allocation will not exceed the subpool limit.
 | 
						|
	 * Allocations for MAP_NORESERVE mappings also need to be
 | 
						|
	 * checked against any subpool limit.
 | 
						|
	 */
 | 
						|
	if (map_chg || avoid_reserve) {
 | 
						|
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
 | 
						|
		if (gbl_chg < 0) {
 | 
						|
			vma_end_reservation(h, vma, addr);
 | 
						|
			return ERR_PTR(-ENOSPC);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Even though there was no reservation in the region/reserve
 | 
						|
		 * map, there could be reservations associated with the
 | 
						|
		 * subpool that can be used.  This would be indicated if the
 | 
						|
		 * return value of hugepage_subpool_get_pages() is zero.
 | 
						|
		 * However, if avoid_reserve is specified we still avoid even
 | 
						|
		 * the subpool reservations.
 | 
						|
		 */
 | 
						|
		if (avoid_reserve)
 | 
						|
			gbl_chg = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If this allocation is not consuming a reservation, charge it now.
 | 
						|
	 */
 | 
						|
	deferred_reserve = map_chg || avoid_reserve;
 | 
						|
	if (deferred_reserve) {
 | 
						|
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
 | 
						|
			idx, pages_per_huge_page(h), &h_cg);
 | 
						|
		if (ret)
 | 
						|
			goto out_subpool_put;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
 | 
						|
	if (ret)
 | 
						|
		goto out_uncharge_cgroup_reservation;
 | 
						|
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	/*
 | 
						|
	 * glb_chg is passed to indicate whether or not a page must be taken
 | 
						|
	 * from the global free pool (global change).  gbl_chg == 0 indicates
 | 
						|
	 * a reservation exists for the allocation.
 | 
						|
	 */
 | 
						|
	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
 | 
						|
	if (!folio) {
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
 | 
						|
		if (!folio)
 | 
						|
			goto out_uncharge_cgroup;
 | 
						|
		spin_lock_irq(&hugetlb_lock);
 | 
						|
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
 | 
						|
			folio_set_hugetlb_restore_reserve(folio);
 | 
						|
			h->resv_huge_pages--;
 | 
						|
		}
 | 
						|
		list_add(&folio->lru, &h->hugepage_activelist);
 | 
						|
		folio_ref_unfreeze(folio, 1);
 | 
						|
		/* Fall through */
 | 
						|
	}
 | 
						|
 | 
						|
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
 | 
						|
	/* If allocation is not consuming a reservation, also store the
 | 
						|
	 * hugetlb_cgroup pointer on the page.
 | 
						|
	 */
 | 
						|
	if (deferred_reserve) {
 | 
						|
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
 | 
						|
						  h_cg, folio);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	hugetlb_set_folio_subpool(folio, spool);
 | 
						|
 | 
						|
	map_commit = vma_commit_reservation(h, vma, addr);
 | 
						|
	if (unlikely(map_chg > map_commit)) {
 | 
						|
		/*
 | 
						|
		 * The page was added to the reservation map between
 | 
						|
		 * vma_needs_reservation and vma_commit_reservation.
 | 
						|
		 * This indicates a race with hugetlb_reserve_pages.
 | 
						|
		 * Adjust for the subpool count incremented above AND
 | 
						|
		 * in hugetlb_reserve_pages for the same page.  Also,
 | 
						|
		 * the reservation count added in hugetlb_reserve_pages
 | 
						|
		 * no longer applies.
 | 
						|
		 */
 | 
						|
		long rsv_adjust;
 | 
						|
 | 
						|
		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
 | 
						|
		hugetlb_acct_memory(h, -rsv_adjust);
 | 
						|
		if (deferred_reserve)
 | 
						|
			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
 | 
						|
					pages_per_huge_page(h), folio);
 | 
						|
	}
 | 
						|
	return folio;
 | 
						|
 | 
						|
out_uncharge_cgroup:
 | 
						|
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
 | 
						|
out_uncharge_cgroup_reservation:
 | 
						|
	if (deferred_reserve)
 | 
						|
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
 | 
						|
						    h_cg);
 | 
						|
out_subpool_put:
 | 
						|
	if (map_chg || avoid_reserve)
 | 
						|
		hugepage_subpool_put_pages(spool, 1);
 | 
						|
	vma_end_reservation(h, vma, addr);
 | 
						|
	return ERR_PTR(-ENOSPC);
 | 
						|
}
 | 
						|
 | 
						|
int alloc_bootmem_huge_page(struct hstate *h, int nid)
 | 
						|
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
 | 
						|
int __alloc_bootmem_huge_page(struct hstate *h, int nid)
 | 
						|
{
 | 
						|
	struct huge_bootmem_page *m = NULL; /* initialize for clang */
 | 
						|
	int nr_nodes, node;
 | 
						|
 | 
						|
	/* do node specific alloc */
 | 
						|
	if (nid != NUMA_NO_NODE) {
 | 
						|
		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
 | 
						|
				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 | 
						|
		if (!m)
 | 
						|
			return 0;
 | 
						|
		goto found;
 | 
						|
	}
 | 
						|
	/* allocate from next node when distributing huge pages */
 | 
						|
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
 | 
						|
		m = memblock_alloc_try_nid_raw(
 | 
						|
				huge_page_size(h), huge_page_size(h),
 | 
						|
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
 | 
						|
		/*
 | 
						|
		 * Use the beginning of the huge page to store the
 | 
						|
		 * huge_bootmem_page struct (until gather_bootmem
 | 
						|
		 * puts them into the mem_map).
 | 
						|
		 */
 | 
						|
		if (!m)
 | 
						|
			return 0;
 | 
						|
		goto found;
 | 
						|
	}
 | 
						|
 | 
						|
found:
 | 
						|
	/* Put them into a private list first because mem_map is not up yet */
 | 
						|
	INIT_LIST_HEAD(&m->list);
 | 
						|
	list_add(&m->list, &huge_boot_pages);
 | 
						|
	m->hstate = h;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Put bootmem huge pages into the standard lists after mem_map is up.
 | 
						|
 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
 | 
						|
 */
 | 
						|
static void __init gather_bootmem_prealloc(void)
 | 
						|
{
 | 
						|
	struct huge_bootmem_page *m;
 | 
						|
 | 
						|
	list_for_each_entry(m, &huge_boot_pages, list) {
 | 
						|
		struct page *page = virt_to_page(m);
 | 
						|
		struct folio *folio = page_folio(page);
 | 
						|
		struct hstate *h = m->hstate;
 | 
						|
 | 
						|
		VM_BUG_ON(!hstate_is_gigantic(h));
 | 
						|
		WARN_ON(folio_ref_count(folio) != 1);
 | 
						|
		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
 | 
						|
			WARN_ON(folio_test_reserved(folio));
 | 
						|
			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
 | 
						|
			free_huge_page(page); /* add to the hugepage allocator */
 | 
						|
		} else {
 | 
						|
			/* VERY unlikely inflated ref count on a tail page */
 | 
						|
			free_gigantic_folio(folio, huge_page_order(h));
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We need to restore the 'stolen' pages to totalram_pages
 | 
						|
		 * in order to fix confusing memory reports from free(1) and
 | 
						|
		 * other side-effects, like CommitLimit going negative.
 | 
						|
		 */
 | 
						|
		adjust_managed_page_count(page, pages_per_huge_page(h));
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
}
 | 
						|
static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	char buf[32];
 | 
						|
 | 
						|
	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
 | 
						|
		if (hstate_is_gigantic(h)) {
 | 
						|
			if (!alloc_bootmem_huge_page(h, nid))
 | 
						|
				break;
 | 
						|
		} else {
 | 
						|
			struct folio *folio;
 | 
						|
			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
 | 
						|
 | 
						|
			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
 | 
						|
					&node_states[N_MEMORY], NULL);
 | 
						|
			if (!folio)
 | 
						|
				break;
 | 
						|
			free_huge_page(&folio->page); /* free it into the hugepage allocator */
 | 
						|
		}
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	if (i == h->max_huge_pages_node[nid])
 | 
						|
		return;
 | 
						|
 | 
						|
	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
 | 
						|
	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
 | 
						|
		h->max_huge_pages_node[nid], buf, nid, i);
 | 
						|
	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
 | 
						|
	h->max_huge_pages_node[nid] = i;
 | 
						|
}
 | 
						|
 | 
						|
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	nodemask_t *node_alloc_noretry;
 | 
						|
	bool node_specific_alloc = false;
 | 
						|
 | 
						|
	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
 | 
						|
	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
 | 
						|
		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* do node specific alloc */
 | 
						|
	for_each_online_node(i) {
 | 
						|
		if (h->max_huge_pages_node[i] > 0) {
 | 
						|
			hugetlb_hstate_alloc_pages_onenode(h, i);
 | 
						|
			node_specific_alloc = true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (node_specific_alloc)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* below will do all node balanced alloc */
 | 
						|
	if (!hstate_is_gigantic(h)) {
 | 
						|
		/*
 | 
						|
		 * Bit mask controlling how hard we retry per-node allocations.
 | 
						|
		 * Ignore errors as lower level routines can deal with
 | 
						|
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
 | 
						|
		 * time, we are likely in bigger trouble.
 | 
						|
		 */
 | 
						|
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
 | 
						|
						GFP_KERNEL);
 | 
						|
	} else {
 | 
						|
		/* allocations done at boot time */
 | 
						|
		node_alloc_noretry = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* bit mask controlling how hard we retry per-node allocations */
 | 
						|
	if (node_alloc_noretry)
 | 
						|
		nodes_clear(*node_alloc_noretry);
 | 
						|
 | 
						|
	for (i = 0; i < h->max_huge_pages; ++i) {
 | 
						|
		if (hstate_is_gigantic(h)) {
 | 
						|
			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
 | 
						|
				break;
 | 
						|
		} else if (!alloc_pool_huge_page(h,
 | 
						|
					 &node_states[N_MEMORY],
 | 
						|
					 node_alloc_noretry))
 | 
						|
			break;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	if (i < h->max_huge_pages) {
 | 
						|
		char buf[32];
 | 
						|
 | 
						|
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
 | 
						|
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
 | 
						|
			h->max_huge_pages, buf, i);
 | 
						|
		h->max_huge_pages = i;
 | 
						|
	}
 | 
						|
	kfree(node_alloc_noretry);
 | 
						|
}
 | 
						|
 | 
						|
static void __init hugetlb_init_hstates(void)
 | 
						|
{
 | 
						|
	struct hstate *h, *h2;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		/* oversize hugepages were init'ed in early boot */
 | 
						|
		if (!hstate_is_gigantic(h))
 | 
						|
			hugetlb_hstate_alloc_pages(h);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Set demote order for each hstate.  Note that
 | 
						|
		 * h->demote_order is initially 0.
 | 
						|
		 * - We can not demote gigantic pages if runtime freeing
 | 
						|
		 *   is not supported, so skip this.
 | 
						|
		 * - If CMA allocation is possible, we can not demote
 | 
						|
		 *   HUGETLB_PAGE_ORDER or smaller size pages.
 | 
						|
		 */
 | 
						|
		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
 | 
						|
			continue;
 | 
						|
		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
 | 
						|
			continue;
 | 
						|
		for_each_hstate(h2) {
 | 
						|
			if (h2 == h)
 | 
						|
				continue;
 | 
						|
			if (h2->order < h->order &&
 | 
						|
			    h2->order > h->demote_order)
 | 
						|
				h->demote_order = h2->order;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init report_hugepages(void)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		char buf[32];
 | 
						|
 | 
						|
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
 | 
						|
		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
 | 
						|
			buf, h->free_huge_pages);
 | 
						|
		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
 | 
						|
			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HIGHMEM
 | 
						|
static void try_to_free_low(struct hstate *h, unsigned long count,
 | 
						|
						nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	LIST_HEAD(page_list);
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Collect pages to be freed on a list, and free after dropping lock
 | 
						|
	 */
 | 
						|
	for_each_node_mask(i, *nodes_allowed) {
 | 
						|
		struct page *page, *next;
 | 
						|
		struct list_head *freel = &h->hugepage_freelists[i];
 | 
						|
		list_for_each_entry_safe(page, next, freel, lru) {
 | 
						|
			if (count >= h->nr_huge_pages)
 | 
						|
				goto out;
 | 
						|
			if (PageHighMem(page))
 | 
						|
				continue;
 | 
						|
			remove_hugetlb_folio(h, page_folio(page), false);
 | 
						|
			list_add(&page->lru, &page_list);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	update_and_free_pages_bulk(h, &page_list);
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void try_to_free_low(struct hstate *h, unsigned long count,
 | 
						|
						nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 | 
						|
 * balanced by operating on them in a round-robin fashion.
 | 
						|
 * Returns 1 if an adjustment was made.
 | 
						|
 */
 | 
						|
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
 | 
						|
				int delta)
 | 
						|
{
 | 
						|
	int nr_nodes, node;
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
	VM_BUG_ON(delta != -1 && delta != 1);
 | 
						|
 | 
						|
	if (delta < 0) {
 | 
						|
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 | 
						|
			if (h->surplus_huge_pages_node[node])
 | 
						|
				goto found;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 | 
						|
			if (h->surplus_huge_pages_node[node] <
 | 
						|
					h->nr_huge_pages_node[node])
 | 
						|
				goto found;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
found:
 | 
						|
	h->surplus_huge_pages += delta;
 | 
						|
	h->surplus_huge_pages_node[node] += delta;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
 | 
						|
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
 | 
						|
			      nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	unsigned long min_count, ret;
 | 
						|
	struct page *page;
 | 
						|
	LIST_HEAD(page_list);
 | 
						|
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Bit mask controlling how hard we retry per-node allocations.
 | 
						|
	 * If we can not allocate the bit mask, do not attempt to allocate
 | 
						|
	 * the requested huge pages.
 | 
						|
	 */
 | 
						|
	if (node_alloc_noretry)
 | 
						|
		nodes_clear(*node_alloc_noretry);
 | 
						|
	else
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * resize_lock mutex prevents concurrent adjustments to number of
 | 
						|
	 * pages in hstate via the proc/sysfs interfaces.
 | 
						|
	 */
 | 
						|
	mutex_lock(&h->resize_lock);
 | 
						|
	flush_free_hpage_work(h);
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for a node specific request.
 | 
						|
	 * Changing node specific huge page count may require a corresponding
 | 
						|
	 * change to the global count.  In any case, the passed node mask
 | 
						|
	 * (nodes_allowed) will restrict alloc/free to the specified node.
 | 
						|
	 */
 | 
						|
	if (nid != NUMA_NO_NODE) {
 | 
						|
		unsigned long old_count = count;
 | 
						|
 | 
						|
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
 | 
						|
		/*
 | 
						|
		 * User may have specified a large count value which caused the
 | 
						|
		 * above calculation to overflow.  In this case, they wanted
 | 
						|
		 * to allocate as many huge pages as possible.  Set count to
 | 
						|
		 * largest possible value to align with their intention.
 | 
						|
		 */
 | 
						|
		if (count < old_count)
 | 
						|
			count = ULONG_MAX;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Gigantic pages runtime allocation depend on the capability for large
 | 
						|
	 * page range allocation.
 | 
						|
	 * If the system does not provide this feature, return an error when
 | 
						|
	 * the user tries to allocate gigantic pages but let the user free the
 | 
						|
	 * boottime allocated gigantic pages.
 | 
						|
	 */
 | 
						|
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
 | 
						|
		if (count > persistent_huge_pages(h)) {
 | 
						|
			spin_unlock_irq(&hugetlb_lock);
 | 
						|
			mutex_unlock(&h->resize_lock);
 | 
						|
			NODEMASK_FREE(node_alloc_noretry);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		/* Fall through to decrease pool */
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Increase the pool size
 | 
						|
	 * First take pages out of surplus state.  Then make up the
 | 
						|
	 * remaining difference by allocating fresh huge pages.
 | 
						|
	 *
 | 
						|
	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
 | 
						|
	 * to convert a surplus huge page to a normal huge page. That is
 | 
						|
	 * not critical, though, it just means the overall size of the
 | 
						|
	 * pool might be one hugepage larger than it needs to be, but
 | 
						|
	 * within all the constraints specified by the sysctls.
 | 
						|
	 */
 | 
						|
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
 | 
						|
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	while (count > persistent_huge_pages(h)) {
 | 
						|
		/*
 | 
						|
		 * If this allocation races such that we no longer need the
 | 
						|
		 * page, free_huge_page will handle it by freeing the page
 | 
						|
		 * and reducing the surplus.
 | 
						|
		 */
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
		/* yield cpu to avoid soft lockup */
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		ret = alloc_pool_huge_page(h, nodes_allowed,
 | 
						|
						node_alloc_noretry);
 | 
						|
		spin_lock_irq(&hugetlb_lock);
 | 
						|
		if (!ret)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		/* Bail for signals. Probably ctrl-c from user */
 | 
						|
		if (signal_pending(current))
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Decrease the pool size
 | 
						|
	 * First return free pages to the buddy allocator (being careful
 | 
						|
	 * to keep enough around to satisfy reservations).  Then place
 | 
						|
	 * pages into surplus state as needed so the pool will shrink
 | 
						|
	 * to the desired size as pages become free.
 | 
						|
	 *
 | 
						|
	 * By placing pages into the surplus state independent of the
 | 
						|
	 * overcommit value, we are allowing the surplus pool size to
 | 
						|
	 * exceed overcommit. There are few sane options here. Since
 | 
						|
	 * alloc_surplus_hugetlb_folio() is checking the global counter,
 | 
						|
	 * though, we'll note that we're not allowed to exceed surplus
 | 
						|
	 * and won't grow the pool anywhere else. Not until one of the
 | 
						|
	 * sysctls are changed, or the surplus pages go out of use.
 | 
						|
	 */
 | 
						|
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
 | 
						|
	min_count = max(count, min_count);
 | 
						|
	try_to_free_low(h, min_count, nodes_allowed);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Collect pages to be removed on list without dropping lock
 | 
						|
	 */
 | 
						|
	while (min_count < persistent_huge_pages(h)) {
 | 
						|
		page = remove_pool_huge_page(h, nodes_allowed, 0);
 | 
						|
		if (!page)
 | 
						|
			break;
 | 
						|
 | 
						|
		list_add(&page->lru, &page_list);
 | 
						|
	}
 | 
						|
	/* free the pages after dropping lock */
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	update_and_free_pages_bulk(h, &page_list);
 | 
						|
	flush_free_hpage_work(h);
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	while (count < persistent_huge_pages(h)) {
 | 
						|
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	h->max_huge_pages = persistent_huge_pages(h);
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	mutex_unlock(&h->resize_lock);
 | 
						|
 | 
						|
	NODEMASK_FREE(node_alloc_noretry);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
 | 
						|
{
 | 
						|
	int i, nid = folio_nid(folio);
 | 
						|
	struct hstate *target_hstate;
 | 
						|
	struct page *subpage;
 | 
						|
	struct folio *inner_folio;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
 | 
						|
 | 
						|
	remove_hugetlb_folio_for_demote(h, folio, false);
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	rc = hugetlb_vmemmap_restore(h, &folio->page);
 | 
						|
	if (rc) {
 | 
						|
		/* Allocation of vmemmmap failed, we can not demote folio */
 | 
						|
		spin_lock_irq(&hugetlb_lock);
 | 
						|
		folio_ref_unfreeze(folio, 1);
 | 
						|
		add_hugetlb_folio(h, folio, false);
 | 
						|
		return rc;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
 | 
						|
	 * sizes as it will not ref count folios.
 | 
						|
	 */
 | 
						|
	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
 | 
						|
	 * Without the mutex, pages added to target hstate could be marked
 | 
						|
	 * as surplus.
 | 
						|
	 *
 | 
						|
	 * Note that we already hold h->resize_lock.  To prevent deadlock,
 | 
						|
	 * use the convention of always taking larger size hstate mutex first.
 | 
						|
	 */
 | 
						|
	mutex_lock(&target_hstate->resize_lock);
 | 
						|
	for (i = 0; i < pages_per_huge_page(h);
 | 
						|
				i += pages_per_huge_page(target_hstate)) {
 | 
						|
		subpage = folio_page(folio, i);
 | 
						|
		inner_folio = page_folio(subpage);
 | 
						|
		if (hstate_is_gigantic(target_hstate))
 | 
						|
			prep_compound_gigantic_folio_for_demote(inner_folio,
 | 
						|
							target_hstate->order);
 | 
						|
		else
 | 
						|
			prep_compound_page(subpage, target_hstate->order);
 | 
						|
		folio_change_private(inner_folio, NULL);
 | 
						|
		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
 | 
						|
		free_huge_page(subpage);
 | 
						|
	}
 | 
						|
	mutex_unlock(&target_hstate->resize_lock);
 | 
						|
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Not absolutely necessary, but for consistency update max_huge_pages
 | 
						|
	 * based on pool changes for the demoted page.
 | 
						|
	 */
 | 
						|
	h->max_huge_pages--;
 | 
						|
	target_hstate->max_huge_pages +=
 | 
						|
		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
 | 
						|
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
 | 
						|
	__must_hold(&hugetlb_lock)
 | 
						|
{
 | 
						|
	int nr_nodes, node;
 | 
						|
	struct folio *folio;
 | 
						|
 | 
						|
	lockdep_assert_held(&hugetlb_lock);
 | 
						|
 | 
						|
	/* We should never get here if no demote order */
 | 
						|
	if (!h->demote_order) {
 | 
						|
		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
 | 
						|
		return -EINVAL;		/* internal error */
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 | 
						|
		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
 | 
						|
			if (folio_test_hwpoison(folio))
 | 
						|
				continue;
 | 
						|
			return demote_free_hugetlb_folio(h, folio);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only way to get here is if all pages on free lists are poisoned.
 | 
						|
	 * Return -EBUSY so that caller will not retry.
 | 
						|
	 */
 | 
						|
	return -EBUSY;
 | 
						|
}
 | 
						|
 | 
						|
#define HSTATE_ATTR_RO(_name) \
 | 
						|
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
 | 
						|
 | 
						|
#define HSTATE_ATTR_WO(_name) \
 | 
						|
	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
 | 
						|
 | 
						|
#define HSTATE_ATTR(_name) \
 | 
						|
	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
 | 
						|
 | 
						|
static struct kobject *hugepages_kobj;
 | 
						|
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
 | 
						|
 | 
						|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
 | 
						|
 | 
						|
static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
 | 
						|
		if (hstate_kobjs[i] == kobj) {
 | 
						|
			if (nidp)
 | 
						|
				*nidp = NUMA_NO_NODE;
 | 
						|
			return &hstates[i];
 | 
						|
		}
 | 
						|
 | 
						|
	return kobj_to_node_hstate(kobj, nidp);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long nr_huge_pages;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	h = kobj_to_hstate(kobj, &nid);
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		nr_huge_pages = h->nr_huge_pages;
 | 
						|
	else
 | 
						|
		nr_huge_pages = h->nr_huge_pages_node[nid];
 | 
						|
 | 
						|
	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
 | 
						|
					   struct hstate *h, int nid,
 | 
						|
					   unsigned long count, size_t len)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	nodemask_t nodes_allowed, *n_mask;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (nid == NUMA_NO_NODE) {
 | 
						|
		/*
 | 
						|
		 * global hstate attribute
 | 
						|
		 */
 | 
						|
		if (!(obey_mempolicy &&
 | 
						|
				init_nodemask_of_mempolicy(&nodes_allowed)))
 | 
						|
			n_mask = &node_states[N_MEMORY];
 | 
						|
		else
 | 
						|
			n_mask = &nodes_allowed;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Node specific request.  count adjustment happens in
 | 
						|
		 * set_max_huge_pages() after acquiring hugetlb_lock.
 | 
						|
		 */
 | 
						|
		init_nodemask_of_node(&nodes_allowed, nid);
 | 
						|
		n_mask = &nodes_allowed;
 | 
						|
	}
 | 
						|
 | 
						|
	err = set_max_huge_pages(h, count, nid, n_mask);
 | 
						|
 | 
						|
	return err ? err : len;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
 | 
						|
					 struct kobject *kobj, const char *buf,
 | 
						|
					 size_t len)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long count;
 | 
						|
	int nid;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = kstrtoul(buf, 10, &count);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	h = kobj_to_hstate(kobj, &nid);
 | 
						|
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_show(struct kobject *kobj,
 | 
						|
				       struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	return nr_hugepages_show_common(kobj, attr, buf);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_store(struct kobject *kobj,
 | 
						|
	       struct kobj_attribute *attr, const char *buf, size_t len)
 | 
						|
{
 | 
						|
	return nr_hugepages_store_common(false, kobj, buf, len);
 | 
						|
}
 | 
						|
HSTATE_ATTR(nr_hugepages);
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
 | 
						|
/*
 | 
						|
 * hstate attribute for optionally mempolicy-based constraint on persistent
 | 
						|
 * huge page alloc/free.
 | 
						|
 */
 | 
						|
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
 | 
						|
					   struct kobj_attribute *attr,
 | 
						|
					   char *buf)
 | 
						|
{
 | 
						|
	return nr_hugepages_show_common(kobj, attr, buf);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
 | 
						|
	       struct kobj_attribute *attr, const char *buf, size_t len)
 | 
						|
{
 | 
						|
	return nr_hugepages_store_common(true, kobj, buf, len);
 | 
						|
}
 | 
						|
HSTATE_ATTR(nr_hugepages_mempolicy);
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | 
						|
	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
 | 
						|
		struct kobj_attribute *attr, const char *buf, size_t count)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	unsigned long input;
 | 
						|
	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	err = kstrtoul(buf, 10, &input);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	h->nr_overcommit_huge_pages = input;
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
HSTATE_ATTR(nr_overcommit_hugepages);
 | 
						|
 | 
						|
static ssize_t free_hugepages_show(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long free_huge_pages;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	h = kobj_to_hstate(kobj, &nid);
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		free_huge_pages = h->free_huge_pages;
 | 
						|
	else
 | 
						|
		free_huge_pages = h->free_huge_pages_node[nid];
 | 
						|
 | 
						|
	return sysfs_emit(buf, "%lu\n", free_huge_pages);
 | 
						|
}
 | 
						|
HSTATE_ATTR_RO(free_hugepages);
 | 
						|
 | 
						|
static ssize_t resv_hugepages_show(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | 
						|
	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
 | 
						|
}
 | 
						|
HSTATE_ATTR_RO(resv_hugepages);
 | 
						|
 | 
						|
static ssize_t surplus_hugepages_show(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long surplus_huge_pages;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	h = kobj_to_hstate(kobj, &nid);
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		surplus_huge_pages = h->surplus_huge_pages;
 | 
						|
	else
 | 
						|
		surplus_huge_pages = h->surplus_huge_pages_node[nid];
 | 
						|
 | 
						|
	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
 | 
						|
}
 | 
						|
HSTATE_ATTR_RO(surplus_hugepages);
 | 
						|
 | 
						|
static ssize_t demote_store(struct kobject *kobj,
 | 
						|
	       struct kobj_attribute *attr, const char *buf, size_t len)
 | 
						|
{
 | 
						|
	unsigned long nr_demote;
 | 
						|
	unsigned long nr_available;
 | 
						|
	nodemask_t nodes_allowed, *n_mask;
 | 
						|
	struct hstate *h;
 | 
						|
	int err;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	err = kstrtoul(buf, 10, &nr_demote);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	h = kobj_to_hstate(kobj, &nid);
 | 
						|
 | 
						|
	if (nid != NUMA_NO_NODE) {
 | 
						|
		init_nodemask_of_node(&nodes_allowed, nid);
 | 
						|
		n_mask = &nodes_allowed;
 | 
						|
	} else {
 | 
						|
		n_mask = &node_states[N_MEMORY];
 | 
						|
	}
 | 
						|
 | 
						|
	/* Synchronize with other sysfs operations modifying huge pages */
 | 
						|
	mutex_lock(&h->resize_lock);
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
 | 
						|
	while (nr_demote) {
 | 
						|
		/*
 | 
						|
		 * Check for available pages to demote each time thorough the
 | 
						|
		 * loop as demote_pool_huge_page will drop hugetlb_lock.
 | 
						|
		 */
 | 
						|
		if (nid != NUMA_NO_NODE)
 | 
						|
			nr_available = h->free_huge_pages_node[nid];
 | 
						|
		else
 | 
						|
			nr_available = h->free_huge_pages;
 | 
						|
		nr_available -= h->resv_huge_pages;
 | 
						|
		if (!nr_available)
 | 
						|
			break;
 | 
						|
 | 
						|
		err = demote_pool_huge_page(h, n_mask);
 | 
						|
		if (err)
 | 
						|
			break;
 | 
						|
 | 
						|
		nr_demote--;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	mutex_unlock(&h->resize_lock);
 | 
						|
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	return len;
 | 
						|
}
 | 
						|
HSTATE_ATTR_WO(demote);
 | 
						|
 | 
						|
static ssize_t demote_size_show(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | 
						|
	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
 | 
						|
 | 
						|
	return sysfs_emit(buf, "%lukB\n", demote_size);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t demote_size_store(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr,
 | 
						|
					const char *buf, size_t count)
 | 
						|
{
 | 
						|
	struct hstate *h, *demote_hstate;
 | 
						|
	unsigned long demote_size;
 | 
						|
	unsigned int demote_order;
 | 
						|
 | 
						|
	demote_size = (unsigned long)memparse(buf, NULL);
 | 
						|
 | 
						|
	demote_hstate = size_to_hstate(demote_size);
 | 
						|
	if (!demote_hstate)
 | 
						|
		return -EINVAL;
 | 
						|
	demote_order = demote_hstate->order;
 | 
						|
	if (demote_order < HUGETLB_PAGE_ORDER)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* demote order must be smaller than hstate order */
 | 
						|
	h = kobj_to_hstate(kobj, NULL);
 | 
						|
	if (demote_order >= h->order)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* resize_lock synchronizes access to demote size and writes */
 | 
						|
	mutex_lock(&h->resize_lock);
 | 
						|
	h->demote_order = demote_order;
 | 
						|
	mutex_unlock(&h->resize_lock);
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
HSTATE_ATTR(demote_size);
 | 
						|
 | 
						|
static struct attribute *hstate_attrs[] = {
 | 
						|
	&nr_hugepages_attr.attr,
 | 
						|
	&nr_overcommit_hugepages_attr.attr,
 | 
						|
	&free_hugepages_attr.attr,
 | 
						|
	&resv_hugepages_attr.attr,
 | 
						|
	&surplus_hugepages_attr.attr,
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	&nr_hugepages_mempolicy_attr.attr,
 | 
						|
#endif
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group hstate_attr_group = {
 | 
						|
	.attrs = hstate_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static struct attribute *hstate_demote_attrs[] = {
 | 
						|
	&demote_size_attr.attr,
 | 
						|
	&demote_attr.attr,
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group hstate_demote_attr_group = {
 | 
						|
	.attrs = hstate_demote_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
 | 
						|
				    struct kobject **hstate_kobjs,
 | 
						|
				    const struct attribute_group *hstate_attr_group)
 | 
						|
{
 | 
						|
	int retval;
 | 
						|
	int hi = hstate_index(h);
 | 
						|
 | 
						|
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
 | 
						|
	if (!hstate_kobjs[hi])
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
 | 
						|
	if (retval) {
 | 
						|
		kobject_put(hstate_kobjs[hi]);
 | 
						|
		hstate_kobjs[hi] = NULL;
 | 
						|
		return retval;
 | 
						|
	}
 | 
						|
 | 
						|
	if (h->demote_order) {
 | 
						|
		retval = sysfs_create_group(hstate_kobjs[hi],
 | 
						|
					    &hstate_demote_attr_group);
 | 
						|
		if (retval) {
 | 
						|
			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
 | 
						|
			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
 | 
						|
			kobject_put(hstate_kobjs[hi]);
 | 
						|
			hstate_kobjs[hi] = NULL;
 | 
						|
			return retval;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
static bool hugetlb_sysfs_initialized __ro_after_init;
 | 
						|
 | 
						|
/*
 | 
						|
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 | 
						|
 * with node devices in node_devices[] using a parallel array.  The array
 | 
						|
 * index of a node device or _hstate == node id.
 | 
						|
 * This is here to avoid any static dependency of the node device driver, in
 | 
						|
 * the base kernel, on the hugetlb module.
 | 
						|
 */
 | 
						|
struct node_hstate {
 | 
						|
	struct kobject		*hugepages_kobj;
 | 
						|
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
 | 
						|
};
 | 
						|
static struct node_hstate node_hstates[MAX_NUMNODES];
 | 
						|
 | 
						|
/*
 | 
						|
 * A subset of global hstate attributes for node devices
 | 
						|
 */
 | 
						|
static struct attribute *per_node_hstate_attrs[] = {
 | 
						|
	&nr_hugepages_attr.attr,
 | 
						|
	&free_hugepages_attr.attr,
 | 
						|
	&surplus_hugepages_attr.attr,
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group per_node_hstate_attr_group = {
 | 
						|
	.attrs = per_node_hstate_attrs,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
 | 
						|
 * Returns node id via non-NULL nidp.
 | 
						|
 */
 | 
						|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	for (nid = 0; nid < nr_node_ids; nid++) {
 | 
						|
		struct node_hstate *nhs = &node_hstates[nid];
 | 
						|
		int i;
 | 
						|
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
 | 
						|
			if (nhs->hstate_kobjs[i] == kobj) {
 | 
						|
				if (nidp)
 | 
						|
					*nidp = nid;
 | 
						|
				return &hstates[i];
 | 
						|
			}
 | 
						|
	}
 | 
						|
 | 
						|
	BUG();
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unregister hstate attributes from a single node device.
 | 
						|
 * No-op if no hstate attributes attached.
 | 
						|
 */
 | 
						|
void hugetlb_unregister_node(struct node *node)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	struct node_hstate *nhs = &node_hstates[node->dev.id];
 | 
						|
 | 
						|
	if (!nhs->hugepages_kobj)
 | 
						|
		return;		/* no hstate attributes */
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		int idx = hstate_index(h);
 | 
						|
		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
 | 
						|
 | 
						|
		if (!hstate_kobj)
 | 
						|
			continue;
 | 
						|
		if (h->demote_order)
 | 
						|
			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
 | 
						|
		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
 | 
						|
		kobject_put(hstate_kobj);
 | 
						|
		nhs->hstate_kobjs[idx] = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	kobject_put(nhs->hugepages_kobj);
 | 
						|
	nhs->hugepages_kobj = NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Register hstate attributes for a single node device.
 | 
						|
 * No-op if attributes already registered.
 | 
						|
 */
 | 
						|
void hugetlb_register_node(struct node *node)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	struct node_hstate *nhs = &node_hstates[node->dev.id];
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!hugetlb_sysfs_initialized)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (nhs->hugepages_kobj)
 | 
						|
		return;		/* already allocated */
 | 
						|
 | 
						|
	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
 | 
						|
							&node->dev.kobj);
 | 
						|
	if (!nhs->hugepages_kobj)
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
 | 
						|
						nhs->hstate_kobjs,
 | 
						|
						&per_node_hstate_attr_group);
 | 
						|
		if (err) {
 | 
						|
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
 | 
						|
				h->name, node->dev.id);
 | 
						|
			hugetlb_unregister_node(node);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * hugetlb init time:  register hstate attributes for all registered node
 | 
						|
 * devices of nodes that have memory.  All on-line nodes should have
 | 
						|
 * registered their associated device by this time.
 | 
						|
 */
 | 
						|
static void __init hugetlb_register_all_nodes(void)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	for_each_online_node(nid)
 | 
						|
		hugetlb_register_node(node_devices[nid]);
 | 
						|
}
 | 
						|
#else	/* !CONFIG_NUMA */
 | 
						|
 | 
						|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	if (nidp)
 | 
						|
		*nidp = -1;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_register_all_nodes(void) { }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
static void __init hugetlb_cma_check(void);
 | 
						|
#else
 | 
						|
static inline __init void hugetlb_cma_check(void)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void __init hugetlb_sysfs_init(void)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	int err;
 | 
						|
 | 
						|
	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
 | 
						|
	if (!hugepages_kobj)
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
 | 
						|
					 hstate_kobjs, &hstate_attr_group);
 | 
						|
		if (err)
 | 
						|
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	hugetlb_sysfs_initialized = true;
 | 
						|
#endif
 | 
						|
	hugetlb_register_all_nodes();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SYSCTL
 | 
						|
static void hugetlb_sysctl_init(void);
 | 
						|
#else
 | 
						|
static inline void hugetlb_sysctl_init(void) { }
 | 
						|
#endif
 | 
						|
 | 
						|
static int __init hugetlb_init(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
 | 
						|
			__NR_HPAGEFLAGS);
 | 
						|
 | 
						|
	if (!hugepages_supported()) {
 | 
						|
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
 | 
						|
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
 | 
						|
	 * architectures depend on setup being done here.
 | 
						|
	 */
 | 
						|
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
 | 
						|
	if (!parsed_default_hugepagesz) {
 | 
						|
		/*
 | 
						|
		 * If we did not parse a default huge page size, set
 | 
						|
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
 | 
						|
		 * number of huge pages for this default size was implicitly
 | 
						|
		 * specified, set that here as well.
 | 
						|
		 * Note that the implicit setting will overwrite an explicit
 | 
						|
		 * setting.  A warning will be printed in this case.
 | 
						|
		 */
 | 
						|
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
 | 
						|
		if (default_hstate_max_huge_pages) {
 | 
						|
			if (default_hstate.max_huge_pages) {
 | 
						|
				char buf[32];
 | 
						|
 | 
						|
				string_get_size(huge_page_size(&default_hstate),
 | 
						|
					1, STRING_UNITS_2, buf, 32);
 | 
						|
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
 | 
						|
					default_hstate.max_huge_pages, buf);
 | 
						|
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
 | 
						|
					default_hstate_max_huge_pages);
 | 
						|
			}
 | 
						|
			default_hstate.max_huge_pages =
 | 
						|
				default_hstate_max_huge_pages;
 | 
						|
 | 
						|
			for_each_online_node(i)
 | 
						|
				default_hstate.max_huge_pages_node[i] =
 | 
						|
					default_hugepages_in_node[i];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	hugetlb_cma_check();
 | 
						|
	hugetlb_init_hstates();
 | 
						|
	gather_bootmem_prealloc();
 | 
						|
	report_hugepages();
 | 
						|
 | 
						|
	hugetlb_sysfs_init();
 | 
						|
	hugetlb_cgroup_file_init();
 | 
						|
	hugetlb_sysctl_init();
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
 | 
						|
#else
 | 
						|
	num_fault_mutexes = 1;
 | 
						|
#endif
 | 
						|
	hugetlb_fault_mutex_table =
 | 
						|
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
 | 
						|
			      GFP_KERNEL);
 | 
						|
	BUG_ON(!hugetlb_fault_mutex_table);
 | 
						|
 | 
						|
	for (i = 0; i < num_fault_mutexes; i++)
 | 
						|
		mutex_init(&hugetlb_fault_mutex_table[i]);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
subsys_initcall(hugetlb_init);
 | 
						|
 | 
						|
/* Overwritten by architectures with more huge page sizes */
 | 
						|
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
 | 
						|
{
 | 
						|
	return size == HPAGE_SIZE;
 | 
						|
}
 | 
						|
 | 
						|
void __init hugetlb_add_hstate(unsigned int order)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long i;
 | 
						|
 | 
						|
	if (size_to_hstate(PAGE_SIZE << order)) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
 | 
						|
	BUG_ON(order == 0);
 | 
						|
	h = &hstates[hugetlb_max_hstate++];
 | 
						|
	mutex_init(&h->resize_lock);
 | 
						|
	h->order = order;
 | 
						|
	h->mask = ~(huge_page_size(h) - 1);
 | 
						|
	for (i = 0; i < MAX_NUMNODES; ++i)
 | 
						|
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
 | 
						|
	INIT_LIST_HEAD(&h->hugepage_activelist);
 | 
						|
	h->next_nid_to_alloc = first_memory_node;
 | 
						|
	h->next_nid_to_free = first_memory_node;
 | 
						|
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
 | 
						|
					huge_page_size(h)/SZ_1K);
 | 
						|
 | 
						|
	parsed_hstate = h;
 | 
						|
}
 | 
						|
 | 
						|
bool __init __weak hugetlb_node_alloc_supported(void)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void __init hugepages_clear_pages_in_node(void)
 | 
						|
{
 | 
						|
	if (!hugetlb_max_hstate) {
 | 
						|
		default_hstate_max_huge_pages = 0;
 | 
						|
		memset(default_hugepages_in_node, 0,
 | 
						|
			sizeof(default_hugepages_in_node));
 | 
						|
	} else {
 | 
						|
		parsed_hstate->max_huge_pages = 0;
 | 
						|
		memset(parsed_hstate->max_huge_pages_node, 0,
 | 
						|
			sizeof(parsed_hstate->max_huge_pages_node));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * hugepages command line processing
 | 
						|
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 | 
						|
 * specification.  If not, ignore the hugepages value.  hugepages can also
 | 
						|
 * be the first huge page command line  option in which case it implicitly
 | 
						|
 * specifies the number of huge pages for the default size.
 | 
						|
 */
 | 
						|
static int __init hugepages_setup(char *s)
 | 
						|
{
 | 
						|
	unsigned long *mhp;
 | 
						|
	static unsigned long *last_mhp;
 | 
						|
	int node = NUMA_NO_NODE;
 | 
						|
	int count;
 | 
						|
	unsigned long tmp;
 | 
						|
	char *p = s;
 | 
						|
 | 
						|
	if (!parsed_valid_hugepagesz) {
 | 
						|
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
 | 
						|
		parsed_valid_hugepagesz = true;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
 | 
						|
	 * yet, so this hugepages= parameter goes to the "default hstate".
 | 
						|
	 * Otherwise, it goes with the previously parsed hugepagesz or
 | 
						|
	 * default_hugepagesz.
 | 
						|
	 */
 | 
						|
	else if (!hugetlb_max_hstate)
 | 
						|
		mhp = &default_hstate_max_huge_pages;
 | 
						|
	else
 | 
						|
		mhp = &parsed_hstate->max_huge_pages;
 | 
						|
 | 
						|
	if (mhp == last_mhp) {
 | 
						|
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		count = 0;
 | 
						|
		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
 | 
						|
			goto invalid;
 | 
						|
		/* Parameter is node format */
 | 
						|
		if (p[count] == ':') {
 | 
						|
			if (!hugetlb_node_alloc_supported()) {
 | 
						|
				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
 | 
						|
				return 1;
 | 
						|
			}
 | 
						|
			if (tmp >= MAX_NUMNODES || !node_online(tmp))
 | 
						|
				goto invalid;
 | 
						|
			node = array_index_nospec(tmp, MAX_NUMNODES);
 | 
						|
			p += count + 1;
 | 
						|
			/* Parse hugepages */
 | 
						|
			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
 | 
						|
				goto invalid;
 | 
						|
			if (!hugetlb_max_hstate)
 | 
						|
				default_hugepages_in_node[node] = tmp;
 | 
						|
			else
 | 
						|
				parsed_hstate->max_huge_pages_node[node] = tmp;
 | 
						|
			*mhp += tmp;
 | 
						|
			/* Go to parse next node*/
 | 
						|
			if (p[count] == ',')
 | 
						|
				p += count + 1;
 | 
						|
			else
 | 
						|
				break;
 | 
						|
		} else {
 | 
						|
			if (p != s)
 | 
						|
				goto invalid;
 | 
						|
			*mhp = tmp;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Global state is always initialized later in hugetlb_init.
 | 
						|
	 * But we need to allocate gigantic hstates here early to still
 | 
						|
	 * use the bootmem allocator.
 | 
						|
	 */
 | 
						|
	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
 | 
						|
		hugetlb_hstate_alloc_pages(parsed_hstate);
 | 
						|
 | 
						|
	last_mhp = mhp;
 | 
						|
 | 
						|
	return 1;
 | 
						|
 | 
						|
invalid:
 | 
						|
	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
 | 
						|
	hugepages_clear_pages_in_node();
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("hugepages=", hugepages_setup);
 | 
						|
 | 
						|
/*
 | 
						|
 * hugepagesz command line processing
 | 
						|
 * A specific huge page size can only be specified once with hugepagesz.
 | 
						|
 * hugepagesz is followed by hugepages on the command line.  The global
 | 
						|
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 | 
						|
 * hugepagesz argument was valid.
 | 
						|
 */
 | 
						|
static int __init hugepagesz_setup(char *s)
 | 
						|
{
 | 
						|
	unsigned long size;
 | 
						|
	struct hstate *h;
 | 
						|
 | 
						|
	parsed_valid_hugepagesz = false;
 | 
						|
	size = (unsigned long)memparse(s, NULL);
 | 
						|
 | 
						|
	if (!arch_hugetlb_valid_size(size)) {
 | 
						|
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	h = size_to_hstate(size);
 | 
						|
	if (h) {
 | 
						|
		/*
 | 
						|
		 * hstate for this size already exists.  This is normally
 | 
						|
		 * an error, but is allowed if the existing hstate is the
 | 
						|
		 * default hstate.  More specifically, it is only allowed if
 | 
						|
		 * the number of huge pages for the default hstate was not
 | 
						|
		 * previously specified.
 | 
						|
		 */
 | 
						|
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
 | 
						|
		    default_hstate.max_huge_pages) {
 | 
						|
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * No need to call hugetlb_add_hstate() as hstate already
 | 
						|
		 * exists.  But, do set parsed_hstate so that a following
 | 
						|
		 * hugepages= parameter will be applied to this hstate.
 | 
						|
		 */
 | 
						|
		parsed_hstate = h;
 | 
						|
		parsed_valid_hugepagesz = true;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
 | 
						|
	parsed_valid_hugepagesz = true;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("hugepagesz=", hugepagesz_setup);
 | 
						|
 | 
						|
/*
 | 
						|
 * default_hugepagesz command line input
 | 
						|
 * Only one instance of default_hugepagesz allowed on command line.
 | 
						|
 */
 | 
						|
static int __init default_hugepagesz_setup(char *s)
 | 
						|
{
 | 
						|
	unsigned long size;
 | 
						|
	int i;
 | 
						|
 | 
						|
	parsed_valid_hugepagesz = false;
 | 
						|
	if (parsed_default_hugepagesz) {
 | 
						|
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	size = (unsigned long)memparse(s, NULL);
 | 
						|
 | 
						|
	if (!arch_hugetlb_valid_size(size)) {
 | 
						|
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
 | 
						|
	parsed_valid_hugepagesz = true;
 | 
						|
	parsed_default_hugepagesz = true;
 | 
						|
	default_hstate_idx = hstate_index(size_to_hstate(size));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The number of default huge pages (for this size) could have been
 | 
						|
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
 | 
						|
	 * then default_hstate_max_huge_pages is set.  If the default huge
 | 
						|
	 * page size is gigantic (> MAX_ORDER), then the pages must be
 | 
						|
	 * allocated here from bootmem allocator.
 | 
						|
	 */
 | 
						|
	if (default_hstate_max_huge_pages) {
 | 
						|
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
 | 
						|
		for_each_online_node(i)
 | 
						|
			default_hstate.max_huge_pages_node[i] =
 | 
						|
				default_hugepages_in_node[i];
 | 
						|
		if (hstate_is_gigantic(&default_hstate))
 | 
						|
			hugetlb_hstate_alloc_pages(&default_hstate);
 | 
						|
		default_hstate_max_huge_pages = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("default_hugepagesz=", default_hugepagesz_setup);
 | 
						|
 | 
						|
static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
 | 
						|
{
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	struct mempolicy *mpol = get_task_policy(current);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
 | 
						|
	 * (from policy_nodemask) specifically for hugetlb case
 | 
						|
	 */
 | 
						|
	if (mpol->mode == MPOL_BIND &&
 | 
						|
		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
 | 
						|
		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
 | 
						|
		return &mpol->nodes;
 | 
						|
#endif
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int allowed_mems_nr(struct hstate *h)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
	unsigned int nr = 0;
 | 
						|
	nodemask_t *mbind_nodemask;
 | 
						|
	unsigned int *array = h->free_huge_pages_node;
 | 
						|
	gfp_t gfp_mask = htlb_alloc_mask(h);
 | 
						|
 | 
						|
	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
 | 
						|
	for_each_node_mask(node, cpuset_current_mems_allowed) {
 | 
						|
		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
 | 
						|
			nr += array[node];
 | 
						|
	}
 | 
						|
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SYSCTL
 | 
						|
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
 | 
						|
					  void *buffer, size_t *length,
 | 
						|
					  loff_t *ppos, unsigned long *out)
 | 
						|
{
 | 
						|
	struct ctl_table dup_table;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
 | 
						|
	 * can duplicate the @table and alter the duplicate of it.
 | 
						|
	 */
 | 
						|
	dup_table = *table;
 | 
						|
	dup_table.data = out;
 | 
						|
 | 
						|
	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
 | 
						|
			 struct ctl_table *table, int write,
 | 
						|
			 void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct hstate *h = &default_hstate;
 | 
						|
	unsigned long tmp = h->max_huge_pages;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
 | 
						|
					     &tmp);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (write)
 | 
						|
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
 | 
						|
						  NUMA_NO_NODE, tmp, *length);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
 | 
						|
			  void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
 | 
						|
	return hugetlb_sysctl_handler_common(false, table, write,
 | 
						|
							buffer, length, ppos);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
 | 
						|
			  void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	return hugetlb_sysctl_handler_common(true, table, write,
 | 
						|
							buffer, length, ppos);
 | 
						|
}
 | 
						|
#endif /* CONFIG_NUMA */
 | 
						|
 | 
						|
static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
 | 
						|
		void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct hstate *h = &default_hstate;
 | 
						|
	unsigned long tmp;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	tmp = h->nr_overcommit_huge_pages;
 | 
						|
 | 
						|
	if (write && hstate_is_gigantic(h))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
 | 
						|
					     &tmp);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (write) {
 | 
						|
		spin_lock_irq(&hugetlb_lock);
 | 
						|
		h->nr_overcommit_huge_pages = tmp;
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct ctl_table hugetlb_table[] = {
 | 
						|
	{
 | 
						|
		.procname	= "nr_hugepages",
 | 
						|
		.data		= NULL,
 | 
						|
		.maxlen		= sizeof(unsigned long),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= hugetlb_sysctl_handler,
 | 
						|
	},
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	{
 | 
						|
		.procname       = "nr_hugepages_mempolicy",
 | 
						|
		.data           = NULL,
 | 
						|
		.maxlen         = sizeof(unsigned long),
 | 
						|
		.mode           = 0644,
 | 
						|
		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
 | 
						|
	},
 | 
						|
#endif
 | 
						|
	{
 | 
						|
		.procname	= "hugetlb_shm_group",
 | 
						|
		.data		= &sysctl_hugetlb_shm_group,
 | 
						|
		.maxlen		= sizeof(gid_t),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dointvec,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.procname	= "nr_overcommit_hugepages",
 | 
						|
		.data		= NULL,
 | 
						|
		.maxlen		= sizeof(unsigned long),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= hugetlb_overcommit_handler,
 | 
						|
	},
 | 
						|
	{ }
 | 
						|
};
 | 
						|
 | 
						|
static void hugetlb_sysctl_init(void)
 | 
						|
{
 | 
						|
	register_sysctl_init("vm", hugetlb_table);
 | 
						|
}
 | 
						|
#endif /* CONFIG_SYSCTL */
 | 
						|
 | 
						|
void hugetlb_report_meminfo(struct seq_file *m)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long total = 0;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		unsigned long count = h->nr_huge_pages;
 | 
						|
 | 
						|
		total += huge_page_size(h) * count;
 | 
						|
 | 
						|
		if (h == &default_hstate)
 | 
						|
			seq_printf(m,
 | 
						|
				   "HugePages_Total:   %5lu\n"
 | 
						|
				   "HugePages_Free:    %5lu\n"
 | 
						|
				   "HugePages_Rsvd:    %5lu\n"
 | 
						|
				   "HugePages_Surp:    %5lu\n"
 | 
						|
				   "Hugepagesize:   %8lu kB\n",
 | 
						|
				   count,
 | 
						|
				   h->free_huge_pages,
 | 
						|
				   h->resv_huge_pages,
 | 
						|
				   h->surplus_huge_pages,
 | 
						|
				   huge_page_size(h) / SZ_1K);
 | 
						|
	}
 | 
						|
 | 
						|
	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
 | 
						|
}
 | 
						|
 | 
						|
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
 | 
						|
{
 | 
						|
	struct hstate *h = &default_hstate;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return sysfs_emit_at(buf, len,
 | 
						|
			     "Node %d HugePages_Total: %5u\n"
 | 
						|
			     "Node %d HugePages_Free:  %5u\n"
 | 
						|
			     "Node %d HugePages_Surp:  %5u\n",
 | 
						|
			     nid, h->nr_huge_pages_node[nid],
 | 
						|
			     nid, h->free_huge_pages_node[nid],
 | 
						|
			     nid, h->surplus_huge_pages_node[nid]);
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_show_meminfo_node(int nid)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_hstate(h)
 | 
						|
		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
 | 
						|
			nid,
 | 
						|
			h->nr_huge_pages_node[nid],
 | 
						|
			h->free_huge_pages_node[nid],
 | 
						|
			h->surplus_huge_pages_node[nid],
 | 
						|
			huge_page_size(h) / SZ_1K);
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
 | 
						|
{
 | 
						|
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
 | 
						|
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
 | 
						|
}
 | 
						|
 | 
						|
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
 | 
						|
unsigned long hugetlb_total_pages(void)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long nr_total_pages = 0;
 | 
						|
 | 
						|
	for_each_hstate(h)
 | 
						|
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
 | 
						|
	return nr_total_pages;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlb_acct_memory(struct hstate *h, long delta)
 | 
						|
{
 | 
						|
	int ret = -ENOMEM;
 | 
						|
 | 
						|
	if (!delta)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	/*
 | 
						|
	 * When cpuset is configured, it breaks the strict hugetlb page
 | 
						|
	 * reservation as the accounting is done on a global variable. Such
 | 
						|
	 * reservation is completely rubbish in the presence of cpuset because
 | 
						|
	 * the reservation is not checked against page availability for the
 | 
						|
	 * current cpuset. Application can still potentially OOM'ed by kernel
 | 
						|
	 * with lack of free htlb page in cpuset that the task is in.
 | 
						|
	 * Attempt to enforce strict accounting with cpuset is almost
 | 
						|
	 * impossible (or too ugly) because cpuset is too fluid that
 | 
						|
	 * task or memory node can be dynamically moved between cpusets.
 | 
						|
	 *
 | 
						|
	 * The change of semantics for shared hugetlb mapping with cpuset is
 | 
						|
	 * undesirable. However, in order to preserve some of the semantics,
 | 
						|
	 * we fall back to check against current free page availability as
 | 
						|
	 * a best attempt and hopefully to minimize the impact of changing
 | 
						|
	 * semantics that cpuset has.
 | 
						|
	 *
 | 
						|
	 * Apart from cpuset, we also have memory policy mechanism that
 | 
						|
	 * also determines from which node the kernel will allocate memory
 | 
						|
	 * in a NUMA system. So similar to cpuset, we also should consider
 | 
						|
	 * the memory policy of the current task. Similar to the description
 | 
						|
	 * above.
 | 
						|
	 */
 | 
						|
	if (delta > 0) {
 | 
						|
		if (gather_surplus_pages(h, delta) < 0)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		if (delta > allowed_mems_nr(h)) {
 | 
						|
			return_unused_surplus_pages(h, delta);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	if (delta < 0)
 | 
						|
		return_unused_surplus_pages(h, (unsigned long) -delta);
 | 
						|
 | 
						|
out:
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct resv_map *resv = vma_resv_map(vma);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * HPAGE_RESV_OWNER indicates a private mapping.
 | 
						|
	 * This new VMA should share its siblings reservation map if present.
 | 
						|
	 * The VMA will only ever have a valid reservation map pointer where
 | 
						|
	 * it is being copied for another still existing VMA.  As that VMA
 | 
						|
	 * has a reference to the reservation map it cannot disappear until
 | 
						|
	 * after this open call completes.  It is therefore safe to take a
 | 
						|
	 * new reference here without additional locking.
 | 
						|
	 */
 | 
						|
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 | 
						|
		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
 | 
						|
		kref_get(&resv->refs);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vma_lock structure for sharable mappings is vma specific.
 | 
						|
	 * Clear old pointer (if copied via vm_area_dup) and allocate
 | 
						|
	 * new structure.  Before clearing, make sure vma_lock is not
 | 
						|
	 * for this vma.
 | 
						|
	 */
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 | 
						|
 | 
						|
		if (vma_lock) {
 | 
						|
			if (vma_lock->vma != vma) {
 | 
						|
				vma->vm_private_data = NULL;
 | 
						|
				hugetlb_vma_lock_alloc(vma);
 | 
						|
			} else
 | 
						|
				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
 | 
						|
		} else
 | 
						|
			hugetlb_vma_lock_alloc(vma);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct resv_map *resv;
 | 
						|
	struct hugepage_subpool *spool = subpool_vma(vma);
 | 
						|
	unsigned long reserve, start, end;
 | 
						|
	long gbl_reserve;
 | 
						|
 | 
						|
	hugetlb_vma_lock_free(vma);
 | 
						|
 | 
						|
	resv = vma_resv_map(vma);
 | 
						|
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 | 
						|
		return;
 | 
						|
 | 
						|
	start = vma_hugecache_offset(h, vma, vma->vm_start);
 | 
						|
	end = vma_hugecache_offset(h, vma, vma->vm_end);
 | 
						|
 | 
						|
	reserve = (end - start) - region_count(resv, start, end);
 | 
						|
	hugetlb_cgroup_uncharge_counter(resv, start, end);
 | 
						|
	if (reserve) {
 | 
						|
		/*
 | 
						|
		 * Decrement reserve counts.  The global reserve count may be
 | 
						|
		 * adjusted if the subpool has a minimum size.
 | 
						|
		 */
 | 
						|
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
 | 
						|
		hugetlb_acct_memory(h, -gbl_reserve);
 | 
						|
	}
 | 
						|
 | 
						|
	kref_put(&resv->refs, resv_map_release);
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
 | 
						|
	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
 | 
						|
	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
 | 
						|
	 */
 | 
						|
	if (addr & ~PUD_MASK) {
 | 
						|
		/*
 | 
						|
		 * hugetlb_vm_op_split is called right before we attempt to
 | 
						|
		 * split the VMA. We will need to unshare PMDs in the old and
 | 
						|
		 * new VMAs, so let's unshare before we split.
 | 
						|
		 */
 | 
						|
		unsigned long floor = addr & PUD_MASK;
 | 
						|
		unsigned long ceil = floor + PUD_SIZE;
 | 
						|
 | 
						|
		if (floor >= vma->vm_start && ceil <= vma->vm_end)
 | 
						|
			hugetlb_unshare_pmds(vma, floor, ceil);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return huge_page_size(hstate_vma(vma));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 | 
						|
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 | 
						|
 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 | 
						|
 * this far.
 | 
						|
 */
 | 
						|
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When a new function is introduced to vm_operations_struct and added
 | 
						|
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 | 
						|
 * This is because under System V memory model, mappings created via
 | 
						|
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 | 
						|
 * their original vm_ops are overwritten with shm_vm_ops.
 | 
						|
 */
 | 
						|
const struct vm_operations_struct hugetlb_vm_ops = {
 | 
						|
	.fault = hugetlb_vm_op_fault,
 | 
						|
	.open = hugetlb_vm_op_open,
 | 
						|
	.close = hugetlb_vm_op_close,
 | 
						|
	.may_split = hugetlb_vm_op_split,
 | 
						|
	.pagesize = hugetlb_vm_op_pagesize,
 | 
						|
};
 | 
						|
 | 
						|
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
 | 
						|
				int writable)
 | 
						|
{
 | 
						|
	pte_t entry;
 | 
						|
	unsigned int shift = huge_page_shift(hstate_vma(vma));
 | 
						|
 | 
						|
	if (writable) {
 | 
						|
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
 | 
						|
					 vma->vm_page_prot)));
 | 
						|
	} else {
 | 
						|
		entry = huge_pte_wrprotect(mk_huge_pte(page,
 | 
						|
					   vma->vm_page_prot));
 | 
						|
	}
 | 
						|
	entry = pte_mkyoung(entry);
 | 
						|
	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
 | 
						|
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
static void set_huge_ptep_writable(struct vm_area_struct *vma,
 | 
						|
				   unsigned long address, pte_t *ptep)
 | 
						|
{
 | 
						|
	pte_t entry;
 | 
						|
 | 
						|
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
 | 
						|
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
 | 
						|
		update_mmu_cache(vma, address, ptep);
 | 
						|
}
 | 
						|
 | 
						|
bool is_hugetlb_entry_migration(pte_t pte)
 | 
						|
{
 | 
						|
	swp_entry_t swp;
 | 
						|
 | 
						|
	if (huge_pte_none(pte) || pte_present(pte))
 | 
						|
		return false;
 | 
						|
	swp = pte_to_swp_entry(pte);
 | 
						|
	if (is_migration_entry(swp))
 | 
						|
		return true;
 | 
						|
	else
 | 
						|
		return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
 | 
						|
{
 | 
						|
	swp_entry_t swp;
 | 
						|
 | 
						|
	if (huge_pte_none(pte) || pte_present(pte))
 | 
						|
		return false;
 | 
						|
	swp = pte_to_swp_entry(pte);
 | 
						|
	if (is_hwpoison_entry(swp))
 | 
						|
		return true;
 | 
						|
	else
 | 
						|
		return false;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
 | 
						|
		      struct folio *new_folio, pte_t old)
 | 
						|
{
 | 
						|
	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
 | 
						|
 | 
						|
	__folio_mark_uptodate(new_folio);
 | 
						|
	hugepage_add_new_anon_rmap(new_folio, vma, addr);
 | 
						|
	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
 | 
						|
		newpte = huge_pte_mkuffd_wp(newpte);
 | 
						|
	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
 | 
						|
	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
 | 
						|
	folio_set_hugetlb_migratable(new_folio);
 | 
						|
}
 | 
						|
 | 
						|
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
 | 
						|
			    struct vm_area_struct *dst_vma,
 | 
						|
			    struct vm_area_struct *src_vma)
 | 
						|
{
 | 
						|
	pte_t *src_pte, *dst_pte, entry;
 | 
						|
	struct page *ptepage;
 | 
						|
	unsigned long addr;
 | 
						|
	bool cow = is_cow_mapping(src_vma->vm_flags);
 | 
						|
	struct hstate *h = hstate_vma(src_vma);
 | 
						|
	unsigned long sz = huge_page_size(h);
 | 
						|
	unsigned long npages = pages_per_huge_page(h);
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
	unsigned long last_addr_mask;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (cow) {
 | 
						|
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
 | 
						|
					src_vma->vm_start,
 | 
						|
					src_vma->vm_end);
 | 
						|
		mmu_notifier_invalidate_range_start(&range);
 | 
						|
		mmap_assert_write_locked(src);
 | 
						|
		raw_write_seqcount_begin(&src->write_protect_seq);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * For shared mappings the vma lock must be held before
 | 
						|
		 * calling hugetlb_walk() in the src vma. Otherwise, the
 | 
						|
		 * returned ptep could go away if part of a shared pmd and
 | 
						|
		 * another thread calls huge_pmd_unshare.
 | 
						|
		 */
 | 
						|
		hugetlb_vma_lock_read(src_vma);
 | 
						|
	}
 | 
						|
 | 
						|
	last_addr_mask = hugetlb_mask_last_page(h);
 | 
						|
	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
 | 
						|
		spinlock_t *src_ptl, *dst_ptl;
 | 
						|
		src_pte = hugetlb_walk(src_vma, addr, sz);
 | 
						|
		if (!src_pte) {
 | 
						|
			addr |= last_addr_mask;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
 | 
						|
		if (!dst_pte) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the pagetables are shared don't copy or take references.
 | 
						|
		 *
 | 
						|
		 * dst_pte == src_pte is the common case of src/dest sharing.
 | 
						|
		 * However, src could have 'unshared' and dst shares with
 | 
						|
		 * another vma. So page_count of ptep page is checked instead
 | 
						|
		 * to reliably determine whether pte is shared.
 | 
						|
		 */
 | 
						|
		if (page_count(virt_to_page(dst_pte)) > 1) {
 | 
						|
			addr |= last_addr_mask;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
 | 
						|
		src_ptl = huge_pte_lockptr(h, src, src_pte);
 | 
						|
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | 
						|
		entry = huge_ptep_get(src_pte);
 | 
						|
again:
 | 
						|
		if (huge_pte_none(entry)) {
 | 
						|
			/*
 | 
						|
			 * Skip if src entry none.
 | 
						|
			 */
 | 
						|
			;
 | 
						|
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
 | 
						|
			if (!userfaultfd_wp(dst_vma))
 | 
						|
				entry = huge_pte_clear_uffd_wp(entry);
 | 
						|
			set_huge_pte_at(dst, addr, dst_pte, entry);
 | 
						|
		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
 | 
						|
			swp_entry_t swp_entry = pte_to_swp_entry(entry);
 | 
						|
			bool uffd_wp = pte_swp_uffd_wp(entry);
 | 
						|
 | 
						|
			if (!is_readable_migration_entry(swp_entry) && cow) {
 | 
						|
				/*
 | 
						|
				 * COW mappings require pages in both
 | 
						|
				 * parent and child to be set to read.
 | 
						|
				 */
 | 
						|
				swp_entry = make_readable_migration_entry(
 | 
						|
							swp_offset(swp_entry));
 | 
						|
				entry = swp_entry_to_pte(swp_entry);
 | 
						|
				if (userfaultfd_wp(src_vma) && uffd_wp)
 | 
						|
					entry = pte_swp_mkuffd_wp(entry);
 | 
						|
				set_huge_pte_at(src, addr, src_pte, entry);
 | 
						|
			}
 | 
						|
			if (!userfaultfd_wp(dst_vma))
 | 
						|
				entry = huge_pte_clear_uffd_wp(entry);
 | 
						|
			set_huge_pte_at(dst, addr, dst_pte, entry);
 | 
						|
		} else if (unlikely(is_pte_marker(entry))) {
 | 
						|
			/* No swap on hugetlb */
 | 
						|
			WARN_ON_ONCE(
 | 
						|
			    is_swapin_error_entry(pte_to_swp_entry(entry)));
 | 
						|
			/*
 | 
						|
			 * We copy the pte marker only if the dst vma has
 | 
						|
			 * uffd-wp enabled.
 | 
						|
			 */
 | 
						|
			if (userfaultfd_wp(dst_vma))
 | 
						|
				set_huge_pte_at(dst, addr, dst_pte, entry);
 | 
						|
		} else {
 | 
						|
			entry = huge_ptep_get(src_pte);
 | 
						|
			ptepage = pte_page(entry);
 | 
						|
			get_page(ptepage);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Failing to duplicate the anon rmap is a rare case
 | 
						|
			 * where we see pinned hugetlb pages while they're
 | 
						|
			 * prone to COW. We need to do the COW earlier during
 | 
						|
			 * fork.
 | 
						|
			 *
 | 
						|
			 * When pre-allocating the page or copying data, we
 | 
						|
			 * need to be without the pgtable locks since we could
 | 
						|
			 * sleep during the process.
 | 
						|
			 */
 | 
						|
			if (!PageAnon(ptepage)) {
 | 
						|
				page_dup_file_rmap(ptepage, true);
 | 
						|
			} else if (page_try_dup_anon_rmap(ptepage, true,
 | 
						|
							  src_vma)) {
 | 
						|
				pte_t src_pte_old = entry;
 | 
						|
				struct folio *new_folio;
 | 
						|
 | 
						|
				spin_unlock(src_ptl);
 | 
						|
				spin_unlock(dst_ptl);
 | 
						|
				/* Do not use reserve as it's private owned */
 | 
						|
				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
 | 
						|
				if (IS_ERR(new_folio)) {
 | 
						|
					put_page(ptepage);
 | 
						|
					ret = PTR_ERR(new_folio);
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				ret = copy_user_large_folio(new_folio,
 | 
						|
						      page_folio(ptepage),
 | 
						|
						      addr, dst_vma);
 | 
						|
				put_page(ptepage);
 | 
						|
				if (ret) {
 | 
						|
					folio_put(new_folio);
 | 
						|
					break;
 | 
						|
				}
 | 
						|
 | 
						|
				/* Install the new hugetlb folio if src pte stable */
 | 
						|
				dst_ptl = huge_pte_lock(h, dst, dst_pte);
 | 
						|
				src_ptl = huge_pte_lockptr(h, src, src_pte);
 | 
						|
				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | 
						|
				entry = huge_ptep_get(src_pte);
 | 
						|
				if (!pte_same(src_pte_old, entry)) {
 | 
						|
					restore_reserve_on_error(h, dst_vma, addr,
 | 
						|
								new_folio);
 | 
						|
					folio_put(new_folio);
 | 
						|
					/* huge_ptep of dst_pte won't change as in child */
 | 
						|
					goto again;
 | 
						|
				}
 | 
						|
				hugetlb_install_folio(dst_vma, dst_pte, addr,
 | 
						|
						      new_folio, src_pte_old);
 | 
						|
				spin_unlock(src_ptl);
 | 
						|
				spin_unlock(dst_ptl);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			if (cow) {
 | 
						|
				/*
 | 
						|
				 * No need to notify as we are downgrading page
 | 
						|
				 * table protection not changing it to point
 | 
						|
				 * to a new page.
 | 
						|
				 *
 | 
						|
				 * See Documentation/mm/mmu_notifier.rst
 | 
						|
				 */
 | 
						|
				huge_ptep_set_wrprotect(src, addr, src_pte);
 | 
						|
				entry = huge_pte_wrprotect(entry);
 | 
						|
			}
 | 
						|
 | 
						|
			if (!userfaultfd_wp(dst_vma))
 | 
						|
				entry = huge_pte_clear_uffd_wp(entry);
 | 
						|
 | 
						|
			set_huge_pte_at(dst, addr, dst_pte, entry);
 | 
						|
			hugetlb_count_add(npages, dst);
 | 
						|
		}
 | 
						|
		spin_unlock(src_ptl);
 | 
						|
		spin_unlock(dst_ptl);
 | 
						|
	}
 | 
						|
 | 
						|
	if (cow) {
 | 
						|
		raw_write_seqcount_end(&src->write_protect_seq);
 | 
						|
		mmu_notifier_invalidate_range_end(&range);
 | 
						|
	} else {
 | 
						|
		hugetlb_vma_unlock_read(src_vma);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
 | 
						|
			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	spinlock_t *src_ptl, *dst_ptl;
 | 
						|
	pte_t pte;
 | 
						|
 | 
						|
	dst_ptl = huge_pte_lock(h, mm, dst_pte);
 | 
						|
	src_ptl = huge_pte_lockptr(h, mm, src_pte);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't have to worry about the ordering of src and dst ptlocks
 | 
						|
	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
 | 
						|
	 */
 | 
						|
	if (src_ptl != dst_ptl)
 | 
						|
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | 
						|
 | 
						|
	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
 | 
						|
	set_huge_pte_at(mm, new_addr, dst_pte, pte);
 | 
						|
 | 
						|
	if (src_ptl != dst_ptl)
 | 
						|
		spin_unlock(src_ptl);
 | 
						|
	spin_unlock(dst_ptl);
 | 
						|
}
 | 
						|
 | 
						|
int move_hugetlb_page_tables(struct vm_area_struct *vma,
 | 
						|
			     struct vm_area_struct *new_vma,
 | 
						|
			     unsigned long old_addr, unsigned long new_addr,
 | 
						|
			     unsigned long len)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct address_space *mapping = vma->vm_file->f_mapping;
 | 
						|
	unsigned long sz = huge_page_size(h);
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long old_end = old_addr + len;
 | 
						|
	unsigned long last_addr_mask;
 | 
						|
	pte_t *src_pte, *dst_pte;
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
	bool shared_pmd = false;
 | 
						|
 | 
						|
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
 | 
						|
				old_end);
 | 
						|
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
 | 
						|
	/*
 | 
						|
	 * In case of shared PMDs, we should cover the maximum possible
 | 
						|
	 * range.
 | 
						|
	 */
 | 
						|
	flush_cache_range(vma, range.start, range.end);
 | 
						|
 | 
						|
	mmu_notifier_invalidate_range_start(&range);
 | 
						|
	last_addr_mask = hugetlb_mask_last_page(h);
 | 
						|
	/* Prevent race with file truncation */
 | 
						|
	hugetlb_vma_lock_write(vma);
 | 
						|
	i_mmap_lock_write(mapping);
 | 
						|
	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
 | 
						|
		src_pte = hugetlb_walk(vma, old_addr, sz);
 | 
						|
		if (!src_pte) {
 | 
						|
			old_addr |= last_addr_mask;
 | 
						|
			new_addr |= last_addr_mask;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (huge_pte_none(huge_ptep_get(src_pte)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
 | 
						|
			shared_pmd = true;
 | 
						|
			old_addr |= last_addr_mask;
 | 
						|
			new_addr |= last_addr_mask;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
 | 
						|
		if (!dst_pte)
 | 
						|
			break;
 | 
						|
 | 
						|
		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
 | 
						|
	}
 | 
						|
 | 
						|
	if (shared_pmd)
 | 
						|
		flush_tlb_range(vma, range.start, range.end);
 | 
						|
	else
 | 
						|
		flush_tlb_range(vma, old_end - len, old_end);
 | 
						|
	mmu_notifier_invalidate_range_end(&range);
 | 
						|
	i_mmap_unlock_write(mapping);
 | 
						|
	hugetlb_vma_unlock_write(vma);
 | 
						|
 | 
						|
	return len + old_addr - old_end;
 | 
						|
}
 | 
						|
 | 
						|
static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | 
						|
				   unsigned long start, unsigned long end,
 | 
						|
				   struct page *ref_page, zap_flags_t zap_flags)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long address;
 | 
						|
	pte_t *ptep;
 | 
						|
	pte_t pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	struct page *page;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	unsigned long sz = huge_page_size(h);
 | 
						|
	unsigned long last_addr_mask;
 | 
						|
	bool force_flush = false;
 | 
						|
 | 
						|
	WARN_ON(!is_vm_hugetlb_page(vma));
 | 
						|
	BUG_ON(start & ~huge_page_mask(h));
 | 
						|
	BUG_ON(end & ~huge_page_mask(h));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is a hugetlb vma, all the pte entries should point
 | 
						|
	 * to huge page.
 | 
						|
	 */
 | 
						|
	tlb_change_page_size(tlb, sz);
 | 
						|
	tlb_start_vma(tlb, vma);
 | 
						|
 | 
						|
	last_addr_mask = hugetlb_mask_last_page(h);
 | 
						|
	address = start;
 | 
						|
	for (; address < end; address += sz) {
 | 
						|
		ptep = hugetlb_walk(vma, address, sz);
 | 
						|
		if (!ptep) {
 | 
						|
			address |= last_addr_mask;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
		if (huge_pmd_unshare(mm, vma, address, ptep)) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
 | 
						|
			force_flush = true;
 | 
						|
			address |= last_addr_mask;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		pte = huge_ptep_get(ptep);
 | 
						|
		if (huge_pte_none(pte)) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Migrating hugepage or HWPoisoned hugepage is already
 | 
						|
		 * unmapped and its refcount is dropped, so just clear pte here.
 | 
						|
		 */
 | 
						|
		if (unlikely(!pte_present(pte))) {
 | 
						|
			/*
 | 
						|
			 * If the pte was wr-protected by uffd-wp in any of the
 | 
						|
			 * swap forms, meanwhile the caller does not want to
 | 
						|
			 * drop the uffd-wp bit in this zap, then replace the
 | 
						|
			 * pte with a marker.
 | 
						|
			 */
 | 
						|
			if (pte_swp_uffd_wp_any(pte) &&
 | 
						|
			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
 | 
						|
				set_huge_pte_at(mm, address, ptep,
 | 
						|
						make_pte_marker(PTE_MARKER_UFFD_WP));
 | 
						|
			else
 | 
						|
				huge_pte_clear(mm, address, ptep, sz);
 | 
						|
			spin_unlock(ptl);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		page = pte_page(pte);
 | 
						|
		/*
 | 
						|
		 * If a reference page is supplied, it is because a specific
 | 
						|
		 * page is being unmapped, not a range. Ensure the page we
 | 
						|
		 * are about to unmap is the actual page of interest.
 | 
						|
		 */
 | 
						|
		if (ref_page) {
 | 
						|
			if (page != ref_page) {
 | 
						|
				spin_unlock(ptl);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * Mark the VMA as having unmapped its page so that
 | 
						|
			 * future faults in this VMA will fail rather than
 | 
						|
			 * looking like data was lost
 | 
						|
			 */
 | 
						|
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
 | 
						|
		}
 | 
						|
 | 
						|
		pte = huge_ptep_get_and_clear(mm, address, ptep);
 | 
						|
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
 | 
						|
		if (huge_pte_dirty(pte))
 | 
						|
			set_page_dirty(page);
 | 
						|
		/* Leave a uffd-wp pte marker if needed */
 | 
						|
		if (huge_pte_uffd_wp(pte) &&
 | 
						|
		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
 | 
						|
			set_huge_pte_at(mm, address, ptep,
 | 
						|
					make_pte_marker(PTE_MARKER_UFFD_WP));
 | 
						|
		hugetlb_count_sub(pages_per_huge_page(h), mm);
 | 
						|
		page_remove_rmap(page, vma, true);
 | 
						|
 | 
						|
		spin_unlock(ptl);
 | 
						|
		tlb_remove_page_size(tlb, page, huge_page_size(h));
 | 
						|
		/*
 | 
						|
		 * Bail out after unmapping reference page if supplied
 | 
						|
		 */
 | 
						|
		if (ref_page)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	tlb_end_vma(tlb, vma);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
 | 
						|
	 * could defer the flush until now, since by holding i_mmap_rwsem we
 | 
						|
	 * guaranteed that the last refernece would not be dropped. But we must
 | 
						|
	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
 | 
						|
	 * dropped and the last reference to the shared PMDs page might be
 | 
						|
	 * dropped as well.
 | 
						|
	 *
 | 
						|
	 * In theory we could defer the freeing of the PMD pages as well, but
 | 
						|
	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
 | 
						|
	 * detect sharing, so we cannot defer the release of the page either.
 | 
						|
	 * Instead, do flush now.
 | 
						|
	 */
 | 
						|
	if (force_flush)
 | 
						|
		tlb_flush_mmu_tlbonly(tlb);
 | 
						|
}
 | 
						|
 | 
						|
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
 | 
						|
			  struct vm_area_struct *vma, unsigned long start,
 | 
						|
			  unsigned long end, struct page *ref_page,
 | 
						|
			  zap_flags_t zap_flags)
 | 
						|
{
 | 
						|
	hugetlb_vma_lock_write(vma);
 | 
						|
	i_mmap_lock_write(vma->vm_file->f_mapping);
 | 
						|
 | 
						|
	/* mmu notification performed in caller */
 | 
						|
	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
 | 
						|
 | 
						|
	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
 | 
						|
		/*
 | 
						|
		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
 | 
						|
		 * When the vma_lock is freed, this makes the vma ineligible
 | 
						|
		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
 | 
						|
		 * pmd sharing.  This is important as page tables for this
 | 
						|
		 * unmapped range will be asynchrously deleted.  If the page
 | 
						|
		 * tables are shared, there will be issues when accessed by
 | 
						|
		 * someone else.
 | 
						|
		 */
 | 
						|
		__hugetlb_vma_unlock_write_free(vma);
 | 
						|
		i_mmap_unlock_write(vma->vm_file->f_mapping);
 | 
						|
	} else {
 | 
						|
		i_mmap_unlock_write(vma->vm_file->f_mapping);
 | 
						|
		hugetlb_vma_unlock_write(vma);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
 | 
						|
			  unsigned long end, struct page *ref_page,
 | 
						|
			  zap_flags_t zap_flags)
 | 
						|
{
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
	struct mmu_gather tlb;
 | 
						|
 | 
						|
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
 | 
						|
				start, end);
 | 
						|
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
 | 
						|
	mmu_notifier_invalidate_range_start(&range);
 | 
						|
	tlb_gather_mmu(&tlb, vma->vm_mm);
 | 
						|
 | 
						|
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
 | 
						|
 | 
						|
	mmu_notifier_invalidate_range_end(&range);
 | 
						|
	tlb_finish_mmu(&tlb);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 | 
						|
 * mapping it owns the reserve page for. The intention is to unmap the page
 | 
						|
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 | 
						|
 * same region.
 | 
						|
 */
 | 
						|
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
			      struct page *page, unsigned long address)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct vm_area_struct *iter_vma;
 | 
						|
	struct address_space *mapping;
 | 
						|
	pgoff_t pgoff;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
 | 
						|
	 * from page cache lookup which is in HPAGE_SIZE units.
 | 
						|
	 */
 | 
						|
	address = address & huge_page_mask(h);
 | 
						|
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
 | 
						|
			vma->vm_pgoff;
 | 
						|
	mapping = vma->vm_file->f_mapping;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Take the mapping lock for the duration of the table walk. As
 | 
						|
	 * this mapping should be shared between all the VMAs,
 | 
						|
	 * __unmap_hugepage_range() is called as the lock is already held
 | 
						|
	 */
 | 
						|
	i_mmap_lock_write(mapping);
 | 
						|
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
 | 
						|
		/* Do not unmap the current VMA */
 | 
						|
		if (iter_vma == vma)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Shared VMAs have their own reserves and do not affect
 | 
						|
		 * MAP_PRIVATE accounting but it is possible that a shared
 | 
						|
		 * VMA is using the same page so check and skip such VMAs.
 | 
						|
		 */
 | 
						|
		if (iter_vma->vm_flags & VM_MAYSHARE)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Unmap the page from other VMAs without their own reserves.
 | 
						|
		 * They get marked to be SIGKILLed if they fault in these
 | 
						|
		 * areas. This is because a future no-page fault on this VMA
 | 
						|
		 * could insert a zeroed page instead of the data existing
 | 
						|
		 * from the time of fork. This would look like data corruption
 | 
						|
		 */
 | 
						|
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
 | 
						|
			unmap_hugepage_range(iter_vma, address,
 | 
						|
					     address + huge_page_size(h), page, 0);
 | 
						|
	}
 | 
						|
	i_mmap_unlock_write(mapping);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * hugetlb_wp() should be called with page lock of the original hugepage held.
 | 
						|
 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
 | 
						|
 * cannot race with other handlers or page migration.
 | 
						|
 * Keep the pte_same checks anyway to make transition from the mutex easier.
 | 
						|
 */
 | 
						|
static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
		       unsigned long address, pte_t *ptep, unsigned int flags,
 | 
						|
		       struct folio *pagecache_folio, spinlock_t *ptl)
 | 
						|
{
 | 
						|
	const bool unshare = flags & FAULT_FLAG_UNSHARE;
 | 
						|
	pte_t pte = huge_ptep_get(ptep);
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct page *old_page;
 | 
						|
	struct folio *new_folio;
 | 
						|
	int outside_reserve = 0;
 | 
						|
	vm_fault_t ret = 0;
 | 
						|
	unsigned long haddr = address & huge_page_mask(h);
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Never handle CoW for uffd-wp protected pages.  It should be only
 | 
						|
	 * handled when the uffd-wp protection is removed.
 | 
						|
	 *
 | 
						|
	 * Note that only the CoW optimization path (in hugetlb_no_page())
 | 
						|
	 * can trigger this, because hugetlb_fault() will always resolve
 | 
						|
	 * uffd-wp bit first.
 | 
						|
	 */
 | 
						|
	if (!unshare && huge_pte_uffd_wp(pte))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
 | 
						|
	 * PTE mapped R/O such as maybe_mkwrite() would do.
 | 
						|
	 */
 | 
						|
	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
 | 
						|
		return VM_FAULT_SIGSEGV;
 | 
						|
 | 
						|
	/* Let's take out MAP_SHARED mappings first. */
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		set_huge_ptep_writable(vma, haddr, ptep);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	old_page = pte_page(pte);
 | 
						|
 | 
						|
	delayacct_wpcopy_start();
 | 
						|
 | 
						|
retry_avoidcopy:
 | 
						|
	/*
 | 
						|
	 * If no-one else is actually using this page, we're the exclusive
 | 
						|
	 * owner and can reuse this page.
 | 
						|
	 */
 | 
						|
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
 | 
						|
		if (!PageAnonExclusive(old_page))
 | 
						|
			page_move_anon_rmap(old_page, vma);
 | 
						|
		if (likely(!unshare))
 | 
						|
			set_huge_ptep_writable(vma, haddr, ptep);
 | 
						|
 | 
						|
		delayacct_wpcopy_end();
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
 | 
						|
		       old_page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the process that created a MAP_PRIVATE mapping is about to
 | 
						|
	 * perform a COW due to a shared page count, attempt to satisfy
 | 
						|
	 * the allocation without using the existing reserves. The pagecache
 | 
						|
	 * page is used to determine if the reserve at this address was
 | 
						|
	 * consumed or not. If reserves were used, a partial faulted mapping
 | 
						|
	 * at the time of fork() could consume its reserves on COW instead
 | 
						|
	 * of the full address range.
 | 
						|
	 */
 | 
						|
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
 | 
						|
			page_folio(old_page) != pagecache_folio)
 | 
						|
		outside_reserve = 1;
 | 
						|
 | 
						|
	get_page(old_page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Drop page table lock as buddy allocator may be called. It will
 | 
						|
	 * be acquired again before returning to the caller, as expected.
 | 
						|
	 */
 | 
						|
	spin_unlock(ptl);
 | 
						|
	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
 | 
						|
 | 
						|
	if (IS_ERR(new_folio)) {
 | 
						|
		/*
 | 
						|
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
 | 
						|
		 * it is due to references held by a child and an insufficient
 | 
						|
		 * huge page pool. To guarantee the original mappers
 | 
						|
		 * reliability, unmap the page from child processes. The child
 | 
						|
		 * may get SIGKILLed if it later faults.
 | 
						|
		 */
 | 
						|
		if (outside_reserve) {
 | 
						|
			struct address_space *mapping = vma->vm_file->f_mapping;
 | 
						|
			pgoff_t idx;
 | 
						|
			u32 hash;
 | 
						|
 | 
						|
			put_page(old_page);
 | 
						|
			/*
 | 
						|
			 * Drop hugetlb_fault_mutex and vma_lock before
 | 
						|
			 * unmapping.  unmapping needs to hold vma_lock
 | 
						|
			 * in write mode.  Dropping vma_lock in read mode
 | 
						|
			 * here is OK as COW mappings do not interact with
 | 
						|
			 * PMD sharing.
 | 
						|
			 *
 | 
						|
			 * Reacquire both after unmap operation.
 | 
						|
			 */
 | 
						|
			idx = vma_hugecache_offset(h, vma, haddr);
 | 
						|
			hash = hugetlb_fault_mutex_hash(mapping, idx);
 | 
						|
			hugetlb_vma_unlock_read(vma);
 | 
						|
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
 | 
						|
			unmap_ref_private(mm, vma, old_page, haddr);
 | 
						|
 | 
						|
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
			hugetlb_vma_lock_read(vma);
 | 
						|
			spin_lock(ptl);
 | 
						|
			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
 | 
						|
			if (likely(ptep &&
 | 
						|
				   pte_same(huge_ptep_get(ptep), pte)))
 | 
						|
				goto retry_avoidcopy;
 | 
						|
			/*
 | 
						|
			 * race occurs while re-acquiring page table
 | 
						|
			 * lock, and our job is done.
 | 
						|
			 */
 | 
						|
			delayacct_wpcopy_end();
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = vmf_error(PTR_ERR(new_folio));
 | 
						|
		goto out_release_old;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When the original hugepage is shared one, it does not have
 | 
						|
	 * anon_vma prepared.
 | 
						|
	 */
 | 
						|
	if (unlikely(anon_vma_prepare(vma))) {
 | 
						|
		ret = VM_FAULT_OOM;
 | 
						|
		goto out_release_all;
 | 
						|
	}
 | 
						|
 | 
						|
	if (copy_user_large_folio(new_folio, page_folio(old_page), address, vma)) {
 | 
						|
		ret = VM_FAULT_HWPOISON_LARGE;
 | 
						|
		goto out_release_all;
 | 
						|
	}
 | 
						|
	__folio_mark_uptodate(new_folio);
 | 
						|
 | 
						|
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
 | 
						|
				haddr + huge_page_size(h));
 | 
						|
	mmu_notifier_invalidate_range_start(&range);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Retake the page table lock to check for racing updates
 | 
						|
	 * before the page tables are altered
 | 
						|
	 */
 | 
						|
	spin_lock(ptl);
 | 
						|
	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
 | 
						|
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
 | 
						|
		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
 | 
						|
 | 
						|
		/* Break COW or unshare */
 | 
						|
		huge_ptep_clear_flush(vma, haddr, ptep);
 | 
						|
		mmu_notifier_invalidate_range(mm, range.start, range.end);
 | 
						|
		page_remove_rmap(old_page, vma, true);
 | 
						|
		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
 | 
						|
		if (huge_pte_uffd_wp(pte))
 | 
						|
			newpte = huge_pte_mkuffd_wp(newpte);
 | 
						|
		set_huge_pte_at(mm, haddr, ptep, newpte);
 | 
						|
		folio_set_hugetlb_migratable(new_folio);
 | 
						|
		/* Make the old page be freed below */
 | 
						|
		new_folio = page_folio(old_page);
 | 
						|
	}
 | 
						|
	spin_unlock(ptl);
 | 
						|
	mmu_notifier_invalidate_range_end(&range);
 | 
						|
out_release_all:
 | 
						|
	/*
 | 
						|
	 * No restore in case of successful pagetable update (Break COW or
 | 
						|
	 * unshare)
 | 
						|
	 */
 | 
						|
	if (new_folio != page_folio(old_page))
 | 
						|
		restore_reserve_on_error(h, vma, haddr, new_folio);
 | 
						|
	folio_put(new_folio);
 | 
						|
out_release_old:
 | 
						|
	put_page(old_page);
 | 
						|
 | 
						|
	spin_lock(ptl); /* Caller expects lock to be held */
 | 
						|
 | 
						|
	delayacct_wpcopy_end();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return whether there is a pagecache page to back given address within VMA.
 | 
						|
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 | 
						|
 */
 | 
						|
static bool hugetlbfs_pagecache_present(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long address)
 | 
						|
{
 | 
						|
	struct address_space *mapping = vma->vm_file->f_mapping;
 | 
						|
	pgoff_t idx = vma_hugecache_offset(h, vma, address);
 | 
						|
	bool present;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	present = page_cache_next_miss(mapping, idx, 1) != idx;
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return present;
 | 
						|
}
 | 
						|
 | 
						|
int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
 | 
						|
			   pgoff_t idx)
 | 
						|
{
 | 
						|
	struct inode *inode = mapping->host;
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	int err;
 | 
						|
 | 
						|
	__folio_set_locked(folio);
 | 
						|
	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
 | 
						|
 | 
						|
	if (unlikely(err)) {
 | 
						|
		__folio_clear_locked(folio);
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
	folio_clear_hugetlb_restore_reserve(folio);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * mark folio dirty so that it will not be removed from cache/file
 | 
						|
	 * by non-hugetlbfs specific code paths.
 | 
						|
	 */
 | 
						|
	folio_mark_dirty(folio);
 | 
						|
 | 
						|
	spin_lock(&inode->i_lock);
 | 
						|
	inode->i_blocks += blocks_per_huge_page(h);
 | 
						|
	spin_unlock(&inode->i_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
 | 
						|
						  struct address_space *mapping,
 | 
						|
						  pgoff_t idx,
 | 
						|
						  unsigned int flags,
 | 
						|
						  unsigned long haddr,
 | 
						|
						  unsigned long addr,
 | 
						|
						  unsigned long reason)
 | 
						|
{
 | 
						|
	u32 hash;
 | 
						|
	struct vm_fault vmf = {
 | 
						|
		.vma = vma,
 | 
						|
		.address = haddr,
 | 
						|
		.real_address = addr,
 | 
						|
		.flags = flags,
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Hard to debug if it ends up being
 | 
						|
		 * used by a callee that assumes
 | 
						|
		 * something about the other
 | 
						|
		 * uninitialized fields... same as in
 | 
						|
		 * memory.c
 | 
						|
		 */
 | 
						|
	};
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
 | 
						|
	 * userfault. Also mmap_lock could be dropped due to handling
 | 
						|
	 * userfault, any vma operation should be careful from here.
 | 
						|
	 */
 | 
						|
	hugetlb_vma_unlock_read(vma);
 | 
						|
	hash = hugetlb_fault_mutex_hash(mapping, idx);
 | 
						|
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
	return handle_userfault(&vmf, reason);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
 | 
						|
 * false if pte changed or is changing.
 | 
						|
 */
 | 
						|
static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
 | 
						|
			       pte_t *ptep, pte_t old_pte)
 | 
						|
{
 | 
						|
	spinlock_t *ptl;
 | 
						|
	bool same;
 | 
						|
 | 
						|
	ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
	same = pte_same(huge_ptep_get(ptep), old_pte);
 | 
						|
	spin_unlock(ptl);
 | 
						|
 | 
						|
	return same;
 | 
						|
}
 | 
						|
 | 
						|
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
 | 
						|
			struct vm_area_struct *vma,
 | 
						|
			struct address_space *mapping, pgoff_t idx,
 | 
						|
			unsigned long address, pte_t *ptep,
 | 
						|
			pte_t old_pte, unsigned int flags)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	vm_fault_t ret = VM_FAULT_SIGBUS;
 | 
						|
	int anon_rmap = 0;
 | 
						|
	unsigned long size;
 | 
						|
	struct folio *folio;
 | 
						|
	pte_t new_pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	unsigned long haddr = address & huge_page_mask(h);
 | 
						|
	bool new_folio, new_pagecache_folio = false;
 | 
						|
	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Currently, we are forced to kill the process in the event the
 | 
						|
	 * original mapper has unmapped pages from the child due to a failed
 | 
						|
	 * COW/unsharing. Warn that such a situation has occurred as it may not
 | 
						|
	 * be obvious.
 | 
						|
	 */
 | 
						|
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
 | 
						|
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
 | 
						|
			   current->pid);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use page lock to guard against racing truncation
 | 
						|
	 * before we get page_table_lock.
 | 
						|
	 */
 | 
						|
	new_folio = false;
 | 
						|
	folio = filemap_lock_folio(mapping, idx);
 | 
						|
	if (IS_ERR(folio)) {
 | 
						|
		size = i_size_read(mapping->host) >> huge_page_shift(h);
 | 
						|
		if (idx >= size)
 | 
						|
			goto out;
 | 
						|
		/* Check for page in userfault range */
 | 
						|
		if (userfaultfd_missing(vma)) {
 | 
						|
			/*
 | 
						|
			 * Since hugetlb_no_page() was examining pte
 | 
						|
			 * without pgtable lock, we need to re-test under
 | 
						|
			 * lock because the pte may not be stable and could
 | 
						|
			 * have changed from under us.  Try to detect
 | 
						|
			 * either changed or during-changing ptes and retry
 | 
						|
			 * properly when needed.
 | 
						|
			 *
 | 
						|
			 * Note that userfaultfd is actually fine with
 | 
						|
			 * false positives (e.g. caused by pte changed),
 | 
						|
			 * but not wrong logical events (e.g. caused by
 | 
						|
			 * reading a pte during changing).  The latter can
 | 
						|
			 * confuse the userspace, so the strictness is very
 | 
						|
			 * much preferred.  E.g., MISSING event should
 | 
						|
			 * never happen on the page after UFFDIO_COPY has
 | 
						|
			 * correctly installed the page and returned.
 | 
						|
			 */
 | 
						|
			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
 | 
						|
				ret = 0;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
 | 
						|
			return hugetlb_handle_userfault(vma, mapping, idx, flags,
 | 
						|
							haddr, address,
 | 
						|
							VM_UFFD_MISSING);
 | 
						|
		}
 | 
						|
 | 
						|
		folio = alloc_hugetlb_folio(vma, haddr, 0);
 | 
						|
		if (IS_ERR(folio)) {
 | 
						|
			/*
 | 
						|
			 * Returning error will result in faulting task being
 | 
						|
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
 | 
						|
			 * tasks from racing to fault in the same page which
 | 
						|
			 * could result in false unable to allocate errors.
 | 
						|
			 * Page migration does not take the fault mutex, but
 | 
						|
			 * does a clear then write of pte's under page table
 | 
						|
			 * lock.  Page fault code could race with migration,
 | 
						|
			 * notice the clear pte and try to allocate a page
 | 
						|
			 * here.  Before returning error, get ptl and make
 | 
						|
			 * sure there really is no pte entry.
 | 
						|
			 */
 | 
						|
			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
 | 
						|
				ret = vmf_error(PTR_ERR(folio));
 | 
						|
			else
 | 
						|
				ret = 0;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
 | 
						|
		__folio_mark_uptodate(folio);
 | 
						|
		new_folio = true;
 | 
						|
 | 
						|
		if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
 | 
						|
			if (err) {
 | 
						|
				/*
 | 
						|
				 * err can't be -EEXIST which implies someone
 | 
						|
				 * else consumed the reservation since hugetlb
 | 
						|
				 * fault mutex is held when add a hugetlb page
 | 
						|
				 * to the page cache. So it's safe to call
 | 
						|
				 * restore_reserve_on_error() here.
 | 
						|
				 */
 | 
						|
				restore_reserve_on_error(h, vma, haddr, folio);
 | 
						|
				folio_put(folio);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			new_pagecache_folio = true;
 | 
						|
		} else {
 | 
						|
			folio_lock(folio);
 | 
						|
			if (unlikely(anon_vma_prepare(vma))) {
 | 
						|
				ret = VM_FAULT_OOM;
 | 
						|
				goto backout_unlocked;
 | 
						|
			}
 | 
						|
			anon_rmap = 1;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * If memory error occurs between mmap() and fault, some process
 | 
						|
		 * don't have hwpoisoned swap entry for errored virtual address.
 | 
						|
		 * So we need to block hugepage fault by PG_hwpoison bit check.
 | 
						|
		 */
 | 
						|
		if (unlikely(folio_test_hwpoison(folio))) {
 | 
						|
			ret = VM_FAULT_HWPOISON_LARGE |
 | 
						|
				VM_FAULT_SET_HINDEX(hstate_index(h));
 | 
						|
			goto backout_unlocked;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Check for page in userfault range. */
 | 
						|
		if (userfaultfd_minor(vma)) {
 | 
						|
			folio_unlock(folio);
 | 
						|
			folio_put(folio);
 | 
						|
			/* See comment in userfaultfd_missing() block above */
 | 
						|
			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
 | 
						|
				ret = 0;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			return hugetlb_handle_userfault(vma, mapping, idx, flags,
 | 
						|
							haddr, address,
 | 
						|
							VM_UFFD_MINOR);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are going to COW a private mapping later, we examine the
 | 
						|
	 * pending reservations for this page now. This will ensure that
 | 
						|
	 * any allocations necessary to record that reservation occur outside
 | 
						|
	 * the spinlock.
 | 
						|
	 */
 | 
						|
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 | 
						|
		if (vma_needs_reservation(h, vma, haddr) < 0) {
 | 
						|
			ret = VM_FAULT_OOM;
 | 
						|
			goto backout_unlocked;
 | 
						|
		}
 | 
						|
		/* Just decrements count, does not deallocate */
 | 
						|
		vma_end_reservation(h, vma, haddr);
 | 
						|
	}
 | 
						|
 | 
						|
	ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
	ret = 0;
 | 
						|
	/* If pte changed from under us, retry */
 | 
						|
	if (!pte_same(huge_ptep_get(ptep), old_pte))
 | 
						|
		goto backout;
 | 
						|
 | 
						|
	if (anon_rmap)
 | 
						|
		hugepage_add_new_anon_rmap(folio, vma, haddr);
 | 
						|
	else
 | 
						|
		page_dup_file_rmap(&folio->page, true);
 | 
						|
	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
 | 
						|
				&& (vma->vm_flags & VM_SHARED)));
 | 
						|
	/*
 | 
						|
	 * If this pte was previously wr-protected, keep it wr-protected even
 | 
						|
	 * if populated.
 | 
						|
	 */
 | 
						|
	if (unlikely(pte_marker_uffd_wp(old_pte)))
 | 
						|
		new_pte = huge_pte_mkuffd_wp(new_pte);
 | 
						|
	set_huge_pte_at(mm, haddr, ptep, new_pte);
 | 
						|
 | 
						|
	hugetlb_count_add(pages_per_huge_page(h), mm);
 | 
						|
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 | 
						|
		/* Optimization, do the COW without a second fault */
 | 
						|
		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(ptl);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
 | 
						|
	 * found in the pagecache may not have hugetlb_migratable if they have
 | 
						|
	 * been isolated for migration.
 | 
						|
	 */
 | 
						|
	if (new_folio)
 | 
						|
		folio_set_hugetlb_migratable(folio);
 | 
						|
 | 
						|
	folio_unlock(folio);
 | 
						|
out:
 | 
						|
	hugetlb_vma_unlock_read(vma);
 | 
						|
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
	return ret;
 | 
						|
 | 
						|
backout:
 | 
						|
	spin_unlock(ptl);
 | 
						|
backout_unlocked:
 | 
						|
	if (new_folio && !new_pagecache_folio)
 | 
						|
		restore_reserve_on_error(h, vma, haddr, folio);
 | 
						|
 | 
						|
	folio_unlock(folio);
 | 
						|
	folio_put(folio);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 | 
						|
{
 | 
						|
	unsigned long key[2];
 | 
						|
	u32 hash;
 | 
						|
 | 
						|
	key[0] = (unsigned long) mapping;
 | 
						|
	key[1] = idx;
 | 
						|
 | 
						|
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
 | 
						|
 | 
						|
	return hash & (num_fault_mutexes - 1);
 | 
						|
}
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * For uniprocessor systems we always use a single mutex, so just
 | 
						|
 * return 0 and avoid the hashing overhead.
 | 
						|
 */
 | 
						|
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
			unsigned long address, unsigned int flags)
 | 
						|
{
 | 
						|
	pte_t *ptep, entry;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	vm_fault_t ret;
 | 
						|
	u32 hash;
 | 
						|
	pgoff_t idx;
 | 
						|
	struct page *page = NULL;
 | 
						|
	struct folio *pagecache_folio = NULL;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct address_space *mapping;
 | 
						|
	int need_wait_lock = 0;
 | 
						|
	unsigned long haddr = address & huge_page_mask(h);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Serialize hugepage allocation and instantiation, so that we don't
 | 
						|
	 * get spurious allocation failures if two CPUs race to instantiate
 | 
						|
	 * the same page in the page cache.
 | 
						|
	 */
 | 
						|
	mapping = vma->vm_file->f_mapping;
 | 
						|
	idx = vma_hugecache_offset(h, vma, haddr);
 | 
						|
	hash = hugetlb_fault_mutex_hash(mapping, idx);
 | 
						|
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Acquire vma lock before calling huge_pte_alloc and hold
 | 
						|
	 * until finished with ptep.  This prevents huge_pmd_unshare from
 | 
						|
	 * being called elsewhere and making the ptep no longer valid.
 | 
						|
	 */
 | 
						|
	hugetlb_vma_lock_read(vma);
 | 
						|
	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
 | 
						|
	if (!ptep) {
 | 
						|
		hugetlb_vma_unlock_read(vma);
 | 
						|
		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
		return VM_FAULT_OOM;
 | 
						|
	}
 | 
						|
 | 
						|
	entry = huge_ptep_get(ptep);
 | 
						|
	/* PTE markers should be handled the same way as none pte */
 | 
						|
	if (huge_pte_none_mostly(entry))
 | 
						|
		/*
 | 
						|
		 * hugetlb_no_page will drop vma lock and hugetlb fault
 | 
						|
		 * mutex internally, which make us return immediately.
 | 
						|
		 */
 | 
						|
		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
 | 
						|
				      entry, flags);
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * entry could be a migration/hwpoison entry at this point, so this
 | 
						|
	 * check prevents the kernel from going below assuming that we have
 | 
						|
	 * an active hugepage in pagecache. This goto expects the 2nd page
 | 
						|
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
 | 
						|
	 * properly handle it.
 | 
						|
	 */
 | 
						|
	if (!pte_present(entry)) {
 | 
						|
		if (unlikely(is_hugetlb_entry_migration(entry))) {
 | 
						|
			/*
 | 
						|
			 * Release the hugetlb fault lock now, but retain
 | 
						|
			 * the vma lock, because it is needed to guard the
 | 
						|
			 * huge_pte_lockptr() later in
 | 
						|
			 * migration_entry_wait_huge(). The vma lock will
 | 
						|
			 * be released there.
 | 
						|
			 */
 | 
						|
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
			migration_entry_wait_huge(vma, ptep);
 | 
						|
			return 0;
 | 
						|
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
 | 
						|
			ret = VM_FAULT_HWPOISON_LARGE |
 | 
						|
			    VM_FAULT_SET_HINDEX(hstate_index(h));
 | 
						|
		goto out_mutex;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are going to COW/unshare the mapping later, we examine the
 | 
						|
	 * pending reservations for this page now. This will ensure that any
 | 
						|
	 * allocations necessary to record that reservation occur outside the
 | 
						|
	 * spinlock. Also lookup the pagecache page now as it is used to
 | 
						|
	 * determine if a reservation has been consumed.
 | 
						|
	 */
 | 
						|
	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
 | 
						|
	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
 | 
						|
		if (vma_needs_reservation(h, vma, haddr) < 0) {
 | 
						|
			ret = VM_FAULT_OOM;
 | 
						|
			goto out_mutex;
 | 
						|
		}
 | 
						|
		/* Just decrements count, does not deallocate */
 | 
						|
		vma_end_reservation(h, vma, haddr);
 | 
						|
 | 
						|
		pagecache_folio = filemap_lock_folio(mapping, idx);
 | 
						|
		if (IS_ERR(pagecache_folio))
 | 
						|
			pagecache_folio = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
 | 
						|
	/* Check for a racing update before calling hugetlb_wp() */
 | 
						|
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
 | 
						|
		goto out_ptl;
 | 
						|
 | 
						|
	/* Handle userfault-wp first, before trying to lock more pages */
 | 
						|
	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
 | 
						|
	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
 | 
						|
		struct vm_fault vmf = {
 | 
						|
			.vma = vma,
 | 
						|
			.address = haddr,
 | 
						|
			.real_address = address,
 | 
						|
			.flags = flags,
 | 
						|
		};
 | 
						|
 | 
						|
		spin_unlock(ptl);
 | 
						|
		if (pagecache_folio) {
 | 
						|
			folio_unlock(pagecache_folio);
 | 
						|
			folio_put(pagecache_folio);
 | 
						|
		}
 | 
						|
		hugetlb_vma_unlock_read(vma);
 | 
						|
		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
		return handle_userfault(&vmf, VM_UFFD_WP);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * hugetlb_wp() requires page locks of pte_page(entry) and
 | 
						|
	 * pagecache_folio, so here we need take the former one
 | 
						|
	 * when page != pagecache_folio or !pagecache_folio.
 | 
						|
	 */
 | 
						|
	page = pte_page(entry);
 | 
						|
	if (page_folio(page) != pagecache_folio)
 | 
						|
		if (!trylock_page(page)) {
 | 
						|
			need_wait_lock = 1;
 | 
						|
			goto out_ptl;
 | 
						|
		}
 | 
						|
 | 
						|
	get_page(page);
 | 
						|
 | 
						|
	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
 | 
						|
		if (!huge_pte_write(entry)) {
 | 
						|
			ret = hugetlb_wp(mm, vma, address, ptep, flags,
 | 
						|
					 pagecache_folio, ptl);
 | 
						|
			goto out_put_page;
 | 
						|
		} else if (likely(flags & FAULT_FLAG_WRITE)) {
 | 
						|
			entry = huge_pte_mkdirty(entry);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	entry = pte_mkyoung(entry);
 | 
						|
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
 | 
						|
						flags & FAULT_FLAG_WRITE))
 | 
						|
		update_mmu_cache(vma, haddr, ptep);
 | 
						|
out_put_page:
 | 
						|
	if (page_folio(page) != pagecache_folio)
 | 
						|
		unlock_page(page);
 | 
						|
	put_page(page);
 | 
						|
out_ptl:
 | 
						|
	spin_unlock(ptl);
 | 
						|
 | 
						|
	if (pagecache_folio) {
 | 
						|
		folio_unlock(pagecache_folio);
 | 
						|
		folio_put(pagecache_folio);
 | 
						|
	}
 | 
						|
out_mutex:
 | 
						|
	hugetlb_vma_unlock_read(vma);
 | 
						|
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
	/*
 | 
						|
	 * Generally it's safe to hold refcount during waiting page lock. But
 | 
						|
	 * here we just wait to defer the next page fault to avoid busy loop and
 | 
						|
	 * the page is not used after unlocked before returning from the current
 | 
						|
	 * page fault. So we are safe from accessing freed page, even if we wait
 | 
						|
	 * here without taking refcount.
 | 
						|
	 */
 | 
						|
	if (need_wait_lock)
 | 
						|
		wait_on_page_locked(page);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_USERFAULTFD
 | 
						|
/*
 | 
						|
 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
 | 
						|
 * with modifications for hugetlb pages.
 | 
						|
 */
 | 
						|
int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
 | 
						|
			     struct vm_area_struct *dst_vma,
 | 
						|
			     unsigned long dst_addr,
 | 
						|
			     unsigned long src_addr,
 | 
						|
			     uffd_flags_t flags,
 | 
						|
			     struct folio **foliop)
 | 
						|
{
 | 
						|
	struct mm_struct *dst_mm = dst_vma->vm_mm;
 | 
						|
	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
 | 
						|
	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
 | 
						|
	struct hstate *h = hstate_vma(dst_vma);
 | 
						|
	struct address_space *mapping = dst_vma->vm_file->f_mapping;
 | 
						|
	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
 | 
						|
	unsigned long size;
 | 
						|
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
 | 
						|
	pte_t _dst_pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	int ret = -ENOMEM;
 | 
						|
	struct folio *folio;
 | 
						|
	int writable;
 | 
						|
	bool folio_in_pagecache = false;
 | 
						|
 | 
						|
	if (is_continue) {
 | 
						|
		ret = -EFAULT;
 | 
						|
		folio = filemap_lock_folio(mapping, idx);
 | 
						|
		if (IS_ERR(folio))
 | 
						|
			goto out;
 | 
						|
		folio_in_pagecache = true;
 | 
						|
	} else if (!*foliop) {
 | 
						|
		/* If a folio already exists, then it's UFFDIO_COPY for
 | 
						|
		 * a non-missing case. Return -EEXIST.
 | 
						|
		 */
 | 
						|
		if (vm_shared &&
 | 
						|
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
 | 
						|
			ret = -EEXIST;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
 | 
						|
		if (IS_ERR(folio)) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
 | 
						|
					   false);
 | 
						|
 | 
						|
		/* fallback to copy_from_user outside mmap_lock */
 | 
						|
		if (unlikely(ret)) {
 | 
						|
			ret = -ENOENT;
 | 
						|
			/* Free the allocated folio which may have
 | 
						|
			 * consumed a reservation.
 | 
						|
			 */
 | 
						|
			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
 | 
						|
			folio_put(folio);
 | 
						|
 | 
						|
			/* Allocate a temporary folio to hold the copied
 | 
						|
			 * contents.
 | 
						|
			 */
 | 
						|
			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
 | 
						|
			if (!folio) {
 | 
						|
				ret = -ENOMEM;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			*foliop = folio;
 | 
						|
			/* Set the outparam foliop and return to the caller to
 | 
						|
			 * copy the contents outside the lock. Don't free the
 | 
						|
			 * folio.
 | 
						|
			 */
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (vm_shared &&
 | 
						|
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
 | 
						|
			folio_put(*foliop);
 | 
						|
			ret = -EEXIST;
 | 
						|
			*foliop = NULL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
 | 
						|
		if (IS_ERR(folio)) {
 | 
						|
			folio_put(*foliop);
 | 
						|
			ret = -ENOMEM;
 | 
						|
			*foliop = NULL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
 | 
						|
		folio_put(*foliop);
 | 
						|
		*foliop = NULL;
 | 
						|
		if (ret) {
 | 
						|
			folio_put(folio);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The memory barrier inside __folio_mark_uptodate makes sure that
 | 
						|
	 * preceding stores to the page contents become visible before
 | 
						|
	 * the set_pte_at() write.
 | 
						|
	 */
 | 
						|
	__folio_mark_uptodate(folio);
 | 
						|
 | 
						|
	/* Add shared, newly allocated pages to the page cache. */
 | 
						|
	if (vm_shared && !is_continue) {
 | 
						|
		size = i_size_read(mapping->host) >> huge_page_shift(h);
 | 
						|
		ret = -EFAULT;
 | 
						|
		if (idx >= size)
 | 
						|
			goto out_release_nounlock;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Serialization between remove_inode_hugepages() and
 | 
						|
		 * hugetlb_add_to_page_cache() below happens through the
 | 
						|
		 * hugetlb_fault_mutex_table that here must be hold by
 | 
						|
		 * the caller.
 | 
						|
		 */
 | 
						|
		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
 | 
						|
		if (ret)
 | 
						|
			goto out_release_nounlock;
 | 
						|
		folio_in_pagecache = true;
 | 
						|
	}
 | 
						|
 | 
						|
	ptl = huge_pte_lock(h, dst_mm, dst_pte);
 | 
						|
 | 
						|
	ret = -EIO;
 | 
						|
	if (folio_test_hwpoison(folio))
 | 
						|
		goto out_release_unlock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We allow to overwrite a pte marker: consider when both MISSING|WP
 | 
						|
	 * registered, we firstly wr-protect a none pte which has no page cache
 | 
						|
	 * page backing it, then access the page.
 | 
						|
	 */
 | 
						|
	ret = -EEXIST;
 | 
						|
	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
 | 
						|
		goto out_release_unlock;
 | 
						|
 | 
						|
	if (folio_in_pagecache)
 | 
						|
		page_dup_file_rmap(&folio->page, true);
 | 
						|
	else
 | 
						|
		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
 | 
						|
	 * with wp flag set, don't set pte write bit.
 | 
						|
	 */
 | 
						|
	if (wp_enabled || (is_continue && !vm_shared))
 | 
						|
		writable = 0;
 | 
						|
	else
 | 
						|
		writable = dst_vma->vm_flags & VM_WRITE;
 | 
						|
 | 
						|
	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
 | 
						|
	/*
 | 
						|
	 * Always mark UFFDIO_COPY page dirty; note that this may not be
 | 
						|
	 * extremely important for hugetlbfs for now since swapping is not
 | 
						|
	 * supported, but we should still be clear in that this page cannot be
 | 
						|
	 * thrown away at will, even if write bit not set.
 | 
						|
	 */
 | 
						|
	_dst_pte = huge_pte_mkdirty(_dst_pte);
 | 
						|
	_dst_pte = pte_mkyoung(_dst_pte);
 | 
						|
 | 
						|
	if (wp_enabled)
 | 
						|
		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
 | 
						|
 | 
						|
	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
 | 
						|
 | 
						|
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
 | 
						|
 | 
						|
	/* No need to invalidate - it was non-present before */
 | 
						|
	update_mmu_cache(dst_vma, dst_addr, dst_pte);
 | 
						|
 | 
						|
	spin_unlock(ptl);
 | 
						|
	if (!is_continue)
 | 
						|
		folio_set_hugetlb_migratable(folio);
 | 
						|
	if (vm_shared || is_continue)
 | 
						|
		folio_unlock(folio);
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
out_release_unlock:
 | 
						|
	spin_unlock(ptl);
 | 
						|
	if (vm_shared || is_continue)
 | 
						|
		folio_unlock(folio);
 | 
						|
out_release_nounlock:
 | 
						|
	if (!folio_in_pagecache)
 | 
						|
		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
 | 
						|
	folio_put(folio);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
#endif /* CONFIG_USERFAULTFD */
 | 
						|
 | 
						|
static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
 | 
						|
				 int refs, struct page **pages,
 | 
						|
				 struct vm_area_struct **vmas)
 | 
						|
{
 | 
						|
	int nr;
 | 
						|
 | 
						|
	for (nr = 0; nr < refs; nr++) {
 | 
						|
		if (likely(pages))
 | 
						|
			pages[nr] = nth_page(page, nr);
 | 
						|
		if (vmas)
 | 
						|
			vmas[nr] = vma;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
 | 
						|
					       unsigned int flags, pte_t *pte,
 | 
						|
					       bool *unshare)
 | 
						|
{
 | 
						|
	pte_t pteval = huge_ptep_get(pte);
 | 
						|
 | 
						|
	*unshare = false;
 | 
						|
	if (is_swap_pte(pteval))
 | 
						|
		return true;
 | 
						|
	if (huge_pte_write(pteval))
 | 
						|
		return false;
 | 
						|
	if (flags & FOLL_WRITE)
 | 
						|
		return true;
 | 
						|
	if (gup_must_unshare(vma, flags, pte_page(pteval))) {
 | 
						|
		*unshare = true;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
 | 
						|
				unsigned long address, unsigned int flags)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long haddr = address & huge_page_mask(h);
 | 
						|
	struct page *page = NULL;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	pte_t *pte, entry;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
 | 
						|
	 * follow_hugetlb_page().
 | 
						|
	 */
 | 
						|
	if (WARN_ON_ONCE(flags & FOLL_PIN))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	hugetlb_vma_lock_read(vma);
 | 
						|
	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
 | 
						|
	if (!pte)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	ptl = huge_pte_lock(h, mm, pte);
 | 
						|
	entry = huge_ptep_get(pte);
 | 
						|
	if (pte_present(entry)) {
 | 
						|
		page = pte_page(entry) +
 | 
						|
				((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
 | 
						|
		/*
 | 
						|
		 * Note that page may be a sub-page, and with vmemmap
 | 
						|
		 * optimizations the page struct may be read only.
 | 
						|
		 * try_grab_page() will increase the ref count on the
 | 
						|
		 * head page, so this will be OK.
 | 
						|
		 *
 | 
						|
		 * try_grab_page() should always be able to get the page here,
 | 
						|
		 * because we hold the ptl lock and have verified pte_present().
 | 
						|
		 */
 | 
						|
		if (try_grab_page(page, flags)) {
 | 
						|
			page = NULL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock(ptl);
 | 
						|
out_unlock:
 | 
						|
	hugetlb_vma_unlock_read(vma);
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
			 struct page **pages, struct vm_area_struct **vmas,
 | 
						|
			 unsigned long *position, unsigned long *nr_pages,
 | 
						|
			 long i, unsigned int flags, int *locked)
 | 
						|
{
 | 
						|
	unsigned long pfn_offset;
 | 
						|
	unsigned long vaddr = *position;
 | 
						|
	unsigned long remainder = *nr_pages;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	int err = -EFAULT, refs;
 | 
						|
 | 
						|
	while (vaddr < vma->vm_end && remainder) {
 | 
						|
		pte_t *pte;
 | 
						|
		spinlock_t *ptl = NULL;
 | 
						|
		bool unshare = false;
 | 
						|
		int absent;
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we have a pending SIGKILL, don't keep faulting pages and
 | 
						|
		 * potentially allocating memory.
 | 
						|
		 */
 | 
						|
		if (fatal_signal_pending(current)) {
 | 
						|
			remainder = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		hugetlb_vma_lock_read(vma);
 | 
						|
		/*
 | 
						|
		 * Some archs (sparc64, sh*) have multiple pte_ts to
 | 
						|
		 * each hugepage.  We have to make sure we get the
 | 
						|
		 * first, for the page indexing below to work.
 | 
						|
		 *
 | 
						|
		 * Note that page table lock is not held when pte is null.
 | 
						|
		 */
 | 
						|
		pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
 | 
						|
				   huge_page_size(h));
 | 
						|
		if (pte)
 | 
						|
			ptl = huge_pte_lock(h, mm, pte);
 | 
						|
		absent = !pte || huge_pte_none(huge_ptep_get(pte));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * When coredumping, it suits get_dump_page if we just return
 | 
						|
		 * an error where there's an empty slot with no huge pagecache
 | 
						|
		 * to back it.  This way, we avoid allocating a hugepage, and
 | 
						|
		 * the sparse dumpfile avoids allocating disk blocks, but its
 | 
						|
		 * huge holes still show up with zeroes where they need to be.
 | 
						|
		 */
 | 
						|
		if (absent && (flags & FOLL_DUMP) &&
 | 
						|
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
 | 
						|
			if (pte)
 | 
						|
				spin_unlock(ptl);
 | 
						|
			hugetlb_vma_unlock_read(vma);
 | 
						|
			remainder = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We need call hugetlb_fault for both hugepages under migration
 | 
						|
		 * (in which case hugetlb_fault waits for the migration,) and
 | 
						|
		 * hwpoisoned hugepages (in which case we need to prevent the
 | 
						|
		 * caller from accessing to them.) In order to do this, we use
 | 
						|
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
 | 
						|
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
 | 
						|
		 * both cases, and because we can't follow correct pages
 | 
						|
		 * directly from any kind of swap entries.
 | 
						|
		 */
 | 
						|
		if (absent ||
 | 
						|
		    __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
 | 
						|
			vm_fault_t ret;
 | 
						|
			unsigned int fault_flags = 0;
 | 
						|
 | 
						|
			if (pte)
 | 
						|
				spin_unlock(ptl);
 | 
						|
			hugetlb_vma_unlock_read(vma);
 | 
						|
 | 
						|
			if (flags & FOLL_WRITE)
 | 
						|
				fault_flags |= FAULT_FLAG_WRITE;
 | 
						|
			else if (unshare)
 | 
						|
				fault_flags |= FAULT_FLAG_UNSHARE;
 | 
						|
			if (locked) {
 | 
						|
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
 | 
						|
					FAULT_FLAG_KILLABLE;
 | 
						|
				if (flags & FOLL_INTERRUPTIBLE)
 | 
						|
					fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
 | 
						|
			}
 | 
						|
			if (flags & FOLL_NOWAIT)
 | 
						|
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
 | 
						|
					FAULT_FLAG_RETRY_NOWAIT;
 | 
						|
			if (flags & FOLL_TRIED) {
 | 
						|
				/*
 | 
						|
				 * Note: FAULT_FLAG_ALLOW_RETRY and
 | 
						|
				 * FAULT_FLAG_TRIED can co-exist
 | 
						|
				 */
 | 
						|
				fault_flags |= FAULT_FLAG_TRIED;
 | 
						|
			}
 | 
						|
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
 | 
						|
			if (ret & VM_FAULT_ERROR) {
 | 
						|
				err = vm_fault_to_errno(ret, flags);
 | 
						|
				remainder = 0;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (ret & VM_FAULT_RETRY) {
 | 
						|
				if (locked &&
 | 
						|
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 | 
						|
					*locked = 0;
 | 
						|
				*nr_pages = 0;
 | 
						|
				/*
 | 
						|
				 * VM_FAULT_RETRY must not return an
 | 
						|
				 * error, it will return zero
 | 
						|
				 * instead.
 | 
						|
				 *
 | 
						|
				 * No need to update "position" as the
 | 
						|
				 * caller will not check it after
 | 
						|
				 * *nr_pages is set to 0.
 | 
						|
				 */
 | 
						|
				return i;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
 | 
						|
		page = pte_page(huge_ptep_get(pte));
 | 
						|
 | 
						|
		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
 | 
						|
			       !PageAnonExclusive(page), page);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If subpage information not requested, update counters
 | 
						|
		 * and skip the same_page loop below.
 | 
						|
		 */
 | 
						|
		if (!pages && !vmas && !pfn_offset &&
 | 
						|
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
 | 
						|
		    (remainder >= pages_per_huge_page(h))) {
 | 
						|
			vaddr += huge_page_size(h);
 | 
						|
			remainder -= pages_per_huge_page(h);
 | 
						|
			i += pages_per_huge_page(h);
 | 
						|
			spin_unlock(ptl);
 | 
						|
			hugetlb_vma_unlock_read(vma);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* vaddr may not be aligned to PAGE_SIZE */
 | 
						|
		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
 | 
						|
		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
 | 
						|
 | 
						|
		if (pages || vmas)
 | 
						|
			record_subpages_vmas(nth_page(page, pfn_offset),
 | 
						|
					     vma, refs,
 | 
						|
					     likely(pages) ? pages + i : NULL,
 | 
						|
					     vmas ? vmas + i : NULL);
 | 
						|
 | 
						|
		if (pages) {
 | 
						|
			/*
 | 
						|
			 * try_grab_folio() should always succeed here,
 | 
						|
			 * because: a) we hold the ptl lock, and b) we've just
 | 
						|
			 * checked that the huge page is present in the page
 | 
						|
			 * tables. If the huge page is present, then the tail
 | 
						|
			 * pages must also be present. The ptl prevents the
 | 
						|
			 * head page and tail pages from being rearranged in
 | 
						|
			 * any way. As this is hugetlb, the pages will never
 | 
						|
			 * be p2pdma or not longterm pinable. So this page
 | 
						|
			 * must be available at this point, unless the page
 | 
						|
			 * refcount overflowed:
 | 
						|
			 */
 | 
						|
			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
 | 
						|
							 flags))) {
 | 
						|
				spin_unlock(ptl);
 | 
						|
				hugetlb_vma_unlock_read(vma);
 | 
						|
				remainder = 0;
 | 
						|
				err = -ENOMEM;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		vaddr += (refs << PAGE_SHIFT);
 | 
						|
		remainder -= refs;
 | 
						|
		i += refs;
 | 
						|
 | 
						|
		spin_unlock(ptl);
 | 
						|
		hugetlb_vma_unlock_read(vma);
 | 
						|
	}
 | 
						|
	*nr_pages = remainder;
 | 
						|
	/*
 | 
						|
	 * setting position is actually required only if remainder is
 | 
						|
	 * not zero but it's faster not to add a "if (remainder)"
 | 
						|
	 * branch.
 | 
						|
	 */
 | 
						|
	*position = vaddr;
 | 
						|
 | 
						|
	return i ? i : err;
 | 
						|
}
 | 
						|
 | 
						|
long hugetlb_change_protection(struct vm_area_struct *vma,
 | 
						|
		unsigned long address, unsigned long end,
 | 
						|
		pgprot_t newprot, unsigned long cp_flags)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long start = address;
 | 
						|
	pte_t *ptep;
 | 
						|
	pte_t pte;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	long pages = 0, psize = huge_page_size(h);
 | 
						|
	bool shared_pmd = false;
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
	unsigned long last_addr_mask;
 | 
						|
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
 | 
						|
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In the case of shared PMDs, the area to flush could be beyond
 | 
						|
	 * start/end.  Set range.start/range.end to cover the maximum possible
 | 
						|
	 * range if PMD sharing is possible.
 | 
						|
	 */
 | 
						|
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
 | 
						|
				0, mm, start, end);
 | 
						|
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
 | 
						|
 | 
						|
	BUG_ON(address >= end);
 | 
						|
	flush_cache_range(vma, range.start, range.end);
 | 
						|
 | 
						|
	mmu_notifier_invalidate_range_start(&range);
 | 
						|
	hugetlb_vma_lock_write(vma);
 | 
						|
	i_mmap_lock_write(vma->vm_file->f_mapping);
 | 
						|
	last_addr_mask = hugetlb_mask_last_page(h);
 | 
						|
	for (; address < end; address += psize) {
 | 
						|
		spinlock_t *ptl;
 | 
						|
		ptep = hugetlb_walk(vma, address, psize);
 | 
						|
		if (!ptep) {
 | 
						|
			if (!uffd_wp) {
 | 
						|
				address |= last_addr_mask;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * Userfaultfd wr-protect requires pgtable
 | 
						|
			 * pre-allocations to install pte markers.
 | 
						|
			 */
 | 
						|
			ptep = huge_pte_alloc(mm, vma, address, psize);
 | 
						|
			if (!ptep) {
 | 
						|
				pages = -ENOMEM;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
		if (huge_pmd_unshare(mm, vma, address, ptep)) {
 | 
						|
			/*
 | 
						|
			 * When uffd-wp is enabled on the vma, unshare
 | 
						|
			 * shouldn't happen at all.  Warn about it if it
 | 
						|
			 * happened due to some reason.
 | 
						|
			 */
 | 
						|
			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
 | 
						|
			pages++;
 | 
						|
			spin_unlock(ptl);
 | 
						|
			shared_pmd = true;
 | 
						|
			address |= last_addr_mask;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		pte = huge_ptep_get(ptep);
 | 
						|
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
 | 
						|
			/* Nothing to do. */
 | 
						|
		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
 | 
						|
			swp_entry_t entry = pte_to_swp_entry(pte);
 | 
						|
			struct page *page = pfn_swap_entry_to_page(entry);
 | 
						|
			pte_t newpte = pte;
 | 
						|
 | 
						|
			if (is_writable_migration_entry(entry)) {
 | 
						|
				if (PageAnon(page))
 | 
						|
					entry = make_readable_exclusive_migration_entry(
 | 
						|
								swp_offset(entry));
 | 
						|
				else
 | 
						|
					entry = make_readable_migration_entry(
 | 
						|
								swp_offset(entry));
 | 
						|
				newpte = swp_entry_to_pte(entry);
 | 
						|
				pages++;
 | 
						|
			}
 | 
						|
 | 
						|
			if (uffd_wp)
 | 
						|
				newpte = pte_swp_mkuffd_wp(newpte);
 | 
						|
			else if (uffd_wp_resolve)
 | 
						|
				newpte = pte_swp_clear_uffd_wp(newpte);
 | 
						|
			if (!pte_same(pte, newpte))
 | 
						|
				set_huge_pte_at(mm, address, ptep, newpte);
 | 
						|
		} else if (unlikely(is_pte_marker(pte))) {
 | 
						|
			/* No other markers apply for now. */
 | 
						|
			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
 | 
						|
			if (uffd_wp_resolve)
 | 
						|
				/* Safe to modify directly (non-present->none). */
 | 
						|
				huge_pte_clear(mm, address, ptep, psize);
 | 
						|
		} else if (!huge_pte_none(pte)) {
 | 
						|
			pte_t old_pte;
 | 
						|
			unsigned int shift = huge_page_shift(hstate_vma(vma));
 | 
						|
 | 
						|
			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
 | 
						|
			pte = huge_pte_modify(old_pte, newprot);
 | 
						|
			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 | 
						|
			if (uffd_wp)
 | 
						|
				pte = huge_pte_mkuffd_wp(pte);
 | 
						|
			else if (uffd_wp_resolve)
 | 
						|
				pte = huge_pte_clear_uffd_wp(pte);
 | 
						|
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
 | 
						|
			pages++;
 | 
						|
		} else {
 | 
						|
			/* None pte */
 | 
						|
			if (unlikely(uffd_wp))
 | 
						|
				/* Safe to modify directly (none->non-present). */
 | 
						|
				set_huge_pte_at(mm, address, ptep,
 | 
						|
						make_pte_marker(PTE_MARKER_UFFD_WP));
 | 
						|
		}
 | 
						|
		spin_unlock(ptl);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
 | 
						|
	 * may have cleared our pud entry and done put_page on the page table:
 | 
						|
	 * once we release i_mmap_rwsem, another task can do the final put_page
 | 
						|
	 * and that page table be reused and filled with junk.  If we actually
 | 
						|
	 * did unshare a page of pmds, flush the range corresponding to the pud.
 | 
						|
	 */
 | 
						|
	if (shared_pmd)
 | 
						|
		flush_hugetlb_tlb_range(vma, range.start, range.end);
 | 
						|
	else
 | 
						|
		flush_hugetlb_tlb_range(vma, start, end);
 | 
						|
	/*
 | 
						|
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
 | 
						|
	 * page table protection not changing it to point to a new page.
 | 
						|
	 *
 | 
						|
	 * See Documentation/mm/mmu_notifier.rst
 | 
						|
	 */
 | 
						|
	i_mmap_unlock_write(vma->vm_file->f_mapping);
 | 
						|
	hugetlb_vma_unlock_write(vma);
 | 
						|
	mmu_notifier_invalidate_range_end(&range);
 | 
						|
 | 
						|
	return pages > 0 ? (pages << h->order) : pages;
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if reservation was successful, false otherwise.  */
 | 
						|
bool hugetlb_reserve_pages(struct inode *inode,
 | 
						|
					long from, long to,
 | 
						|
					struct vm_area_struct *vma,
 | 
						|
					vm_flags_t vm_flags)
 | 
						|
{
 | 
						|
	long chg = -1, add = -1;
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	struct hugepage_subpool *spool = subpool_inode(inode);
 | 
						|
	struct resv_map *resv_map;
 | 
						|
	struct hugetlb_cgroup *h_cg = NULL;
 | 
						|
	long gbl_reserve, regions_needed = 0;
 | 
						|
 | 
						|
	/* This should never happen */
 | 
						|
	if (from > to) {
 | 
						|
		VM_WARN(1, "%s called with a negative range\n", __func__);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vma specific semaphore used for pmd sharing and fault/truncation
 | 
						|
	 * synchronization
 | 
						|
	 */
 | 
						|
	hugetlb_vma_lock_alloc(vma);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only apply hugepage reservation if asked. At fault time, an
 | 
						|
	 * attempt will be made for VM_NORESERVE to allocate a page
 | 
						|
	 * without using reserves
 | 
						|
	 */
 | 
						|
	if (vm_flags & VM_NORESERVE)
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Shared mappings base their reservation on the number of pages that
 | 
						|
	 * are already allocated on behalf of the file. Private mappings need
 | 
						|
	 * to reserve the full area even if read-only as mprotect() may be
 | 
						|
	 * called to make the mapping read-write. Assume !vma is a shm mapping
 | 
						|
	 */
 | 
						|
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		/*
 | 
						|
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
 | 
						|
		 * called for inodes for which resv_maps were created (see
 | 
						|
		 * hugetlbfs_get_inode).
 | 
						|
		 */
 | 
						|
		resv_map = inode_resv_map(inode);
 | 
						|
 | 
						|
		chg = region_chg(resv_map, from, to, ®ions_needed);
 | 
						|
	} else {
 | 
						|
		/* Private mapping. */
 | 
						|
		resv_map = resv_map_alloc();
 | 
						|
		if (!resv_map)
 | 
						|
			goto out_err;
 | 
						|
 | 
						|
		chg = to - from;
 | 
						|
 | 
						|
		set_vma_resv_map(vma, resv_map);
 | 
						|
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
 | 
						|
	}
 | 
						|
 | 
						|
	if (chg < 0)
 | 
						|
		goto out_err;
 | 
						|
 | 
						|
	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
 | 
						|
				chg * pages_per_huge_page(h), &h_cg) < 0)
 | 
						|
		goto out_err;
 | 
						|
 | 
						|
	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
 | 
						|
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
 | 
						|
		 * of the resv_map.
 | 
						|
		 */
 | 
						|
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There must be enough pages in the subpool for the mapping. If
 | 
						|
	 * the subpool has a minimum size, there may be some global
 | 
						|
	 * reservations already in place (gbl_reserve).
 | 
						|
	 */
 | 
						|
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
 | 
						|
	if (gbl_reserve < 0)
 | 
						|
		goto out_uncharge_cgroup;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check enough hugepages are available for the reservation.
 | 
						|
	 * Hand the pages back to the subpool if there are not
 | 
						|
	 */
 | 
						|
	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
 | 
						|
		goto out_put_pages;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Account for the reservations made. Shared mappings record regions
 | 
						|
	 * that have reservations as they are shared by multiple VMAs.
 | 
						|
	 * When the last VMA disappears, the region map says how much
 | 
						|
	 * the reservation was and the page cache tells how much of
 | 
						|
	 * the reservation was consumed. Private mappings are per-VMA and
 | 
						|
	 * only the consumed reservations are tracked. When the VMA
 | 
						|
	 * disappears, the original reservation is the VMA size and the
 | 
						|
	 * consumed reservations are stored in the map. Hence, nothing
 | 
						|
	 * else has to be done for private mappings here
 | 
						|
	 */
 | 
						|
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
 | 
						|
 | 
						|
		if (unlikely(add < 0)) {
 | 
						|
			hugetlb_acct_memory(h, -gbl_reserve);
 | 
						|
			goto out_put_pages;
 | 
						|
		} else if (unlikely(chg > add)) {
 | 
						|
			/*
 | 
						|
			 * pages in this range were added to the reserve
 | 
						|
			 * map between region_chg and region_add.  This
 | 
						|
			 * indicates a race with alloc_hugetlb_folio.  Adjust
 | 
						|
			 * the subpool and reserve counts modified above
 | 
						|
			 * based on the difference.
 | 
						|
			 */
 | 
						|
			long rsv_adjust;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
 | 
						|
			 * reference to h_cg->css. See comment below for detail.
 | 
						|
			 */
 | 
						|
			hugetlb_cgroup_uncharge_cgroup_rsvd(
 | 
						|
				hstate_index(h),
 | 
						|
				(chg - add) * pages_per_huge_page(h), h_cg);
 | 
						|
 | 
						|
			rsv_adjust = hugepage_subpool_put_pages(spool,
 | 
						|
								chg - add);
 | 
						|
			hugetlb_acct_memory(h, -rsv_adjust);
 | 
						|
		} else if (h_cg) {
 | 
						|
			/*
 | 
						|
			 * The file_regions will hold their own reference to
 | 
						|
			 * h_cg->css. So we should release the reference held
 | 
						|
			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
 | 
						|
			 * done.
 | 
						|
			 */
 | 
						|
			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true;
 | 
						|
 | 
						|
out_put_pages:
 | 
						|
	/* put back original number of pages, chg */
 | 
						|
	(void)hugepage_subpool_put_pages(spool, chg);
 | 
						|
out_uncharge_cgroup:
 | 
						|
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
 | 
						|
					    chg * pages_per_huge_page(h), h_cg);
 | 
						|
out_err:
 | 
						|
	hugetlb_vma_lock_free(vma);
 | 
						|
	if (!vma || vma->vm_flags & VM_MAYSHARE)
 | 
						|
		/* Only call region_abort if the region_chg succeeded but the
 | 
						|
		 * region_add failed or didn't run.
 | 
						|
		 */
 | 
						|
		if (chg >= 0 && add < 0)
 | 
						|
			region_abort(resv_map, from, to, regions_needed);
 | 
						|
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 | 
						|
		kref_put(&resv_map->refs, resv_map_release);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
 | 
						|
								long freed)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	struct resv_map *resv_map = inode_resv_map(inode);
 | 
						|
	long chg = 0;
 | 
						|
	struct hugepage_subpool *spool = subpool_inode(inode);
 | 
						|
	long gbl_reserve;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since this routine can be called in the evict inode path for all
 | 
						|
	 * hugetlbfs inodes, resv_map could be NULL.
 | 
						|
	 */
 | 
						|
	if (resv_map) {
 | 
						|
		chg = region_del(resv_map, start, end);
 | 
						|
		/*
 | 
						|
		 * region_del() can fail in the rare case where a region
 | 
						|
		 * must be split and another region descriptor can not be
 | 
						|
		 * allocated.  If end == LONG_MAX, it will not fail.
 | 
						|
		 */
 | 
						|
		if (chg < 0)
 | 
						|
			return chg;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&inode->i_lock);
 | 
						|
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
 | 
						|
	spin_unlock(&inode->i_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the subpool has a minimum size, the number of global
 | 
						|
	 * reservations to be released may be adjusted.
 | 
						|
	 *
 | 
						|
	 * Note that !resv_map implies freed == 0. So (chg - freed)
 | 
						|
	 * won't go negative.
 | 
						|
	 */
 | 
						|
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
 | 
						|
	hugetlb_acct_memory(h, -gbl_reserve);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
 | 
						|
static unsigned long page_table_shareable(struct vm_area_struct *svma,
 | 
						|
				struct vm_area_struct *vma,
 | 
						|
				unsigned long addr, pgoff_t idx)
 | 
						|
{
 | 
						|
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
 | 
						|
				svma->vm_start;
 | 
						|
	unsigned long sbase = saddr & PUD_MASK;
 | 
						|
	unsigned long s_end = sbase + PUD_SIZE;
 | 
						|
 | 
						|
	/* Allow segments to share if only one is marked locked */
 | 
						|
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
 | 
						|
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * match the virtual addresses, permission and the alignment of the
 | 
						|
	 * page table page.
 | 
						|
	 *
 | 
						|
	 * Also, vma_lock (vm_private_data) is required for sharing.
 | 
						|
	 */
 | 
						|
	if (pmd_index(addr) != pmd_index(saddr) ||
 | 
						|
	    vm_flags != svm_flags ||
 | 
						|
	    !range_in_vma(svma, sbase, s_end) ||
 | 
						|
	    !svma->vm_private_data)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return saddr;
 | 
						|
}
 | 
						|
 | 
						|
bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	unsigned long start = addr & PUD_MASK;
 | 
						|
	unsigned long end = start + PUD_SIZE;
 | 
						|
 | 
						|
#ifdef CONFIG_USERFAULTFD
 | 
						|
	if (uffd_disable_huge_pmd_share(vma))
 | 
						|
		return false;
 | 
						|
#endif
 | 
						|
	/*
 | 
						|
	 * check on proper vm_flags and page table alignment
 | 
						|
	 */
 | 
						|
	if (!(vma->vm_flags & VM_MAYSHARE))
 | 
						|
		return false;
 | 
						|
	if (!vma->vm_private_data)	/* vma lock required for sharing */
 | 
						|
		return false;
 | 
						|
	if (!range_in_vma(vma, start, end))
 | 
						|
		return false;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine if start,end range within vma could be mapped by shared pmd.
 | 
						|
 * If yes, adjust start and end to cover range associated with possible
 | 
						|
 * shared pmd mappings.
 | 
						|
 */
 | 
						|
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
 | 
						|
				unsigned long *start, unsigned long *end)
 | 
						|
{
 | 
						|
	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
 | 
						|
		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vma needs to span at least one aligned PUD size, and the range
 | 
						|
	 * must be at least partially within in.
 | 
						|
	 */
 | 
						|
	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
 | 
						|
		(*end <= v_start) || (*start >= v_end))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Extend the range to be PUD aligned for a worst case scenario */
 | 
						|
	if (*start > v_start)
 | 
						|
		*start = ALIGN_DOWN(*start, PUD_SIZE);
 | 
						|
 | 
						|
	if (*end < v_end)
 | 
						|
		*end = ALIGN(*end, PUD_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 | 
						|
 * and returns the corresponding pte. While this is not necessary for the
 | 
						|
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 | 
						|
 * code much cleaner. pmd allocation is essential for the shared case because
 | 
						|
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
 | 
						|
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 | 
						|
 * bad pmd for sharing.
 | 
						|
 */
 | 
						|
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
		      unsigned long addr, pud_t *pud)
 | 
						|
{
 | 
						|
	struct address_space *mapping = vma->vm_file->f_mapping;
 | 
						|
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
 | 
						|
			vma->vm_pgoff;
 | 
						|
	struct vm_area_struct *svma;
 | 
						|
	unsigned long saddr;
 | 
						|
	pte_t *spte = NULL;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	i_mmap_lock_read(mapping);
 | 
						|
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
 | 
						|
		if (svma == vma)
 | 
						|
			continue;
 | 
						|
 | 
						|
		saddr = page_table_shareable(svma, vma, addr, idx);
 | 
						|
		if (saddr) {
 | 
						|
			spte = hugetlb_walk(svma, saddr,
 | 
						|
					    vma_mmu_pagesize(svma));
 | 
						|
			if (spte) {
 | 
						|
				get_page(virt_to_page(spte));
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!spte)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
 | 
						|
	if (pud_none(*pud)) {
 | 
						|
		pud_populate(mm, pud,
 | 
						|
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
 | 
						|
		mm_inc_nr_pmds(mm);
 | 
						|
	} else {
 | 
						|
		put_page(virt_to_page(spte));
 | 
						|
	}
 | 
						|
	spin_unlock(ptl);
 | 
						|
out:
 | 
						|
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
 | 
						|
	i_mmap_unlock_read(mapping);
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * unmap huge page backed by shared pte.
 | 
						|
 *
 | 
						|
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 | 
						|
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 | 
						|
 * decrementing the ref count. If count == 1, the pte page is not shared.
 | 
						|
 *
 | 
						|
 * Called with page table lock held.
 | 
						|
 *
 | 
						|
 * returns: 1 successfully unmapped a shared pte page
 | 
						|
 *	    0 the underlying pte page is not shared, or it is the last user
 | 
						|
 */
 | 
						|
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
					unsigned long addr, pte_t *ptep)
 | 
						|
{
 | 
						|
	pgd_t *pgd = pgd_offset(mm, addr);
 | 
						|
	p4d_t *p4d = p4d_offset(pgd, addr);
 | 
						|
	pud_t *pud = pud_offset(p4d, addr);
 | 
						|
 | 
						|
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
 | 
						|
	hugetlb_vma_assert_locked(vma);
 | 
						|
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
 | 
						|
	if (page_count(virt_to_page(ptep)) == 1)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	pud_clear(pud);
 | 
						|
	put_page(virt_to_page(ptep));
 | 
						|
	mm_dec_nr_pmds(mm);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
 | 
						|
 | 
						|
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
		      unsigned long addr, pud_t *pud)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
				unsigned long addr, pte_t *ptep)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
 | 
						|
				unsigned long *start, unsigned long *end)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
 | 
						|
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
			unsigned long addr, unsigned long sz)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	p4d_t *p4d;
 | 
						|
	pud_t *pud;
 | 
						|
	pte_t *pte = NULL;
 | 
						|
 | 
						|
	pgd = pgd_offset(mm, addr);
 | 
						|
	p4d = p4d_alloc(mm, pgd, addr);
 | 
						|
	if (!p4d)
 | 
						|
		return NULL;
 | 
						|
	pud = pud_alloc(mm, p4d, addr);
 | 
						|
	if (pud) {
 | 
						|
		if (sz == PUD_SIZE) {
 | 
						|
			pte = (pte_t *)pud;
 | 
						|
		} else {
 | 
						|
			BUG_ON(sz != PMD_SIZE);
 | 
						|
			if (want_pmd_share(vma, addr) && pud_none(*pud))
 | 
						|
				pte = huge_pmd_share(mm, vma, addr, pud);
 | 
						|
			else
 | 
						|
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
 | 
						|
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 | 
						|
 * entry at address @addr
 | 
						|
 *
 | 
						|
 * Return: Pointer to page table entry (PUD or PMD) for
 | 
						|
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
 | 
						|
 * size @sz doesn't match the hugepage size at this level of the page
 | 
						|
 * table.
 | 
						|
 */
 | 
						|
pte_t *huge_pte_offset(struct mm_struct *mm,
 | 
						|
		       unsigned long addr, unsigned long sz)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	p4d_t *p4d;
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
 | 
						|
	pgd = pgd_offset(mm, addr);
 | 
						|
	if (!pgd_present(*pgd))
 | 
						|
		return NULL;
 | 
						|
	p4d = p4d_offset(pgd, addr);
 | 
						|
	if (!p4d_present(*p4d))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pud = pud_offset(p4d, addr);
 | 
						|
	if (sz == PUD_SIZE)
 | 
						|
		/* must be pud huge, non-present or none */
 | 
						|
		return (pte_t *)pud;
 | 
						|
	if (!pud_present(*pud))
 | 
						|
		return NULL;
 | 
						|
	/* must have a valid entry and size to go further */
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, addr);
 | 
						|
	/* must be pmd huge, non-present or none */
 | 
						|
	return (pte_t *)pmd;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return a mask that can be used to update an address to the last huge
 | 
						|
 * page in a page table page mapping size.  Used to skip non-present
 | 
						|
 * page table entries when linearly scanning address ranges.  Architectures
 | 
						|
 * with unique huge page to page table relationships can define their own
 | 
						|
 * version of this routine.
 | 
						|
 */
 | 
						|
unsigned long hugetlb_mask_last_page(struct hstate *h)
 | 
						|
{
 | 
						|
	unsigned long hp_size = huge_page_size(h);
 | 
						|
 | 
						|
	if (hp_size == PUD_SIZE)
 | 
						|
		return P4D_SIZE - PUD_SIZE;
 | 
						|
	else if (hp_size == PMD_SIZE)
 | 
						|
		return PUD_SIZE - PMD_SIZE;
 | 
						|
	else
 | 
						|
		return 0UL;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* See description above.  Architectures can provide their own version. */
 | 
						|
__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
 | 
						|
{
 | 
						|
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
 | 
						|
	if (huge_page_size(h) == PMD_SIZE)
 | 
						|
		return PUD_SIZE - PMD_SIZE;
 | 
						|
#endif
 | 
						|
	return 0UL;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
 | 
						|
 | 
						|
/*
 | 
						|
 * These functions are overwritable if your architecture needs its own
 | 
						|
 * behavior.
 | 
						|
 */
 | 
						|
bool isolate_hugetlb(struct folio *folio, struct list_head *list)
 | 
						|
{
 | 
						|
	bool ret = true;
 | 
						|
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	if (!folio_test_hugetlb(folio) ||
 | 
						|
	    !folio_test_hugetlb_migratable(folio) ||
 | 
						|
	    !folio_try_get(folio)) {
 | 
						|
		ret = false;
 | 
						|
		goto unlock;
 | 
						|
	}
 | 
						|
	folio_clear_hugetlb_migratable(folio);
 | 
						|
	list_move_tail(&folio->lru, list);
 | 
						|
unlock:
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	*hugetlb = false;
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	if (folio_test_hugetlb(folio)) {
 | 
						|
		*hugetlb = true;
 | 
						|
		if (folio_test_hugetlb_freed(folio))
 | 
						|
			ret = 0;
 | 
						|
		else if (folio_test_hugetlb_migratable(folio) || unpoison)
 | 
						|
			ret = folio_try_get(folio);
 | 
						|
		else
 | 
						|
			ret = -EBUSY;
 | 
						|
	}
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
 | 
						|
				bool *migratable_cleared)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void folio_putback_active_hugetlb(struct folio *folio)
 | 
						|
{
 | 
						|
	spin_lock_irq(&hugetlb_lock);
 | 
						|
	folio_set_hugetlb_migratable(folio);
 | 
						|
	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
 | 
						|
	spin_unlock_irq(&hugetlb_lock);
 | 
						|
	folio_put(folio);
 | 
						|
}
 | 
						|
 | 
						|
void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
 | 
						|
{
 | 
						|
	struct hstate *h = folio_hstate(old_folio);
 | 
						|
 | 
						|
	hugetlb_cgroup_migrate(old_folio, new_folio);
 | 
						|
	set_page_owner_migrate_reason(&new_folio->page, reason);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * transfer temporary state of the new hugetlb folio. This is
 | 
						|
	 * reverse to other transitions because the newpage is going to
 | 
						|
	 * be final while the old one will be freed so it takes over
 | 
						|
	 * the temporary status.
 | 
						|
	 *
 | 
						|
	 * Also note that we have to transfer the per-node surplus state
 | 
						|
	 * here as well otherwise the global surplus count will not match
 | 
						|
	 * the per-node's.
 | 
						|
	 */
 | 
						|
	if (folio_test_hugetlb_temporary(new_folio)) {
 | 
						|
		int old_nid = folio_nid(old_folio);
 | 
						|
		int new_nid = folio_nid(new_folio);
 | 
						|
 | 
						|
		folio_set_hugetlb_temporary(old_folio);
 | 
						|
		folio_clear_hugetlb_temporary(new_folio);
 | 
						|
 | 
						|
 | 
						|
		/*
 | 
						|
		 * There is no need to transfer the per-node surplus state
 | 
						|
		 * when we do not cross the node.
 | 
						|
		 */
 | 
						|
		if (new_nid == old_nid)
 | 
						|
			return;
 | 
						|
		spin_lock_irq(&hugetlb_lock);
 | 
						|
		if (h->surplus_huge_pages_node[old_nid]) {
 | 
						|
			h->surplus_huge_pages_node[old_nid]--;
 | 
						|
			h->surplus_huge_pages_node[new_nid]++;
 | 
						|
		}
 | 
						|
		spin_unlock_irq(&hugetlb_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
 | 
						|
				   unsigned long start,
 | 
						|
				   unsigned long end)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	unsigned long sz = huge_page_size(h);
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
	unsigned long address;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	pte_t *ptep;
 | 
						|
 | 
						|
	if (!(vma->vm_flags & VM_MAYSHARE))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (start >= end)
 | 
						|
		return;
 | 
						|
 | 
						|
	flush_cache_range(vma, start, end);
 | 
						|
	/*
 | 
						|
	 * No need to call adjust_range_if_pmd_sharing_possible(), because
 | 
						|
	 * we have already done the PUD_SIZE alignment.
 | 
						|
	 */
 | 
						|
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
 | 
						|
				start, end);
 | 
						|
	mmu_notifier_invalidate_range_start(&range);
 | 
						|
	hugetlb_vma_lock_write(vma);
 | 
						|
	i_mmap_lock_write(vma->vm_file->f_mapping);
 | 
						|
	for (address = start; address < end; address += PUD_SIZE) {
 | 
						|
		ptep = hugetlb_walk(vma, address, sz);
 | 
						|
		if (!ptep)
 | 
						|
			continue;
 | 
						|
		ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
		huge_pmd_unshare(mm, vma, address, ptep);
 | 
						|
		spin_unlock(ptl);
 | 
						|
	}
 | 
						|
	flush_hugetlb_tlb_range(vma, start, end);
 | 
						|
	i_mmap_unlock_write(vma->vm_file->f_mapping);
 | 
						|
	hugetlb_vma_unlock_write(vma);
 | 
						|
	/*
 | 
						|
	 * No need to call mmu_notifier_invalidate_range(), see
 | 
						|
	 * Documentation/mm/mmu_notifier.rst.
 | 
						|
	 */
 | 
						|
	mmu_notifier_invalidate_range_end(&range);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function will unconditionally remove all the shared pmd pgtable entries
 | 
						|
 * within the specific vma for a hugetlbfs memory range.
 | 
						|
 */
 | 
						|
void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
 | 
						|
			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
static bool cma_reserve_called __initdata;
 | 
						|
 | 
						|
static int __init cmdline_parse_hugetlb_cma(char *p)
 | 
						|
{
 | 
						|
	int nid, count = 0;
 | 
						|
	unsigned long tmp;
 | 
						|
	char *s = p;
 | 
						|
 | 
						|
	while (*s) {
 | 
						|
		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (s[count] == ':') {
 | 
						|
			if (tmp >= MAX_NUMNODES)
 | 
						|
				break;
 | 
						|
			nid = array_index_nospec(tmp, MAX_NUMNODES);
 | 
						|
 | 
						|
			s += count + 1;
 | 
						|
			tmp = memparse(s, &s);
 | 
						|
			hugetlb_cma_size_in_node[nid] = tmp;
 | 
						|
			hugetlb_cma_size += tmp;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Skip the separator if have one, otherwise
 | 
						|
			 * break the parsing.
 | 
						|
			 */
 | 
						|
			if (*s == ',')
 | 
						|
				s++;
 | 
						|
			else
 | 
						|
				break;
 | 
						|
		} else {
 | 
						|
			hugetlb_cma_size = memparse(p, &p);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
 | 
						|
 | 
						|
void __init hugetlb_cma_reserve(int order)
 | 
						|
{
 | 
						|
	unsigned long size, reserved, per_node;
 | 
						|
	bool node_specific_cma_alloc = false;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	cma_reserve_called = true;
 | 
						|
 | 
						|
	if (!hugetlb_cma_size)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (nid = 0; nid < MAX_NUMNODES; nid++) {
 | 
						|
		if (hugetlb_cma_size_in_node[nid] == 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!node_online(nid)) {
 | 
						|
			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
 | 
						|
			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
 | 
						|
			hugetlb_cma_size_in_node[nid] = 0;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
 | 
						|
			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
 | 
						|
				nid, (PAGE_SIZE << order) / SZ_1M);
 | 
						|
			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
 | 
						|
			hugetlb_cma_size_in_node[nid] = 0;
 | 
						|
		} else {
 | 
						|
			node_specific_cma_alloc = true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Validate the CMA size again in case some invalid nodes specified. */
 | 
						|
	if (!hugetlb_cma_size)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
 | 
						|
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
 | 
						|
			(PAGE_SIZE << order) / SZ_1M);
 | 
						|
		hugetlb_cma_size = 0;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!node_specific_cma_alloc) {
 | 
						|
		/*
 | 
						|
		 * If 3 GB area is requested on a machine with 4 numa nodes,
 | 
						|
		 * let's allocate 1 GB on first three nodes and ignore the last one.
 | 
						|
		 */
 | 
						|
		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
 | 
						|
		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
 | 
						|
			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
 | 
						|
	}
 | 
						|
 | 
						|
	reserved = 0;
 | 
						|
	for_each_online_node(nid) {
 | 
						|
		int res;
 | 
						|
		char name[CMA_MAX_NAME];
 | 
						|
 | 
						|
		if (node_specific_cma_alloc) {
 | 
						|
			if (hugetlb_cma_size_in_node[nid] == 0)
 | 
						|
				continue;
 | 
						|
 | 
						|
			size = hugetlb_cma_size_in_node[nid];
 | 
						|
		} else {
 | 
						|
			size = min(per_node, hugetlb_cma_size - reserved);
 | 
						|
		}
 | 
						|
 | 
						|
		size = round_up(size, PAGE_SIZE << order);
 | 
						|
 | 
						|
		snprintf(name, sizeof(name), "hugetlb%d", nid);
 | 
						|
		/*
 | 
						|
		 * Note that 'order per bit' is based on smallest size that
 | 
						|
		 * may be returned to CMA allocator in the case of
 | 
						|
		 * huge page demotion.
 | 
						|
		 */
 | 
						|
		res = cma_declare_contiguous_nid(0, size, 0,
 | 
						|
						PAGE_SIZE << HUGETLB_PAGE_ORDER,
 | 
						|
						 0, false, name,
 | 
						|
						 &hugetlb_cma[nid], nid);
 | 
						|
		if (res) {
 | 
						|
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
 | 
						|
				res, nid);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		reserved += size;
 | 
						|
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
 | 
						|
			size / SZ_1M, nid);
 | 
						|
 | 
						|
		if (reserved >= hugetlb_cma_size)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!reserved)
 | 
						|
		/*
 | 
						|
		 * hugetlb_cma_size is used to determine if allocations from
 | 
						|
		 * cma are possible.  Set to zero if no cma regions are set up.
 | 
						|
		 */
 | 
						|
		hugetlb_cma_size = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __init hugetlb_cma_check(void)
 | 
						|
{
 | 
						|
	if (!hugetlb_cma_size || cma_reserve_called)
 | 
						|
		return;
 | 
						|
 | 
						|
	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_CMA */
 |