mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	gcc inlines kstrdup into kstrdup_const() but it can very efficiently tail call into it instead: $ ./scripts/bloat-o-meter ../vmlinux-000 ../obj/vmlinux add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-84 (-84) Function old new delta kstrdup_const 119 35 -84 Link: https://lkml.kernel.org/r/Y/4fDlbIhTLNLFHz@p183 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			1137 lines
		
	
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1137 lines
		
	
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/sched/mm.h>
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <linux/sched/task_stack.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/userfaultfd_k.h>
 | 
						|
#include <linux/elf.h>
 | 
						|
#include <linux/elf-randomize.h>
 | 
						|
#include <linux/personality.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/processor.h>
 | 
						|
#include <linux/sizes.h>
 | 
						|
#include <linux/compat.h>
 | 
						|
 | 
						|
#include <linux/uaccess.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
#include "swap.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * kfree_const - conditionally free memory
 | 
						|
 * @x: pointer to the memory
 | 
						|
 *
 | 
						|
 * Function calls kfree only if @x is not in .rodata section.
 | 
						|
 */
 | 
						|
void kfree_const(const void *x)
 | 
						|
{
 | 
						|
	if (!is_kernel_rodata((unsigned long)x))
 | 
						|
		kfree(x);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kfree_const);
 | 
						|
 | 
						|
/**
 | 
						|
 * kstrdup - allocate space for and copy an existing string
 | 
						|
 * @s: the string to duplicate
 | 
						|
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | 
						|
 *
 | 
						|
 * Return: newly allocated copy of @s or %NULL in case of error
 | 
						|
 */
 | 
						|
noinline
 | 
						|
char *kstrdup(const char *s, gfp_t gfp)
 | 
						|
{
 | 
						|
	size_t len;
 | 
						|
	char *buf;
 | 
						|
 | 
						|
	if (!s)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	len = strlen(s) + 1;
 | 
						|
	buf = kmalloc_track_caller(len, gfp);
 | 
						|
	if (buf)
 | 
						|
		memcpy(buf, s, len);
 | 
						|
	return buf;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kstrdup);
 | 
						|
 | 
						|
/**
 | 
						|
 * kstrdup_const - conditionally duplicate an existing const string
 | 
						|
 * @s: the string to duplicate
 | 
						|
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | 
						|
 *
 | 
						|
 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
 | 
						|
 * must not be passed to krealloc().
 | 
						|
 *
 | 
						|
 * Return: source string if it is in .rodata section otherwise
 | 
						|
 * fallback to kstrdup.
 | 
						|
 */
 | 
						|
const char *kstrdup_const(const char *s, gfp_t gfp)
 | 
						|
{
 | 
						|
	if (is_kernel_rodata((unsigned long)s))
 | 
						|
		return s;
 | 
						|
 | 
						|
	return kstrdup(s, gfp);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kstrdup_const);
 | 
						|
 | 
						|
/**
 | 
						|
 * kstrndup - allocate space for and copy an existing string
 | 
						|
 * @s: the string to duplicate
 | 
						|
 * @max: read at most @max chars from @s
 | 
						|
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | 
						|
 *
 | 
						|
 * Note: Use kmemdup_nul() instead if the size is known exactly.
 | 
						|
 *
 | 
						|
 * Return: newly allocated copy of @s or %NULL in case of error
 | 
						|
 */
 | 
						|
char *kstrndup(const char *s, size_t max, gfp_t gfp)
 | 
						|
{
 | 
						|
	size_t len;
 | 
						|
	char *buf;
 | 
						|
 | 
						|
	if (!s)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	len = strnlen(s, max);
 | 
						|
	buf = kmalloc_track_caller(len+1, gfp);
 | 
						|
	if (buf) {
 | 
						|
		memcpy(buf, s, len);
 | 
						|
		buf[len] = '\0';
 | 
						|
	}
 | 
						|
	return buf;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kstrndup);
 | 
						|
 | 
						|
/**
 | 
						|
 * kmemdup - duplicate region of memory
 | 
						|
 *
 | 
						|
 * @src: memory region to duplicate
 | 
						|
 * @len: memory region length
 | 
						|
 * @gfp: GFP mask to use
 | 
						|
 *
 | 
						|
 * Return: newly allocated copy of @src or %NULL in case of error,
 | 
						|
 * result is physically contiguous. Use kfree() to free.
 | 
						|
 */
 | 
						|
void *kmemdup(const void *src, size_t len, gfp_t gfp)
 | 
						|
{
 | 
						|
	void *p;
 | 
						|
 | 
						|
	p = kmalloc_track_caller(len, gfp);
 | 
						|
	if (p)
 | 
						|
		memcpy(p, src, len);
 | 
						|
	return p;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmemdup);
 | 
						|
 | 
						|
/**
 | 
						|
 * kvmemdup - duplicate region of memory
 | 
						|
 *
 | 
						|
 * @src: memory region to duplicate
 | 
						|
 * @len: memory region length
 | 
						|
 * @gfp: GFP mask to use
 | 
						|
 *
 | 
						|
 * Return: newly allocated copy of @src or %NULL in case of error,
 | 
						|
 * result may be not physically contiguous. Use kvfree() to free.
 | 
						|
 */
 | 
						|
void *kvmemdup(const void *src, size_t len, gfp_t gfp)
 | 
						|
{
 | 
						|
	void *p;
 | 
						|
 | 
						|
	p = kvmalloc(len, gfp);
 | 
						|
	if (p)
 | 
						|
		memcpy(p, src, len);
 | 
						|
	return p;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kvmemdup);
 | 
						|
 | 
						|
/**
 | 
						|
 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 | 
						|
 * @s: The data to stringify
 | 
						|
 * @len: The size of the data
 | 
						|
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | 
						|
 *
 | 
						|
 * Return: newly allocated copy of @s with NUL-termination or %NULL in
 | 
						|
 * case of error
 | 
						|
 */
 | 
						|
char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 | 
						|
{
 | 
						|
	char *buf;
 | 
						|
 | 
						|
	if (!s)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	buf = kmalloc_track_caller(len + 1, gfp);
 | 
						|
	if (buf) {
 | 
						|
		memcpy(buf, s, len);
 | 
						|
		buf[len] = '\0';
 | 
						|
	}
 | 
						|
	return buf;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmemdup_nul);
 | 
						|
 | 
						|
/**
 | 
						|
 * memdup_user - duplicate memory region from user space
 | 
						|
 *
 | 
						|
 * @src: source address in user space
 | 
						|
 * @len: number of bytes to copy
 | 
						|
 *
 | 
						|
 * Return: an ERR_PTR() on failure.  Result is physically
 | 
						|
 * contiguous, to be freed by kfree().
 | 
						|
 */
 | 
						|
void *memdup_user(const void __user *src, size_t len)
 | 
						|
{
 | 
						|
	void *p;
 | 
						|
 | 
						|
	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
 | 
						|
	if (!p)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	if (copy_from_user(p, src, len)) {
 | 
						|
		kfree(p);
 | 
						|
		return ERR_PTR(-EFAULT);
 | 
						|
	}
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(memdup_user);
 | 
						|
 | 
						|
/**
 | 
						|
 * vmemdup_user - duplicate memory region from user space
 | 
						|
 *
 | 
						|
 * @src: source address in user space
 | 
						|
 * @len: number of bytes to copy
 | 
						|
 *
 | 
						|
 * Return: an ERR_PTR() on failure.  Result may be not
 | 
						|
 * physically contiguous.  Use kvfree() to free.
 | 
						|
 */
 | 
						|
void *vmemdup_user(const void __user *src, size_t len)
 | 
						|
{
 | 
						|
	void *p;
 | 
						|
 | 
						|
	p = kvmalloc(len, GFP_USER);
 | 
						|
	if (!p)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	if (copy_from_user(p, src, len)) {
 | 
						|
		kvfree(p);
 | 
						|
		return ERR_PTR(-EFAULT);
 | 
						|
	}
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmemdup_user);
 | 
						|
 | 
						|
/**
 | 
						|
 * strndup_user - duplicate an existing string from user space
 | 
						|
 * @s: The string to duplicate
 | 
						|
 * @n: Maximum number of bytes to copy, including the trailing NUL.
 | 
						|
 *
 | 
						|
 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
 | 
						|
 */
 | 
						|
char *strndup_user(const char __user *s, long n)
 | 
						|
{
 | 
						|
	char *p;
 | 
						|
	long length;
 | 
						|
 | 
						|
	length = strnlen_user(s, n);
 | 
						|
 | 
						|
	if (!length)
 | 
						|
		return ERR_PTR(-EFAULT);
 | 
						|
 | 
						|
	if (length > n)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	p = memdup_user(s, length);
 | 
						|
 | 
						|
	if (IS_ERR(p))
 | 
						|
		return p;
 | 
						|
 | 
						|
	p[length - 1] = '\0';
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(strndup_user);
 | 
						|
 | 
						|
/**
 | 
						|
 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 | 
						|
 *
 | 
						|
 * @src: source address in user space
 | 
						|
 * @len: number of bytes to copy
 | 
						|
 *
 | 
						|
 * Return: an ERR_PTR() on failure.
 | 
						|
 */
 | 
						|
void *memdup_user_nul(const void __user *src, size_t len)
 | 
						|
{
 | 
						|
	char *p;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
 | 
						|
	 * cause pagefault, which makes it pointless to use GFP_NOFS
 | 
						|
	 * or GFP_ATOMIC.
 | 
						|
	 */
 | 
						|
	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
 | 
						|
	if (!p)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	if (copy_from_user(p, src, len)) {
 | 
						|
		kfree(p);
 | 
						|
		return ERR_PTR(-EFAULT);
 | 
						|
	}
 | 
						|
	p[len] = '\0';
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(memdup_user_nul);
 | 
						|
 | 
						|
/* Check if the vma is being used as a stack by this task */
 | 
						|
int vma_is_stack_for_current(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct task_struct * __maybe_unused t = current;
 | 
						|
 | 
						|
	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Change backing file, only valid to use during initial VMA setup.
 | 
						|
 */
 | 
						|
void vma_set_file(struct vm_area_struct *vma, struct file *file)
 | 
						|
{
 | 
						|
	/* Changing an anonymous vma with this is illegal */
 | 
						|
	get_file(file);
 | 
						|
	swap(vma->vm_file, file);
 | 
						|
	fput(file);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vma_set_file);
 | 
						|
 | 
						|
#ifndef STACK_RND_MASK
 | 
						|
#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned long randomize_stack_top(unsigned long stack_top)
 | 
						|
{
 | 
						|
	unsigned long random_variable = 0;
 | 
						|
 | 
						|
	if (current->flags & PF_RANDOMIZE) {
 | 
						|
		random_variable = get_random_long();
 | 
						|
		random_variable &= STACK_RND_MASK;
 | 
						|
		random_variable <<= PAGE_SHIFT;
 | 
						|
	}
 | 
						|
#ifdef CONFIG_STACK_GROWSUP
 | 
						|
	return PAGE_ALIGN(stack_top) + random_variable;
 | 
						|
#else
 | 
						|
	return PAGE_ALIGN(stack_top) - random_variable;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * randomize_page - Generate a random, page aligned address
 | 
						|
 * @start:	The smallest acceptable address the caller will take.
 | 
						|
 * @range:	The size of the area, starting at @start, within which the
 | 
						|
 *		random address must fall.
 | 
						|
 *
 | 
						|
 * If @start + @range would overflow, @range is capped.
 | 
						|
 *
 | 
						|
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 | 
						|
 * @start was already page aligned.  We now align it regardless.
 | 
						|
 *
 | 
						|
 * Return: A page aligned address within [start, start + range).  On error,
 | 
						|
 * @start is returned.
 | 
						|
 */
 | 
						|
unsigned long randomize_page(unsigned long start, unsigned long range)
 | 
						|
{
 | 
						|
	if (!PAGE_ALIGNED(start)) {
 | 
						|
		range -= PAGE_ALIGN(start) - start;
 | 
						|
		start = PAGE_ALIGN(start);
 | 
						|
	}
 | 
						|
 | 
						|
	if (start > ULONG_MAX - range)
 | 
						|
		range = ULONG_MAX - start;
 | 
						|
 | 
						|
	range >>= PAGE_SHIFT;
 | 
						|
 | 
						|
	if (range == 0)
 | 
						|
		return start;
 | 
						|
 | 
						|
	return start + (get_random_long() % range << PAGE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
 | 
						|
unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	/* Is the current task 32bit ? */
 | 
						|
	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
 | 
						|
		return randomize_page(mm->brk, SZ_32M);
 | 
						|
 | 
						|
	return randomize_page(mm->brk, SZ_1G);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long arch_mmap_rnd(void)
 | 
						|
{
 | 
						|
	unsigned long rnd;
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
 | 
						|
	if (is_compat_task())
 | 
						|
		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
 | 
						|
	else
 | 
						|
#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
 | 
						|
		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
 | 
						|
 | 
						|
	return rnd << PAGE_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
static int mmap_is_legacy(struct rlimit *rlim_stack)
 | 
						|
{
 | 
						|
	if (current->personality & ADDR_COMPAT_LAYOUT)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (rlim_stack->rlim_cur == RLIM_INFINITY)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return sysctl_legacy_va_layout;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Leave enough space between the mmap area and the stack to honour ulimit in
 | 
						|
 * the face of randomisation.
 | 
						|
 */
 | 
						|
#define MIN_GAP		(SZ_128M)
 | 
						|
#define MAX_GAP		(STACK_TOP / 6 * 5)
 | 
						|
 | 
						|
static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
 | 
						|
{
 | 
						|
	unsigned long gap = rlim_stack->rlim_cur;
 | 
						|
	unsigned long pad = stack_guard_gap;
 | 
						|
 | 
						|
	/* Account for stack randomization if necessary */
 | 
						|
	if (current->flags & PF_RANDOMIZE)
 | 
						|
		pad += (STACK_RND_MASK << PAGE_SHIFT);
 | 
						|
 | 
						|
	/* Values close to RLIM_INFINITY can overflow. */
 | 
						|
	if (gap + pad > gap)
 | 
						|
		gap += pad;
 | 
						|
 | 
						|
	if (gap < MIN_GAP)
 | 
						|
		gap = MIN_GAP;
 | 
						|
	else if (gap > MAX_GAP)
 | 
						|
		gap = MAX_GAP;
 | 
						|
 | 
						|
	return PAGE_ALIGN(STACK_TOP - gap - rnd);
 | 
						|
}
 | 
						|
 | 
						|
void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 | 
						|
{
 | 
						|
	unsigned long random_factor = 0UL;
 | 
						|
 | 
						|
	if (current->flags & PF_RANDOMIZE)
 | 
						|
		random_factor = arch_mmap_rnd();
 | 
						|
 | 
						|
	if (mmap_is_legacy(rlim_stack)) {
 | 
						|
		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
 | 
						|
		mm->get_unmapped_area = arch_get_unmapped_area;
 | 
						|
	} else {
 | 
						|
		mm->mmap_base = mmap_base(random_factor, rlim_stack);
 | 
						|
		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
 | 
						|
	}
 | 
						|
}
 | 
						|
#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 | 
						|
void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 | 
						|
{
 | 
						|
	mm->mmap_base = TASK_UNMAPPED_BASE;
 | 
						|
	mm->get_unmapped_area = arch_get_unmapped_area;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * __account_locked_vm - account locked pages to an mm's locked_vm
 | 
						|
 * @mm:          mm to account against
 | 
						|
 * @pages:       number of pages to account
 | 
						|
 * @inc:         %true if @pages should be considered positive, %false if not
 | 
						|
 * @task:        task used to check RLIMIT_MEMLOCK
 | 
						|
 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
 | 
						|
 *
 | 
						|
 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
 | 
						|
 * that mmap_lock is held as writer.
 | 
						|
 *
 | 
						|
 * Return:
 | 
						|
 * * 0       on success
 | 
						|
 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 | 
						|
 */
 | 
						|
int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
 | 
						|
			struct task_struct *task, bool bypass_rlim)
 | 
						|
{
 | 
						|
	unsigned long locked_vm, limit;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	mmap_assert_write_locked(mm);
 | 
						|
 | 
						|
	locked_vm = mm->locked_vm;
 | 
						|
	if (inc) {
 | 
						|
		if (!bypass_rlim) {
 | 
						|
			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 | 
						|
			if (locked_vm + pages > limit)
 | 
						|
				ret = -ENOMEM;
 | 
						|
		}
 | 
						|
		if (!ret)
 | 
						|
			mm->locked_vm = locked_vm + pages;
 | 
						|
	} else {
 | 
						|
		WARN_ON_ONCE(pages > locked_vm);
 | 
						|
		mm->locked_vm = locked_vm - pages;
 | 
						|
	}
 | 
						|
 | 
						|
	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
 | 
						|
		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
 | 
						|
		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
 | 
						|
		 ret ? " - exceeded" : "");
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__account_locked_vm);
 | 
						|
 | 
						|
/**
 | 
						|
 * account_locked_vm - account locked pages to an mm's locked_vm
 | 
						|
 * @mm:          mm to account against, may be NULL
 | 
						|
 * @pages:       number of pages to account
 | 
						|
 * @inc:         %true if @pages should be considered positive, %false if not
 | 
						|
 *
 | 
						|
 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
 | 
						|
 *
 | 
						|
 * Return:
 | 
						|
 * * 0       on success, or if mm is NULL
 | 
						|
 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 | 
						|
 */
 | 
						|
int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (pages == 0 || !mm)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mmap_write_lock(mm);
 | 
						|
	ret = __account_locked_vm(mm, pages, inc, current,
 | 
						|
				  capable(CAP_IPC_LOCK));
 | 
						|
	mmap_write_unlock(mm);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(account_locked_vm);
 | 
						|
 | 
						|
unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 | 
						|
	unsigned long len, unsigned long prot,
 | 
						|
	unsigned long flag, unsigned long pgoff)
 | 
						|
{
 | 
						|
	unsigned long ret;
 | 
						|
	struct mm_struct *mm = current->mm;
 | 
						|
	unsigned long populate;
 | 
						|
	LIST_HEAD(uf);
 | 
						|
 | 
						|
	ret = security_mmap_file(file, prot, flag);
 | 
						|
	if (!ret) {
 | 
						|
		if (mmap_write_lock_killable(mm))
 | 
						|
			return -EINTR;
 | 
						|
		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
 | 
						|
			      &uf);
 | 
						|
		mmap_write_unlock(mm);
 | 
						|
		userfaultfd_unmap_complete(mm, &uf);
 | 
						|
		if (populate)
 | 
						|
			mm_populate(ret, populate);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long vm_mmap(struct file *file, unsigned long addr,
 | 
						|
	unsigned long len, unsigned long prot,
 | 
						|
	unsigned long flag, unsigned long offset)
 | 
						|
{
 | 
						|
	if (unlikely(offset + PAGE_ALIGN(len) < offset))
 | 
						|
		return -EINVAL;
 | 
						|
	if (unlikely(offset_in_page(offset)))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vm_mmap);
 | 
						|
 | 
						|
/**
 | 
						|
 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 | 
						|
 * failure, fall back to non-contiguous (vmalloc) allocation.
 | 
						|
 * @size: size of the request.
 | 
						|
 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 | 
						|
 * @node: numa node to allocate from
 | 
						|
 *
 | 
						|
 * Uses kmalloc to get the memory but if the allocation fails then falls back
 | 
						|
 * to the vmalloc allocator. Use kvfree for freeing the memory.
 | 
						|
 *
 | 
						|
 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
 | 
						|
 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 | 
						|
 * preferable to the vmalloc fallback, due to visible performance drawbacks.
 | 
						|
 *
 | 
						|
 * Return: pointer to the allocated memory of %NULL in case of failure
 | 
						|
 */
 | 
						|
void *kvmalloc_node(size_t size, gfp_t flags, int node)
 | 
						|
{
 | 
						|
	gfp_t kmalloc_flags = flags;
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We want to attempt a large physically contiguous block first because
 | 
						|
	 * it is less likely to fragment multiple larger blocks and therefore
 | 
						|
	 * contribute to a long term fragmentation less than vmalloc fallback.
 | 
						|
	 * However make sure that larger requests are not too disruptive - no
 | 
						|
	 * OOM killer and no allocation failure warnings as we have a fallback.
 | 
						|
	 */
 | 
						|
	if (size > PAGE_SIZE) {
 | 
						|
		kmalloc_flags |= __GFP_NOWARN;
 | 
						|
 | 
						|
		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
 | 
						|
			kmalloc_flags |= __GFP_NORETRY;
 | 
						|
 | 
						|
		/* nofail semantic is implemented by the vmalloc fallback */
 | 
						|
		kmalloc_flags &= ~__GFP_NOFAIL;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = kmalloc_node(size, kmalloc_flags, node);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It doesn't really make sense to fallback to vmalloc for sub page
 | 
						|
	 * requests
 | 
						|
	 */
 | 
						|
	if (ret || size <= PAGE_SIZE)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* non-sleeping allocations are not supported by vmalloc */
 | 
						|
	if (!gfpflags_allow_blocking(flags))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Don't even allow crazy sizes */
 | 
						|
	if (unlikely(size > INT_MAX)) {
 | 
						|
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
 | 
						|
	 * since the callers already cannot assume anything
 | 
						|
	 * about the resulting pointer, and cannot play
 | 
						|
	 * protection games.
 | 
						|
	 */
 | 
						|
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
 | 
						|
			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
 | 
						|
			node, __builtin_return_address(0));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kvmalloc_node);
 | 
						|
 | 
						|
/**
 | 
						|
 * kvfree() - Free memory.
 | 
						|
 * @addr: Pointer to allocated memory.
 | 
						|
 *
 | 
						|
 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
 | 
						|
 * It is slightly more efficient to use kfree() or vfree() if you are certain
 | 
						|
 * that you know which one to use.
 | 
						|
 *
 | 
						|
 * Context: Either preemptible task context or not-NMI interrupt.
 | 
						|
 */
 | 
						|
void kvfree(const void *addr)
 | 
						|
{
 | 
						|
	if (is_vmalloc_addr(addr))
 | 
						|
		vfree(addr);
 | 
						|
	else
 | 
						|
		kfree(addr);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kvfree);
 | 
						|
 | 
						|
/**
 | 
						|
 * kvfree_sensitive - Free a data object containing sensitive information.
 | 
						|
 * @addr: address of the data object to be freed.
 | 
						|
 * @len: length of the data object.
 | 
						|
 *
 | 
						|
 * Use the special memzero_explicit() function to clear the content of a
 | 
						|
 * kvmalloc'ed object containing sensitive data to make sure that the
 | 
						|
 * compiler won't optimize out the data clearing.
 | 
						|
 */
 | 
						|
void kvfree_sensitive(const void *addr, size_t len)
 | 
						|
{
 | 
						|
	if (likely(!ZERO_OR_NULL_PTR(addr))) {
 | 
						|
		memzero_explicit((void *)addr, len);
 | 
						|
		kvfree(addr);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kvfree_sensitive);
 | 
						|
 | 
						|
void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
 | 
						|
{
 | 
						|
	void *newp;
 | 
						|
 | 
						|
	if (oldsize >= newsize)
 | 
						|
		return (void *)p;
 | 
						|
	newp = kvmalloc(newsize, flags);
 | 
						|
	if (!newp)
 | 
						|
		return NULL;
 | 
						|
	memcpy(newp, p, oldsize);
 | 
						|
	kvfree(p);
 | 
						|
	return newp;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kvrealloc);
 | 
						|
 | 
						|
/**
 | 
						|
 * __vmalloc_array - allocate memory for a virtually contiguous array.
 | 
						|
 * @n: number of elements.
 | 
						|
 * @size: element size.
 | 
						|
 * @flags: the type of memory to allocate (see kmalloc).
 | 
						|
 */
 | 
						|
void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
 | 
						|
{
 | 
						|
	size_t bytes;
 | 
						|
 | 
						|
	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | 
						|
		return NULL;
 | 
						|
	return __vmalloc(bytes, flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__vmalloc_array);
 | 
						|
 | 
						|
/**
 | 
						|
 * vmalloc_array - allocate memory for a virtually contiguous array.
 | 
						|
 * @n: number of elements.
 | 
						|
 * @size: element size.
 | 
						|
 */
 | 
						|
void *vmalloc_array(size_t n, size_t size)
 | 
						|
{
 | 
						|
	return __vmalloc_array(n, size, GFP_KERNEL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmalloc_array);
 | 
						|
 | 
						|
/**
 | 
						|
 * __vcalloc - allocate and zero memory for a virtually contiguous array.
 | 
						|
 * @n: number of elements.
 | 
						|
 * @size: element size.
 | 
						|
 * @flags: the type of memory to allocate (see kmalloc).
 | 
						|
 */
 | 
						|
void *__vcalloc(size_t n, size_t size, gfp_t flags)
 | 
						|
{
 | 
						|
	return __vmalloc_array(n, size, flags | __GFP_ZERO);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__vcalloc);
 | 
						|
 | 
						|
/**
 | 
						|
 * vcalloc - allocate and zero memory for a virtually contiguous array.
 | 
						|
 * @n: number of elements.
 | 
						|
 * @size: element size.
 | 
						|
 */
 | 
						|
void *vcalloc(size_t n, size_t size)
 | 
						|
{
 | 
						|
	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vcalloc);
 | 
						|
 | 
						|
/* Neutral page->mapping pointer to address_space or anon_vma or other */
 | 
						|
void *page_rmapping(struct page *page)
 | 
						|
{
 | 
						|
	return folio_raw_mapping(page_folio(page));
 | 
						|
}
 | 
						|
 | 
						|
struct anon_vma *folio_anon_vma(struct folio *folio)
 | 
						|
{
 | 
						|
	unsigned long mapping = (unsigned long)folio->mapping;
 | 
						|
 | 
						|
	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 | 
						|
		return NULL;
 | 
						|
	return (void *)(mapping - PAGE_MAPPING_ANON);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * folio_mapping - Find the mapping where this folio is stored.
 | 
						|
 * @folio: The folio.
 | 
						|
 *
 | 
						|
 * For folios which are in the page cache, return the mapping that this
 | 
						|
 * page belongs to.  Folios in the swap cache return the swap mapping
 | 
						|
 * this page is stored in (which is different from the mapping for the
 | 
						|
 * swap file or swap device where the data is stored).
 | 
						|
 *
 | 
						|
 * You can call this for folios which aren't in the swap cache or page
 | 
						|
 * cache and it will return NULL.
 | 
						|
 */
 | 
						|
struct address_space *folio_mapping(struct folio *folio)
 | 
						|
{
 | 
						|
	struct address_space *mapping;
 | 
						|
 | 
						|
	/* This happens if someone calls flush_dcache_page on slab page */
 | 
						|
	if (unlikely(folio_test_slab(folio)))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (unlikely(folio_test_swapcache(folio)))
 | 
						|
		return swap_address_space(folio_swap_entry(folio));
 | 
						|
 | 
						|
	mapping = folio->mapping;
 | 
						|
	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return mapping;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(folio_mapping);
 | 
						|
 | 
						|
/**
 | 
						|
 * folio_copy - Copy the contents of one folio to another.
 | 
						|
 * @dst: Folio to copy to.
 | 
						|
 * @src: Folio to copy from.
 | 
						|
 *
 | 
						|
 * The bytes in the folio represented by @src are copied to @dst.
 | 
						|
 * Assumes the caller has validated that @dst is at least as large as @src.
 | 
						|
 * Can be called in atomic context for order-0 folios, but if the folio is
 | 
						|
 * larger, it may sleep.
 | 
						|
 */
 | 
						|
void folio_copy(struct folio *dst, struct folio *src)
 | 
						|
{
 | 
						|
	long i = 0;
 | 
						|
	long nr = folio_nr_pages(src);
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		copy_highpage(folio_page(dst, i), folio_page(src, i));
 | 
						|
		if (++i == nr)
 | 
						|
			break;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 | 
						|
int sysctl_overcommit_ratio __read_mostly = 50;
 | 
						|
unsigned long sysctl_overcommit_kbytes __read_mostly;
 | 
						|
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 | 
						|
unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 | 
						|
unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 | 
						|
 | 
						|
int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
 | 
						|
		size_t *lenp, loff_t *ppos)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 | 
						|
	if (ret == 0 && write)
 | 
						|
		sysctl_overcommit_kbytes = 0;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void sync_overcommit_as(struct work_struct *dummy)
 | 
						|
{
 | 
						|
	percpu_counter_sync(&vm_committed_as);
 | 
						|
}
 | 
						|
 | 
						|
int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
 | 
						|
		size_t *lenp, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct ctl_table t;
 | 
						|
	int new_policy = -1;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The deviation of sync_overcommit_as could be big with loose policy
 | 
						|
	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
 | 
						|
	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
 | 
						|
	 * with the strict "NEVER", and to avoid possible race condition (even
 | 
						|
	 * though user usually won't too frequently do the switching to policy
 | 
						|
	 * OVERCOMMIT_NEVER), the switch is done in the following order:
 | 
						|
	 *	1. changing the batch
 | 
						|
	 *	2. sync percpu count on each CPU
 | 
						|
	 *	3. switch the policy
 | 
						|
	 */
 | 
						|
	if (write) {
 | 
						|
		t = *table;
 | 
						|
		t.data = &new_policy;
 | 
						|
		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 | 
						|
		if (ret || new_policy == -1)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		mm_compute_batch(new_policy);
 | 
						|
		if (new_policy == OVERCOMMIT_NEVER)
 | 
						|
			schedule_on_each_cpu(sync_overcommit_as);
 | 
						|
		sysctl_overcommit_memory = new_policy;
 | 
						|
	} else {
 | 
						|
		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
 | 
						|
		size_t *lenp, loff_t *ppos)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 | 
						|
	if (ret == 0 && write)
 | 
						|
		sysctl_overcommit_ratio = 0;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 | 
						|
 */
 | 
						|
unsigned long vm_commit_limit(void)
 | 
						|
{
 | 
						|
	unsigned long allowed;
 | 
						|
 | 
						|
	if (sysctl_overcommit_kbytes)
 | 
						|
		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 | 
						|
	else
 | 
						|
		allowed = ((totalram_pages() - hugetlb_total_pages())
 | 
						|
			   * sysctl_overcommit_ratio / 100);
 | 
						|
	allowed += total_swap_pages;
 | 
						|
 | 
						|
	return allowed;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 | 
						|
 * other variables. It can be updated by several CPUs frequently.
 | 
						|
 */
 | 
						|
struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 | 
						|
 | 
						|
/*
 | 
						|
 * The global memory commitment made in the system can be a metric
 | 
						|
 * that can be used to drive ballooning decisions when Linux is hosted
 | 
						|
 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 | 
						|
 * balancing memory across competing virtual machines that are hosted.
 | 
						|
 * Several metrics drive this policy engine including the guest reported
 | 
						|
 * memory commitment.
 | 
						|
 *
 | 
						|
 * The time cost of this is very low for small platforms, and for big
 | 
						|
 * platform like a 2S/36C/72T Skylake server, in worst case where
 | 
						|
 * vm_committed_as's spinlock is under severe contention, the time cost
 | 
						|
 * could be about 30~40 microseconds.
 | 
						|
 */
 | 
						|
unsigned long vm_memory_committed(void)
 | 
						|
{
 | 
						|
	return percpu_counter_sum_positive(&vm_committed_as);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(vm_memory_committed);
 | 
						|
 | 
						|
/*
 | 
						|
 * Check that a process has enough memory to allocate a new virtual
 | 
						|
 * mapping. 0 means there is enough memory for the allocation to
 | 
						|
 * succeed and -ENOMEM implies there is not.
 | 
						|
 *
 | 
						|
 * We currently support three overcommit policies, which are set via the
 | 
						|
 * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
 | 
						|
 *
 | 
						|
 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 | 
						|
 * Additional code 2002 Jul 20 by Robert Love.
 | 
						|
 *
 | 
						|
 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 | 
						|
 *
 | 
						|
 * Note this is a helper function intended to be used by LSMs which
 | 
						|
 * wish to use this logic.
 | 
						|
 */
 | 
						|
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 | 
						|
{
 | 
						|
	long allowed;
 | 
						|
 | 
						|
	vm_acct_memory(pages);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Sometimes we want to use more memory than we have
 | 
						|
	 */
 | 
						|
	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 | 
						|
		if (pages > totalram_pages() + total_swap_pages)
 | 
						|
			goto error;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	allowed = vm_commit_limit();
 | 
						|
	/*
 | 
						|
	 * Reserve some for root
 | 
						|
	 */
 | 
						|
	if (!cap_sys_admin)
 | 
						|
		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't let a single process grow so big a user can't recover
 | 
						|
	 */
 | 
						|
	if (mm) {
 | 
						|
		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 | 
						|
 | 
						|
		allowed -= min_t(long, mm->total_vm / 32, reserve);
 | 
						|
	}
 | 
						|
 | 
						|
	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 | 
						|
		return 0;
 | 
						|
error:
 | 
						|
	pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n",
 | 
						|
			    __func__, current->pid, current->comm);
 | 
						|
	vm_unacct_memory(pages);
 | 
						|
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * get_cmdline() - copy the cmdline value to a buffer.
 | 
						|
 * @task:     the task whose cmdline value to copy.
 | 
						|
 * @buffer:   the buffer to copy to.
 | 
						|
 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 | 
						|
 *            to this length.
 | 
						|
 *
 | 
						|
 * Return: the size of the cmdline field copied. Note that the copy does
 | 
						|
 * not guarantee an ending NULL byte.
 | 
						|
 */
 | 
						|
int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 | 
						|
{
 | 
						|
	int res = 0;
 | 
						|
	unsigned int len;
 | 
						|
	struct mm_struct *mm = get_task_mm(task);
 | 
						|
	unsigned long arg_start, arg_end, env_start, env_end;
 | 
						|
	if (!mm)
 | 
						|
		goto out;
 | 
						|
	if (!mm->arg_end)
 | 
						|
		goto out_mm;	/* Shh! No looking before we're done */
 | 
						|
 | 
						|
	spin_lock(&mm->arg_lock);
 | 
						|
	arg_start = mm->arg_start;
 | 
						|
	arg_end = mm->arg_end;
 | 
						|
	env_start = mm->env_start;
 | 
						|
	env_end = mm->env_end;
 | 
						|
	spin_unlock(&mm->arg_lock);
 | 
						|
 | 
						|
	len = arg_end - arg_start;
 | 
						|
 | 
						|
	if (len > buflen)
 | 
						|
		len = buflen;
 | 
						|
 | 
						|
	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the nul at the end of args has been overwritten, then
 | 
						|
	 * assume application is using setproctitle(3).
 | 
						|
	 */
 | 
						|
	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 | 
						|
		len = strnlen(buffer, res);
 | 
						|
		if (len < res) {
 | 
						|
			res = len;
 | 
						|
		} else {
 | 
						|
			len = env_end - env_start;
 | 
						|
			if (len > buflen - res)
 | 
						|
				len = buflen - res;
 | 
						|
			res += access_process_vm(task, env_start,
 | 
						|
						 buffer+res, len,
 | 
						|
						 FOLL_FORCE);
 | 
						|
			res = strnlen(buffer, res);
 | 
						|
		}
 | 
						|
	}
 | 
						|
out_mm:
 | 
						|
	mmput(mm);
 | 
						|
out:
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
int __weak memcmp_pages(struct page *page1, struct page *page2)
 | 
						|
{
 | 
						|
	char *addr1, *addr2;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	addr1 = kmap_atomic(page1);
 | 
						|
	addr2 = kmap_atomic(page2);
 | 
						|
	ret = memcmp(addr1, addr2, PAGE_SIZE);
 | 
						|
	kunmap_atomic(addr2);
 | 
						|
	kunmap_atomic(addr1);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PRINTK
 | 
						|
/**
 | 
						|
 * mem_dump_obj - Print available provenance information
 | 
						|
 * @object: object for which to find provenance information.
 | 
						|
 *
 | 
						|
 * This function uses pr_cont(), so that the caller is expected to have
 | 
						|
 * printed out whatever preamble is appropriate.  The provenance information
 | 
						|
 * depends on the type of object and on how much debugging is enabled.
 | 
						|
 * For example, for a slab-cache object, the slab name is printed, and,
 | 
						|
 * if available, the return address and stack trace from the allocation
 | 
						|
 * and last free path of that object.
 | 
						|
 */
 | 
						|
void mem_dump_obj(void *object)
 | 
						|
{
 | 
						|
	const char *type;
 | 
						|
 | 
						|
	if (kmem_valid_obj(object)) {
 | 
						|
		kmem_dump_obj(object);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (vmalloc_dump_obj(object))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (virt_addr_valid(object))
 | 
						|
		type = "non-slab/vmalloc memory";
 | 
						|
	else if (object == NULL)
 | 
						|
		type = "NULL pointer";
 | 
						|
	else if (object == ZERO_SIZE_PTR)
 | 
						|
		type = "zero-size pointer";
 | 
						|
	else
 | 
						|
		type = "non-paged memory";
 | 
						|
 | 
						|
	pr_cont(" %s\n", type);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(mem_dump_obj);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * A driver might set a page logically offline -- PageOffline() -- and
 | 
						|
 * turn the page inaccessible in the hypervisor; after that, access to page
 | 
						|
 * content can be fatal.
 | 
						|
 *
 | 
						|
 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
 | 
						|
 * pages after checking PageOffline(); however, these PFN walkers can race
 | 
						|
 * with drivers that set PageOffline().
 | 
						|
 *
 | 
						|
 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
 | 
						|
 * synchronize with such drivers, achieving that a page cannot be set
 | 
						|
 * PageOffline() while frozen.
 | 
						|
 *
 | 
						|
 * page_offline_begin()/page_offline_end() is used by drivers that care about
 | 
						|
 * such races when setting a page PageOffline().
 | 
						|
 */
 | 
						|
static DECLARE_RWSEM(page_offline_rwsem);
 | 
						|
 | 
						|
void page_offline_freeze(void)
 | 
						|
{
 | 
						|
	down_read(&page_offline_rwsem);
 | 
						|
}
 | 
						|
 | 
						|
void page_offline_thaw(void)
 | 
						|
{
 | 
						|
	up_read(&page_offline_rwsem);
 | 
						|
}
 | 
						|
 | 
						|
void page_offline_begin(void)
 | 
						|
{
 | 
						|
	down_write(&page_offline_rwsem);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(page_offline_begin);
 | 
						|
 | 
						|
void page_offline_end(void)
 | 
						|
{
 | 
						|
	up_write(&page_offline_rwsem);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(page_offline_end);
 | 
						|
 | 
						|
#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
 | 
						|
void flush_dcache_folio(struct folio *folio)
 | 
						|
{
 | 
						|
	long i, nr = folio_nr_pages(folio);
 | 
						|
 | 
						|
	for (i = 0; i < nr; i++)
 | 
						|
		flush_dcache_page(folio_page(folio, i));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(flush_dcache_folio);
 | 
						|
#endif
 |