mirror of
https://github.com/torvalds/linux.git
synced 2025-11-10 21:48:46 +02:00
The early 64-bit boot code must be entered with a 1:1 mapping of the bootable image, but it cannot operate without a 1:1 mapping of all the assets in memory that it accesses, and therefore, it creates such mappings for all known assets upfront, and additional ones on demand when a page fault happens on a memory address. These mappings are created with the global bit G set, as the flags used to create page table descriptors are based on __PAGE_KERNEL_LARGE_EXEC defined by the core kernel, even though the context where these mappings are used is very different. This means that the TLB maintenance carried out by the decompressor is not sufficient if it is entered with CR4.PGE enabled, which has been observed to happen with the stage0 bootloader of project Oak. While this is a dubious practice if no global mappings are being used to begin with, the decompressor is clearly at fault here for creating global mappings and not performing the appropriate TLB maintenance. Since commit:f97b67a773("x86/decompressor: Only call the trampoline when changing paging levels") CR4 is no longer modified by the decompressor if no change in the number of paging levels is needed. Before that, CR4 would always be set to a consistent value with PGE cleared. So let's reinstate a simplified version of the original logic to put CR4 into a known state, and preserve the PAE, MCE and LA57 bits, none of which can be modified freely at this point (PAE and LA57 cannot be changed while running in long mode, and MCE cannot be cleared when running under some hypervisors). This effectively clears PGE and works around the project Oak bug. Fixes:f97b67a773("x86/decompressor: Only call the trampoline when ...") Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lore.kernel.org/r/20240410151354.506098-2-ardb+git@google.com
650 lines
17 KiB
ArmAsm
650 lines
17 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* linux/boot/head.S
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* head.S contains the 32-bit startup code.
|
|
*
|
|
* NOTE!!! Startup happens at absolute address 0x00001000, which is also where
|
|
* the page directory will exist. The startup code will be overwritten by
|
|
* the page directory. [According to comments etc elsewhere on a compressed
|
|
* kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
|
|
*
|
|
* Page 0 is deliberately kept safe, since System Management Mode code in
|
|
* laptops may need to access the BIOS data stored there. This is also
|
|
* useful for future device drivers that either access the BIOS via VM86
|
|
* mode.
|
|
*/
|
|
|
|
/*
|
|
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
|
|
*/
|
|
.code32
|
|
.text
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/linkage.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/boot.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/processor-flags.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/bootparam.h>
|
|
#include <asm/desc_defs.h>
|
|
#include <asm/trapnr.h>
|
|
#include "pgtable.h"
|
|
|
|
/*
|
|
* Fix alignment at 16 bytes. Following CONFIG_FUNCTION_ALIGNMENT will result
|
|
* in assembly errors due to trying to move .org backward due to the excessive
|
|
* alignment.
|
|
*/
|
|
#undef __ALIGN
|
|
#define __ALIGN .balign 16, 0x90
|
|
|
|
/*
|
|
* Locally defined symbols should be marked hidden:
|
|
*/
|
|
.hidden _bss
|
|
.hidden _ebss
|
|
.hidden _end
|
|
|
|
__HEAD
|
|
|
|
/*
|
|
* This macro gives the relative virtual address of X, i.e. the offset of X
|
|
* from startup_32. This is the same as the link-time virtual address of X,
|
|
* since startup_32 is at 0, but defining it this way tells the
|
|
* assembler/linker that we do not want the actual run-time address of X. This
|
|
* prevents the linker from trying to create unwanted run-time relocation
|
|
* entries for the reference when the compressed kernel is linked as PIE.
|
|
*
|
|
* A reference X(%reg) will result in the link-time VA of X being stored with
|
|
* the instruction, and a run-time R_X86_64_RELATIVE relocation entry that
|
|
* adds the 64-bit base address where the kernel is loaded.
|
|
*
|
|
* Replacing it with (X-startup_32)(%reg) results in the offset being stored,
|
|
* and no run-time relocation.
|
|
*
|
|
* The macro should be used as a displacement with a base register containing
|
|
* the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate
|
|
* [$ rva(X)].
|
|
*
|
|
* This macro can only be used from within the .head.text section, since the
|
|
* expression requires startup_32 to be in the same section as the code being
|
|
* assembled.
|
|
*/
|
|
#define rva(X) ((X) - startup_32)
|
|
|
|
.code32
|
|
SYM_FUNC_START(startup_32)
|
|
/*
|
|
* 32bit entry is 0 and it is ABI so immutable!
|
|
* If we come here directly from a bootloader,
|
|
* kernel(text+data+bss+brk) ramdisk, zero_page, command line
|
|
* all need to be under the 4G limit.
|
|
*/
|
|
cld
|
|
cli
|
|
|
|
/*
|
|
* Calculate the delta between where we were compiled to run
|
|
* at and where we were actually loaded at. This can only be done
|
|
* with a short local call on x86. Nothing else will tell us what
|
|
* address we are running at. The reserved chunk of the real-mode
|
|
* data at 0x1e4 (defined as a scratch field) are used as the stack
|
|
* for this calculation. Only 4 bytes are needed.
|
|
*/
|
|
leal (BP_scratch+4)(%esi), %esp
|
|
call 1f
|
|
1: popl %ebp
|
|
subl $ rva(1b), %ebp
|
|
|
|
/* Load new GDT with the 64bit segments using 32bit descriptor */
|
|
leal rva(gdt)(%ebp), %eax
|
|
movl %eax, 2(%eax)
|
|
lgdt (%eax)
|
|
|
|
/* Load segment registers with our descriptors */
|
|
movl $__BOOT_DS, %eax
|
|
movl %eax, %ds
|
|
movl %eax, %es
|
|
movl %eax, %fs
|
|
movl %eax, %gs
|
|
movl %eax, %ss
|
|
|
|
/* Setup a stack and load CS from current GDT */
|
|
leal rva(boot_stack_end)(%ebp), %esp
|
|
|
|
pushl $__KERNEL32_CS
|
|
leal rva(1f)(%ebp), %eax
|
|
pushl %eax
|
|
lretl
|
|
1:
|
|
|
|
/* Setup Exception handling for SEV-ES */
|
|
#ifdef CONFIG_AMD_MEM_ENCRYPT
|
|
call startup32_load_idt
|
|
#endif
|
|
|
|
/* Make sure cpu supports long mode. */
|
|
call verify_cpu
|
|
testl %eax, %eax
|
|
jnz .Lno_longmode
|
|
|
|
/*
|
|
* Compute the delta between where we were compiled to run at
|
|
* and where the code will actually run at.
|
|
*
|
|
* %ebp contains the address we are loaded at by the boot loader and %ebx
|
|
* contains the address where we should move the kernel image temporarily
|
|
* for safe in-place decompression.
|
|
*/
|
|
|
|
#ifdef CONFIG_RELOCATABLE
|
|
movl %ebp, %ebx
|
|
movl BP_kernel_alignment(%esi), %eax
|
|
decl %eax
|
|
addl %eax, %ebx
|
|
notl %eax
|
|
andl %eax, %ebx
|
|
cmpl $LOAD_PHYSICAL_ADDR, %ebx
|
|
jae 1f
|
|
#endif
|
|
movl $LOAD_PHYSICAL_ADDR, %ebx
|
|
1:
|
|
|
|
/* Target address to relocate to for decompression */
|
|
addl BP_init_size(%esi), %ebx
|
|
subl $ rva(_end), %ebx
|
|
|
|
/*
|
|
* Prepare for entering 64 bit mode
|
|
*/
|
|
|
|
/* Enable PAE mode */
|
|
movl %cr4, %eax
|
|
orl $X86_CR4_PAE, %eax
|
|
movl %eax, %cr4
|
|
|
|
/*
|
|
* Build early 4G boot pagetable
|
|
*/
|
|
/*
|
|
* If SEV is active then set the encryption mask in the page tables.
|
|
* This will ensure that when the kernel is copied and decompressed
|
|
* it will be done so encrypted.
|
|
*/
|
|
xorl %edx, %edx
|
|
#ifdef CONFIG_AMD_MEM_ENCRYPT
|
|
call get_sev_encryption_bit
|
|
xorl %edx, %edx
|
|
testl %eax, %eax
|
|
jz 1f
|
|
subl $32, %eax /* Encryption bit is always above bit 31 */
|
|
bts %eax, %edx /* Set encryption mask for page tables */
|
|
/*
|
|
* Set MSR_AMD64_SEV_ENABLED_BIT in sev_status so that
|
|
* startup32_check_sev_cbit() will do a check. sev_enable() will
|
|
* initialize sev_status with all the bits reported by
|
|
* MSR_AMD_SEV_STATUS later, but only MSR_AMD64_SEV_ENABLED_BIT
|
|
* needs to be set for now.
|
|
*/
|
|
movl $1, rva(sev_status)(%ebp)
|
|
1:
|
|
#endif
|
|
|
|
/* Initialize Page tables to 0 */
|
|
leal rva(pgtable)(%ebx), %edi
|
|
xorl %eax, %eax
|
|
movl $(BOOT_INIT_PGT_SIZE/4), %ecx
|
|
rep stosl
|
|
|
|
/* Build Level 4 */
|
|
leal rva(pgtable + 0)(%ebx), %edi
|
|
leal 0x1007 (%edi), %eax
|
|
movl %eax, 0(%edi)
|
|
addl %edx, 4(%edi)
|
|
|
|
/* Build Level 3 */
|
|
leal rva(pgtable + 0x1000)(%ebx), %edi
|
|
leal 0x1007(%edi), %eax
|
|
movl $4, %ecx
|
|
1: movl %eax, 0x00(%edi)
|
|
addl %edx, 0x04(%edi)
|
|
addl $0x00001000, %eax
|
|
addl $8, %edi
|
|
decl %ecx
|
|
jnz 1b
|
|
|
|
/* Build Level 2 */
|
|
leal rva(pgtable + 0x2000)(%ebx), %edi
|
|
movl $0x00000183, %eax
|
|
movl $2048, %ecx
|
|
1: movl %eax, 0(%edi)
|
|
addl %edx, 4(%edi)
|
|
addl $0x00200000, %eax
|
|
addl $8, %edi
|
|
decl %ecx
|
|
jnz 1b
|
|
|
|
/* Enable the boot page tables */
|
|
leal rva(pgtable)(%ebx), %eax
|
|
movl %eax, %cr3
|
|
|
|
/* Enable Long mode in EFER (Extended Feature Enable Register) */
|
|
movl $MSR_EFER, %ecx
|
|
rdmsr
|
|
btsl $_EFER_LME, %eax
|
|
wrmsr
|
|
|
|
/* After gdt is loaded */
|
|
xorl %eax, %eax
|
|
lldt %ax
|
|
movl $__BOOT_TSS, %eax
|
|
ltr %ax
|
|
|
|
#ifdef CONFIG_AMD_MEM_ENCRYPT
|
|
/* Check if the C-bit position is correct when SEV is active */
|
|
call startup32_check_sev_cbit
|
|
#endif
|
|
|
|
/*
|
|
* Setup for the jump to 64bit mode
|
|
*
|
|
* When the jump is performed we will be in long mode but
|
|
* in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
|
|
* (and in turn EFER.LMA = 1). To jump into 64bit mode we use
|
|
* the new gdt/idt that has __KERNEL_CS with CS.L = 1.
|
|
* We place all of the values on our mini stack so lret can
|
|
* used to perform that far jump.
|
|
*/
|
|
leal rva(startup_64)(%ebp), %eax
|
|
#ifdef CONFIG_EFI_MIXED
|
|
cmpb $1, rva(efi_is64)(%ebp)
|
|
je 1f
|
|
leal rva(startup_64_mixed_mode)(%ebp), %eax
|
|
1:
|
|
#endif
|
|
|
|
pushl $__KERNEL_CS
|
|
pushl %eax
|
|
|
|
/* Enter paged protected Mode, activating Long Mode */
|
|
movl $CR0_STATE, %eax
|
|
movl %eax, %cr0
|
|
|
|
/* Jump from 32bit compatibility mode into 64bit mode. */
|
|
lret
|
|
SYM_FUNC_END(startup_32)
|
|
|
|
.code64
|
|
.org 0x200
|
|
SYM_CODE_START(startup_64)
|
|
/*
|
|
* 64bit entry is 0x200 and it is ABI so immutable!
|
|
* We come here either from startup_32 or directly from a
|
|
* 64bit bootloader.
|
|
* If we come here from a bootloader, kernel(text+data+bss+brk),
|
|
* ramdisk, zero_page, command line could be above 4G.
|
|
* We depend on an identity mapped page table being provided
|
|
* that maps our entire kernel(text+data+bss+brk), zero page
|
|
* and command line.
|
|
*/
|
|
|
|
cld
|
|
cli
|
|
|
|
/* Setup data segments. */
|
|
xorl %eax, %eax
|
|
movl %eax, %ds
|
|
movl %eax, %es
|
|
movl %eax, %ss
|
|
movl %eax, %fs
|
|
movl %eax, %gs
|
|
|
|
/*
|
|
* Compute the decompressed kernel start address. It is where
|
|
* we were loaded at aligned to a 2M boundary. %rbp contains the
|
|
* decompressed kernel start address.
|
|
*
|
|
* If it is a relocatable kernel then decompress and run the kernel
|
|
* from load address aligned to 2MB addr, otherwise decompress and
|
|
* run the kernel from LOAD_PHYSICAL_ADDR
|
|
*
|
|
* We cannot rely on the calculation done in 32-bit mode, since we
|
|
* may have been invoked via the 64-bit entry point.
|
|
*/
|
|
|
|
/* Start with the delta to where the kernel will run at. */
|
|
#ifdef CONFIG_RELOCATABLE
|
|
leaq startup_32(%rip) /* - $startup_32 */, %rbp
|
|
movl BP_kernel_alignment(%rsi), %eax
|
|
decl %eax
|
|
addq %rax, %rbp
|
|
notq %rax
|
|
andq %rax, %rbp
|
|
cmpq $LOAD_PHYSICAL_ADDR, %rbp
|
|
jae 1f
|
|
#endif
|
|
movq $LOAD_PHYSICAL_ADDR, %rbp
|
|
1:
|
|
|
|
/* Target address to relocate to for decompression */
|
|
movl BP_init_size(%rsi), %ebx
|
|
subl $ rva(_end), %ebx
|
|
addq %rbp, %rbx
|
|
|
|
/* Set up the stack */
|
|
leaq rva(boot_stack_end)(%rbx), %rsp
|
|
|
|
/*
|
|
* At this point we are in long mode with 4-level paging enabled,
|
|
* but we might want to enable 5-level paging or vice versa.
|
|
*
|
|
* The problem is that we cannot do it directly. Setting or clearing
|
|
* CR4.LA57 in long mode would trigger #GP. So we need to switch off
|
|
* long mode and paging first.
|
|
*
|
|
* We also need a trampoline in lower memory to switch over from
|
|
* 4- to 5-level paging for cases when the bootloader puts the kernel
|
|
* above 4G, but didn't enable 5-level paging for us.
|
|
*
|
|
* The same trampoline can be used to switch from 5- to 4-level paging
|
|
* mode, like when starting 4-level paging kernel via kexec() when
|
|
* original kernel worked in 5-level paging mode.
|
|
*
|
|
* For the trampoline, we need the top page table to reside in lower
|
|
* memory as we don't have a way to load 64-bit values into CR3 in
|
|
* 32-bit mode.
|
|
*/
|
|
|
|
/* Make sure we have GDT with 32-bit code segment */
|
|
leaq gdt64(%rip), %rax
|
|
addq %rax, 2(%rax)
|
|
lgdt (%rax)
|
|
|
|
/* Reload CS so IRET returns to a CS actually in the GDT */
|
|
pushq $__KERNEL_CS
|
|
leaq .Lon_kernel_cs(%rip), %rax
|
|
pushq %rax
|
|
lretq
|
|
|
|
.Lon_kernel_cs:
|
|
/*
|
|
* RSI holds a pointer to a boot_params structure provided by the
|
|
* loader, and this needs to be preserved across C function calls. So
|
|
* move it into a callee saved register.
|
|
*/
|
|
movq %rsi, %r15
|
|
|
|
call load_stage1_idt
|
|
|
|
#ifdef CONFIG_AMD_MEM_ENCRYPT
|
|
/*
|
|
* Now that the stage1 interrupt handlers are set up, #VC exceptions from
|
|
* CPUID instructions can be properly handled for SEV-ES guests.
|
|
*
|
|
* For SEV-SNP, the CPUID table also needs to be set up in advance of any
|
|
* CPUID instructions being issued, so go ahead and do that now via
|
|
* sev_enable(), which will also handle the rest of the SEV-related
|
|
* detection/setup to ensure that has been done in advance of any dependent
|
|
* code. Pass the boot_params pointer as the first argument.
|
|
*/
|
|
movq %r15, %rdi
|
|
call sev_enable
|
|
#endif
|
|
|
|
/* Preserve only the CR4 bits that must be preserved, and clear the rest */
|
|
movq %cr4, %rax
|
|
andl $(X86_CR4_PAE | X86_CR4_MCE | X86_CR4_LA57), %eax
|
|
movq %rax, %cr4
|
|
|
|
/*
|
|
* configure_5level_paging() updates the number of paging levels using
|
|
* a trampoline in 32-bit addressable memory if the current number does
|
|
* not match the desired number.
|
|
*
|
|
* Pass the boot_params pointer as the first argument. The second
|
|
* argument is the relocated address of the page table to use instead
|
|
* of the page table in trampoline memory (if required).
|
|
*/
|
|
movq %r15, %rdi
|
|
leaq rva(top_pgtable)(%rbx), %rsi
|
|
call configure_5level_paging
|
|
|
|
/* Zero EFLAGS */
|
|
pushq $0
|
|
popfq
|
|
|
|
/*
|
|
* Copy the compressed kernel to the end of our buffer
|
|
* where decompression in place becomes safe.
|
|
*/
|
|
leaq (_bss-8)(%rip), %rsi
|
|
leaq rva(_bss-8)(%rbx), %rdi
|
|
movl $(_bss - startup_32), %ecx
|
|
shrl $3, %ecx
|
|
std
|
|
rep movsq
|
|
cld
|
|
|
|
/*
|
|
* The GDT may get overwritten either during the copy we just did or
|
|
* during extract_kernel below. To avoid any issues, repoint the GDTR
|
|
* to the new copy of the GDT.
|
|
*/
|
|
leaq rva(gdt64)(%rbx), %rax
|
|
leaq rva(gdt)(%rbx), %rdx
|
|
movq %rdx, 2(%rax)
|
|
lgdt (%rax)
|
|
|
|
/*
|
|
* Jump to the relocated address.
|
|
*/
|
|
leaq rva(.Lrelocated)(%rbx), %rax
|
|
jmp *%rax
|
|
SYM_CODE_END(startup_64)
|
|
|
|
.text
|
|
SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
|
|
|
|
/*
|
|
* Clear BSS (stack is currently empty)
|
|
*/
|
|
xorl %eax, %eax
|
|
leaq _bss(%rip), %rdi
|
|
leaq _ebss(%rip), %rcx
|
|
subq %rdi, %rcx
|
|
shrq $3, %rcx
|
|
rep stosq
|
|
|
|
call load_stage2_idt
|
|
|
|
/* Pass boot_params to initialize_identity_maps() */
|
|
movq %r15, %rdi
|
|
call initialize_identity_maps
|
|
|
|
/*
|
|
* Do the extraction, and jump to the new kernel..
|
|
*/
|
|
/* pass struct boot_params pointer and output target address */
|
|
movq %r15, %rdi
|
|
movq %rbp, %rsi
|
|
call extract_kernel /* returns kernel entry point in %rax */
|
|
|
|
/*
|
|
* Jump to the decompressed kernel.
|
|
*/
|
|
movq %r15, %rsi
|
|
jmp *%rax
|
|
SYM_FUNC_END(.Lrelocated)
|
|
|
|
/*
|
|
* This is the 32-bit trampoline that will be copied over to low memory. It
|
|
* will be called using the ordinary 64-bit calling convention from code
|
|
* running in 64-bit mode.
|
|
*
|
|
* Return address is at the top of the stack (might be above 4G).
|
|
* The first argument (EDI) contains the address of the temporary PGD level
|
|
* page table in 32-bit addressable memory which will be programmed into
|
|
* register CR3.
|
|
*/
|
|
.section ".rodata", "a", @progbits
|
|
SYM_CODE_START(trampoline_32bit_src)
|
|
/*
|
|
* Preserve callee save 64-bit registers on the stack: this is
|
|
* necessary because the architecture does not guarantee that GPRs will
|
|
* retain their full 64-bit values across a 32-bit mode switch.
|
|
*/
|
|
pushq %r15
|
|
pushq %r14
|
|
pushq %r13
|
|
pushq %r12
|
|
pushq %rbp
|
|
pushq %rbx
|
|
|
|
/* Preserve top half of RSP in a legacy mode GPR to avoid truncation */
|
|
movq %rsp, %rbx
|
|
shrq $32, %rbx
|
|
|
|
/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
|
|
pushq $__KERNEL32_CS
|
|
leaq 0f(%rip), %rax
|
|
pushq %rax
|
|
lretq
|
|
|
|
/*
|
|
* The 32-bit code below will do a far jump back to long mode and end
|
|
* up here after reconfiguring the number of paging levels. First, the
|
|
* stack pointer needs to be restored to its full 64-bit value before
|
|
* the callee save register contents can be popped from the stack.
|
|
*/
|
|
.Lret:
|
|
shlq $32, %rbx
|
|
orq %rbx, %rsp
|
|
|
|
/* Restore the preserved 64-bit registers */
|
|
popq %rbx
|
|
popq %rbp
|
|
popq %r12
|
|
popq %r13
|
|
popq %r14
|
|
popq %r15
|
|
retq
|
|
|
|
.code32
|
|
0:
|
|
/* Disable paging */
|
|
movl %cr0, %eax
|
|
btrl $X86_CR0_PG_BIT, %eax
|
|
movl %eax, %cr0
|
|
|
|
/* Point CR3 to the trampoline's new top level page table */
|
|
movl %edi, %cr3
|
|
|
|
/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
|
|
movl $MSR_EFER, %ecx
|
|
rdmsr
|
|
btsl $_EFER_LME, %eax
|
|
/* Avoid writing EFER if no change was made (for TDX guest) */
|
|
jc 1f
|
|
wrmsr
|
|
1:
|
|
/* Toggle CR4.LA57 */
|
|
movl %cr4, %eax
|
|
btcl $X86_CR4_LA57_BIT, %eax
|
|
movl %eax, %cr4
|
|
|
|
/* Enable paging again. */
|
|
movl %cr0, %eax
|
|
btsl $X86_CR0_PG_BIT, %eax
|
|
movl %eax, %cr0
|
|
|
|
/*
|
|
* Return to the 64-bit calling code using LJMP rather than LRET, to
|
|
* avoid the need for a 32-bit addressable stack. The destination
|
|
* address will be adjusted after the template code is copied into a
|
|
* 32-bit addressable buffer.
|
|
*/
|
|
.Ljmp: ljmpl $__KERNEL_CS, $(.Lret - trampoline_32bit_src)
|
|
SYM_CODE_END(trampoline_32bit_src)
|
|
|
|
/*
|
|
* This symbol is placed right after trampoline_32bit_src() so its address can
|
|
* be used to infer the size of the trampoline code.
|
|
*/
|
|
SYM_DATA(trampoline_ljmp_imm_offset, .word .Ljmp + 1 - trampoline_32bit_src)
|
|
|
|
/*
|
|
* The trampoline code has a size limit.
|
|
* Make sure we fail to compile if the trampoline code grows
|
|
* beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
|
|
*/
|
|
.org trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE
|
|
|
|
.text
|
|
SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
|
|
/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
|
|
1:
|
|
hlt
|
|
jmp 1b
|
|
SYM_FUNC_END(.Lno_longmode)
|
|
|
|
.globl verify_cpu
|
|
#include "../../kernel/verify_cpu.S"
|
|
|
|
.data
|
|
SYM_DATA_START_LOCAL(gdt64)
|
|
.word gdt_end - gdt - 1
|
|
.quad gdt - gdt64
|
|
SYM_DATA_END(gdt64)
|
|
.balign 8
|
|
SYM_DATA_START_LOCAL(gdt)
|
|
.word gdt_end - gdt - 1
|
|
.long 0
|
|
.word 0
|
|
.quad 0x00cf9a000000ffff /* __KERNEL32_CS */
|
|
.quad 0x00af9a000000ffff /* __KERNEL_CS */
|
|
.quad 0x00cf92000000ffff /* __KERNEL_DS */
|
|
.quad 0x0080890000000000 /* TS descriptor */
|
|
.quad 0x0000000000000000 /* TS continued */
|
|
SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
|
|
|
|
SYM_DATA_START(boot_idt_desc)
|
|
.word boot_idt_end - boot_idt - 1
|
|
.quad 0
|
|
SYM_DATA_END(boot_idt_desc)
|
|
.balign 8
|
|
SYM_DATA_START(boot_idt)
|
|
.rept BOOT_IDT_ENTRIES
|
|
.quad 0
|
|
.quad 0
|
|
.endr
|
|
SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end)
|
|
|
|
/*
|
|
* Stack and heap for uncompression
|
|
*/
|
|
.bss
|
|
.balign 4
|
|
SYM_DATA_START_LOCAL(boot_stack)
|
|
.fill BOOT_STACK_SIZE, 1, 0
|
|
.balign 16
|
|
SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
|
|
|
|
/*
|
|
* Space for page tables (not in .bss so not zeroed)
|
|
*/
|
|
.section ".pgtable","aw",@nobits
|
|
.balign 4096
|
|
SYM_DATA_LOCAL(pgtable, .fill BOOT_PGT_SIZE, 1, 0)
|
|
|
|
/*
|
|
* The page table is going to be used instead of page table in the trampoline
|
|
* memory.
|
|
*/
|
|
SYM_DATA_LOCAL(top_pgtable, .fill PAGE_SIZE, 1, 0)
|