mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Currently several places in xfs_find_get_desired_pgoff() handle the case of a missing page. Make them all handled in one place after the loop has terminated. Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
		
			
				
	
	
		
			1516 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1516 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | 
						|
 * All Rights Reserved.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it would be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write the Free Software Foundation,
 | 
						|
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 */
 | 
						|
#include "xfs.h"
 | 
						|
#include "xfs_fs.h"
 | 
						|
#include "xfs_shared.h"
 | 
						|
#include "xfs_format.h"
 | 
						|
#include "xfs_log_format.h"
 | 
						|
#include "xfs_trans_resv.h"
 | 
						|
#include "xfs_mount.h"
 | 
						|
#include "xfs_da_format.h"
 | 
						|
#include "xfs_da_btree.h"
 | 
						|
#include "xfs_inode.h"
 | 
						|
#include "xfs_trans.h"
 | 
						|
#include "xfs_inode_item.h"
 | 
						|
#include "xfs_bmap.h"
 | 
						|
#include "xfs_bmap_util.h"
 | 
						|
#include "xfs_error.h"
 | 
						|
#include "xfs_dir2.h"
 | 
						|
#include "xfs_dir2_priv.h"
 | 
						|
#include "xfs_ioctl.h"
 | 
						|
#include "xfs_trace.h"
 | 
						|
#include "xfs_log.h"
 | 
						|
#include "xfs_icache.h"
 | 
						|
#include "xfs_pnfs.h"
 | 
						|
#include "xfs_iomap.h"
 | 
						|
#include "xfs_reflink.h"
 | 
						|
 | 
						|
#include <linux/dcache.h>
 | 
						|
#include <linux/falloc.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
 | 
						|
static const struct vm_operations_struct xfs_file_vm_ops;
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear the specified ranges to zero through either the pagecache or DAX.
 | 
						|
 * Holes and unwritten extents will be left as-is as they already are zeroed.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_zero_range(
 | 
						|
	struct xfs_inode	*ip,
 | 
						|
	xfs_off_t		pos,
 | 
						|
	xfs_off_t		count,
 | 
						|
	bool			*did_zero)
 | 
						|
{
 | 
						|
	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
xfs_update_prealloc_flags(
 | 
						|
	struct xfs_inode	*ip,
 | 
						|
	enum xfs_prealloc_flags	flags)
 | 
						|
{
 | 
						|
	struct xfs_trans	*tp;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
 | 
						|
			0, 0, 0, &tp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | 
						|
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 | 
						|
 | 
						|
	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
 | 
						|
		VFS_I(ip)->i_mode &= ~S_ISUID;
 | 
						|
		if (VFS_I(ip)->i_mode & S_IXGRP)
 | 
						|
			VFS_I(ip)->i_mode &= ~S_ISGID;
 | 
						|
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 | 
						|
	}
 | 
						|
 | 
						|
	if (flags & XFS_PREALLOC_SET)
 | 
						|
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
 | 
						|
	if (flags & XFS_PREALLOC_CLEAR)
 | 
						|
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
 | 
						|
 | 
						|
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | 
						|
	if (flags & XFS_PREALLOC_SYNC)
 | 
						|
		xfs_trans_set_sync(tp);
 | 
						|
	return xfs_trans_commit(tp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Fsync operations on directories are much simpler than on regular files,
 | 
						|
 * as there is no file data to flush, and thus also no need for explicit
 | 
						|
 * cache flush operations, and there are no non-transaction metadata updates
 | 
						|
 * on directories either.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_dir_fsync(
 | 
						|
	struct file		*file,
 | 
						|
	loff_t			start,
 | 
						|
	loff_t			end,
 | 
						|
	int			datasync)
 | 
						|
{
 | 
						|
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 | 
						|
	struct xfs_mount	*mp = ip->i_mount;
 | 
						|
	xfs_lsn_t		lsn = 0;
 | 
						|
 | 
						|
	trace_xfs_dir_fsync(ip);
 | 
						|
 | 
						|
	xfs_ilock(ip, XFS_ILOCK_SHARED);
 | 
						|
	if (xfs_ipincount(ip))
 | 
						|
		lsn = ip->i_itemp->ili_last_lsn;
 | 
						|
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | 
						|
 | 
						|
	if (!lsn)
 | 
						|
		return 0;
 | 
						|
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_file_fsync(
 | 
						|
	struct file		*file,
 | 
						|
	loff_t			start,
 | 
						|
	loff_t			end,
 | 
						|
	int			datasync)
 | 
						|
{
 | 
						|
	struct inode		*inode = file->f_mapping->host;
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	struct xfs_mount	*mp = ip->i_mount;
 | 
						|
	int			error = 0;
 | 
						|
	int			log_flushed = 0;
 | 
						|
	xfs_lsn_t		lsn = 0;
 | 
						|
 | 
						|
	trace_xfs_file_fsync(ip);
 | 
						|
 | 
						|
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	if (XFS_FORCED_SHUTDOWN(mp))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have an RT and/or log subvolume we need to make sure to flush
 | 
						|
	 * the write cache the device used for file data first.  This is to
 | 
						|
	 * ensure newly written file data make it to disk before logging the new
 | 
						|
	 * inode size in case of an extending write.
 | 
						|
	 */
 | 
						|
	if (XFS_IS_REALTIME_INODE(ip))
 | 
						|
		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 | 
						|
	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 | 
						|
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * All metadata updates are logged, which means that we just have to
 | 
						|
	 * flush the log up to the latest LSN that touched the inode. If we have
 | 
						|
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 | 
						|
	 * log force before we clear the ili_fsync_fields field. This ensures
 | 
						|
	 * that we don't get a racing sync operation that does not wait for the
 | 
						|
	 * metadata to hit the journal before returning. If we race with
 | 
						|
	 * clearing the ili_fsync_fields, then all that will happen is the log
 | 
						|
	 * force will do nothing as the lsn will already be on disk. We can't
 | 
						|
	 * race with setting ili_fsync_fields because that is done under
 | 
						|
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 | 
						|
	 * until after the ili_fsync_fields is cleared.
 | 
						|
	 */
 | 
						|
	xfs_ilock(ip, XFS_ILOCK_SHARED);
 | 
						|
	if (xfs_ipincount(ip)) {
 | 
						|
		if (!datasync ||
 | 
						|
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 | 
						|
			lsn = ip->i_itemp->ili_last_lsn;
 | 
						|
	}
 | 
						|
 | 
						|
	if (lsn) {
 | 
						|
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 | 
						|
		ip->i_itemp->ili_fsync_fields = 0;
 | 
						|
	}
 | 
						|
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we only have a single device, and the log force about was
 | 
						|
	 * a no-op we might have to flush the data device cache here.
 | 
						|
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 | 
						|
	 * an already allocated file and thus do not have any metadata to
 | 
						|
	 * commit.
 | 
						|
	 */
 | 
						|
	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 | 
						|
	    mp->m_logdev_targp == mp->m_ddev_targp)
 | 
						|
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
STATIC ssize_t
 | 
						|
xfs_file_dio_aio_read(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	struct iov_iter		*to)
 | 
						|
{
 | 
						|
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 | 
						|
	size_t			count = iov_iter_count(to);
 | 
						|
	ssize_t			ret;
 | 
						|
 | 
						|
	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 | 
						|
 | 
						|
	if (!count)
 | 
						|
		return 0; /* skip atime */
 | 
						|
 | 
						|
	file_accessed(iocb->ki_filp);
 | 
						|
 | 
						|
	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 | 
						|
	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 | 
						|
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static noinline ssize_t
 | 
						|
xfs_file_dax_read(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	struct iov_iter		*to)
 | 
						|
{
 | 
						|
	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 | 
						|
	size_t			count = iov_iter_count(to);
 | 
						|
	ssize_t			ret = 0;
 | 
						|
 | 
						|
	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 | 
						|
 | 
						|
	if (!count)
 | 
						|
		return 0; /* skip atime */
 | 
						|
 | 
						|
	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 | 
						|
	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 | 
						|
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 | 
						|
 | 
						|
	file_accessed(iocb->ki_filp);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
STATIC ssize_t
 | 
						|
xfs_file_buffered_aio_read(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	struct iov_iter		*to)
 | 
						|
{
 | 
						|
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 | 
						|
	ssize_t			ret;
 | 
						|
 | 
						|
	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 | 
						|
 | 
						|
	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 | 
						|
	ret = generic_file_read_iter(iocb, to);
 | 
						|
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
STATIC ssize_t
 | 
						|
xfs_file_read_iter(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	struct iov_iter		*to)
 | 
						|
{
 | 
						|
	struct inode		*inode = file_inode(iocb->ki_filp);
 | 
						|
	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 | 
						|
	ssize_t			ret = 0;
 | 
						|
 | 
						|
	XFS_STATS_INC(mp, xs_read_calls);
 | 
						|
 | 
						|
	if (XFS_FORCED_SHUTDOWN(mp))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	if (IS_DAX(inode))
 | 
						|
		ret = xfs_file_dax_read(iocb, to);
 | 
						|
	else if (iocb->ki_flags & IOCB_DIRECT)
 | 
						|
		ret = xfs_file_dio_aio_read(iocb, to);
 | 
						|
	else
 | 
						|
		ret = xfs_file_buffered_aio_read(iocb, to);
 | 
						|
 | 
						|
	if (ret > 0)
 | 
						|
		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Zero any on disk space between the current EOF and the new, larger EOF.
 | 
						|
 *
 | 
						|
 * This handles the normal case of zeroing the remainder of the last block in
 | 
						|
 * the file and the unusual case of zeroing blocks out beyond the size of the
 | 
						|
 * file.  This second case only happens with fixed size extents and when the
 | 
						|
 * system crashes before the inode size was updated but after blocks were
 | 
						|
 * allocated.
 | 
						|
 *
 | 
						|
 * Expects the iolock to be held exclusive, and will take the ilock internally.
 | 
						|
 */
 | 
						|
int					/* error (positive) */
 | 
						|
xfs_zero_eof(
 | 
						|
	struct xfs_inode	*ip,
 | 
						|
	xfs_off_t		offset,		/* starting I/O offset */
 | 
						|
	xfs_fsize_t		isize,		/* current inode size */
 | 
						|
	bool			*did_zeroing)
 | 
						|
{
 | 
						|
	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 | 
						|
	ASSERT(offset > isize);
 | 
						|
 | 
						|
	trace_xfs_zero_eof(ip, isize, offset - isize);
 | 
						|
	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Common pre-write limit and setup checks.
 | 
						|
 *
 | 
						|
 * Called with the iolocked held either shared and exclusive according to
 | 
						|
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 | 
						|
 * if called for a direct write beyond i_size.
 | 
						|
 */
 | 
						|
STATIC ssize_t
 | 
						|
xfs_file_aio_write_checks(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	struct iov_iter		*from,
 | 
						|
	int			*iolock)
 | 
						|
{
 | 
						|
	struct file		*file = iocb->ki_filp;
 | 
						|
	struct inode		*inode = file->f_mapping->host;
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	ssize_t			error = 0;
 | 
						|
	size_t			count = iov_iter_count(from);
 | 
						|
	bool			drained_dio = false;
 | 
						|
 | 
						|
restart:
 | 
						|
	error = generic_write_checks(iocb, from);
 | 
						|
	if (error <= 0)
 | 
						|
		return error;
 | 
						|
 | 
						|
	error = xfs_break_layouts(inode, iolock);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For changing security info in file_remove_privs() we need i_rwsem
 | 
						|
	 * exclusively.
 | 
						|
	 */
 | 
						|
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 | 
						|
		xfs_iunlock(ip, *iolock);
 | 
						|
		*iolock = XFS_IOLOCK_EXCL;
 | 
						|
		xfs_ilock(ip, *iolock);
 | 
						|
		goto restart;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * If the offset is beyond the size of the file, we need to zero any
 | 
						|
	 * blocks that fall between the existing EOF and the start of this
 | 
						|
	 * write.  If zeroing is needed and we are currently holding the
 | 
						|
	 * iolock shared, we need to update it to exclusive which implies
 | 
						|
	 * having to redo all checks before.
 | 
						|
	 *
 | 
						|
	 * We need to serialise against EOF updates that occur in IO
 | 
						|
	 * completions here. We want to make sure that nobody is changing the
 | 
						|
	 * size while we do this check until we have placed an IO barrier (i.e.
 | 
						|
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 | 
						|
	 * The spinlock effectively forms a memory barrier once we have the
 | 
						|
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 | 
						|
	 * and hence be able to correctly determine if we need to run zeroing.
 | 
						|
	 */
 | 
						|
	spin_lock(&ip->i_flags_lock);
 | 
						|
	if (iocb->ki_pos > i_size_read(inode)) {
 | 
						|
		bool	zero = false;
 | 
						|
 | 
						|
		spin_unlock(&ip->i_flags_lock);
 | 
						|
		if (!drained_dio) {
 | 
						|
			if (*iolock == XFS_IOLOCK_SHARED) {
 | 
						|
				xfs_iunlock(ip, *iolock);
 | 
						|
				*iolock = XFS_IOLOCK_EXCL;
 | 
						|
				xfs_ilock(ip, *iolock);
 | 
						|
				iov_iter_reexpand(from, count);
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * We now have an IO submission barrier in place, but
 | 
						|
			 * AIO can do EOF updates during IO completion and hence
 | 
						|
			 * we now need to wait for all of them to drain. Non-AIO
 | 
						|
			 * DIO will have drained before we are given the
 | 
						|
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 | 
						|
			 * no-op.
 | 
						|
			 */
 | 
						|
			inode_dio_wait(inode);
 | 
						|
			drained_dio = true;
 | 
						|
			goto restart;
 | 
						|
		}
 | 
						|
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	} else
 | 
						|
		spin_unlock(&ip->i_flags_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Updating the timestamps will grab the ilock again from
 | 
						|
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 | 
						|
	 * lock above.  Eventually we should look into a way to avoid
 | 
						|
	 * the pointless lock roundtrip.
 | 
						|
	 */
 | 
						|
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 | 
						|
		error = file_update_time(file);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're writing the file then make sure to clear the setuid and
 | 
						|
	 * setgid bits if the process is not being run by root.  This keeps
 | 
						|
	 * people from modifying setuid and setgid binaries.
 | 
						|
	 */
 | 
						|
	if (!IS_NOSEC(inode))
 | 
						|
		return file_remove_privs(file);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
xfs_dio_write_end_io(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	ssize_t			size,
 | 
						|
	unsigned		flags)
 | 
						|
{
 | 
						|
	struct inode		*inode = file_inode(iocb->ki_filp);
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	loff_t			offset = iocb->ki_pos;
 | 
						|
	bool			update_size = false;
 | 
						|
	int			error = 0;
 | 
						|
 | 
						|
	trace_xfs_end_io_direct_write(ip, offset, size);
 | 
						|
 | 
						|
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	if (size <= 0)
 | 
						|
		return size;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to update the in-core inode size here so that we don't end up
 | 
						|
	 * with the on-disk inode size being outside the in-core inode size. We
 | 
						|
	 * have no other method of updating EOF for AIO, so always do it here
 | 
						|
	 * if necessary.
 | 
						|
	 *
 | 
						|
	 * We need to lock the test/set EOF update as we can be racing with
 | 
						|
	 * other IO completions here to update the EOF. Failing to serialise
 | 
						|
	 * here can result in EOF moving backwards and Bad Things Happen when
 | 
						|
	 * that occurs.
 | 
						|
	 */
 | 
						|
	spin_lock(&ip->i_flags_lock);
 | 
						|
	if (offset + size > i_size_read(inode)) {
 | 
						|
		i_size_write(inode, offset + size);
 | 
						|
		update_size = true;
 | 
						|
	}
 | 
						|
	spin_unlock(&ip->i_flags_lock);
 | 
						|
 | 
						|
	if (flags & IOMAP_DIO_COW) {
 | 
						|
		error = xfs_reflink_end_cow(ip, offset, size);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	if (flags & IOMAP_DIO_UNWRITTEN)
 | 
						|
		error = xfs_iomap_write_unwritten(ip, offset, size);
 | 
						|
	else if (update_size)
 | 
						|
		error = xfs_setfilesize(ip, offset, size);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * xfs_file_dio_aio_write - handle direct IO writes
 | 
						|
 *
 | 
						|
 * Lock the inode appropriately to prepare for and issue a direct IO write.
 | 
						|
 * By separating it from the buffered write path we remove all the tricky to
 | 
						|
 * follow locking changes and looping.
 | 
						|
 *
 | 
						|
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 | 
						|
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 | 
						|
 * pages are flushed out.
 | 
						|
 *
 | 
						|
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 | 
						|
 * allowing them to be done in parallel with reads and other direct IO writes.
 | 
						|
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 | 
						|
 * needs to do sub-block zeroing and that requires serialisation against other
 | 
						|
 * direct IOs to the same block. In this case we need to serialise the
 | 
						|
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 | 
						|
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 | 
						|
 * outstanding IOs to complete so that unwritten extent conversion is completed
 | 
						|
 * before we try to map the overlapping block. This is currently implemented by
 | 
						|
 * hitting it with a big hammer (i.e. inode_dio_wait()).
 | 
						|
 *
 | 
						|
 * Returns with locks held indicated by @iolock and errors indicated by
 | 
						|
 * negative return values.
 | 
						|
 */
 | 
						|
STATIC ssize_t
 | 
						|
xfs_file_dio_aio_write(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	struct iov_iter		*from)
 | 
						|
{
 | 
						|
	struct file		*file = iocb->ki_filp;
 | 
						|
	struct address_space	*mapping = file->f_mapping;
 | 
						|
	struct inode		*inode = mapping->host;
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	struct xfs_mount	*mp = ip->i_mount;
 | 
						|
	ssize_t			ret = 0;
 | 
						|
	int			unaligned_io = 0;
 | 
						|
	int			iolock;
 | 
						|
	size_t			count = iov_iter_count(from);
 | 
						|
	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 | 
						|
					mp->m_rtdev_targp : mp->m_ddev_targp;
 | 
						|
 | 
						|
	/* DIO must be aligned to device logical sector size */
 | 
						|
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 | 
						|
	 * the file system block size.  We don't need to consider the EOF
 | 
						|
	 * extension case here because xfs_file_aio_write_checks() will relock
 | 
						|
	 * the inode as necessary for EOF zeroing cases and fill out the new
 | 
						|
	 * inode size as appropriate.
 | 
						|
	 */
 | 
						|
	if ((iocb->ki_pos & mp->m_blockmask) ||
 | 
						|
	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 | 
						|
		unaligned_io = 1;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We can't properly handle unaligned direct I/O to reflink
 | 
						|
		 * files yet, as we can't unshare a partial block.
 | 
						|
		 */
 | 
						|
		if (xfs_is_reflink_inode(ip)) {
 | 
						|
			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 | 
						|
			return -EREMCHG;
 | 
						|
		}
 | 
						|
		iolock = XFS_IOLOCK_EXCL;
 | 
						|
	} else {
 | 
						|
		iolock = XFS_IOLOCK_SHARED;
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_ilock(ip, iolock);
 | 
						|
 | 
						|
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
	count = iov_iter_count(from);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are doing unaligned IO, wait for all other IO to drain,
 | 
						|
	 * otherwise demote the lock if we had to take the exclusive lock
 | 
						|
	 * for other reasons in xfs_file_aio_write_checks.
 | 
						|
	 */
 | 
						|
	if (unaligned_io)
 | 
						|
		inode_dio_wait(inode);
 | 
						|
	else if (iolock == XFS_IOLOCK_EXCL) {
 | 
						|
		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 | 
						|
		iolock = XFS_IOLOCK_SHARED;
 | 
						|
	}
 | 
						|
 | 
						|
	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 | 
						|
	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
 | 
						|
out:
 | 
						|
	xfs_iunlock(ip, iolock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No fallback to buffered IO on errors for XFS, direct IO will either
 | 
						|
	 * complete fully or fail.
 | 
						|
	 */
 | 
						|
	ASSERT(ret < 0 || ret == count);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static noinline ssize_t
 | 
						|
xfs_file_dax_write(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	struct iov_iter		*from)
 | 
						|
{
 | 
						|
	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	int			iolock = XFS_IOLOCK_EXCL;
 | 
						|
	ssize_t			ret, error = 0;
 | 
						|
	size_t			count;
 | 
						|
	loff_t			pos;
 | 
						|
 | 
						|
	xfs_ilock(ip, iolock);
 | 
						|
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	pos = iocb->ki_pos;
 | 
						|
	count = iov_iter_count(from);
 | 
						|
 | 
						|
	trace_xfs_file_dax_write(ip, count, pos);
 | 
						|
	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 | 
						|
	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 | 
						|
		i_size_write(inode, iocb->ki_pos);
 | 
						|
		error = xfs_setfilesize(ip, pos, ret);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	xfs_iunlock(ip, iolock);
 | 
						|
	return error ? error : ret;
 | 
						|
}
 | 
						|
 | 
						|
STATIC ssize_t
 | 
						|
xfs_file_buffered_aio_write(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	struct iov_iter		*from)
 | 
						|
{
 | 
						|
	struct file		*file = iocb->ki_filp;
 | 
						|
	struct address_space	*mapping = file->f_mapping;
 | 
						|
	struct inode		*inode = mapping->host;
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	ssize_t			ret;
 | 
						|
	int			enospc = 0;
 | 
						|
	int			iolock;
 | 
						|
 | 
						|
write_retry:
 | 
						|
	iolock = XFS_IOLOCK_EXCL;
 | 
						|
	xfs_ilock(ip, iolock);
 | 
						|
 | 
						|
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* We can write back this queue in page reclaim */
 | 
						|
	current->backing_dev_info = inode_to_bdi(inode);
 | 
						|
 | 
						|
	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 | 
						|
	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 | 
						|
	if (likely(ret >= 0))
 | 
						|
		iocb->ki_pos += ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we hit a space limit, try to free up some lingering preallocated
 | 
						|
	 * space before returning an error. In the case of ENOSPC, first try to
 | 
						|
	 * write back all dirty inodes to free up some of the excess reserved
 | 
						|
	 * metadata space. This reduces the chances that the eofblocks scan
 | 
						|
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 | 
						|
	 * also behaves as a filter to prevent too many eofblocks scans from
 | 
						|
	 * running at the same time.
 | 
						|
	 */
 | 
						|
	if (ret == -EDQUOT && !enospc) {
 | 
						|
		xfs_iunlock(ip, iolock);
 | 
						|
		enospc = xfs_inode_free_quota_eofblocks(ip);
 | 
						|
		if (enospc)
 | 
						|
			goto write_retry;
 | 
						|
		enospc = xfs_inode_free_quota_cowblocks(ip);
 | 
						|
		if (enospc)
 | 
						|
			goto write_retry;
 | 
						|
		iolock = 0;
 | 
						|
	} else if (ret == -ENOSPC && !enospc) {
 | 
						|
		struct xfs_eofblocks eofb = {0};
 | 
						|
 | 
						|
		enospc = 1;
 | 
						|
		xfs_flush_inodes(ip->i_mount);
 | 
						|
 | 
						|
		xfs_iunlock(ip, iolock);
 | 
						|
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 | 
						|
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 | 
						|
		goto write_retry;
 | 
						|
	}
 | 
						|
 | 
						|
	current->backing_dev_info = NULL;
 | 
						|
out:
 | 
						|
	if (iolock)
 | 
						|
		xfs_iunlock(ip, iolock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
STATIC ssize_t
 | 
						|
xfs_file_write_iter(
 | 
						|
	struct kiocb		*iocb,
 | 
						|
	struct iov_iter		*from)
 | 
						|
{
 | 
						|
	struct file		*file = iocb->ki_filp;
 | 
						|
	struct address_space	*mapping = file->f_mapping;
 | 
						|
	struct inode		*inode = mapping->host;
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	ssize_t			ret;
 | 
						|
	size_t			ocount = iov_iter_count(from);
 | 
						|
 | 
						|
	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 | 
						|
 | 
						|
	if (ocount == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	if (IS_DAX(inode))
 | 
						|
		ret = xfs_file_dax_write(iocb, from);
 | 
						|
	else if (iocb->ki_flags & IOCB_DIRECT) {
 | 
						|
		/*
 | 
						|
		 * Allow a directio write to fall back to a buffered
 | 
						|
		 * write *only* in the case that we're doing a reflink
 | 
						|
		 * CoW.  In all other directio scenarios we do not
 | 
						|
		 * allow an operation to fall back to buffered mode.
 | 
						|
		 */
 | 
						|
		ret = xfs_file_dio_aio_write(iocb, from);
 | 
						|
		if (ret == -EREMCHG)
 | 
						|
			goto buffered;
 | 
						|
	} else {
 | 
						|
buffered:
 | 
						|
		ret = xfs_file_buffered_aio_write(iocb, from);
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret > 0) {
 | 
						|
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 | 
						|
 | 
						|
		/* Handle various SYNC-type writes */
 | 
						|
		ret = generic_write_sync(iocb, ret);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#define	XFS_FALLOC_FL_SUPPORTED						\
 | 
						|
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 | 
						|
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 | 
						|
		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 | 
						|
 | 
						|
STATIC long
 | 
						|
xfs_file_fallocate(
 | 
						|
	struct file		*file,
 | 
						|
	int			mode,
 | 
						|
	loff_t			offset,
 | 
						|
	loff_t			len)
 | 
						|
{
 | 
						|
	struct inode		*inode = file_inode(file);
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	long			error;
 | 
						|
	enum xfs_prealloc_flags	flags = 0;
 | 
						|
	uint			iolock = XFS_IOLOCK_EXCL;
 | 
						|
	loff_t			new_size = 0;
 | 
						|
	bool			do_file_insert = 0;
 | 
						|
 | 
						|
	if (!S_ISREG(inode->i_mode))
 | 
						|
		return -EINVAL;
 | 
						|
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	xfs_ilock(ip, iolock);
 | 
						|
	error = xfs_break_layouts(inode, &iolock);
 | 
						|
	if (error)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 | 
						|
	iolock |= XFS_MMAPLOCK_EXCL;
 | 
						|
 | 
						|
	if (mode & FALLOC_FL_PUNCH_HOLE) {
 | 
						|
		error = xfs_free_file_space(ip, offset, len);
 | 
						|
		if (error)
 | 
						|
			goto out_unlock;
 | 
						|
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 | 
						|
		unsigned int blksize_mask = i_blocksize(inode) - 1;
 | 
						|
 | 
						|
		if (offset & blksize_mask || len & blksize_mask) {
 | 
						|
			error = -EINVAL;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * There is no need to overlap collapse range with EOF,
 | 
						|
		 * in which case it is effectively a truncate operation
 | 
						|
		 */
 | 
						|
		if (offset + len >= i_size_read(inode)) {
 | 
						|
			error = -EINVAL;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
 | 
						|
		new_size = i_size_read(inode) - len;
 | 
						|
 | 
						|
		error = xfs_collapse_file_space(ip, offset, len);
 | 
						|
		if (error)
 | 
						|
			goto out_unlock;
 | 
						|
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 | 
						|
		unsigned int blksize_mask = i_blocksize(inode) - 1;
 | 
						|
 | 
						|
		new_size = i_size_read(inode) + len;
 | 
						|
		if (offset & blksize_mask || len & blksize_mask) {
 | 
						|
			error = -EINVAL;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
 | 
						|
		/* check the new inode size does not wrap through zero */
 | 
						|
		if (new_size > inode->i_sb->s_maxbytes) {
 | 
						|
			error = -EFBIG;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Offset should be less than i_size */
 | 
						|
		if (offset >= i_size_read(inode)) {
 | 
						|
			error = -EINVAL;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
		do_file_insert = 1;
 | 
						|
	} else {
 | 
						|
		flags |= XFS_PREALLOC_SET;
 | 
						|
 | 
						|
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 | 
						|
		    offset + len > i_size_read(inode)) {
 | 
						|
			new_size = offset + len;
 | 
						|
			error = inode_newsize_ok(inode, new_size);
 | 
						|
			if (error)
 | 
						|
				goto out_unlock;
 | 
						|
		}
 | 
						|
 | 
						|
		if (mode & FALLOC_FL_ZERO_RANGE)
 | 
						|
			error = xfs_zero_file_space(ip, offset, len);
 | 
						|
		else {
 | 
						|
			if (mode & FALLOC_FL_UNSHARE_RANGE) {
 | 
						|
				error = xfs_reflink_unshare(ip, offset, len);
 | 
						|
				if (error)
 | 
						|
					goto out_unlock;
 | 
						|
			}
 | 
						|
			error = xfs_alloc_file_space(ip, offset, len,
 | 
						|
						     XFS_BMAPI_PREALLOC);
 | 
						|
		}
 | 
						|
		if (error)
 | 
						|
			goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	if (file->f_flags & O_DSYNC)
 | 
						|
		flags |= XFS_PREALLOC_SYNC;
 | 
						|
 | 
						|
	error = xfs_update_prealloc_flags(ip, flags);
 | 
						|
	if (error)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	/* Change file size if needed */
 | 
						|
	if (new_size) {
 | 
						|
		struct iattr iattr;
 | 
						|
 | 
						|
		iattr.ia_valid = ATTR_SIZE;
 | 
						|
		iattr.ia_size = new_size;
 | 
						|
		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 | 
						|
		if (error)
 | 
						|
			goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Perform hole insertion now that the file size has been
 | 
						|
	 * updated so that if we crash during the operation we don't
 | 
						|
	 * leave shifted extents past EOF and hence losing access to
 | 
						|
	 * the data that is contained within them.
 | 
						|
	 */
 | 
						|
	if (do_file_insert)
 | 
						|
		error = xfs_insert_file_space(ip, offset, len);
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	xfs_iunlock(ip, iolock);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_file_clone_range(
 | 
						|
	struct file	*file_in,
 | 
						|
	loff_t		pos_in,
 | 
						|
	struct file	*file_out,
 | 
						|
	loff_t		pos_out,
 | 
						|
	u64		len)
 | 
						|
{
 | 
						|
	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
 | 
						|
				     len, false);
 | 
						|
}
 | 
						|
 | 
						|
STATIC ssize_t
 | 
						|
xfs_file_dedupe_range(
 | 
						|
	struct file	*src_file,
 | 
						|
	u64		loff,
 | 
						|
	u64		len,
 | 
						|
	struct file	*dst_file,
 | 
						|
	u64		dst_loff)
 | 
						|
{
 | 
						|
	int		error;
 | 
						|
 | 
						|
	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
 | 
						|
				     len, true);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_file_open(
 | 
						|
	struct inode	*inode,
 | 
						|
	struct file	*file)
 | 
						|
{
 | 
						|
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 | 
						|
		return -EFBIG;
 | 
						|
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 | 
						|
		return -EIO;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_dir_open(
 | 
						|
	struct inode	*inode,
 | 
						|
	struct file	*file)
 | 
						|
{
 | 
						|
	struct xfs_inode *ip = XFS_I(inode);
 | 
						|
	int		mode;
 | 
						|
	int		error;
 | 
						|
 | 
						|
	error = xfs_file_open(inode, file);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there are any blocks, read-ahead block 0 as we're almost
 | 
						|
	 * certain to have the next operation be a read there.
 | 
						|
	 */
 | 
						|
	mode = xfs_ilock_data_map_shared(ip);
 | 
						|
	if (ip->i_d.di_nextents > 0)
 | 
						|
		error = xfs_dir3_data_readahead(ip, 0, -1);
 | 
						|
	xfs_iunlock(ip, mode);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_file_release(
 | 
						|
	struct inode	*inode,
 | 
						|
	struct file	*filp)
 | 
						|
{
 | 
						|
	return xfs_release(XFS_I(inode));
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_file_readdir(
 | 
						|
	struct file	*file,
 | 
						|
	struct dir_context *ctx)
 | 
						|
{
 | 
						|
	struct inode	*inode = file_inode(file);
 | 
						|
	xfs_inode_t	*ip = XFS_I(inode);
 | 
						|
	size_t		bufsize;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The Linux API doesn't pass down the total size of the buffer
 | 
						|
	 * we read into down to the filesystem.  With the filldir concept
 | 
						|
	 * it's not needed for correct information, but the XFS dir2 leaf
 | 
						|
	 * code wants an estimate of the buffer size to calculate it's
 | 
						|
	 * readahead window and size the buffers used for mapping to
 | 
						|
	 * physical blocks.
 | 
						|
	 *
 | 
						|
	 * Try to give it an estimate that's good enough, maybe at some
 | 
						|
	 * point we can change the ->readdir prototype to include the
 | 
						|
	 * buffer size.  For now we use the current glibc buffer size.
 | 
						|
	 */
 | 
						|
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
 | 
						|
 | 
						|
	return xfs_readdir(ip, ctx, bufsize);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This type is designed to indicate the type of offset we would like
 | 
						|
 * to search from page cache for xfs_seek_hole_data().
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	HOLE_OFF = 0,
 | 
						|
	DATA_OFF,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Lookup the desired type of offset from the given page.
 | 
						|
 *
 | 
						|
 * On success, return true and the offset argument will point to the
 | 
						|
 * start of the region that was found.  Otherwise this function will
 | 
						|
 * return false and keep the offset argument unchanged.
 | 
						|
 */
 | 
						|
STATIC bool
 | 
						|
xfs_lookup_buffer_offset(
 | 
						|
	struct page		*page,
 | 
						|
	loff_t			*offset,
 | 
						|
	unsigned int		type)
 | 
						|
{
 | 
						|
	loff_t			lastoff = page_offset(page);
 | 
						|
	bool			found = false;
 | 
						|
	struct buffer_head	*bh, *head;
 | 
						|
 | 
						|
	bh = head = page_buffers(page);
 | 
						|
	do {
 | 
						|
		/*
 | 
						|
		 * Unwritten extents that have data in the page
 | 
						|
		 * cache covering them can be identified by the
 | 
						|
		 * BH_Unwritten state flag.  Pages with multiple
 | 
						|
		 * buffers might have a mix of holes, data and
 | 
						|
		 * unwritten extents - any buffer with valid
 | 
						|
		 * data in it should have BH_Uptodate flag set
 | 
						|
		 * on it.
 | 
						|
		 */
 | 
						|
		if (buffer_unwritten(bh) ||
 | 
						|
		    buffer_uptodate(bh)) {
 | 
						|
			if (type == DATA_OFF)
 | 
						|
				found = true;
 | 
						|
		} else {
 | 
						|
			if (type == HOLE_OFF)
 | 
						|
				found = true;
 | 
						|
		}
 | 
						|
 | 
						|
		if (found) {
 | 
						|
			*offset = lastoff;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		lastoff += bh->b_size;
 | 
						|
	} while ((bh = bh->b_this_page) != head);
 | 
						|
 | 
						|
	return found;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine is called to find out and return a data or hole offset
 | 
						|
 * from the page cache for unwritten extents according to the desired
 | 
						|
 * type for xfs_seek_hole_data().
 | 
						|
 *
 | 
						|
 * The argument offset is used to tell where we start to search from the
 | 
						|
 * page cache.  Map is used to figure out the end points of the range to
 | 
						|
 * lookup pages.
 | 
						|
 *
 | 
						|
 * Return true if the desired type of offset was found, and the argument
 | 
						|
 * offset is filled with that address.  Otherwise, return false and keep
 | 
						|
 * offset unchanged.
 | 
						|
 */
 | 
						|
STATIC bool
 | 
						|
xfs_find_get_desired_pgoff(
 | 
						|
	struct inode		*inode,
 | 
						|
	struct xfs_bmbt_irec	*map,
 | 
						|
	unsigned int		type,
 | 
						|
	loff_t			*offset)
 | 
						|
{
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	struct xfs_mount	*mp = ip->i_mount;
 | 
						|
	struct pagevec		pvec;
 | 
						|
	pgoff_t			index;
 | 
						|
	pgoff_t			end;
 | 
						|
	loff_t			endoff;
 | 
						|
	loff_t			startoff = *offset;
 | 
						|
	loff_t			lastoff = startoff;
 | 
						|
	bool			found = false;
 | 
						|
 | 
						|
	pagevec_init(&pvec, 0);
 | 
						|
 | 
						|
	index = startoff >> PAGE_SHIFT;
 | 
						|
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
 | 
						|
	end = (endoff - 1) >> PAGE_SHIFT;
 | 
						|
	do {
 | 
						|
		int		want;
 | 
						|
		unsigned	nr_pages;
 | 
						|
		unsigned int	i;
 | 
						|
 | 
						|
		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE - 1) + 1;
 | 
						|
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
 | 
						|
					  want);
 | 
						|
		if (nr_pages == 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		for (i = 0; i < nr_pages; i++) {
 | 
						|
			struct page	*page = pvec.pages[i];
 | 
						|
			loff_t		b_offset;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * At this point, the page may be truncated or
 | 
						|
			 * invalidated (changing page->mapping to NULL),
 | 
						|
			 * or even swizzled back from swapper_space to tmpfs
 | 
						|
			 * file mapping. However, page->index will not change
 | 
						|
			 * because we have a reference on the page.
 | 
						|
			 *
 | 
						|
			 * If current page offset is beyond where we've ended,
 | 
						|
			 * we've found a hole.
 | 
						|
			 */
 | 
						|
			if (type == HOLE_OFF && lastoff < endoff &&
 | 
						|
			    lastoff < page_offset(pvec.pages[i])) {
 | 
						|
				found = true;
 | 
						|
				*offset = lastoff;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			/* Searching done if the page index is out of range. */
 | 
						|
			if (page->index > end)
 | 
						|
				goto out;
 | 
						|
 | 
						|
			lock_page(page);
 | 
						|
			/*
 | 
						|
			 * Page truncated or invalidated(page->mapping == NULL).
 | 
						|
			 * We can freely skip it and proceed to check the next
 | 
						|
			 * page.
 | 
						|
			 */
 | 
						|
			if (unlikely(page->mapping != inode->i_mapping)) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!page_has_buffers(page)) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			found = xfs_lookup_buffer_offset(page, &b_offset, type);
 | 
						|
			if (found) {
 | 
						|
				/*
 | 
						|
				 * The found offset may be less than the start
 | 
						|
				 * point to search if this is the first time to
 | 
						|
				 * come here.
 | 
						|
				 */
 | 
						|
				*offset = max_t(loff_t, startoff, b_offset);
 | 
						|
				unlock_page(page);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We either searching data but nothing was found, or
 | 
						|
			 * searching hole but found a data buffer.  In either
 | 
						|
			 * case, probably the next page contains the desired
 | 
						|
			 * things, update the last offset to it so.
 | 
						|
			 */
 | 
						|
			lastoff = page_offset(page) + PAGE_SIZE;
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The number of returned pages less than our desired, search
 | 
						|
		 * done.
 | 
						|
		 */
 | 
						|
		if (nr_pages < want)
 | 
						|
			break;
 | 
						|
 | 
						|
		index = pvec.pages[i - 1]->index + 1;
 | 
						|
		pagevec_release(&pvec);
 | 
						|
	} while (index <= end);
 | 
						|
 | 
						|
	/* No page at lastoff and we are not done - we found a hole. */
 | 
						|
	if (type == HOLE_OFF && lastoff < endoff) {
 | 
						|
		*offset = lastoff;
 | 
						|
		found = true;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	pagevec_release(&pvec);
 | 
						|
	return found;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * caller must lock inode with xfs_ilock_data_map_shared,
 | 
						|
 * can we craft an appropriate ASSERT?
 | 
						|
 *
 | 
						|
 * end is because the VFS-level lseek interface is defined such that any
 | 
						|
 * offset past i_size shall return -ENXIO, but we use this for quota code
 | 
						|
 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
 | 
						|
 */
 | 
						|
loff_t
 | 
						|
__xfs_seek_hole_data(
 | 
						|
	struct inode		*inode,
 | 
						|
	loff_t			start,
 | 
						|
	loff_t			end,
 | 
						|
	int			whence)
 | 
						|
{
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	struct xfs_mount	*mp = ip->i_mount;
 | 
						|
	loff_t			uninitialized_var(offset);
 | 
						|
	xfs_fileoff_t		fsbno;
 | 
						|
	xfs_filblks_t		lastbno;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	if (start >= end) {
 | 
						|
		error = -ENXIO;
 | 
						|
		goto out_error;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Try to read extents from the first block indicated
 | 
						|
	 * by fsbno to the end block of the file.
 | 
						|
	 */
 | 
						|
	fsbno = XFS_B_TO_FSBT(mp, start);
 | 
						|
	lastbno = XFS_B_TO_FSB(mp, end);
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		struct xfs_bmbt_irec	map[2];
 | 
						|
		int			nmap = 2;
 | 
						|
		unsigned int		i;
 | 
						|
 | 
						|
		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
 | 
						|
				       XFS_BMAPI_ENTIRE);
 | 
						|
		if (error)
 | 
						|
			goto out_error;
 | 
						|
 | 
						|
		/* No extents at given offset, must be beyond EOF */
 | 
						|
		if (nmap == 0) {
 | 
						|
			error = -ENXIO;
 | 
						|
			goto out_error;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; i < nmap; i++) {
 | 
						|
			offset = max_t(loff_t, start,
 | 
						|
				       XFS_FSB_TO_B(mp, map[i].br_startoff));
 | 
						|
 | 
						|
			/* Landed in the hole we wanted? */
 | 
						|
			if (whence == SEEK_HOLE &&
 | 
						|
			    map[i].br_startblock == HOLESTARTBLOCK)
 | 
						|
				goto out;
 | 
						|
 | 
						|
			/* Landed in the data extent we wanted? */
 | 
						|
			if (whence == SEEK_DATA &&
 | 
						|
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
 | 
						|
			     (map[i].br_state == XFS_EXT_NORM &&
 | 
						|
			      !isnullstartblock(map[i].br_startblock))))
 | 
						|
				goto out;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Landed in an unwritten extent, try to search
 | 
						|
			 * for hole or data from page cache.
 | 
						|
			 */
 | 
						|
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
 | 
						|
				if (xfs_find_get_desired_pgoff(inode, &map[i],
 | 
						|
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
 | 
						|
							&offset))
 | 
						|
					goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We only received one extent out of the two requested. This
 | 
						|
		 * means we've hit EOF and didn't find what we are looking for.
 | 
						|
		 */
 | 
						|
		if (nmap == 1) {
 | 
						|
			/*
 | 
						|
			 * If we were looking for a hole, set offset to
 | 
						|
			 * the end of the file (i.e., there is an implicit
 | 
						|
			 * hole at the end of any file).
 | 
						|
		 	 */
 | 
						|
			if (whence == SEEK_HOLE) {
 | 
						|
				offset = end;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * If we were looking for data, it's nowhere to be found
 | 
						|
			 */
 | 
						|
			ASSERT(whence == SEEK_DATA);
 | 
						|
			error = -ENXIO;
 | 
						|
			goto out_error;
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(i > 1);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Nothing was found, proceed to the next round of search
 | 
						|
		 * if the next reading offset is not at or beyond EOF.
 | 
						|
		 */
 | 
						|
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
 | 
						|
		start = XFS_FSB_TO_B(mp, fsbno);
 | 
						|
		if (start >= end) {
 | 
						|
			if (whence == SEEK_HOLE) {
 | 
						|
				offset = end;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			ASSERT(whence == SEEK_DATA);
 | 
						|
			error = -ENXIO;
 | 
						|
			goto out_error;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * If at this point we have found the hole we wanted, the returned
 | 
						|
	 * offset may be bigger than the file size as it may be aligned to
 | 
						|
	 * page boundary for unwritten extents.  We need to deal with this
 | 
						|
	 * situation in particular.
 | 
						|
	 */
 | 
						|
	if (whence == SEEK_HOLE)
 | 
						|
		offset = min_t(loff_t, offset, end);
 | 
						|
 | 
						|
	return offset;
 | 
						|
 | 
						|
out_error:
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
STATIC loff_t
 | 
						|
xfs_seek_hole_data(
 | 
						|
	struct file		*file,
 | 
						|
	loff_t			start,
 | 
						|
	int			whence)
 | 
						|
{
 | 
						|
	struct inode		*inode = file->f_mapping->host;
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	struct xfs_mount	*mp = ip->i_mount;
 | 
						|
	uint			lock;
 | 
						|
	loff_t			offset, end;
 | 
						|
	int			error = 0;
 | 
						|
 | 
						|
	if (XFS_FORCED_SHUTDOWN(mp))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	lock = xfs_ilock_data_map_shared(ip);
 | 
						|
 | 
						|
	end = i_size_read(inode);
 | 
						|
	offset = __xfs_seek_hole_data(inode, start, end, whence);
 | 
						|
	if (offset < 0) {
 | 
						|
		error = offset;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	xfs_iunlock(ip, lock);
 | 
						|
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	return offset;
 | 
						|
}
 | 
						|
 | 
						|
STATIC loff_t
 | 
						|
xfs_file_llseek(
 | 
						|
	struct file	*file,
 | 
						|
	loff_t		offset,
 | 
						|
	int		whence)
 | 
						|
{
 | 
						|
	switch (whence) {
 | 
						|
	case SEEK_END:
 | 
						|
	case SEEK_CUR:
 | 
						|
	case SEEK_SET:
 | 
						|
		return generic_file_llseek(file, offset, whence);
 | 
						|
	case SEEK_HOLE:
 | 
						|
	case SEEK_DATA:
 | 
						|
		return xfs_seek_hole_data(file, offset, whence);
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Locking for serialisation of IO during page faults. This results in a lock
 | 
						|
 * ordering of:
 | 
						|
 *
 | 
						|
 * mmap_sem (MM)
 | 
						|
 *   sb_start_pagefault(vfs, freeze)
 | 
						|
 *     i_mmaplock (XFS - truncate serialisation)
 | 
						|
 *       page_lock (MM)
 | 
						|
 *         i_lock (XFS - extent map serialisation)
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * mmap()d file has taken write protection fault and is being made writable. We
 | 
						|
 * can set the page state up correctly for a writable page, which means we can
 | 
						|
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 | 
						|
 * mapping.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_filemap_page_mkwrite(
 | 
						|
	struct vm_fault		*vmf)
 | 
						|
{
 | 
						|
	struct inode		*inode = file_inode(vmf->vma->vm_file);
 | 
						|
	int			ret;
 | 
						|
 | 
						|
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
 | 
						|
 | 
						|
	sb_start_pagefault(inode->i_sb);
 | 
						|
	file_update_time(vmf->vma->vm_file);
 | 
						|
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
 | 
						|
 | 
						|
	if (IS_DAX(inode)) {
 | 
						|
		ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
 | 
						|
	} else {
 | 
						|
		ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
 | 
						|
		ret = block_page_mkwrite_return(ret);
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
 | 
						|
	sb_end_pagefault(inode->i_sb);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_filemap_fault(
 | 
						|
	struct vm_fault		*vmf)
 | 
						|
{
 | 
						|
	struct inode		*inode = file_inode(vmf->vma->vm_file);
 | 
						|
	int			ret;
 | 
						|
 | 
						|
	trace_xfs_filemap_fault(XFS_I(inode));
 | 
						|
 | 
						|
	/* DAX can shortcut the normal fault path on write faults! */
 | 
						|
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
 | 
						|
		return xfs_filemap_page_mkwrite(vmf);
 | 
						|
 | 
						|
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
 | 
						|
	if (IS_DAX(inode))
 | 
						|
		ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
 | 
						|
	else
 | 
						|
		ret = filemap_fault(vmf);
 | 
						|
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
 | 
						|
 * both read and write faults. Hence we need to handle both cases. There is no
 | 
						|
 * ->huge_mkwrite callout for huge pages, so we have a single function here to
 | 
						|
 * handle both cases here. @flags carries the information on the type of fault
 | 
						|
 * occuring.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_filemap_huge_fault(
 | 
						|
	struct vm_fault		*vmf,
 | 
						|
	enum page_entry_size	pe_size)
 | 
						|
{
 | 
						|
	struct inode		*inode = file_inode(vmf->vma->vm_file);
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	int			ret;
 | 
						|
 | 
						|
	if (!IS_DAX(inode))
 | 
						|
		return VM_FAULT_FALLBACK;
 | 
						|
 | 
						|
	trace_xfs_filemap_huge_fault(ip);
 | 
						|
 | 
						|
	if (vmf->flags & FAULT_FLAG_WRITE) {
 | 
						|
		sb_start_pagefault(inode->i_sb);
 | 
						|
		file_update_time(vmf->vma->vm_file);
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
 | 
						|
	ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
 | 
						|
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
 | 
						|
 | 
						|
	if (vmf->flags & FAULT_FLAG_WRITE)
 | 
						|
		sb_end_pagefault(inode->i_sb);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
 | 
						|
 * updates on write faults. In reality, it's need to serialise against
 | 
						|
 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
 | 
						|
 * to ensure we serialise the fault barrier in place.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_filemap_pfn_mkwrite(
 | 
						|
	struct vm_fault		*vmf)
 | 
						|
{
 | 
						|
 | 
						|
	struct inode		*inode = file_inode(vmf->vma->vm_file);
 | 
						|
	struct xfs_inode	*ip = XFS_I(inode);
 | 
						|
	int			ret = VM_FAULT_NOPAGE;
 | 
						|
	loff_t			size;
 | 
						|
 | 
						|
	trace_xfs_filemap_pfn_mkwrite(ip);
 | 
						|
 | 
						|
	sb_start_pagefault(inode->i_sb);
 | 
						|
	file_update_time(vmf->vma->vm_file);
 | 
						|
 | 
						|
	/* check if the faulting page hasn't raced with truncate */
 | 
						|
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
 | 
						|
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | 
						|
	if (vmf->pgoff >= size)
 | 
						|
		ret = VM_FAULT_SIGBUS;
 | 
						|
	else if (IS_DAX(inode))
 | 
						|
		ret = dax_pfn_mkwrite(vmf);
 | 
						|
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
 | 
						|
	sb_end_pagefault(inode->i_sb);
 | 
						|
	return ret;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static const struct vm_operations_struct xfs_file_vm_ops = {
 | 
						|
	.fault		= xfs_filemap_fault,
 | 
						|
	.huge_fault	= xfs_filemap_huge_fault,
 | 
						|
	.map_pages	= filemap_map_pages,
 | 
						|
	.page_mkwrite	= xfs_filemap_page_mkwrite,
 | 
						|
	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
 | 
						|
};
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_file_mmap(
 | 
						|
	struct file	*filp,
 | 
						|
	struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	file_accessed(filp);
 | 
						|
	vma->vm_ops = &xfs_file_vm_ops;
 | 
						|
	if (IS_DAX(file_inode(filp)))
 | 
						|
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
const struct file_operations xfs_file_operations = {
 | 
						|
	.llseek		= xfs_file_llseek,
 | 
						|
	.read_iter	= xfs_file_read_iter,
 | 
						|
	.write_iter	= xfs_file_write_iter,
 | 
						|
	.splice_read	= generic_file_splice_read,
 | 
						|
	.splice_write	= iter_file_splice_write,
 | 
						|
	.unlocked_ioctl	= xfs_file_ioctl,
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
	.compat_ioctl	= xfs_file_compat_ioctl,
 | 
						|
#endif
 | 
						|
	.mmap		= xfs_file_mmap,
 | 
						|
	.open		= xfs_file_open,
 | 
						|
	.release	= xfs_file_release,
 | 
						|
	.fsync		= xfs_file_fsync,
 | 
						|
	.get_unmapped_area = thp_get_unmapped_area,
 | 
						|
	.fallocate	= xfs_file_fallocate,
 | 
						|
	.clone_file_range = xfs_file_clone_range,
 | 
						|
	.dedupe_file_range = xfs_file_dedupe_range,
 | 
						|
};
 | 
						|
 | 
						|
const struct file_operations xfs_dir_file_operations = {
 | 
						|
	.open		= xfs_dir_open,
 | 
						|
	.read		= generic_read_dir,
 | 
						|
	.iterate_shared	= xfs_file_readdir,
 | 
						|
	.llseek		= generic_file_llseek,
 | 
						|
	.unlocked_ioctl	= xfs_file_ioctl,
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
	.compat_ioctl	= xfs_file_compat_ioctl,
 | 
						|
#endif
 | 
						|
	.fsync		= xfs_dir_fsync,
 | 
						|
};
 |