mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 36ef159f44
			
		
	
	
		36ef159f44
		
	
	
	
	
		
			
			Since commit 4064b98270 ("mm: allow VM_FAULT_RETRY for multiple
times") allowed VM_FAULT_RETRY for multiple times, the
FAULT_FLAG_ALLOW_RETRY bit of fault_flag will not be changed in the page
fault path, so the following check is no longer needed:
	flags & FAULT_FLAG_ALLOW_RETRY
So just remove it.
[akpm@linux-foundation.org: coding style fixes]
Link: https://lkml.kernel.org/r/20211110123358.36511-1-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Peter Xu <peterx@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1544 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1544 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
 | |
|  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
 | |
|  */
 | |
| #include <linux/sched.h>		/* test_thread_flag(), ...	*/
 | |
| #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
 | |
| #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
 | |
| #include <linux/extable.h>		/* search_exception_tables	*/
 | |
| #include <linux/memblock.h>		/* max_low_pfn			*/
 | |
| #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
 | |
| #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
 | |
| #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
 | |
| #include <linux/perf_event.h>		/* perf_sw_event		*/
 | |
| #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
 | |
| #include <linux/prefetch.h>		/* prefetchw			*/
 | |
| #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
 | |
| #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
 | |
| #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
 | |
| #include <linux/mm_types.h>
 | |
| 
 | |
| #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
 | |
| #include <asm/traps.h>			/* dotraplinkage, ...		*/
 | |
| #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
 | |
| #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
 | |
| #include <asm/vm86.h>			/* struct vm86			*/
 | |
| #include <asm/mmu_context.h>		/* vma_pkey()			*/
 | |
| #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
 | |
| #include <asm/desc.h>			/* store_idt(), ...		*/
 | |
| #include <asm/cpu_entry_area.h>		/* exception stack		*/
 | |
| #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
 | |
| #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
 | |
| #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
 | |
| #include <asm/irq_stack.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <asm/trace/exceptions.h>
 | |
| 
 | |
| /*
 | |
|  * Returns 0 if mmiotrace is disabled, or if the fault is not
 | |
|  * handled by mmiotrace:
 | |
|  */
 | |
| static nokprobe_inline int
 | |
| kmmio_fault(struct pt_regs *regs, unsigned long addr)
 | |
| {
 | |
| 	if (unlikely(is_kmmio_active()))
 | |
| 		if (kmmio_handler(regs, addr) == 1)
 | |
| 			return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prefetch quirks:
 | |
|  *
 | |
|  * 32-bit mode:
 | |
|  *
 | |
|  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 | |
|  *   Check that here and ignore it.  This is AMD erratum #91.
 | |
|  *
 | |
|  * 64-bit mode:
 | |
|  *
 | |
|  *   Sometimes the CPU reports invalid exceptions on prefetch.
 | |
|  *   Check that here and ignore it.
 | |
|  *
 | |
|  * Opcode checker based on code by Richard Brunner.
 | |
|  */
 | |
| static inline int
 | |
| check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
 | |
| 		      unsigned char opcode, int *prefetch)
 | |
| {
 | |
| 	unsigned char instr_hi = opcode & 0xf0;
 | |
| 	unsigned char instr_lo = opcode & 0x0f;
 | |
| 
 | |
| 	switch (instr_hi) {
 | |
| 	case 0x20:
 | |
| 	case 0x30:
 | |
| 		/*
 | |
| 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
 | |
| 		 * In X86_64 long mode, the CPU will signal invalid
 | |
| 		 * opcode if some of these prefixes are present so
 | |
| 		 * X86_64 will never get here anyway
 | |
| 		 */
 | |
| 		return ((instr_lo & 7) == 0x6);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case 0x40:
 | |
| 		/*
 | |
| 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
 | |
| 		 */
 | |
| 		return (!user_mode(regs) || user_64bit_mode(regs));
 | |
| #endif
 | |
| 	case 0x60:
 | |
| 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 | |
| 		return (instr_lo & 0xC) == 0x4;
 | |
| 	case 0xF0:
 | |
| 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 | |
| 		return !instr_lo || (instr_lo>>1) == 1;
 | |
| 	case 0x00:
 | |
| 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 | |
| 		if (get_kernel_nofault(opcode, instr))
 | |
| 			return 0;
 | |
| 
 | |
| 		*prefetch = (instr_lo == 0xF) &&
 | |
| 			(opcode == 0x0D || opcode == 0x18);
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool is_amd_k8_pre_npt(void)
 | |
| {
 | |
| 	struct cpuinfo_x86 *c = &boot_cpu_data;
 | |
| 
 | |
| 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
 | |
| 			c->x86_vendor == X86_VENDOR_AMD &&
 | |
| 			c->x86 == 0xf && c->x86_model < 0x40);
 | |
| }
 | |
| 
 | |
| static int
 | |
| is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 | |
| {
 | |
| 	unsigned char *max_instr;
 | |
| 	unsigned char *instr;
 | |
| 	int prefetch = 0;
 | |
| 
 | |
| 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
 | |
| 	if (!is_amd_k8_pre_npt())
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it was a exec (instruction fetch) fault on NX page, then
 | |
| 	 * do not ignore the fault:
 | |
| 	 */
 | |
| 	if (error_code & X86_PF_INSTR)
 | |
| 		return 0;
 | |
| 
 | |
| 	instr = (void *)convert_ip_to_linear(current, regs);
 | |
| 	max_instr = instr + 15;
 | |
| 
 | |
| 	/*
 | |
| 	 * This code has historically always bailed out if IP points to a
 | |
| 	 * not-present page (e.g. due to a race).  No one has ever
 | |
| 	 * complained about this.
 | |
| 	 */
 | |
| 	pagefault_disable();
 | |
| 
 | |
| 	while (instr < max_instr) {
 | |
| 		unsigned char opcode;
 | |
| 
 | |
| 		if (user_mode(regs)) {
 | |
| 			if (get_user(opcode, instr))
 | |
| 				break;
 | |
| 		} else {
 | |
| 			if (get_kernel_nofault(opcode, instr))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		instr++;
 | |
| 
 | |
| 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	pagefault_enable();
 | |
| 	return prefetch;
 | |
| }
 | |
| 
 | |
| DEFINE_SPINLOCK(pgd_lock);
 | |
| LIST_HEAD(pgd_list);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 | |
| {
 | |
| 	unsigned index = pgd_index(address);
 | |
| 	pgd_t *pgd_k;
 | |
| 	p4d_t *p4d, *p4d_k;
 | |
| 	pud_t *pud, *pud_k;
 | |
| 	pmd_t *pmd, *pmd_k;
 | |
| 
 | |
| 	pgd += index;
 | |
| 	pgd_k = init_mm.pgd + index;
 | |
| 
 | |
| 	if (!pgd_present(*pgd_k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 | |
| 	 * and redundant with the set_pmd() on non-PAE. As would
 | |
| 	 * set_p4d/set_pud.
 | |
| 	 */
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	p4d_k = p4d_offset(pgd_k, address);
 | |
| 	if (!p4d_present(*p4d_k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	pud_k = pud_offset(p4d_k, address);
 | |
| 	if (!pud_present(*pud_k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	pmd_k = pmd_offset(pud_k, address);
 | |
| 
 | |
| 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
 | |
| 		set_pmd(pmd, *pmd_k);
 | |
| 
 | |
| 	if (!pmd_present(*pmd_k))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 | |
| 
 | |
| 	return pmd_k;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *   Handle a fault on the vmalloc or module mapping area
 | |
|  *
 | |
|  *   This is needed because there is a race condition between the time
 | |
|  *   when the vmalloc mapping code updates the PMD to the point in time
 | |
|  *   where it synchronizes this update with the other page-tables in the
 | |
|  *   system.
 | |
|  *
 | |
|  *   In this race window another thread/CPU can map an area on the same
 | |
|  *   PMD, finds it already present and does not synchronize it with the
 | |
|  *   rest of the system yet. As a result v[mz]alloc might return areas
 | |
|  *   which are not mapped in every page-table in the system, causing an
 | |
|  *   unhandled page-fault when they are accessed.
 | |
|  */
 | |
| static noinline int vmalloc_fault(unsigned long address)
 | |
| {
 | |
| 	unsigned long pgd_paddr;
 | |
| 	pmd_t *pmd_k;
 | |
| 	pte_t *pte_k;
 | |
| 
 | |
| 	/* Make sure we are in vmalloc area: */
 | |
| 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Synchronize this task's top level page-table
 | |
| 	 * with the 'reference' page table.
 | |
| 	 *
 | |
| 	 * Do _not_ use "current" here. We might be inside
 | |
| 	 * an interrupt in the middle of a task switch..
 | |
| 	 */
 | |
| 	pgd_paddr = read_cr3_pa();
 | |
| 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 | |
| 	if (!pmd_k)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pmd_large(*pmd_k))
 | |
| 		return 0;
 | |
| 
 | |
| 	pte_k = pte_offset_kernel(pmd_k, address);
 | |
| 	if (!pte_present(*pte_k))
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| NOKPROBE_SYMBOL(vmalloc_fault);
 | |
| 
 | |
| void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	for (addr = start & PMD_MASK;
 | |
| 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 | |
| 	     addr += PMD_SIZE) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		spin_lock(&pgd_lock);
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			spinlock_t *pgt_lock;
 | |
| 
 | |
| 			/* the pgt_lock only for Xen */
 | |
| 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 | |
| 
 | |
| 			spin_lock(pgt_lock);
 | |
| 			vmalloc_sync_one(page_address(page), addr);
 | |
| 			spin_unlock(pgt_lock);
 | |
| 		}
 | |
| 		spin_unlock(&pgd_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool low_pfn(unsigned long pfn)
 | |
| {
 | |
| 	return pfn < max_low_pfn;
 | |
| }
 | |
| 
 | |
| static void dump_pagetable(unsigned long address)
 | |
| {
 | |
| 	pgd_t *base = __va(read_cr3_pa());
 | |
| 	pgd_t *pgd = &base[pgd_index(address)];
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 | |
| 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 | |
| 		goto out;
 | |
| #define pr_pde pr_cont
 | |
| #else
 | |
| #define pr_pde pr_info
 | |
| #endif
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 | |
| #undef pr_pde
 | |
| 
 | |
| 	/*
 | |
| 	 * We must not directly access the pte in the highpte
 | |
| 	 * case if the page table is located in highmem.
 | |
| 	 * And let's rather not kmap-atomic the pte, just in case
 | |
| 	 * it's allocated already:
 | |
| 	 */
 | |
| 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 | |
| out:
 | |
| 	pr_cont("\n");
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_X86_64: */
 | |
| 
 | |
| #ifdef CONFIG_CPU_SUP_AMD
 | |
| static const char errata93_warning[] =
 | |
| KERN_ERR 
 | |
| "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 | |
| "******* Working around it, but it may cause SEGVs or burn power.\n"
 | |
| "******* Please consider a BIOS update.\n"
 | |
| "******* Disabling USB legacy in the BIOS may also help.\n";
 | |
| #endif
 | |
| 
 | |
| static int bad_address(void *p)
 | |
| {
 | |
| 	unsigned long dummy;
 | |
| 
 | |
| 	return get_kernel_nofault(dummy, (unsigned long *)p);
 | |
| }
 | |
| 
 | |
| static void dump_pagetable(unsigned long address)
 | |
| {
 | |
| 	pgd_t *base = __va(read_cr3_pa());
 | |
| 	pgd_t *pgd = base + pgd_index(address);
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (bad_address(pgd))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_info("PGD %lx ", pgd_val(*pgd));
 | |
| 
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		goto out;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (bad_address(p4d))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_cont("P4D %lx ", p4d_val(*p4d));
 | |
| 	if (!p4d_present(*p4d) || p4d_large(*p4d))
 | |
| 		goto out;
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (bad_address(pud))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_cont("PUD %lx ", pud_val(*pud));
 | |
| 	if (!pud_present(*pud) || pud_large(*pud))
 | |
| 		goto out;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (bad_address(pmd))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_cont("PMD %lx ", pmd_val(*pmd));
 | |
| 	if (!pmd_present(*pmd) || pmd_large(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	if (bad_address(pte))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_cont("PTE %lx", pte_val(*pte));
 | |
| out:
 | |
| 	pr_cont("\n");
 | |
| 	return;
 | |
| bad:
 | |
| 	pr_info("BAD\n");
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_X86_64 */
 | |
| 
 | |
| /*
 | |
|  * Workaround for K8 erratum #93 & buggy BIOS.
 | |
|  *
 | |
|  * BIOS SMM functions are required to use a specific workaround
 | |
|  * to avoid corruption of the 64bit RIP register on C stepping K8.
 | |
|  *
 | |
|  * A lot of BIOS that didn't get tested properly miss this.
 | |
|  *
 | |
|  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 | |
|  * Try to work around it here.
 | |
|  *
 | |
|  * Note we only handle faults in kernel here.
 | |
|  * Does nothing on 32-bit.
 | |
|  */
 | |
| static int is_errata93(struct pt_regs *regs, unsigned long address)
 | |
| {
 | |
| #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 | |
| 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 | |
| 	    || boot_cpu_data.x86 != 0xf)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (user_mode(regs))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (address != regs->ip)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((address >> 32) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	address |= 0xffffffffUL << 32;
 | |
| 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 | |
| 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 | |
| 		printk_once(errata93_warning);
 | |
| 		regs->ip = address;
 | |
| 		return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 | |
|  * to illegal addresses >4GB.
 | |
|  *
 | |
|  * We catch this in the page fault handler because these addresses
 | |
|  * are not reachable. Just detect this case and return.  Any code
 | |
|  * segment in LDT is compatibility mode.
 | |
|  */
 | |
| static int is_errata100(struct pt_regs *regs, unsigned long address)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Pentium F0 0F C7 C8 bug workaround: */
 | |
| static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
 | |
| 		       unsigned long address)
 | |
| {
 | |
| #ifdef CONFIG_X86_F00F_BUG
 | |
| 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
 | |
| 	    idt_is_f00f_address(address)) {
 | |
| 		handle_invalid_op(regs);
 | |
| 		return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 | |
| {
 | |
| 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
 | |
| 	unsigned long addr;
 | |
| 	struct ldttss_desc desc;
 | |
| 
 | |
| 	if (index == 0) {
 | |
| 		pr_alert("%s: NULL\n", name);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 | |
| 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 | |
| 			      sizeof(struct ldttss_desc))) {
 | |
| 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 | |
| 			 name, index);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	addr |= ((u64)desc.base3 << 32);
 | |
| #endif
 | |
| 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 | |
| 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 | |
| }
 | |
| 
 | |
| static void
 | |
| show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 | |
| {
 | |
| 	if (!oops_may_print())
 | |
| 		return;
 | |
| 
 | |
| 	if (error_code & X86_PF_INSTR) {
 | |
| 		unsigned int level;
 | |
| 		pgd_t *pgd;
 | |
| 		pte_t *pte;
 | |
| 
 | |
| 		pgd = __va(read_cr3_pa());
 | |
| 		pgd += pgd_index(address);
 | |
| 
 | |
| 		pte = lookup_address_in_pgd(pgd, address, &level);
 | |
| 
 | |
| 		if (pte && pte_present(*pte) && !pte_exec(*pte))
 | |
| 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 | |
| 				from_kuid(&init_user_ns, current_uid()));
 | |
| 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 | |
| 				(pgd_flags(*pgd) & _PAGE_USER) &&
 | |
| 				(__read_cr4() & X86_CR4_SMEP))
 | |
| 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 | |
| 				from_kuid(&init_user_ns, current_uid()));
 | |
| 	}
 | |
| 
 | |
| 	if (address < PAGE_SIZE && !user_mode(regs))
 | |
| 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 | |
| 			(void *)address);
 | |
| 	else
 | |
| 		pr_alert("BUG: unable to handle page fault for address: %px\n",
 | |
| 			(void *)address);
 | |
| 
 | |
| 	pr_alert("#PF: %s %s in %s mode\n",
 | |
| 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 | |
| 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 | |
| 		 (error_code & X86_PF_WRITE) ? "write access" :
 | |
| 					       "read access",
 | |
| 			     user_mode(regs) ? "user" : "kernel");
 | |
| 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 | |
| 		 !(error_code & X86_PF_PROT) ? "not-present page" :
 | |
| 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 | |
| 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
 | |
| 					       "permissions violation");
 | |
| 
 | |
| 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 | |
| 		struct desc_ptr idt, gdt;
 | |
| 		u16 ldtr, tr;
 | |
| 
 | |
| 		/*
 | |
| 		 * This can happen for quite a few reasons.  The more obvious
 | |
| 		 * ones are faults accessing the GDT, or LDT.  Perhaps
 | |
| 		 * surprisingly, if the CPU tries to deliver a benign or
 | |
| 		 * contributory exception from user code and gets a page fault
 | |
| 		 * during delivery, the page fault can be delivered as though
 | |
| 		 * it originated directly from user code.  This could happen
 | |
| 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 | |
| 		 * kernel or IST stack.
 | |
| 		 */
 | |
| 		store_idt(&idt);
 | |
| 
 | |
| 		/* Usable even on Xen PV -- it's just slow. */
 | |
| 		native_store_gdt(&gdt);
 | |
| 
 | |
| 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 | |
| 			 idt.address, idt.size, gdt.address, gdt.size);
 | |
| 
 | |
| 		store_ldt(ldtr);
 | |
| 		show_ldttss(&gdt, "LDTR", ldtr);
 | |
| 
 | |
| 		store_tr(tr);
 | |
| 		show_ldttss(&gdt, "TR", tr);
 | |
| 	}
 | |
| 
 | |
| 	dump_pagetable(address);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 | |
| 	    unsigned long address)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	unsigned long flags;
 | |
| 	int sig;
 | |
| 
 | |
| 	flags = oops_begin();
 | |
| 	tsk = current;
 | |
| 	sig = SIGKILL;
 | |
| 
 | |
| 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 | |
| 	       tsk->comm, address);
 | |
| 	dump_pagetable(address);
 | |
| 
 | |
| 	if (__die("Bad pagetable", regs, error_code))
 | |
| 		sig = 0;
 | |
| 
 | |
| 	oops_end(flags, regs, sig);
 | |
| }
 | |
| 
 | |
| static void sanitize_error_code(unsigned long address,
 | |
| 				unsigned long *error_code)
 | |
| {
 | |
| 	/*
 | |
| 	 * To avoid leaking information about the kernel page
 | |
| 	 * table layout, pretend that user-mode accesses to
 | |
| 	 * kernel addresses are always protection faults.
 | |
| 	 *
 | |
| 	 * NB: This means that failed vsyscalls with vsyscall=none
 | |
| 	 * will have the PROT bit.  This doesn't leak any
 | |
| 	 * information and does not appear to cause any problems.
 | |
| 	 */
 | |
| 	if (address >= TASK_SIZE_MAX)
 | |
| 		*error_code |= X86_PF_PROT;
 | |
| }
 | |
| 
 | |
| static void set_signal_archinfo(unsigned long address,
 | |
| 				unsigned long error_code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	tsk->thread.trap_nr = X86_TRAP_PF;
 | |
| 	tsk->thread.error_code = error_code | X86_PF_USER;
 | |
| 	tsk->thread.cr2 = address;
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| page_fault_oops(struct pt_regs *regs, unsigned long error_code,
 | |
| 		unsigned long address)
 | |
| {
 | |
| #ifdef CONFIG_VMAP_STACK
 | |
| 	struct stack_info info;
 | |
| #endif
 | |
| 	unsigned long flags;
 | |
| 	int sig;
 | |
| 
 | |
| 	if (user_mode(regs)) {
 | |
| 		/*
 | |
| 		 * Implicit kernel access from user mode?  Skip the stack
 | |
| 		 * overflow and EFI special cases.
 | |
| 		 */
 | |
| 		goto oops;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_VMAP_STACK
 | |
| 	/*
 | |
| 	 * Stack overflow?  During boot, we can fault near the initial
 | |
| 	 * stack in the direct map, but that's not an overflow -- check
 | |
| 	 * that we're in vmalloc space to avoid this.
 | |
| 	 */
 | |
| 	if (is_vmalloc_addr((void *)address) &&
 | |
| 	    get_stack_guard_info((void *)address, &info)) {
 | |
| 		/*
 | |
| 		 * We're likely to be running with very little stack space
 | |
| 		 * left.  It's plausible that we'd hit this condition but
 | |
| 		 * double-fault even before we get this far, in which case
 | |
| 		 * we're fine: the double-fault handler will deal with it.
 | |
| 		 *
 | |
| 		 * We don't want to make it all the way into the oops code
 | |
| 		 * and then double-fault, though, because we're likely to
 | |
| 		 * break the console driver and lose most of the stack dump.
 | |
| 		 */
 | |
| 		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
 | |
| 			      handle_stack_overflow,
 | |
| 			      ASM_CALL_ARG3,
 | |
| 			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
 | |
| 
 | |
| 		unreachable();
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Buggy firmware could access regions which might page fault.  If
 | |
| 	 * this happens, EFI has a special OOPS path that will try to
 | |
| 	 * avoid hanging the system.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_EFI))
 | |
| 		efi_crash_gracefully_on_page_fault(address);
 | |
| 
 | |
| 	/* Only not-present faults should be handled by KFENCE. */
 | |
| 	if (!(error_code & X86_PF_PROT) &&
 | |
| 	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
 | |
| 		return;
 | |
| 
 | |
| oops:
 | |
| 	/*
 | |
| 	 * Oops. The kernel tried to access some bad page. We'll have to
 | |
| 	 * terminate things with extreme prejudice:
 | |
| 	 */
 | |
| 	flags = oops_begin();
 | |
| 
 | |
| 	show_fault_oops(regs, error_code, address);
 | |
| 
 | |
| 	if (task_stack_end_corrupted(current))
 | |
| 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 | |
| 
 | |
| 	sig = SIGKILL;
 | |
| 	if (__die("Oops", regs, error_code))
 | |
| 		sig = 0;
 | |
| 
 | |
| 	/* Executive summary in case the body of the oops scrolled away */
 | |
| 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 | |
| 
 | |
| 	oops_end(flags, regs, sig);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
 | |
| 			 unsigned long address, int signal, int si_code,
 | |
| 			 u32 pkey)
 | |
| {
 | |
| 	WARN_ON_ONCE(user_mode(regs));
 | |
| 
 | |
| 	/* Are we prepared to handle this kernel fault? */
 | |
| 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 | |
| 		/*
 | |
| 		 * Any interrupt that takes a fault gets the fixup. This makes
 | |
| 		 * the below recursive fault logic only apply to a faults from
 | |
| 		 * task context.
 | |
| 		 */
 | |
| 		if (in_interrupt())
 | |
| 			return;
 | |
| 
 | |
| 		/*
 | |
| 		 * Per the above we're !in_interrupt(), aka. task context.
 | |
| 		 *
 | |
| 		 * In this case we need to make sure we're not recursively
 | |
| 		 * faulting through the emulate_vsyscall() logic.
 | |
| 		 */
 | |
| 		if (current->thread.sig_on_uaccess_err && signal) {
 | |
| 			sanitize_error_code(address, &error_code);
 | |
| 
 | |
| 			set_signal_archinfo(address, error_code);
 | |
| 
 | |
| 			if (si_code == SEGV_PKUERR) {
 | |
| 				force_sig_pkuerr((void __user *)address, pkey);
 | |
| 			} else {
 | |
| 				/* XXX: hwpoison faults will set the wrong code. */
 | |
| 				force_sig_fault(signal, si_code, (void __user *)address);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Barring that, we can do the fixup and be happy.
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
 | |
| 	 * instruction.
 | |
| 	 */
 | |
| 	if (is_prefetch(regs, error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	page_fault_oops(regs, error_code, address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print out info about fatal segfaults, if the show_unhandled_signals
 | |
|  * sysctl is set:
 | |
|  */
 | |
| static inline void
 | |
| show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 | |
| 		unsigned long address, struct task_struct *tsk)
 | |
| {
 | |
| 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 | |
| 
 | |
| 	if (!unhandled_signal(tsk, SIGSEGV))
 | |
| 		return;
 | |
| 
 | |
| 	if (!printk_ratelimit())
 | |
| 		return;
 | |
| 
 | |
| 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 | |
| 		loglvl, tsk->comm, task_pid_nr(tsk), address,
 | |
| 		(void *)regs->ip, (void *)regs->sp, error_code);
 | |
| 
 | |
| 	print_vma_addr(KERN_CONT " in ", regs->ip);
 | |
| 
 | |
| 	printk(KERN_CONT "\n");
 | |
| 
 | |
| 	show_opcodes(regs, loglvl);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The (legacy) vsyscall page is the long page in the kernel portion
 | |
|  * of the address space that has user-accessible permissions.
 | |
|  */
 | |
| static bool is_vsyscall_vaddr(unsigned long vaddr)
 | |
| {
 | |
| 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 | |
| 		       unsigned long address, u32 pkey, int si_code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	if (!user_mode(regs)) {
 | |
| 		kernelmode_fixup_or_oops(regs, error_code, address,
 | |
| 					 SIGSEGV, si_code, pkey);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!(error_code & X86_PF_USER)) {
 | |
| 		/* Implicit user access to kernel memory -- just oops */
 | |
| 		page_fault_oops(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * User mode accesses just cause a SIGSEGV.
 | |
| 	 * It's possible to have interrupts off here:
 | |
| 	 */
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	/*
 | |
| 	 * Valid to do another page fault here because this one came
 | |
| 	 * from user space:
 | |
| 	 */
 | |
| 	if (is_prefetch(regs, error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	if (is_errata100(regs, address))
 | |
| 		return;
 | |
| 
 | |
| 	sanitize_error_code(address, &error_code);
 | |
| 
 | |
| 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	if (likely(show_unhandled_signals))
 | |
| 		show_signal_msg(regs, error_code, address, tsk);
 | |
| 
 | |
| 	set_signal_archinfo(address, error_code);
 | |
| 
 | |
| 	if (si_code == SEGV_PKUERR)
 | |
| 		force_sig_pkuerr((void __user *)address, pkey);
 | |
| 	else
 | |
| 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 | |
| 
 | |
| 	local_irq_disable();
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 | |
| 		     unsigned long address)
 | |
| {
 | |
| 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __bad_area(struct pt_regs *regs, unsigned long error_code,
 | |
| 	   unsigned long address, u32 pkey, int si_code)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	/*
 | |
| 	 * Something tried to access memory that isn't in our memory map..
 | |
| 	 * Fix it, but check if it's kernel or user first..
 | |
| 	 */
 | |
| 	mmap_read_unlock(mm);
 | |
| 
 | |
| 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 | |
| {
 | |
| 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
 | |
| }
 | |
| 
 | |
| static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 | |
| 		struct vm_area_struct *vma)
 | |
| {
 | |
| 	/* This code is always called on the current mm */
 | |
| 	bool foreign = false;
 | |
| 
 | |
| 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 | |
| 		return false;
 | |
| 	if (error_code & X86_PF_PK)
 | |
| 		return true;
 | |
| 	/* this checks permission keys on the VMA: */
 | |
| 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 | |
| 				       (error_code & X86_PF_INSTR), foreign))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 | |
| 		      unsigned long address, struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * This OSPKE check is not strictly necessary at runtime.
 | |
| 	 * But, doing it this way allows compiler optimizations
 | |
| 	 * if pkeys are compiled out.
 | |
| 	 */
 | |
| 	if (bad_area_access_from_pkeys(error_code, vma)) {
 | |
| 		/*
 | |
| 		 * A protection key fault means that the PKRU value did not allow
 | |
| 		 * access to some PTE.  Userspace can figure out what PKRU was
 | |
| 		 * from the XSAVE state.  This function captures the pkey from
 | |
| 		 * the vma and passes it to userspace so userspace can discover
 | |
| 		 * which protection key was set on the PTE.
 | |
| 		 *
 | |
| 		 * If we get here, we know that the hardware signaled a X86_PF_PK
 | |
| 		 * fault and that there was a VMA once we got in the fault
 | |
| 		 * handler.  It does *not* guarantee that the VMA we find here
 | |
| 		 * was the one that we faulted on.
 | |
| 		 *
 | |
| 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 | |
| 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 | |
| 		 * 3. T1   : faults...
 | |
| 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 | |
| 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 | |
| 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 | |
| 		 *	     faulted on a pte with its pkey=4.
 | |
| 		 */
 | |
| 		u32 pkey = vma_pkey(vma);
 | |
| 
 | |
| 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 | |
| 	} else {
 | |
| 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 | |
| 	  vm_fault_t fault)
 | |
| {
 | |
| 	/* Kernel mode? Handle exceptions or die: */
 | |
| 	if (!user_mode(regs)) {
 | |
| 		kernelmode_fixup_or_oops(regs, error_code, address,
 | |
| 					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* User-space => ok to do another page fault: */
 | |
| 	if (is_prefetch(regs, error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	sanitize_error_code(address, &error_code);
 | |
| 
 | |
| 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	set_signal_archinfo(address, error_code);
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 | |
| 		struct task_struct *tsk = current;
 | |
| 		unsigned lsb = 0;
 | |
| 
 | |
| 		pr_err(
 | |
| 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 | |
| 			tsk->comm, tsk->pid, address);
 | |
| 		if (fault & VM_FAULT_HWPOISON_LARGE)
 | |
| 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 | |
| 		if (fault & VM_FAULT_HWPOISON)
 | |
| 			lsb = PAGE_SHIFT;
 | |
| 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 | |
| }
 | |
| 
 | |
| static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 | |
| {
 | |
| 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle a spurious fault caused by a stale TLB entry.
 | |
|  *
 | |
|  * This allows us to lazily refresh the TLB when increasing the
 | |
|  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 | |
|  * eagerly is very expensive since that implies doing a full
 | |
|  * cross-processor TLB flush, even if no stale TLB entries exist
 | |
|  * on other processors.
 | |
|  *
 | |
|  * Spurious faults may only occur if the TLB contains an entry with
 | |
|  * fewer permission than the page table entry.  Non-present (P = 0)
 | |
|  * and reserved bit (R = 1) faults are never spurious.
 | |
|  *
 | |
|  * There are no security implications to leaving a stale TLB when
 | |
|  * increasing the permissions on a page.
 | |
|  *
 | |
|  * Returns non-zero if a spurious fault was handled, zero otherwise.
 | |
|  *
 | |
|  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 | |
|  * (Optional Invalidation).
 | |
|  */
 | |
| static noinline int
 | |
| spurious_kernel_fault(unsigned long error_code, unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only writes to RO or instruction fetches from NX may cause
 | |
| 	 * spurious faults.
 | |
| 	 *
 | |
| 	 * These could be from user or supervisor accesses but the TLB
 | |
| 	 * is only lazily flushed after a kernel mapping protection
 | |
| 	 * change, so user accesses are not expected to cause spurious
 | |
| 	 * faults.
 | |
| 	 */
 | |
| 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
 | |
| 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
 | |
| 		return 0;
 | |
| 
 | |
| 	pgd = init_mm.pgd + pgd_index(address);
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		return 0;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (!p4d_present(*p4d))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (p4d_large(*p4d))
 | |
| 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (!pud_present(*pud))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pud_large(*pud))
 | |
| 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (!pmd_present(*pmd))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_large(*pmd))
 | |
| 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	if (!pte_present(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = spurious_kernel_fault_check(error_code, pte);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we have permissions in PMD.
 | |
| 	 * If not, then there's a bug in the page tables:
 | |
| 	 */
 | |
| 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
 | |
| 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| NOKPROBE_SYMBOL(spurious_kernel_fault);
 | |
| 
 | |
| int show_unhandled_signals = 1;
 | |
| 
 | |
| static inline int
 | |
| access_error(unsigned long error_code, struct vm_area_struct *vma)
 | |
| {
 | |
| 	/* This is only called for the current mm, so: */
 | |
| 	bool foreign = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read or write was blocked by protection keys.  This is
 | |
| 	 * always an unconditional error and can never result in
 | |
| 	 * a follow-up action to resolve the fault, like a COW.
 | |
| 	 */
 | |
| 	if (error_code & X86_PF_PK)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * SGX hardware blocked the access.  This usually happens
 | |
| 	 * when the enclave memory contents have been destroyed, like
 | |
| 	 * after a suspend/resume cycle. In any case, the kernel can't
 | |
| 	 * fix the cause of the fault.  Handle the fault as an access
 | |
| 	 * error even in cases where no actual access violation
 | |
| 	 * occurred.  This allows userspace to rebuild the enclave in
 | |
| 	 * response to the signal.
 | |
| 	 */
 | |
| 	if (unlikely(error_code & X86_PF_SGX))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure to check the VMA so that we do not perform
 | |
| 	 * faults just to hit a X86_PF_PK as soon as we fill in a
 | |
| 	 * page.
 | |
| 	 */
 | |
| 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 | |
| 				       (error_code & X86_PF_INSTR), foreign))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (error_code & X86_PF_WRITE) {
 | |
| 		/* write, present and write, not present: */
 | |
| 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
 | |
| 			return 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* read, present: */
 | |
| 	if (unlikely(error_code & X86_PF_PROT))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* read, not present: */
 | |
| 	if (unlikely(!vma_is_accessible(vma)))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| bool fault_in_kernel_space(unsigned long address)
 | |
| {
 | |
| 	/*
 | |
| 	 * On 64-bit systems, the vsyscall page is at an address above
 | |
| 	 * TASK_SIZE_MAX, but is not considered part of the kernel
 | |
| 	 * address space.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
 | |
| 		return false;
 | |
| 
 | |
| 	return address >= TASK_SIZE_MAX;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called for all faults where 'address' is part of the kernel address
 | |
|  * space.  Might get called for faults that originate from *code* that
 | |
|  * ran in userspace or the kernel.
 | |
|  */
 | |
| static void
 | |
| do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
 | |
| 		   unsigned long address)
 | |
| {
 | |
| 	/*
 | |
| 	 * Protection keys exceptions only happen on user pages.  We
 | |
| 	 * have no user pages in the kernel portion of the address
 | |
| 	 * space, so do not expect them here.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	/*
 | |
| 	 * We can fault-in kernel-space virtual memory on-demand. The
 | |
| 	 * 'reference' page table is init_mm.pgd.
 | |
| 	 *
 | |
| 	 * NOTE! We MUST NOT take any locks for this case. We may
 | |
| 	 * be in an interrupt or a critical region, and should
 | |
| 	 * only copy the information from the master page table,
 | |
| 	 * nothing more.
 | |
| 	 *
 | |
| 	 * Before doing this on-demand faulting, ensure that the
 | |
| 	 * fault is not any of the following:
 | |
| 	 * 1. A fault on a PTE with a reserved bit set.
 | |
| 	 * 2. A fault caused by a user-mode access.  (Do not demand-
 | |
| 	 *    fault kernel memory due to user-mode accesses).
 | |
| 	 * 3. A fault caused by a page-level protection violation.
 | |
| 	 *    (A demand fault would be on a non-present page which
 | |
| 	 *     would have X86_PF_PROT==0).
 | |
| 	 *
 | |
| 	 * This is only needed to close a race condition on x86-32 in
 | |
| 	 * the vmalloc mapping/unmapping code. See the comment above
 | |
| 	 * vmalloc_fault() for details. On x86-64 the race does not
 | |
| 	 * exist as the vmalloc mappings don't need to be synchronized
 | |
| 	 * there.
 | |
| 	 */
 | |
| 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
 | |
| 		if (vmalloc_fault(address) >= 0)
 | |
| 			return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (is_f00f_bug(regs, hw_error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	/* Was the fault spurious, caused by lazy TLB invalidation? */
 | |
| 	if (spurious_kernel_fault(hw_error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	/* kprobes don't want to hook the spurious faults: */
 | |
| 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note, despite being a "bad area", there are quite a few
 | |
| 	 * acceptable reasons to get here, such as erratum fixups
 | |
| 	 * and handling kernel code that can fault, like get_user().
 | |
| 	 *
 | |
| 	 * Don't take the mm semaphore here. If we fixup a prefetch
 | |
| 	 * fault we could otherwise deadlock:
 | |
| 	 */
 | |
| 	bad_area_nosemaphore(regs, hw_error_code, address);
 | |
| }
 | |
| NOKPROBE_SYMBOL(do_kern_addr_fault);
 | |
| 
 | |
| /*
 | |
|  * Handle faults in the user portion of the address space.  Nothing in here
 | |
|  * should check X86_PF_USER without a specific justification: for almost
 | |
|  * all purposes, we should treat a normal kernel access to user memory
 | |
|  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
 | |
|  * The one exception is AC flag handling, which is, per the x86
 | |
|  * architecture, special for WRUSS.
 | |
|  */
 | |
| static inline
 | |
| void do_user_addr_fault(struct pt_regs *regs,
 | |
| 			unsigned long error_code,
 | |
| 			unsigned long address)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct task_struct *tsk;
 | |
| 	struct mm_struct *mm;
 | |
| 	vm_fault_t fault;
 | |
| 	unsigned int flags = FAULT_FLAG_DEFAULT;
 | |
| 
 | |
| 	tsk = current;
 | |
| 	mm = tsk->mm;
 | |
| 
 | |
| 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
 | |
| 		/*
 | |
| 		 * Whoops, this is kernel mode code trying to execute from
 | |
| 		 * user memory.  Unless this is AMD erratum #93, which
 | |
| 		 * corrupts RIP such that it looks like a user address,
 | |
| 		 * this is unrecoverable.  Don't even try to look up the
 | |
| 		 * VMA or look for extable entries.
 | |
| 		 */
 | |
| 		if (is_errata93(regs, address))
 | |
| 			return;
 | |
| 
 | |
| 		page_fault_oops(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* kprobes don't want to hook the spurious faults: */
 | |
| 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserved bits are never expected to be set on
 | |
| 	 * entries in the user portion of the page tables.
 | |
| 	 */
 | |
| 	if (unlikely(error_code & X86_PF_RSVD))
 | |
| 		pgtable_bad(regs, error_code, address);
 | |
| 
 | |
| 	/*
 | |
| 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
 | |
| 	 * pages in the user address space.  The odd case here is WRUSS,
 | |
| 	 * which, according to the preliminary documentation, does not respect
 | |
| 	 * SMAP and will have the USER bit set so, in all cases, SMAP
 | |
| 	 * enforcement appears to be consistent with the USER bit.
 | |
| 	 */
 | |
| 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
 | |
| 		     !(error_code & X86_PF_USER) &&
 | |
| 		     !(regs->flags & X86_EFLAGS_AC))) {
 | |
| 		/*
 | |
| 		 * No extable entry here.  This was a kernel access to an
 | |
| 		 * invalid pointer.  get_kernel_nofault() will not get here.
 | |
| 		 */
 | |
| 		page_fault_oops(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're in an interrupt, have no user context or are running
 | |
| 	 * in a region with pagefaults disabled then we must not take the fault
 | |
| 	 */
 | |
| 	if (unlikely(faulthandler_disabled() || !mm)) {
 | |
| 		bad_area_nosemaphore(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's safe to allow irq's after cr2 has been saved and the
 | |
| 	 * vmalloc fault has been handled.
 | |
| 	 *
 | |
| 	 * User-mode registers count as a user access even for any
 | |
| 	 * potential system fault or CPU buglet:
 | |
| 	 */
 | |
| 	if (user_mode(regs)) {
 | |
| 		local_irq_enable();
 | |
| 		flags |= FAULT_FLAG_USER;
 | |
| 	} else {
 | |
| 		if (regs->flags & X86_EFLAGS_IF)
 | |
| 			local_irq_enable();
 | |
| 	}
 | |
| 
 | |
| 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 | |
| 
 | |
| 	if (error_code & X86_PF_WRITE)
 | |
| 		flags |= FAULT_FLAG_WRITE;
 | |
| 	if (error_code & X86_PF_INSTR)
 | |
| 		flags |= FAULT_FLAG_INSTRUCTION;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * Faults in the vsyscall page might need emulation.  The
 | |
| 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
 | |
| 	 * considered to be part of the user address space.
 | |
| 	 *
 | |
| 	 * The vsyscall page does not have a "real" VMA, so do this
 | |
| 	 * emulation before we go searching for VMAs.
 | |
| 	 *
 | |
| 	 * PKRU never rejects instruction fetches, so we don't need
 | |
| 	 * to consider the PF_PK bit.
 | |
| 	 */
 | |
| 	if (is_vsyscall_vaddr(address)) {
 | |
| 		if (emulate_vsyscall(error_code, regs, address))
 | |
| 			return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Kernel-mode access to the user address space should only occur
 | |
| 	 * on well-defined single instructions listed in the exception
 | |
| 	 * tables.  But, an erroneous kernel fault occurring outside one of
 | |
| 	 * those areas which also holds mmap_lock might deadlock attempting
 | |
| 	 * to validate the fault against the address space.
 | |
| 	 *
 | |
| 	 * Only do the expensive exception table search when we might be at
 | |
| 	 * risk of a deadlock.  This happens if we
 | |
| 	 * 1. Failed to acquire mmap_lock, and
 | |
| 	 * 2. The access did not originate in userspace.
 | |
| 	 */
 | |
| 	if (unlikely(!mmap_read_trylock(mm))) {
 | |
| 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
 | |
| 			/*
 | |
| 			 * Fault from code in kernel from
 | |
| 			 * which we do not expect faults.
 | |
| 			 */
 | |
| 			bad_area_nosemaphore(regs, error_code, address);
 | |
| 			return;
 | |
| 		}
 | |
| retry:
 | |
| 		mmap_read_lock(mm);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The above down_read_trylock() might have succeeded in
 | |
| 		 * which case we'll have missed the might_sleep() from
 | |
| 		 * down_read():
 | |
| 		 */
 | |
| 		might_sleep();
 | |
| 	}
 | |
| 
 | |
| 	vma = find_vma(mm, address);
 | |
| 	if (unlikely(!vma)) {
 | |
| 		bad_area(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (likely(vma->vm_start <= address))
 | |
| 		goto good_area;
 | |
| 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
 | |
| 		bad_area(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (unlikely(expand_stack(vma, address))) {
 | |
| 		bad_area(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, we have a good vm_area for this memory access, so
 | |
| 	 * we can handle it..
 | |
| 	 */
 | |
| good_area:
 | |
| 	if (unlikely(access_error(error_code, vma))) {
 | |
| 		bad_area_access_error(regs, error_code, address, vma);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If for any reason at all we couldn't handle the fault,
 | |
| 	 * make sure we exit gracefully rather than endlessly redo
 | |
| 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
 | |
| 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
 | |
| 	 *
 | |
| 	 * Note that handle_userfault() may also release and reacquire mmap_lock
 | |
| 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
 | |
| 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
 | |
| 	 * (potentially after handling any pending signal during the return to
 | |
| 	 * userland). The return to userland is identified whenever
 | |
| 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
 | |
| 	 */
 | |
| 	fault = handle_mm_fault(vma, address, flags, regs);
 | |
| 
 | |
| 	if (fault_signal_pending(fault, regs)) {
 | |
| 		/*
 | |
| 		 * Quick path to respond to signals.  The core mm code
 | |
| 		 * has unlocked the mm for us if we get here.
 | |
| 		 */
 | |
| 		if (!user_mode(regs))
 | |
| 			kernelmode_fixup_or_oops(regs, error_code, address,
 | |
| 						 SIGBUS, BUS_ADRERR,
 | |
| 						 ARCH_DEFAULT_PKEY);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need to retry the mmap_lock has already been released,
 | |
| 	 * and if there is a fatal signal pending there is no guarantee
 | |
| 	 * that we made any progress. Handle this case first.
 | |
| 	 */
 | |
| 	if (unlikely(fault & VM_FAULT_RETRY)) {
 | |
| 		flags |= FAULT_FLAG_TRIED;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	mmap_read_unlock(mm);
 | |
| 	if (likely(!(fault & VM_FAULT_ERROR)))
 | |
| 		return;
 | |
| 
 | |
| 	if (fatal_signal_pending(current) && !user_mode(regs)) {
 | |
| 		kernelmode_fixup_or_oops(regs, error_code, address,
 | |
| 					 0, 0, ARCH_DEFAULT_PKEY);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (fault & VM_FAULT_OOM) {
 | |
| 		/* Kernel mode? Handle exceptions or die: */
 | |
| 		if (!user_mode(regs)) {
 | |
| 			kernelmode_fixup_or_oops(regs, error_code, address,
 | |
| 						 SIGSEGV, SEGV_MAPERR,
 | |
| 						 ARCH_DEFAULT_PKEY);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We ran out of memory, call the OOM killer, and return the
 | |
| 		 * userspace (which will retry the fault, or kill us if we got
 | |
| 		 * oom-killed):
 | |
| 		 */
 | |
| 		pagefault_out_of_memory();
 | |
| 	} else {
 | |
| 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 | |
| 			     VM_FAULT_HWPOISON_LARGE))
 | |
| 			do_sigbus(regs, error_code, address, fault);
 | |
| 		else if (fault & VM_FAULT_SIGSEGV)
 | |
| 			bad_area_nosemaphore(regs, error_code, address);
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| }
 | |
| NOKPROBE_SYMBOL(do_user_addr_fault);
 | |
| 
 | |
| static __always_inline void
 | |
| trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
 | |
| 			 unsigned long address)
 | |
| {
 | |
| 	if (!trace_pagefault_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (user_mode(regs))
 | |
| 		trace_page_fault_user(address, regs, error_code);
 | |
| 	else
 | |
| 		trace_page_fault_kernel(address, regs, error_code);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| handle_page_fault(struct pt_regs *regs, unsigned long error_code,
 | |
| 			      unsigned long address)
 | |
| {
 | |
| 	trace_page_fault_entries(regs, error_code, address);
 | |
| 
 | |
| 	if (unlikely(kmmio_fault(regs, address)))
 | |
| 		return;
 | |
| 
 | |
| 	/* Was the fault on kernel-controlled part of the address space? */
 | |
| 	if (unlikely(fault_in_kernel_space(address))) {
 | |
| 		do_kern_addr_fault(regs, error_code, address);
 | |
| 	} else {
 | |
| 		do_user_addr_fault(regs, error_code, address);
 | |
| 		/*
 | |
| 		 * User address page fault handling might have reenabled
 | |
| 		 * interrupts. Fixing up all potential exit points of
 | |
| 		 * do_user_addr_fault() and its leaf functions is just not
 | |
| 		 * doable w/o creating an unholy mess or turning the code
 | |
| 		 * upside down.
 | |
| 		 */
 | |
| 		local_irq_disable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
 | |
| {
 | |
| 	unsigned long address = read_cr2();
 | |
| 	irqentry_state_t state;
 | |
| 
 | |
| 	prefetchw(¤t->mm->mmap_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM uses #PF vector to deliver 'page not present' events to guests
 | |
| 	 * (asynchronous page fault mechanism). The event happens when a
 | |
| 	 * userspace task is trying to access some valid (from guest's point of
 | |
| 	 * view) memory which is not currently mapped by the host (e.g. the
 | |
| 	 * memory is swapped out). Note, the corresponding "page ready" event
 | |
| 	 * which is injected when the memory becomes available, is delivered via
 | |
| 	 * an interrupt mechanism and not a #PF exception
 | |
| 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
 | |
| 	 *
 | |
| 	 * We are relying on the interrupted context being sane (valid RSP,
 | |
| 	 * relevant locks not held, etc.), which is fine as long as the
 | |
| 	 * interrupted context had IF=1.  We are also relying on the KVM
 | |
| 	 * async pf type field and CR2 being read consistently instead of
 | |
| 	 * getting values from real and async page faults mixed up.
 | |
| 	 *
 | |
| 	 * Fingers crossed.
 | |
| 	 *
 | |
| 	 * The async #PF handling code takes care of idtentry handling
 | |
| 	 * itself.
 | |
| 	 */
 | |
| 	if (kvm_handle_async_pf(regs, (u32)address))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Entry handling for valid #PF from kernel mode is slightly
 | |
| 	 * different: RCU is already watching and rcu_irq_enter() must not
 | |
| 	 * be invoked because a kernel fault on a user space address might
 | |
| 	 * sleep.
 | |
| 	 *
 | |
| 	 * In case the fault hit a RCU idle region the conditional entry
 | |
| 	 * code reenabled RCU to avoid subsequent wreckage which helps
 | |
| 	 * debuggability.
 | |
| 	 */
 | |
| 	state = irqentry_enter(regs);
 | |
| 
 | |
| 	instrumentation_begin();
 | |
| 	handle_page_fault(regs, error_code, address);
 | |
| 	instrumentation_end();
 | |
| 
 | |
| 	irqentry_exit(regs, state);
 | |
| }
 |