mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 4034247a0d
			
		
	
	
		4034247a0d
		
	
	
	
	
		
			
			Various places in the kernel - largely in filesystems - respond to a memory allocation failure by looping around and re-trying. Some of these cannot conveniently use __GFP_NOFAIL, for reasons such as: - a GFP_ATOMIC allocation, which __GFP_NOFAIL doesn't work on - a need to check for the process being signalled between failures - the possibility that other recovery actions could be performed - the allocation is quite deep in support code, and passing down an extra flag to say if __GFP_NOFAIL is wanted would be clumsy. Many of these currently use congestion_wait() which (in almost all cases) simply waits the given timeout - congestion isn't tracked for most devices. It isn't clear what the best delay is for loops, but it is clear that the various filesystems shouldn't be responsible for choosing a timeout. This patch introduces memalloc_retry_wait() with takes on that responsibility. Code that wants to retry a memory allocation can call this function passing the GFP flags that were used. It will wait however is appropriate. For now, it only considers __GFP_NORETRY and whatever gfpflags_allow_blocking() tests. If blocking is allowed without __GFP_NORETRY, then alloc_page either made some reclaim progress, or waited for a while, before failing. So there is no need for much further waiting. memalloc_retry_wait() will wait until the current jiffie ends. If this condition is not met, then alloc_page() won't have waited much if at all. In that case memalloc_retry_wait() waits about 200ms. This is the delay that most current loops uses. linux/sched/mm.h needs to be included in some files now, but linux/backing-dev.h does not. Link: https://lkml.kernel.org/r/163754371968.13692.1277530886009912421@noble.neil.brown.name Signed-off-by: NeilBrown <neilb@suse.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Michal Hocko <mhocko@suse.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Chao Yu <chao@kernel.org> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			5448 lines
		
	
	
	
		
			139 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5448 lines
		
	
	
	
		
			139 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * fs/f2fs/segment.c
 | |
|  *
 | |
|  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 | |
|  *             http://www.samsung.com/
 | |
|  */
 | |
| #include <linux/fs.h>
 | |
| #include <linux/f2fs_fs.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/random.h>
 | |
| 
 | |
| #include "f2fs.h"
 | |
| #include "segment.h"
 | |
| #include "node.h"
 | |
| #include "gc.h"
 | |
| #include "iostat.h"
 | |
| #include <trace/events/f2fs.h>
 | |
| 
 | |
| #define __reverse_ffz(x) __reverse_ffs(~(x))
 | |
| 
 | |
| static struct kmem_cache *discard_entry_slab;
 | |
| static struct kmem_cache *discard_cmd_slab;
 | |
| static struct kmem_cache *sit_entry_set_slab;
 | |
| static struct kmem_cache *inmem_entry_slab;
 | |
| 
 | |
| static unsigned long __reverse_ulong(unsigned char *str)
 | |
| {
 | |
| 	unsigned long tmp = 0;
 | |
| 	int shift = 24, idx = 0;
 | |
| 
 | |
| #if BITS_PER_LONG == 64
 | |
| 	shift = 56;
 | |
| #endif
 | |
| 	while (shift >= 0) {
 | |
| 		tmp |= (unsigned long)str[idx++] << shift;
 | |
| 		shift -= BITS_PER_BYTE;
 | |
| 	}
 | |
| 	return tmp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
 | |
|  * MSB and LSB are reversed in a byte by f2fs_set_bit.
 | |
|  */
 | |
| static inline unsigned long __reverse_ffs(unsigned long word)
 | |
| {
 | |
| 	int num = 0;
 | |
| 
 | |
| #if BITS_PER_LONG == 64
 | |
| 	if ((word & 0xffffffff00000000UL) == 0)
 | |
| 		num += 32;
 | |
| 	else
 | |
| 		word >>= 32;
 | |
| #endif
 | |
| 	if ((word & 0xffff0000) == 0)
 | |
| 		num += 16;
 | |
| 	else
 | |
| 		word >>= 16;
 | |
| 
 | |
| 	if ((word & 0xff00) == 0)
 | |
| 		num += 8;
 | |
| 	else
 | |
| 		word >>= 8;
 | |
| 
 | |
| 	if ((word & 0xf0) == 0)
 | |
| 		num += 4;
 | |
| 	else
 | |
| 		word >>= 4;
 | |
| 
 | |
| 	if ((word & 0xc) == 0)
 | |
| 		num += 2;
 | |
| 	else
 | |
| 		word >>= 2;
 | |
| 
 | |
| 	if ((word & 0x2) == 0)
 | |
| 		num += 1;
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
 | |
|  * f2fs_set_bit makes MSB and LSB reversed in a byte.
 | |
|  * @size must be integral times of unsigned long.
 | |
|  * Example:
 | |
|  *                             MSB <--> LSB
 | |
|  *   f2fs_set_bit(0, bitmap) => 1000 0000
 | |
|  *   f2fs_set_bit(7, bitmap) => 0000 0001
 | |
|  */
 | |
| static unsigned long __find_rev_next_bit(const unsigned long *addr,
 | |
| 			unsigned long size, unsigned long offset)
 | |
| {
 | |
| 	const unsigned long *p = addr + BIT_WORD(offset);
 | |
| 	unsigned long result = size;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	if (offset >= size)
 | |
| 		return size;
 | |
| 
 | |
| 	size -= (offset & ~(BITS_PER_LONG - 1));
 | |
| 	offset %= BITS_PER_LONG;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (*p == 0)
 | |
| 			goto pass;
 | |
| 
 | |
| 		tmp = __reverse_ulong((unsigned char *)p);
 | |
| 
 | |
| 		tmp &= ~0UL >> offset;
 | |
| 		if (size < BITS_PER_LONG)
 | |
| 			tmp &= (~0UL << (BITS_PER_LONG - size));
 | |
| 		if (tmp)
 | |
| 			goto found;
 | |
| pass:
 | |
| 		if (size <= BITS_PER_LONG)
 | |
| 			break;
 | |
| 		size -= BITS_PER_LONG;
 | |
| 		offset = 0;
 | |
| 		p++;
 | |
| 	}
 | |
| 	return result;
 | |
| found:
 | |
| 	return result - size + __reverse_ffs(tmp);
 | |
| }
 | |
| 
 | |
| static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 | |
| 			unsigned long size, unsigned long offset)
 | |
| {
 | |
| 	const unsigned long *p = addr + BIT_WORD(offset);
 | |
| 	unsigned long result = size;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	if (offset >= size)
 | |
| 		return size;
 | |
| 
 | |
| 	size -= (offset & ~(BITS_PER_LONG - 1));
 | |
| 	offset %= BITS_PER_LONG;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (*p == ~0UL)
 | |
| 			goto pass;
 | |
| 
 | |
| 		tmp = __reverse_ulong((unsigned char *)p);
 | |
| 
 | |
| 		if (offset)
 | |
| 			tmp |= ~0UL << (BITS_PER_LONG - offset);
 | |
| 		if (size < BITS_PER_LONG)
 | |
| 			tmp |= ~0UL >> size;
 | |
| 		if (tmp != ~0UL)
 | |
| 			goto found;
 | |
| pass:
 | |
| 		if (size <= BITS_PER_LONG)
 | |
| 			break;
 | |
| 		size -= BITS_PER_LONG;
 | |
| 		offset = 0;
 | |
| 		p++;
 | |
| 	}
 | |
| 	return result;
 | |
| found:
 | |
| 	return result - size + __reverse_ffz(tmp);
 | |
| }
 | |
| 
 | |
| bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 | |
| 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 | |
| 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 | |
| 
 | |
| 	if (f2fs_lfs_mode(sbi))
 | |
| 		return false;
 | |
| 	if (sbi->gc_mode == GC_URGENT_HIGH)
 | |
| 		return true;
 | |
| 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 | |
| 		return true;
 | |
| 
 | |
| 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 | |
| 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 | |
| }
 | |
| 
 | |
| void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 | |
| {
 | |
| 	struct inmem_pages *new;
 | |
| 
 | |
| 	set_page_private_atomic(page);
 | |
| 
 | |
| 	new = f2fs_kmem_cache_alloc(inmem_entry_slab,
 | |
| 					GFP_NOFS, true, NULL);
 | |
| 
 | |
| 	/* add atomic page indices to the list */
 | |
| 	new->page = page;
 | |
| 	INIT_LIST_HEAD(&new->list);
 | |
| 
 | |
| 	/* increase reference count with clean state */
 | |
| 	get_page(page);
 | |
| 	mutex_lock(&F2FS_I(inode)->inmem_lock);
 | |
| 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 | |
| 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 | |
| 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
 | |
| 
 | |
| 	trace_f2fs_register_inmem_page(page, INMEM);
 | |
| }
 | |
| 
 | |
| static int __revoke_inmem_pages(struct inode *inode,
 | |
| 				struct list_head *head, bool drop, bool recover,
 | |
| 				bool trylock)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	struct inmem_pages *cur, *tmp;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(cur, tmp, head, list) {
 | |
| 		struct page *page = cur->page;
 | |
| 
 | |
| 		if (drop)
 | |
| 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 | |
| 
 | |
| 		if (trylock) {
 | |
| 			/*
 | |
| 			 * to avoid deadlock in between page lock and
 | |
| 			 * inmem_lock.
 | |
| 			 */
 | |
| 			if (!trylock_page(page))
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			lock_page(page);
 | |
| 		}
 | |
| 
 | |
| 		f2fs_wait_on_page_writeback(page, DATA, true, true);
 | |
| 
 | |
| 		if (recover) {
 | |
| 			struct dnode_of_data dn;
 | |
| 			struct node_info ni;
 | |
| 
 | |
| 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 | |
| retry:
 | |
| 			set_new_dnode(&dn, inode, NULL, NULL, 0);
 | |
| 			err = f2fs_get_dnode_of_data(&dn, page->index,
 | |
| 								LOOKUP_NODE);
 | |
| 			if (err) {
 | |
| 				if (err == -ENOMEM) {
 | |
| 					memalloc_retry_wait(GFP_NOFS);
 | |
| 					goto retry;
 | |
| 				}
 | |
| 				err = -EAGAIN;
 | |
| 				goto next;
 | |
| 			}
 | |
| 
 | |
| 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
 | |
| 			if (err) {
 | |
| 				f2fs_put_dnode(&dn);
 | |
| 				return err;
 | |
| 			}
 | |
| 
 | |
| 			if (cur->old_addr == NEW_ADDR) {
 | |
| 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 | |
| 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 | |
| 			} else
 | |
| 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 | |
| 					cur->old_addr, ni.version, true, true);
 | |
| 			f2fs_put_dnode(&dn);
 | |
| 		}
 | |
| next:
 | |
| 		/* we don't need to invalidate this in the sccessful status */
 | |
| 		if (drop || recover) {
 | |
| 			ClearPageUptodate(page);
 | |
| 			clear_page_private_gcing(page);
 | |
| 		}
 | |
| 		detach_page_private(page);
 | |
| 		set_page_private(page, 0);
 | |
| 		f2fs_put_page(page, 1);
 | |
| 
 | |
| 		list_del(&cur->list);
 | |
| 		kmem_cache_free(inmem_entry_slab, cur);
 | |
| 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 | |
| {
 | |
| 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 | |
| 	struct inode *inode;
 | |
| 	struct f2fs_inode_info *fi;
 | |
| 	unsigned int count = sbi->atomic_files;
 | |
| 	unsigned int looped = 0;
 | |
| next:
 | |
| 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 | |
| 	if (list_empty(head)) {
 | |
| 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 | |
| 		return;
 | |
| 	}
 | |
| 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 | |
| 	inode = igrab(&fi->vfs_inode);
 | |
| 	if (inode)
 | |
| 		list_move_tail(&fi->inmem_ilist, head);
 | |
| 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 | |
| 
 | |
| 	if (inode) {
 | |
| 		if (gc_failure) {
 | |
| 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
 | |
| 				goto skip;
 | |
| 		}
 | |
| 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 | |
| 		f2fs_drop_inmem_pages(inode);
 | |
| skip:
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
 | |
| 	cond_resched();
 | |
| 	if (gc_failure) {
 | |
| 		if (++looped >= count)
 | |
| 			return;
 | |
| 	}
 | |
| 	goto next;
 | |
| }
 | |
| 
 | |
| void f2fs_drop_inmem_pages(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	struct f2fs_inode_info *fi = F2FS_I(inode);
 | |
| 
 | |
| 	do {
 | |
| 		mutex_lock(&fi->inmem_lock);
 | |
| 		if (list_empty(&fi->inmem_pages)) {
 | |
| 			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 | |
| 
 | |
| 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 | |
| 			if (!list_empty(&fi->inmem_ilist))
 | |
| 				list_del_init(&fi->inmem_ilist);
 | |
| 			if (f2fs_is_atomic_file(inode)) {
 | |
| 				clear_inode_flag(inode, FI_ATOMIC_FILE);
 | |
| 				sbi->atomic_files--;
 | |
| 			}
 | |
| 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 | |
| 
 | |
| 			mutex_unlock(&fi->inmem_lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		__revoke_inmem_pages(inode, &fi->inmem_pages,
 | |
| 						true, false, true);
 | |
| 		mutex_unlock(&fi->inmem_lock);
 | |
| 	} while (1);
 | |
| }
 | |
| 
 | |
| void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 | |
| {
 | |
| 	struct f2fs_inode_info *fi = F2FS_I(inode);
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	struct list_head *head = &fi->inmem_pages;
 | |
| 	struct inmem_pages *cur = NULL;
 | |
| 
 | |
| 	f2fs_bug_on(sbi, !page_private_atomic(page));
 | |
| 
 | |
| 	mutex_lock(&fi->inmem_lock);
 | |
| 	list_for_each_entry(cur, head, list) {
 | |
| 		if (cur->page == page)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 | |
| 	list_del(&cur->list);
 | |
| 	mutex_unlock(&fi->inmem_lock);
 | |
| 
 | |
| 	dec_page_count(sbi, F2FS_INMEM_PAGES);
 | |
| 	kmem_cache_free(inmem_entry_slab, cur);
 | |
| 
 | |
| 	ClearPageUptodate(page);
 | |
| 	clear_page_private_atomic(page);
 | |
| 	f2fs_put_page(page, 0);
 | |
| 
 | |
| 	detach_page_private(page);
 | |
| 	set_page_private(page, 0);
 | |
| 
 | |
| 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 | |
| }
 | |
| 
 | |
| static int __f2fs_commit_inmem_pages(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	struct f2fs_inode_info *fi = F2FS_I(inode);
 | |
| 	struct inmem_pages *cur, *tmp;
 | |
| 	struct f2fs_io_info fio = {
 | |
| 		.sbi = sbi,
 | |
| 		.ino = inode->i_ino,
 | |
| 		.type = DATA,
 | |
| 		.op = REQ_OP_WRITE,
 | |
| 		.op_flags = REQ_SYNC | REQ_PRIO,
 | |
| 		.io_type = FS_DATA_IO,
 | |
| 	};
 | |
| 	struct list_head revoke_list;
 | |
| 	bool submit_bio = false;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&revoke_list);
 | |
| 
 | |
| 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 | |
| 		struct page *page = cur->page;
 | |
| 
 | |
| 		lock_page(page);
 | |
| 		if (page->mapping == inode->i_mapping) {
 | |
| 			trace_f2fs_commit_inmem_page(page, INMEM);
 | |
| 
 | |
| 			f2fs_wait_on_page_writeback(page, DATA, true, true);
 | |
| 
 | |
| 			set_page_dirty(page);
 | |
| 			if (clear_page_dirty_for_io(page)) {
 | |
| 				inode_dec_dirty_pages(inode);
 | |
| 				f2fs_remove_dirty_inode(inode);
 | |
| 			}
 | |
| retry:
 | |
| 			fio.page = page;
 | |
| 			fio.old_blkaddr = NULL_ADDR;
 | |
| 			fio.encrypted_page = NULL;
 | |
| 			fio.need_lock = LOCK_DONE;
 | |
| 			err = f2fs_do_write_data_page(&fio);
 | |
| 			if (err) {
 | |
| 				if (err == -ENOMEM) {
 | |
| 					memalloc_retry_wait(GFP_NOFS);
 | |
| 					goto retry;
 | |
| 				}
 | |
| 				unlock_page(page);
 | |
| 				break;
 | |
| 			}
 | |
| 			/* record old blkaddr for revoking */
 | |
| 			cur->old_addr = fio.old_blkaddr;
 | |
| 			submit_bio = true;
 | |
| 		}
 | |
| 		unlock_page(page);
 | |
| 		list_move_tail(&cur->list, &revoke_list);
 | |
| 	}
 | |
| 
 | |
| 	if (submit_bio)
 | |
| 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 | |
| 
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * try to revoke all committed pages, but still we could fail
 | |
| 		 * due to no memory or other reason, if that happened, EAGAIN
 | |
| 		 * will be returned, which means in such case, transaction is
 | |
| 		 * already not integrity, caller should use journal to do the
 | |
| 		 * recovery or rewrite & commit last transaction. For other
 | |
| 		 * error number, revoking was done by filesystem itself.
 | |
| 		 */
 | |
| 		err = __revoke_inmem_pages(inode, &revoke_list,
 | |
| 						false, true, false);
 | |
| 
 | |
| 		/* drop all uncommitted pages */
 | |
| 		__revoke_inmem_pages(inode, &fi->inmem_pages,
 | |
| 						true, false, false);
 | |
| 	} else {
 | |
| 		__revoke_inmem_pages(inode, &revoke_list,
 | |
| 						false, false, false);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int f2fs_commit_inmem_pages(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	struct f2fs_inode_info *fi = F2FS_I(inode);
 | |
| 	int err;
 | |
| 
 | |
| 	f2fs_balance_fs(sbi, true);
 | |
| 
 | |
| 	down_write(&fi->i_gc_rwsem[WRITE]);
 | |
| 
 | |
| 	f2fs_lock_op(sbi);
 | |
| 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
 | |
| 
 | |
| 	mutex_lock(&fi->inmem_lock);
 | |
| 	err = __f2fs_commit_inmem_pages(inode);
 | |
| 	mutex_unlock(&fi->inmem_lock);
 | |
| 
 | |
| 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 | |
| 
 | |
| 	f2fs_unlock_op(sbi);
 | |
| 	up_write(&fi->i_gc_rwsem[WRITE]);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function balances dirty node and dentry pages.
 | |
|  * In addition, it controls garbage collection.
 | |
|  */
 | |
| void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 | |
| {
 | |
| 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 | |
| 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 | |
| 		f2fs_stop_checkpoint(sbi, false);
 | |
| 	}
 | |
| 
 | |
| 	/* balance_fs_bg is able to be pending */
 | |
| 	if (need && excess_cached_nats(sbi))
 | |
| 		f2fs_balance_fs_bg(sbi, false);
 | |
| 
 | |
| 	if (!f2fs_is_checkpoint_ready(sbi))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should do GC or end up with checkpoint, if there are so many dirty
 | |
| 	 * dir/node pages without enough free segments.
 | |
| 	 */
 | |
| 	if (has_not_enough_free_secs(sbi, 0, 0)) {
 | |
| 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 | |
| 					sbi->gc_thread->f2fs_gc_task) {
 | |
| 			DEFINE_WAIT(wait);
 | |
| 
 | |
| 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 | |
| 						TASK_UNINTERRUPTIBLE);
 | |
| 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
 | |
| 			io_schedule();
 | |
| 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 | |
| 		} else {
 | |
| 			down_write(&sbi->gc_lock);
 | |
| 			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int factor = rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
 | |
| 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
 | |
| 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
 | |
| 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
 | |
| 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
 | |
| 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
 | |
| 	unsigned int threshold = sbi->blocks_per_seg * factor *
 | |
| 					DEFAULT_DIRTY_THRESHOLD;
 | |
| 	unsigned int global_threshold = threshold * 3 / 2;
 | |
| 
 | |
| 	if (dents >= threshold || qdata >= threshold ||
 | |
| 		nodes >= threshold || meta >= threshold ||
 | |
| 		imeta >= threshold)
 | |
| 		return true;
 | |
| 	return dents + qdata + nodes + meta + imeta >  global_threshold;
 | |
| }
 | |
| 
 | |
| void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 | |
| {
 | |
| 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 | |
| 		return;
 | |
| 
 | |
| 	/* try to shrink extent cache when there is no enough memory */
 | |
| 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 | |
| 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 | |
| 
 | |
| 	/* check the # of cached NAT entries */
 | |
| 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 | |
| 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 | |
| 
 | |
| 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 | |
| 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 | |
| 	else
 | |
| 		f2fs_build_free_nids(sbi, false, false);
 | |
| 
 | |
| 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
 | |
| 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
 | |
| 		goto do_sync;
 | |
| 
 | |
| 	/* there is background inflight IO or foreground operation recently */
 | |
| 	if (is_inflight_io(sbi, REQ_TIME) ||
 | |
| 		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
 | |
| 		return;
 | |
| 
 | |
| 	/* exceed periodical checkpoint timeout threshold */
 | |
| 	if (f2fs_time_over(sbi, CP_TIME))
 | |
| 		goto do_sync;
 | |
| 
 | |
| 	/* checkpoint is the only way to shrink partial cached entries */
 | |
| 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
 | |
| 		f2fs_available_free_memory(sbi, INO_ENTRIES))
 | |
| 		return;
 | |
| 
 | |
| do_sync:
 | |
| 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 | |
| 		struct blk_plug plug;
 | |
| 
 | |
| 		mutex_lock(&sbi->flush_lock);
 | |
| 
 | |
| 		blk_start_plug(&plug);
 | |
| 		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 | |
| 		blk_finish_plug(&plug);
 | |
| 
 | |
| 		mutex_unlock(&sbi->flush_lock);
 | |
| 	}
 | |
| 	f2fs_sync_fs(sbi->sb, true);
 | |
| 	stat_inc_bg_cp_count(sbi->stat_info);
 | |
| }
 | |
| 
 | |
| static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 | |
| 				struct block_device *bdev)
 | |
| {
 | |
| 	int ret = blkdev_issue_flush(bdev);
 | |
| 
 | |
| 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 | |
| 				test_opt(sbi, FLUSH_MERGE), ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!f2fs_is_multi_device(sbi))
 | |
| 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 | |
| 
 | |
| 	for (i = 0; i < sbi->s_ndevs; i++) {
 | |
| 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 | |
| 			continue;
 | |
| 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int issue_flush_thread(void *data)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = data;
 | |
| 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 | |
| 	wait_queue_head_t *q = &fcc->flush_wait_queue;
 | |
| repeat:
 | |
| 	if (kthread_should_stop())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!llist_empty(&fcc->issue_list)) {
 | |
| 		struct flush_cmd *cmd, *next;
 | |
| 		int ret;
 | |
| 
 | |
| 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 | |
| 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 | |
| 
 | |
| 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 | |
| 
 | |
| 		ret = submit_flush_wait(sbi, cmd->ino);
 | |
| 		atomic_inc(&fcc->issued_flush);
 | |
| 
 | |
| 		llist_for_each_entry_safe(cmd, next,
 | |
| 					  fcc->dispatch_list, llnode) {
 | |
| 			cmd->ret = ret;
 | |
| 			complete(&cmd->wait);
 | |
| 		}
 | |
| 		fcc->dispatch_list = NULL;
 | |
| 	}
 | |
| 
 | |
| 	wait_event_interruptible(*q,
 | |
| 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 | |
| 	goto repeat;
 | |
| }
 | |
| 
 | |
| int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 | |
| {
 | |
| 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 | |
| 	struct flush_cmd cmd;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (test_opt(sbi, NOBARRIER))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!test_opt(sbi, FLUSH_MERGE)) {
 | |
| 		atomic_inc(&fcc->queued_flush);
 | |
| 		ret = submit_flush_wait(sbi, ino);
 | |
| 		atomic_dec(&fcc->queued_flush);
 | |
| 		atomic_inc(&fcc->issued_flush);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 | |
| 	    f2fs_is_multi_device(sbi)) {
 | |
| 		ret = submit_flush_wait(sbi, ino);
 | |
| 		atomic_dec(&fcc->queued_flush);
 | |
| 
 | |
| 		atomic_inc(&fcc->issued_flush);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cmd.ino = ino;
 | |
| 	init_completion(&cmd.wait);
 | |
| 
 | |
| 	llist_add(&cmd.llnode, &fcc->issue_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * update issue_list before we wake up issue_flush thread, this
 | |
| 	 * smp_mb() pairs with another barrier in ___wait_event(), see
 | |
| 	 * more details in comments of waitqueue_active().
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	if (waitqueue_active(&fcc->flush_wait_queue))
 | |
| 		wake_up(&fcc->flush_wait_queue);
 | |
| 
 | |
| 	if (fcc->f2fs_issue_flush) {
 | |
| 		wait_for_completion(&cmd.wait);
 | |
| 		atomic_dec(&fcc->queued_flush);
 | |
| 	} else {
 | |
| 		struct llist_node *list;
 | |
| 
 | |
| 		list = llist_del_all(&fcc->issue_list);
 | |
| 		if (!list) {
 | |
| 			wait_for_completion(&cmd.wait);
 | |
| 			atomic_dec(&fcc->queued_flush);
 | |
| 		} else {
 | |
| 			struct flush_cmd *tmp, *next;
 | |
| 
 | |
| 			ret = submit_flush_wait(sbi, ino);
 | |
| 
 | |
| 			llist_for_each_entry_safe(tmp, next, list, llnode) {
 | |
| 				if (tmp == &cmd) {
 | |
| 					cmd.ret = ret;
 | |
| 					atomic_dec(&fcc->queued_flush);
 | |
| 					continue;
 | |
| 				}
 | |
| 				tmp->ret = ret;
 | |
| 				complete(&tmp->wait);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return cmd.ret;
 | |
| }
 | |
| 
 | |
| int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	dev_t dev = sbi->sb->s_bdev->bd_dev;
 | |
| 	struct flush_cmd_control *fcc;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (SM_I(sbi)->fcc_info) {
 | |
| 		fcc = SM_I(sbi)->fcc_info;
 | |
| 		if (fcc->f2fs_issue_flush)
 | |
| 			return err;
 | |
| 		goto init_thread;
 | |
| 	}
 | |
| 
 | |
| 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 | |
| 	if (!fcc)
 | |
| 		return -ENOMEM;
 | |
| 	atomic_set(&fcc->issued_flush, 0);
 | |
| 	atomic_set(&fcc->queued_flush, 0);
 | |
| 	init_waitqueue_head(&fcc->flush_wait_queue);
 | |
| 	init_llist_head(&fcc->issue_list);
 | |
| 	SM_I(sbi)->fcc_info = fcc;
 | |
| 	if (!test_opt(sbi, FLUSH_MERGE))
 | |
| 		return err;
 | |
| 
 | |
| init_thread:
 | |
| 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 | |
| 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 | |
| 	if (IS_ERR(fcc->f2fs_issue_flush)) {
 | |
| 		err = PTR_ERR(fcc->f2fs_issue_flush);
 | |
| 		kfree(fcc);
 | |
| 		SM_I(sbi)->fcc_info = NULL;
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 | |
| {
 | |
| 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 | |
| 
 | |
| 	if (fcc && fcc->f2fs_issue_flush) {
 | |
| 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 | |
| 
 | |
| 		fcc->f2fs_issue_flush = NULL;
 | |
| 		kthread_stop(flush_thread);
 | |
| 	}
 | |
| 	if (free) {
 | |
| 		kfree(fcc);
 | |
| 		SM_I(sbi)->fcc_info = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int ret = 0, i;
 | |
| 
 | |
| 	if (!f2fs_is_multi_device(sbi))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (test_opt(sbi, NOBARRIER))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 1; i < sbi->s_ndevs; i++) {
 | |
| 		int count = DEFAULT_RETRY_IO_COUNT;
 | |
| 
 | |
| 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 | |
| 			continue;
 | |
| 
 | |
| 		do {
 | |
| 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 | |
| 			if (ret)
 | |
| 				congestion_wait(BLK_RW_ASYNC,
 | |
| 						DEFAULT_IO_TIMEOUT);
 | |
| 		} while (ret && --count);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			f2fs_stop_checkpoint(sbi, false);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&sbi->dev_lock);
 | |
| 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 | |
| 		spin_unlock(&sbi->dev_lock);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 | |
| 		enum dirty_type dirty_type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	/* need not be added */
 | |
| 	if (IS_CURSEG(sbi, segno))
 | |
| 		return;
 | |
| 
 | |
| 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 | |
| 		dirty_i->nr_dirty[dirty_type]++;
 | |
| 
 | |
| 	if (dirty_type == DIRTY) {
 | |
| 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 | |
| 		enum dirty_type t = sentry->type;
 | |
| 
 | |
| 		if (unlikely(t >= DIRTY)) {
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 | |
| 			dirty_i->nr_dirty[t]++;
 | |
| 
 | |
| 		if (__is_large_section(sbi)) {
 | |
| 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 | |
| 			block_t valid_blocks =
 | |
| 				get_valid_blocks(sbi, segno, true);
 | |
| 
 | |
| 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 | |
| 					valid_blocks == BLKS_PER_SEC(sbi)));
 | |
| 
 | |
| 			if (!IS_CURSEC(sbi, secno))
 | |
| 				set_bit(secno, dirty_i->dirty_secmap);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 | |
| 		enum dirty_type dirty_type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	block_t valid_blocks;
 | |
| 
 | |
| 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 | |
| 		dirty_i->nr_dirty[dirty_type]--;
 | |
| 
 | |
| 	if (dirty_type == DIRTY) {
 | |
| 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 | |
| 		enum dirty_type t = sentry->type;
 | |
| 
 | |
| 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 | |
| 			dirty_i->nr_dirty[t]--;
 | |
| 
 | |
| 		valid_blocks = get_valid_blocks(sbi, segno, true);
 | |
| 		if (valid_blocks == 0) {
 | |
| 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 | |
| 						dirty_i->victim_secmap);
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 | |
| #endif
 | |
| 		}
 | |
| 		if (__is_large_section(sbi)) {
 | |
| 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 | |
| 
 | |
| 			if (!valid_blocks ||
 | |
| 					valid_blocks == BLKS_PER_SEC(sbi)) {
 | |
| 				clear_bit(secno, dirty_i->dirty_secmap);
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			if (!IS_CURSEC(sbi, secno))
 | |
| 				set_bit(secno, dirty_i->dirty_secmap);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should not occur error such as -ENOMEM.
 | |
|  * Adding dirty entry into seglist is not critical operation.
 | |
|  * If a given segment is one of current working segments, it won't be added.
 | |
|  */
 | |
| static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned short valid_blocks, ckpt_valid_blocks;
 | |
| 	unsigned int usable_blocks;
 | |
| 
 | |
| 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 | |
| 		return;
 | |
| 
 | |
| 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	valid_blocks = get_valid_blocks(sbi, segno, false);
 | |
| 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 | |
| 
 | |
| 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 | |
| 		ckpt_valid_blocks == usable_blocks)) {
 | |
| 		__locate_dirty_segment(sbi, segno, PRE);
 | |
| 		__remove_dirty_segment(sbi, segno, DIRTY);
 | |
| 	} else if (valid_blocks < usable_blocks) {
 | |
| 		__locate_dirty_segment(sbi, segno, DIRTY);
 | |
| 	} else {
 | |
| 		/* Recovery routine with SSR needs this */
 | |
| 		__remove_dirty_segment(sbi, segno, DIRTY);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 | |
| void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 | |
| 		if (get_valid_blocks(sbi, segno, false))
 | |
| 			continue;
 | |
| 		if (IS_CURSEG(sbi, segno))
 | |
| 			continue;
 | |
| 		__locate_dirty_segment(sbi, segno, PRE);
 | |
| 		__remove_dirty_segment(sbi, segno, DIRTY);
 | |
| 	}
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int ovp_hole_segs =
 | |
| 		(overprovision_segments(sbi) - reserved_segments(sbi));
 | |
| 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	block_t holes[2] = {0, 0};	/* DATA and NODE */
 | |
| 	block_t unusable;
 | |
| 	struct seg_entry *se;
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 | |
| 		se = get_seg_entry(sbi, segno);
 | |
| 		if (IS_NODESEG(se->type))
 | |
| 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 | |
| 							se->valid_blocks;
 | |
| 		else
 | |
| 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 | |
| 							se->valid_blocks;
 | |
| 	}
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 | |
| 	if (unusable > ovp_holes)
 | |
| 		return unusable - ovp_holes;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 | |
| {
 | |
| 	int ovp_hole_segs =
 | |
| 		(overprovision_segments(sbi) - reserved_segments(sbi));
 | |
| 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 | |
| 		return -EAGAIN;
 | |
| 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 | |
| 		dirty_segments(sbi) > ovp_hole_segs)
 | |
| 		return -EAGAIN;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This is only used by SBI_CP_DISABLED */
 | |
| static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned int segno = 0;
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 | |
| 		if (get_valid_blocks(sbi, segno, false))
 | |
| 			continue;
 | |
| 		if (get_ckpt_valid_blocks(sbi, segno, false))
 | |
| 			continue;
 | |
| 		mutex_unlock(&dirty_i->seglist_lock);
 | |
| 		return segno;
 | |
| 	}
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| 	return NULL_SEGNO;
 | |
| }
 | |
| 
 | |
| static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 		struct block_device *bdev, block_t lstart,
 | |
| 		block_t start, block_t len)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct list_head *pend_list;
 | |
| 	struct discard_cmd *dc;
 | |
| 
 | |
| 	f2fs_bug_on(sbi, !len);
 | |
| 
 | |
| 	pend_list = &dcc->pend_list[plist_idx(len)];
 | |
| 
 | |
| 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
 | |
| 	INIT_LIST_HEAD(&dc->list);
 | |
| 	dc->bdev = bdev;
 | |
| 	dc->lstart = lstart;
 | |
| 	dc->start = start;
 | |
| 	dc->len = len;
 | |
| 	dc->ref = 0;
 | |
| 	dc->state = D_PREP;
 | |
| 	dc->queued = 0;
 | |
| 	dc->error = 0;
 | |
| 	init_completion(&dc->wait);
 | |
| 	list_add_tail(&dc->list, pend_list);
 | |
| 	spin_lock_init(&dc->lock);
 | |
| 	dc->bio_ref = 0;
 | |
| 	atomic_inc(&dcc->discard_cmd_cnt);
 | |
| 	dcc->undiscard_blks += len;
 | |
| 
 | |
| 	return dc;
 | |
| }
 | |
| 
 | |
| static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 				struct block_device *bdev, block_t lstart,
 | |
| 				block_t start, block_t len,
 | |
| 				struct rb_node *parent, struct rb_node **p,
 | |
| 				bool leftmost)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct discard_cmd *dc;
 | |
| 
 | |
| 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
 | |
| 
 | |
| 	rb_link_node(&dc->rb_node, parent, p);
 | |
| 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
 | |
| 
 | |
| 	return dc;
 | |
| }
 | |
| 
 | |
| static void __detach_discard_cmd(struct discard_cmd_control *dcc,
 | |
| 							struct discard_cmd *dc)
 | |
| {
 | |
| 	if (dc->state == D_DONE)
 | |
| 		atomic_sub(dc->queued, &dcc->queued_discard);
 | |
| 
 | |
| 	list_del(&dc->list);
 | |
| 	rb_erase_cached(&dc->rb_node, &dcc->root);
 | |
| 	dcc->undiscard_blks -= dc->len;
 | |
| 
 | |
| 	kmem_cache_free(discard_cmd_slab, dc);
 | |
| 
 | |
| 	atomic_dec(&dcc->discard_cmd_cnt);
 | |
| }
 | |
| 
 | |
| static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 							struct discard_cmd *dc)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
 | |
| 
 | |
| 	spin_lock_irqsave(&dc->lock, flags);
 | |
| 	if (dc->bio_ref) {
 | |
| 		spin_unlock_irqrestore(&dc->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&dc->lock, flags);
 | |
| 
 | |
| 	f2fs_bug_on(sbi, dc->ref);
 | |
| 
 | |
| 	if (dc->error == -EOPNOTSUPP)
 | |
| 		dc->error = 0;
 | |
| 
 | |
| 	if (dc->error)
 | |
| 		printk_ratelimited(
 | |
| 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
 | |
| 			KERN_INFO, sbi->sb->s_id,
 | |
| 			dc->lstart, dc->start, dc->len, dc->error);
 | |
| 	__detach_discard_cmd(dcc, dc);
 | |
| }
 | |
| 
 | |
| static void f2fs_submit_discard_endio(struct bio *bio)
 | |
| {
 | |
| 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&dc->lock, flags);
 | |
| 	if (!dc->error)
 | |
| 		dc->error = blk_status_to_errno(bio->bi_status);
 | |
| 	dc->bio_ref--;
 | |
| 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
 | |
| 		dc->state = D_DONE;
 | |
| 		complete_all(&dc->wait);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&dc->lock, flags);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
 | |
| 				block_t start, block_t end)
 | |
| {
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 	struct seg_entry *sentry;
 | |
| 	unsigned int segno;
 | |
| 	block_t blk = start;
 | |
| 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
 | |
| 	unsigned long *map;
 | |
| 
 | |
| 	while (blk < end) {
 | |
| 		segno = GET_SEGNO(sbi, blk);
 | |
| 		sentry = get_seg_entry(sbi, segno);
 | |
| 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
 | |
| 
 | |
| 		if (end < START_BLOCK(sbi, segno + 1))
 | |
| 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
 | |
| 		else
 | |
| 			size = max_blocks;
 | |
| 		map = (unsigned long *)(sentry->cur_valid_map);
 | |
| 		offset = __find_rev_next_bit(map, size, offset);
 | |
| 		f2fs_bug_on(sbi, offset != size);
 | |
| 		blk = START_BLOCK(sbi, segno + 1);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init_discard_policy(struct f2fs_sb_info *sbi,
 | |
| 				struct discard_policy *dpolicy,
 | |
| 				int discard_type, unsigned int granularity)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 
 | |
| 	/* common policy */
 | |
| 	dpolicy->type = discard_type;
 | |
| 	dpolicy->sync = true;
 | |
| 	dpolicy->ordered = false;
 | |
| 	dpolicy->granularity = granularity;
 | |
| 
 | |
| 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
 | |
| 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
 | |
| 	dpolicy->timeout = false;
 | |
| 
 | |
| 	if (discard_type == DPOLICY_BG) {
 | |
| 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
 | |
| 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
 | |
| 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
 | |
| 		dpolicy->io_aware = true;
 | |
| 		dpolicy->sync = false;
 | |
| 		dpolicy->ordered = true;
 | |
| 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
 | |
| 			dpolicy->granularity = 1;
 | |
| 			if (atomic_read(&dcc->discard_cmd_cnt))
 | |
| 				dpolicy->max_interval =
 | |
| 					DEF_MIN_DISCARD_ISSUE_TIME;
 | |
| 		}
 | |
| 	} else if (discard_type == DPOLICY_FORCE) {
 | |
| 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
 | |
| 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
 | |
| 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
 | |
| 		dpolicy->io_aware = false;
 | |
| 	} else if (discard_type == DPOLICY_FSTRIM) {
 | |
| 		dpolicy->io_aware = false;
 | |
| 	} else if (discard_type == DPOLICY_UMOUNT) {
 | |
| 		dpolicy->io_aware = false;
 | |
| 		/* we need to issue all to keep CP_TRIMMED_FLAG */
 | |
| 		dpolicy->granularity = 1;
 | |
| 		dpolicy->timeout = true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
 | |
| 				struct block_device *bdev, block_t lstart,
 | |
| 				block_t start, block_t len);
 | |
| /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
 | |
| static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 						struct discard_policy *dpolicy,
 | |
| 						struct discard_cmd *dc,
 | |
| 						unsigned int *issued)
 | |
| {
 | |
| 	struct block_device *bdev = dc->bdev;
 | |
| 	struct request_queue *q = bdev_get_queue(bdev);
 | |
| 	unsigned int max_discard_blocks =
 | |
| 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
 | |
| 					&(dcc->fstrim_list) : &(dcc->wait_list);
 | |
| 	int flag = dpolicy->sync ? REQ_SYNC : 0;
 | |
| 	block_t lstart, start, len, total_len;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (dc->state != D_PREP)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
 | |
| 		return 0;
 | |
| 
 | |
| 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
 | |
| 
 | |
| 	lstart = dc->lstart;
 | |
| 	start = dc->start;
 | |
| 	len = dc->len;
 | |
| 	total_len = len;
 | |
| 
 | |
| 	dc->len = 0;
 | |
| 
 | |
| 	while (total_len && *issued < dpolicy->max_requests && !err) {
 | |
| 		struct bio *bio = NULL;
 | |
| 		unsigned long flags;
 | |
| 		bool last = true;
 | |
| 
 | |
| 		if (len > max_discard_blocks) {
 | |
| 			len = max_discard_blocks;
 | |
| 			last = false;
 | |
| 		}
 | |
| 
 | |
| 		(*issued)++;
 | |
| 		if (*issued == dpolicy->max_requests)
 | |
| 			last = true;
 | |
| 
 | |
| 		dc->len += len;
 | |
| 
 | |
| 		if (time_to_inject(sbi, FAULT_DISCARD)) {
 | |
| 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
 | |
| 			err = -EIO;
 | |
| 			goto submit;
 | |
| 		}
 | |
| 		err = __blkdev_issue_discard(bdev,
 | |
| 					SECTOR_FROM_BLOCK(start),
 | |
| 					SECTOR_FROM_BLOCK(len),
 | |
| 					GFP_NOFS, 0, &bio);
 | |
| submit:
 | |
| 		if (err) {
 | |
| 			spin_lock_irqsave(&dc->lock, flags);
 | |
| 			if (dc->state == D_PARTIAL)
 | |
| 				dc->state = D_SUBMIT;
 | |
| 			spin_unlock_irqrestore(&dc->lock, flags);
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		f2fs_bug_on(sbi, !bio);
 | |
| 
 | |
| 		/*
 | |
| 		 * should keep before submission to avoid D_DONE
 | |
| 		 * right away
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&dc->lock, flags);
 | |
| 		if (last)
 | |
| 			dc->state = D_SUBMIT;
 | |
| 		else
 | |
| 			dc->state = D_PARTIAL;
 | |
| 		dc->bio_ref++;
 | |
| 		spin_unlock_irqrestore(&dc->lock, flags);
 | |
| 
 | |
| 		atomic_inc(&dcc->queued_discard);
 | |
| 		dc->queued++;
 | |
| 		list_move_tail(&dc->list, wait_list);
 | |
| 
 | |
| 		/* sanity check on discard range */
 | |
| 		__check_sit_bitmap(sbi, lstart, lstart + len);
 | |
| 
 | |
| 		bio->bi_private = dc;
 | |
| 		bio->bi_end_io = f2fs_submit_discard_endio;
 | |
| 		bio->bi_opf |= flag;
 | |
| 		submit_bio(bio);
 | |
| 
 | |
| 		atomic_inc(&dcc->issued_discard);
 | |
| 
 | |
| 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
 | |
| 
 | |
| 		lstart += len;
 | |
| 		start += len;
 | |
| 		total_len -= len;
 | |
| 		len = total_len;
 | |
| 	}
 | |
| 
 | |
| 	if (!err && len) {
 | |
| 		dcc->undiscard_blks -= len;
 | |
| 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __insert_discard_tree(struct f2fs_sb_info *sbi,
 | |
| 				struct block_device *bdev, block_t lstart,
 | |
| 				block_t start, block_t len,
 | |
| 				struct rb_node **insert_p,
 | |
| 				struct rb_node *insert_parent)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	bool leftmost = true;
 | |
| 
 | |
| 	if (insert_p && insert_parent) {
 | |
| 		parent = insert_parent;
 | |
| 		p = insert_p;
 | |
| 		goto do_insert;
 | |
| 	}
 | |
| 
 | |
| 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
 | |
| 							lstart, &leftmost);
 | |
| do_insert:
 | |
| 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
 | |
| 								p, leftmost);
 | |
| }
 | |
| 
 | |
| static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
 | |
| 						struct discard_cmd *dc)
 | |
| {
 | |
| 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
 | |
| }
 | |
| 
 | |
| static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 				struct discard_cmd *dc, block_t blkaddr)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct discard_info di = dc->di;
 | |
| 	bool modified = false;
 | |
| 
 | |
| 	if (dc->state == D_DONE || dc->len == 1) {
 | |
| 		__remove_discard_cmd(sbi, dc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dcc->undiscard_blks -= di.len;
 | |
| 
 | |
| 	if (blkaddr > di.lstart) {
 | |
| 		dc->len = blkaddr - dc->lstart;
 | |
| 		dcc->undiscard_blks += dc->len;
 | |
| 		__relocate_discard_cmd(dcc, dc);
 | |
| 		modified = true;
 | |
| 	}
 | |
| 
 | |
| 	if (blkaddr < di.lstart + di.len - 1) {
 | |
| 		if (modified) {
 | |
| 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
 | |
| 					di.start + blkaddr + 1 - di.lstart,
 | |
| 					di.lstart + di.len - 1 - blkaddr,
 | |
| 					NULL, NULL);
 | |
| 		} else {
 | |
| 			dc->lstart++;
 | |
| 			dc->len--;
 | |
| 			dc->start++;
 | |
| 			dcc->undiscard_blks += dc->len;
 | |
| 			__relocate_discard_cmd(dcc, dc);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
 | |
| 				struct block_device *bdev, block_t lstart,
 | |
| 				block_t start, block_t len)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
 | |
| 	struct discard_cmd *dc;
 | |
| 	struct discard_info di = {0};
 | |
| 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
 | |
| 	struct request_queue *q = bdev_get_queue(bdev);
 | |
| 	unsigned int max_discard_blocks =
 | |
| 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
 | |
| 	block_t end = lstart + len;
 | |
| 
 | |
| 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
 | |
| 					NULL, lstart,
 | |
| 					(struct rb_entry **)&prev_dc,
 | |
| 					(struct rb_entry **)&next_dc,
 | |
| 					&insert_p, &insert_parent, true, NULL);
 | |
| 	if (dc)
 | |
| 		prev_dc = dc;
 | |
| 
 | |
| 	if (!prev_dc) {
 | |
| 		di.lstart = lstart;
 | |
| 		di.len = next_dc ? next_dc->lstart - lstart : len;
 | |
| 		di.len = min(di.len, len);
 | |
| 		di.start = start;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct rb_node *node;
 | |
| 		bool merged = false;
 | |
| 		struct discard_cmd *tdc = NULL;
 | |
| 
 | |
| 		if (prev_dc) {
 | |
| 			di.lstart = prev_dc->lstart + prev_dc->len;
 | |
| 			if (di.lstart < lstart)
 | |
| 				di.lstart = lstart;
 | |
| 			if (di.lstart >= end)
 | |
| 				break;
 | |
| 
 | |
| 			if (!next_dc || next_dc->lstart > end)
 | |
| 				di.len = end - di.lstart;
 | |
| 			else
 | |
| 				di.len = next_dc->lstart - di.lstart;
 | |
| 			di.start = start + di.lstart - lstart;
 | |
| 		}
 | |
| 
 | |
| 		if (!di.len)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (prev_dc && prev_dc->state == D_PREP &&
 | |
| 			prev_dc->bdev == bdev &&
 | |
| 			__is_discard_back_mergeable(&di, &prev_dc->di,
 | |
| 							max_discard_blocks)) {
 | |
| 			prev_dc->di.len += di.len;
 | |
| 			dcc->undiscard_blks += di.len;
 | |
| 			__relocate_discard_cmd(dcc, prev_dc);
 | |
| 			di = prev_dc->di;
 | |
| 			tdc = prev_dc;
 | |
| 			merged = true;
 | |
| 		}
 | |
| 
 | |
| 		if (next_dc && next_dc->state == D_PREP &&
 | |
| 			next_dc->bdev == bdev &&
 | |
| 			__is_discard_front_mergeable(&di, &next_dc->di,
 | |
| 							max_discard_blocks)) {
 | |
| 			next_dc->di.lstart = di.lstart;
 | |
| 			next_dc->di.len += di.len;
 | |
| 			next_dc->di.start = di.start;
 | |
| 			dcc->undiscard_blks += di.len;
 | |
| 			__relocate_discard_cmd(dcc, next_dc);
 | |
| 			if (tdc)
 | |
| 				__remove_discard_cmd(sbi, tdc);
 | |
| 			merged = true;
 | |
| 		}
 | |
| 
 | |
| 		if (!merged) {
 | |
| 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
 | |
| 							di.len, NULL, NULL);
 | |
| 		}
 | |
|  next:
 | |
| 		prev_dc = next_dc;
 | |
| 		if (!prev_dc)
 | |
| 			break;
 | |
| 
 | |
| 		node = rb_next(&prev_dc->rb_node);
 | |
| 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 		struct block_device *bdev, block_t blkstart, block_t blklen)
 | |
| {
 | |
| 	block_t lblkstart = blkstart;
 | |
| 
 | |
| 	if (!f2fs_bdev_support_discard(bdev))
 | |
| 		return 0;
 | |
| 
 | |
| 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
 | |
| 
 | |
| 	if (f2fs_is_multi_device(sbi)) {
 | |
| 		int devi = f2fs_target_device_index(sbi, blkstart);
 | |
| 
 | |
| 		blkstart -= FDEV(devi).start_blk;
 | |
| 	}
 | |
| 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
 | |
| 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
 | |
| 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
 | |
| 					struct discard_policy *dpolicy)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
 | |
| 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
 | |
| 	struct discard_cmd *dc;
 | |
| 	struct blk_plug plug;
 | |
| 	unsigned int pos = dcc->next_pos;
 | |
| 	unsigned int issued = 0;
 | |
| 	bool io_interrupted = false;
 | |
| 
 | |
| 	mutex_lock(&dcc->cmd_lock);
 | |
| 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
 | |
| 					NULL, pos,
 | |
| 					(struct rb_entry **)&prev_dc,
 | |
| 					(struct rb_entry **)&next_dc,
 | |
| 					&insert_p, &insert_parent, true, NULL);
 | |
| 	if (!dc)
 | |
| 		dc = next_dc;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	while (dc) {
 | |
| 		struct rb_node *node;
 | |
| 		int err = 0;
 | |
| 
 | |
| 		if (dc->state != D_PREP)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
 | |
| 			io_interrupted = true;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dcc->next_pos = dc->lstart + dc->len;
 | |
| 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
 | |
| 
 | |
| 		if (issued >= dpolicy->max_requests)
 | |
| 			break;
 | |
| next:
 | |
| 		node = rb_next(&dc->rb_node);
 | |
| 		if (err)
 | |
| 			__remove_discard_cmd(sbi, dc);
 | |
| 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
 | |
| 	}
 | |
| 
 | |
| 	blk_finish_plug(&plug);
 | |
| 
 | |
| 	if (!dc)
 | |
| 		dcc->next_pos = 0;
 | |
| 
 | |
| 	mutex_unlock(&dcc->cmd_lock);
 | |
| 
 | |
| 	if (!issued && io_interrupted)
 | |
| 		issued = -1;
 | |
| 
 | |
| 	return issued;
 | |
| }
 | |
| static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 					struct discard_policy *dpolicy);
 | |
| 
 | |
| static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 					struct discard_policy *dpolicy)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct list_head *pend_list;
 | |
| 	struct discard_cmd *dc, *tmp;
 | |
| 	struct blk_plug plug;
 | |
| 	int i, issued;
 | |
| 	bool io_interrupted = false;
 | |
| 
 | |
| 	if (dpolicy->timeout)
 | |
| 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
 | |
| 
 | |
| retry:
 | |
| 	issued = 0;
 | |
| 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
 | |
| 		if (dpolicy->timeout &&
 | |
| 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
 | |
| 			break;
 | |
| 
 | |
| 		if (i + 1 < dpolicy->granularity)
 | |
| 			break;
 | |
| 
 | |
| 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
 | |
| 			return __issue_discard_cmd_orderly(sbi, dpolicy);
 | |
| 
 | |
| 		pend_list = &dcc->pend_list[i];
 | |
| 
 | |
| 		mutex_lock(&dcc->cmd_lock);
 | |
| 		if (list_empty(pend_list))
 | |
| 			goto next;
 | |
| 		if (unlikely(dcc->rbtree_check))
 | |
| 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
 | |
| 							&dcc->root, false));
 | |
| 		blk_start_plug(&plug);
 | |
| 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
 | |
| 			f2fs_bug_on(sbi, dc->state != D_PREP);
 | |
| 
 | |
| 			if (dpolicy->timeout &&
 | |
| 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
 | |
| 				break;
 | |
| 
 | |
| 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
 | |
| 						!is_idle(sbi, DISCARD_TIME)) {
 | |
| 				io_interrupted = true;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
 | |
| 
 | |
| 			if (issued >= dpolicy->max_requests)
 | |
| 				break;
 | |
| 		}
 | |
| 		blk_finish_plug(&plug);
 | |
| next:
 | |
| 		mutex_unlock(&dcc->cmd_lock);
 | |
| 
 | |
| 		if (issued >= dpolicy->max_requests || io_interrupted)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
 | |
| 		__wait_all_discard_cmd(sbi, dpolicy);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (!issued && io_interrupted)
 | |
| 		issued = -1;
 | |
| 
 | |
| 	return issued;
 | |
| }
 | |
| 
 | |
| static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct list_head *pend_list;
 | |
| 	struct discard_cmd *dc, *tmp;
 | |
| 	int i;
 | |
| 	bool dropped = false;
 | |
| 
 | |
| 	mutex_lock(&dcc->cmd_lock);
 | |
| 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
 | |
| 		pend_list = &dcc->pend_list[i];
 | |
| 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
 | |
| 			f2fs_bug_on(sbi, dc->state != D_PREP);
 | |
| 			__remove_discard_cmd(sbi, dc);
 | |
| 			dropped = true;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&dcc->cmd_lock);
 | |
| 
 | |
| 	return dropped;
 | |
| }
 | |
| 
 | |
| void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	__drop_discard_cmd(sbi);
 | |
| }
 | |
| 
 | |
| static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
 | |
| 							struct discard_cmd *dc)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	unsigned int len = 0;
 | |
| 
 | |
| 	wait_for_completion_io(&dc->wait);
 | |
| 	mutex_lock(&dcc->cmd_lock);
 | |
| 	f2fs_bug_on(sbi, dc->state != D_DONE);
 | |
| 	dc->ref--;
 | |
| 	if (!dc->ref) {
 | |
| 		if (!dc->error)
 | |
| 			len = dc->len;
 | |
| 		__remove_discard_cmd(sbi, dc);
 | |
| 	}
 | |
| 	mutex_unlock(&dcc->cmd_lock);
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
 | |
| 						struct discard_policy *dpolicy,
 | |
| 						block_t start, block_t end)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
 | |
| 					&(dcc->fstrim_list) : &(dcc->wait_list);
 | |
| 	struct discard_cmd *dc, *tmp;
 | |
| 	bool need_wait;
 | |
| 	unsigned int trimmed = 0;
 | |
| 
 | |
| next:
 | |
| 	need_wait = false;
 | |
| 
 | |
| 	mutex_lock(&dcc->cmd_lock);
 | |
| 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
 | |
| 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
 | |
| 			continue;
 | |
| 		if (dc->len < dpolicy->granularity)
 | |
| 			continue;
 | |
| 		if (dc->state == D_DONE && !dc->ref) {
 | |
| 			wait_for_completion_io(&dc->wait);
 | |
| 			if (!dc->error)
 | |
| 				trimmed += dc->len;
 | |
| 			__remove_discard_cmd(sbi, dc);
 | |
| 		} else {
 | |
| 			dc->ref++;
 | |
| 			need_wait = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&dcc->cmd_lock);
 | |
| 
 | |
| 	if (need_wait) {
 | |
| 		trimmed += __wait_one_discard_bio(sbi, dc);
 | |
| 		goto next;
 | |
| 	}
 | |
| 
 | |
| 	return trimmed;
 | |
| }
 | |
| 
 | |
| static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 						struct discard_policy *dpolicy)
 | |
| {
 | |
| 	struct discard_policy dp;
 | |
| 	unsigned int discard_blks;
 | |
| 
 | |
| 	if (dpolicy)
 | |
| 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
 | |
| 
 | |
| 	/* wait all */
 | |
| 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
 | |
| 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
 | |
| 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
 | |
| 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
 | |
| 
 | |
| 	return discard_blks;
 | |
| }
 | |
| 
 | |
| /* This should be covered by global mutex, &sit_i->sentry_lock */
 | |
| static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct discard_cmd *dc;
 | |
| 	bool need_wait = false;
 | |
| 
 | |
| 	mutex_lock(&dcc->cmd_lock);
 | |
| 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
 | |
| 							NULL, blkaddr);
 | |
| 	if (dc) {
 | |
| 		if (dc->state == D_PREP) {
 | |
| 			__punch_discard_cmd(sbi, dc, blkaddr);
 | |
| 		} else {
 | |
| 			dc->ref++;
 | |
| 			need_wait = true;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&dcc->cmd_lock);
 | |
| 
 | |
| 	if (need_wait)
 | |
| 		__wait_one_discard_bio(sbi, dc);
 | |
| }
 | |
| 
 | |
| void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 
 | |
| 	if (dcc && dcc->f2fs_issue_discard) {
 | |
| 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
 | |
| 
 | |
| 		dcc->f2fs_issue_discard = NULL;
 | |
| 		kthread_stop(discard_thread);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This comes from f2fs_put_super */
 | |
| bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct discard_policy dpolicy;
 | |
| 	bool dropped;
 | |
| 
 | |
| 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
 | |
| 					dcc->discard_granularity);
 | |
| 	__issue_discard_cmd(sbi, &dpolicy);
 | |
| 	dropped = __drop_discard_cmd(sbi);
 | |
| 
 | |
| 	/* just to make sure there is no pending discard commands */
 | |
| 	__wait_all_discard_cmd(sbi, NULL);
 | |
| 
 | |
| 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
 | |
| 	return dropped;
 | |
| }
 | |
| 
 | |
| static int issue_discard_thread(void *data)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = data;
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	wait_queue_head_t *q = &dcc->discard_wait_queue;
 | |
| 	struct discard_policy dpolicy;
 | |
| 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
 | |
| 	int issued;
 | |
| 
 | |
| 	set_freezable();
 | |
| 
 | |
| 	do {
 | |
| 		if (sbi->gc_mode == GC_URGENT_HIGH ||
 | |
| 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
 | |
| 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
 | |
| 		else
 | |
| 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
 | |
| 						dcc->discard_granularity);
 | |
| 
 | |
| 		if (!atomic_read(&dcc->discard_cmd_cnt))
 | |
| 		       wait_ms = dpolicy.max_interval;
 | |
| 
 | |
| 		wait_event_interruptible_timeout(*q,
 | |
| 				kthread_should_stop() || freezing(current) ||
 | |
| 				dcc->discard_wake,
 | |
| 				msecs_to_jiffies(wait_ms));
 | |
| 
 | |
| 		if (dcc->discard_wake)
 | |
| 			dcc->discard_wake = 0;
 | |
| 
 | |
| 		/* clean up pending candidates before going to sleep */
 | |
| 		if (atomic_read(&dcc->queued_discard))
 | |
| 			__wait_all_discard_cmd(sbi, NULL);
 | |
| 
 | |
| 		if (try_to_freeze())
 | |
| 			continue;
 | |
| 		if (f2fs_readonly(sbi->sb))
 | |
| 			continue;
 | |
| 		if (kthread_should_stop())
 | |
| 			return 0;
 | |
| 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
 | |
| 			wait_ms = dpolicy.max_interval;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!atomic_read(&dcc->discard_cmd_cnt))
 | |
| 			continue;
 | |
| 
 | |
| 		sb_start_intwrite(sbi->sb);
 | |
| 
 | |
| 		issued = __issue_discard_cmd(sbi, &dpolicy);
 | |
| 		if (issued > 0) {
 | |
| 			__wait_all_discard_cmd(sbi, &dpolicy);
 | |
| 			wait_ms = dpolicy.min_interval;
 | |
| 		} else if (issued == -1) {
 | |
| 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
 | |
| 			if (!wait_ms)
 | |
| 				wait_ms = dpolicy.mid_interval;
 | |
| 		} else {
 | |
| 			wait_ms = dpolicy.max_interval;
 | |
| 		}
 | |
| 
 | |
| 		sb_end_intwrite(sbi->sb);
 | |
| 
 | |
| 	} while (!kthread_should_stop());
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_ZONED
 | |
| static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
 | |
| 		struct block_device *bdev, block_t blkstart, block_t blklen)
 | |
| {
 | |
| 	sector_t sector, nr_sects;
 | |
| 	block_t lblkstart = blkstart;
 | |
| 	int devi = 0;
 | |
| 
 | |
| 	if (f2fs_is_multi_device(sbi)) {
 | |
| 		devi = f2fs_target_device_index(sbi, blkstart);
 | |
| 		if (blkstart < FDEV(devi).start_blk ||
 | |
| 		    blkstart > FDEV(devi).end_blk) {
 | |
| 			f2fs_err(sbi, "Invalid block %x", blkstart);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		blkstart -= FDEV(devi).start_blk;
 | |
| 	}
 | |
| 
 | |
| 	/* For sequential zones, reset the zone write pointer */
 | |
| 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
 | |
| 		sector = SECTOR_FROM_BLOCK(blkstart);
 | |
| 		nr_sects = SECTOR_FROM_BLOCK(blklen);
 | |
| 
 | |
| 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
 | |
| 				nr_sects != bdev_zone_sectors(bdev)) {
 | |
| 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
 | |
| 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
 | |
| 				 blkstart, blklen);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		trace_f2fs_issue_reset_zone(bdev, blkstart);
 | |
| 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
 | |
| 					sector, nr_sects, GFP_NOFS);
 | |
| 	}
 | |
| 
 | |
| 	/* For conventional zones, use regular discard if supported */
 | |
| 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int __issue_discard_async(struct f2fs_sb_info *sbi,
 | |
| 		struct block_device *bdev, block_t blkstart, block_t blklen)
 | |
| {
 | |
| #ifdef CONFIG_BLK_DEV_ZONED
 | |
| 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
 | |
| 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
 | |
| #endif
 | |
| 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
 | |
| }
 | |
| 
 | |
| static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 | |
| 				block_t blkstart, block_t blklen)
 | |
| {
 | |
| 	sector_t start = blkstart, len = 0;
 | |
| 	struct block_device *bdev;
 | |
| 	struct seg_entry *se;
 | |
| 	unsigned int offset;
 | |
| 	block_t i;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	bdev = f2fs_target_device(sbi, blkstart, NULL);
 | |
| 
 | |
| 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
 | |
| 		if (i != start) {
 | |
| 			struct block_device *bdev2 =
 | |
| 				f2fs_target_device(sbi, i, NULL);
 | |
| 
 | |
| 			if (bdev2 != bdev) {
 | |
| 				err = __issue_discard_async(sbi, bdev,
 | |
| 						start, len);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				bdev = bdev2;
 | |
| 				start = i;
 | |
| 				len = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
 | |
| 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
 | |
| 
 | |
| 		if (f2fs_block_unit_discard(sbi) &&
 | |
| 				!f2fs_test_and_set_bit(offset, se->discard_map))
 | |
| 			sbi->discard_blks--;
 | |
| 	}
 | |
| 
 | |
| 	if (len)
 | |
| 		err = __issue_discard_async(sbi, bdev, start, len);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
 | |
| 							bool check_only)
 | |
| {
 | |
| 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 | |
| 	int max_blocks = sbi->blocks_per_seg;
 | |
| 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 | |
| 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 | |
| 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 | |
| 	unsigned long *discard_map = (unsigned long *)se->discard_map;
 | |
| 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
 | |
| 	unsigned int start = 0, end = -1;
 | |
| 	bool force = (cpc->reason & CP_DISCARD);
 | |
| 	struct discard_entry *de = NULL;
 | |
| 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
 | |
| 	int i;
 | |
| 
 | |
| 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
 | |
| 			!f2fs_block_unit_discard(sbi))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!force) {
 | |
| 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
 | |
| 			SM_I(sbi)->dcc_info->nr_discards >=
 | |
| 				SM_I(sbi)->dcc_info->max_discards)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 | |
| 	for (i = 0; i < entries; i++)
 | |
| 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
 | |
| 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 | |
| 
 | |
| 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
 | |
| 				SM_I(sbi)->dcc_info->max_discards) {
 | |
| 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 | |
| 		if (start >= max_blocks)
 | |
| 			break;
 | |
| 
 | |
| 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 | |
| 		if (force && start && end != max_blocks
 | |
| 					&& (end - start) < cpc->trim_minlen)
 | |
| 			continue;
 | |
| 
 | |
| 		if (check_only)
 | |
| 			return true;
 | |
| 
 | |
| 		if (!de) {
 | |
| 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
 | |
| 						GFP_F2FS_ZERO, true, NULL);
 | |
| 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
 | |
| 			list_add_tail(&de->list, head);
 | |
| 		}
 | |
| 
 | |
| 		for (i = start; i < end; i++)
 | |
| 			__set_bit_le(i, (void *)de->discard_map);
 | |
| 
 | |
| 		SM_I(sbi)->dcc_info->nr_discards += end - start;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void release_discard_addr(struct discard_entry *entry)
 | |
| {
 | |
| 	list_del(&entry->list);
 | |
| 	kmem_cache_free(discard_entry_slab, entry);
 | |
| }
 | |
| 
 | |
| void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
 | |
| 	struct discard_entry *entry, *this;
 | |
| 
 | |
| 	/* drop caches */
 | |
| 	list_for_each_entry_safe(entry, this, head, list)
 | |
| 		release_discard_addr(entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should call f2fs_clear_prefree_segments after checkpoint is done.
 | |
|  */
 | |
| static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 | |
| 		__set_test_and_free(sbi, segno, false);
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
 | |
| 						struct cp_control *cpc)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct list_head *head = &dcc->entry_list;
 | |
| 	struct discard_entry *entry, *this;
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 | |
| 	unsigned int start = 0, end = -1;
 | |
| 	unsigned int secno, start_segno;
 | |
| 	bool force = (cpc->reason & CP_DISCARD);
 | |
| 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
 | |
| 						DISCARD_UNIT_SECTION;
 | |
| 
 | |
| 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
 | |
| 		section_alignment = true;
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	while (1) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (section_alignment && end != -1)
 | |
| 			end--;
 | |
| 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 | |
| 		if (start >= MAIN_SEGS(sbi))
 | |
| 			break;
 | |
| 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 | |
| 								start + 1);
 | |
| 
 | |
| 		if (section_alignment) {
 | |
| 			start = rounddown(start, sbi->segs_per_sec);
 | |
| 			end = roundup(end, sbi->segs_per_sec);
 | |
| 		}
 | |
| 
 | |
| 		for (i = start; i < end; i++) {
 | |
| 			if (test_and_clear_bit(i, prefree_map))
 | |
| 				dirty_i->nr_dirty[PRE]--;
 | |
| 		}
 | |
| 
 | |
| 		if (!f2fs_realtime_discard_enable(sbi))
 | |
| 			continue;
 | |
| 
 | |
| 		if (force && start >= cpc->trim_start &&
 | |
| 					(end - 1) <= cpc->trim_end)
 | |
| 				continue;
 | |
| 
 | |
| 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
 | |
| 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 | |
| 				(end - start) << sbi->log_blocks_per_seg);
 | |
| 			continue;
 | |
| 		}
 | |
| next:
 | |
| 		secno = GET_SEC_FROM_SEG(sbi, start);
 | |
| 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
 | |
| 		if (!IS_CURSEC(sbi, secno) &&
 | |
| 			!get_valid_blocks(sbi, start, true))
 | |
| 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
 | |
| 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
 | |
| 
 | |
| 		start = start_segno + sbi->segs_per_sec;
 | |
| 		if (start < end)
 | |
| 			goto next;
 | |
| 		else
 | |
| 			end = start - 1;
 | |
| 	}
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	if (!f2fs_block_unit_discard(sbi))
 | |
| 		goto wakeup;
 | |
| 
 | |
| 	/* send small discards */
 | |
| 	list_for_each_entry_safe(entry, this, head, list) {
 | |
| 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
 | |
| 		bool is_valid = test_bit_le(0, entry->discard_map);
 | |
| 
 | |
| find_next:
 | |
| 		if (is_valid) {
 | |
| 			next_pos = find_next_zero_bit_le(entry->discard_map,
 | |
| 					sbi->blocks_per_seg, cur_pos);
 | |
| 			len = next_pos - cur_pos;
 | |
| 
 | |
| 			if (f2fs_sb_has_blkzoned(sbi) ||
 | |
| 			    (force && len < cpc->trim_minlen))
 | |
| 				goto skip;
 | |
| 
 | |
| 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
 | |
| 									len);
 | |
| 			total_len += len;
 | |
| 		} else {
 | |
| 			next_pos = find_next_bit_le(entry->discard_map,
 | |
| 					sbi->blocks_per_seg, cur_pos);
 | |
| 		}
 | |
| skip:
 | |
| 		cur_pos = next_pos;
 | |
| 		is_valid = !is_valid;
 | |
| 
 | |
| 		if (cur_pos < sbi->blocks_per_seg)
 | |
| 			goto find_next;
 | |
| 
 | |
| 		release_discard_addr(entry);
 | |
| 		dcc->nr_discards -= total_len;
 | |
| 	}
 | |
| 
 | |
| wakeup:
 | |
| 	wake_up_discard_thread(sbi, false);
 | |
| }
 | |
| 
 | |
| int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	dev_t dev = sbi->sb->s_bdev->bd_dev;
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!f2fs_realtime_discard_enable(sbi))
 | |
| 		return 0;
 | |
| 
 | |
| 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
 | |
| 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
 | |
| 	if (IS_ERR(dcc->f2fs_issue_discard))
 | |
| 		err = PTR_ERR(dcc->f2fs_issue_discard);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc;
 | |
| 	int err = 0, i;
 | |
| 
 | |
| 	if (SM_I(sbi)->dcc_info) {
 | |
| 		dcc = SM_I(sbi)->dcc_info;
 | |
| 		goto init_thread;
 | |
| 	}
 | |
| 
 | |
| 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
 | |
| 	if (!dcc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
 | |
| 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
 | |
| 		dcc->discard_granularity = sbi->blocks_per_seg;
 | |
| 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
 | |
| 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&dcc->entry_list);
 | |
| 	for (i = 0; i < MAX_PLIST_NUM; i++)
 | |
| 		INIT_LIST_HEAD(&dcc->pend_list[i]);
 | |
| 	INIT_LIST_HEAD(&dcc->wait_list);
 | |
| 	INIT_LIST_HEAD(&dcc->fstrim_list);
 | |
| 	mutex_init(&dcc->cmd_lock);
 | |
| 	atomic_set(&dcc->issued_discard, 0);
 | |
| 	atomic_set(&dcc->queued_discard, 0);
 | |
| 	atomic_set(&dcc->discard_cmd_cnt, 0);
 | |
| 	dcc->nr_discards = 0;
 | |
| 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
 | |
| 	dcc->undiscard_blks = 0;
 | |
| 	dcc->next_pos = 0;
 | |
| 	dcc->root = RB_ROOT_CACHED;
 | |
| 	dcc->rbtree_check = false;
 | |
| 
 | |
| 	init_waitqueue_head(&dcc->discard_wait_queue);
 | |
| 	SM_I(sbi)->dcc_info = dcc;
 | |
| init_thread:
 | |
| 	err = f2fs_start_discard_thread(sbi);
 | |
| 	if (err) {
 | |
| 		kfree(dcc);
 | |
| 		SM_I(sbi)->dcc_info = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 
 | |
| 	if (!dcc)
 | |
| 		return;
 | |
| 
 | |
| 	f2fs_stop_discard_thread(sbi);
 | |
| 
 | |
| 	/*
 | |
| 	 * Recovery can cache discard commands, so in error path of
 | |
| 	 * fill_super(), it needs to give a chance to handle them.
 | |
| 	 */
 | |
| 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
 | |
| 		f2fs_issue_discard_timeout(sbi);
 | |
| 
 | |
| 	kfree(dcc);
 | |
| 	SM_I(sbi)->dcc_info = NULL;
 | |
| }
 | |
| 
 | |
| static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 
 | |
| 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 | |
| 		sit_i->dirty_sentries++;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 | |
| 					unsigned int segno, int modified)
 | |
| {
 | |
| 	struct seg_entry *se = get_seg_entry(sbi, segno);
 | |
| 
 | |
| 	se->type = type;
 | |
| 	if (modified)
 | |
| 		__mark_sit_entry_dirty(sbi, segno);
 | |
| }
 | |
| 
 | |
| static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
 | |
| 								block_t blkaddr)
 | |
| {
 | |
| 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
 | |
| 
 | |
| 	if (segno == NULL_SEGNO)
 | |
| 		return 0;
 | |
| 	return get_seg_entry(sbi, segno)->mtime;
 | |
| }
 | |
| 
 | |
| static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
 | |
| 						unsigned long long old_mtime)
 | |
| {
 | |
| 	struct seg_entry *se;
 | |
| 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
 | |
| 	unsigned long long ctime = get_mtime(sbi, false);
 | |
| 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
 | |
| 
 | |
| 	if (segno == NULL_SEGNO)
 | |
| 		return;
 | |
| 
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 
 | |
| 	if (!se->mtime)
 | |
| 		se->mtime = mtime;
 | |
| 	else
 | |
| 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
 | |
| 						se->valid_blocks + 1);
 | |
| 
 | |
| 	if (ctime > SIT_I(sbi)->max_mtime)
 | |
| 		SIT_I(sbi)->max_mtime = ctime;
 | |
| }
 | |
| 
 | |
| static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 | |
| {
 | |
| 	struct seg_entry *se;
 | |
| 	unsigned int segno, offset;
 | |
| 	long int new_vblocks;
 | |
| 	bool exist;
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 	bool mir_exist;
 | |
| #endif
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, blkaddr);
 | |
| 
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 	new_vblocks = se->valid_blocks + del;
 | |
| 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 | |
| 
 | |
| 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
 | |
| 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
 | |
| 
 | |
| 	se->valid_blocks = new_vblocks;
 | |
| 
 | |
| 	/* Update valid block bitmap */
 | |
| 	if (del > 0) {
 | |
| 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 		mir_exist = f2fs_test_and_set_bit(offset,
 | |
| 						se->cur_valid_map_mir);
 | |
| 		if (unlikely(exist != mir_exist)) {
 | |
| 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
 | |
| 				 blkaddr, exist);
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| 		}
 | |
| #endif
 | |
| 		if (unlikely(exist)) {
 | |
| 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
 | |
| 				 blkaddr);
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| 			se->valid_blocks--;
 | |
| 			del = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (f2fs_block_unit_discard(sbi) &&
 | |
| 				!f2fs_test_and_set_bit(offset, se->discard_map))
 | |
| 			sbi->discard_blks--;
 | |
| 
 | |
| 		/*
 | |
| 		 * SSR should never reuse block which is checkpointed
 | |
| 		 * or newly invalidated.
 | |
| 		 */
 | |
| 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
 | |
| 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
 | |
| 				se->ckpt_valid_blocks++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 		mir_exist = f2fs_test_and_clear_bit(offset,
 | |
| 						se->cur_valid_map_mir);
 | |
| 		if (unlikely(exist != mir_exist)) {
 | |
| 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
 | |
| 				 blkaddr, exist);
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| 		}
 | |
| #endif
 | |
| 		if (unlikely(!exist)) {
 | |
| 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
 | |
| 				 blkaddr);
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| 			se->valid_blocks++;
 | |
| 			del = 0;
 | |
| 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
 | |
| 			/*
 | |
| 			 * If checkpoints are off, we must not reuse data that
 | |
| 			 * was used in the previous checkpoint. If it was used
 | |
| 			 * before, we must track that to know how much space we
 | |
| 			 * really have.
 | |
| 			 */
 | |
| 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
 | |
| 				spin_lock(&sbi->stat_lock);
 | |
| 				sbi->unusable_block_count++;
 | |
| 				spin_unlock(&sbi->stat_lock);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (f2fs_block_unit_discard(sbi) &&
 | |
| 			f2fs_test_and_clear_bit(offset, se->discard_map))
 | |
| 			sbi->discard_blks++;
 | |
| 	}
 | |
| 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 | |
| 		se->ckpt_valid_blocks += del;
 | |
| 
 | |
| 	__mark_sit_entry_dirty(sbi, segno);
 | |
| 
 | |
| 	/* update total number of valid blocks to be written in ckpt area */
 | |
| 	SIT_I(sbi)->written_valid_blocks += del;
 | |
| 
 | |
| 	if (__is_large_section(sbi))
 | |
| 		get_sec_entry(sbi, segno)->valid_blocks += del;
 | |
| }
 | |
| 
 | |
| void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 | |
| {
 | |
| 	unsigned int segno = GET_SEGNO(sbi, addr);
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 
 | |
| 	f2fs_bug_on(sbi, addr == NULL_ADDR);
 | |
| 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
 | |
| 		return;
 | |
| 
 | |
| 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
 | |
| 	f2fs_invalidate_compress_page(sbi, addr);
 | |
| 
 | |
| 	/* add it into sit main buffer */
 | |
| 	down_write(&sit_i->sentry_lock);
 | |
| 
 | |
| 	update_segment_mtime(sbi, addr, 0);
 | |
| 	update_sit_entry(sbi, addr, -1);
 | |
| 
 | |
| 	/* add it into dirty seglist */
 | |
| 	locate_dirty_segment(sbi, segno);
 | |
| 
 | |
| 	up_write(&sit_i->sentry_lock);
 | |
| }
 | |
| 
 | |
| bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned int segno, offset;
 | |
| 	struct seg_entry *se;
 | |
| 	bool is_cp = false;
 | |
| 
 | |
| 	if (!__is_valid_data_blkaddr(blkaddr))
 | |
| 		return true;
 | |
| 
 | |
| 	down_read(&sit_i->sentry_lock);
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, blkaddr);
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 | |
| 
 | |
| 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
 | |
| 		is_cp = true;
 | |
| 
 | |
| 	up_read(&sit_i->sentry_lock);
 | |
| 
 | |
| 	return is_cp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function should be resided under the curseg_mutex lock
 | |
|  */
 | |
| static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 | |
| 					struct f2fs_summary *sum)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	void *addr = curseg->sum_blk;
 | |
| 
 | |
| 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
 | |
| 	memcpy(addr, sum, sizeof(struct f2fs_summary));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the number of current summary pages for writing
 | |
|  */
 | |
| int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
 | |
| {
 | |
| 	int valid_sum_count = 0;
 | |
| 	int i, sum_in_page;
 | |
| 
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		if (sbi->ckpt->alloc_type[i] == SSR)
 | |
| 			valid_sum_count += sbi->blocks_per_seg;
 | |
| 		else {
 | |
| 			if (for_ra)
 | |
| 				valid_sum_count += le16_to_cpu(
 | |
| 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
 | |
| 			else
 | |
| 				valid_sum_count += curseg_blkoff(sbi, i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
 | |
| 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
 | |
| 	if (valid_sum_count <= sum_in_page)
 | |
| 		return 1;
 | |
| 	else if ((valid_sum_count - sum_in_page) <=
 | |
| 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
 | |
| 		return 2;
 | |
| 	return 3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller should put this summary page
 | |
|  */
 | |
| struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	if (unlikely(f2fs_cp_error(sbi)))
 | |
| 		return ERR_PTR(-EIO);
 | |
| 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
 | |
| }
 | |
| 
 | |
| void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
 | |
| 					void *src, block_t blk_addr)
 | |
| {
 | |
| 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
 | |
| 
 | |
| 	memcpy(page_address(page), src, PAGE_SIZE);
 | |
| 	set_page_dirty(page);
 | |
| 	f2fs_put_page(page, 1);
 | |
| }
 | |
| 
 | |
| static void write_sum_page(struct f2fs_sb_info *sbi,
 | |
| 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
 | |
| {
 | |
| 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
 | |
| }
 | |
| 
 | |
| static void write_current_sum_page(struct f2fs_sb_info *sbi,
 | |
| 						int type, block_t blk_addr)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
 | |
| 	struct f2fs_summary_block *src = curseg->sum_blk;
 | |
| 	struct f2fs_summary_block *dst;
 | |
| 
 | |
| 	dst = (struct f2fs_summary_block *)page_address(page);
 | |
| 	memset(dst, 0, PAGE_SIZE);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	down_read(&curseg->journal_rwsem);
 | |
| 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
 | |
| 	up_read(&curseg->journal_rwsem);
 | |
| 
 | |
| 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
 | |
| 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
 | |
| 
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	set_page_dirty(page);
 | |
| 	f2fs_put_page(page, 1);
 | |
| }
 | |
| 
 | |
| static int is_next_segment_free(struct f2fs_sb_info *sbi,
 | |
| 				struct curseg_info *curseg, int type)
 | |
| {
 | |
| 	unsigned int segno = curseg->segno + 1;
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 
 | |
| 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
 | |
| 		return !test_bit(segno, free_i->free_segmap);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a new segment from the free segments bitmap to right order
 | |
|  * This function should be returned with success, otherwise BUG
 | |
|  */
 | |
| static void get_new_segment(struct f2fs_sb_info *sbi,
 | |
| 			unsigned int *newseg, bool new_sec, int dir)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int segno, secno, zoneno;
 | |
| 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
 | |
| 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
 | |
| 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
 | |
| 	unsigned int left_start = hint;
 | |
| 	bool init = true;
 | |
| 	int go_left = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock(&free_i->segmap_lock);
 | |
| 
 | |
| 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
 | |
| 		segno = find_next_zero_bit(free_i->free_segmap,
 | |
| 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
 | |
| 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
 | |
| 			goto got_it;
 | |
| 	}
 | |
| find_other_zone:
 | |
| 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
 | |
| 	if (secno >= MAIN_SECS(sbi)) {
 | |
| 		if (dir == ALLOC_RIGHT) {
 | |
| 			secno = find_next_zero_bit(free_i->free_secmap,
 | |
| 							MAIN_SECS(sbi), 0);
 | |
| 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
 | |
| 		} else {
 | |
| 			go_left = 1;
 | |
| 			left_start = hint - 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (go_left == 0)
 | |
| 		goto skip_left;
 | |
| 
 | |
| 	while (test_bit(left_start, free_i->free_secmap)) {
 | |
| 		if (left_start > 0) {
 | |
| 			left_start--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		left_start = find_next_zero_bit(free_i->free_secmap,
 | |
| 							MAIN_SECS(sbi), 0);
 | |
| 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
 | |
| 		break;
 | |
| 	}
 | |
| 	secno = left_start;
 | |
| skip_left:
 | |
| 	segno = GET_SEG_FROM_SEC(sbi, secno);
 | |
| 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
 | |
| 
 | |
| 	/* give up on finding another zone */
 | |
| 	if (!init)
 | |
| 		goto got_it;
 | |
| 	if (sbi->secs_per_zone == 1)
 | |
| 		goto got_it;
 | |
| 	if (zoneno == old_zoneno)
 | |
| 		goto got_it;
 | |
| 	if (dir == ALLOC_LEFT) {
 | |
| 		if (!go_left && zoneno + 1 >= total_zones)
 | |
| 			goto got_it;
 | |
| 		if (go_left && zoneno == 0)
 | |
| 			goto got_it;
 | |
| 	}
 | |
| 	for (i = 0; i < NR_CURSEG_TYPE; i++)
 | |
| 		if (CURSEG_I(sbi, i)->zone == zoneno)
 | |
| 			break;
 | |
| 
 | |
| 	if (i < NR_CURSEG_TYPE) {
 | |
| 		/* zone is in user, try another */
 | |
| 		if (go_left)
 | |
| 			hint = zoneno * sbi->secs_per_zone - 1;
 | |
| 		else if (zoneno + 1 >= total_zones)
 | |
| 			hint = 0;
 | |
| 		else
 | |
| 			hint = (zoneno + 1) * sbi->secs_per_zone;
 | |
| 		init = false;
 | |
| 		goto find_other_zone;
 | |
| 	}
 | |
| got_it:
 | |
| 	/* set it as dirty segment in free segmap */
 | |
| 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
 | |
| 	__set_inuse(sbi, segno);
 | |
| 	*newseg = segno;
 | |
| 	spin_unlock(&free_i->segmap_lock);
 | |
| }
 | |
| 
 | |
| static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	struct summary_footer *sum_footer;
 | |
| 	unsigned short seg_type = curseg->seg_type;
 | |
| 
 | |
| 	curseg->inited = true;
 | |
| 	curseg->segno = curseg->next_segno;
 | |
| 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
 | |
| 	curseg->next_blkoff = 0;
 | |
| 	curseg->next_segno = NULL_SEGNO;
 | |
| 
 | |
| 	sum_footer = &(curseg->sum_blk->footer);
 | |
| 	memset(sum_footer, 0, sizeof(struct summary_footer));
 | |
| 
 | |
| 	sanity_check_seg_type(sbi, seg_type);
 | |
| 
 | |
| 	if (IS_DATASEG(seg_type))
 | |
| 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
 | |
| 	if (IS_NODESEG(seg_type))
 | |
| 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
 | |
| 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
 | |
| }
 | |
| 
 | |
| static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned short seg_type = curseg->seg_type;
 | |
| 
 | |
| 	sanity_check_seg_type(sbi, seg_type);
 | |
| 	if (f2fs_need_rand_seg(sbi))
 | |
| 		return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
 | |
| 
 | |
| 	/* if segs_per_sec is large than 1, we need to keep original policy. */
 | |
| 	if (__is_large_section(sbi))
 | |
| 		return curseg->segno;
 | |
| 
 | |
| 	/* inmem log may not locate on any segment after mount */
 | |
| 	if (!curseg->inited)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (test_opt(sbi, NOHEAP) &&
 | |
| 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
 | |
| 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
 | |
| 
 | |
| 	/* find segments from 0 to reuse freed segments */
 | |
| 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
 | |
| 		return 0;
 | |
| 
 | |
| 	return curseg->segno;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a current working segment.
 | |
|  * This function always allocates a free segment in LFS manner.
 | |
|  */
 | |
| static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned short seg_type = curseg->seg_type;
 | |
| 	unsigned int segno = curseg->segno;
 | |
| 	int dir = ALLOC_LEFT;
 | |
| 
 | |
| 	if (curseg->inited)
 | |
| 		write_sum_page(sbi, curseg->sum_blk,
 | |
| 				GET_SUM_BLOCK(sbi, segno));
 | |
| 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
 | |
| 		dir = ALLOC_RIGHT;
 | |
| 
 | |
| 	if (test_opt(sbi, NOHEAP))
 | |
| 		dir = ALLOC_RIGHT;
 | |
| 
 | |
| 	segno = __get_next_segno(sbi, type);
 | |
| 	get_new_segment(sbi, &segno, new_sec, dir);
 | |
| 	curseg->next_segno = segno;
 | |
| 	reset_curseg(sbi, type, 1);
 | |
| 	curseg->alloc_type = LFS;
 | |
| 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
 | |
| 		curseg->fragment_remained_chunk =
 | |
| 				prandom_u32() % sbi->max_fragment_chunk + 1;
 | |
| }
 | |
| 
 | |
| static int __next_free_blkoff(struct f2fs_sb_info *sbi,
 | |
| 					int segno, block_t start)
 | |
| {
 | |
| 	struct seg_entry *se = get_seg_entry(sbi, segno);
 | |
| 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 | |
| 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
 | |
| 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 | |
| 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < entries; i++)
 | |
| 		target_map[i] = ckpt_map[i] | cur_map[i];
 | |
| 
 | |
| 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If a segment is written by LFS manner, next block offset is just obtained
 | |
|  * by increasing the current block offset. However, if a segment is written by
 | |
|  * SSR manner, next block offset obtained by calling __next_free_blkoff
 | |
|  */
 | |
| static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
 | |
| 				struct curseg_info *seg)
 | |
| {
 | |
| 	if (seg->alloc_type == SSR) {
 | |
| 		seg->next_blkoff =
 | |
| 			__next_free_blkoff(sbi, seg->segno,
 | |
| 						seg->next_blkoff + 1);
 | |
| 	} else {
 | |
| 		seg->next_blkoff++;
 | |
| 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
 | |
| 			/* To allocate block chunks in different sizes, use random number */
 | |
| 			if (--seg->fragment_remained_chunk <= 0) {
 | |
| 				seg->fragment_remained_chunk =
 | |
| 				   prandom_u32() % sbi->max_fragment_chunk + 1;
 | |
| 				seg->next_blkoff +=
 | |
| 				   prandom_u32() % sbi->max_fragment_hole + 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
 | |
| {
 | |
| 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function always allocates a used segment(from dirty seglist) by SSR
 | |
|  * manner, so it should recover the existing segment information of valid blocks
 | |
|  */
 | |
| static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned int new_segno = curseg->next_segno;
 | |
| 	struct f2fs_summary_block *sum_node;
 | |
| 	struct page *sum_page;
 | |
| 
 | |
| 	if (flush)
 | |
| 		write_sum_page(sbi, curseg->sum_blk,
 | |
| 					GET_SUM_BLOCK(sbi, curseg->segno));
 | |
| 
 | |
| 	__set_test_and_inuse(sbi, new_segno);
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	__remove_dirty_segment(sbi, new_segno, PRE);
 | |
| 	__remove_dirty_segment(sbi, new_segno, DIRTY);
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	reset_curseg(sbi, type, 1);
 | |
| 	curseg->alloc_type = SSR;
 | |
| 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
 | |
| 
 | |
| 	sum_page = f2fs_get_sum_page(sbi, new_segno);
 | |
| 	if (IS_ERR(sum_page)) {
 | |
| 		/* GC won't be able to use stale summary pages by cp_error */
 | |
| 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
 | |
| 		return;
 | |
| 	}
 | |
| 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
 | |
| 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
 | |
| 	f2fs_put_page(sum_page, 1);
 | |
| }
 | |
| 
 | |
| static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
 | |
| 				int alloc_mode, unsigned long long age);
 | |
| 
 | |
| static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
 | |
| 					int target_type, int alloc_mode,
 | |
| 					unsigned long long age)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	curseg->seg_type = target_type;
 | |
| 
 | |
| 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
 | |
| 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
 | |
| 
 | |
| 		curseg->seg_type = se->type;
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	} else {
 | |
| 		/* allocate cold segment by default */
 | |
| 		curseg->seg_type = CURSEG_COLD_DATA;
 | |
| 		new_curseg(sbi, type, true);
 | |
| 	}
 | |
| 	stat_inc_seg_type(sbi, curseg);
 | |
| }
 | |
| 
 | |
| static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
 | |
| 
 | |
| 	if (!sbi->am.atgc_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	down_read(&SM_I(sbi)->curseg_lock);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	down_write(&SIT_I(sbi)->sentry_lock);
 | |
| 
 | |
| 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
 | |
| 
 | |
| 	up_write(&SIT_I(sbi)->sentry_lock);
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	up_read(&SM_I(sbi)->curseg_lock);
 | |
| 
 | |
| }
 | |
| void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	__f2fs_init_atgc_curseg(sbi);
 | |
| }
 | |
| 
 | |
| static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	if (!curseg->inited)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (get_valid_blocks(sbi, curseg->segno, false)) {
 | |
| 		write_sum_page(sbi, curseg->sum_blk,
 | |
| 				GET_SUM_BLOCK(sbi, curseg->segno));
 | |
| 	} else {
 | |
| 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
 | |
| 		__set_test_and_free(sbi, curseg->segno, true);
 | |
| 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| }
 | |
| 
 | |
| void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
 | |
| 
 | |
| 	if (sbi->am.atgc_enabled)
 | |
| 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
 | |
| }
 | |
| 
 | |
| static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	if (!curseg->inited)
 | |
| 		goto out;
 | |
| 	if (get_valid_blocks(sbi, curseg->segno, false))
 | |
| 		goto out;
 | |
| 
 | |
| 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
 | |
| 	__set_test_and_inuse(sbi, curseg->segno);
 | |
| 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
 | |
| out:
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| }
 | |
| 
 | |
| void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
 | |
| 
 | |
| 	if (sbi->am.atgc_enabled)
 | |
| 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
 | |
| }
 | |
| 
 | |
| static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
 | |
| 				int alloc_mode, unsigned long long age)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
 | |
| 	unsigned segno = NULL_SEGNO;
 | |
| 	unsigned short seg_type = curseg->seg_type;
 | |
| 	int i, cnt;
 | |
| 	bool reversed = false;
 | |
| 
 | |
| 	sanity_check_seg_type(sbi, seg_type);
 | |
| 
 | |
| 	/* f2fs_need_SSR() already forces to do this */
 | |
| 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
 | |
| 		curseg->next_segno = segno;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* For node segments, let's do SSR more intensively */
 | |
| 	if (IS_NODESEG(seg_type)) {
 | |
| 		if (seg_type >= CURSEG_WARM_NODE) {
 | |
| 			reversed = true;
 | |
| 			i = CURSEG_COLD_NODE;
 | |
| 		} else {
 | |
| 			i = CURSEG_HOT_NODE;
 | |
| 		}
 | |
| 		cnt = NR_CURSEG_NODE_TYPE;
 | |
| 	} else {
 | |
| 		if (seg_type >= CURSEG_WARM_DATA) {
 | |
| 			reversed = true;
 | |
| 			i = CURSEG_COLD_DATA;
 | |
| 		} else {
 | |
| 			i = CURSEG_HOT_DATA;
 | |
| 		}
 | |
| 		cnt = NR_CURSEG_DATA_TYPE;
 | |
| 	}
 | |
| 
 | |
| 	for (; cnt-- > 0; reversed ? i-- : i++) {
 | |
| 		if (i == seg_type)
 | |
| 			continue;
 | |
| 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
 | |
| 			curseg->next_segno = segno;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* find valid_blocks=0 in dirty list */
 | |
| 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
 | |
| 		segno = get_free_segment(sbi);
 | |
| 		if (segno != NULL_SEGNO) {
 | |
| 			curseg->next_segno = segno;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * flush out current segment and replace it with new segment
 | |
|  * This function should be returned with success, otherwise BUG
 | |
|  */
 | |
| static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
 | |
| 						int type, bool force)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	if (force)
 | |
| 		new_curseg(sbi, type, true);
 | |
| 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
 | |
| 					curseg->seg_type == CURSEG_WARM_NODE)
 | |
| 		new_curseg(sbi, type, false);
 | |
| 	else if (curseg->alloc_type == LFS &&
 | |
| 			is_next_segment_free(sbi, curseg, type) &&
 | |
| 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 | |
| 		new_curseg(sbi, type, false);
 | |
| 	else if (f2fs_need_SSR(sbi) &&
 | |
| 			get_ssr_segment(sbi, type, SSR, 0))
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	else
 | |
| 		new_curseg(sbi, type, false);
 | |
| 
 | |
| 	stat_inc_seg_type(sbi, curseg);
 | |
| }
 | |
| 
 | |
| void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
 | |
| 					unsigned int start, unsigned int end)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	down_read(&SM_I(sbi)->curseg_lock);
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	down_write(&SIT_I(sbi)->sentry_lock);
 | |
| 
 | |
| 	segno = CURSEG_I(sbi, type)->segno;
 | |
| 	if (segno < start || segno > end)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	else
 | |
| 		new_curseg(sbi, type, true);
 | |
| 
 | |
| 	stat_inc_seg_type(sbi, curseg);
 | |
| 
 | |
| 	locate_dirty_segment(sbi, segno);
 | |
| unlock:
 | |
| 	up_write(&SIT_I(sbi)->sentry_lock);
 | |
| 
 | |
| 	if (segno != curseg->segno)
 | |
| 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
 | |
| 			    type, segno, curseg->segno);
 | |
| 
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 	up_read(&SM_I(sbi)->curseg_lock);
 | |
| }
 | |
| 
 | |
| static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
 | |
| 						bool new_sec, bool force)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned int old_segno;
 | |
| 
 | |
| 	if (!curseg->inited)
 | |
| 		goto alloc;
 | |
| 
 | |
| 	if (force || curseg->next_blkoff ||
 | |
| 		get_valid_blocks(sbi, curseg->segno, new_sec))
 | |
| 		goto alloc;
 | |
| 
 | |
| 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
 | |
| 		return;
 | |
| alloc:
 | |
| 	old_segno = curseg->segno;
 | |
| 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
 | |
| 	locate_dirty_segment(sbi, old_segno);
 | |
| }
 | |
| 
 | |
| static void __allocate_new_section(struct f2fs_sb_info *sbi,
 | |
| 						int type, bool force)
 | |
| {
 | |
| 	__allocate_new_segment(sbi, type, true, force);
 | |
| }
 | |
| 
 | |
| void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
 | |
| {
 | |
| 	down_read(&SM_I(sbi)->curseg_lock);
 | |
| 	down_write(&SIT_I(sbi)->sentry_lock);
 | |
| 	__allocate_new_section(sbi, type, force);
 | |
| 	up_write(&SIT_I(sbi)->sentry_lock);
 | |
| 	up_read(&SM_I(sbi)->curseg_lock);
 | |
| }
 | |
| 
 | |
| void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	down_read(&SM_I(sbi)->curseg_lock);
 | |
| 	down_write(&SIT_I(sbi)->sentry_lock);
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
 | |
| 		__allocate_new_segment(sbi, i, false, false);
 | |
| 	up_write(&SIT_I(sbi)->sentry_lock);
 | |
| 	up_read(&SM_I(sbi)->curseg_lock);
 | |
| }
 | |
| 
 | |
| static const struct segment_allocation default_salloc_ops = {
 | |
| 	.allocate_segment = allocate_segment_by_default,
 | |
| };
 | |
| 
 | |
| bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
 | |
| 						struct cp_control *cpc)
 | |
| {
 | |
| 	__u64 trim_start = cpc->trim_start;
 | |
| 	bool has_candidate = false;
 | |
| 
 | |
| 	down_write(&SIT_I(sbi)->sentry_lock);
 | |
| 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
 | |
| 		if (add_discard_addrs(sbi, cpc, true)) {
 | |
| 			has_candidate = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	up_write(&SIT_I(sbi)->sentry_lock);
 | |
| 
 | |
| 	cpc->trim_start = trim_start;
 | |
| 	return has_candidate;
 | |
| }
 | |
| 
 | |
| static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
 | |
| 					struct discard_policy *dpolicy,
 | |
| 					unsigned int start, unsigned int end)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
 | |
| 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
 | |
| 	struct discard_cmd *dc;
 | |
| 	struct blk_plug plug;
 | |
| 	int issued;
 | |
| 	unsigned int trimmed = 0;
 | |
| 
 | |
| next:
 | |
| 	issued = 0;
 | |
| 
 | |
| 	mutex_lock(&dcc->cmd_lock);
 | |
| 	if (unlikely(dcc->rbtree_check))
 | |
| 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
 | |
| 							&dcc->root, false));
 | |
| 
 | |
| 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
 | |
| 					NULL, start,
 | |
| 					(struct rb_entry **)&prev_dc,
 | |
| 					(struct rb_entry **)&next_dc,
 | |
| 					&insert_p, &insert_parent, true, NULL);
 | |
| 	if (!dc)
 | |
| 		dc = next_dc;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	while (dc && dc->lstart <= end) {
 | |
| 		struct rb_node *node;
 | |
| 		int err = 0;
 | |
| 
 | |
| 		if (dc->len < dpolicy->granularity)
 | |
| 			goto skip;
 | |
| 
 | |
| 		if (dc->state != D_PREP) {
 | |
| 			list_move_tail(&dc->list, &dcc->fstrim_list);
 | |
| 			goto skip;
 | |
| 		}
 | |
| 
 | |
| 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
 | |
| 
 | |
| 		if (issued >= dpolicy->max_requests) {
 | |
| 			start = dc->lstart + dc->len;
 | |
| 
 | |
| 			if (err)
 | |
| 				__remove_discard_cmd(sbi, dc);
 | |
| 
 | |
| 			blk_finish_plug(&plug);
 | |
| 			mutex_unlock(&dcc->cmd_lock);
 | |
| 			trimmed += __wait_all_discard_cmd(sbi, NULL);
 | |
| 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
 | |
| 			goto next;
 | |
| 		}
 | |
| skip:
 | |
| 		node = rb_next(&dc->rb_node);
 | |
| 		if (err)
 | |
| 			__remove_discard_cmd(sbi, dc);
 | |
| 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
 | |
| 
 | |
| 		if (fatal_signal_pending(current))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	blk_finish_plug(&plug);
 | |
| 	mutex_unlock(&dcc->cmd_lock);
 | |
| 
 | |
| 	return trimmed;
 | |
| }
 | |
| 
 | |
| int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
 | |
| {
 | |
| 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
 | |
| 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
 | |
| 	unsigned int start_segno, end_segno;
 | |
| 	block_t start_block, end_block;
 | |
| 	struct cp_control cpc;
 | |
| 	struct discard_policy dpolicy;
 | |
| 	unsigned long long trimmed = 0;
 | |
| 	int err = 0;
 | |
| 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
 | |
| 
 | |
| 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (end < MAIN_BLKADDR(sbi))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
 | |
| 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
 | |
| 		return -EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	/* start/end segment number in main_area */
 | |
| 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
 | |
| 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
 | |
| 						GET_SEGNO(sbi, end);
 | |
| 	if (need_align) {
 | |
| 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
 | |
| 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
 | |
| 	}
 | |
| 
 | |
| 	cpc.reason = CP_DISCARD;
 | |
| 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
 | |
| 	cpc.trim_start = start_segno;
 | |
| 	cpc.trim_end = end_segno;
 | |
| 
 | |
| 	if (sbi->discard_blks == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	down_write(&sbi->gc_lock);
 | |
| 	err = f2fs_write_checkpoint(sbi, &cpc);
 | |
| 	up_write(&sbi->gc_lock);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * We filed discard candidates, but actually we don't need to wait for
 | |
| 	 * all of them, since they'll be issued in idle time along with runtime
 | |
| 	 * discard option. User configuration looks like using runtime discard
 | |
| 	 * or periodic fstrim instead of it.
 | |
| 	 */
 | |
| 	if (f2fs_realtime_discard_enable(sbi))
 | |
| 		goto out;
 | |
| 
 | |
| 	start_block = START_BLOCK(sbi, start_segno);
 | |
| 	end_block = START_BLOCK(sbi, end_segno + 1);
 | |
| 
 | |
| 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
 | |
| 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
 | |
| 					start_block, end_block);
 | |
| 
 | |
| 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
 | |
| 					start_block, end_block);
 | |
| out:
 | |
| 	if (!err)
 | |
| 		range->len = F2FS_BLK_TO_BYTES(trimmed);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static bool __has_curseg_space(struct f2fs_sb_info *sbi,
 | |
| 					struct curseg_info *curseg)
 | |
| {
 | |
| 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
 | |
| 							curseg->segno);
 | |
| }
 | |
| 
 | |
| int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
 | |
| {
 | |
| 	switch (hint) {
 | |
| 	case WRITE_LIFE_SHORT:
 | |
| 		return CURSEG_HOT_DATA;
 | |
| 	case WRITE_LIFE_EXTREME:
 | |
| 		return CURSEG_COLD_DATA;
 | |
| 	default:
 | |
| 		return CURSEG_WARM_DATA;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This returns write hints for each segment type. This hints will be
 | |
|  * passed down to block layer. There are mapping tables which depend on
 | |
|  * the mount option 'whint_mode'.
 | |
|  *
 | |
|  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
 | |
|  *
 | |
|  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
 | |
|  *
 | |
|  * User                  F2FS                     Block
 | |
|  * ----                  ----                     -----
 | |
|  *                       META                     WRITE_LIFE_NOT_SET
 | |
|  *                       HOT_NODE                 "
 | |
|  *                       WARM_NODE                "
 | |
|  *                       COLD_NODE                "
 | |
|  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
 | |
|  * extension list        "                        "
 | |
|  *
 | |
|  * -- buffered io
 | |
|  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
 | |
|  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
 | |
|  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
 | |
|  * WRITE_LIFE_NONE       "                        "
 | |
|  * WRITE_LIFE_MEDIUM     "                        "
 | |
|  * WRITE_LIFE_LONG       "                        "
 | |
|  *
 | |
|  * -- direct io
 | |
|  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
 | |
|  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
 | |
|  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
 | |
|  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
 | |
|  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
 | |
|  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
 | |
|  *
 | |
|  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
 | |
|  *
 | |
|  * User                  F2FS                     Block
 | |
|  * ----                  ----                     -----
 | |
|  *                       META                     WRITE_LIFE_MEDIUM;
 | |
|  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
 | |
|  *                       WARM_NODE                "
 | |
|  *                       COLD_NODE                WRITE_LIFE_NONE
 | |
|  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
 | |
|  * extension list        "                        "
 | |
|  *
 | |
|  * -- buffered io
 | |
|  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
 | |
|  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
 | |
|  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
 | |
|  * WRITE_LIFE_NONE       "                        "
 | |
|  * WRITE_LIFE_MEDIUM     "                        "
 | |
|  * WRITE_LIFE_LONG       "                        "
 | |
|  *
 | |
|  * -- direct io
 | |
|  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
 | |
|  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
 | |
|  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
 | |
|  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
 | |
|  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
 | |
|  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
 | |
|  */
 | |
| 
 | |
| enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
 | |
| 				enum page_type type, enum temp_type temp)
 | |
| {
 | |
| 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
 | |
| 		if (type == DATA) {
 | |
| 			if (temp == WARM)
 | |
| 				return WRITE_LIFE_NOT_SET;
 | |
| 			else if (temp == HOT)
 | |
| 				return WRITE_LIFE_SHORT;
 | |
| 			else if (temp == COLD)
 | |
| 				return WRITE_LIFE_EXTREME;
 | |
| 		} else {
 | |
| 			return WRITE_LIFE_NOT_SET;
 | |
| 		}
 | |
| 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
 | |
| 		if (type == DATA) {
 | |
| 			if (temp == WARM)
 | |
| 				return WRITE_LIFE_LONG;
 | |
| 			else if (temp == HOT)
 | |
| 				return WRITE_LIFE_SHORT;
 | |
| 			else if (temp == COLD)
 | |
| 				return WRITE_LIFE_EXTREME;
 | |
| 		} else if (type == NODE) {
 | |
| 			if (temp == WARM || temp == HOT)
 | |
| 				return WRITE_LIFE_NOT_SET;
 | |
| 			else if (temp == COLD)
 | |
| 				return WRITE_LIFE_NONE;
 | |
| 		} else if (type == META) {
 | |
| 			return WRITE_LIFE_MEDIUM;
 | |
| 		}
 | |
| 	}
 | |
| 	return WRITE_LIFE_NOT_SET;
 | |
| }
 | |
| 
 | |
| static int __get_segment_type_2(struct f2fs_io_info *fio)
 | |
| {
 | |
| 	if (fio->type == DATA)
 | |
| 		return CURSEG_HOT_DATA;
 | |
| 	else
 | |
| 		return CURSEG_HOT_NODE;
 | |
| }
 | |
| 
 | |
| static int __get_segment_type_4(struct f2fs_io_info *fio)
 | |
| {
 | |
| 	if (fio->type == DATA) {
 | |
| 		struct inode *inode = fio->page->mapping->host;
 | |
| 
 | |
| 		if (S_ISDIR(inode->i_mode))
 | |
| 			return CURSEG_HOT_DATA;
 | |
| 		else
 | |
| 			return CURSEG_COLD_DATA;
 | |
| 	} else {
 | |
| 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
 | |
| 			return CURSEG_WARM_NODE;
 | |
| 		else
 | |
| 			return CURSEG_COLD_NODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __get_segment_type_6(struct f2fs_io_info *fio)
 | |
| {
 | |
| 	if (fio->type == DATA) {
 | |
| 		struct inode *inode = fio->page->mapping->host;
 | |
| 
 | |
| 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
 | |
| 			return CURSEG_COLD_DATA_PINNED;
 | |
| 
 | |
| 		if (page_private_gcing(fio->page)) {
 | |
| 			if (fio->sbi->am.atgc_enabled &&
 | |
| 				(fio->io_type == FS_DATA_IO) &&
 | |
| 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
 | |
| 				return CURSEG_ALL_DATA_ATGC;
 | |
| 			else
 | |
| 				return CURSEG_COLD_DATA;
 | |
| 		}
 | |
| 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
 | |
| 			return CURSEG_COLD_DATA;
 | |
| 		if (file_is_hot(inode) ||
 | |
| 				is_inode_flag_set(inode, FI_HOT_DATA) ||
 | |
| 				f2fs_is_atomic_file(inode) ||
 | |
| 				f2fs_is_volatile_file(inode))
 | |
| 			return CURSEG_HOT_DATA;
 | |
| 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
 | |
| 	} else {
 | |
| 		if (IS_DNODE(fio->page))
 | |
| 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
 | |
| 						CURSEG_HOT_NODE;
 | |
| 		return CURSEG_COLD_NODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __get_segment_type(struct f2fs_io_info *fio)
 | |
| {
 | |
| 	int type = 0;
 | |
| 
 | |
| 	switch (F2FS_OPTION(fio->sbi).active_logs) {
 | |
| 	case 2:
 | |
| 		type = __get_segment_type_2(fio);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		type = __get_segment_type_4(fio);
 | |
| 		break;
 | |
| 	case 6:
 | |
| 		type = __get_segment_type_6(fio);
 | |
| 		break;
 | |
| 	default:
 | |
| 		f2fs_bug_on(fio->sbi, true);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_HOT(type))
 | |
| 		fio->temp = HOT;
 | |
| 	else if (IS_WARM(type))
 | |
| 		fio->temp = WARM;
 | |
| 	else
 | |
| 		fio->temp = COLD;
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
 | |
| 		block_t old_blkaddr, block_t *new_blkaddr,
 | |
| 		struct f2fs_summary *sum, int type,
 | |
| 		struct f2fs_io_info *fio)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned long long old_mtime;
 | |
| 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
 | |
| 	struct seg_entry *se = NULL;
 | |
| 
 | |
| 	down_read(&SM_I(sbi)->curseg_lock);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	down_write(&sit_i->sentry_lock);
 | |
| 
 | |
| 	if (from_gc) {
 | |
| 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
 | |
| 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
 | |
| 		sanity_check_seg_type(sbi, se->type);
 | |
| 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
 | |
| 	}
 | |
| 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
 | |
| 
 | |
| 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
 | |
| 
 | |
| 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
 | |
| 
 | |
| 	/*
 | |
| 	 * __add_sum_entry should be resided under the curseg_mutex
 | |
| 	 * because, this function updates a summary entry in the
 | |
| 	 * current summary block.
 | |
| 	 */
 | |
| 	__add_sum_entry(sbi, type, sum);
 | |
| 
 | |
| 	__refresh_next_blkoff(sbi, curseg);
 | |
| 
 | |
| 	stat_inc_block_count(sbi, curseg);
 | |
| 
 | |
| 	if (from_gc) {
 | |
| 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
 | |
| 	} else {
 | |
| 		update_segment_mtime(sbi, old_blkaddr, 0);
 | |
| 		old_mtime = 0;
 | |
| 	}
 | |
| 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
 | |
| 
 | |
| 	/*
 | |
| 	 * SIT information should be updated before segment allocation,
 | |
| 	 * since SSR needs latest valid block information.
 | |
| 	 */
 | |
| 	update_sit_entry(sbi, *new_blkaddr, 1);
 | |
| 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
 | |
| 		update_sit_entry(sbi, old_blkaddr, -1);
 | |
| 
 | |
| 	if (!__has_curseg_space(sbi, curseg)) {
 | |
| 		if (from_gc)
 | |
| 			get_atssr_segment(sbi, type, se->type,
 | |
| 						AT_SSR, se->mtime);
 | |
| 		else
 | |
| 			sit_i->s_ops->allocate_segment(sbi, type, false);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * segment dirty status should be updated after segment allocation,
 | |
| 	 * so we just need to update status only one time after previous
 | |
| 	 * segment being closed.
 | |
| 	 */
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
 | |
| 
 | |
| 	up_write(&sit_i->sentry_lock);
 | |
| 
 | |
| 	if (page && IS_NODESEG(type)) {
 | |
| 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
 | |
| 
 | |
| 		f2fs_inode_chksum_set(sbi, page);
 | |
| 	}
 | |
| 
 | |
| 	if (fio) {
 | |
| 		struct f2fs_bio_info *io;
 | |
| 
 | |
| 		if (F2FS_IO_ALIGNED(sbi))
 | |
| 			fio->retry = false;
 | |
| 
 | |
| 		INIT_LIST_HEAD(&fio->list);
 | |
| 		fio->in_list = true;
 | |
| 		io = sbi->write_io[fio->type] + fio->temp;
 | |
| 		spin_lock(&io->io_lock);
 | |
| 		list_add_tail(&fio->list, &io->io_list);
 | |
| 		spin_unlock(&io->io_lock);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	up_read(&SM_I(sbi)->curseg_lock);
 | |
| }
 | |
| 
 | |
| void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
 | |
| 					block_t blkaddr, unsigned int blkcnt)
 | |
| {
 | |
| 	if (!f2fs_is_multi_device(sbi))
 | |
| 		return;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
 | |
| 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
 | |
| 
 | |
| 		/* update device state for fsync */
 | |
| 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
 | |
| 
 | |
| 		/* update device state for checkpoint */
 | |
| 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
 | |
| 			spin_lock(&sbi->dev_lock);
 | |
| 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
 | |
| 			spin_unlock(&sbi->dev_lock);
 | |
| 		}
 | |
| 
 | |
| 		if (blkcnt <= blks)
 | |
| 			break;
 | |
| 		blkcnt -= blks;
 | |
| 		blkaddr += blks;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
 | |
| {
 | |
| 	int type = __get_segment_type(fio);
 | |
| 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
 | |
| 
 | |
| 	if (keep_order)
 | |
| 		down_read(&fio->sbi->io_order_lock);
 | |
| reallocate:
 | |
| 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
 | |
| 			&fio->new_blkaddr, sum, type, fio);
 | |
| 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
 | |
| 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
 | |
| 					fio->old_blkaddr, fio->old_blkaddr);
 | |
| 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
 | |
| 	}
 | |
| 
 | |
| 	/* writeout dirty page into bdev */
 | |
| 	f2fs_submit_page_write(fio);
 | |
| 	if (fio->retry) {
 | |
| 		fio->old_blkaddr = fio->new_blkaddr;
 | |
| 		goto reallocate;
 | |
| 	}
 | |
| 
 | |
| 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
 | |
| 
 | |
| 	if (keep_order)
 | |
| 		up_read(&fio->sbi->io_order_lock);
 | |
| }
 | |
| 
 | |
| void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
 | |
| 					enum iostat_type io_type)
 | |
| {
 | |
| 	struct f2fs_io_info fio = {
 | |
| 		.sbi = sbi,
 | |
| 		.type = META,
 | |
| 		.temp = HOT,
 | |
| 		.op = REQ_OP_WRITE,
 | |
| 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
 | |
| 		.old_blkaddr = page->index,
 | |
| 		.new_blkaddr = page->index,
 | |
| 		.page = page,
 | |
| 		.encrypted_page = NULL,
 | |
| 		.in_list = false,
 | |
| 	};
 | |
| 
 | |
| 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
 | |
| 		fio.op_flags &= ~REQ_META;
 | |
| 
 | |
| 	set_page_writeback(page);
 | |
| 	ClearPageError(page);
 | |
| 	f2fs_submit_page_write(&fio);
 | |
| 
 | |
| 	stat_inc_meta_count(sbi, page->index);
 | |
| 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
 | |
| }
 | |
| 
 | |
| void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
 | |
| {
 | |
| 	struct f2fs_summary sum;
 | |
| 
 | |
| 	set_summary(&sum, nid, 0, 0);
 | |
| 	do_write_page(&sum, fio);
 | |
| 
 | |
| 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
 | |
| }
 | |
| 
 | |
| void f2fs_outplace_write_data(struct dnode_of_data *dn,
 | |
| 					struct f2fs_io_info *fio)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = fio->sbi;
 | |
| 	struct f2fs_summary sum;
 | |
| 
 | |
| 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
 | |
| 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
 | |
| 	do_write_page(&sum, fio);
 | |
| 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
 | |
| 
 | |
| 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
 | |
| }
 | |
| 
 | |
| int f2fs_inplace_write_data(struct f2fs_io_info *fio)
 | |
| {
 | |
| 	int err;
 | |
| 	struct f2fs_sb_info *sbi = fio->sbi;
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	fio->new_blkaddr = fio->old_blkaddr;
 | |
| 	/* i/o temperature is needed for passing down write hints */
 | |
| 	__get_segment_type(fio);
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
 | |
| 
 | |
| 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
 | |
| 		set_sbi_flag(sbi, SBI_NEED_FSCK);
 | |
| 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
 | |
| 			  __func__, segno);
 | |
| 		err = -EFSCORRUPTED;
 | |
| 		goto drop_bio;
 | |
| 	}
 | |
| 
 | |
| 	if (f2fs_cp_error(sbi)) {
 | |
| 		err = -EIO;
 | |
| 		goto drop_bio;
 | |
| 	}
 | |
| 
 | |
| 	invalidate_mapping_pages(META_MAPPING(sbi),
 | |
| 				fio->new_blkaddr, fio->new_blkaddr);
 | |
| 
 | |
| 	stat_inc_inplace_blocks(fio->sbi);
 | |
| 
 | |
| 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
 | |
| 		err = f2fs_merge_page_bio(fio);
 | |
| 	else
 | |
| 		err = f2fs_submit_page_bio(fio);
 | |
| 	if (!err) {
 | |
| 		f2fs_update_device_state(fio->sbi, fio->ino,
 | |
| 						fio->new_blkaddr, 1);
 | |
| 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| drop_bio:
 | |
| 	if (fio->bio && *(fio->bio)) {
 | |
| 		struct bio *bio = *(fio->bio);
 | |
| 
 | |
| 		bio->bi_status = BLK_STS_IOERR;
 | |
| 		bio_endio(bio);
 | |
| 		*(fio->bio) = NULL;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
 | |
| 						unsigned int segno)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
 | |
| 		if (CURSEG_I(sbi, i)->segno == segno)
 | |
| 			break;
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
 | |
| 				block_t old_blkaddr, block_t new_blkaddr,
 | |
| 				bool recover_curseg, bool recover_newaddr,
 | |
| 				bool from_gc)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct curseg_info *curseg;
 | |
| 	unsigned int segno, old_cursegno;
 | |
| 	struct seg_entry *se;
 | |
| 	int type;
 | |
| 	unsigned short old_blkoff;
 | |
| 	unsigned char old_alloc_type;
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, new_blkaddr);
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 	type = se->type;
 | |
| 
 | |
| 	down_write(&SM_I(sbi)->curseg_lock);
 | |
| 
 | |
| 	if (!recover_curseg) {
 | |
| 		/* for recovery flow */
 | |
| 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
 | |
| 			if (old_blkaddr == NULL_ADDR)
 | |
| 				type = CURSEG_COLD_DATA;
 | |
| 			else
 | |
| 				type = CURSEG_WARM_DATA;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (IS_CURSEG(sbi, segno)) {
 | |
| 			/* se->type is volatile as SSR allocation */
 | |
| 			type = __f2fs_get_curseg(sbi, segno);
 | |
| 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
 | |
| 		} else {
 | |
| 			type = CURSEG_WARM_DATA;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	f2fs_bug_on(sbi, !IS_DATASEG(type));
 | |
| 	curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	down_write(&sit_i->sentry_lock);
 | |
| 
 | |
| 	old_cursegno = curseg->segno;
 | |
| 	old_blkoff = curseg->next_blkoff;
 | |
| 	old_alloc_type = curseg->alloc_type;
 | |
| 
 | |
| 	/* change the current segment */
 | |
| 	if (segno != curseg->segno) {
 | |
| 		curseg->next_segno = segno;
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	}
 | |
| 
 | |
| 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
 | |
| 	__add_sum_entry(sbi, type, sum);
 | |
| 
 | |
| 	if (!recover_curseg || recover_newaddr) {
 | |
| 		if (!from_gc)
 | |
| 			update_segment_mtime(sbi, new_blkaddr, 0);
 | |
| 		update_sit_entry(sbi, new_blkaddr, 1);
 | |
| 	}
 | |
| 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
 | |
| 		invalidate_mapping_pages(META_MAPPING(sbi),
 | |
| 					old_blkaddr, old_blkaddr);
 | |
| 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
 | |
| 		if (!from_gc)
 | |
| 			update_segment_mtime(sbi, old_blkaddr, 0);
 | |
| 		update_sit_entry(sbi, old_blkaddr, -1);
 | |
| 	}
 | |
| 
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
 | |
| 
 | |
| 	locate_dirty_segment(sbi, old_cursegno);
 | |
| 
 | |
| 	if (recover_curseg) {
 | |
| 		if (old_cursegno != curseg->segno) {
 | |
| 			curseg->next_segno = old_cursegno;
 | |
| 			change_curseg(sbi, type, true);
 | |
| 		}
 | |
| 		curseg->next_blkoff = old_blkoff;
 | |
| 		curseg->alloc_type = old_alloc_type;
 | |
| 	}
 | |
| 
 | |
| 	up_write(&sit_i->sentry_lock);
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 	up_write(&SM_I(sbi)->curseg_lock);
 | |
| }
 | |
| 
 | |
| void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
 | |
| 				block_t old_addr, block_t new_addr,
 | |
| 				unsigned char version, bool recover_curseg,
 | |
| 				bool recover_newaddr)
 | |
| {
 | |
| 	struct f2fs_summary sum;
 | |
| 
 | |
| 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
 | |
| 
 | |
| 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
 | |
| 					recover_curseg, recover_newaddr, false);
 | |
| 
 | |
| 	f2fs_update_data_blkaddr(dn, new_addr);
 | |
| }
 | |
| 
 | |
| void f2fs_wait_on_page_writeback(struct page *page,
 | |
| 				enum page_type type, bool ordered, bool locked)
 | |
| {
 | |
| 	if (PageWriteback(page)) {
 | |
| 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 | |
| 
 | |
| 		/* submit cached LFS IO */
 | |
| 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
 | |
| 		/* sbumit cached IPU IO */
 | |
| 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
 | |
| 		if (ordered) {
 | |
| 			wait_on_page_writeback(page);
 | |
| 			f2fs_bug_on(sbi, locked && PageWriteback(page));
 | |
| 		} else {
 | |
| 			wait_for_stable_page(page);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	struct page *cpage;
 | |
| 
 | |
| 	if (!f2fs_post_read_required(inode))
 | |
| 		return;
 | |
| 
 | |
| 	if (!__is_valid_data_blkaddr(blkaddr))
 | |
| 		return;
 | |
| 
 | |
| 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
 | |
| 	if (cpage) {
 | |
| 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
 | |
| 		f2fs_put_page(cpage, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
 | |
| 								block_t len)
 | |
| {
 | |
| 	block_t i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
 | |
| }
 | |
| 
 | |
| static int read_compacted_summaries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct curseg_info *seg_i;
 | |
| 	unsigned char *kaddr;
 | |
| 	struct page *page;
 | |
| 	block_t start;
 | |
| 	int i, j, offset;
 | |
| 
 | |
| 	start = start_sum_block(sbi);
 | |
| 
 | |
| 	page = f2fs_get_meta_page(sbi, start++);
 | |
| 	if (IS_ERR(page))
 | |
| 		return PTR_ERR(page);
 | |
| 	kaddr = (unsigned char *)page_address(page);
 | |
| 
 | |
| 	/* Step 1: restore nat cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
 | |
| 
 | |
| 	/* Step 2: restore sit cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
 | |
| 	offset = 2 * SUM_JOURNAL_SIZE;
 | |
| 
 | |
| 	/* Step 3: restore summary entries */
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		unsigned short blk_off;
 | |
| 		unsigned int segno;
 | |
| 
 | |
| 		seg_i = CURSEG_I(sbi, i);
 | |
| 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
 | |
| 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
 | |
| 		seg_i->next_segno = segno;
 | |
| 		reset_curseg(sbi, i, 0);
 | |
| 		seg_i->alloc_type = ckpt->alloc_type[i];
 | |
| 		seg_i->next_blkoff = blk_off;
 | |
| 
 | |
| 		if (seg_i->alloc_type == SSR)
 | |
| 			blk_off = sbi->blocks_per_seg;
 | |
| 
 | |
| 		for (j = 0; j < blk_off; j++) {
 | |
| 			struct f2fs_summary *s;
 | |
| 
 | |
| 			s = (struct f2fs_summary *)(kaddr + offset);
 | |
| 			seg_i->sum_blk->entries[j] = *s;
 | |
| 			offset += SUMMARY_SIZE;
 | |
| 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
 | |
| 						SUM_FOOTER_SIZE)
 | |
| 				continue;
 | |
| 
 | |
| 			f2fs_put_page(page, 1);
 | |
| 			page = NULL;
 | |
| 
 | |
| 			page = f2fs_get_meta_page(sbi, start++);
 | |
| 			if (IS_ERR(page))
 | |
| 				return PTR_ERR(page);
 | |
| 			kaddr = (unsigned char *)page_address(page);
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	f2fs_put_page(page, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct f2fs_summary_block *sum;
 | |
| 	struct curseg_info *curseg;
 | |
| 	struct page *new;
 | |
| 	unsigned short blk_off;
 | |
| 	unsigned int segno = 0;
 | |
| 	block_t blk_addr = 0;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* get segment number and block addr */
 | |
| 	if (IS_DATASEG(type)) {
 | |
| 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
 | |
| 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
 | |
| 							CURSEG_HOT_DATA]);
 | |
| 		if (__exist_node_summaries(sbi))
 | |
| 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
 | |
| 		else
 | |
| 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
 | |
| 	} else {
 | |
| 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
 | |
| 							CURSEG_HOT_NODE]);
 | |
| 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
 | |
| 							CURSEG_HOT_NODE]);
 | |
| 		if (__exist_node_summaries(sbi))
 | |
| 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
 | |
| 							type - CURSEG_HOT_NODE);
 | |
| 		else
 | |
| 			blk_addr = GET_SUM_BLOCK(sbi, segno);
 | |
| 	}
 | |
| 
 | |
| 	new = f2fs_get_meta_page(sbi, blk_addr);
 | |
| 	if (IS_ERR(new))
 | |
| 		return PTR_ERR(new);
 | |
| 	sum = (struct f2fs_summary_block *)page_address(new);
 | |
| 
 | |
| 	if (IS_NODESEG(type)) {
 | |
| 		if (__exist_node_summaries(sbi)) {
 | |
| 			struct f2fs_summary *ns = &sum->entries[0];
 | |
| 			int i;
 | |
| 
 | |
| 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
 | |
| 				ns->version = 0;
 | |
| 				ns->ofs_in_node = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			err = f2fs_restore_node_summary(sbi, segno, sum);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* set uncompleted segment to curseg */
 | |
| 	curseg = CURSEG_I(sbi, type);
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	/* update journal info */
 | |
| 	down_write(&curseg->journal_rwsem);
 | |
| 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
 | |
| 	up_write(&curseg->journal_rwsem);
 | |
| 
 | |
| 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
 | |
| 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
 | |
| 	curseg->next_segno = segno;
 | |
| 	reset_curseg(sbi, type, 0);
 | |
| 	curseg->alloc_type = ckpt->alloc_type[type];
 | |
| 	curseg->next_blkoff = blk_off;
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| out:
 | |
| 	f2fs_put_page(new, 1);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
 | |
| 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
 | |
| 	int type = CURSEG_HOT_DATA;
 | |
| 	int err;
 | |
| 
 | |
| 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
 | |
| 		int npages = f2fs_npages_for_summary_flush(sbi, true);
 | |
| 
 | |
| 		if (npages >= 2)
 | |
| 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
 | |
| 							META_CP, true);
 | |
| 
 | |
| 		/* restore for compacted data summary */
 | |
| 		err = read_compacted_summaries(sbi);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		type = CURSEG_HOT_NODE;
 | |
| 	}
 | |
| 
 | |
| 	if (__exist_node_summaries(sbi))
 | |
| 		f2fs_ra_meta_pages(sbi,
 | |
| 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
 | |
| 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
 | |
| 
 | |
| 	for (; type <= CURSEG_COLD_NODE; type++) {
 | |
| 		err = read_normal_summaries(sbi, type);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/* sanity check for summary blocks */
 | |
| 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
 | |
| 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
 | |
| 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
 | |
| 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned char *kaddr;
 | |
| 	struct f2fs_summary *summary;
 | |
| 	struct curseg_info *seg_i;
 | |
| 	int written_size = 0;
 | |
| 	int i, j;
 | |
| 
 | |
| 	page = f2fs_grab_meta_page(sbi, blkaddr++);
 | |
| 	kaddr = (unsigned char *)page_address(page);
 | |
| 	memset(kaddr, 0, PAGE_SIZE);
 | |
| 
 | |
| 	/* Step 1: write nat cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
 | |
| 	written_size += SUM_JOURNAL_SIZE;
 | |
| 
 | |
| 	/* Step 2: write sit cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
 | |
| 	written_size += SUM_JOURNAL_SIZE;
 | |
| 
 | |
| 	/* Step 3: write summary entries */
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		unsigned short blkoff;
 | |
| 
 | |
| 		seg_i = CURSEG_I(sbi, i);
 | |
| 		if (sbi->ckpt->alloc_type[i] == SSR)
 | |
| 			blkoff = sbi->blocks_per_seg;
 | |
| 		else
 | |
| 			blkoff = curseg_blkoff(sbi, i);
 | |
| 
 | |
| 		for (j = 0; j < blkoff; j++) {
 | |
| 			if (!page) {
 | |
| 				page = f2fs_grab_meta_page(sbi, blkaddr++);
 | |
| 				kaddr = (unsigned char *)page_address(page);
 | |
| 				memset(kaddr, 0, PAGE_SIZE);
 | |
| 				written_size = 0;
 | |
| 			}
 | |
| 			summary = (struct f2fs_summary *)(kaddr + written_size);
 | |
| 			*summary = seg_i->sum_blk->entries[j];
 | |
| 			written_size += SUMMARY_SIZE;
 | |
| 
 | |
| 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
 | |
| 							SUM_FOOTER_SIZE)
 | |
| 				continue;
 | |
| 
 | |
| 			set_page_dirty(page);
 | |
| 			f2fs_put_page(page, 1);
 | |
| 			page = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (page) {
 | |
| 		set_page_dirty(page);
 | |
| 		f2fs_put_page(page, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void write_normal_summaries(struct f2fs_sb_info *sbi,
 | |
| 					block_t blkaddr, int type)
 | |
| {
 | |
| 	int i, end;
 | |
| 
 | |
| 	if (IS_DATASEG(type))
 | |
| 		end = type + NR_CURSEG_DATA_TYPE;
 | |
| 	else
 | |
| 		end = type + NR_CURSEG_NODE_TYPE;
 | |
| 
 | |
| 	for (i = type; i < end; i++)
 | |
| 		write_current_sum_page(sbi, i, blkaddr + (i - type));
 | |
| }
 | |
| 
 | |
| void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
 | |
| {
 | |
| 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
 | |
| 		write_compacted_summaries(sbi, start_blk);
 | |
| 	else
 | |
| 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
 | |
| }
 | |
| 
 | |
| void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
 | |
| {
 | |
| 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
 | |
| }
 | |
| 
 | |
| int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
 | |
| 					unsigned int val, int alloc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (type == NAT_JOURNAL) {
 | |
| 		for (i = 0; i < nats_in_cursum(journal); i++) {
 | |
| 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
 | |
| 				return i;
 | |
| 		}
 | |
| 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
 | |
| 			return update_nats_in_cursum(journal, 1);
 | |
| 	} else if (type == SIT_JOURNAL) {
 | |
| 		for (i = 0; i < sits_in_cursum(journal); i++)
 | |
| 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
 | |
| 				return i;
 | |
| 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
 | |
| 			return update_sits_in_cursum(journal, 1);
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
 | |
| 					unsigned int segno)
 | |
| {
 | |
| 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
 | |
| }
 | |
| 
 | |
| static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
 | |
| 					unsigned int start)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct page *page;
 | |
| 	pgoff_t src_off, dst_off;
 | |
| 
 | |
| 	src_off = current_sit_addr(sbi, start);
 | |
| 	dst_off = next_sit_addr(sbi, src_off);
 | |
| 
 | |
| 	page = f2fs_grab_meta_page(sbi, dst_off);
 | |
| 	seg_info_to_sit_page(sbi, page, start);
 | |
| 
 | |
| 	set_page_dirty(page);
 | |
| 	set_to_next_sit(sit_i, start);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct sit_entry_set *grab_sit_entry_set(void)
 | |
| {
 | |
| 	struct sit_entry_set *ses =
 | |
| 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
 | |
| 						GFP_NOFS, true, NULL);
 | |
| 
 | |
| 	ses->entry_cnt = 0;
 | |
| 	INIT_LIST_HEAD(&ses->set_list);
 | |
| 	return ses;
 | |
| }
 | |
| 
 | |
| static void release_sit_entry_set(struct sit_entry_set *ses)
 | |
| {
 | |
| 	list_del(&ses->set_list);
 | |
| 	kmem_cache_free(sit_entry_set_slab, ses);
 | |
| }
 | |
| 
 | |
| static void adjust_sit_entry_set(struct sit_entry_set *ses,
 | |
| 						struct list_head *head)
 | |
| {
 | |
| 	struct sit_entry_set *next = ses;
 | |
| 
 | |
| 	if (list_is_last(&ses->set_list, head))
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_entry_continue(next, head, set_list)
 | |
| 		if (ses->entry_cnt <= next->entry_cnt)
 | |
| 			break;
 | |
| 
 | |
| 	list_move_tail(&ses->set_list, &next->set_list);
 | |
| }
 | |
| 
 | |
| static void add_sit_entry(unsigned int segno, struct list_head *head)
 | |
| {
 | |
| 	struct sit_entry_set *ses;
 | |
| 	unsigned int start_segno = START_SEGNO(segno);
 | |
| 
 | |
| 	list_for_each_entry(ses, head, set_list) {
 | |
| 		if (ses->start_segno == start_segno) {
 | |
| 			ses->entry_cnt++;
 | |
| 			adjust_sit_entry_set(ses, head);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ses = grab_sit_entry_set();
 | |
| 
 | |
| 	ses->start_segno = start_segno;
 | |
| 	ses->entry_cnt++;
 | |
| 	list_add(&ses->set_list, head);
 | |
| }
 | |
| 
 | |
| static void add_sits_in_set(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_sm_info *sm_info = SM_I(sbi);
 | |
| 	struct list_head *set_list = &sm_info->sit_entry_set;
 | |
| 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
 | |
| 		add_sit_entry(segno, set_list);
 | |
| }
 | |
| 
 | |
| static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	struct f2fs_journal *journal = curseg->journal;
 | |
| 	int i;
 | |
| 
 | |
| 	down_write(&curseg->journal_rwsem);
 | |
| 	for (i = 0; i < sits_in_cursum(journal); i++) {
 | |
| 		unsigned int segno;
 | |
| 		bool dirtied;
 | |
| 
 | |
| 		segno = le32_to_cpu(segno_in_journal(journal, i));
 | |
| 		dirtied = __mark_sit_entry_dirty(sbi, segno);
 | |
| 
 | |
| 		if (!dirtied)
 | |
| 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
 | |
| 	}
 | |
| 	update_sits_in_cursum(journal, -i);
 | |
| 	up_write(&curseg->journal_rwsem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CP calls this function, which flushes SIT entries including sit_journal,
 | |
|  * and moves prefree segs to free segs.
 | |
|  */
 | |
| void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	struct f2fs_journal *journal = curseg->journal;
 | |
| 	struct sit_entry_set *ses, *tmp;
 | |
| 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
 | |
| 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
 | |
| 	struct seg_entry *se;
 | |
| 
 | |
| 	down_write(&sit_i->sentry_lock);
 | |
| 
 | |
| 	if (!sit_i->dirty_sentries)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * add and account sit entries of dirty bitmap in sit entry
 | |
| 	 * set temporarily
 | |
| 	 */
 | |
| 	add_sits_in_set(sbi);
 | |
| 
 | |
| 	/*
 | |
| 	 * if there are no enough space in journal to store dirty sit
 | |
| 	 * entries, remove all entries from journal and add and account
 | |
| 	 * them in sit entry set.
 | |
| 	 */
 | |
| 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
 | |
| 								!to_journal)
 | |
| 		remove_sits_in_journal(sbi);
 | |
| 
 | |
| 	/*
 | |
| 	 * there are two steps to flush sit entries:
 | |
| 	 * #1, flush sit entries to journal in current cold data summary block.
 | |
| 	 * #2, flush sit entries to sit page.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(ses, tmp, head, set_list) {
 | |
| 		struct page *page = NULL;
 | |
| 		struct f2fs_sit_block *raw_sit = NULL;
 | |
| 		unsigned int start_segno = ses->start_segno;
 | |
| 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
 | |
| 						(unsigned long)MAIN_SEGS(sbi));
 | |
| 		unsigned int segno = start_segno;
 | |
| 
 | |
| 		if (to_journal &&
 | |
| 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
 | |
| 			to_journal = false;
 | |
| 
 | |
| 		if (to_journal) {
 | |
| 			down_write(&curseg->journal_rwsem);
 | |
| 		} else {
 | |
| 			page = get_next_sit_page(sbi, start_segno);
 | |
| 			raw_sit = page_address(page);
 | |
| 		}
 | |
| 
 | |
| 		/* flush dirty sit entries in region of current sit set */
 | |
| 		for_each_set_bit_from(segno, bitmap, end) {
 | |
| 			int offset, sit_offset;
 | |
| 
 | |
| 			se = get_seg_entry(sbi, segno);
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
 | |
| 						SIT_VBLOCK_MAP_SIZE))
 | |
| 				f2fs_bug_on(sbi, 1);
 | |
| #endif
 | |
| 
 | |
| 			/* add discard candidates */
 | |
| 			if (!(cpc->reason & CP_DISCARD)) {
 | |
| 				cpc->trim_start = segno;
 | |
| 				add_discard_addrs(sbi, cpc, false);
 | |
| 			}
 | |
| 
 | |
| 			if (to_journal) {
 | |
| 				offset = f2fs_lookup_journal_in_cursum(journal,
 | |
| 							SIT_JOURNAL, segno, 1);
 | |
| 				f2fs_bug_on(sbi, offset < 0);
 | |
| 				segno_in_journal(journal, offset) =
 | |
| 							cpu_to_le32(segno);
 | |
| 				seg_info_to_raw_sit(se,
 | |
| 					&sit_in_journal(journal, offset));
 | |
| 				check_block_count(sbi, segno,
 | |
| 					&sit_in_journal(journal, offset));
 | |
| 			} else {
 | |
| 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
 | |
| 				seg_info_to_raw_sit(se,
 | |
| 						&raw_sit->entries[sit_offset]);
 | |
| 				check_block_count(sbi, segno,
 | |
| 						&raw_sit->entries[sit_offset]);
 | |
| 			}
 | |
| 
 | |
| 			__clear_bit(segno, bitmap);
 | |
| 			sit_i->dirty_sentries--;
 | |
| 			ses->entry_cnt--;
 | |
| 		}
 | |
| 
 | |
| 		if (to_journal)
 | |
| 			up_write(&curseg->journal_rwsem);
 | |
| 		else
 | |
| 			f2fs_put_page(page, 1);
 | |
| 
 | |
| 		f2fs_bug_on(sbi, ses->entry_cnt);
 | |
| 		release_sit_entry_set(ses);
 | |
| 	}
 | |
| 
 | |
| 	f2fs_bug_on(sbi, !list_empty(head));
 | |
| 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
 | |
| out:
 | |
| 	if (cpc->reason & CP_DISCARD) {
 | |
| 		__u64 trim_start = cpc->trim_start;
 | |
| 
 | |
| 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
 | |
| 			add_discard_addrs(sbi, cpc, false);
 | |
| 
 | |
| 		cpc->trim_start = trim_start;
 | |
| 	}
 | |
| 	up_write(&sit_i->sentry_lock);
 | |
| 
 | |
| 	set_prefree_as_free_segments(sbi);
 | |
| }
 | |
| 
 | |
| static int build_sit_info(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 | |
| 	struct sit_info *sit_i;
 | |
| 	unsigned int sit_segs, start;
 | |
| 	char *src_bitmap, *bitmap;
 | |
| 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
 | |
| 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
 | |
| 
 | |
| 	/* allocate memory for SIT information */
 | |
| 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
 | |
| 	if (!sit_i)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->sit_info = sit_i;
 | |
| 
 | |
| 	sit_i->sentries =
 | |
| 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
 | |
| 					      MAIN_SEGS(sbi)),
 | |
| 			      GFP_KERNEL);
 | |
| 	if (!sit_i->sentries)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
 | |
| 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
 | |
| 								GFP_KERNEL);
 | |
| 	if (!sit_i->dirty_sentries_bitmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
 | |
| #else
 | |
| 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
 | |
| #endif
 | |
| 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
 | |
| 	if (!sit_i->bitmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bitmap = sit_i->bitmap;
 | |
| 
 | |
| 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
 | |
| 		sit_i->sentries[start].cur_valid_map = bitmap;
 | |
| 		bitmap += SIT_VBLOCK_MAP_SIZE;
 | |
| 
 | |
| 		sit_i->sentries[start].ckpt_valid_map = bitmap;
 | |
| 		bitmap += SIT_VBLOCK_MAP_SIZE;
 | |
| 
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
 | |
| 		bitmap += SIT_VBLOCK_MAP_SIZE;
 | |
| #endif
 | |
| 
 | |
| 		if (discard_map) {
 | |
| 			sit_i->sentries[start].discard_map = bitmap;
 | |
| 			bitmap += SIT_VBLOCK_MAP_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
 | |
| 	if (!sit_i->tmp_map)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (__is_large_section(sbi)) {
 | |
| 		sit_i->sec_entries =
 | |
| 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
 | |
| 						      MAIN_SECS(sbi)),
 | |
| 				      GFP_KERNEL);
 | |
| 		if (!sit_i->sec_entries)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* get information related with SIT */
 | |
| 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
 | |
| 
 | |
| 	/* setup SIT bitmap from ckeckpoint pack */
 | |
| 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
 | |
| 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
 | |
| 
 | |
| 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
 | |
| 	if (!sit_i->sit_bitmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
 | |
| 					sit_bitmap_size, GFP_KERNEL);
 | |
| 	if (!sit_i->sit_bitmap_mir)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
 | |
| 					main_bitmap_size, GFP_KERNEL);
 | |
| 	if (!sit_i->invalid_segmap)
 | |
| 		return -ENOMEM;
 | |
| #endif
 | |
| 
 | |
| 	/* init SIT information */
 | |
| 	sit_i->s_ops = &default_salloc_ops;
 | |
| 
 | |
| 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
 | |
| 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
 | |
| 	sit_i->written_valid_blocks = 0;
 | |
| 	sit_i->bitmap_size = sit_bitmap_size;
 | |
| 	sit_i->dirty_sentries = 0;
 | |
| 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
 | |
| 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
 | |
| 	sit_i->mounted_time = ktime_get_boottime_seconds();
 | |
| 	init_rwsem(&sit_i->sentry_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_free_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct free_segmap_info *free_i;
 | |
| 	unsigned int bitmap_size, sec_bitmap_size;
 | |
| 
 | |
| 	/* allocate memory for free segmap information */
 | |
| 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
 | |
| 	if (!free_i)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->free_info = free_i;
 | |
| 
 | |
| 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
 | |
| 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
 | |
| 	if (!free_i->free_segmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
 | |
| 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
 | |
| 	if (!free_i->free_secmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* set all segments as dirty temporarily */
 | |
| 	memset(free_i->free_segmap, 0xff, bitmap_size);
 | |
| 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
 | |
| 
 | |
| 	/* init free segmap information */
 | |
| 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
 | |
| 	free_i->free_segments = 0;
 | |
| 	free_i->free_sections = 0;
 | |
| 	spin_lock_init(&free_i->segmap_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *array;
 | |
| 	int i;
 | |
| 
 | |
| 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
 | |
| 					sizeof(*array)), GFP_KERNEL);
 | |
| 	if (!array)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->curseg_array = array;
 | |
| 
 | |
| 	for (i = 0; i < NO_CHECK_TYPE; i++) {
 | |
| 		mutex_init(&array[i].curseg_mutex);
 | |
| 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
 | |
| 		if (!array[i].sum_blk)
 | |
| 			return -ENOMEM;
 | |
| 		init_rwsem(&array[i].journal_rwsem);
 | |
| 		array[i].journal = f2fs_kzalloc(sbi,
 | |
| 				sizeof(struct f2fs_journal), GFP_KERNEL);
 | |
| 		if (!array[i].journal)
 | |
| 			return -ENOMEM;
 | |
| 		if (i < NR_PERSISTENT_LOG)
 | |
| 			array[i].seg_type = CURSEG_HOT_DATA + i;
 | |
| 		else if (i == CURSEG_COLD_DATA_PINNED)
 | |
| 			array[i].seg_type = CURSEG_COLD_DATA;
 | |
| 		else if (i == CURSEG_ALL_DATA_ATGC)
 | |
| 			array[i].seg_type = CURSEG_COLD_DATA;
 | |
| 		array[i].segno = NULL_SEGNO;
 | |
| 		array[i].next_blkoff = 0;
 | |
| 		array[i].inited = false;
 | |
| 	}
 | |
| 	return restore_curseg_summaries(sbi);
 | |
| }
 | |
| 
 | |
| static int build_sit_entries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	struct f2fs_journal *journal = curseg->journal;
 | |
| 	struct seg_entry *se;
 | |
| 	struct f2fs_sit_entry sit;
 | |
| 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
 | |
| 	unsigned int i, start, end;
 | |
| 	unsigned int readed, start_blk = 0;
 | |
| 	int err = 0;
 | |
| 	block_t total_node_blocks = 0;
 | |
| 
 | |
| 	do {
 | |
| 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
 | |
| 							META_SIT, true);
 | |
| 
 | |
| 		start = start_blk * sit_i->sents_per_block;
 | |
| 		end = (start_blk + readed) * sit_i->sents_per_block;
 | |
| 
 | |
| 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
 | |
| 			struct f2fs_sit_block *sit_blk;
 | |
| 			struct page *page;
 | |
| 
 | |
| 			se = &sit_i->sentries[start];
 | |
| 			page = get_current_sit_page(sbi, start);
 | |
| 			if (IS_ERR(page))
 | |
| 				return PTR_ERR(page);
 | |
| 			sit_blk = (struct f2fs_sit_block *)page_address(page);
 | |
| 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
 | |
| 			f2fs_put_page(page, 1);
 | |
| 
 | |
| 			err = check_block_count(sbi, start, &sit);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			seg_info_from_raw_sit(se, &sit);
 | |
| 			if (IS_NODESEG(se->type))
 | |
| 				total_node_blocks += se->valid_blocks;
 | |
| 
 | |
| 			if (f2fs_block_unit_discard(sbi)) {
 | |
| 				/* build discard map only one time */
 | |
| 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
 | |
| 					memset(se->discard_map, 0xff,
 | |
| 						SIT_VBLOCK_MAP_SIZE);
 | |
| 				} else {
 | |
| 					memcpy(se->discard_map,
 | |
| 						se->cur_valid_map,
 | |
| 						SIT_VBLOCK_MAP_SIZE);
 | |
| 					sbi->discard_blks +=
 | |
| 						sbi->blocks_per_seg -
 | |
| 						se->valid_blocks;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (__is_large_section(sbi))
 | |
| 				get_sec_entry(sbi, start)->valid_blocks +=
 | |
| 							se->valid_blocks;
 | |
| 		}
 | |
| 		start_blk += readed;
 | |
| 	} while (start_blk < sit_blk_cnt);
 | |
| 
 | |
| 	down_read(&curseg->journal_rwsem);
 | |
| 	for (i = 0; i < sits_in_cursum(journal); i++) {
 | |
| 		unsigned int old_valid_blocks;
 | |
| 
 | |
| 		start = le32_to_cpu(segno_in_journal(journal, i));
 | |
| 		if (start >= MAIN_SEGS(sbi)) {
 | |
| 			f2fs_err(sbi, "Wrong journal entry on segno %u",
 | |
| 				 start);
 | |
| 			err = -EFSCORRUPTED;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		se = &sit_i->sentries[start];
 | |
| 		sit = sit_in_journal(journal, i);
 | |
| 
 | |
| 		old_valid_blocks = se->valid_blocks;
 | |
| 		if (IS_NODESEG(se->type))
 | |
| 			total_node_blocks -= old_valid_blocks;
 | |
| 
 | |
| 		err = check_block_count(sbi, start, &sit);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 		seg_info_from_raw_sit(se, &sit);
 | |
| 		if (IS_NODESEG(se->type))
 | |
| 			total_node_blocks += se->valid_blocks;
 | |
| 
 | |
| 		if (f2fs_block_unit_discard(sbi)) {
 | |
| 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
 | |
| 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
 | |
| 			} else {
 | |
| 				memcpy(se->discard_map, se->cur_valid_map,
 | |
| 							SIT_VBLOCK_MAP_SIZE);
 | |
| 				sbi->discard_blks += old_valid_blocks;
 | |
| 				sbi->discard_blks -= se->valid_blocks;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (__is_large_section(sbi)) {
 | |
| 			get_sec_entry(sbi, start)->valid_blocks +=
 | |
| 							se->valid_blocks;
 | |
| 			get_sec_entry(sbi, start)->valid_blocks -=
 | |
| 							old_valid_blocks;
 | |
| 		}
 | |
| 	}
 | |
| 	up_read(&curseg->journal_rwsem);
 | |
| 
 | |
| 	if (!err && total_node_blocks != valid_node_count(sbi)) {
 | |
| 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
 | |
| 			 total_node_blocks, valid_node_count(sbi));
 | |
| 		err = -EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void init_free_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	unsigned int start;
 | |
| 	int type;
 | |
| 	struct seg_entry *sentry;
 | |
| 
 | |
| 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
 | |
| 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
 | |
| 			continue;
 | |
| 		sentry = get_seg_entry(sbi, start);
 | |
| 		if (!sentry->valid_blocks)
 | |
| 			__set_free(sbi, start);
 | |
| 		else
 | |
| 			SIT_I(sbi)->written_valid_blocks +=
 | |
| 						sentry->valid_blocks;
 | |
| 	}
 | |
| 
 | |
| 	/* set use the current segments */
 | |
| 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
 | |
| 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
 | |
| 
 | |
| 		__set_test_and_inuse(sbi, curseg_t->segno);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_dirty_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int segno = 0, offset = 0, secno;
 | |
| 	block_t valid_blocks, usable_blks_in_seg;
 | |
| 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
 | |
| 
 | |
| 	while (1) {
 | |
| 		/* find dirty segment based on free segmap */
 | |
| 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
 | |
| 		if (segno >= MAIN_SEGS(sbi))
 | |
| 			break;
 | |
| 		offset = segno + 1;
 | |
| 		valid_blocks = get_valid_blocks(sbi, segno, false);
 | |
| 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
 | |
| 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
 | |
| 			continue;
 | |
| 		if (valid_blocks > usable_blks_in_seg) {
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| 			continue;
 | |
| 		}
 | |
| 		mutex_lock(&dirty_i->seglist_lock);
 | |
| 		__locate_dirty_segment(sbi, segno, DIRTY);
 | |
| 		mutex_unlock(&dirty_i->seglist_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (!__is_large_section(sbi))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
 | |
| 		valid_blocks = get_valid_blocks(sbi, segno, true);
 | |
| 		secno = GET_SEC_FROM_SEG(sbi, segno);
 | |
| 
 | |
| 		if (!valid_blocks || valid_blocks == blks_per_sec)
 | |
| 			continue;
 | |
| 		if (IS_CURSEC(sbi, secno))
 | |
| 			continue;
 | |
| 		set_bit(secno, dirty_i->dirty_secmap);
 | |
| 	}
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| static int init_victim_secmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
 | |
| 
 | |
| 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
 | |
| 	if (!dirty_i->victim_secmap)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_dirty_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i;
 | |
| 	unsigned int bitmap_size, i;
 | |
| 
 | |
| 	/* allocate memory for dirty segments list information */
 | |
| 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
 | |
| 								GFP_KERNEL);
 | |
| 	if (!dirty_i)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->dirty_info = dirty_i;
 | |
| 	mutex_init(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
 | |
| 
 | |
| 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
 | |
| 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
 | |
| 								GFP_KERNEL);
 | |
| 		if (!dirty_i->dirty_segmap[i])
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (__is_large_section(sbi)) {
 | |
| 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
 | |
| 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
 | |
| 						bitmap_size, GFP_KERNEL);
 | |
| 		if (!dirty_i->dirty_secmap)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	init_dirty_segmap(sbi);
 | |
| 	return init_victim_secmap(sbi);
 | |
| }
 | |
| 
 | |
| static int sanity_check_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
 | |
| 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
 | |
| 	 */
 | |
| 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
 | |
| 		struct curseg_info *curseg = CURSEG_I(sbi, i);
 | |
| 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
 | |
| 		unsigned int blkofs = curseg->next_blkoff;
 | |
| 
 | |
| 		if (f2fs_sb_has_readonly(sbi) &&
 | |
| 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
 | |
| 			continue;
 | |
| 
 | |
| 		sanity_check_seg_type(sbi, curseg->seg_type);
 | |
| 
 | |
| 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
 | |
| 			goto out;
 | |
| 
 | |
| 		if (curseg->alloc_type == SSR)
 | |
| 			continue;
 | |
| 
 | |
| 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
 | |
| 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
 | |
| 				continue;
 | |
| out:
 | |
| 			f2fs_err(sbi,
 | |
| 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
 | |
| 				 i, curseg->segno, curseg->alloc_type,
 | |
| 				 curseg->next_blkoff, blkofs);
 | |
| 			return -EFSCORRUPTED;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_ZONED
 | |
| 
 | |
| static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
 | |
| 				    struct f2fs_dev_info *fdev,
 | |
| 				    struct blk_zone *zone)
 | |
| {
 | |
| 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
 | |
| 	block_t zone_block, wp_block, last_valid_block;
 | |
| 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
 | |
| 	int i, s, b, ret;
 | |
| 	struct seg_entry *se;
 | |
| 
 | |
| 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
 | |
| 		return 0;
 | |
| 
 | |
| 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
 | |
| 	wp_segno = GET_SEGNO(sbi, wp_block);
 | |
| 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
 | |
| 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
 | |
| 	zone_segno = GET_SEGNO(sbi, zone_block);
 | |
| 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
 | |
| 
 | |
| 	if (zone_segno >= MAIN_SEGS(sbi))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip check of zones cursegs point to, since
 | |
| 	 * fix_curseg_write_pointer() checks them.
 | |
| 	 */
 | |
| 	for (i = 0; i < NO_CHECK_TYPE; i++)
 | |
| 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
 | |
| 						   CURSEG_I(sbi, i)->segno))
 | |
| 			return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get last valid block of the zone.
 | |
| 	 */
 | |
| 	last_valid_block = zone_block - 1;
 | |
| 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
 | |
| 		segno = zone_segno + s;
 | |
| 		se = get_seg_entry(sbi, segno);
 | |
| 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
 | |
| 			if (f2fs_test_bit(b, se->cur_valid_map)) {
 | |
| 				last_valid_block = START_BLOCK(sbi, segno) + b;
 | |
| 				break;
 | |
| 			}
 | |
| 		if (last_valid_block >= zone_block)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If last valid block is beyond the write pointer, report the
 | |
| 	 * inconsistency. This inconsistency does not cause write error
 | |
| 	 * because the zone will not be selected for write operation until
 | |
| 	 * it get discarded. Just report it.
 | |
| 	 */
 | |
| 	if (last_valid_block >= wp_block) {
 | |
| 		f2fs_notice(sbi, "Valid block beyond write pointer: "
 | |
| 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
 | |
| 			    GET_SEGNO(sbi, last_valid_block),
 | |
| 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
 | |
| 			    wp_segno, wp_blkoff);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is no valid block in the zone and if write pointer is
 | |
| 	 * not at zone start, reset the write pointer.
 | |
| 	 */
 | |
| 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
 | |
| 		f2fs_notice(sbi,
 | |
| 			    "Zone without valid block has non-zero write "
 | |
| 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
 | |
| 			    wp_segno, wp_blkoff);
 | |
| 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
 | |
| 					zone->len >> log_sectors_per_block);
 | |
| 		if (ret) {
 | |
| 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
 | |
| 				 fdev->path, ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
 | |
| 						  block_t zone_blkaddr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < sbi->s_ndevs; i++) {
 | |
| 		if (!bdev_is_zoned(FDEV(i).bdev))
 | |
| 			continue;
 | |
| 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
 | |
| 				zone_blkaddr <= FDEV(i).end_blk))
 | |
| 			return &FDEV(i);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
 | |
| 			      void *data)
 | |
| {
 | |
| 	memcpy(data, zone, sizeof(struct blk_zone));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct curseg_info *cs = CURSEG_I(sbi, type);
 | |
| 	struct f2fs_dev_info *zbd;
 | |
| 	struct blk_zone zone;
 | |
| 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
 | |
| 	block_t cs_zone_block, wp_block;
 | |
| 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
 | |
| 	sector_t zone_sector;
 | |
| 	int err;
 | |
| 
 | |
| 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
 | |
| 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
 | |
| 
 | |
| 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
 | |
| 	if (!zbd)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* report zone for the sector the curseg points to */
 | |
| 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
 | |
| 		<< log_sectors_per_block;
 | |
| 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
 | |
| 				  report_one_zone_cb, &zone);
 | |
| 	if (err != 1) {
 | |
| 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
 | |
| 			 zbd->path, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
 | |
| 		return 0;
 | |
| 
 | |
| 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
 | |
| 	wp_segno = GET_SEGNO(sbi, wp_block);
 | |
| 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
 | |
| 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
 | |
| 
 | |
| 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
 | |
| 		wp_sector_off == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
 | |
| 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
 | |
| 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
 | |
| 
 | |
| 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
 | |
| 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
 | |
| 
 | |
| 	f2fs_allocate_new_section(sbi, type, true);
 | |
| 
 | |
| 	/* check consistency of the zone curseg pointed to */
 | |
| 	if (check_zone_write_pointer(sbi, zbd, &zone))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* check newly assigned zone */
 | |
| 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
 | |
| 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
 | |
| 
 | |
| 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
 | |
| 	if (!zbd)
 | |
| 		return 0;
 | |
| 
 | |
| 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
 | |
| 		<< log_sectors_per_block;
 | |
| 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
 | |
| 				  report_one_zone_cb, &zone);
 | |
| 	if (err != 1) {
 | |
| 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
 | |
| 			 zbd->path, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (zone.wp != zone.start) {
 | |
| 		f2fs_notice(sbi,
 | |
| 			    "New zone for curseg[%d] is not yet discarded. "
 | |
| 			    "Reset the zone: curseg[0x%x,0x%x]",
 | |
| 			    type, cs->segno, cs->next_blkoff);
 | |
| 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
 | |
| 				zone_sector >> log_sectors_per_block,
 | |
| 				zone.len >> log_sectors_per_block);
 | |
| 		if (err) {
 | |
| 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
 | |
| 				 zbd->path, err);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int i, ret;
 | |
| 
 | |
| 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
 | |
| 		ret = fix_curseg_write_pointer(sbi, i);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct check_zone_write_pointer_args {
 | |
| 	struct f2fs_sb_info *sbi;
 | |
| 	struct f2fs_dev_info *fdev;
 | |
| };
 | |
| 
 | |
| static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
 | |
| 				      void *data)
 | |
| {
 | |
| 	struct check_zone_write_pointer_args *args;
 | |
| 
 | |
| 	args = (struct check_zone_write_pointer_args *)data;
 | |
| 
 | |
| 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
 | |
| }
 | |
| 
 | |
| int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int i, ret;
 | |
| 	struct check_zone_write_pointer_args args;
 | |
| 
 | |
| 	for (i = 0; i < sbi->s_ndevs; i++) {
 | |
| 		if (!bdev_is_zoned(FDEV(i).bdev))
 | |
| 			continue;
 | |
| 
 | |
| 		args.sbi = sbi;
 | |
| 		args.fdev = &FDEV(i);
 | |
| 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
 | |
| 					  check_zone_write_pointer_cb, &args);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
 | |
| 						unsigned int dev_idx)
 | |
| {
 | |
| 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
 | |
| 		return true;
 | |
| 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
 | |
| }
 | |
| 
 | |
| /* Return the zone index in the given device */
 | |
| static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
 | |
| 					int dev_idx)
 | |
| {
 | |
| 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
 | |
| 
 | |
| 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
 | |
| 						sbi->log_blocks_per_blkz;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the usable segments in a section based on the zone's
 | |
|  * corresponding zone capacity. Zone is equal to a section.
 | |
|  */
 | |
| static inline unsigned int f2fs_usable_zone_segs_in_sec(
 | |
| 		struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
 | |
| 
 | |
| 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
 | |
| 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
 | |
| 
 | |
| 	/* Conventional zone's capacity is always equal to zone size */
 | |
| 	if (is_conv_zone(sbi, zone_idx, dev_idx))
 | |
| 		return sbi->segs_per_sec;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the zone_capacity_blocks array is NULL, then zone capacity
 | |
| 	 * is equal to the zone size for all zones
 | |
| 	 */
 | |
| 	if (!FDEV(dev_idx).zone_capacity_blocks)
 | |
| 		return sbi->segs_per_sec;
 | |
| 
 | |
| 	/* Get the segment count beyond zone capacity block */
 | |
| 	unusable_segs_in_sec = (sbi->blocks_per_blkz -
 | |
| 				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
 | |
| 				sbi->log_blocks_per_seg;
 | |
| 	return sbi->segs_per_sec - unusable_segs_in_sec;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of usable blocks in a segment. The number of blocks
 | |
|  * returned is always equal to the number of blocks in a segment for
 | |
|  * segments fully contained within a sequential zone capacity or a
 | |
|  * conventional zone. For segments partially contained in a sequential
 | |
|  * zone capacity, the number of usable blocks up to the zone capacity
 | |
|  * is returned. 0 is returned in all other cases.
 | |
|  */
 | |
| static inline unsigned int f2fs_usable_zone_blks_in_seg(
 | |
| 			struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
 | |
| 	unsigned int zone_idx, dev_idx, secno;
 | |
| 
 | |
| 	secno = GET_SEC_FROM_SEG(sbi, segno);
 | |
| 	seg_start = START_BLOCK(sbi, segno);
 | |
| 	dev_idx = f2fs_target_device_index(sbi, seg_start);
 | |
| 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Conventional zone's capacity is always equal to zone size,
 | |
| 	 * so, blocks per segment is unchanged.
 | |
| 	 */
 | |
| 	if (is_conv_zone(sbi, zone_idx, dev_idx))
 | |
| 		return sbi->blocks_per_seg;
 | |
| 
 | |
| 	if (!FDEV(dev_idx).zone_capacity_blocks)
 | |
| 		return sbi->blocks_per_seg;
 | |
| 
 | |
| 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
 | |
| 	sec_cap_blkaddr = sec_start_blkaddr +
 | |
| 				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
 | |
| 
 | |
| 	/*
 | |
| 	 * If segment starts before zone capacity and spans beyond
 | |
| 	 * zone capacity, then usable blocks are from seg start to
 | |
| 	 * zone capacity. If the segment starts after the zone capacity,
 | |
| 	 * then there are no usable blocks.
 | |
| 	 */
 | |
| 	if (seg_start >= sec_cap_blkaddr)
 | |
| 		return 0;
 | |
| 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
 | |
| 		return sec_cap_blkaddr - seg_start;
 | |
| 
 | |
| 	return sbi->blocks_per_seg;
 | |
| }
 | |
| #else
 | |
| int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
 | |
| 							unsigned int segno)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
 | |
| 							unsigned int segno)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
 | |
| 					unsigned int segno)
 | |
| {
 | |
| 	if (f2fs_sb_has_blkzoned(sbi))
 | |
| 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
 | |
| 
 | |
| 	return sbi->blocks_per_seg;
 | |
| }
 | |
| 
 | |
| unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
 | |
| 					unsigned int segno)
 | |
| {
 | |
| 	if (f2fs_sb_has_blkzoned(sbi))
 | |
| 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
 | |
| 
 | |
| 	return sbi->segs_per_sec;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update min, max modified time for cost-benefit GC algorithm
 | |
|  */
 | |
| static void init_min_max_mtime(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	down_write(&sit_i->sentry_lock);
 | |
| 
 | |
| 	sit_i->min_mtime = ULLONG_MAX;
 | |
| 
 | |
| 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
 | |
| 		unsigned int i;
 | |
| 		unsigned long long mtime = 0;
 | |
| 
 | |
| 		for (i = 0; i < sbi->segs_per_sec; i++)
 | |
| 			mtime += get_seg_entry(sbi, segno + i)->mtime;
 | |
| 
 | |
| 		mtime = div_u64(mtime, sbi->segs_per_sec);
 | |
| 
 | |
| 		if (sit_i->min_mtime > mtime)
 | |
| 			sit_i->min_mtime = mtime;
 | |
| 	}
 | |
| 	sit_i->max_mtime = get_mtime(sbi, false);
 | |
| 	sit_i->dirty_max_mtime = 0;
 | |
| 	up_write(&sit_i->sentry_lock);
 | |
| }
 | |
| 
 | |
| int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct f2fs_sm_info *sm_info;
 | |
| 	int err;
 | |
| 
 | |
| 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
 | |
| 	if (!sm_info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* init sm info */
 | |
| 	sbi->sm_info = sm_info;
 | |
| 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
 | |
| 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
 | |
| 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
 | |
| 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
 | |
| 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
 | |
| 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
 | |
| 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
 | |
| 	sm_info->rec_prefree_segments = sm_info->main_segments *
 | |
| 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
 | |
| 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
 | |
| 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
 | |
| 
 | |
| 	if (!f2fs_lfs_mode(sbi))
 | |
| 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
 | |
| 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
 | |
| 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
 | |
| 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
 | |
| 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
 | |
| 	sm_info->min_ssr_sections = reserved_sections(sbi);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
 | |
| 
 | |
| 	init_rwsem(&sm_info->curseg_lock);
 | |
| 
 | |
| 	if (!f2fs_readonly(sbi->sb)) {
 | |
| 		err = f2fs_create_flush_cmd_control(sbi);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = create_discard_cmd_control(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = build_sit_info(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err = build_free_segmap(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err = build_curseg(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* reinit free segmap based on SIT */
 | |
| 	err = build_sit_entries(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	init_free_segmap(sbi);
 | |
| 	err = build_dirty_segmap(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = sanity_check_curseg(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	init_min_max_mtime(sbi);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
 | |
| 		enum dirty_type dirty_type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	kvfree(dirty_i->dirty_segmap[dirty_type]);
 | |
| 	dirty_i->nr_dirty[dirty_type] = 0;
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	kvfree(dirty_i->victim_secmap);
 | |
| }
 | |
| 
 | |
| static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!dirty_i)
 | |
| 		return;
 | |
| 
 | |
| 	/* discard pre-free/dirty segments list */
 | |
| 	for (i = 0; i < NR_DIRTY_TYPE; i++)
 | |
| 		discard_dirty_segmap(sbi, i);
 | |
| 
 | |
| 	if (__is_large_section(sbi)) {
 | |
| 		mutex_lock(&dirty_i->seglist_lock);
 | |
| 		kvfree(dirty_i->dirty_secmap);
 | |
| 		mutex_unlock(&dirty_i->seglist_lock);
 | |
| 	}
 | |
| 
 | |
| 	destroy_victim_secmap(sbi);
 | |
| 	SM_I(sbi)->dirty_info = NULL;
 | |
| 	kfree(dirty_i);
 | |
| }
 | |
| 
 | |
| static void destroy_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *array = SM_I(sbi)->curseg_array;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!array)
 | |
| 		return;
 | |
| 	SM_I(sbi)->curseg_array = NULL;
 | |
| 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
 | |
| 		kfree(array[i].sum_blk);
 | |
| 		kfree(array[i].journal);
 | |
| 	}
 | |
| 	kfree(array);
 | |
| }
 | |
| 
 | |
| static void destroy_free_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
 | |
| 
 | |
| 	if (!free_i)
 | |
| 		return;
 | |
| 	SM_I(sbi)->free_info = NULL;
 | |
| 	kvfree(free_i->free_segmap);
 | |
| 	kvfree(free_i->free_secmap);
 | |
| 	kfree(free_i);
 | |
| }
 | |
| 
 | |
| static void destroy_sit_info(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 
 | |
| 	if (!sit_i)
 | |
| 		return;
 | |
| 
 | |
| 	if (sit_i->sentries)
 | |
| 		kvfree(sit_i->bitmap);
 | |
| 	kfree(sit_i->tmp_map);
 | |
| 
 | |
| 	kvfree(sit_i->sentries);
 | |
| 	kvfree(sit_i->sec_entries);
 | |
| 	kvfree(sit_i->dirty_sentries_bitmap);
 | |
| 
 | |
| 	SM_I(sbi)->sit_info = NULL;
 | |
| 	kvfree(sit_i->sit_bitmap);
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 	kvfree(sit_i->sit_bitmap_mir);
 | |
| 	kvfree(sit_i->invalid_segmap);
 | |
| #endif
 | |
| 	kfree(sit_i);
 | |
| }
 | |
| 
 | |
| void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_sm_info *sm_info = SM_I(sbi);
 | |
| 
 | |
| 	if (!sm_info)
 | |
| 		return;
 | |
| 	f2fs_destroy_flush_cmd_control(sbi, true);
 | |
| 	destroy_discard_cmd_control(sbi);
 | |
| 	destroy_dirty_segmap(sbi);
 | |
| 	destroy_curseg(sbi);
 | |
| 	destroy_free_segmap(sbi);
 | |
| 	destroy_sit_info(sbi);
 | |
| 	sbi->sm_info = NULL;
 | |
| 	kfree(sm_info);
 | |
| }
 | |
| 
 | |
| int __init f2fs_create_segment_manager_caches(void)
 | |
| {
 | |
| 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
 | |
| 			sizeof(struct discard_entry));
 | |
| 	if (!discard_entry_slab)
 | |
| 		goto fail;
 | |
| 
 | |
| 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
 | |
| 			sizeof(struct discard_cmd));
 | |
| 	if (!discard_cmd_slab)
 | |
| 		goto destroy_discard_entry;
 | |
| 
 | |
| 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
 | |
| 			sizeof(struct sit_entry_set));
 | |
| 	if (!sit_entry_set_slab)
 | |
| 		goto destroy_discard_cmd;
 | |
| 
 | |
| 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
 | |
| 			sizeof(struct inmem_pages));
 | |
| 	if (!inmem_entry_slab)
 | |
| 		goto destroy_sit_entry_set;
 | |
| 	return 0;
 | |
| 
 | |
| destroy_sit_entry_set:
 | |
| 	kmem_cache_destroy(sit_entry_set_slab);
 | |
| destroy_discard_cmd:
 | |
| 	kmem_cache_destroy(discard_cmd_slab);
 | |
| destroy_discard_entry:
 | |
| 	kmem_cache_destroy(discard_entry_slab);
 | |
| fail:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void f2fs_destroy_segment_manager_caches(void)
 | |
| {
 | |
| 	kmem_cache_destroy(sit_entry_set_slab);
 | |
| 	kmem_cache_destroy(discard_cmd_slab);
 | |
| 	kmem_cache_destroy(discard_entry_slab);
 | |
| 	kmem_cache_destroy(inmem_entry_slab);
 | |
| }
 |