mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 d6aba4c8e2
			
		
	
	
		d6aba4c8e2
		
	
	
	
	
		
			
			Pass "end - 1" instead of "end" when walking the interval tree in
hugetlb_vmdelete_list() to fix an inclusive vs.  exclusive bug.  The two
callers that pass a non-zero "end" treat it as exclusive, whereas the
interval tree iterator expects an inclusive "last".  E.g.  punching a
hole in a file that precisely matches the size of a single hugepage,
with a vma starting right on the boundary, will result in
unmap_hugepage_range() being called twice, with the second call having
start==end.
The off-by-one error doesn't cause functional problems as
__unmap_hugepage_range() turns into a massive nop due to
short-circuiting its for-loop on "address < end".  But, the mmu_notifier
invocations to invalid_range_{start,end}() are passed a bogus zero-sized
range, which may be unexpected behavior for secondary MMUs.
The bug was exposed by commit ed922739c9 ("KVM: Use interval tree to
do fast hva lookup in memslots"), currently queued in the KVM tree for
5.17, which added a WARN to detect ranges with start==end.
Link: https://lkml.kernel.org/r/20211228234257.1926057-1-seanjc@google.com
Fixes: 1bfad99ab4 ("hugetlbfs: hugetlb_vmtruncate_list() needs to take a range to delete")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reported-by: syzbot+4e697fe80a31aa7efe21@syzkaller.appspotmail.com
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1578 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1578 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * hugetlbpage-backed filesystem.  Based on ramfs.
 | |
|  *
 | |
|  * Nadia Yvette Chambers, 2002
 | |
|  *
 | |
|  * Copyright (C) 2002 Linus Torvalds.
 | |
|  * License: GPL
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/thread_info.h>
 | |
| #include <asm/current.h>
 | |
| #include <linux/sched/signal.h>		/* remove ASAP */
 | |
| #include <linux/falloc.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/fs_parser.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/dnotify.h>
 | |
| #include <linux/statfs.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/magic.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/uio.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/sched/mm.h>
 | |
| 
 | |
| static const struct super_operations hugetlbfs_ops;
 | |
| static const struct address_space_operations hugetlbfs_aops;
 | |
| const struct file_operations hugetlbfs_file_operations;
 | |
| static const struct inode_operations hugetlbfs_dir_inode_operations;
 | |
| static const struct inode_operations hugetlbfs_inode_operations;
 | |
| 
 | |
| enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
 | |
| 
 | |
| struct hugetlbfs_fs_context {
 | |
| 	struct hstate		*hstate;
 | |
| 	unsigned long long	max_size_opt;
 | |
| 	unsigned long long	min_size_opt;
 | |
| 	long			max_hpages;
 | |
| 	long			nr_inodes;
 | |
| 	long			min_hpages;
 | |
| 	enum hugetlbfs_size_type max_val_type;
 | |
| 	enum hugetlbfs_size_type min_val_type;
 | |
| 	kuid_t			uid;
 | |
| 	kgid_t			gid;
 | |
| 	umode_t			mode;
 | |
| };
 | |
| 
 | |
| int sysctl_hugetlb_shm_group;
 | |
| 
 | |
| enum hugetlb_param {
 | |
| 	Opt_gid,
 | |
| 	Opt_min_size,
 | |
| 	Opt_mode,
 | |
| 	Opt_nr_inodes,
 | |
| 	Opt_pagesize,
 | |
| 	Opt_size,
 | |
| 	Opt_uid,
 | |
| };
 | |
| 
 | |
| static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
 | |
| 	fsparam_u32   ("gid",		Opt_gid),
 | |
| 	fsparam_string("min_size",	Opt_min_size),
 | |
| 	fsparam_u32oct("mode",		Opt_mode),
 | |
| 	fsparam_string("nr_inodes",	Opt_nr_inodes),
 | |
| 	fsparam_string("pagesize",	Opt_pagesize),
 | |
| 	fsparam_string("size",		Opt_size),
 | |
| 	fsparam_u32   ("uid",		Opt_uid),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
 | |
| 					struct inode *inode, pgoff_t index)
 | |
| {
 | |
| 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
 | |
| 							index);
 | |
| }
 | |
| 
 | |
| static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
 | |
| {
 | |
| 	mpol_cond_put(vma->vm_policy);
 | |
| }
 | |
| #else
 | |
| static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
 | |
| 					struct inode *inode, pgoff_t index)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void huge_pagevec_release(struct pagevec *pvec)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < pagevec_count(pvec); ++i)
 | |
| 		put_page(pvec->pages[i]);
 | |
| 
 | |
| 	pagevec_reinit(pvec);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mask used when checking the page offset value passed in via system
 | |
|  * calls.  This value will be converted to a loff_t which is signed.
 | |
|  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
 | |
|  * value.  The extra bit (- 1 in the shift value) is to take the sign
 | |
|  * bit into account.
 | |
|  */
 | |
| #define PGOFF_LOFFT_MAX \
 | |
| 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
 | |
| 
 | |
| static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 	loff_t len, vma_len;
 | |
| 	int ret;
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 
 | |
| 	/*
 | |
| 	 * vma address alignment (but not the pgoff alignment) has
 | |
| 	 * already been checked by prepare_hugepage_range.  If you add
 | |
| 	 * any error returns here, do so after setting VM_HUGETLB, so
 | |
| 	 * is_vm_hugetlb_page tests below unmap_region go the right
 | |
| 	 * way when do_mmap unwinds (may be important on powerpc
 | |
| 	 * and ia64).
 | |
| 	 */
 | |
| 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
 | |
| 	vma->vm_ops = &hugetlb_vm_ops;
 | |
| 
 | |
| 	ret = seal_check_future_write(info->seals, vma);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * page based offset in vm_pgoff could be sufficiently large to
 | |
| 	 * overflow a loff_t when converted to byte offset.  This can
 | |
| 	 * only happen on architectures where sizeof(loff_t) ==
 | |
| 	 * sizeof(unsigned long).  So, only check in those instances.
 | |
| 	 */
 | |
| 	if (sizeof(unsigned long) == sizeof(loff_t)) {
 | |
| 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* must be huge page aligned */
 | |
| 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
 | |
| 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 | |
| 	/* check for overflow */
 | |
| 	if (len < vma_len)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 	file_accessed(file);
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	if (!hugetlb_reserve_pages(inode,
 | |
| 				vma->vm_pgoff >> huge_page_order(h),
 | |
| 				len >> huge_page_shift(h), vma,
 | |
| 				vma->vm_flags))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
 | |
| 		i_size_write(inode, len);
 | |
| out:
 | |
| 	inode_unlock(inode);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called under mmap_write_lock(mm).
 | |
|  */
 | |
| 
 | |
| #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 | |
| static unsigned long
 | |
| hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
 | |
| 		unsigned long len, unsigned long pgoff, unsigned long flags)
 | |
| {
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 	struct vm_unmapped_area_info info;
 | |
| 
 | |
| 	info.flags = 0;
 | |
| 	info.length = len;
 | |
| 	info.low_limit = current->mm->mmap_base;
 | |
| 	info.high_limit = TASK_SIZE;
 | |
| 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 | |
| 	info.align_offset = 0;
 | |
| 	return vm_unmapped_area(&info);
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
 | |
| 		unsigned long len, unsigned long pgoff, unsigned long flags)
 | |
| {
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 	struct vm_unmapped_area_info info;
 | |
| 
 | |
| 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 | |
| 	info.length = len;
 | |
| 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
 | |
| 	info.high_limit = current->mm->mmap_base;
 | |
| 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 | |
| 	info.align_offset = 0;
 | |
| 	addr = vm_unmapped_area(&info);
 | |
| 
 | |
| 	/*
 | |
| 	 * A failed mmap() very likely causes application failure,
 | |
| 	 * so fall back to the bottom-up function here. This scenario
 | |
| 	 * can happen with large stack limits and large mmap()
 | |
| 	 * allocations.
 | |
| 	 */
 | |
| 	if (unlikely(offset_in_page(addr))) {
 | |
| 		VM_BUG_ON(addr != -ENOMEM);
 | |
| 		info.flags = 0;
 | |
| 		info.low_limit = current->mm->mmap_base;
 | |
| 		info.high_limit = TASK_SIZE;
 | |
| 		addr = vm_unmapped_area(&info);
 | |
| 	}
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 | |
| 		unsigned long len, unsigned long pgoff, unsigned long flags)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 
 | |
| 	if (len & ~huge_page_mask(h))
 | |
| 		return -EINVAL;
 | |
| 	if (len > TASK_SIZE)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (flags & MAP_FIXED) {
 | |
| 		if (prepare_hugepage_range(file, addr, len))
 | |
| 			return -EINVAL;
 | |
| 		return addr;
 | |
| 	}
 | |
| 
 | |
| 	if (addr) {
 | |
| 		addr = ALIGN(addr, huge_page_size(h));
 | |
| 		vma = find_vma(mm, addr);
 | |
| 		if (TASK_SIZE - len >= addr &&
 | |
| 		    (!vma || addr + len <= vm_start_gap(vma)))
 | |
| 			return addr;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
 | |
| 	 * If architectures have special needs, they should define their own
 | |
| 	 * version of hugetlb_get_unmapped_area.
 | |
| 	 */
 | |
| 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
 | |
| 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
 | |
| 				pgoff, flags);
 | |
| 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
 | |
| 			pgoff, flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static size_t
 | |
| hugetlbfs_read_actor(struct page *page, unsigned long offset,
 | |
| 			struct iov_iter *to, unsigned long size)
 | |
| {
 | |
| 	size_t copied = 0;
 | |
| 	int i, chunksize;
 | |
| 
 | |
| 	/* Find which 4k chunk and offset with in that chunk */
 | |
| 	i = offset >> PAGE_SHIFT;
 | |
| 	offset = offset & ~PAGE_MASK;
 | |
| 
 | |
| 	while (size) {
 | |
| 		size_t n;
 | |
| 		chunksize = PAGE_SIZE;
 | |
| 		if (offset)
 | |
| 			chunksize -= offset;
 | |
| 		if (chunksize > size)
 | |
| 			chunksize = size;
 | |
| 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
 | |
| 		copied += n;
 | |
| 		if (n != chunksize)
 | |
| 			return copied;
 | |
| 		offset = 0;
 | |
| 		size -= chunksize;
 | |
| 		i++;
 | |
| 	}
 | |
| 	return copied;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Support for read() - Find the page attached to f_mapping and copy out the
 | |
|  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
 | |
|  * since it has PAGE_SIZE assumptions.
 | |
|  */
 | |
| static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct hstate *h = hstate_file(file);
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
 | |
| 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
 | |
| 	unsigned long end_index;
 | |
| 	loff_t isize;
 | |
| 	ssize_t retval = 0;
 | |
| 
 | |
| 	while (iov_iter_count(to)) {
 | |
| 		struct page *page;
 | |
| 		size_t nr, copied;
 | |
| 
 | |
| 		/* nr is the maximum number of bytes to copy from this page */
 | |
| 		nr = huge_page_size(h);
 | |
| 		isize = i_size_read(inode);
 | |
| 		if (!isize)
 | |
| 			break;
 | |
| 		end_index = (isize - 1) >> huge_page_shift(h);
 | |
| 		if (index > end_index)
 | |
| 			break;
 | |
| 		if (index == end_index) {
 | |
| 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
 | |
| 			if (nr <= offset)
 | |
| 				break;
 | |
| 		}
 | |
| 		nr = nr - offset;
 | |
| 
 | |
| 		/* Find the page */
 | |
| 		page = find_lock_page(mapping, index);
 | |
| 		if (unlikely(page == NULL)) {
 | |
| 			/*
 | |
| 			 * We have a HOLE, zero out the user-buffer for the
 | |
| 			 * length of the hole or request.
 | |
| 			 */
 | |
| 			copied = iov_iter_zero(nr, to);
 | |
| 		} else {
 | |
| 			unlock_page(page);
 | |
| 
 | |
| 			/*
 | |
| 			 * We have the page, copy it to user space buffer.
 | |
| 			 */
 | |
| 			copied = hugetlbfs_read_actor(page, offset, to, nr);
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 		offset += copied;
 | |
| 		retval += copied;
 | |
| 		if (copied != nr && iov_iter_count(to)) {
 | |
| 			if (!retval)
 | |
| 				retval = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 		index += offset >> huge_page_shift(h);
 | |
| 		offset &= ~huge_page_mask(h);
 | |
| 	}
 | |
| 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_write_begin(struct file *file,
 | |
| 			struct address_space *mapping,
 | |
| 			loff_t pos, unsigned len, unsigned flags,
 | |
| 			struct page **pagep, void **fsdata)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
 | |
| 			loff_t pos, unsigned len, unsigned copied,
 | |
| 			struct page *page, void *fsdata)
 | |
| {
 | |
| 	BUG();
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void remove_huge_page(struct page *page)
 | |
| {
 | |
| 	ClearPageDirty(page);
 | |
| 	ClearPageUptodate(page);
 | |
| 	delete_from_page_cache(page);
 | |
| }
 | |
| 
 | |
| static void
 | |
| hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	/*
 | |
| 	 * end == 0 indicates that the entire range after start should be
 | |
| 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
 | |
| 	 * an inclusive "last".
 | |
| 	 */
 | |
| 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
 | |
| 		unsigned long v_offset;
 | |
| 		unsigned long v_end;
 | |
| 
 | |
| 		/*
 | |
| 		 * Can the expression below overflow on 32-bit arches?
 | |
| 		 * No, because the interval tree returns us only those vmas
 | |
| 		 * which overlap the truncated area starting at pgoff,
 | |
| 		 * and no vma on a 32-bit arch can span beyond the 4GB.
 | |
| 		 */
 | |
| 		if (vma->vm_pgoff < start)
 | |
| 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
 | |
| 		else
 | |
| 			v_offset = 0;
 | |
| 
 | |
| 		if (!end)
 | |
| 			v_end = vma->vm_end;
 | |
| 		else {
 | |
| 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
 | |
| 							+ vma->vm_start;
 | |
| 			if (v_end > vma->vm_end)
 | |
| 				v_end = vma->vm_end;
 | |
| 		}
 | |
| 
 | |
| 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
 | |
| 									NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove_inode_hugepages handles two distinct cases: truncation and hole
 | |
|  * punch.  There are subtle differences in operation for each case.
 | |
|  *
 | |
|  * truncation is indicated by end of range being LLONG_MAX
 | |
|  *	In this case, we first scan the range and release found pages.
 | |
|  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
 | |
|  *	maps and global counts.  Page faults can not race with truncation
 | |
|  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
 | |
|  *	page faults in the truncated range by checking i_size.  i_size is
 | |
|  *	modified while holding i_mmap_rwsem.
 | |
|  * hole punch is indicated if end is not LLONG_MAX
 | |
|  *	In the hole punch case we scan the range and release found pages.
 | |
|  *	Only when releasing a page is the associated region/reserve map
 | |
|  *	deleted.  The region/reserve map for ranges without associated
 | |
|  *	pages are not modified.  Page faults can race with hole punch.
 | |
|  *	This is indicated if we find a mapped page.
 | |
|  * Note: If the passed end of range value is beyond the end of file, but
 | |
|  * not LLONG_MAX this routine still performs a hole punch operation.
 | |
|  */
 | |
| static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 | |
| 				   loff_t lend)
 | |
| {
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	struct address_space *mapping = &inode->i_data;
 | |
| 	const pgoff_t start = lstart >> huge_page_shift(h);
 | |
| 	const pgoff_t end = lend >> huge_page_shift(h);
 | |
| 	struct pagevec pvec;
 | |
| 	pgoff_t next, index;
 | |
| 	int i, freed = 0;
 | |
| 	bool truncate_op = (lend == LLONG_MAX);
 | |
| 
 | |
| 	pagevec_init(&pvec);
 | |
| 	next = start;
 | |
| 	while (next < end) {
 | |
| 		/*
 | |
| 		 * When no more pages are found, we are done.
 | |
| 		 */
 | |
| 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < pagevec_count(&pvec); ++i) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 			u32 hash = 0;
 | |
| 
 | |
| 			index = page->index;
 | |
| 			if (!truncate_op) {
 | |
| 				/*
 | |
| 				 * Only need to hold the fault mutex in the
 | |
| 				 * hole punch case.  This prevents races with
 | |
| 				 * page faults.  Races are not possible in the
 | |
| 				 * case of truncation.
 | |
| 				 */
 | |
| 				hash = hugetlb_fault_mutex_hash(mapping, index);
 | |
| 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If page is mapped, it was faulted in after being
 | |
| 			 * unmapped in caller.  Unmap (again) now after taking
 | |
| 			 * the fault mutex.  The mutex will prevent faults
 | |
| 			 * until we finish removing the page.
 | |
| 			 *
 | |
| 			 * This race can only happen in the hole punch case.
 | |
| 			 * Getting here in a truncate operation is a bug.
 | |
| 			 */
 | |
| 			if (unlikely(page_mapped(page))) {
 | |
| 				BUG_ON(truncate_op);
 | |
| 
 | |
| 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 				i_mmap_lock_write(mapping);
 | |
| 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | |
| 				hugetlb_vmdelete_list(&mapping->i_mmap,
 | |
| 					index * pages_per_huge_page(h),
 | |
| 					(index + 1) * pages_per_huge_page(h));
 | |
| 				i_mmap_unlock_write(mapping);
 | |
| 			}
 | |
| 
 | |
| 			lock_page(page);
 | |
| 			/*
 | |
| 			 * We must free the huge page and remove from page
 | |
| 			 * cache (remove_huge_page) BEFORE removing the
 | |
| 			 * region/reserve map (hugetlb_unreserve_pages).  In
 | |
| 			 * rare out of memory conditions, removal of the
 | |
| 			 * region/reserve map could fail. Correspondingly,
 | |
| 			 * the subpool and global reserve usage count can need
 | |
| 			 * to be adjusted.
 | |
| 			 */
 | |
| 			VM_BUG_ON(HPageRestoreReserve(page));
 | |
| 			remove_huge_page(page);
 | |
| 			freed++;
 | |
| 			if (!truncate_op) {
 | |
| 				if (unlikely(hugetlb_unreserve_pages(inode,
 | |
| 							index, index + 1, 1)))
 | |
| 					hugetlb_fix_reserve_counts(inode);
 | |
| 			}
 | |
| 
 | |
| 			unlock_page(page);
 | |
| 			if (!truncate_op)
 | |
| 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 		}
 | |
| 		huge_pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	if (truncate_op)
 | |
| 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_evict_inode(struct inode *inode)
 | |
| {
 | |
| 	struct resv_map *resv_map;
 | |
| 
 | |
| 	remove_inode_hugepages(inode, 0, LLONG_MAX);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the resv_map from the address space embedded in the inode.
 | |
| 	 * This is the address space which points to any resv_map allocated
 | |
| 	 * at inode creation time.  If this is a device special inode,
 | |
| 	 * i_mapping may not point to the original address space.
 | |
| 	 */
 | |
| 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
 | |
| 	/* Only regular and link inodes have associated reserve maps */
 | |
| 	if (resv_map)
 | |
| 		resv_map_release(&resv_map->refs);
 | |
| 	clear_inode(inode);
 | |
| }
 | |
| 
 | |
| static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 | |
| {
 | |
| 	pgoff_t pgoff;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 
 | |
| 	BUG_ON(offset & ~huge_page_mask(h));
 | |
| 	pgoff = offset >> PAGE_SHIFT;
 | |
| 
 | |
| 	i_mmap_lock_write(mapping);
 | |
| 	i_size_write(inode, offset);
 | |
| 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 | |
| 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
 | |
| 	i_mmap_unlock_write(mapping);
 | |
| 	remove_inode_hugepages(inode, offset, LLONG_MAX);
 | |
| }
 | |
| 
 | |
| static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 | |
| {
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	loff_t hpage_size = huge_page_size(h);
 | |
| 	loff_t hole_start, hole_end;
 | |
| 
 | |
| 	/*
 | |
| 	 * For hole punch round up the beginning offset of the hole and
 | |
| 	 * round down the end.
 | |
| 	 */
 | |
| 	hole_start = round_up(offset, hpage_size);
 | |
| 	hole_end = round_down(offset + len, hpage_size);
 | |
| 
 | |
| 	if (hole_end > hole_start) {
 | |
| 		struct address_space *mapping = inode->i_mapping;
 | |
| 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 
 | |
| 		inode_lock(inode);
 | |
| 
 | |
| 		/* protected by i_rwsem */
 | |
| 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
 | |
| 			inode_unlock(inode);
 | |
| 			return -EPERM;
 | |
| 		}
 | |
| 
 | |
| 		i_mmap_lock_write(mapping);
 | |
| 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 | |
| 			hugetlb_vmdelete_list(&mapping->i_mmap,
 | |
| 						hole_start >> PAGE_SHIFT,
 | |
| 						hole_end  >> PAGE_SHIFT);
 | |
| 		i_mmap_unlock_write(mapping);
 | |
| 		remove_inode_hugepages(inode, hole_start, hole_end);
 | |
| 		inode_unlock(inode);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 | |
| 				loff_t len)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	struct vm_area_struct pseudo_vma;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	loff_t hpage_size = huge_page_size(h);
 | |
| 	unsigned long hpage_shift = huge_page_shift(h);
 | |
| 	pgoff_t start, index, end;
 | |
| 	int error;
 | |
| 	u32 hash;
 | |
| 
 | |
| 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (mode & FALLOC_FL_PUNCH_HOLE)
 | |
| 		return hugetlbfs_punch_hole(inode, offset, len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Default preallocate case.
 | |
| 	 * For this range, start is rounded down and end is rounded up
 | |
| 	 * as well as being converted to page offsets.
 | |
| 	 */
 | |
| 	start = offset >> hpage_shift;
 | |
| 	end = (offset + len + hpage_size - 1) >> hpage_shift;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 
 | |
| 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 | |
| 	error = inode_newsize_ok(inode, offset + len);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
 | |
| 		error = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize a pseudo vma as this is required by the huge page
 | |
| 	 * allocation routines.  If NUMA is configured, use page index
 | |
| 	 * as input to create an allocation policy.
 | |
| 	 */
 | |
| 	vma_init(&pseudo_vma, mm);
 | |
| 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 | |
| 	pseudo_vma.vm_file = file;
 | |
| 
 | |
| 	for (index = start; index < end; index++) {
 | |
| 		/*
 | |
| 		 * This is supposed to be the vaddr where the page is being
 | |
| 		 * faulted in, but we have no vaddr here.
 | |
| 		 */
 | |
| 		struct page *page;
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/*
 | |
| 		 * fallocate(2) manpage permits EINTR; we may have been
 | |
| 		 * interrupted because we are using up too much memory.
 | |
| 		 */
 | |
| 		if (signal_pending(current)) {
 | |
| 			error = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Set numa allocation policy based on index */
 | |
| 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
 | |
| 
 | |
| 		/* addr is the offset within the file (zero based) */
 | |
| 		addr = index * hpage_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * fault mutex taken here, protects against fault path
 | |
| 		 * and hole punch.  inode_lock previously taken protects
 | |
| 		 * against truncation.
 | |
| 		 */
 | |
| 		hash = hugetlb_fault_mutex_hash(mapping, index);
 | |
| 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | |
| 
 | |
| 		/* See if already present in mapping to avoid alloc/free */
 | |
| 		page = find_get_page(mapping, index);
 | |
| 		if (page) {
 | |
| 			put_page(page);
 | |
| 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 			hugetlb_drop_vma_policy(&pseudo_vma);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Allocate page without setting the avoid_reserve argument.
 | |
| 		 * There certainly are no reserves associated with the
 | |
| 		 * pseudo_vma.  However, there could be shared mappings with
 | |
| 		 * reserves for the file at the inode level.  If we fallocate
 | |
| 		 * pages in these areas, we need to consume the reserves
 | |
| 		 * to keep reservation accounting consistent.
 | |
| 		 */
 | |
| 		page = alloc_huge_page(&pseudo_vma, addr, 0);
 | |
| 		hugetlb_drop_vma_policy(&pseudo_vma);
 | |
| 		if (IS_ERR(page)) {
 | |
| 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 			error = PTR_ERR(page);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		clear_huge_page(page, addr, pages_per_huge_page(h));
 | |
| 		__SetPageUptodate(page);
 | |
| 		error = huge_add_to_page_cache(page, mapping, index);
 | |
| 		if (unlikely(error)) {
 | |
| 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
 | |
| 			put_page(page);
 | |
| 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 
 | |
| 		SetHPageMigratable(page);
 | |
| 		/*
 | |
| 		 * unlock_page because locked by add_to_page_cache()
 | |
| 		 * put_page() due to reference from alloc_huge_page()
 | |
| 		 */
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 
 | |
| 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 | |
| 		i_size_write(inode, offset + len);
 | |
| 	inode->i_ctime = current_time(inode);
 | |
| out:
 | |
| 	inode_unlock(inode);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
 | |
| 			     struct dentry *dentry, struct iattr *attr)
 | |
| {
 | |
| 	struct inode *inode = d_inode(dentry);
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	int error;
 | |
| 	unsigned int ia_valid = attr->ia_valid;
 | |
| 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 
 | |
| 	error = setattr_prepare(&init_user_ns, dentry, attr);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (ia_valid & ATTR_SIZE) {
 | |
| 		loff_t oldsize = inode->i_size;
 | |
| 		loff_t newsize = attr->ia_size;
 | |
| 
 | |
| 		if (newsize & ~huge_page_mask(h))
 | |
| 			return -EINVAL;
 | |
| 		/* protected by i_rwsem */
 | |
| 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 | |
| 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 | |
| 			return -EPERM;
 | |
| 		hugetlb_vmtruncate(inode, newsize);
 | |
| 	}
 | |
| 
 | |
| 	setattr_copy(&init_user_ns, inode, attr);
 | |
| 	mark_inode_dirty(inode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct inode *hugetlbfs_get_root(struct super_block *sb,
 | |
| 					struct hugetlbfs_fs_context *ctx)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = new_inode(sb);
 | |
| 	if (inode) {
 | |
| 		inode->i_ino = get_next_ino();
 | |
| 		inode->i_mode = S_IFDIR | ctx->mode;
 | |
| 		inode->i_uid = ctx->uid;
 | |
| 		inode->i_gid = ctx->gid;
 | |
| 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 | |
| 		inode->i_op = &hugetlbfs_dir_inode_operations;
 | |
| 		inode->i_fop = &simple_dir_operations;
 | |
| 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
 | |
| 		inc_nlink(inode);
 | |
| 		lockdep_annotate_inode_mutex_key(inode);
 | |
| 	}
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
 | |
|  * be taken from reclaim -- unlike regular filesystems. This needs an
 | |
|  * annotation because huge_pmd_share() does an allocation under hugetlb's
 | |
|  * i_mmap_rwsem.
 | |
|  */
 | |
| static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
 | |
| 
 | |
| static struct inode *hugetlbfs_get_inode(struct super_block *sb,
 | |
| 					struct inode *dir,
 | |
| 					umode_t mode, dev_t dev)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct resv_map *resv_map = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve maps are only needed for inodes that can have associated
 | |
| 	 * page allocations.
 | |
| 	 */
 | |
| 	if (S_ISREG(mode) || S_ISLNK(mode)) {
 | |
| 		resv_map = resv_map_alloc();
 | |
| 		if (!resv_map)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	inode = new_inode(sb);
 | |
| 	if (inode) {
 | |
| 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 | |
| 
 | |
| 		inode->i_ino = get_next_ino();
 | |
| 		inode_init_owner(&init_user_ns, inode, dir, mode);
 | |
| 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
 | |
| 				&hugetlbfs_i_mmap_rwsem_key);
 | |
| 		inode->i_mapping->a_ops = &hugetlbfs_aops;
 | |
| 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 | |
| 		inode->i_mapping->private_data = resv_map;
 | |
| 		info->seals = F_SEAL_SEAL;
 | |
| 		switch (mode & S_IFMT) {
 | |
| 		default:
 | |
| 			init_special_inode(inode, mode, dev);
 | |
| 			break;
 | |
| 		case S_IFREG:
 | |
| 			inode->i_op = &hugetlbfs_inode_operations;
 | |
| 			inode->i_fop = &hugetlbfs_file_operations;
 | |
| 			break;
 | |
| 		case S_IFDIR:
 | |
| 			inode->i_op = &hugetlbfs_dir_inode_operations;
 | |
| 			inode->i_fop = &simple_dir_operations;
 | |
| 
 | |
| 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
 | |
| 			inc_nlink(inode);
 | |
| 			break;
 | |
| 		case S_IFLNK:
 | |
| 			inode->i_op = &page_symlink_inode_operations;
 | |
| 			inode_nohighmem(inode);
 | |
| 			break;
 | |
| 		}
 | |
| 		lockdep_annotate_inode_mutex_key(inode);
 | |
| 	} else {
 | |
| 		if (resv_map)
 | |
| 			kref_put(&resv_map->refs, resv_map_release);
 | |
| 	}
 | |
| 
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * File creation. Allocate an inode, and we're done..
 | |
|  */
 | |
| static int do_hugetlbfs_mknod(struct inode *dir,
 | |
| 			struct dentry *dentry,
 | |
| 			umode_t mode,
 | |
| 			dev_t dev,
 | |
| 			bool tmpfile)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	int error = -ENOSPC;
 | |
| 
 | |
| 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
 | |
| 	if (inode) {
 | |
| 		dir->i_ctime = dir->i_mtime = current_time(dir);
 | |
| 		if (tmpfile) {
 | |
| 			d_tmpfile(dentry, inode);
 | |
| 		} else {
 | |
| 			d_instantiate(dentry, inode);
 | |
| 			dget(dentry);/* Extra count - pin the dentry in core */
 | |
| 		}
 | |
| 		error = 0;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
 | |
| 			   struct dentry *dentry, umode_t mode, dev_t dev)
 | |
| {
 | |
| 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
 | |
| 			   struct dentry *dentry, umode_t mode)
 | |
| {
 | |
| 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
 | |
| 				     mode | S_IFDIR, 0);
 | |
| 	if (!retval)
 | |
| 		inc_nlink(dir);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_create(struct user_namespace *mnt_userns,
 | |
| 			    struct inode *dir, struct dentry *dentry,
 | |
| 			    umode_t mode, bool excl)
 | |
| {
 | |
| 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
 | |
| 			     struct inode *dir, struct dentry *dentry,
 | |
| 			     umode_t mode)
 | |
| {
 | |
| 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
 | |
| 			     struct inode *dir, struct dentry *dentry,
 | |
| 			     const char *symname)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	int error = -ENOSPC;
 | |
| 
 | |
| 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
 | |
| 	if (inode) {
 | |
| 		int l = strlen(symname)+1;
 | |
| 		error = page_symlink(inode, symname, l);
 | |
| 		if (!error) {
 | |
| 			d_instantiate(dentry, inode);
 | |
| 			dget(dentry);
 | |
| 		} else
 | |
| 			iput(inode);
 | |
| 	}
 | |
| 	dir->i_ctime = dir->i_mtime = current_time(dir);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_migrate_page(struct address_space *mapping,
 | |
| 				struct page *newpage, struct page *page,
 | |
| 				enum migrate_mode mode)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
 | |
| 	if (rc != MIGRATEPAGE_SUCCESS)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (hugetlb_page_subpool(page)) {
 | |
| 		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
 | |
| 		hugetlb_set_page_subpool(page, NULL);
 | |
| 	}
 | |
| 
 | |
| 	if (mode != MIGRATE_SYNC_NO_COPY)
 | |
| 		migrate_page_copy(newpage, page);
 | |
| 	else
 | |
| 		migrate_page_states(newpage, page);
 | |
| 
 | |
| 	return MIGRATEPAGE_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_error_remove_page(struct address_space *mapping,
 | |
| 				struct page *page)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	pgoff_t index = page->index;
 | |
| 
 | |
| 	remove_huge_page(page);
 | |
| 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
 | |
| 		hugetlb_fix_reserve_counts(inode);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Display the mount options in /proc/mounts.
 | |
|  */
 | |
| static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
 | |
| {
 | |
| 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
 | |
| 	struct hugepage_subpool *spool = sbinfo->spool;
 | |
| 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
 | |
| 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
 | |
| 	char mod;
 | |
| 
 | |
| 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
 | |
| 		seq_printf(m, ",uid=%u",
 | |
| 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
 | |
| 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
 | |
| 		seq_printf(m, ",gid=%u",
 | |
| 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
 | |
| 	if (sbinfo->mode != 0755)
 | |
| 		seq_printf(m, ",mode=%o", sbinfo->mode);
 | |
| 	if (sbinfo->max_inodes != -1)
 | |
| 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
 | |
| 
 | |
| 	hpage_size /= 1024;
 | |
| 	mod = 'K';
 | |
| 	if (hpage_size >= 1024) {
 | |
| 		hpage_size /= 1024;
 | |
| 		mod = 'M';
 | |
| 	}
 | |
| 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
 | |
| 	if (spool) {
 | |
| 		if (spool->max_hpages != -1)
 | |
| 			seq_printf(m, ",size=%llu",
 | |
| 				   (unsigned long long)spool->max_hpages << hpage_shift);
 | |
| 		if (spool->min_hpages != -1)
 | |
| 			seq_printf(m, ",min_size=%llu",
 | |
| 				   (unsigned long long)spool->min_hpages << hpage_shift);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 | |
| {
 | |
| 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
 | |
| 	struct hstate *h = hstate_inode(d_inode(dentry));
 | |
| 
 | |
| 	buf->f_type = HUGETLBFS_MAGIC;
 | |
| 	buf->f_bsize = huge_page_size(h);
 | |
| 	if (sbinfo) {
 | |
| 		spin_lock(&sbinfo->stat_lock);
 | |
| 		/* If no limits set, just report 0 for max/free/used
 | |
| 		 * blocks, like simple_statfs() */
 | |
| 		if (sbinfo->spool) {
 | |
| 			long free_pages;
 | |
| 
 | |
| 			spin_lock(&sbinfo->spool->lock);
 | |
| 			buf->f_blocks = sbinfo->spool->max_hpages;
 | |
| 			free_pages = sbinfo->spool->max_hpages
 | |
| 				- sbinfo->spool->used_hpages;
 | |
| 			buf->f_bavail = buf->f_bfree = free_pages;
 | |
| 			spin_unlock(&sbinfo->spool->lock);
 | |
| 			buf->f_files = sbinfo->max_inodes;
 | |
| 			buf->f_ffree = sbinfo->free_inodes;
 | |
| 		}
 | |
| 		spin_unlock(&sbinfo->stat_lock);
 | |
| 	}
 | |
| 	buf->f_namelen = NAME_MAX;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_put_super(struct super_block *sb)
 | |
| {
 | |
| 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
 | |
| 
 | |
| 	if (sbi) {
 | |
| 		sb->s_fs_info = NULL;
 | |
| 
 | |
| 		if (sbi->spool)
 | |
| 			hugepage_put_subpool(sbi->spool);
 | |
| 
 | |
| 		kfree(sbi);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 | |
| {
 | |
| 	if (sbinfo->free_inodes >= 0) {
 | |
| 		spin_lock(&sbinfo->stat_lock);
 | |
| 		if (unlikely(!sbinfo->free_inodes)) {
 | |
| 			spin_unlock(&sbinfo->stat_lock);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		sbinfo->free_inodes--;
 | |
| 		spin_unlock(&sbinfo->stat_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 | |
| {
 | |
| 	if (sbinfo->free_inodes >= 0) {
 | |
| 		spin_lock(&sbinfo->stat_lock);
 | |
| 		sbinfo->free_inodes++;
 | |
| 		spin_unlock(&sbinfo->stat_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct kmem_cache *hugetlbfs_inode_cachep;
 | |
| 
 | |
| static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
 | |
| {
 | |
| 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
 | |
| 	struct hugetlbfs_inode_info *p;
 | |
| 
 | |
| 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
 | |
| 		return NULL;
 | |
| 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
 | |
| 	if (unlikely(!p)) {
 | |
| 		hugetlbfs_inc_free_inodes(sbinfo);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
 | |
| 	 * for the inode.  mpol_free_shared_policy is unconditionally called
 | |
| 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
 | |
| 	 * in case of a quick call to destroy.
 | |
| 	 *
 | |
| 	 * Note that the policy is initialized even if we are creating a
 | |
| 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
 | |
| 	 */
 | |
| 	mpol_shared_policy_init(&p->policy, NULL);
 | |
| 
 | |
| 	return &p->vfs_inode;
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_free_inode(struct inode *inode)
 | |
| {
 | |
| 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_destroy_inode(struct inode *inode)
 | |
| {
 | |
| 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
 | |
| 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
 | |
| }
 | |
| 
 | |
| static const struct address_space_operations hugetlbfs_aops = {
 | |
| 	.write_begin	= hugetlbfs_write_begin,
 | |
| 	.write_end	= hugetlbfs_write_end,
 | |
| 	.set_page_dirty	=  __set_page_dirty_no_writeback,
 | |
| 	.migratepage    = hugetlbfs_migrate_page,
 | |
| 	.error_remove_page	= hugetlbfs_error_remove_page,
 | |
| };
 | |
| 
 | |
| 
 | |
| static void init_once(void *foo)
 | |
| {
 | |
| 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
 | |
| 
 | |
| 	inode_init_once(&ei->vfs_inode);
 | |
| }
 | |
| 
 | |
| const struct file_operations hugetlbfs_file_operations = {
 | |
| 	.read_iter		= hugetlbfs_read_iter,
 | |
| 	.mmap			= hugetlbfs_file_mmap,
 | |
| 	.fsync			= noop_fsync,
 | |
| 	.get_unmapped_area	= hugetlb_get_unmapped_area,
 | |
| 	.llseek			= default_llseek,
 | |
| 	.fallocate		= hugetlbfs_fallocate,
 | |
| };
 | |
| 
 | |
| static const struct inode_operations hugetlbfs_dir_inode_operations = {
 | |
| 	.create		= hugetlbfs_create,
 | |
| 	.lookup		= simple_lookup,
 | |
| 	.link		= simple_link,
 | |
| 	.unlink		= simple_unlink,
 | |
| 	.symlink	= hugetlbfs_symlink,
 | |
| 	.mkdir		= hugetlbfs_mkdir,
 | |
| 	.rmdir		= simple_rmdir,
 | |
| 	.mknod		= hugetlbfs_mknod,
 | |
| 	.rename		= simple_rename,
 | |
| 	.setattr	= hugetlbfs_setattr,
 | |
| 	.tmpfile	= hugetlbfs_tmpfile,
 | |
| };
 | |
| 
 | |
| static const struct inode_operations hugetlbfs_inode_operations = {
 | |
| 	.setattr	= hugetlbfs_setattr,
 | |
| };
 | |
| 
 | |
| static const struct super_operations hugetlbfs_ops = {
 | |
| 	.alloc_inode    = hugetlbfs_alloc_inode,
 | |
| 	.free_inode     = hugetlbfs_free_inode,
 | |
| 	.destroy_inode  = hugetlbfs_destroy_inode,
 | |
| 	.evict_inode	= hugetlbfs_evict_inode,
 | |
| 	.statfs		= hugetlbfs_statfs,
 | |
| 	.put_super	= hugetlbfs_put_super,
 | |
| 	.show_options	= hugetlbfs_show_options,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Convert size option passed from command line to number of huge pages
 | |
|  * in the pool specified by hstate.  Size option could be in bytes
 | |
|  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
 | |
|  */
 | |
| static long
 | |
| hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
 | |
| 			 enum hugetlbfs_size_type val_type)
 | |
| {
 | |
| 	if (val_type == NO_SIZE)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (val_type == SIZE_PERCENT) {
 | |
| 		size_opt <<= huge_page_shift(h);
 | |
| 		size_opt *= h->max_huge_pages;
 | |
| 		do_div(size_opt, 100);
 | |
| 	}
 | |
| 
 | |
| 	size_opt >>= huge_page_shift(h);
 | |
| 	return size_opt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse one mount parameter.
 | |
|  */
 | |
| static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 | |
| {
 | |
| 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | |
| 	struct fs_parse_result result;
 | |
| 	char *rest;
 | |
| 	unsigned long ps;
 | |
| 	int opt;
 | |
| 
 | |
| 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
 | |
| 	if (opt < 0)
 | |
| 		return opt;
 | |
| 
 | |
| 	switch (opt) {
 | |
| 	case Opt_uid:
 | |
| 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
 | |
| 		if (!uid_valid(ctx->uid))
 | |
| 			goto bad_val;
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_gid:
 | |
| 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
 | |
| 		if (!gid_valid(ctx->gid))
 | |
| 			goto bad_val;
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_mode:
 | |
| 		ctx->mode = result.uint_32 & 01777U;
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_size:
 | |
| 		/* memparse() will accept a K/M/G without a digit */
 | |
| 		if (!isdigit(param->string[0]))
 | |
| 			goto bad_val;
 | |
| 		ctx->max_size_opt = memparse(param->string, &rest);
 | |
| 		ctx->max_val_type = SIZE_STD;
 | |
| 		if (*rest == '%')
 | |
| 			ctx->max_val_type = SIZE_PERCENT;
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_nr_inodes:
 | |
| 		/* memparse() will accept a K/M/G without a digit */
 | |
| 		if (!isdigit(param->string[0]))
 | |
| 			goto bad_val;
 | |
| 		ctx->nr_inodes = memparse(param->string, &rest);
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_pagesize:
 | |
| 		ps = memparse(param->string, &rest);
 | |
| 		ctx->hstate = size_to_hstate(ps);
 | |
| 		if (!ctx->hstate) {
 | |
| 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		return 0;
 | |
| 
 | |
| 	case Opt_min_size:
 | |
| 		/* memparse() will accept a K/M/G without a digit */
 | |
| 		if (!isdigit(param->string[0]))
 | |
| 			goto bad_val;
 | |
| 		ctx->min_size_opt = memparse(param->string, &rest);
 | |
| 		ctx->min_val_type = SIZE_STD;
 | |
| 		if (*rest == '%')
 | |
| 			ctx->min_val_type = SIZE_PERCENT;
 | |
| 		return 0;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| bad_val:
 | |
| 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
 | |
| 		      param->string, param->key);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate the parsed options.
 | |
|  */
 | |
| static int hugetlbfs_validate(struct fs_context *fc)
 | |
| {
 | |
| 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use huge page pool size (in hstate) to convert the size
 | |
| 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
 | |
| 	 */
 | |
| 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
 | |
| 						   ctx->max_size_opt,
 | |
| 						   ctx->max_val_type);
 | |
| 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
 | |
| 						   ctx->min_size_opt,
 | |
| 						   ctx->min_val_type);
 | |
| 
 | |
| 	/*
 | |
| 	 * If max_size was specified, then min_size must be smaller
 | |
| 	 */
 | |
| 	if (ctx->max_val_type > NO_SIZE &&
 | |
| 	    ctx->min_hpages > ctx->max_hpages) {
 | |
| 		pr_err("Minimum size can not be greater than maximum size\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
 | |
| {
 | |
| 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | |
| 	struct hugetlbfs_sb_info *sbinfo;
 | |
| 
 | |
| 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
 | |
| 	if (!sbinfo)
 | |
| 		return -ENOMEM;
 | |
| 	sb->s_fs_info = sbinfo;
 | |
| 	spin_lock_init(&sbinfo->stat_lock);
 | |
| 	sbinfo->hstate		= ctx->hstate;
 | |
| 	sbinfo->max_inodes	= ctx->nr_inodes;
 | |
| 	sbinfo->free_inodes	= ctx->nr_inodes;
 | |
| 	sbinfo->spool		= NULL;
 | |
| 	sbinfo->uid		= ctx->uid;
 | |
| 	sbinfo->gid		= ctx->gid;
 | |
| 	sbinfo->mode		= ctx->mode;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate and initialize subpool if maximum or minimum size is
 | |
| 	 * specified.  Any needed reservations (for minimum size) are taken
 | |
| 	 * taken when the subpool is created.
 | |
| 	 */
 | |
| 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
 | |
| 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
 | |
| 						     ctx->max_hpages,
 | |
| 						     ctx->min_hpages);
 | |
| 		if (!sbinfo->spool)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 	sb->s_maxbytes = MAX_LFS_FILESIZE;
 | |
| 	sb->s_blocksize = huge_page_size(ctx->hstate);
 | |
| 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
 | |
| 	sb->s_magic = HUGETLBFS_MAGIC;
 | |
| 	sb->s_op = &hugetlbfs_ops;
 | |
| 	sb->s_time_gran = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to the special and limited functionality of hugetlbfs, it does
 | |
| 	 * not work well as a stacking filesystem.
 | |
| 	 */
 | |
| 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
 | |
| 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
 | |
| 	if (!sb->s_root)
 | |
| 		goto out_free;
 | |
| 	return 0;
 | |
| out_free:
 | |
| 	kfree(sbinfo->spool);
 | |
| 	kfree(sbinfo);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int hugetlbfs_get_tree(struct fs_context *fc)
 | |
| {
 | |
| 	int err = hugetlbfs_validate(fc);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return get_tree_nodev(fc, hugetlbfs_fill_super);
 | |
| }
 | |
| 
 | |
| static void hugetlbfs_fs_context_free(struct fs_context *fc)
 | |
| {
 | |
| 	kfree(fc->fs_private);
 | |
| }
 | |
| 
 | |
| static const struct fs_context_operations hugetlbfs_fs_context_ops = {
 | |
| 	.free		= hugetlbfs_fs_context_free,
 | |
| 	.parse_param	= hugetlbfs_parse_param,
 | |
| 	.get_tree	= hugetlbfs_get_tree,
 | |
| };
 | |
| 
 | |
| static int hugetlbfs_init_fs_context(struct fs_context *fc)
 | |
| {
 | |
| 	struct hugetlbfs_fs_context *ctx;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx->max_hpages	= -1; /* No limit on size by default */
 | |
| 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
 | |
| 	ctx->uid	= current_fsuid();
 | |
| 	ctx->gid	= current_fsgid();
 | |
| 	ctx->mode	= 0755;
 | |
| 	ctx->hstate	= &default_hstate;
 | |
| 	ctx->min_hpages	= -1; /* No default minimum size */
 | |
| 	ctx->max_val_type = NO_SIZE;
 | |
| 	ctx->min_val_type = NO_SIZE;
 | |
| 	fc->fs_private = ctx;
 | |
| 	fc->ops	= &hugetlbfs_fs_context_ops;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct file_system_type hugetlbfs_fs_type = {
 | |
| 	.name			= "hugetlbfs",
 | |
| 	.init_fs_context	= hugetlbfs_init_fs_context,
 | |
| 	.parameters		= hugetlb_fs_parameters,
 | |
| 	.kill_sb		= kill_litter_super,
 | |
| };
 | |
| 
 | |
| static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
 | |
| 
 | |
| static int can_do_hugetlb_shm(void)
 | |
| {
 | |
| 	kgid_t shm_group;
 | |
| 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
 | |
| 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
 | |
| }
 | |
| 
 | |
| static int get_hstate_idx(int page_size_log)
 | |
| {
 | |
| 	struct hstate *h = hstate_sizelog(page_size_log);
 | |
| 
 | |
| 	if (!h)
 | |
| 		return -1;
 | |
| 	return hstate_index(h);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that size should be aligned to proper hugepage size in caller side,
 | |
|  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
 | |
|  */
 | |
| struct file *hugetlb_file_setup(const char *name, size_t size,
 | |
| 				vm_flags_t acctflag, int creat_flags,
 | |
| 				int page_size_log)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct vfsmount *mnt;
 | |
| 	int hstate_idx;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	hstate_idx = get_hstate_idx(page_size_log);
 | |
| 	if (hstate_idx < 0)
 | |
| 		return ERR_PTR(-ENODEV);
 | |
| 
 | |
| 	mnt = hugetlbfs_vfsmount[hstate_idx];
 | |
| 	if (!mnt)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
 | |
| 		struct ucounts *ucounts = current_ucounts();
 | |
| 
 | |
| 		if (user_shm_lock(size, ucounts)) {
 | |
| 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
 | |
| 				current->comm, current->pid);
 | |
| 			user_shm_unlock(size, ucounts);
 | |
| 		}
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 	}
 | |
| 
 | |
| 	file = ERR_PTR(-ENOSPC);
 | |
| 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
 | |
| 	if (!inode)
 | |
| 		goto out;
 | |
| 	if (creat_flags == HUGETLB_SHMFS_INODE)
 | |
| 		inode->i_flags |= S_PRIVATE;
 | |
| 
 | |
| 	inode->i_size = size;
 | |
| 	clear_nlink(inode);
 | |
| 
 | |
| 	if (!hugetlb_reserve_pages(inode, 0,
 | |
| 			size >> huge_page_shift(hstate_inode(inode)), NULL,
 | |
| 			acctflag))
 | |
| 		file = ERR_PTR(-ENOMEM);
 | |
| 	else
 | |
| 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
 | |
| 					&hugetlbfs_file_operations);
 | |
| 	if (!IS_ERR(file))
 | |
| 		return file;
 | |
| 
 | |
| 	iput(inode);
 | |
| out:
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
 | |
| {
 | |
| 	struct fs_context *fc;
 | |
| 	struct vfsmount *mnt;
 | |
| 
 | |
| 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
 | |
| 	if (IS_ERR(fc)) {
 | |
| 		mnt = ERR_CAST(fc);
 | |
| 	} else {
 | |
| 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
 | |
| 		ctx->hstate = h;
 | |
| 		mnt = fc_mount(fc);
 | |
| 		put_fs_context(fc);
 | |
| 	}
 | |
| 	if (IS_ERR(mnt))
 | |
| 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
 | |
| 		       huge_page_size(h) >> 10);
 | |
| 	return mnt;
 | |
| }
 | |
| 
 | |
| static int __init init_hugetlbfs_fs(void)
 | |
| {
 | |
| 	struct vfsmount *mnt;
 | |
| 	struct hstate *h;
 | |
| 	int error;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!hugepages_supported()) {
 | |
| 		pr_info("disabling because there are no supported hugepage sizes\n");
 | |
| 		return -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	error = -ENOMEM;
 | |
| 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
 | |
| 					sizeof(struct hugetlbfs_inode_info),
 | |
| 					0, SLAB_ACCOUNT, init_once);
 | |
| 	if (hugetlbfs_inode_cachep == NULL)
 | |
| 		goto out;
 | |
| 
 | |
| 	error = register_filesystem(&hugetlbfs_fs_type);
 | |
| 	if (error)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/* default hstate mount is required */
 | |
| 	mnt = mount_one_hugetlbfs(&default_hstate);
 | |
| 	if (IS_ERR(mnt)) {
 | |
| 		error = PTR_ERR(mnt);
 | |
| 		goto out_unreg;
 | |
| 	}
 | |
| 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
 | |
| 
 | |
| 	/* other hstates are optional */
 | |
| 	i = 0;
 | |
| 	for_each_hstate(h) {
 | |
| 		if (i == default_hstate_idx) {
 | |
| 			i++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		mnt = mount_one_hugetlbfs(h);
 | |
| 		if (IS_ERR(mnt))
 | |
| 			hugetlbfs_vfsmount[i] = NULL;
 | |
| 		else
 | |
| 			hugetlbfs_vfsmount[i] = mnt;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_unreg:
 | |
| 	(void)unregister_filesystem(&hugetlbfs_fs_type);
 | |
|  out_free:
 | |
| 	kmem_cache_destroy(hugetlbfs_inode_cachep);
 | |
|  out:
 | |
| 	return error;
 | |
| }
 | |
| fs_initcall(init_hugetlbfs_fs)
 |