mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	The net value of these functions is to determine the result of a three-way-comparison between operands of the same type. Simplify the code using cmp_int() to eliminate potential errors with opencoded casts and subtractions. This also means we can change the return value type of cmp_key_with_cur routines from int64_t to int and make the interface a bit clearer. Found by Linux Verification Center (linuxtesting.org). Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Carlos Maiolino <cem@kernel.org>
		
			
				
	
	
		
			872 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			872 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (c) 2014 Red Hat, Inc.
 | 
						|
 * All Rights Reserved.
 | 
						|
 */
 | 
						|
#include "xfs.h"
 | 
						|
#include "xfs_fs.h"
 | 
						|
#include "xfs_shared.h"
 | 
						|
#include "xfs_format.h"
 | 
						|
#include "xfs_log_format.h"
 | 
						|
#include "xfs_trans_resv.h"
 | 
						|
#include "xfs_mount.h"
 | 
						|
#include "xfs_trans.h"
 | 
						|
#include "xfs_alloc.h"
 | 
						|
#include "xfs_btree.h"
 | 
						|
#include "xfs_btree_staging.h"
 | 
						|
#include "xfs_rmap.h"
 | 
						|
#include "xfs_rmap_btree.h"
 | 
						|
#include "xfs_health.h"
 | 
						|
#include "xfs_trace.h"
 | 
						|
#include "xfs_error.h"
 | 
						|
#include "xfs_extent_busy.h"
 | 
						|
#include "xfs_ag.h"
 | 
						|
#include "xfs_ag_resv.h"
 | 
						|
#include "xfs_buf_mem.h"
 | 
						|
#include "xfs_btree_mem.h"
 | 
						|
 | 
						|
static struct kmem_cache	*xfs_rmapbt_cur_cache;
 | 
						|
 | 
						|
/*
 | 
						|
 * Reverse map btree.
 | 
						|
 *
 | 
						|
 * This is a per-ag tree used to track the owner(s) of a given extent. With
 | 
						|
 * reflink it is possible for there to be multiple owners, which is a departure
 | 
						|
 * from classic XFS. Owner records for data extents are inserted when the
 | 
						|
 * extent is mapped and removed when an extent is unmapped.  Owner records for
 | 
						|
 * all other block types (i.e. metadata) are inserted when an extent is
 | 
						|
 * allocated and removed when an extent is freed. There can only be one owner
 | 
						|
 * of a metadata extent, usually an inode or some other metadata structure like
 | 
						|
 * an AG btree.
 | 
						|
 *
 | 
						|
 * The rmap btree is part of the free space management, so blocks for the tree
 | 
						|
 * are sourced from the agfl. Hence we need transaction reservation support for
 | 
						|
 * this tree so that the freelist is always large enough. This also impacts on
 | 
						|
 * the minimum space we need to leave free in the AG.
 | 
						|
 *
 | 
						|
 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
 | 
						|
 * but it is the only way to enforce unique keys when a block can be owned by
 | 
						|
 * multiple files at any offset. There's no need to order/search by extent
 | 
						|
 * size for online updating/management of the tree. It is intended that most
 | 
						|
 * reverse lookups will be to find the owner(s) of a particular block, or to
 | 
						|
 * try to recover tree and file data from corrupt primary metadata.
 | 
						|
 */
 | 
						|
 | 
						|
static struct xfs_btree_cur *
 | 
						|
xfs_rmapbt_dup_cursor(
 | 
						|
	struct xfs_btree_cur	*cur)
 | 
						|
{
 | 
						|
	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
 | 
						|
				cur->bc_ag.agbp, to_perag(cur->bc_group));
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_set_root(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_ptr	*ptr,
 | 
						|
	int				inc)
 | 
						|
{
 | 
						|
	struct xfs_buf			*agbp = cur->bc_ag.agbp;
 | 
						|
	struct xfs_agf			*agf = agbp->b_addr;
 | 
						|
	struct xfs_perag		*pag = to_perag(cur->bc_group);
 | 
						|
 | 
						|
	ASSERT(ptr->s != 0);
 | 
						|
 | 
						|
	agf->agf_rmap_root = ptr->s;
 | 
						|
	be32_add_cpu(&agf->agf_rmap_level, inc);
 | 
						|
	pag->pagf_rmap_level += inc;
 | 
						|
 | 
						|
	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_alloc_block(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_ptr	*start,
 | 
						|
	union xfs_btree_ptr		*new,
 | 
						|
	int				*stat)
 | 
						|
{
 | 
						|
	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 | 
						|
	struct xfs_agf		*agf = agbp->b_addr;
 | 
						|
	struct xfs_perag	*pag = to_perag(cur->bc_group);
 | 
						|
	struct xfs_alloc_arg    args = { .len = 1 };
 | 
						|
	int			error;
 | 
						|
	xfs_agblock_t		bno;
 | 
						|
 | 
						|
	/* Allocate the new block from the freelist. If we can't, give up.  */
 | 
						|
	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
 | 
						|
				       &bno, 1);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	if (bno == NULLAGBLOCK) {
 | 
						|
		*stat = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_extent_busy_reuse(pag_group(pag), bno, 1, false);
 | 
						|
 | 
						|
	new->s = cpu_to_be32(bno);
 | 
						|
	be32_add_cpu(&agf->agf_rmap_blocks, 1);
 | 
						|
	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since rmapbt blocks are sourced from the AGFL, they are allocated one
 | 
						|
	 * at a time and the reservation updates don't require a transaction.
 | 
						|
	 */
 | 
						|
	xfs_ag_resv_alloc_extent(pag, XFS_AG_RESV_RMAPBT, &args);
 | 
						|
 | 
						|
	*stat = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_free_block(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	struct xfs_buf		*bp)
 | 
						|
{
 | 
						|
	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 | 
						|
	struct xfs_agf		*agf = agbp->b_addr;
 | 
						|
	struct xfs_perag	*pag = to_perag(cur->bc_group);
 | 
						|
	xfs_agblock_t		bno;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
 | 
						|
	be32_add_cpu(&agf->agf_rmap_blocks, -1);
 | 
						|
	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 | 
						|
	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	xfs_extent_busy_insert(cur->bc_tp, pag_group(pag), bno, 1,
 | 
						|
			      XFS_EXTENT_BUSY_SKIP_DISCARD);
 | 
						|
 | 
						|
	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_get_minrecs(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	int			level)
 | 
						|
{
 | 
						|
	return cur->bc_mp->m_rmap_mnr[level != 0];
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_get_maxrecs(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	int			level)
 | 
						|
{
 | 
						|
	return cur->bc_mp->m_rmap_mxr[level != 0];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert the ondisk record's offset field into the ondisk key's offset field.
 | 
						|
 * Fork and bmbt are significant parts of the rmap record key, but written
 | 
						|
 * status is merely a record attribute.
 | 
						|
 */
 | 
						|
static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
 | 
						|
{
 | 
						|
	return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_init_key_from_rec(
 | 
						|
	union xfs_btree_key		*key,
 | 
						|
	const union xfs_btree_rec	*rec)
 | 
						|
{
 | 
						|
	key->rmap.rm_startblock = rec->rmap.rm_startblock;
 | 
						|
	key->rmap.rm_owner = rec->rmap.rm_owner;
 | 
						|
	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The high key for a reverse mapping record can be computed by shifting
 | 
						|
 * the startblock and offset to the highest value that would still map
 | 
						|
 * to that record.  In practice this means that we add blockcount-1 to
 | 
						|
 * the startblock for all records, and if the record is for a data/attr
 | 
						|
 * fork mapping, we add blockcount-1 to the offset too.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_init_high_key_from_rec(
 | 
						|
	union xfs_btree_key		*key,
 | 
						|
	const union xfs_btree_rec	*rec)
 | 
						|
{
 | 
						|
	uint64_t			off;
 | 
						|
	int				adj;
 | 
						|
 | 
						|
	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
 | 
						|
 | 
						|
	key->rmap.rm_startblock = rec->rmap.rm_startblock;
 | 
						|
	be32_add_cpu(&key->rmap.rm_startblock, adj);
 | 
						|
	key->rmap.rm_owner = rec->rmap.rm_owner;
 | 
						|
	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
 | 
						|
	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
 | 
						|
	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
 | 
						|
		return;
 | 
						|
	off = be64_to_cpu(key->rmap.rm_offset);
 | 
						|
	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
 | 
						|
	key->rmap.rm_offset = cpu_to_be64(off);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_init_rec_from_cur(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_rec	*rec)
 | 
						|
{
 | 
						|
	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
 | 
						|
	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
 | 
						|
	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
 | 
						|
	rec->rmap.rm_offset = cpu_to_be64(
 | 
						|
			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_init_ptr_from_cur(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_ptr	*ptr)
 | 
						|
{
 | 
						|
	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
 | 
						|
 | 
						|
	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
 | 
						|
 | 
						|
	ptr->s = agf->agf_rmap_root;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Mask the appropriate parts of the ondisk key field for a key comparison.
 | 
						|
 * Fork and bmbt are significant parts of the rmap record key, but written
 | 
						|
 * status is merely a record attribute.
 | 
						|
 */
 | 
						|
static inline uint64_t offset_keymask(uint64_t offset)
 | 
						|
{
 | 
						|
	return offset & ~XFS_RMAP_OFF_UNWRITTEN;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_cmp_key_with_cur(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_key	*key)
 | 
						|
{
 | 
						|
	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
 | 
						|
	const struct xfs_rmap_key	*kp = &key->rmap;
 | 
						|
 | 
						|
	return cmp_int(be32_to_cpu(kp->rm_startblock), rec->rm_startblock) ?:
 | 
						|
	       cmp_int(be64_to_cpu(kp->rm_owner), rec->rm_owner) ?:
 | 
						|
	       cmp_int(offset_keymask(be64_to_cpu(kp->rm_offset)),
 | 
						|
		       offset_keymask(xfs_rmap_irec_offset_pack(rec)));
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_cmp_two_keys(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_key	*k1,
 | 
						|
	const union xfs_btree_key	*k2,
 | 
						|
	const union xfs_btree_key	*mask)
 | 
						|
{
 | 
						|
	const struct xfs_rmap_key	*kp1 = &k1->rmap;
 | 
						|
	const struct xfs_rmap_key	*kp2 = &k2->rmap;
 | 
						|
	int				d;
 | 
						|
 | 
						|
	/* Doesn't make sense to mask off the physical space part */
 | 
						|
	ASSERT(!mask || mask->rmap.rm_startblock);
 | 
						|
 | 
						|
	d = cmp_int(be32_to_cpu(kp1->rm_startblock),
 | 
						|
		    be32_to_cpu(kp2->rm_startblock));
 | 
						|
	if (d)
 | 
						|
		return d;
 | 
						|
 | 
						|
	if (!mask || mask->rmap.rm_owner) {
 | 
						|
		d = cmp_int(be64_to_cpu(kp1->rm_owner),
 | 
						|
			    be64_to_cpu(kp2->rm_owner));
 | 
						|
		if (d)
 | 
						|
			return d;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!mask || mask->rmap.rm_offset) {
 | 
						|
		/* Doesn't make sense to allow offset but not owner */
 | 
						|
		ASSERT(!mask || mask->rmap.rm_owner);
 | 
						|
 | 
						|
		d = cmp_int(offset_keymask(be64_to_cpu(kp1->rm_offset)),
 | 
						|
			    offset_keymask(be64_to_cpu(kp2->rm_offset)));
 | 
						|
		if (d)
 | 
						|
			return d;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static xfs_failaddr_t
 | 
						|
xfs_rmapbt_verify(
 | 
						|
	struct xfs_buf		*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = bp->b_mount;
 | 
						|
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 | 
						|
	struct xfs_perag	*pag = bp->b_pag;
 | 
						|
	xfs_failaddr_t		fa;
 | 
						|
	unsigned int		level;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * magic number and level verification
 | 
						|
	 *
 | 
						|
	 * During growfs operations, we can't verify the exact level or owner as
 | 
						|
	 * the perag is not fully initialised and hence not attached to the
 | 
						|
	 * buffer.  In this case, check against the maximum tree depth.
 | 
						|
	 *
 | 
						|
	 * Similarly, during log recovery we will have a perag structure
 | 
						|
	 * attached, but the agf information will not yet have been initialised
 | 
						|
	 * from the on disk AGF. Again, we can only check against maximum limits
 | 
						|
	 * in this case.
 | 
						|
	 */
 | 
						|
	if (!xfs_verify_magic(bp, block->bb_magic))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	if (!xfs_has_rmapbt(mp))
 | 
						|
		return __this_address;
 | 
						|
	fa = xfs_btree_agblock_v5hdr_verify(bp);
 | 
						|
	if (fa)
 | 
						|
		return fa;
 | 
						|
 | 
						|
	level = be16_to_cpu(block->bb_level);
 | 
						|
	if (pag && xfs_perag_initialised_agf(pag)) {
 | 
						|
		unsigned int	maxlevel = pag->pagf_rmap_level;
 | 
						|
 | 
						|
#ifdef CONFIG_XFS_ONLINE_REPAIR
 | 
						|
		/*
 | 
						|
		 * Online repair could be rewriting the free space btrees, so
 | 
						|
		 * we'll validate against the larger of either tree while this
 | 
						|
		 * is going on.
 | 
						|
		 */
 | 
						|
		maxlevel = max_t(unsigned int, maxlevel,
 | 
						|
				pag->pagf_repair_rmap_level);
 | 
						|
#endif
 | 
						|
		if (level >= maxlevel)
 | 
						|
			return __this_address;
 | 
						|
	} else if (level >= mp->m_rmap_maxlevels)
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	return xfs_btree_agblock_verify(bp, mp->m_rmap_mxr[level != 0]);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_rmapbt_read_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	xfs_failaddr_t	fa;
 | 
						|
 | 
						|
	if (!xfs_btree_agblock_verify_crc(bp))
 | 
						|
		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 | 
						|
	else {
 | 
						|
		fa = xfs_rmapbt_verify(bp);
 | 
						|
		if (fa)
 | 
						|
			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
	}
 | 
						|
 | 
						|
	if (bp->b_error)
 | 
						|
		trace_xfs_btree_corrupt(bp, _RET_IP_);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_rmapbt_write_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	xfs_failaddr_t	fa;
 | 
						|
 | 
						|
	fa = xfs_rmapbt_verify(bp);
 | 
						|
	if (fa) {
 | 
						|
		trace_xfs_btree_corrupt(bp, _RET_IP_);
 | 
						|
		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	xfs_btree_agblock_calc_crc(bp);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
 | 
						|
	.name			= "xfs_rmapbt",
 | 
						|
	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
 | 
						|
	.verify_read		= xfs_rmapbt_read_verify,
 | 
						|
	.verify_write		= xfs_rmapbt_write_verify,
 | 
						|
	.verify_struct		= xfs_rmapbt_verify,
 | 
						|
};
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_keys_inorder(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_key	*k1,
 | 
						|
	const union xfs_btree_key	*k2)
 | 
						|
{
 | 
						|
	uint32_t		x;
 | 
						|
	uint32_t		y;
 | 
						|
	uint64_t		a;
 | 
						|
	uint64_t		b;
 | 
						|
 | 
						|
	x = be32_to_cpu(k1->rmap.rm_startblock);
 | 
						|
	y = be32_to_cpu(k2->rmap.rm_startblock);
 | 
						|
	if (x < y)
 | 
						|
		return 1;
 | 
						|
	else if (x > y)
 | 
						|
		return 0;
 | 
						|
	a = be64_to_cpu(k1->rmap.rm_owner);
 | 
						|
	b = be64_to_cpu(k2->rmap.rm_owner);
 | 
						|
	if (a < b)
 | 
						|
		return 1;
 | 
						|
	else if (a > b)
 | 
						|
		return 0;
 | 
						|
	a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
 | 
						|
	b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
 | 
						|
	if (a <= b)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_recs_inorder(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_rec	*r1,
 | 
						|
	const union xfs_btree_rec	*r2)
 | 
						|
{
 | 
						|
	uint32_t		x;
 | 
						|
	uint32_t		y;
 | 
						|
	uint64_t		a;
 | 
						|
	uint64_t		b;
 | 
						|
 | 
						|
	x = be32_to_cpu(r1->rmap.rm_startblock);
 | 
						|
	y = be32_to_cpu(r2->rmap.rm_startblock);
 | 
						|
	if (x < y)
 | 
						|
		return 1;
 | 
						|
	else if (x > y)
 | 
						|
		return 0;
 | 
						|
	a = be64_to_cpu(r1->rmap.rm_owner);
 | 
						|
	b = be64_to_cpu(r2->rmap.rm_owner);
 | 
						|
	if (a < b)
 | 
						|
		return 1;
 | 
						|
	else if (a > b)
 | 
						|
		return 0;
 | 
						|
	a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
 | 
						|
	b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
 | 
						|
	if (a <= b)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC enum xbtree_key_contig
 | 
						|
xfs_rmapbt_keys_contiguous(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_key	*key1,
 | 
						|
	const union xfs_btree_key	*key2,
 | 
						|
	const union xfs_btree_key	*mask)
 | 
						|
{
 | 
						|
	ASSERT(!mask || mask->rmap.rm_startblock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We only support checking contiguity of the physical space component.
 | 
						|
	 * If any callers ever need more specificity than that, they'll have to
 | 
						|
	 * implement it here.
 | 
						|
	 */
 | 
						|
	ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
 | 
						|
 | 
						|
	return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
 | 
						|
				 be32_to_cpu(key2->rmap.rm_startblock));
 | 
						|
}
 | 
						|
 | 
						|
const struct xfs_btree_ops xfs_rmapbt_ops = {
 | 
						|
	.name			= "rmap",
 | 
						|
	.type			= XFS_BTREE_TYPE_AG,
 | 
						|
	.geom_flags		= XFS_BTGEO_OVERLAPPING,
 | 
						|
 | 
						|
	.rec_len		= sizeof(struct xfs_rmap_rec),
 | 
						|
	/* Overlapping btree; 2 keys per pointer. */
 | 
						|
	.key_len		= 2 * sizeof(struct xfs_rmap_key),
 | 
						|
	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
 | 
						|
 | 
						|
	.lru_refs		= XFS_RMAP_BTREE_REF,
 | 
						|
	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_2),
 | 
						|
	.sick_mask		= XFS_SICK_AG_RMAPBT,
 | 
						|
 | 
						|
	.dup_cursor		= xfs_rmapbt_dup_cursor,
 | 
						|
	.set_root		= xfs_rmapbt_set_root,
 | 
						|
	.alloc_block		= xfs_rmapbt_alloc_block,
 | 
						|
	.free_block		= xfs_rmapbt_free_block,
 | 
						|
	.get_minrecs		= xfs_rmapbt_get_minrecs,
 | 
						|
	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
 | 
						|
	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
 | 
						|
	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
 | 
						|
	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
 | 
						|
	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
 | 
						|
	.cmp_key_with_cur	= xfs_rmapbt_cmp_key_with_cur,
 | 
						|
	.buf_ops		= &xfs_rmapbt_buf_ops,
 | 
						|
	.cmp_two_keys		= xfs_rmapbt_cmp_two_keys,
 | 
						|
	.keys_inorder		= xfs_rmapbt_keys_inorder,
 | 
						|
	.recs_inorder		= xfs_rmapbt_recs_inorder,
 | 
						|
	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Create a new reverse mapping btree cursor.
 | 
						|
 *
 | 
						|
 * For staging cursors tp and agbp are NULL.
 | 
						|
 */
 | 
						|
struct xfs_btree_cur *
 | 
						|
xfs_rmapbt_init_cursor(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_buf		*agbp,
 | 
						|
	struct xfs_perag	*pag)
 | 
						|
{
 | 
						|
	struct xfs_btree_cur	*cur;
 | 
						|
 | 
						|
	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_ops,
 | 
						|
			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
 | 
						|
	cur->bc_group = xfs_group_hold(pag_group(pag));
 | 
						|
	cur->bc_ag.agbp = agbp;
 | 
						|
	if (agbp) {
 | 
						|
		struct xfs_agf		*agf = agbp->b_addr;
 | 
						|
 | 
						|
		cur->bc_nlevels = be32_to_cpu(agf->agf_rmap_level);
 | 
						|
	}
 | 
						|
	return cur;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_XFS_BTREE_IN_MEM
 | 
						|
static inline unsigned int
 | 
						|
xfs_rmapbt_mem_block_maxrecs(
 | 
						|
	unsigned int		blocklen,
 | 
						|
	bool			leaf)
 | 
						|
{
 | 
						|
	if (leaf)
 | 
						|
		return blocklen / sizeof(struct xfs_rmap_rec);
 | 
						|
	return blocklen /
 | 
						|
		(2 * sizeof(struct xfs_rmap_key) + sizeof(__be64));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Validate an in-memory rmap btree block.  Callers are allowed to generate an
 | 
						|
 * in-memory btree even if the ondisk feature is not enabled.
 | 
						|
 */
 | 
						|
static xfs_failaddr_t
 | 
						|
xfs_rmapbt_mem_verify(
 | 
						|
	struct xfs_buf		*bp)
 | 
						|
{
 | 
						|
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 | 
						|
	xfs_failaddr_t		fa;
 | 
						|
	unsigned int		level;
 | 
						|
	unsigned int		maxrecs;
 | 
						|
 | 
						|
	if (!xfs_verify_magic(bp, block->bb_magic))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
 | 
						|
	if (fa)
 | 
						|
		return fa;
 | 
						|
 | 
						|
	level = be16_to_cpu(block->bb_level);
 | 
						|
	if (level >= xfs_rmapbt_maxlevels_ondisk())
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	maxrecs = xfs_rmapbt_mem_block_maxrecs(
 | 
						|
			XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN, level == 0);
 | 
						|
	return xfs_btree_memblock_verify(bp, maxrecs);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_rmapbt_mem_rw_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	xfs_failaddr_t	fa = xfs_rmapbt_mem_verify(bp);
 | 
						|
 | 
						|
	if (fa)
 | 
						|
		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
}
 | 
						|
 | 
						|
/* skip crc checks on in-memory btrees to save time */
 | 
						|
static const struct xfs_buf_ops xfs_rmapbt_mem_buf_ops = {
 | 
						|
	.name			= "xfs_rmapbt_mem",
 | 
						|
	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
 | 
						|
	.verify_read		= xfs_rmapbt_mem_rw_verify,
 | 
						|
	.verify_write		= xfs_rmapbt_mem_rw_verify,
 | 
						|
	.verify_struct		= xfs_rmapbt_mem_verify,
 | 
						|
};
 | 
						|
 | 
						|
const struct xfs_btree_ops xfs_rmapbt_mem_ops = {
 | 
						|
	.name			= "mem_rmap",
 | 
						|
	.type			= XFS_BTREE_TYPE_MEM,
 | 
						|
	.geom_flags		= XFS_BTGEO_OVERLAPPING,
 | 
						|
 | 
						|
	.rec_len		= sizeof(struct xfs_rmap_rec),
 | 
						|
	/* Overlapping btree; 2 keys per pointer. */
 | 
						|
	.key_len		= 2 * sizeof(struct xfs_rmap_key),
 | 
						|
	.ptr_len		= XFS_BTREE_LONG_PTR_LEN,
 | 
						|
 | 
						|
	.lru_refs		= XFS_RMAP_BTREE_REF,
 | 
						|
	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_mem_2),
 | 
						|
 | 
						|
	.dup_cursor		= xfbtree_dup_cursor,
 | 
						|
	.set_root		= xfbtree_set_root,
 | 
						|
	.alloc_block		= xfbtree_alloc_block,
 | 
						|
	.free_block		= xfbtree_free_block,
 | 
						|
	.get_minrecs		= xfbtree_get_minrecs,
 | 
						|
	.get_maxrecs		= xfbtree_get_maxrecs,
 | 
						|
	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
 | 
						|
	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
 | 
						|
	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
 | 
						|
	.init_ptr_from_cur	= xfbtree_init_ptr_from_cur,
 | 
						|
	.cmp_key_with_cur	= xfs_rmapbt_cmp_key_with_cur,
 | 
						|
	.buf_ops		= &xfs_rmapbt_mem_buf_ops,
 | 
						|
	.cmp_two_keys		= xfs_rmapbt_cmp_two_keys,
 | 
						|
	.keys_inorder		= xfs_rmapbt_keys_inorder,
 | 
						|
	.recs_inorder		= xfs_rmapbt_recs_inorder,
 | 
						|
	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
 | 
						|
};
 | 
						|
 | 
						|
/* Create a cursor for an in-memory btree. */
 | 
						|
struct xfs_btree_cur *
 | 
						|
xfs_rmapbt_mem_cursor(
 | 
						|
	struct xfs_perag	*pag,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfbtree		*xfbt)
 | 
						|
{
 | 
						|
	struct xfs_btree_cur	*cur;
 | 
						|
 | 
						|
	cur = xfs_btree_alloc_cursor(pag_mount(pag), tp, &xfs_rmapbt_mem_ops,
 | 
						|
			xfs_rmapbt_maxlevels_ondisk(), xfs_rmapbt_cur_cache);
 | 
						|
	cur->bc_mem.xfbtree = xfbt;
 | 
						|
	cur->bc_nlevels = xfbt->nlevels;
 | 
						|
 | 
						|
	cur->bc_group = xfs_group_hold(pag_group(pag));
 | 
						|
	return cur;
 | 
						|
}
 | 
						|
 | 
						|
/* Create an in-memory rmap btree. */
 | 
						|
int
 | 
						|
xfs_rmapbt_mem_init(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfbtree		*xfbt,
 | 
						|
	struct xfs_buftarg	*btp,
 | 
						|
	xfs_agnumber_t		agno)
 | 
						|
{
 | 
						|
	xfbt->owner = agno;
 | 
						|
	return xfbtree_init(mp, xfbt, btp, &xfs_rmapbt_mem_ops);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute the max possible height for reverse mapping btrees in memory. */
 | 
						|
static unsigned int
 | 
						|
xfs_rmapbt_mem_maxlevels(void)
 | 
						|
{
 | 
						|
	unsigned int		minrecs[2];
 | 
						|
	unsigned int		blocklen;
 | 
						|
 | 
						|
	blocklen = XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
 | 
						|
 | 
						|
	minrecs[0] = xfs_rmapbt_mem_block_maxrecs(blocklen, true) / 2;
 | 
						|
	minrecs[1] = xfs_rmapbt_mem_block_maxrecs(blocklen, false) / 2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * How tall can an in-memory rmap btree become if we filled the entire
 | 
						|
	 * AG with rmap records?
 | 
						|
	 */
 | 
						|
	return xfs_btree_compute_maxlevels(minrecs,
 | 
						|
			XFS_MAX_AG_BYTES / sizeof(struct xfs_rmap_rec));
 | 
						|
}
 | 
						|
#else
 | 
						|
# define xfs_rmapbt_mem_maxlevels()	(0)
 | 
						|
#endif /* CONFIG_XFS_BTREE_IN_MEM */
 | 
						|
 | 
						|
/*
 | 
						|
 * Install a new reverse mapping btree root.  Caller is responsible for
 | 
						|
 * invalidating and freeing the old btree blocks.
 | 
						|
 */
 | 
						|
void
 | 
						|
xfs_rmapbt_commit_staged_btree(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_buf		*agbp)
 | 
						|
{
 | 
						|
	struct xfs_agf		*agf = agbp->b_addr;
 | 
						|
	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
 | 
						|
 | 
						|
	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
 | 
						|
 | 
						|
	agf->agf_rmap_root = cpu_to_be32(afake->af_root);
 | 
						|
	agf->agf_rmap_level = cpu_to_be32(afake->af_levels);
 | 
						|
	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
 | 
						|
	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
 | 
						|
				    XFS_AGF_RMAP_BLOCKS);
 | 
						|
	xfs_btree_commit_afakeroot(cur, tp, agbp);
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate number of records in a reverse mapping btree block. */
 | 
						|
static inline unsigned int
 | 
						|
xfs_rmapbt_block_maxrecs(
 | 
						|
	unsigned int		blocklen,
 | 
						|
	bool			leaf)
 | 
						|
{
 | 
						|
	if (leaf)
 | 
						|
		return blocklen / sizeof(struct xfs_rmap_rec);
 | 
						|
	return blocklen /
 | 
						|
		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate number of records in an rmap btree block.
 | 
						|
 */
 | 
						|
unsigned int
 | 
						|
xfs_rmapbt_maxrecs(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	unsigned int		blocklen,
 | 
						|
	bool			leaf)
 | 
						|
{
 | 
						|
	blocklen -= XFS_RMAP_BLOCK_LEN;
 | 
						|
	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute the max possible height for reverse mapping btrees. */
 | 
						|
unsigned int
 | 
						|
xfs_rmapbt_maxlevels_ondisk(void)
 | 
						|
{
 | 
						|
	unsigned int		minrecs[2];
 | 
						|
	unsigned int		blocklen;
 | 
						|
 | 
						|
	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
 | 
						|
 | 
						|
	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
 | 
						|
	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
 | 
						|
	 *
 | 
						|
	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
 | 
						|
	 * refcount record format) owners, which means that theoretically we
 | 
						|
	 * could face up to 2^64 rmap records.  However, we're likely to run
 | 
						|
	 * out of blocks in the AG long before that happens, which means that
 | 
						|
	 * we must compute the max height based on what the btree will look
 | 
						|
	 * like if it consumes almost all the blocks in the AG due to maximal
 | 
						|
	 * sharing factor.
 | 
						|
	 */
 | 
						|
	return max(xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS),
 | 
						|
		   xfs_rmapbt_mem_maxlevels());
 | 
						|
}
 | 
						|
 | 
						|
/* Compute the maximum height of an rmap btree. */
 | 
						|
void
 | 
						|
xfs_rmapbt_compute_maxlevels(
 | 
						|
	struct xfs_mount		*mp)
 | 
						|
{
 | 
						|
	if (!xfs_has_rmapbt(mp)) {
 | 
						|
		mp->m_rmap_maxlevels = 0;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (xfs_has_reflink(mp)) {
 | 
						|
		/*
 | 
						|
		 * Compute the asymptotic maxlevels for an rmap btree on a
 | 
						|
		 * filesystem that supports reflink.
 | 
						|
		 *
 | 
						|
		 * On a reflink filesystem, each AG block can have up to 2^32
 | 
						|
		 * (per the refcount record format) owners, which means that
 | 
						|
		 * theoretically we could face up to 2^64 rmap records.
 | 
						|
		 * However, we're likely to run out of blocks in the AG long
 | 
						|
		 * before that happens, which means that we must compute the
 | 
						|
		 * max height based on what the btree will look like if it
 | 
						|
		 * consumes almost all the blocks in the AG due to maximal
 | 
						|
		 * sharing factor.
 | 
						|
		 */
 | 
						|
		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
 | 
						|
				mp->m_sb.sb_agblocks);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * If there's no block sharing, compute the maximum rmapbt
 | 
						|
		 * height assuming one rmap record per AG block.
 | 
						|
		 */
 | 
						|
		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
 | 
						|
				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
 | 
						|
	}
 | 
						|
	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate the refcount btree size for some records. */
 | 
						|
xfs_extlen_t
 | 
						|
xfs_rmapbt_calc_size(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	unsigned long long	len)
 | 
						|
{
 | 
						|
	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the maximum refcount btree size.
 | 
						|
 */
 | 
						|
xfs_extlen_t
 | 
						|
xfs_rmapbt_max_size(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	xfs_agblock_t		agblocks)
 | 
						|
{
 | 
						|
	/* Bail out if we're uninitialized, which can happen in mkfs. */
 | 
						|
	if (mp->m_rmap_mxr[0] == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return xfs_rmapbt_calc_size(mp, agblocks);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Figure out how many blocks to reserve and how many are used by this btree.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_rmapbt_calc_reserves(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_perag	*pag,
 | 
						|
	xfs_extlen_t		*ask,
 | 
						|
	xfs_extlen_t		*used)
 | 
						|
{
 | 
						|
	struct xfs_buf		*agbp;
 | 
						|
	struct xfs_agf		*agf;
 | 
						|
	xfs_agblock_t		agblocks;
 | 
						|
	xfs_extlen_t		tree_len;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	if (!xfs_has_rmapbt(mp))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	agf = agbp->b_addr;
 | 
						|
	agblocks = be32_to_cpu(agf->agf_length);
 | 
						|
	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
 | 
						|
	xfs_trans_brelse(tp, agbp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The log is permanently allocated, so the space it occupies will
 | 
						|
	 * never be available for the kinds of things that would require btree
 | 
						|
	 * expansion.  We therefore can pretend the space isn't there.
 | 
						|
	 */
 | 
						|
	if (xfs_ag_contains_log(mp, pag_agno(pag)))
 | 
						|
		agblocks -= mp->m_sb.sb_logblocks;
 | 
						|
 | 
						|
	/* Reserve 1% of the AG or enough for 1 block per record. */
 | 
						|
	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
 | 
						|
	*used += tree_len;
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
int __init
 | 
						|
xfs_rmapbt_init_cur_cache(void)
 | 
						|
{
 | 
						|
	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
 | 
						|
			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
 | 
						|
			0, 0, NULL);
 | 
						|
 | 
						|
	if (!xfs_rmapbt_cur_cache)
 | 
						|
		return -ENOMEM;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
xfs_rmapbt_destroy_cur_cache(void)
 | 
						|
{
 | 
						|
	kmem_cache_destroy(xfs_rmapbt_cur_cache);
 | 
						|
	xfs_rmapbt_cur_cache = NULL;
 | 
						|
}
 |