mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	The net value of these functions is to determine the result of a three-way-comparison between operands of the same type. Simplify the code using cmp_int() to eliminate potential errors with opencoded casts and subtractions. This also means we can change the return value type of cmp_key_with_cur routines from int64_t to int and make the interface a bit clearer. Found by Linux Verification Center (linuxtesting.org). Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Carlos Maiolino <cem@kernel.org>
		
			
				
	
	
		
			1033 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1033 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 * Copyright (c) 2018-2024 Oracle.  All Rights Reserved.
 | 
						|
 * Author: Darrick J. Wong <djwong@kernel.org>
 | 
						|
 */
 | 
						|
#include "xfs.h"
 | 
						|
#include "xfs_fs.h"
 | 
						|
#include "xfs_shared.h"
 | 
						|
#include "xfs_format.h"
 | 
						|
#include "xfs_log_format.h"
 | 
						|
#include "xfs_trans_resv.h"
 | 
						|
#include "xfs_bit.h"
 | 
						|
#include "xfs_sb.h"
 | 
						|
#include "xfs_mount.h"
 | 
						|
#include "xfs_defer.h"
 | 
						|
#include "xfs_inode.h"
 | 
						|
#include "xfs_trans.h"
 | 
						|
#include "xfs_alloc.h"
 | 
						|
#include "xfs_btree.h"
 | 
						|
#include "xfs_btree_staging.h"
 | 
						|
#include "xfs_metafile.h"
 | 
						|
#include "xfs_rmap.h"
 | 
						|
#include "xfs_rtrmap_btree.h"
 | 
						|
#include "xfs_trace.h"
 | 
						|
#include "xfs_cksum.h"
 | 
						|
#include "xfs_error.h"
 | 
						|
#include "xfs_extent_busy.h"
 | 
						|
#include "xfs_rtgroup.h"
 | 
						|
#include "xfs_bmap.h"
 | 
						|
#include "xfs_health.h"
 | 
						|
#include "xfs_buf_mem.h"
 | 
						|
#include "xfs_btree_mem.h"
 | 
						|
 | 
						|
static struct kmem_cache	*xfs_rtrmapbt_cur_cache;
 | 
						|
 | 
						|
/*
 | 
						|
 * Realtime Reverse Map btree.
 | 
						|
 *
 | 
						|
 * This is a btree used to track the owner(s) of a given extent in the realtime
 | 
						|
 * device.  See the comments in xfs_rmap_btree.c for more information.
 | 
						|
 *
 | 
						|
 * This tree is basically the same as the regular rmap btree except that it
 | 
						|
 * is rooted in an inode and does not live in free space.
 | 
						|
 */
 | 
						|
 | 
						|
static struct xfs_btree_cur *
 | 
						|
xfs_rtrmapbt_dup_cursor(
 | 
						|
	struct xfs_btree_cur	*cur)
 | 
						|
{
 | 
						|
	return xfs_rtrmapbt_init_cursor(cur->bc_tp, to_rtg(cur->bc_group));
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rtrmapbt_get_minrecs(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	int			level)
 | 
						|
{
 | 
						|
	if (level == cur->bc_nlevels - 1) {
 | 
						|
		struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
 | 
						|
 | 
						|
		return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
 | 
						|
				level == 0) / 2;
 | 
						|
	}
 | 
						|
 | 
						|
	return cur->bc_mp->m_rtrmap_mnr[level != 0];
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rtrmapbt_get_maxrecs(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	int			level)
 | 
						|
{
 | 
						|
	if (level == cur->bc_nlevels - 1) {
 | 
						|
		struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
 | 
						|
 | 
						|
		return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
 | 
						|
				level == 0);
 | 
						|
	}
 | 
						|
 | 
						|
	return cur->bc_mp->m_rtrmap_mxr[level != 0];
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate number of records in the ondisk realtime rmap btree inode root. */
 | 
						|
unsigned int
 | 
						|
xfs_rtrmapbt_droot_maxrecs(
 | 
						|
	unsigned int		blocklen,
 | 
						|
	bool			leaf)
 | 
						|
{
 | 
						|
	blocklen -= sizeof(struct xfs_rtrmap_root);
 | 
						|
 | 
						|
	if (leaf)
 | 
						|
		return blocklen / sizeof(struct xfs_rmap_rec);
 | 
						|
	return blocklen / (2 * sizeof(struct xfs_rmap_key) +
 | 
						|
			sizeof(xfs_rtrmap_ptr_t));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the maximum records we could store in the on-disk format.
 | 
						|
 *
 | 
						|
 * For non-root nodes this is equivalent to xfs_rtrmapbt_get_maxrecs, but
 | 
						|
 * for the root node this checks the available space in the dinode fork
 | 
						|
 * so that we can resize the in-memory buffer to match it.  After a
 | 
						|
 * resize to the maximum size this function returns the same value
 | 
						|
 * as xfs_rtrmapbt_get_maxrecs for the root node, too.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_rtrmapbt_get_dmaxrecs(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	int			level)
 | 
						|
{
 | 
						|
	if (level != cur->bc_nlevels - 1)
 | 
						|
		return cur->bc_mp->m_rtrmap_mxr[level != 0];
 | 
						|
	return xfs_rtrmapbt_droot_maxrecs(cur->bc_ino.forksize, level == 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert the ondisk record's offset field into the ondisk key's offset field.
 | 
						|
 * Fork and bmbt are significant parts of the rmap record key, but written
 | 
						|
 * status is merely a record attribute.
 | 
						|
 */
 | 
						|
static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
 | 
						|
{
 | 
						|
	return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rtrmapbt_init_key_from_rec(
 | 
						|
	union xfs_btree_key		*key,
 | 
						|
	const union xfs_btree_rec	*rec)
 | 
						|
{
 | 
						|
	key->rmap.rm_startblock = rec->rmap.rm_startblock;
 | 
						|
	key->rmap.rm_owner = rec->rmap.rm_owner;
 | 
						|
	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rtrmapbt_init_high_key_from_rec(
 | 
						|
	union xfs_btree_key		*key,
 | 
						|
	const union xfs_btree_rec	*rec)
 | 
						|
{
 | 
						|
	uint64_t			off;
 | 
						|
	int				adj;
 | 
						|
 | 
						|
	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
 | 
						|
 | 
						|
	key->rmap.rm_startblock = rec->rmap.rm_startblock;
 | 
						|
	be32_add_cpu(&key->rmap.rm_startblock, adj);
 | 
						|
	key->rmap.rm_owner = rec->rmap.rm_owner;
 | 
						|
	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
 | 
						|
	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
 | 
						|
	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
 | 
						|
		return;
 | 
						|
	off = be64_to_cpu(key->rmap.rm_offset);
 | 
						|
	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
 | 
						|
	key->rmap.rm_offset = cpu_to_be64(off);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rtrmapbt_init_rec_from_cur(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_rec	*rec)
 | 
						|
{
 | 
						|
	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
 | 
						|
	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
 | 
						|
	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
 | 
						|
	rec->rmap.rm_offset = cpu_to_be64(
 | 
						|
			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rtrmapbt_init_ptr_from_cur(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_ptr	*ptr)
 | 
						|
{
 | 
						|
	ptr->l = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Mask the appropriate parts of the ondisk key field for a key comparison.
 | 
						|
 * Fork and bmbt are significant parts of the rmap record key, but written
 | 
						|
 * status is merely a record attribute.
 | 
						|
 */
 | 
						|
static inline uint64_t offset_keymask(uint64_t offset)
 | 
						|
{
 | 
						|
	return offset & ~XFS_RMAP_OFF_UNWRITTEN;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rtrmapbt_cmp_key_with_cur(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_key	*key)
 | 
						|
{
 | 
						|
	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
 | 
						|
	const struct xfs_rmap_key	*kp = &key->rmap;
 | 
						|
 | 
						|
	return cmp_int(be32_to_cpu(kp->rm_startblock), rec->rm_startblock) ?:
 | 
						|
	       cmp_int(be64_to_cpu(kp->rm_owner), rec->rm_owner) ?:
 | 
						|
	       cmp_int(offset_keymask(be64_to_cpu(kp->rm_offset)),
 | 
						|
		       offset_keymask(xfs_rmap_irec_offset_pack(rec)));
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rtrmapbt_cmp_two_keys(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_key	*k1,
 | 
						|
	const union xfs_btree_key	*k2,
 | 
						|
	const union xfs_btree_key	*mask)
 | 
						|
{
 | 
						|
	const struct xfs_rmap_key	*kp1 = &k1->rmap;
 | 
						|
	const struct xfs_rmap_key	*kp2 = &k2->rmap;
 | 
						|
	int				d;
 | 
						|
 | 
						|
	/* Doesn't make sense to mask off the physical space part */
 | 
						|
	ASSERT(!mask || mask->rmap.rm_startblock);
 | 
						|
 | 
						|
	d = cmp_int(be32_to_cpu(kp1->rm_startblock),
 | 
						|
		    be32_to_cpu(kp2->rm_startblock));
 | 
						|
	if (d)
 | 
						|
		return d;
 | 
						|
 | 
						|
	if (!mask || mask->rmap.rm_owner) {
 | 
						|
		d = cmp_int(be64_to_cpu(kp1->rm_owner),
 | 
						|
			    be64_to_cpu(kp2->rm_owner));
 | 
						|
		if (d)
 | 
						|
			return d;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!mask || mask->rmap.rm_offset) {
 | 
						|
		/* Doesn't make sense to allow offset but not owner */
 | 
						|
		ASSERT(!mask || mask->rmap.rm_owner);
 | 
						|
 | 
						|
		d = cmp_int(offset_keymask(be64_to_cpu(kp1->rm_offset)),
 | 
						|
			    offset_keymask(be64_to_cpu(kp2->rm_offset)));
 | 
						|
		if (d)
 | 
						|
			return d;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static xfs_failaddr_t
 | 
						|
xfs_rtrmapbt_verify(
 | 
						|
	struct xfs_buf		*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = bp->b_target->bt_mount;
 | 
						|
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 | 
						|
	xfs_failaddr_t		fa;
 | 
						|
	int			level;
 | 
						|
 | 
						|
	if (!xfs_verify_magic(bp, block->bb_magic))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	if (!xfs_has_rmapbt(mp))
 | 
						|
		return __this_address;
 | 
						|
	fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
 | 
						|
	if (fa)
 | 
						|
		return fa;
 | 
						|
	level = be16_to_cpu(block->bb_level);
 | 
						|
	if (level > mp->m_rtrmap_maxlevels)
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	return xfs_btree_fsblock_verify(bp, mp->m_rtrmap_mxr[level != 0]);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_rtrmapbt_read_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	xfs_failaddr_t	fa;
 | 
						|
 | 
						|
	if (!xfs_btree_fsblock_verify_crc(bp))
 | 
						|
		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 | 
						|
	else {
 | 
						|
		fa = xfs_rtrmapbt_verify(bp);
 | 
						|
		if (fa)
 | 
						|
			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
	}
 | 
						|
 | 
						|
	if (bp->b_error)
 | 
						|
		trace_xfs_btree_corrupt(bp, _RET_IP_);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_rtrmapbt_write_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	xfs_failaddr_t	fa;
 | 
						|
 | 
						|
	fa = xfs_rtrmapbt_verify(bp);
 | 
						|
	if (fa) {
 | 
						|
		trace_xfs_btree_corrupt(bp, _RET_IP_);
 | 
						|
		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	xfs_btree_fsblock_calc_crc(bp);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
const struct xfs_buf_ops xfs_rtrmapbt_buf_ops = {
 | 
						|
	.name			= "xfs_rtrmapbt",
 | 
						|
	.magic			= { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) },
 | 
						|
	.verify_read		= xfs_rtrmapbt_read_verify,
 | 
						|
	.verify_write		= xfs_rtrmapbt_write_verify,
 | 
						|
	.verify_struct		= xfs_rtrmapbt_verify,
 | 
						|
};
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rtrmapbt_keys_inorder(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_key	*k1,
 | 
						|
	const union xfs_btree_key	*k2)
 | 
						|
{
 | 
						|
	uint32_t			x;
 | 
						|
	uint32_t			y;
 | 
						|
	uint64_t			a;
 | 
						|
	uint64_t			b;
 | 
						|
 | 
						|
	x = be32_to_cpu(k1->rmap.rm_startblock);
 | 
						|
	y = be32_to_cpu(k2->rmap.rm_startblock);
 | 
						|
	if (x < y)
 | 
						|
		return 1;
 | 
						|
	else if (x > y)
 | 
						|
		return 0;
 | 
						|
	a = be64_to_cpu(k1->rmap.rm_owner);
 | 
						|
	b = be64_to_cpu(k2->rmap.rm_owner);
 | 
						|
	if (a < b)
 | 
						|
		return 1;
 | 
						|
	else if (a > b)
 | 
						|
		return 0;
 | 
						|
	a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
 | 
						|
	b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
 | 
						|
	if (a <= b)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rtrmapbt_recs_inorder(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_rec	*r1,
 | 
						|
	const union xfs_btree_rec	*r2)
 | 
						|
{
 | 
						|
	uint32_t			x;
 | 
						|
	uint32_t			y;
 | 
						|
	uint64_t			a;
 | 
						|
	uint64_t			b;
 | 
						|
 | 
						|
	x = be32_to_cpu(r1->rmap.rm_startblock);
 | 
						|
	y = be32_to_cpu(r2->rmap.rm_startblock);
 | 
						|
	if (x < y)
 | 
						|
		return 1;
 | 
						|
	else if (x > y)
 | 
						|
		return 0;
 | 
						|
	a = be64_to_cpu(r1->rmap.rm_owner);
 | 
						|
	b = be64_to_cpu(r2->rmap.rm_owner);
 | 
						|
	if (a < b)
 | 
						|
		return 1;
 | 
						|
	else if (a > b)
 | 
						|
		return 0;
 | 
						|
	a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
 | 
						|
	b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
 | 
						|
	if (a <= b)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC enum xbtree_key_contig
 | 
						|
xfs_rtrmapbt_keys_contiguous(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_key	*key1,
 | 
						|
	const union xfs_btree_key	*key2,
 | 
						|
	const union xfs_btree_key	*mask)
 | 
						|
{
 | 
						|
	ASSERT(!mask || mask->rmap.rm_startblock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We only support checking contiguity of the physical space component.
 | 
						|
	 * If any callers ever need more specificity than that, they'll have to
 | 
						|
	 * implement it here.
 | 
						|
	 */
 | 
						|
	ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
 | 
						|
 | 
						|
	return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
 | 
						|
				 be32_to_cpu(key2->rmap.rm_startblock));
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
xfs_rtrmapbt_move_ptrs(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_btree_block	*broot,
 | 
						|
	short			old_size,
 | 
						|
	size_t			new_size,
 | 
						|
	unsigned int		numrecs)
 | 
						|
{
 | 
						|
	void			*dptr;
 | 
						|
	void			*sptr;
 | 
						|
 | 
						|
	sptr = xfs_rtrmap_broot_ptr_addr(mp, broot, 1, old_size);
 | 
						|
	dptr = xfs_rtrmap_broot_ptr_addr(mp, broot, 1, new_size);
 | 
						|
	memmove(dptr, sptr, numrecs * sizeof(xfs_rtrmap_ptr_t));
 | 
						|
}
 | 
						|
 | 
						|
static struct xfs_btree_block *
 | 
						|
xfs_rtrmapbt_broot_realloc(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	unsigned int		new_numrecs)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = cur->bc_mp;
 | 
						|
	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
 | 
						|
	struct xfs_btree_block	*broot;
 | 
						|
	unsigned int		new_size;
 | 
						|
	unsigned int		old_size = ifp->if_broot_bytes;
 | 
						|
	const unsigned int	level = cur->bc_nlevels - 1;
 | 
						|
 | 
						|
	new_size = xfs_rtrmap_broot_space_calc(mp, level, new_numrecs);
 | 
						|
 | 
						|
	/* Handle the nop case quietly. */
 | 
						|
	if (new_size == old_size)
 | 
						|
		return ifp->if_broot;
 | 
						|
 | 
						|
	if (new_size > old_size) {
 | 
						|
		unsigned int	old_numrecs;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there wasn't any memory allocated before, just allocate
 | 
						|
		 * it now and get out.
 | 
						|
		 */
 | 
						|
		if (old_size == 0)
 | 
						|
			return xfs_broot_realloc(ifp, new_size);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there is already an existing if_broot, then we need to
 | 
						|
		 * realloc it and possibly move the node block pointers because
 | 
						|
		 * those are not butted up against the btree block header.
 | 
						|
		 */
 | 
						|
		old_numrecs = xfs_rtrmapbt_maxrecs(mp, old_size, level == 0);
 | 
						|
		broot = xfs_broot_realloc(ifp, new_size);
 | 
						|
		if (level > 0)
 | 
						|
			xfs_rtrmapbt_move_ptrs(mp, broot, old_size, new_size,
 | 
						|
					old_numrecs);
 | 
						|
		goto out_broot;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're reducing numrecs.  If we're going all the way to zero, just
 | 
						|
	 * free the block.
 | 
						|
	 */
 | 
						|
	ASSERT(ifp->if_broot != NULL && old_size > 0);
 | 
						|
	if (new_size == 0)
 | 
						|
		return xfs_broot_realloc(ifp, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Shrink the btree root by possibly moving the rtrmapbt pointers,
 | 
						|
	 * since they are not butted up against the btree block header.  Then
 | 
						|
	 * reallocate broot.
 | 
						|
	 */
 | 
						|
	if (level > 0)
 | 
						|
		xfs_rtrmapbt_move_ptrs(mp, ifp->if_broot, old_size, new_size,
 | 
						|
				new_numrecs);
 | 
						|
	broot = xfs_broot_realloc(ifp, new_size);
 | 
						|
 | 
						|
out_broot:
 | 
						|
	ASSERT(xfs_rtrmap_droot_space(broot) <=
 | 
						|
	       xfs_inode_fork_size(cur->bc_ino.ip, cur->bc_ino.whichfork));
 | 
						|
	return broot;
 | 
						|
}
 | 
						|
 | 
						|
const struct xfs_btree_ops xfs_rtrmapbt_ops = {
 | 
						|
	.name			= "rtrmap",
 | 
						|
	.type			= XFS_BTREE_TYPE_INODE,
 | 
						|
	.geom_flags		= XFS_BTGEO_OVERLAPPING |
 | 
						|
				  XFS_BTGEO_IROOT_RECORDS,
 | 
						|
 | 
						|
	.rec_len		= sizeof(struct xfs_rmap_rec),
 | 
						|
	/* Overlapping btree; 2 keys per pointer. */
 | 
						|
	.key_len		= 2 * sizeof(struct xfs_rmap_key),
 | 
						|
	.ptr_len		= XFS_BTREE_LONG_PTR_LEN,
 | 
						|
 | 
						|
	.lru_refs		= XFS_RMAP_BTREE_REF,
 | 
						|
	.statoff		= XFS_STATS_CALC_INDEX(xs_rtrmap_2),
 | 
						|
	.sick_mask		= XFS_SICK_RG_RMAPBT,
 | 
						|
 | 
						|
	.dup_cursor		= xfs_rtrmapbt_dup_cursor,
 | 
						|
	.alloc_block		= xfs_btree_alloc_metafile_block,
 | 
						|
	.free_block		= xfs_btree_free_metafile_block,
 | 
						|
	.get_minrecs		= xfs_rtrmapbt_get_minrecs,
 | 
						|
	.get_maxrecs		= xfs_rtrmapbt_get_maxrecs,
 | 
						|
	.get_dmaxrecs		= xfs_rtrmapbt_get_dmaxrecs,
 | 
						|
	.init_key_from_rec	= xfs_rtrmapbt_init_key_from_rec,
 | 
						|
	.init_high_key_from_rec	= xfs_rtrmapbt_init_high_key_from_rec,
 | 
						|
	.init_rec_from_cur	= xfs_rtrmapbt_init_rec_from_cur,
 | 
						|
	.init_ptr_from_cur	= xfs_rtrmapbt_init_ptr_from_cur,
 | 
						|
	.cmp_key_with_cur	= xfs_rtrmapbt_cmp_key_with_cur,
 | 
						|
	.buf_ops		= &xfs_rtrmapbt_buf_ops,
 | 
						|
	.cmp_two_keys		= xfs_rtrmapbt_cmp_two_keys,
 | 
						|
	.keys_inorder		= xfs_rtrmapbt_keys_inorder,
 | 
						|
	.recs_inorder		= xfs_rtrmapbt_recs_inorder,
 | 
						|
	.keys_contiguous	= xfs_rtrmapbt_keys_contiguous,
 | 
						|
	.broot_realloc		= xfs_rtrmapbt_broot_realloc,
 | 
						|
};
 | 
						|
 | 
						|
/* Allocate a new rt rmap btree cursor. */
 | 
						|
struct xfs_btree_cur *
 | 
						|
xfs_rtrmapbt_init_cursor(
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_rtgroup	*rtg)
 | 
						|
{
 | 
						|
	struct xfs_inode	*ip = rtg_rmap(rtg);
 | 
						|
	struct xfs_mount	*mp = rtg_mount(rtg);
 | 
						|
	struct xfs_btree_cur	*cur;
 | 
						|
 | 
						|
	xfs_assert_ilocked(ip, XFS_ILOCK_SHARED | XFS_ILOCK_EXCL);
 | 
						|
 | 
						|
	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrmapbt_ops,
 | 
						|
			mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache);
 | 
						|
 | 
						|
	cur->bc_ino.ip = ip;
 | 
						|
	cur->bc_group = xfs_group_hold(rtg_group(rtg));
 | 
						|
	cur->bc_ino.whichfork = XFS_DATA_FORK;
 | 
						|
	cur->bc_nlevels = be16_to_cpu(ip->i_df.if_broot->bb_level) + 1;
 | 
						|
	cur->bc_ino.forksize = xfs_inode_fork_size(ip, XFS_DATA_FORK);
 | 
						|
 | 
						|
	return cur;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_XFS_BTREE_IN_MEM
 | 
						|
/*
 | 
						|
 * Validate an in-memory realtime rmap btree block.  Callers are allowed to
 | 
						|
 * generate an in-memory btree even if the ondisk feature is not enabled.
 | 
						|
 */
 | 
						|
static xfs_failaddr_t
 | 
						|
xfs_rtrmapbt_mem_verify(
 | 
						|
	struct xfs_buf		*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = bp->b_mount;
 | 
						|
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 | 
						|
	xfs_failaddr_t		fa;
 | 
						|
	unsigned int		level;
 | 
						|
	unsigned int		maxrecs;
 | 
						|
 | 
						|
	if (!xfs_verify_magic(bp, block->bb_magic))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
 | 
						|
	if (fa)
 | 
						|
		return fa;
 | 
						|
 | 
						|
	level = be16_to_cpu(block->bb_level);
 | 
						|
	if (xfs_has_rmapbt(mp)) {
 | 
						|
		if (level >= mp->m_rtrmap_maxlevels)
 | 
						|
			return __this_address;
 | 
						|
	} else {
 | 
						|
		if (level >= xfs_rtrmapbt_maxlevels_ondisk())
 | 
						|
			return __this_address;
 | 
						|
	}
 | 
						|
 | 
						|
	maxrecs = xfs_rtrmapbt_maxrecs(mp, XFBNO_BLOCKSIZE, level == 0);
 | 
						|
	return xfs_btree_memblock_verify(bp, maxrecs);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_rtrmapbt_mem_rw_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	xfs_failaddr_t	fa = xfs_rtrmapbt_mem_verify(bp);
 | 
						|
 | 
						|
	if (fa)
 | 
						|
		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
}
 | 
						|
 | 
						|
/* skip crc checks on in-memory btrees to save time */
 | 
						|
static const struct xfs_buf_ops xfs_rtrmapbt_mem_buf_ops = {
 | 
						|
	.name			= "xfs_rtrmapbt_mem",
 | 
						|
	.magic			= { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) },
 | 
						|
	.verify_read		= xfs_rtrmapbt_mem_rw_verify,
 | 
						|
	.verify_write		= xfs_rtrmapbt_mem_rw_verify,
 | 
						|
	.verify_struct		= xfs_rtrmapbt_mem_verify,
 | 
						|
};
 | 
						|
 | 
						|
const struct xfs_btree_ops xfs_rtrmapbt_mem_ops = {
 | 
						|
	.type			= XFS_BTREE_TYPE_MEM,
 | 
						|
	.geom_flags		= XFS_BTGEO_OVERLAPPING,
 | 
						|
 | 
						|
	.rec_len		= sizeof(struct xfs_rmap_rec),
 | 
						|
	/* Overlapping btree; 2 keys per pointer. */
 | 
						|
	.key_len		= 2 * sizeof(struct xfs_rmap_key),
 | 
						|
	.ptr_len		= XFS_BTREE_LONG_PTR_LEN,
 | 
						|
 | 
						|
	.lru_refs		= XFS_RMAP_BTREE_REF,
 | 
						|
	.statoff		= XFS_STATS_CALC_INDEX(xs_rtrmap_mem_2),
 | 
						|
 | 
						|
	.dup_cursor		= xfbtree_dup_cursor,
 | 
						|
	.set_root		= xfbtree_set_root,
 | 
						|
	.alloc_block		= xfbtree_alloc_block,
 | 
						|
	.free_block		= xfbtree_free_block,
 | 
						|
	.get_minrecs		= xfbtree_get_minrecs,
 | 
						|
	.get_maxrecs		= xfbtree_get_maxrecs,
 | 
						|
	.init_key_from_rec	= xfs_rtrmapbt_init_key_from_rec,
 | 
						|
	.init_high_key_from_rec	= xfs_rtrmapbt_init_high_key_from_rec,
 | 
						|
	.init_rec_from_cur	= xfs_rtrmapbt_init_rec_from_cur,
 | 
						|
	.init_ptr_from_cur	= xfbtree_init_ptr_from_cur,
 | 
						|
	.cmp_key_with_cur	= xfs_rtrmapbt_cmp_key_with_cur,
 | 
						|
	.buf_ops		= &xfs_rtrmapbt_mem_buf_ops,
 | 
						|
	.cmp_two_keys		= xfs_rtrmapbt_cmp_two_keys,
 | 
						|
	.keys_inorder		= xfs_rtrmapbt_keys_inorder,
 | 
						|
	.recs_inorder		= xfs_rtrmapbt_recs_inorder,
 | 
						|
	.keys_contiguous	= xfs_rtrmapbt_keys_contiguous,
 | 
						|
};
 | 
						|
 | 
						|
/* Create a cursor for an in-memory btree. */
 | 
						|
struct xfs_btree_cur *
 | 
						|
xfs_rtrmapbt_mem_cursor(
 | 
						|
	struct xfs_rtgroup	*rtg,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfbtree		*xfbt)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = rtg_mount(rtg);
 | 
						|
	struct xfs_btree_cur	*cur;
 | 
						|
 | 
						|
	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrmapbt_mem_ops,
 | 
						|
			mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache);
 | 
						|
	cur->bc_mem.xfbtree = xfbt;
 | 
						|
	cur->bc_nlevels = xfbt->nlevels;
 | 
						|
	cur->bc_group = xfs_group_hold(rtg_group(rtg));
 | 
						|
	return cur;
 | 
						|
}
 | 
						|
 | 
						|
/* Create an in-memory realtime rmap btree. */
 | 
						|
int
 | 
						|
xfs_rtrmapbt_mem_init(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfbtree		*xfbt,
 | 
						|
	struct xfs_buftarg	*btp,
 | 
						|
	xfs_rgnumber_t		rgno)
 | 
						|
{
 | 
						|
	xfbt->owner = rgno;
 | 
						|
	return xfbtree_init(mp, xfbt, btp, &xfs_rtrmapbt_mem_ops);
 | 
						|
}
 | 
						|
#endif /* CONFIG_XFS_BTREE_IN_MEM */
 | 
						|
 | 
						|
/*
 | 
						|
 * Install a new rt reverse mapping btree root.  Caller is responsible for
 | 
						|
 * invalidating and freeing the old btree blocks.
 | 
						|
 */
 | 
						|
void
 | 
						|
xfs_rtrmapbt_commit_staged_btree(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	struct xfs_trans	*tp)
 | 
						|
{
 | 
						|
	struct xbtree_ifakeroot	*ifake = cur->bc_ino.ifake;
 | 
						|
	struct xfs_ifork	*ifp;
 | 
						|
	int			flags = XFS_ILOG_CORE | XFS_ILOG_DBROOT;
 | 
						|
 | 
						|
	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
 | 
						|
	ASSERT(ifake->if_fork->if_format == XFS_DINODE_FMT_META_BTREE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Free any resources hanging off the real fork, then shallow-copy the
 | 
						|
	 * staging fork's contents into the real fork to transfer everything
 | 
						|
	 * we just built.
 | 
						|
	 */
 | 
						|
	ifp = xfs_ifork_ptr(cur->bc_ino.ip, XFS_DATA_FORK);
 | 
						|
	xfs_idestroy_fork(ifp);
 | 
						|
	memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
 | 
						|
 | 
						|
	cur->bc_ino.ip->i_projid = cur->bc_group->xg_gno;
 | 
						|
	xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
 | 
						|
	xfs_btree_commit_ifakeroot(cur, tp, XFS_DATA_FORK);
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate number of records in a rt reverse mapping btree block. */
 | 
						|
static inline unsigned int
 | 
						|
xfs_rtrmapbt_block_maxrecs(
 | 
						|
	unsigned int		blocklen,
 | 
						|
	bool			leaf)
 | 
						|
{
 | 
						|
	if (leaf)
 | 
						|
		return blocklen / sizeof(struct xfs_rmap_rec);
 | 
						|
	return blocklen /
 | 
						|
		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rtrmap_ptr_t));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate number of records in an rt reverse mapping btree block.
 | 
						|
 */
 | 
						|
unsigned int
 | 
						|
xfs_rtrmapbt_maxrecs(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	unsigned int		blocklen,
 | 
						|
	bool			leaf)
 | 
						|
{
 | 
						|
	blocklen -= XFS_RTRMAP_BLOCK_LEN;
 | 
						|
	return xfs_rtrmapbt_block_maxrecs(blocklen, leaf);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute the max possible height for realtime reverse mapping btrees. */
 | 
						|
unsigned int
 | 
						|
xfs_rtrmapbt_maxlevels_ondisk(void)
 | 
						|
{
 | 
						|
	unsigned long long	max_dblocks;
 | 
						|
	unsigned int		minrecs[2];
 | 
						|
	unsigned int		blocklen;
 | 
						|
 | 
						|
	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
 | 
						|
 | 
						|
	minrecs[0] = xfs_rtrmapbt_block_maxrecs(blocklen, true) / 2;
 | 
						|
	minrecs[1] = xfs_rtrmapbt_block_maxrecs(blocklen, false) / 2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute the asymptotic maxlevels for an rtrmapbt on any rtreflink fs.
 | 
						|
	 *
 | 
						|
	 * On a reflink filesystem, each block in an rtgroup can have up to
 | 
						|
	 * 2^32 (per the refcount record format) owners, which means that
 | 
						|
	 * theoretically we could face up to 2^64 rmap records.  However, we're
 | 
						|
	 * likely to run out of blocks in the data device long before that
 | 
						|
	 * happens, which means that we must compute the max height based on
 | 
						|
	 * what the btree will look like if it consumes almost all the blocks
 | 
						|
	 * in the data device due to maximal sharing factor.
 | 
						|
	 */
 | 
						|
	max_dblocks = -1U; /* max ag count */
 | 
						|
	max_dblocks *= XFS_MAX_CRC_AG_BLOCKS;
 | 
						|
	return xfs_btree_space_to_height(minrecs, max_dblocks);
 | 
						|
}
 | 
						|
 | 
						|
int __init
 | 
						|
xfs_rtrmapbt_init_cur_cache(void)
 | 
						|
{
 | 
						|
	xfs_rtrmapbt_cur_cache = kmem_cache_create("xfs_rtrmapbt_cur",
 | 
						|
			xfs_btree_cur_sizeof(xfs_rtrmapbt_maxlevels_ondisk()),
 | 
						|
			0, 0, NULL);
 | 
						|
 | 
						|
	if (!xfs_rtrmapbt_cur_cache)
 | 
						|
		return -ENOMEM;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
xfs_rtrmapbt_destroy_cur_cache(void)
 | 
						|
{
 | 
						|
	kmem_cache_destroy(xfs_rtrmapbt_cur_cache);
 | 
						|
	xfs_rtrmapbt_cur_cache = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Compute the maximum height of an rt reverse mapping btree. */
 | 
						|
void
 | 
						|
xfs_rtrmapbt_compute_maxlevels(
 | 
						|
	struct xfs_mount	*mp)
 | 
						|
{
 | 
						|
	unsigned int		d_maxlevels, r_maxlevels;
 | 
						|
 | 
						|
	if (!xfs_has_rtrmapbt(mp)) {
 | 
						|
		mp->m_rtrmap_maxlevels = 0;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The realtime rmapbt lives on the data device, which means that its
 | 
						|
	 * maximum height is constrained by the size of the data device and
 | 
						|
	 * the height required to store one rmap record for each block in an
 | 
						|
	 * rt group.
 | 
						|
	 *
 | 
						|
	 * On a reflink filesystem, each rt block can have up to 2^32 (per the
 | 
						|
	 * refcount record format) owners, which means that theoretically we
 | 
						|
	 * could face up to 2^64 rmap records.  This makes the computation of
 | 
						|
	 * maxlevels based on record count meaningless, so we only consider the
 | 
						|
	 * size of the data device.
 | 
						|
	 */
 | 
						|
	d_maxlevels = xfs_btree_space_to_height(mp->m_rtrmap_mnr,
 | 
						|
				mp->m_sb.sb_dblocks);
 | 
						|
	if (xfs_has_rtreflink(mp)) {
 | 
						|
		mp->m_rtrmap_maxlevels = d_maxlevels + 1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	r_maxlevels = xfs_btree_compute_maxlevels(mp->m_rtrmap_mnr,
 | 
						|
				mp->m_groups[XG_TYPE_RTG].blocks);
 | 
						|
 | 
						|
	/* Add one level to handle the inode root level. */
 | 
						|
	mp->m_rtrmap_maxlevels = min(d_maxlevels, r_maxlevels) + 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate the rtrmap btree size for some records. */
 | 
						|
unsigned long long
 | 
						|
xfs_rtrmapbt_calc_size(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	unsigned long long	len)
 | 
						|
{
 | 
						|
	return xfs_btree_calc_size(mp->m_rtrmap_mnr, len);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the maximum rmap btree size.
 | 
						|
 */
 | 
						|
static unsigned long long
 | 
						|
xfs_rtrmapbt_max_size(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	xfs_rtblock_t		rtblocks)
 | 
						|
{
 | 
						|
	/* Bail out if we're uninitialized, which can happen in mkfs. */
 | 
						|
	if (mp->m_rtrmap_mxr[0] == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return xfs_rtrmapbt_calc_size(mp, rtblocks);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Figure out how many blocks to reserve and how many are used by this btree.
 | 
						|
 */
 | 
						|
xfs_filblks_t
 | 
						|
xfs_rtrmapbt_calc_reserves(
 | 
						|
	struct xfs_mount	*mp)
 | 
						|
{
 | 
						|
	uint32_t		blocks = mp->m_groups[XG_TYPE_RTG].blocks;
 | 
						|
 | 
						|
	if (!xfs_has_rtrmapbt(mp))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Reserve 1% of the rtgroup or enough for 1 block per record. */
 | 
						|
	return max_t(xfs_filblks_t, blocks / 100,
 | 
						|
			xfs_rtrmapbt_max_size(mp, blocks));
 | 
						|
}
 | 
						|
 | 
						|
/* Convert on-disk form of btree root to in-memory form. */
 | 
						|
STATIC void
 | 
						|
xfs_rtrmapbt_from_disk(
 | 
						|
	struct xfs_inode	*ip,
 | 
						|
	struct xfs_rtrmap_root	*dblock,
 | 
						|
	unsigned int		dblocklen,
 | 
						|
	struct xfs_btree_block	*rblock)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = ip->i_mount;
 | 
						|
	struct xfs_rmap_key	*fkp;
 | 
						|
	__be64			*fpp;
 | 
						|
	struct xfs_rmap_key	*tkp;
 | 
						|
	__be64			*tpp;
 | 
						|
	struct xfs_rmap_rec	*frp;
 | 
						|
	struct xfs_rmap_rec	*trp;
 | 
						|
	unsigned int		rblocklen = xfs_rtrmap_broot_space(mp, dblock);
 | 
						|
	unsigned int		numrecs;
 | 
						|
	unsigned int		maxrecs;
 | 
						|
 | 
						|
	xfs_btree_init_block(mp, rblock, &xfs_rtrmapbt_ops, 0, 0, ip->i_ino);
 | 
						|
 | 
						|
	rblock->bb_level = dblock->bb_level;
 | 
						|
	rblock->bb_numrecs = dblock->bb_numrecs;
 | 
						|
	numrecs = be16_to_cpu(dblock->bb_numrecs);
 | 
						|
 | 
						|
	if (be16_to_cpu(rblock->bb_level) > 0) {
 | 
						|
		maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false);
 | 
						|
		fkp = xfs_rtrmap_droot_key_addr(dblock, 1);
 | 
						|
		tkp = xfs_rtrmap_key_addr(rblock, 1);
 | 
						|
		fpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs);
 | 
						|
		tpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
 | 
						|
		memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
 | 
						|
		memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
 | 
						|
	} else {
 | 
						|
		frp = xfs_rtrmap_droot_rec_addr(dblock, 1);
 | 
						|
		trp = xfs_rtrmap_rec_addr(rblock, 1);
 | 
						|
		memcpy(trp, frp, sizeof(*frp) * numrecs);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Load a realtime reverse mapping btree root in from disk. */
 | 
						|
int
 | 
						|
xfs_iformat_rtrmap(
 | 
						|
	struct xfs_inode	*ip,
 | 
						|
	struct xfs_dinode	*dip)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = ip->i_mount;
 | 
						|
	struct xfs_rtrmap_root	*dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
 | 
						|
	struct xfs_btree_block	*broot;
 | 
						|
	unsigned int		numrecs;
 | 
						|
	unsigned int		level;
 | 
						|
	int			dsize;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * growfs must create the rtrmap inodes before adding a realtime volume
 | 
						|
	 * to the filesystem, so we cannot use the rtrmapbt predicate here.
 | 
						|
	 */
 | 
						|
	if (!xfs_has_rmapbt(ip->i_mount)) {
 | 
						|
		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	dsize = XFS_DFORK_SIZE(dip, mp, XFS_DATA_FORK);
 | 
						|
	numrecs = be16_to_cpu(dfp->bb_numrecs);
 | 
						|
	level = be16_to_cpu(dfp->bb_level);
 | 
						|
 | 
						|
	if (level > mp->m_rtrmap_maxlevels ||
 | 
						|
	    xfs_rtrmap_droot_space_calc(level, numrecs) > dsize) {
 | 
						|
		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	broot = xfs_broot_alloc(xfs_ifork_ptr(ip, XFS_DATA_FORK),
 | 
						|
			xfs_rtrmap_broot_space_calc(mp, level, numrecs));
 | 
						|
	if (broot)
 | 
						|
		xfs_rtrmapbt_from_disk(ip, dfp, dsize, broot);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert in-memory form of btree root to on-disk form. */
 | 
						|
void
 | 
						|
xfs_rtrmapbt_to_disk(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_btree_block	*rblock,
 | 
						|
	unsigned int		rblocklen,
 | 
						|
	struct xfs_rtrmap_root	*dblock,
 | 
						|
	unsigned int		dblocklen)
 | 
						|
{
 | 
						|
	struct xfs_rmap_key	*fkp;
 | 
						|
	__be64			*fpp;
 | 
						|
	struct xfs_rmap_key	*tkp;
 | 
						|
	__be64			*tpp;
 | 
						|
	struct xfs_rmap_rec	*frp;
 | 
						|
	struct xfs_rmap_rec	*trp;
 | 
						|
	unsigned int		numrecs;
 | 
						|
	unsigned int		maxrecs;
 | 
						|
 | 
						|
	ASSERT(rblock->bb_magic == cpu_to_be32(XFS_RTRMAP_CRC_MAGIC));
 | 
						|
	ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid));
 | 
						|
	ASSERT(rblock->bb_u.l.bb_blkno == cpu_to_be64(XFS_BUF_DADDR_NULL));
 | 
						|
	ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
 | 
						|
	ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
 | 
						|
 | 
						|
	dblock->bb_level = rblock->bb_level;
 | 
						|
	dblock->bb_numrecs = rblock->bb_numrecs;
 | 
						|
	numrecs = be16_to_cpu(rblock->bb_numrecs);
 | 
						|
 | 
						|
	if (be16_to_cpu(rblock->bb_level) > 0) {
 | 
						|
		maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false);
 | 
						|
		fkp = xfs_rtrmap_key_addr(rblock, 1);
 | 
						|
		tkp = xfs_rtrmap_droot_key_addr(dblock, 1);
 | 
						|
		fpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
 | 
						|
		tpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs);
 | 
						|
		memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
 | 
						|
		memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
 | 
						|
	} else {
 | 
						|
		frp = xfs_rtrmap_rec_addr(rblock, 1);
 | 
						|
		trp = xfs_rtrmap_droot_rec_addr(dblock, 1);
 | 
						|
		memcpy(trp, frp, sizeof(*frp) * numrecs);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Flush a realtime reverse mapping btree root out to disk. */
 | 
						|
void
 | 
						|
xfs_iflush_rtrmap(
 | 
						|
	struct xfs_inode	*ip,
 | 
						|
	struct xfs_dinode	*dip)
 | 
						|
{
 | 
						|
	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
 | 
						|
	struct xfs_rtrmap_root	*dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
 | 
						|
 | 
						|
	ASSERT(ifp->if_broot != NULL);
 | 
						|
	ASSERT(ifp->if_broot_bytes > 0);
 | 
						|
	ASSERT(xfs_rtrmap_droot_space(ifp->if_broot) <=
 | 
						|
			xfs_inode_fork_size(ip, XFS_DATA_FORK));
 | 
						|
	xfs_rtrmapbt_to_disk(ip->i_mount, ifp->if_broot, ifp->if_broot_bytes,
 | 
						|
			dfp, XFS_DFORK_SIZE(dip, ip->i_mount, XFS_DATA_FORK));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Create a realtime rmap btree inode.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_rtrmapbt_create(
 | 
						|
	struct xfs_rtgroup	*rtg,
 | 
						|
	struct xfs_inode	*ip,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	bool			init)
 | 
						|
{
 | 
						|
	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
 | 
						|
	struct xfs_mount	*mp = ip->i_mount;
 | 
						|
	struct xfs_btree_block	*broot;
 | 
						|
 | 
						|
	ifp->if_format = XFS_DINODE_FMT_META_BTREE;
 | 
						|
	ASSERT(ifp->if_broot_bytes == 0);
 | 
						|
	ASSERT(ifp->if_bytes == 0);
 | 
						|
 | 
						|
	/* Initialize the empty incore btree root. */
 | 
						|
	broot = xfs_broot_realloc(ifp, xfs_rtrmap_broot_space_calc(mp, 0, 0));
 | 
						|
	if (broot)
 | 
						|
		xfs_btree_init_block(mp, broot, &xfs_rtrmapbt_ops, 0, 0,
 | 
						|
				ip->i_ino);
 | 
						|
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE | XFS_ILOG_DBROOT);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize an rmap for a realtime superblock using the potentially updated
 | 
						|
 * rt geometry in the provided @mp.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_rtrmapbt_init_rtsb(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_rtgroup	*rtg,
 | 
						|
	struct xfs_trans	*tp)
 | 
						|
{
 | 
						|
	struct xfs_rmap_irec	rmap = {
 | 
						|
		.rm_blockcount	= mp->m_sb.sb_rextsize,
 | 
						|
		.rm_owner	= XFS_RMAP_OWN_FS,
 | 
						|
	};
 | 
						|
	struct xfs_btree_cur	*cur;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	ASSERT(xfs_has_rtsb(mp));
 | 
						|
	ASSERT(rtg_rgno(rtg) == 0);
 | 
						|
 | 
						|
	cur = xfs_rtrmapbt_init_cursor(tp, rtg);
 | 
						|
	error = xfs_rmap_map_raw(cur, &rmap);
 | 
						|
	xfs_btree_del_cursor(cur, error);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the highest rgbno currently tracked by the rmap for this rtg.
 | 
						|
 */
 | 
						|
xfs_rgblock_t
 | 
						|
xfs_rtrmap_highest_rgbno(
 | 
						|
	struct xfs_rtgroup	*rtg)
 | 
						|
{
 | 
						|
	struct xfs_btree_block	*block = rtg_rmap(rtg)->i_df.if_broot;
 | 
						|
	union xfs_btree_key	key = {};
 | 
						|
	struct xfs_btree_cur	*cur;
 | 
						|
 | 
						|
	if (block->bb_numrecs == 0)
 | 
						|
		return NULLRGBLOCK;
 | 
						|
	cur = xfs_rtrmapbt_init_cursor(NULL, rtg);
 | 
						|
	xfs_btree_get_keys(cur, block, &key);
 | 
						|
	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 | 
						|
	return be32_to_cpu(key.__rmap_bigkey[1].rm_startblock);
 | 
						|
}
 |