mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	When running an XDP bpf_prog on the remote CPU in cpumap code
then we must disable the direct return optimization that
xdp_return can perform for mem_type page_pool.  This optimization
assumes code is still executing under RX-NAPI of the original
receiving CPU, which isn't true on this remote CPU.
The cpumap code already disabled this via helpers
xdp_set_return_frame_no_direct() and xdp_clear_return_frame_no_direct(),
but the scope didn't include xdp_do_flush().
When doing XDP_REDIRECT towards e.g devmap this causes the
function bq_xmit_all() to run with direct return optimization
enabled. This can lead to hard to find bugs.  The issue
only happens when bq_xmit_all() cannot ndo_xdp_xmit all
frames and them frees them via xdp_return_frame_rx_napi().
Fix by expanding scope to include xdp_do_flush(). This was found
by Dragos Tatulea.
Fixes: 11941f8a85 ("bpf: cpumap: Implement generic cpumap")
Reported-by: Dragos Tatulea <dtatulea@nvidia.com>
Reported-by: Chris Arges <carges@cloudflare.com>
Signed-off-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Chris Arges <carges@cloudflare.com>
Link: https://patch.msgid.link/175519587755.3008742.1088294435150406835.stgit@firesoul
		
	
			
		
			
				
	
	
		
			813 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			813 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/* bpf/cpumap.c
 | 
						|
 *
 | 
						|
 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * DOC: cpu map
 | 
						|
 * The 'cpumap' is primarily used as a backend map for XDP BPF helper
 | 
						|
 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
 | 
						|
 *
 | 
						|
 * Unlike devmap which redirects XDP frames out to another NIC device,
 | 
						|
 * this map type redirects raw XDP frames to another CPU.  The remote
 | 
						|
 * CPU will do SKB-allocation and call the normal network stack.
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * This is a scalability and isolation mechanism, that allow
 | 
						|
 * separating the early driver network XDP layer, from the rest of the
 | 
						|
 * netstack, and assigning dedicated CPUs for this stage.  This
 | 
						|
 * basically allows for 10G wirespeed pre-filtering via bpf.
 | 
						|
 */
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/bpf.h>
 | 
						|
#include <linux/filter.h>
 | 
						|
#include <linux/ptr_ring.h>
 | 
						|
#include <net/xdp.h>
 | 
						|
#include <net/hotdata.h>
 | 
						|
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/completion.h>
 | 
						|
#include <trace/events/xdp.h>
 | 
						|
#include <linux/btf_ids.h>
 | 
						|
 | 
						|
#include <linux/netdevice.h>
 | 
						|
#include <net/gro.h>
 | 
						|
 | 
						|
/* General idea: XDP packets getting XDP redirected to another CPU,
 | 
						|
 * will maximum be stored/queued for one driver ->poll() call.  It is
 | 
						|
 * guaranteed that queueing the frame and the flush operation happen on
 | 
						|
 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 | 
						|
 * which queue in bpf_cpu_map_entry contains packets.
 | 
						|
 */
 | 
						|
 | 
						|
#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 | 
						|
struct bpf_cpu_map_entry;
 | 
						|
struct bpf_cpu_map;
 | 
						|
 | 
						|
struct xdp_bulk_queue {
 | 
						|
	void *q[CPU_MAP_BULK_SIZE];
 | 
						|
	struct list_head flush_node;
 | 
						|
	struct bpf_cpu_map_entry *obj;
 | 
						|
	unsigned int count;
 | 
						|
};
 | 
						|
 | 
						|
/* Struct for every remote "destination" CPU in map */
 | 
						|
struct bpf_cpu_map_entry {
 | 
						|
	u32 cpu;    /* kthread CPU and map index */
 | 
						|
	int map_id; /* Back reference to map */
 | 
						|
 | 
						|
	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 | 
						|
	struct xdp_bulk_queue __percpu *bulkq;
 | 
						|
 | 
						|
	/* Queue with potential multi-producers, and single-consumer kthread */
 | 
						|
	struct ptr_ring *queue;
 | 
						|
	struct task_struct *kthread;
 | 
						|
 | 
						|
	struct bpf_cpumap_val value;
 | 
						|
	struct bpf_prog *prog;
 | 
						|
	struct gro_node gro;
 | 
						|
 | 
						|
	struct completion kthread_running;
 | 
						|
	struct rcu_work free_work;
 | 
						|
};
 | 
						|
 | 
						|
struct bpf_cpu_map {
 | 
						|
	struct bpf_map map;
 | 
						|
	/* Below members specific for map type */
 | 
						|
	struct bpf_cpu_map_entry __rcu **cpu_map;
 | 
						|
};
 | 
						|
 | 
						|
static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 | 
						|
{
 | 
						|
	u32 value_size = attr->value_size;
 | 
						|
	struct bpf_cpu_map *cmap;
 | 
						|
 | 
						|
	/* check sanity of attributes */
 | 
						|
	if (attr->max_entries == 0 || attr->key_size != 4 ||
 | 
						|
	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
 | 
						|
	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
 | 
						|
	    attr->map_flags & ~BPF_F_NUMA_NODE)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	/* Pre-limit array size based on NR_CPUS, not final CPU check */
 | 
						|
	if (attr->max_entries > NR_CPUS)
 | 
						|
		return ERR_PTR(-E2BIG);
 | 
						|
 | 
						|
	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
 | 
						|
	if (!cmap)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	bpf_map_init_from_attr(&cmap->map, attr);
 | 
						|
 | 
						|
	/* Alloc array for possible remote "destination" CPUs */
 | 
						|
	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
 | 
						|
					   sizeof(struct bpf_cpu_map_entry *),
 | 
						|
					   cmap->map.numa_node);
 | 
						|
	if (!cmap->cpu_map) {
 | 
						|
		bpf_map_area_free(cmap);
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
	}
 | 
						|
 | 
						|
	return &cmap->map;
 | 
						|
}
 | 
						|
 | 
						|
static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
 | 
						|
{
 | 
						|
	/* The tear-down procedure should have made sure that queue is
 | 
						|
	 * empty.  See __cpu_map_entry_replace() and work-queue
 | 
						|
	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
 | 
						|
	 * gracefully and warn once.
 | 
						|
	 */
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	while ((ptr = ptr_ring_consume(ring))) {
 | 
						|
		WARN_ON_ONCE(1);
 | 
						|
		if (unlikely(__ptr_test_bit(0, &ptr))) {
 | 
						|
			__ptr_clear_bit(0, &ptr);
 | 
						|
			kfree_skb(ptr);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		xdp_return_frame(ptr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static u32 cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
 | 
						|
				    void **skbs, u32 skb_n,
 | 
						|
				    struct xdp_cpumap_stats *stats)
 | 
						|
{
 | 
						|
	struct xdp_buff xdp;
 | 
						|
	u32 act, pass = 0;
 | 
						|
	int err;
 | 
						|
 | 
						|
	for (u32 i = 0; i < skb_n; i++) {
 | 
						|
		struct sk_buff *skb = skbs[i];
 | 
						|
 | 
						|
		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
 | 
						|
		switch (act) {
 | 
						|
		case XDP_PASS:
 | 
						|
			skbs[pass++] = skb;
 | 
						|
			break;
 | 
						|
		case XDP_REDIRECT:
 | 
						|
			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
 | 
						|
						      rcpu->prog);
 | 
						|
			if (unlikely(err)) {
 | 
						|
				kfree_skb(skb);
 | 
						|
				stats->drop++;
 | 
						|
			} else {
 | 
						|
				stats->redirect++;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
 | 
						|
			fallthrough;
 | 
						|
		case XDP_ABORTED:
 | 
						|
			trace_xdp_exception(skb->dev, rcpu->prog, act);
 | 
						|
			fallthrough;
 | 
						|
		case XDP_DROP:
 | 
						|
			napi_consume_skb(skb, true);
 | 
						|
			stats->drop++;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	stats->pass += pass;
 | 
						|
 | 
						|
	return pass;
 | 
						|
}
 | 
						|
 | 
						|
static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
 | 
						|
				    void **frames, int n,
 | 
						|
				    struct xdp_cpumap_stats *stats)
 | 
						|
{
 | 
						|
	struct xdp_rxq_info rxq = {};
 | 
						|
	struct xdp_buff xdp;
 | 
						|
	int i, nframes = 0;
 | 
						|
 | 
						|
	xdp.rxq = &rxq;
 | 
						|
 | 
						|
	for (i = 0; i < n; i++) {
 | 
						|
		struct xdp_frame *xdpf = frames[i];
 | 
						|
		u32 act;
 | 
						|
		int err;
 | 
						|
 | 
						|
		rxq.dev = xdpf->dev_rx;
 | 
						|
		rxq.mem.type = xdpf->mem_type;
 | 
						|
		/* TODO: report queue_index to xdp_rxq_info */
 | 
						|
 | 
						|
		xdp_convert_frame_to_buff(xdpf, &xdp);
 | 
						|
 | 
						|
		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
 | 
						|
		switch (act) {
 | 
						|
		case XDP_PASS:
 | 
						|
			err = xdp_update_frame_from_buff(&xdp, xdpf);
 | 
						|
			if (err < 0) {
 | 
						|
				xdp_return_frame(xdpf);
 | 
						|
				stats->drop++;
 | 
						|
			} else {
 | 
						|
				frames[nframes++] = xdpf;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case XDP_REDIRECT:
 | 
						|
			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
 | 
						|
					      rcpu->prog);
 | 
						|
			if (unlikely(err)) {
 | 
						|
				xdp_return_frame(xdpf);
 | 
						|
				stats->drop++;
 | 
						|
			} else {
 | 
						|
				stats->redirect++;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
 | 
						|
			fallthrough;
 | 
						|
		case XDP_DROP:
 | 
						|
			xdp_return_frame(xdpf);
 | 
						|
			stats->drop++;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	stats->pass += nframes;
 | 
						|
 | 
						|
	return nframes;
 | 
						|
}
 | 
						|
 | 
						|
#define CPUMAP_BATCH 8
 | 
						|
 | 
						|
struct cpu_map_ret {
 | 
						|
	u32 xdp_n;
 | 
						|
	u32 skb_n;
 | 
						|
};
 | 
						|
 | 
						|
static void cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
 | 
						|
				 void **skbs, struct cpu_map_ret *ret,
 | 
						|
				 struct xdp_cpumap_stats *stats)
 | 
						|
{
 | 
						|
	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
 | 
						|
 | 
						|
	if (!rcpu->prog)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
 | 
						|
	xdp_set_return_frame_no_direct();
 | 
						|
 | 
						|
	ret->xdp_n = cpu_map_bpf_prog_run_xdp(rcpu, frames, ret->xdp_n, stats);
 | 
						|
	if (unlikely(ret->skb_n))
 | 
						|
		ret->skb_n = cpu_map_bpf_prog_run_skb(rcpu, skbs, ret->skb_n,
 | 
						|
						      stats);
 | 
						|
 | 
						|
	if (stats->redirect)
 | 
						|
		xdp_do_flush();
 | 
						|
 | 
						|
	xdp_clear_return_frame_no_direct();
 | 
						|
	bpf_net_ctx_clear(bpf_net_ctx);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
out:
 | 
						|
	if (unlikely(ret->skb_n) && ret->xdp_n)
 | 
						|
		memmove(&skbs[ret->xdp_n], skbs, ret->skb_n * sizeof(*skbs));
 | 
						|
}
 | 
						|
 | 
						|
static void cpu_map_gro_flush(struct bpf_cpu_map_entry *rcpu, bool empty)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If the ring is not empty, there'll be a new iteration soon, and we
 | 
						|
	 * only need to do a full flush if a tick is long (> 1 ms).
 | 
						|
	 * If the ring is empty, to not hold GRO packets in the stack for too
 | 
						|
	 * long, do a full flush.
 | 
						|
	 * This is equivalent to how NAPI decides whether to perform a full
 | 
						|
	 * flush.
 | 
						|
	 */
 | 
						|
	gro_flush_normal(&rcpu->gro, !empty && HZ >= 1000);
 | 
						|
}
 | 
						|
 | 
						|
static int cpu_map_kthread_run(void *data)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map_entry *rcpu = data;
 | 
						|
	unsigned long last_qs = jiffies;
 | 
						|
	u32 packets = 0;
 | 
						|
 | 
						|
	complete(&rcpu->kthread_running);
 | 
						|
	set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
 | 
						|
	/* When kthread gives stop order, then rcpu have been disconnected
 | 
						|
	 * from map, thus no new packets can enter. Remaining in-flight
 | 
						|
	 * per CPU stored packets are flushed to this queue.  Wait honoring
 | 
						|
	 * kthread_stop signal until queue is empty.
 | 
						|
	 */
 | 
						|
	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
 | 
						|
		struct xdp_cpumap_stats stats = {}; /* zero stats */
 | 
						|
		unsigned int kmem_alloc_drops = 0, sched = 0;
 | 
						|
		struct cpu_map_ret ret = { };
 | 
						|
		void *frames[CPUMAP_BATCH];
 | 
						|
		void *skbs[CPUMAP_BATCH];
 | 
						|
		u32 i, n, m;
 | 
						|
		bool empty;
 | 
						|
 | 
						|
		/* Release CPU reschedule checks */
 | 
						|
		if (__ptr_ring_empty(rcpu->queue)) {
 | 
						|
			set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
			/* Recheck to avoid lost wake-up */
 | 
						|
			if (__ptr_ring_empty(rcpu->queue)) {
 | 
						|
				schedule();
 | 
						|
				sched = 1;
 | 
						|
				last_qs = jiffies;
 | 
						|
			} else {
 | 
						|
				__set_current_state(TASK_RUNNING);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			rcu_softirq_qs_periodic(last_qs);
 | 
						|
			sched = cond_resched();
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The bpf_cpu_map_entry is single consumer, with this
 | 
						|
		 * kthread CPU pinned. Lockless access to ptr_ring
 | 
						|
		 * consume side valid as no-resize allowed of queue.
 | 
						|
		 */
 | 
						|
		n = __ptr_ring_consume_batched(rcpu->queue, frames,
 | 
						|
					       CPUMAP_BATCH);
 | 
						|
		for (i = 0; i < n; i++) {
 | 
						|
			void *f = frames[i];
 | 
						|
			struct page *page;
 | 
						|
 | 
						|
			if (unlikely(__ptr_test_bit(0, &f))) {
 | 
						|
				struct sk_buff *skb = f;
 | 
						|
 | 
						|
				__ptr_clear_bit(0, &skb);
 | 
						|
				skbs[ret.skb_n++] = skb;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			frames[ret.xdp_n++] = f;
 | 
						|
			page = virt_to_page(f);
 | 
						|
 | 
						|
			/* Bring struct page memory area to curr CPU. Read by
 | 
						|
			 * build_skb_around via page_is_pfmemalloc(), and when
 | 
						|
			 * freed written by page_frag_free call.
 | 
						|
			 */
 | 
						|
			prefetchw(page);
 | 
						|
		}
 | 
						|
 | 
						|
		local_bh_disable();
 | 
						|
 | 
						|
		/* Support running another XDP prog on this CPU */
 | 
						|
		cpu_map_bpf_prog_run(rcpu, frames, skbs, &ret, &stats);
 | 
						|
		if (!ret.xdp_n)
 | 
						|
			goto stats;
 | 
						|
 | 
						|
		m = napi_skb_cache_get_bulk(skbs, ret.xdp_n);
 | 
						|
		if (unlikely(m < ret.xdp_n)) {
 | 
						|
			for (i = m; i < ret.xdp_n; i++)
 | 
						|
				xdp_return_frame(frames[i]);
 | 
						|
 | 
						|
			if (ret.skb_n)
 | 
						|
				memmove(&skbs[m], &skbs[ret.xdp_n],
 | 
						|
					ret.skb_n * sizeof(*skbs));
 | 
						|
 | 
						|
			kmem_alloc_drops += ret.xdp_n - m;
 | 
						|
			ret.xdp_n = m;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; i < ret.xdp_n; i++) {
 | 
						|
			struct xdp_frame *xdpf = frames[i];
 | 
						|
 | 
						|
			/* Can fail only when !skb -- already handled above */
 | 
						|
			__xdp_build_skb_from_frame(xdpf, skbs[i], xdpf->dev_rx);
 | 
						|
		}
 | 
						|
 | 
						|
stats:
 | 
						|
		/* Feedback loop via tracepoint.
 | 
						|
		 * NB: keep before recv to allow measuring enqueue/dequeue latency.
 | 
						|
		 */
 | 
						|
		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
 | 
						|
					 sched, &stats);
 | 
						|
 | 
						|
		for (i = 0; i < ret.xdp_n + ret.skb_n; i++)
 | 
						|
			gro_receive_skb(&rcpu->gro, skbs[i]);
 | 
						|
 | 
						|
		/* Flush either every 64 packets or in case of empty ring */
 | 
						|
		packets += n;
 | 
						|
		empty = __ptr_ring_empty(rcpu->queue);
 | 
						|
		if (packets >= NAPI_POLL_WEIGHT || empty) {
 | 
						|
			cpu_map_gro_flush(rcpu, empty);
 | 
						|
			packets = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		local_bh_enable(); /* resched point, may call do_softirq() */
 | 
						|
	}
 | 
						|
	__set_current_state(TASK_RUNNING);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
 | 
						|
				      struct bpf_map *map, int fd)
 | 
						|
{
 | 
						|
	struct bpf_prog *prog;
 | 
						|
 | 
						|
	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
 | 
						|
	if (IS_ERR(prog))
 | 
						|
		return PTR_ERR(prog);
 | 
						|
 | 
						|
	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
 | 
						|
	    !bpf_prog_map_compatible(map, prog)) {
 | 
						|
		bpf_prog_put(prog);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	rcpu->value.bpf_prog.id = prog->aux->id;
 | 
						|
	rcpu->prog = prog;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct bpf_cpu_map_entry *
 | 
						|
__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
 | 
						|
		      u32 cpu)
 | 
						|
{
 | 
						|
	int numa, err, i, fd = value->bpf_prog.fd;
 | 
						|
	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
 | 
						|
	struct bpf_cpu_map_entry *rcpu;
 | 
						|
	struct xdp_bulk_queue *bq;
 | 
						|
 | 
						|
	/* Have map->numa_node, but choose node of redirect target CPU */
 | 
						|
	numa = cpu_to_node(cpu);
 | 
						|
 | 
						|
	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
 | 
						|
	if (!rcpu)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Alloc percpu bulkq */
 | 
						|
	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
 | 
						|
					   sizeof(void *), gfp);
 | 
						|
	if (!rcpu->bulkq)
 | 
						|
		goto free_rcu;
 | 
						|
 | 
						|
	for_each_possible_cpu(i) {
 | 
						|
		bq = per_cpu_ptr(rcpu->bulkq, i);
 | 
						|
		bq->obj = rcpu;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Alloc queue */
 | 
						|
	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
 | 
						|
					   numa);
 | 
						|
	if (!rcpu->queue)
 | 
						|
		goto free_bulkq;
 | 
						|
 | 
						|
	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
 | 
						|
	if (err)
 | 
						|
		goto free_queue;
 | 
						|
 | 
						|
	rcpu->cpu    = cpu;
 | 
						|
	rcpu->map_id = map->id;
 | 
						|
	rcpu->value.qsize  = value->qsize;
 | 
						|
	gro_init(&rcpu->gro);
 | 
						|
 | 
						|
	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
 | 
						|
		goto free_ptr_ring;
 | 
						|
 | 
						|
	/* Setup kthread */
 | 
						|
	init_completion(&rcpu->kthread_running);
 | 
						|
	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
 | 
						|
					       "cpumap/%d/map:%d", cpu,
 | 
						|
					       map->id);
 | 
						|
	if (IS_ERR(rcpu->kthread))
 | 
						|
		goto free_prog;
 | 
						|
 | 
						|
	/* Make sure kthread runs on a single CPU */
 | 
						|
	kthread_bind(rcpu->kthread, cpu);
 | 
						|
	wake_up_process(rcpu->kthread);
 | 
						|
 | 
						|
	/* Make sure kthread has been running, so kthread_stop() will not
 | 
						|
	 * stop the kthread prematurely and all pending frames or skbs
 | 
						|
	 * will be handled by the kthread before kthread_stop() returns.
 | 
						|
	 */
 | 
						|
	wait_for_completion(&rcpu->kthread_running);
 | 
						|
 | 
						|
	return rcpu;
 | 
						|
 | 
						|
free_prog:
 | 
						|
	if (rcpu->prog)
 | 
						|
		bpf_prog_put(rcpu->prog);
 | 
						|
free_ptr_ring:
 | 
						|
	gro_cleanup(&rcpu->gro);
 | 
						|
	ptr_ring_cleanup(rcpu->queue, NULL);
 | 
						|
free_queue:
 | 
						|
	kfree(rcpu->queue);
 | 
						|
free_bulkq:
 | 
						|
	free_percpu(rcpu->bulkq);
 | 
						|
free_rcu:
 | 
						|
	kfree(rcpu);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void __cpu_map_entry_free(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map_entry *rcpu;
 | 
						|
 | 
						|
	/* This cpu_map_entry have been disconnected from map and one
 | 
						|
	 * RCU grace-period have elapsed. Thus, XDP cannot queue any
 | 
						|
	 * new packets and cannot change/set flush_needed that can
 | 
						|
	 * find this entry.
 | 
						|
	 */
 | 
						|
	rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
 | 
						|
 | 
						|
	/* kthread_stop will wake_up_process and wait for it to complete.
 | 
						|
	 * cpu_map_kthread_run() makes sure the pointer ring is empty
 | 
						|
	 * before exiting.
 | 
						|
	 */
 | 
						|
	kthread_stop(rcpu->kthread);
 | 
						|
 | 
						|
	if (rcpu->prog)
 | 
						|
		bpf_prog_put(rcpu->prog);
 | 
						|
	gro_cleanup(&rcpu->gro);
 | 
						|
	/* The queue should be empty at this point */
 | 
						|
	__cpu_map_ring_cleanup(rcpu->queue);
 | 
						|
	ptr_ring_cleanup(rcpu->queue, NULL);
 | 
						|
	kfree(rcpu->queue);
 | 
						|
	free_percpu(rcpu->bulkq);
 | 
						|
	kfree(rcpu);
 | 
						|
}
 | 
						|
 | 
						|
/* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
 | 
						|
 * entry is no longer in use before freeing. We use queue_rcu_work() to call
 | 
						|
 * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
 | 
						|
 * period. This means that (a) all pending enqueue and flush operations have
 | 
						|
 * completed (because of the RCU callback), and (b) we are in a workqueue
 | 
						|
 * context where we can stop the kthread and wait for it to exit before freeing
 | 
						|
 * everything.
 | 
						|
 */
 | 
						|
static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
 | 
						|
				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map_entry *old_rcpu;
 | 
						|
 | 
						|
	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
 | 
						|
	if (old_rcpu) {
 | 
						|
		INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
 | 
						|
		queue_rcu_work(system_wq, &old_rcpu->free_work);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static long cpu_map_delete_elem(struct bpf_map *map, void *key)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 | 
						|
	u32 key_cpu = *(u32 *)key;
 | 
						|
 | 
						|
	if (key_cpu >= map->max_entries)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* notice caller map_delete_elem() uses rcu_read_lock() */
 | 
						|
	__cpu_map_entry_replace(cmap, key_cpu, NULL);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
 | 
						|
				u64 map_flags)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 | 
						|
	struct bpf_cpumap_val cpumap_value = {};
 | 
						|
	struct bpf_cpu_map_entry *rcpu;
 | 
						|
	/* Array index key correspond to CPU number */
 | 
						|
	u32 key_cpu = *(u32 *)key;
 | 
						|
 | 
						|
	memcpy(&cpumap_value, value, map->value_size);
 | 
						|
 | 
						|
	if (unlikely(map_flags > BPF_EXIST))
 | 
						|
		return -EINVAL;
 | 
						|
	if (unlikely(key_cpu >= cmap->map.max_entries))
 | 
						|
		return -E2BIG;
 | 
						|
	if (unlikely(map_flags == BPF_NOEXIST))
 | 
						|
		return -EEXIST;
 | 
						|
	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
 | 
						|
		return -EOVERFLOW;
 | 
						|
 | 
						|
	/* Make sure CPU is a valid possible cpu */
 | 
						|
	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	if (cpumap_value.qsize == 0) {
 | 
						|
		rcpu = NULL; /* Same as deleting */
 | 
						|
	} else {
 | 
						|
		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
 | 
						|
		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
 | 
						|
		if (!rcpu)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
	rcu_read_lock();
 | 
						|
	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void cpu_map_free(struct bpf_map *map)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 | 
						|
	u32 i;
 | 
						|
 | 
						|
	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
 | 
						|
	 * so the bpf programs (can be more than one that used this map) were
 | 
						|
	 * disconnected from events. Wait for outstanding critical sections in
 | 
						|
	 * these programs to complete. synchronize_rcu() below not only
 | 
						|
	 * guarantees no further "XDP/bpf-side" reads against
 | 
						|
	 * bpf_cpu_map->cpu_map, but also ensure pending flush operations
 | 
						|
	 * (if any) are completed.
 | 
						|
	 */
 | 
						|
	synchronize_rcu();
 | 
						|
 | 
						|
	/* The only possible user of bpf_cpu_map_entry is
 | 
						|
	 * cpu_map_kthread_run().
 | 
						|
	 */
 | 
						|
	for (i = 0; i < cmap->map.max_entries; i++) {
 | 
						|
		struct bpf_cpu_map_entry *rcpu;
 | 
						|
 | 
						|
		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
 | 
						|
		if (!rcpu)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Stop kthread and cleanup entry directly */
 | 
						|
		__cpu_map_entry_free(&rcpu->free_work.work);
 | 
						|
	}
 | 
						|
	bpf_map_area_free(cmap->cpu_map);
 | 
						|
	bpf_map_area_free(cmap);
 | 
						|
}
 | 
						|
 | 
						|
/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
 | 
						|
 * by local_bh_disable() (from XDP calls inside NAPI). The
 | 
						|
 * rcu_read_lock_bh_held() below makes lockdep accept both.
 | 
						|
 */
 | 
						|
static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 | 
						|
	struct bpf_cpu_map_entry *rcpu;
 | 
						|
 | 
						|
	if (key >= map->max_entries)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	rcpu = rcu_dereference_check(cmap->cpu_map[key],
 | 
						|
				     rcu_read_lock_bh_held());
 | 
						|
	return rcpu;
 | 
						|
}
 | 
						|
 | 
						|
static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map_entry *rcpu =
 | 
						|
		__cpu_map_lookup_elem(map, *(u32 *)key);
 | 
						|
 | 
						|
	return rcpu ? &rcpu->value : NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 | 
						|
	u32 index = key ? *(u32 *)key : U32_MAX;
 | 
						|
	u32 *next = next_key;
 | 
						|
 | 
						|
	if (index >= cmap->map.max_entries) {
 | 
						|
		*next = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (index == cmap->map.max_entries - 1)
 | 
						|
		return -ENOENT;
 | 
						|
	*next = index + 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
 | 
						|
{
 | 
						|
	return __bpf_xdp_redirect_map(map, index, flags, 0,
 | 
						|
				      __cpu_map_lookup_elem);
 | 
						|
}
 | 
						|
 | 
						|
static u64 cpu_map_mem_usage(const struct bpf_map *map)
 | 
						|
{
 | 
						|
	u64 usage = sizeof(struct bpf_cpu_map);
 | 
						|
 | 
						|
	/* Currently the dynamically allocated elements are not counted */
 | 
						|
	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
 | 
						|
	return usage;
 | 
						|
}
 | 
						|
 | 
						|
BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
 | 
						|
const struct bpf_map_ops cpu_map_ops = {
 | 
						|
	.map_meta_equal		= bpf_map_meta_equal,
 | 
						|
	.map_alloc		= cpu_map_alloc,
 | 
						|
	.map_free		= cpu_map_free,
 | 
						|
	.map_delete_elem	= cpu_map_delete_elem,
 | 
						|
	.map_update_elem	= cpu_map_update_elem,
 | 
						|
	.map_lookup_elem	= cpu_map_lookup_elem,
 | 
						|
	.map_get_next_key	= cpu_map_get_next_key,
 | 
						|
	.map_check_btf		= map_check_no_btf,
 | 
						|
	.map_mem_usage		= cpu_map_mem_usage,
 | 
						|
	.map_btf_id		= &cpu_map_btf_ids[0],
 | 
						|
	.map_redirect		= cpu_map_redirect,
 | 
						|
};
 | 
						|
 | 
						|
static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
 | 
						|
{
 | 
						|
	struct bpf_cpu_map_entry *rcpu = bq->obj;
 | 
						|
	unsigned int processed = 0, drops = 0;
 | 
						|
	const int to_cpu = rcpu->cpu;
 | 
						|
	struct ptr_ring *q;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (unlikely(!bq->count))
 | 
						|
		return;
 | 
						|
 | 
						|
	q = rcpu->queue;
 | 
						|
	spin_lock(&q->producer_lock);
 | 
						|
 | 
						|
	for (i = 0; i < bq->count; i++) {
 | 
						|
		struct xdp_frame *xdpf = bq->q[i];
 | 
						|
		int err;
 | 
						|
 | 
						|
		err = __ptr_ring_produce(q, xdpf);
 | 
						|
		if (err) {
 | 
						|
			drops++;
 | 
						|
			xdp_return_frame_rx_napi(xdpf);
 | 
						|
		}
 | 
						|
		processed++;
 | 
						|
	}
 | 
						|
	bq->count = 0;
 | 
						|
	spin_unlock(&q->producer_lock);
 | 
						|
 | 
						|
	__list_del_clearprev(&bq->flush_node);
 | 
						|
 | 
						|
	/* Feedback loop via tracepoints */
 | 
						|
	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 | 
						|
}
 | 
						|
 | 
						|
/* Runs under RCU-read-side, plus in softirq under NAPI protection.
 | 
						|
 * Thus, safe percpu variable access.
 | 
						|
 */
 | 
						|
static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
 | 
						|
{
 | 
						|
	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
 | 
						|
 | 
						|
	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
 | 
						|
		bq_flush_to_queue(bq);
 | 
						|
 | 
						|
	/* Notice, xdp_buff/page MUST be queued here, long enough for
 | 
						|
	 * driver to code invoking us to finished, due to driver
 | 
						|
	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
 | 
						|
	 *
 | 
						|
	 * Thus, incoming xdp_frame is always queued here (else we race
 | 
						|
	 * with another CPU on page-refcnt and remaining driver code).
 | 
						|
	 * Queue time is very short, as driver will invoke flush
 | 
						|
	 * operation, when completing napi->poll call.
 | 
						|
	 */
 | 
						|
	bq->q[bq->count++] = xdpf;
 | 
						|
 | 
						|
	if (!bq->flush_node.prev) {
 | 
						|
		struct list_head *flush_list = bpf_net_ctx_get_cpu_map_flush_list();
 | 
						|
 | 
						|
		list_add(&bq->flush_node, flush_list);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
 | 
						|
		    struct net_device *dev_rx)
 | 
						|
{
 | 
						|
	/* Info needed when constructing SKB on remote CPU */
 | 
						|
	xdpf->dev_rx = dev_rx;
 | 
						|
 | 
						|
	bq_enqueue(rcpu, xdpf);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
 | 
						|
			     struct sk_buff *skb)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	__skb_pull(skb, skb->mac_len);
 | 
						|
	skb_set_redirected(skb, false);
 | 
						|
	__ptr_set_bit(0, &skb);
 | 
						|
 | 
						|
	ret = ptr_ring_produce(rcpu->queue, skb);
 | 
						|
	if (ret < 0)
 | 
						|
		goto trace;
 | 
						|
 | 
						|
	wake_up_process(rcpu->kthread);
 | 
						|
trace:
 | 
						|
	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void __cpu_map_flush(struct list_head *flush_list)
 | 
						|
{
 | 
						|
	struct xdp_bulk_queue *bq, *tmp;
 | 
						|
 | 
						|
	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
 | 
						|
		bq_flush_to_queue(bq);
 | 
						|
 | 
						|
		/* If already running, costs spin_lock_irqsave + smb_mb */
 | 
						|
		wake_up_process(bq->obj->kthread);
 | 
						|
	}
 | 
						|
}
 |