mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 94a4acfec1
			
		
	
	
		94a4acfec1
		
	
	
	
	
		
			
			Setting of->priv to NULL when the file is released enables earlier bug detection. This allows potential bugs to manifest as NULL pointer dereferences rather than use-after-free errors[1], which are generally more difficult to diagnose. [1] https://lore.kernel.org/cgroups/38ef3ff9-b380-44f0-9315-8b3714b0948d@huaweicloud.com/T/#m8a3b3f88f0ff3da5925d342e90043394f8b2091b Signed-off-by: Chen Ridong <chenridong@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
		
			
				
	
	
		
			7267 lines
		
	
	
	
		
			191 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7267 lines
		
	
	
	
		
			191 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Generic process-grouping system.
 | |
|  *
 | |
|  *  Based originally on the cpuset system, extracted by Paul Menage
 | |
|  *  Copyright (C) 2006 Google, Inc
 | |
|  *
 | |
|  *  Notifications support
 | |
|  *  Copyright (C) 2009 Nokia Corporation
 | |
|  *  Author: Kirill A. Shutemov
 | |
|  *
 | |
|  *  Copyright notices from the original cpuset code:
 | |
|  *  --------------------------------------------------
 | |
|  *  Copyright (C) 2003 BULL SA.
 | |
|  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 | |
|  *
 | |
|  *  Portions derived from Patrick Mochel's sysfs code.
 | |
|  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 | |
|  *
 | |
|  *  2003-10-10 Written by Simon Derr.
 | |
|  *  2003-10-22 Updates by Stephen Hemminger.
 | |
|  *  2004 May-July Rework by Paul Jackson.
 | |
|  *  ---------------------------------------------------
 | |
|  *
 | |
|  *  This file is subject to the terms and conditions of the GNU General Public
 | |
|  *  License.  See the file COPYING in the main directory of the Linux
 | |
|  *  distribution for more details.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include "cgroup-internal.h"
 | |
| 
 | |
| #include <linux/bpf-cgroup.h>
 | |
| #include <linux/cred.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init_task.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/magic.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/percpu-rwsem.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/hashtable.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/proc_ns.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fs_parser.h>
 | |
| #include <linux/sched/cputime.h>
 | |
| #include <linux/sched/deadline.h>
 | |
| #include <linux/psi.h>
 | |
| #include <net/sock.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/cgroup.h>
 | |
| 
 | |
| #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
 | |
| 					 MAX_CFTYPE_NAME + 2)
 | |
| /* let's not notify more than 100 times per second */
 | |
| #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
 | |
| 
 | |
| /*
 | |
|  * To avoid confusing the compiler (and generating warnings) with code
 | |
|  * that attempts to access what would be a 0-element array (i.e. sized
 | |
|  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
 | |
|  * constant expression can be added.
 | |
|  */
 | |
| #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
 | |
| 
 | |
| /*
 | |
|  * cgroup_mutex is the master lock.  Any modification to cgroup or its
 | |
|  * hierarchy must be performed while holding it.
 | |
|  *
 | |
|  * css_set_lock protects task->cgroups pointer, the list of css_set
 | |
|  * objects, and the chain of tasks off each css_set.
 | |
|  *
 | |
|  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
 | |
|  * cgroup.h can use them for lockdep annotations.
 | |
|  */
 | |
| DEFINE_MUTEX(cgroup_mutex);
 | |
| DEFINE_SPINLOCK(css_set_lock);
 | |
| 
 | |
| #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP)
 | |
| EXPORT_SYMBOL_GPL(cgroup_mutex);
 | |
| EXPORT_SYMBOL_GPL(css_set_lock);
 | |
| #endif
 | |
| 
 | |
| struct blocking_notifier_head cgroup_lifetime_notifier =
 | |
| 	BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier);
 | |
| 
 | |
| DEFINE_SPINLOCK(trace_cgroup_path_lock);
 | |
| char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
 | |
| static bool cgroup_debug __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * Protects cgroup_idr and css_idr so that IDs can be released without
 | |
|  * grabbing cgroup_mutex.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(cgroup_idr_lock);
 | |
| 
 | |
| /*
 | |
|  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 | |
|  * against file removal/re-creation across css hiding.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 | |
| 
 | |
| DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
 | |
| 
 | |
| #define cgroup_assert_mutex_or_rcu_locked()				\
 | |
| 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 | |
| 			   !lockdep_is_held(&cgroup_mutex),		\
 | |
| 			   "cgroup_mutex or RCU read lock required");
 | |
| 
 | |
| /*
 | |
|  * cgroup destruction makes heavy use of work items and there can be a lot
 | |
|  * of concurrent destructions.  Use a separate workqueue so that cgroup
 | |
|  * destruction work items don't end up filling up max_active of system_wq
 | |
|  * which may lead to deadlock.
 | |
|  *
 | |
|  * A cgroup destruction should enqueue work sequentially to:
 | |
|  * cgroup_offline_wq: use for css offline work
 | |
|  * cgroup_release_wq: use for css release work
 | |
|  * cgroup_free_wq: use for free work
 | |
|  *
 | |
|  * Rationale for using separate workqueues:
 | |
|  * The cgroup root free work may depend on completion of other css offline
 | |
|  * operations. If all tasks were enqueued to a single workqueue, this could
 | |
|  * create a deadlock scenario where:
 | |
|  * - Free work waits for other css offline work to complete.
 | |
|  * - But other css offline work is queued after free work in the same queue.
 | |
|  *
 | |
|  * Example deadlock scenario with single workqueue (cgroup_destroy_wq):
 | |
|  * 1. umount net_prio
 | |
|  * 2. net_prio root destruction enqueues work to cgroup_destroy_wq (CPUx)
 | |
|  * 3. perf_event CSS A offline enqueues work to same cgroup_destroy_wq (CPUx)
 | |
|  * 4. net_prio cgroup_destroy_root->cgroup_lock_and_drain_offline.
 | |
|  * 5. net_prio root destruction blocks waiting for perf_event CSS A offline,
 | |
|  *    which can never complete as it's behind in the same queue and
 | |
|  *    workqueue's max_active is 1.
 | |
|  */
 | |
| static struct workqueue_struct *cgroup_offline_wq;
 | |
| static struct workqueue_struct *cgroup_release_wq;
 | |
| static struct workqueue_struct *cgroup_free_wq;
 | |
| 
 | |
| /* generate an array of cgroup subsystem pointers */
 | |
| #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 | |
| struct cgroup_subsys *cgroup_subsys[] = {
 | |
| #include <linux/cgroup_subsys.h>
 | |
| };
 | |
| #undef SUBSYS
 | |
| 
 | |
| /* array of cgroup subsystem names */
 | |
| #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 | |
| static const char *cgroup_subsys_name[] = {
 | |
| #include <linux/cgroup_subsys.h>
 | |
| };
 | |
| #undef SUBSYS
 | |
| 
 | |
| /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 | |
| #define SUBSYS(_x)								\
 | |
| 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
 | |
| 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
 | |
| 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
 | |
| 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 | |
| #include <linux/cgroup_subsys.h>
 | |
| #undef SUBSYS
 | |
| 
 | |
| #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 | |
| static struct static_key_true *cgroup_subsys_enabled_key[] = {
 | |
| #include <linux/cgroup_subsys.h>
 | |
| };
 | |
| #undef SUBSYS
 | |
| 
 | |
| #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 | |
| static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 | |
| #include <linux/cgroup_subsys.h>
 | |
| };
 | |
| #undef SUBSYS
 | |
| 
 | |
| static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu);
 | |
| static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu);
 | |
| 
 | |
| /* the default hierarchy */
 | |
| struct cgroup_root cgrp_dfl_root = {
 | |
| 	.cgrp.self.rstat_cpu = &root_rstat_cpu,
 | |
| 	.cgrp.rstat_base_cpu = &root_rstat_base_cpu,
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 | |
| 
 | |
| /*
 | |
|  * The default hierarchy always exists but is hidden until mounted for the
 | |
|  * first time.  This is for backward compatibility.
 | |
|  */
 | |
| bool cgrp_dfl_visible;
 | |
| 
 | |
| /* some controllers are not supported in the default hierarchy */
 | |
| static u16 cgrp_dfl_inhibit_ss_mask;
 | |
| 
 | |
| /* some controllers are implicitly enabled on the default hierarchy */
 | |
| static u16 cgrp_dfl_implicit_ss_mask;
 | |
| 
 | |
| /* some controllers can be threaded on the default hierarchy */
 | |
| static u16 cgrp_dfl_threaded_ss_mask;
 | |
| 
 | |
| /* The list of hierarchy roots */
 | |
| LIST_HEAD(cgroup_roots);
 | |
| static int cgroup_root_count;
 | |
| 
 | |
| /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 | |
| static DEFINE_IDR(cgroup_hierarchy_idr);
 | |
| 
 | |
| /*
 | |
|  * Assign a monotonically increasing serial number to csses.  It guarantees
 | |
|  * cgroups with bigger numbers are newer than those with smaller numbers.
 | |
|  * Also, as csses are always appended to the parent's ->children list, it
 | |
|  * guarantees that sibling csses are always sorted in the ascending serial
 | |
|  * number order on the list.  Protected by cgroup_mutex.
 | |
|  */
 | |
| static u64 css_serial_nr_next = 1;
 | |
| 
 | |
| /*
 | |
|  * These bitmasks identify subsystems with specific features to avoid
 | |
|  * having to do iterative checks repeatedly.
 | |
|  */
 | |
| static u16 have_fork_callback __read_mostly;
 | |
| static u16 have_exit_callback __read_mostly;
 | |
| static u16 have_release_callback __read_mostly;
 | |
| static u16 have_canfork_callback __read_mostly;
 | |
| 
 | |
| static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
 | |
| 
 | |
| /* cgroup namespace for init task */
 | |
| struct cgroup_namespace init_cgroup_ns = {
 | |
| 	.ns.count	= REFCOUNT_INIT(2),
 | |
| 	.user_ns	= &init_user_ns,
 | |
| 	.ns.ops		= &cgroupns_operations,
 | |
| 	.ns.inum	= PROC_CGROUP_INIT_INO,
 | |
| 	.root_cset	= &init_css_set,
 | |
| };
 | |
| 
 | |
| static struct file_system_type cgroup2_fs_type;
 | |
| static struct cftype cgroup_base_files[];
 | |
| static struct cftype cgroup_psi_files[];
 | |
| 
 | |
| /* cgroup optional features */
 | |
| enum cgroup_opt_features {
 | |
| #ifdef CONFIG_PSI
 | |
| 	OPT_FEATURE_PRESSURE,
 | |
| #endif
 | |
| 	OPT_FEATURE_COUNT
 | |
| };
 | |
| 
 | |
| static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
 | |
| #ifdef CONFIG_PSI
 | |
| 	"pressure",
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static u16 cgroup_feature_disable_mask __read_mostly;
 | |
| 
 | |
| static int cgroup_apply_control(struct cgroup *cgrp);
 | |
| static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 | |
| static void css_task_iter_skip(struct css_task_iter *it,
 | |
| 			       struct task_struct *task);
 | |
| static int cgroup_destroy_locked(struct cgroup *cgrp);
 | |
| static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 | |
| 					      struct cgroup_subsys *ss);
 | |
| static void css_release(struct percpu_ref *ref);
 | |
| static void kill_css(struct cgroup_subsys_state *css);
 | |
| static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 | |
| 			      struct cgroup *cgrp, struct cftype cfts[],
 | |
| 			      bool is_add);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_CGROUP_REF
 | |
| #define CGROUP_REF_FN_ATTRS	noinline
 | |
| #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
 | |
| #include <linux/cgroup_refcnt.h>
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 | |
|  * @ssid: subsys ID of interest
 | |
|  *
 | |
|  * cgroup_subsys_enabled() can only be used with literal subsys names which
 | |
|  * is fine for individual subsystems but unsuitable for cgroup core.  This
 | |
|  * is slower static_key_enabled() based test indexed by @ssid.
 | |
|  */
 | |
| bool cgroup_ssid_enabled(int ssid)
 | |
| {
 | |
| 	if (!CGROUP_HAS_SUBSYS_CONFIG)
 | |
| 		return false;
 | |
| 
 | |
| 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 | |
|  * @cgrp: the cgroup of interest
 | |
|  *
 | |
|  * The default hierarchy is the v2 interface of cgroup and this function
 | |
|  * can be used to test whether a cgroup is on the default hierarchy for
 | |
|  * cases where a subsystem should behave differently depending on the
 | |
|  * interface version.
 | |
|  *
 | |
|  * List of changed behaviors:
 | |
|  *
 | |
|  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 | |
|  *   and "name" are disallowed.
 | |
|  *
 | |
|  * - When mounting an existing superblock, mount options should match.
 | |
|  *
 | |
|  * - rename(2) is disallowed.
 | |
|  *
 | |
|  * - "tasks" is removed.  Everything should be at process granularity.  Use
 | |
|  *   "cgroup.procs" instead.
 | |
|  *
 | |
|  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 | |
|  *   recycled in-between reads.
 | |
|  *
 | |
|  * - "release_agent" and "notify_on_release" are removed.  Replacement
 | |
|  *   notification mechanism will be implemented.
 | |
|  *
 | |
|  * - "cgroup.clone_children" is removed.
 | |
|  *
 | |
|  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 | |
|  *   and its descendants contain no task; otherwise, 1.  The file also
 | |
|  *   generates kernfs notification which can be monitored through poll and
 | |
|  *   [di]notify when the value of the file changes.
 | |
|  *
 | |
|  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 | |
|  *   take masks of ancestors with non-empty cpus/mems, instead of being
 | |
|  *   moved to an ancestor.
 | |
|  *
 | |
|  * - cpuset: a task can be moved into an empty cpuset, and again it takes
 | |
|  *   masks of ancestors.
 | |
|  *
 | |
|  * - blkcg: blk-throttle becomes properly hierarchical.
 | |
|  */
 | |
| bool cgroup_on_dfl(const struct cgroup *cgrp)
 | |
| {
 | |
| 	return cgrp->root == &cgrp_dfl_root;
 | |
| }
 | |
| 
 | |
| /* IDR wrappers which synchronize using cgroup_idr_lock */
 | |
| static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 | |
| 			    gfp_t gfp_mask)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	idr_preload(gfp_mask);
 | |
| 	spin_lock_bh(&cgroup_idr_lock);
 | |
| 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 | |
| 	spin_unlock_bh(&cgroup_idr_lock);
 | |
| 	idr_preload_end();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	spin_lock_bh(&cgroup_idr_lock);
 | |
| 	ret = idr_replace(idr, ptr, id);
 | |
| 	spin_unlock_bh(&cgroup_idr_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cgroup_idr_remove(struct idr *idr, int id)
 | |
| {
 | |
| 	spin_lock_bh(&cgroup_idr_lock);
 | |
| 	idr_remove(idr, id);
 | |
| 	spin_unlock_bh(&cgroup_idr_lock);
 | |
| }
 | |
| 
 | |
| static bool cgroup_has_tasks(struct cgroup *cgrp)
 | |
| {
 | |
| 	return cgrp->nr_populated_csets;
 | |
| }
 | |
| 
 | |
| static bool cgroup_is_threaded(struct cgroup *cgrp)
 | |
| {
 | |
| 	return cgrp->dom_cgrp != cgrp;
 | |
| }
 | |
| 
 | |
| /* can @cgrp host both domain and threaded children? */
 | |
| static bool cgroup_is_mixable(struct cgroup *cgrp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Root isn't under domain level resource control exempting it from
 | |
| 	 * the no-internal-process constraint, so it can serve as a thread
 | |
| 	 * root and a parent of resource domains at the same time.
 | |
| 	 */
 | |
| 	return !cgroup_parent(cgrp);
 | |
| }
 | |
| 
 | |
| /* can @cgrp become a thread root? Should always be true for a thread root */
 | |
| static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 | |
| {
 | |
| 	/* mixables don't care */
 | |
| 	if (cgroup_is_mixable(cgrp))
 | |
| 		return true;
 | |
| 
 | |
| 	/* domain roots can't be nested under threaded */
 | |
| 	if (cgroup_is_threaded(cgrp))
 | |
| 		return false;
 | |
| 
 | |
| 	/* can only have either domain or threaded children */
 | |
| 	if (cgrp->nr_populated_domain_children)
 | |
| 		return false;
 | |
| 
 | |
| 	/* and no domain controllers can be enabled */
 | |
| 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* is @cgrp root of a threaded subtree? */
 | |
| static bool cgroup_is_thread_root(struct cgroup *cgrp)
 | |
| {
 | |
| 	/* thread root should be a domain */
 | |
| 	if (cgroup_is_threaded(cgrp))
 | |
| 		return false;
 | |
| 
 | |
| 	/* a domain w/ threaded children is a thread root */
 | |
| 	if (cgrp->nr_threaded_children)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * A domain which has tasks and explicit threaded controllers
 | |
| 	 * enabled is a thread root.
 | |
| 	 */
 | |
| 	if (cgroup_has_tasks(cgrp) &&
 | |
| 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* a domain which isn't connected to the root w/o brekage can't be used */
 | |
| static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 | |
| {
 | |
| 	/* the cgroup itself can be a thread root */
 | |
| 	if (cgroup_is_threaded(cgrp))
 | |
| 		return false;
 | |
| 
 | |
| 	/* but the ancestors can't be unless mixable */
 | |
| 	while ((cgrp = cgroup_parent(cgrp))) {
 | |
| 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 | |
| 			return false;
 | |
| 		if (cgroup_is_threaded(cgrp))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* subsystems visibly enabled on a cgroup */
 | |
| static u16 cgroup_control(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup *parent = cgroup_parent(cgrp);
 | |
| 	u16 root_ss_mask = cgrp->root->subsys_mask;
 | |
| 
 | |
| 	if (parent) {
 | |
| 		u16 ss_mask = parent->subtree_control;
 | |
| 
 | |
| 		/* threaded cgroups can only have threaded controllers */
 | |
| 		if (cgroup_is_threaded(cgrp))
 | |
| 			ss_mask &= cgrp_dfl_threaded_ss_mask;
 | |
| 		return ss_mask;
 | |
| 	}
 | |
| 
 | |
| 	if (cgroup_on_dfl(cgrp))
 | |
| 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 | |
| 				  cgrp_dfl_implicit_ss_mask);
 | |
| 	return root_ss_mask;
 | |
| }
 | |
| 
 | |
| /* subsystems enabled on a cgroup */
 | |
| static u16 cgroup_ss_mask(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup *parent = cgroup_parent(cgrp);
 | |
| 
 | |
| 	if (parent) {
 | |
| 		u16 ss_mask = parent->subtree_ss_mask;
 | |
| 
 | |
| 		/* threaded cgroups can only have threaded controllers */
 | |
| 		if (cgroup_is_threaded(cgrp))
 | |
| 			ss_mask &= cgrp_dfl_threaded_ss_mask;
 | |
| 		return ss_mask;
 | |
| 	}
 | |
| 
 | |
| 	return cgrp->root->subsys_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_css - obtain a cgroup's css for the specified subsystem
 | |
|  * @cgrp: the cgroup of interest
 | |
|  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 | |
|  *
 | |
|  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 | |
|  * function must be called either under cgroup_mutex or rcu_read_lock() and
 | |
|  * the caller is responsible for pinning the returned css if it wants to
 | |
|  * keep accessing it outside the said locks.  This function may return
 | |
|  * %NULL if @cgrp doesn't have @subsys_id enabled.
 | |
|  */
 | |
| static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 | |
| 					      struct cgroup_subsys *ss)
 | |
| {
 | |
| 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
 | |
| 		return rcu_dereference_check(cgrp->subsys[ss->id],
 | |
| 					lockdep_is_held(&cgroup_mutex));
 | |
| 	else
 | |
| 		return &cgrp->self;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 | |
|  * @cgrp: the cgroup of interest
 | |
|  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 | |
|  *
 | |
|  * Similar to cgroup_css() but returns the effective css, which is defined
 | |
|  * as the matching css of the nearest ancestor including self which has @ss
 | |
|  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 | |
|  * function is guaranteed to return non-NULL css.
 | |
|  */
 | |
| static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 | |
| 							struct cgroup_subsys *ss)
 | |
| {
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	if (!ss)
 | |
| 		return &cgrp->self;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function is used while updating css associations and thus
 | |
| 	 * can't test the csses directly.  Test ss_mask.
 | |
| 	 */
 | |
| 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 | |
| 		cgrp = cgroup_parent(cgrp);
 | |
| 		if (!cgrp)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return cgroup_css(cgrp, ss);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 | |
|  * @cgrp: the cgroup of interest
 | |
|  * @ss: the subsystem of interest
 | |
|  *
 | |
|  * Find and get the effective css of @cgrp for @ss.  The effective css is
 | |
|  * defined as the matching css of the nearest ancestor including self which
 | |
|  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 | |
|  * the root css is returned, so this function always returns a valid css.
 | |
|  *
 | |
|  * The returned css is not guaranteed to be online, and therefore it is the
 | |
|  * callers responsibility to try get a reference for it.
 | |
|  */
 | |
| struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 | |
| 					 struct cgroup_subsys *ss)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	if (!CGROUP_HAS_SUBSYS_CONFIG)
 | |
| 		return NULL;
 | |
| 
 | |
| 	do {
 | |
| 		css = cgroup_css(cgrp, ss);
 | |
| 
 | |
| 		if (css)
 | |
| 			return css;
 | |
| 		cgrp = cgroup_parent(cgrp);
 | |
| 	} while (cgrp);
 | |
| 
 | |
| 	return init_css_set.subsys[ss->id];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 | |
|  * @cgrp: the cgroup of interest
 | |
|  * @ss: the subsystem of interest
 | |
|  *
 | |
|  * Find and get the effective css of @cgrp for @ss.  The effective css is
 | |
|  * defined as the matching css of the nearest ancestor including self which
 | |
|  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 | |
|  * the root css is returned, so this function always returns a valid css.
 | |
|  * The returned css must be put using css_put().
 | |
|  */
 | |
| struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 | |
| 					     struct cgroup_subsys *ss)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	if (!CGROUP_HAS_SUBSYS_CONFIG)
 | |
| 		return NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	do {
 | |
| 		css = cgroup_css(cgrp, ss);
 | |
| 
 | |
| 		if (css && css_tryget_online(css))
 | |
| 			goto out_unlock;
 | |
| 		cgrp = cgroup_parent(cgrp);
 | |
| 	} while (cgrp);
 | |
| 
 | |
| 	css = init_css_set.subsys[ss->id];
 | |
| 	css_get(css);
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return css;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_get_e_css);
 | |
| 
 | |
| static void cgroup_get_live(struct cgroup *cgrp)
 | |
| {
 | |
| 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
 | |
| 	cgroup_get(cgrp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 | |
|  * is responsible for taking the css_set_lock.
 | |
|  * @cgrp: the cgroup in question
 | |
|  */
 | |
| int __cgroup_task_count(const struct cgroup *cgrp)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	struct cgrp_cset_link *link;
 | |
| 
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
 | |
| 		count += link->cset->nr_tasks;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_task_count - count the number of tasks in a cgroup.
 | |
|  * @cgrp: the cgroup in question
 | |
|  */
 | |
| int cgroup_task_count(const struct cgroup *cgrp)
 | |
| {
 | |
| 	int count;
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	count = __cgroup_task_count(cgrp);
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct cgroup *kn_priv(struct kernfs_node *kn)
 | |
| {
 | |
| 	struct kernfs_node *parent;
 | |
| 	/*
 | |
| 	 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT.
 | |
| 	 * Therefore it is always safe to dereference this pointer outside of a
 | |
| 	 * RCU section.
 | |
| 	 */
 | |
| 	parent = rcu_dereference_check(kn->__parent,
 | |
| 				       kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT);
 | |
| 	return parent->priv;
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 | |
| {
 | |
| 	struct cgroup *cgrp = kn_priv(of->kn);
 | |
| 	struct cftype *cft = of_cft(of);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is open and unprotected implementation of cgroup_css().
 | |
| 	 * seq_css() is only called from a kernfs file operation which has
 | |
| 	 * an active reference on the file.  Because all the subsystem
 | |
| 	 * files are drained before a css is disassociated with a cgroup,
 | |
| 	 * the matching css from the cgroup's subsys table is guaranteed to
 | |
| 	 * be and stay valid until the enclosing operation is complete.
 | |
| 	 */
 | |
| 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
 | |
| 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 | |
| 	else
 | |
| 		return &cgrp->self;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(of_css);
 | |
| 
 | |
| /**
 | |
|  * for_each_css - iterate all css's of a cgroup
 | |
|  * @css: the iteration cursor
 | |
|  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 | |
|  * @cgrp: the target cgroup to iterate css's of
 | |
|  *
 | |
|  * Should be called under cgroup_mutex.
 | |
|  */
 | |
| #define for_each_css(css, ssid, cgrp)					\
 | |
| 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
 | |
| 		if (!((css) = rcu_dereference_check(			\
 | |
| 				(cgrp)->subsys[(ssid)],			\
 | |
| 				lockdep_is_held(&cgroup_mutex)))) { }	\
 | |
| 		else
 | |
| 
 | |
| /**
 | |
|  * do_each_subsys_mask - filter for_each_subsys with a bitmask
 | |
|  * @ss: the iteration cursor
 | |
|  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 | |
|  * @ss_mask: the bitmask
 | |
|  *
 | |
|  * The block will only run for cases where the ssid-th bit (1 << ssid) of
 | |
|  * @ss_mask is set.
 | |
|  */
 | |
| #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
 | |
| 	unsigned long __ss_mask = (ss_mask);				\
 | |
| 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
 | |
| 		(ssid) = 0;						\
 | |
| 		break;							\
 | |
| 	}								\
 | |
| 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
 | |
| 		(ss) = cgroup_subsys[ssid];				\
 | |
| 		{
 | |
| 
 | |
| #define while_each_subsys_mask()					\
 | |
| 		}							\
 | |
| 	}								\
 | |
| } while (false)
 | |
| 
 | |
| /* iterate over child cgrps, lock should be held throughout iteration */
 | |
| #define cgroup_for_each_live_child(child, cgrp)				\
 | |
| 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 | |
| 		if (({ lockdep_assert_held(&cgroup_mutex);		\
 | |
| 		       cgroup_is_dead(child); }))			\
 | |
| 			;						\
 | |
| 		else
 | |
| 
 | |
| /* walk live descendants in pre order */
 | |
| #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
 | |
| 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
 | |
| 		if (({ lockdep_assert_held(&cgroup_mutex);		\
 | |
| 		       (dsct) = (d_css)->cgroup;			\
 | |
| 		       cgroup_is_dead(dsct); }))			\
 | |
| 			;						\
 | |
| 		else
 | |
| 
 | |
| /* walk live descendants in postorder */
 | |
| #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
 | |
| 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
 | |
| 		if (({ lockdep_assert_held(&cgroup_mutex);		\
 | |
| 		       (dsct) = (d_css)->cgroup;			\
 | |
| 		       cgroup_is_dead(dsct); }))			\
 | |
| 			;						\
 | |
| 		else
 | |
| 
 | |
| /*
 | |
|  * The default css_set - used by init and its children prior to any
 | |
|  * hierarchies being mounted. It contains a pointer to the root state
 | |
|  * for each subsystem. Also used to anchor the list of css_sets. Not
 | |
|  * reference-counted, to improve performance when child cgroups
 | |
|  * haven't been created.
 | |
|  */
 | |
| struct css_set init_css_set = {
 | |
| 	.refcount		= REFCOUNT_INIT(1),
 | |
| 	.dom_cset		= &init_css_set,
 | |
| 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
 | |
| 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
 | |
| 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
 | |
| 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
 | |
| 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
 | |
| 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
 | |
| 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
 | |
| 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
 | |
| 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
 | |
| 
 | |
| 	/*
 | |
| 	 * The following field is re-initialized when this cset gets linked
 | |
| 	 * in cgroup_init().  However, let's initialize the field
 | |
| 	 * statically too so that the default cgroup can be accessed safely
 | |
| 	 * early during boot.
 | |
| 	 */
 | |
| 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
 | |
| };
 | |
| 
 | |
| static int css_set_count	= 1;	/* 1 for init_css_set */
 | |
| 
 | |
| static bool css_set_threaded(struct css_set *cset)
 | |
| {
 | |
| 	return cset->dom_cset != cset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_set_populated - does a css_set contain any tasks?
 | |
|  * @cset: target css_set
 | |
|  *
 | |
|  * css_set_populated() should be the same as !!cset->nr_tasks at steady
 | |
|  * state. However, css_set_populated() can be called while a task is being
 | |
|  * added to or removed from the linked list before the nr_tasks is
 | |
|  * properly updated. Hence, we can't just look at ->nr_tasks here.
 | |
|  */
 | |
| static bool css_set_populated(struct css_set *cset)
 | |
| {
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_update_populated - update the populated count of a cgroup
 | |
|  * @cgrp: the target cgroup
 | |
|  * @populated: inc or dec populated count
 | |
|  *
 | |
|  * One of the css_sets associated with @cgrp is either getting its first
 | |
|  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 | |
|  * count is propagated towards root so that a given cgroup's
 | |
|  * nr_populated_children is zero iff none of its descendants contain any
 | |
|  * tasks.
 | |
|  *
 | |
|  * @cgrp's interface file "cgroup.populated" is zero if both
 | |
|  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 | |
|  * 1 otherwise.  When the sum changes from or to zero, userland is notified
 | |
|  * that the content of the interface file has changed.  This can be used to
 | |
|  * detect when @cgrp and its descendants become populated or empty.
 | |
|  */
 | |
| static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 | |
| {
 | |
| 	struct cgroup *child = NULL;
 | |
| 	int adj = populated ? 1 : -1;
 | |
| 
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	do {
 | |
| 		bool was_populated = cgroup_is_populated(cgrp);
 | |
| 
 | |
| 		if (!child) {
 | |
| 			cgrp->nr_populated_csets += adj;
 | |
| 		} else {
 | |
| 			if (cgroup_is_threaded(child))
 | |
| 				cgrp->nr_populated_threaded_children += adj;
 | |
| 			else
 | |
| 				cgrp->nr_populated_domain_children += adj;
 | |
| 		}
 | |
| 
 | |
| 		if (was_populated == cgroup_is_populated(cgrp))
 | |
| 			break;
 | |
| 
 | |
| 		cgroup1_check_for_release(cgrp);
 | |
| 		TRACE_CGROUP_PATH(notify_populated, cgrp,
 | |
| 				  cgroup_is_populated(cgrp));
 | |
| 		cgroup_file_notify(&cgrp->events_file);
 | |
| 
 | |
| 		child = cgrp;
 | |
| 		cgrp = cgroup_parent(cgrp);
 | |
| 	} while (cgrp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_set_update_populated - update populated state of a css_set
 | |
|  * @cset: target css_set
 | |
|  * @populated: whether @cset is populated or depopulated
 | |
|  *
 | |
|  * @cset is either getting the first task or losing the last.  Update the
 | |
|  * populated counters of all associated cgroups accordingly.
 | |
|  */
 | |
| static void css_set_update_populated(struct css_set *cset, bool populated)
 | |
| {
 | |
| 	struct cgrp_cset_link *link;
 | |
| 
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 | |
| 		cgroup_update_populated(link->cgrp, populated);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @task is leaving, advance task iterators which are pointing to it so
 | |
|  * that they can resume at the next position.  Advancing an iterator might
 | |
|  * remove it from the list, use safe walk.  See css_task_iter_skip() for
 | |
|  * details.
 | |
|  */
 | |
| static void css_set_skip_task_iters(struct css_set *cset,
 | |
| 				    struct task_struct *task)
 | |
| {
 | |
| 	struct css_task_iter *it, *pos;
 | |
| 
 | |
| 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 | |
| 		css_task_iter_skip(it, task);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_set_move_task - move a task from one css_set to another
 | |
|  * @task: task being moved
 | |
|  * @from_cset: css_set @task currently belongs to (may be NULL)
 | |
|  * @to_cset: new css_set @task is being moved to (may be NULL)
 | |
|  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 | |
|  *
 | |
|  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 | |
|  * css_set, @from_cset can be NULL.  If @task is being disassociated
 | |
|  * instead of moved, @to_cset can be NULL.
 | |
|  *
 | |
|  * This function automatically handles populated counter updates and
 | |
|  * css_task_iter adjustments but the caller is responsible for managing
 | |
|  * @from_cset and @to_cset's reference counts.
 | |
|  */
 | |
| static void css_set_move_task(struct task_struct *task,
 | |
| 			      struct css_set *from_cset, struct css_set *to_cset,
 | |
| 			      bool use_mg_tasks)
 | |
| {
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	if (to_cset && !css_set_populated(to_cset))
 | |
| 		css_set_update_populated(to_cset, true);
 | |
| 
 | |
| 	if (from_cset) {
 | |
| 		WARN_ON_ONCE(list_empty(&task->cg_list));
 | |
| 
 | |
| 		css_set_skip_task_iters(from_cset, task);
 | |
| 		list_del_init(&task->cg_list);
 | |
| 		if (!css_set_populated(from_cset))
 | |
| 			css_set_update_populated(from_cset, false);
 | |
| 	} else {
 | |
| 		WARN_ON_ONCE(!list_empty(&task->cg_list));
 | |
| 	}
 | |
| 
 | |
| 	if (to_cset) {
 | |
| 		/*
 | |
| 		 * We are synchronized through cgroup_threadgroup_rwsem
 | |
| 		 * against PF_EXITING setting such that we can't race
 | |
| 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(task->flags & PF_EXITING);
 | |
| 
 | |
| 		cgroup_move_task(task, to_cset);
 | |
| 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 | |
| 							     &to_cset->tasks);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hash table for cgroup groups. This improves the performance to find
 | |
|  * an existing css_set. This hash doesn't (currently) take into
 | |
|  * account cgroups in empty hierarchies.
 | |
|  */
 | |
| #define CSS_SET_HASH_BITS	7
 | |
| static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 | |
| 
 | |
| static unsigned long css_set_hash(struct cgroup_subsys_state **css)
 | |
| {
 | |
| 	unsigned long key = 0UL;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_subsys(ss, i)
 | |
| 		key += (unsigned long)css[i];
 | |
| 	key = (key >> 16) ^ key;
 | |
| 
 | |
| 	return key;
 | |
| }
 | |
| 
 | |
| void put_css_set_locked(struct css_set *cset)
 | |
| {
 | |
| 	struct cgrp_cset_link *link, *tmp_link;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	if (!refcount_dec_and_test(&cset->refcount))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 | |
| 
 | |
| 	/* This css_set is dead. Unlink it and release cgroup and css refs */
 | |
| 	for_each_subsys(ss, ssid) {
 | |
| 		list_del(&cset->e_cset_node[ssid]);
 | |
| 		css_put(cset->subsys[ssid]);
 | |
| 	}
 | |
| 	hash_del(&cset->hlist);
 | |
| 	css_set_count--;
 | |
| 
 | |
| 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 | |
| 		list_del(&link->cset_link);
 | |
| 		list_del(&link->cgrp_link);
 | |
| 		if (cgroup_parent(link->cgrp))
 | |
| 			cgroup_put(link->cgrp);
 | |
| 		kfree(link);
 | |
| 	}
 | |
| 
 | |
| 	if (css_set_threaded(cset)) {
 | |
| 		list_del(&cset->threaded_csets_node);
 | |
| 		put_css_set_locked(cset->dom_cset);
 | |
| 	}
 | |
| 
 | |
| 	kfree_rcu(cset, rcu_head);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * compare_css_sets - helper function for find_existing_css_set().
 | |
|  * @cset: candidate css_set being tested
 | |
|  * @old_cset: existing css_set for a task
 | |
|  * @new_cgrp: cgroup that's being entered by the task
 | |
|  * @template: desired set of css pointers in css_set (pre-calculated)
 | |
|  *
 | |
|  * Returns true if "cset" matches "old_cset" except for the hierarchy
 | |
|  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 | |
|  */
 | |
| static bool compare_css_sets(struct css_set *cset,
 | |
| 			     struct css_set *old_cset,
 | |
| 			     struct cgroup *new_cgrp,
 | |
| 			     struct cgroup_subsys_state *template[])
 | |
| {
 | |
| 	struct cgroup *new_dfl_cgrp;
 | |
| 	struct list_head *l1, *l2;
 | |
| 
 | |
| 	/*
 | |
| 	 * On the default hierarchy, there can be csets which are
 | |
| 	 * associated with the same set of cgroups but different csses.
 | |
| 	 * Let's first ensure that csses match.
 | |
| 	 */
 | |
| 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 | |
| 		return false;
 | |
| 
 | |
| 
 | |
| 	/* @cset's domain should match the default cgroup's */
 | |
| 	if (cgroup_on_dfl(new_cgrp))
 | |
| 		new_dfl_cgrp = new_cgrp;
 | |
| 	else
 | |
| 		new_dfl_cgrp = old_cset->dfl_cgrp;
 | |
| 
 | |
| 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compare cgroup pointers in order to distinguish between
 | |
| 	 * different cgroups in hierarchies.  As different cgroups may
 | |
| 	 * share the same effective css, this comparison is always
 | |
| 	 * necessary.
 | |
| 	 */
 | |
| 	l1 = &cset->cgrp_links;
 | |
| 	l2 = &old_cset->cgrp_links;
 | |
| 	while (1) {
 | |
| 		struct cgrp_cset_link *link1, *link2;
 | |
| 		struct cgroup *cgrp1, *cgrp2;
 | |
| 
 | |
| 		l1 = l1->next;
 | |
| 		l2 = l2->next;
 | |
| 		/* See if we reached the end - both lists are equal length. */
 | |
| 		if (l1 == &cset->cgrp_links) {
 | |
| 			BUG_ON(l2 != &old_cset->cgrp_links);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			BUG_ON(l2 == &old_cset->cgrp_links);
 | |
| 		}
 | |
| 		/* Locate the cgroups associated with these links. */
 | |
| 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
 | |
| 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
 | |
| 		cgrp1 = link1->cgrp;
 | |
| 		cgrp2 = link2->cgrp;
 | |
| 		/* Hierarchies should be linked in the same order. */
 | |
| 		BUG_ON(cgrp1->root != cgrp2->root);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this hierarchy is the hierarchy of the cgroup
 | |
| 		 * that's changing, then we need to check that this
 | |
| 		 * css_set points to the new cgroup; if it's any other
 | |
| 		 * hierarchy, then this css_set should point to the
 | |
| 		 * same cgroup as the old css_set.
 | |
| 		 */
 | |
| 		if (cgrp1->root == new_cgrp->root) {
 | |
| 			if (cgrp1 != new_cgrp)
 | |
| 				return false;
 | |
| 		} else {
 | |
| 			if (cgrp1 != cgrp2)
 | |
| 				return false;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_existing_css_set - init css array and find the matching css_set
 | |
|  * @old_cset: the css_set that we're using before the cgroup transition
 | |
|  * @cgrp: the cgroup that we're moving into
 | |
|  * @template: out param for the new set of csses, should be clear on entry
 | |
|  */
 | |
| static struct css_set *find_existing_css_set(struct css_set *old_cset,
 | |
| 					struct cgroup *cgrp,
 | |
| 					struct cgroup_subsys_state **template)
 | |
| {
 | |
| 	struct cgroup_root *root = cgrp->root;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	struct css_set *cset;
 | |
| 	unsigned long key;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Build the set of subsystem state objects that we want to see in the
 | |
| 	 * new css_set. While subsystems can change globally, the entries here
 | |
| 	 * won't change, so no need for locking.
 | |
| 	 */
 | |
| 	for_each_subsys(ss, i) {
 | |
| 		if (root->subsys_mask & (1UL << i)) {
 | |
| 			/*
 | |
| 			 * @ss is in this hierarchy, so we want the
 | |
| 			 * effective css from @cgrp.
 | |
| 			 */
 | |
| 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * @ss is not in this hierarchy, so we don't want
 | |
| 			 * to change the css.
 | |
| 			 */
 | |
| 			template[i] = old_cset->subsys[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	key = css_set_hash(template);
 | |
| 	hash_for_each_possible(css_set_table, cset, hlist, key) {
 | |
| 		if (!compare_css_sets(cset, old_cset, cgrp, template))
 | |
| 			continue;
 | |
| 
 | |
| 		/* This css_set matches what we need */
 | |
| 		return cset;
 | |
| 	}
 | |
| 
 | |
| 	/* No existing cgroup group matched */
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void free_cgrp_cset_links(struct list_head *links_to_free)
 | |
| {
 | |
| 	struct cgrp_cset_link *link, *tmp_link;
 | |
| 
 | |
| 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
 | |
| 		list_del(&link->cset_link);
 | |
| 		kfree(link);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * allocate_cgrp_cset_links - allocate cgrp_cset_links
 | |
|  * @count: the number of links to allocate
 | |
|  * @tmp_links: list_head the allocated links are put on
 | |
|  *
 | |
|  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
 | |
|  * through ->cset_link.  Returns 0 on success or -errno.
 | |
|  */
 | |
| static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
 | |
| {
 | |
| 	struct cgrp_cset_link *link;
 | |
| 	int i;
 | |
| 
 | |
| 	INIT_LIST_HEAD(tmp_links);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		link = kzalloc(sizeof(*link), GFP_KERNEL);
 | |
| 		if (!link) {
 | |
| 			free_cgrp_cset_links(tmp_links);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		list_add(&link->cset_link, tmp_links);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * link_css_set - a helper function to link a css_set to a cgroup
 | |
|  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
 | |
|  * @cset: the css_set to be linked
 | |
|  * @cgrp: the destination cgroup
 | |
|  */
 | |
| static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
 | |
| 			 struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgrp_cset_link *link;
 | |
| 
 | |
| 	BUG_ON(list_empty(tmp_links));
 | |
| 
 | |
| 	if (cgroup_on_dfl(cgrp))
 | |
| 		cset->dfl_cgrp = cgrp;
 | |
| 
 | |
| 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
 | |
| 	link->cset = cset;
 | |
| 	link->cgrp = cgrp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always add links to the tail of the lists so that the lists are
 | |
| 	 * in chronological order.
 | |
| 	 */
 | |
| 	list_move_tail(&link->cset_link, &cgrp->cset_links);
 | |
| 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
 | |
| 
 | |
| 	if (cgroup_parent(cgrp))
 | |
| 		cgroup_get_live(cgrp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_css_set - return a new css_set with one cgroup updated
 | |
|  * @old_cset: the baseline css_set
 | |
|  * @cgrp: the cgroup to be updated
 | |
|  *
 | |
|  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
 | |
|  * substituted into the appropriate hierarchy.
 | |
|  */
 | |
| static struct css_set *find_css_set(struct css_set *old_cset,
 | |
| 				    struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
 | |
| 	struct css_set *cset;
 | |
| 	struct list_head tmp_links;
 | |
| 	struct cgrp_cset_link *link;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	unsigned long key;
 | |
| 	int ssid;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	/* First see if we already have a cgroup group that matches
 | |
| 	 * the desired set */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	cset = find_existing_css_set(old_cset, cgrp, template);
 | |
| 	if (cset)
 | |
| 		get_css_set(cset);
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	if (cset)
 | |
| 		return cset;
 | |
| 
 | |
| 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
 | |
| 	if (!cset)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Allocate all the cgrp_cset_link objects that we'll need */
 | |
| 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
 | |
| 		kfree(cset);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	refcount_set(&cset->refcount, 1);
 | |
| 	cset->dom_cset = cset;
 | |
| 	INIT_LIST_HEAD(&cset->tasks);
 | |
| 	INIT_LIST_HEAD(&cset->mg_tasks);
 | |
| 	INIT_LIST_HEAD(&cset->dying_tasks);
 | |
| 	INIT_LIST_HEAD(&cset->task_iters);
 | |
| 	INIT_LIST_HEAD(&cset->threaded_csets);
 | |
| 	INIT_HLIST_NODE(&cset->hlist);
 | |
| 	INIT_LIST_HEAD(&cset->cgrp_links);
 | |
| 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
 | |
| 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
 | |
| 	INIT_LIST_HEAD(&cset->mg_node);
 | |
| 
 | |
| 	/* Copy the set of subsystem state objects generated in
 | |
| 	 * find_existing_css_set() */
 | |
| 	memcpy(cset->subsys, template, sizeof(cset->subsys));
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	/* Add reference counts and links from the new css_set. */
 | |
| 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
 | |
| 		struct cgroup *c = link->cgrp;
 | |
| 
 | |
| 		if (c->root == cgrp->root)
 | |
| 			c = cgrp;
 | |
| 		link_css_set(&tmp_links, cset, c);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!list_empty(&tmp_links));
 | |
| 
 | |
| 	css_set_count++;
 | |
| 
 | |
| 	/* Add @cset to the hash table */
 | |
| 	key = css_set_hash(cset->subsys);
 | |
| 	hash_add(css_set_table, &cset->hlist, key);
 | |
| 
 | |
| 	for_each_subsys(ss, ssid) {
 | |
| 		struct cgroup_subsys_state *css = cset->subsys[ssid];
 | |
| 
 | |
| 		list_add_tail(&cset->e_cset_node[ssid],
 | |
| 			      &css->cgroup->e_csets[ssid]);
 | |
| 		css_get(css);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If @cset should be threaded, look up the matching dom_cset and
 | |
| 	 * link them up.  We first fully initialize @cset then look for the
 | |
| 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
 | |
| 	 * to stay empty until we return.
 | |
| 	 */
 | |
| 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
 | |
| 		struct css_set *dcset;
 | |
| 
 | |
| 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
 | |
| 		if (!dcset) {
 | |
| 			put_css_set(cset);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_irq(&css_set_lock);
 | |
| 		cset->dom_cset = dcset;
 | |
| 		list_add_tail(&cset->threaded_csets_node,
 | |
| 			      &dcset->threaded_csets);
 | |
| 		spin_unlock_irq(&css_set_lock);
 | |
| 	}
 | |
| 
 | |
| 	return cset;
 | |
| }
 | |
| 
 | |
| struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
 | |
| {
 | |
| 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
 | |
| 
 | |
| 	return root_cgrp->root;
 | |
| }
 | |
| 
 | |
| void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
 | |
| {
 | |
| 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
 | |
| 
 | |
| 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
 | |
| 	if (favor && !favoring) {
 | |
| 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
 | |
| 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
 | |
| 	} else if (!favor && favoring) {
 | |
| 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
 | |
| 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cgroup_init_root_id(struct cgroup_root *root)
 | |
| {
 | |
| 	int id;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
 | |
| 	if (id < 0)
 | |
| 		return id;
 | |
| 
 | |
| 	root->hierarchy_id = id;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cgroup_exit_root_id(struct cgroup_root *root)
 | |
| {
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
 | |
| }
 | |
| 
 | |
| void cgroup_free_root(struct cgroup_root *root)
 | |
| {
 | |
| 	kfree_rcu(root, rcu);
 | |
| }
 | |
| 
 | |
| static void cgroup_destroy_root(struct cgroup_root *root)
 | |
| {
 | |
| 	struct cgroup *cgrp = &root->cgrp;
 | |
| 	struct cgrp_cset_link *link, *tmp_link;
 | |
| 	int ret;
 | |
| 
 | |
| 	trace_cgroup_destroy_root(root);
 | |
| 
 | |
| 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
 | |
| 
 | |
| 	BUG_ON(atomic_read(&root->nr_cgrps));
 | |
| 	BUG_ON(!list_empty(&cgrp->self.children));
 | |
| 
 | |
| 	ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
 | |
| 					   CGROUP_LIFETIME_OFFLINE, cgrp);
 | |
| 	WARN_ON_ONCE(notifier_to_errno(ret));
 | |
| 
 | |
| 	/* Rebind all subsystems back to the default hierarchy */
 | |
| 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
 | |
| 
 | |
| 	/*
 | |
| 	 * Release all the links from cset_links to this hierarchy's
 | |
| 	 * root cgroup
 | |
| 	 */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
 | |
| 		list_del(&link->cset_link);
 | |
| 		list_del(&link->cgrp_link);
 | |
| 		kfree(link);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	WARN_ON_ONCE(list_empty(&root->root_list));
 | |
| 	list_del_rcu(&root->root_list);
 | |
| 	cgroup_root_count--;
 | |
| 
 | |
| 	if (!have_favordynmods)
 | |
| 		cgroup_favor_dynmods(root, false);
 | |
| 
 | |
| 	cgroup_exit_root_id(root);
 | |
| 
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	kernfs_destroy_root(root->kf_root);
 | |
| 	cgroup_free_root(root);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returned cgroup is without refcount but it's valid as long as cset pins it.
 | |
|  */
 | |
| static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
 | |
| 					    struct cgroup_root *root)
 | |
| {
 | |
| 	struct cgroup *res_cgroup = NULL;
 | |
| 
 | |
| 	if (cset == &init_css_set) {
 | |
| 		res_cgroup = &root->cgrp;
 | |
| 	} else if (root == &cgrp_dfl_root) {
 | |
| 		res_cgroup = cset->dfl_cgrp;
 | |
| 	} else {
 | |
| 		struct cgrp_cset_link *link;
 | |
| 		lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
 | |
| 			struct cgroup *c = link->cgrp;
 | |
| 
 | |
| 			if (c->root == root) {
 | |
| 				res_cgroup = c;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
 | |
| 	 * before we remove the cgroup root from the root_list. Consequently,
 | |
| 	 * when accessing a cgroup root, the cset_link may have already been
 | |
| 	 * freed, resulting in a NULL res_cgroup. However, by holding the
 | |
| 	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
 | |
| 	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
 | |
| 	 * check.
 | |
| 	 */
 | |
| 	return res_cgroup;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * look up cgroup associated with current task's cgroup namespace on the
 | |
|  * specified hierarchy
 | |
|  */
 | |
| static struct cgroup *
 | |
| current_cgns_cgroup_from_root(struct cgroup_root *root)
 | |
| {
 | |
| 	struct cgroup *res = NULL;
 | |
| 	struct css_set *cset;
 | |
| 
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	cset = current->nsproxy->cgroup_ns->root_cset;
 | |
| 	res = __cset_cgroup_from_root(cset, root);
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * The namespace_sem is held by current, so the root cgroup can't
 | |
| 	 * be umounted. Therefore, we can ensure that the res is non-NULL.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!res);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up cgroup associated with current task's cgroup namespace on the default
 | |
|  * hierarchy.
 | |
|  *
 | |
|  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
 | |
|  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
 | |
|  *   pointers.
 | |
|  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
 | |
|  * - As a bonus returned cgrp is pinned with the current because it cannot
 | |
|  *   switch cgroup_ns asynchronously.
 | |
|  */
 | |
| static struct cgroup *current_cgns_cgroup_dfl(void)
 | |
| {
 | |
| 	struct css_set *cset;
 | |
| 
 | |
| 	if (current->nsproxy) {
 | |
| 		cset = current->nsproxy->cgroup_ns->root_cset;
 | |
| 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * NOTE: This function may be called from bpf_cgroup_from_id()
 | |
| 		 * on a task which has already passed exit_task_namespaces() and
 | |
| 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
 | |
| 		 * cgroups visible for lookups.
 | |
| 		 */
 | |
| 		return &cgrp_dfl_root.cgrp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* look up cgroup associated with given css_set on the specified hierarchy */
 | |
| static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
 | |
| 					    struct cgroup_root *root)
 | |
| {
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	return __cset_cgroup_from_root(cset, root);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the cgroup for "task" from the given hierarchy. Must be
 | |
|  * called with css_set_lock held to prevent task's groups from being modified.
 | |
|  * Must be called with either cgroup_mutex or rcu read lock to prevent the
 | |
|  * cgroup root from being destroyed.
 | |
|  */
 | |
| struct cgroup *task_cgroup_from_root(struct task_struct *task,
 | |
| 				     struct cgroup_root *root)
 | |
| {
 | |
| 	/*
 | |
| 	 * No need to lock the task - since we hold css_set_lock the
 | |
| 	 * task can't change groups.
 | |
| 	 */
 | |
| 	return cset_cgroup_from_root(task_css_set(task), root);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A task must hold cgroup_mutex to modify cgroups.
 | |
|  *
 | |
|  * Any task can increment and decrement the count field without lock.
 | |
|  * So in general, code holding cgroup_mutex can't rely on the count
 | |
|  * field not changing.  However, if the count goes to zero, then only
 | |
|  * cgroup_attach_task() can increment it again.  Because a count of zero
 | |
|  * means that no tasks are currently attached, therefore there is no
 | |
|  * way a task attached to that cgroup can fork (the other way to
 | |
|  * increment the count).  So code holding cgroup_mutex can safely
 | |
|  * assume that if the count is zero, it will stay zero. Similarly, if
 | |
|  * a task holds cgroup_mutex on a cgroup with zero count, it
 | |
|  * knows that the cgroup won't be removed, as cgroup_rmdir()
 | |
|  * needs that mutex.
 | |
|  *
 | |
|  * A cgroup can only be deleted if both its 'count' of using tasks
 | |
|  * is zero, and its list of 'children' cgroups is empty.  Since all
 | |
|  * tasks in the system use _some_ cgroup, and since there is always at
 | |
|  * least one task in the system (init, pid == 1), therefore, root cgroup
 | |
|  * always has either children cgroups and/or using tasks.  So we don't
 | |
|  * need a special hack to ensure that root cgroup cannot be deleted.
 | |
|  *
 | |
|  * P.S.  One more locking exception.  RCU is used to guard the
 | |
|  * update of a tasks cgroup pointer by cgroup_attach_task()
 | |
|  */
 | |
| 
 | |
| static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
 | |
| 
 | |
| static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
 | |
| 			      char *buf)
 | |
| {
 | |
| 	struct cgroup_subsys *ss = cft->ss;
 | |
| 
 | |
| 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
 | |
| 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
 | |
| 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
 | |
| 
 | |
| 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
 | |
| 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
 | |
| 			 cft->name);
 | |
| 	} else {
 | |
| 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
 | |
| 	}
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_file_mode - deduce file mode of a control file
 | |
|  * @cft: the control file in question
 | |
|  *
 | |
|  * S_IRUGO for read, S_IWUSR for write.
 | |
|  */
 | |
| static umode_t cgroup_file_mode(const struct cftype *cft)
 | |
| {
 | |
| 	umode_t mode = 0;
 | |
| 
 | |
| 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
 | |
| 		mode |= S_IRUGO;
 | |
| 
 | |
| 	if (cft->write_u64 || cft->write_s64 || cft->write) {
 | |
| 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
 | |
| 			mode |= S_IWUGO;
 | |
| 		else
 | |
| 			mode |= S_IWUSR;
 | |
| 	}
 | |
| 
 | |
| 	return mode;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
 | |
|  * @subtree_control: the new subtree_control mask to consider
 | |
|  * @this_ss_mask: available subsystems
 | |
|  *
 | |
|  * On the default hierarchy, a subsystem may request other subsystems to be
 | |
|  * enabled together through its ->depends_on mask.  In such cases, more
 | |
|  * subsystems than specified in "cgroup.subtree_control" may be enabled.
 | |
|  *
 | |
|  * This function calculates which subsystems need to be enabled if
 | |
|  * @subtree_control is to be applied while restricted to @this_ss_mask.
 | |
|  */
 | |
| static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
 | |
| {
 | |
| 	u16 cur_ss_mask = subtree_control;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
 | |
| 
 | |
| 	while (true) {
 | |
| 		u16 new_ss_mask = cur_ss_mask;
 | |
| 
 | |
| 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
 | |
| 			new_ss_mask |= ss->depends_on;
 | |
| 		} while_each_subsys_mask();
 | |
| 
 | |
| 		/*
 | |
| 		 * Mask out subsystems which aren't available.  This can
 | |
| 		 * happen only if some depended-upon subsystems were bound
 | |
| 		 * to non-default hierarchies.
 | |
| 		 */
 | |
| 		new_ss_mask &= this_ss_mask;
 | |
| 
 | |
| 		if (new_ss_mask == cur_ss_mask)
 | |
| 			break;
 | |
| 		cur_ss_mask = new_ss_mask;
 | |
| 	}
 | |
| 
 | |
| 	return cur_ss_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
 | |
|  * @kn: the kernfs_node being serviced
 | |
|  *
 | |
|  * This helper undoes cgroup_kn_lock_live() and should be invoked before
 | |
|  * the method finishes if locking succeeded.  Note that once this function
 | |
|  * returns the cgroup returned by cgroup_kn_lock_live() may become
 | |
|  * inaccessible any time.  If the caller intends to continue to access the
 | |
|  * cgroup, it should pin it before invoking this function.
 | |
|  */
 | |
| void cgroup_kn_unlock(struct kernfs_node *kn)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 
 | |
| 	if (kernfs_type(kn) == KERNFS_DIR)
 | |
| 		cgrp = kn->priv;
 | |
| 	else
 | |
| 		cgrp = kn_priv(kn);
 | |
| 
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	kernfs_unbreak_active_protection(kn);
 | |
| 	cgroup_put(cgrp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
 | |
|  * @kn: the kernfs_node being serviced
 | |
|  * @drain_offline: perform offline draining on the cgroup
 | |
|  *
 | |
|  * This helper is to be used by a cgroup kernfs method currently servicing
 | |
|  * @kn.  It breaks the active protection, performs cgroup locking and
 | |
|  * verifies that the associated cgroup is alive.  Returns the cgroup if
 | |
|  * alive; otherwise, %NULL.  A successful return should be undone by a
 | |
|  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
 | |
|  * cgroup is drained of offlining csses before return.
 | |
|  *
 | |
|  * Any cgroup kernfs method implementation which requires locking the
 | |
|  * associated cgroup should use this helper.  It avoids nesting cgroup
 | |
|  * locking under kernfs active protection and allows all kernfs operations
 | |
|  * including self-removal.
 | |
|  */
 | |
| struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 
 | |
| 	if (kernfs_type(kn) == KERNFS_DIR)
 | |
| 		cgrp = kn->priv;
 | |
| 	else
 | |
| 		cgrp = kn_priv(kn);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're gonna grab cgroup_mutex which nests outside kernfs
 | |
| 	 * active_ref.  cgroup liveliness check alone provides enough
 | |
| 	 * protection against removal.  Ensure @cgrp stays accessible and
 | |
| 	 * break the active_ref protection.
 | |
| 	 */
 | |
| 	if (!cgroup_tryget(cgrp))
 | |
| 		return NULL;
 | |
| 	kernfs_break_active_protection(kn);
 | |
| 
 | |
| 	if (drain_offline)
 | |
| 		cgroup_lock_and_drain_offline(cgrp);
 | |
| 	else
 | |
| 		cgroup_lock();
 | |
| 
 | |
| 	if (!cgroup_is_dead(cgrp))
 | |
| 		return cgrp;
 | |
| 
 | |
| 	cgroup_kn_unlock(kn);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
 | |
| {
 | |
| 	char name[CGROUP_FILE_NAME_MAX];
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	if (cft->file_offset) {
 | |
| 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
 | |
| 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
 | |
| 
 | |
| 		spin_lock_irq(&cgroup_file_kn_lock);
 | |
| 		cfile->kn = NULL;
 | |
| 		spin_unlock_irq(&cgroup_file_kn_lock);
 | |
| 
 | |
| 		timer_delete_sync(&cfile->notify_timer);
 | |
| 	}
 | |
| 
 | |
| 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_clear_dir - remove subsys files in a cgroup directory
 | |
|  * @css: target css
 | |
|  */
 | |
| static void css_clear_dir(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cgroup *cgrp = css->cgroup;
 | |
| 	struct cftype *cfts;
 | |
| 
 | |
| 	if (!(css->flags & CSS_VISIBLE))
 | |
| 		return;
 | |
| 
 | |
| 	css->flags &= ~CSS_VISIBLE;
 | |
| 
 | |
| 	if (css_is_self(css)) {
 | |
| 		if (cgroup_on_dfl(cgrp)) {
 | |
| 			cgroup_addrm_files(css, cgrp,
 | |
| 					   cgroup_base_files, false);
 | |
| 			if (cgroup_psi_enabled())
 | |
| 				cgroup_addrm_files(css, cgrp,
 | |
| 						   cgroup_psi_files, false);
 | |
| 		} else {
 | |
| 			cgroup_addrm_files(css, cgrp,
 | |
| 					   cgroup1_base_files, false);
 | |
| 		}
 | |
| 	} else {
 | |
| 		list_for_each_entry(cfts, &css->ss->cfts, node)
 | |
| 			cgroup_addrm_files(css, cgrp, cfts, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_populate_dir - create subsys files in a cgroup directory
 | |
|  * @css: target css
 | |
|  *
 | |
|  * On failure, no file is added.
 | |
|  */
 | |
| static int css_populate_dir(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cgroup *cgrp = css->cgroup;
 | |
| 	struct cftype *cfts, *failed_cfts;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (css->flags & CSS_VISIBLE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (css_is_self(css)) {
 | |
| 		if (cgroup_on_dfl(cgrp)) {
 | |
| 			ret = cgroup_addrm_files(css, cgrp,
 | |
| 						 cgroup_base_files, true);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 
 | |
| 			if (cgroup_psi_enabled()) {
 | |
| 				ret = cgroup_addrm_files(css, cgrp,
 | |
| 							 cgroup_psi_files, true);
 | |
| 				if (ret < 0) {
 | |
| 					cgroup_addrm_files(css, cgrp,
 | |
| 							   cgroup_base_files, false);
 | |
| 					return ret;
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			ret = cgroup_addrm_files(css, cgrp,
 | |
| 						 cgroup1_base_files, true);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	} else {
 | |
| 		list_for_each_entry(cfts, &css->ss->cfts, node) {
 | |
| 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
 | |
| 			if (ret < 0) {
 | |
| 				failed_cfts = cfts;
 | |
| 				goto err;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	css->flags |= CSS_VISIBLE;
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	list_for_each_entry(cfts, &css->ss->cfts, node) {
 | |
| 		if (cfts == failed_cfts)
 | |
| 			break;
 | |
| 		cgroup_addrm_files(css, cgrp, cfts, false);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
 | |
| {
 | |
| 	struct cgroup *dcgrp = &dst_root->cgrp;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid, ret;
 | |
| 	u16 dfl_disable_ss_mask = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	do_each_subsys_mask(ss, ssid, ss_mask) {
 | |
| 		/*
 | |
| 		 * If @ss has non-root csses attached to it, can't move.
 | |
| 		 * If @ss is an implicit controller, it is exempt from this
 | |
| 		 * rule and can be stolen.
 | |
| 		 */
 | |
| 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
 | |
| 		    !ss->implicit_on_dfl)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		/* can't move between two non-dummy roots either */
 | |
| 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		/*
 | |
| 		 * Collect ssid's that need to be disabled from default
 | |
| 		 * hierarchy.
 | |
| 		 */
 | |
| 		if (ss->root == &cgrp_dfl_root)
 | |
| 			dfl_disable_ss_mask |= 1 << ssid;
 | |
| 
 | |
| 	} while_each_subsys_mask();
 | |
| 
 | |
| 	if (dfl_disable_ss_mask) {
 | |
| 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
 | |
| 
 | |
| 		/*
 | |
| 		 * Controllers from default hierarchy that need to be rebound
 | |
| 		 * are all disabled together in one go.
 | |
| 		 */
 | |
| 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
 | |
| 		WARN_ON(cgroup_apply_control(scgrp));
 | |
| 		cgroup_finalize_control(scgrp, 0);
 | |
| 	}
 | |
| 
 | |
| 	do_each_subsys_mask(ss, ssid, ss_mask) {
 | |
| 		struct cgroup_root *src_root = ss->root;
 | |
| 		struct cgroup *scgrp = &src_root->cgrp;
 | |
| 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
 | |
| 		struct css_set *cset, *cset_pos;
 | |
| 		struct css_task_iter *it;
 | |
| 
 | |
| 		WARN_ON(!css || cgroup_css(dcgrp, ss));
 | |
| 
 | |
| 		if (src_root != &cgrp_dfl_root) {
 | |
| 			/* disable from the source */
 | |
| 			src_root->subsys_mask &= ~(1 << ssid);
 | |
| 			WARN_ON(cgroup_apply_control(scgrp));
 | |
| 			cgroup_finalize_control(scgrp, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* rebind */
 | |
| 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
 | |
| 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
 | |
| 		ss->root = dst_root;
 | |
| 
 | |
| 		spin_lock_irq(&css_set_lock);
 | |
| 		css->cgroup = dcgrp;
 | |
| 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
 | |
| 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
 | |
| 					 e_cset_node[ss->id]) {
 | |
| 			list_move_tail(&cset->e_cset_node[ss->id],
 | |
| 				       &dcgrp->e_csets[ss->id]);
 | |
| 			/*
 | |
| 			 * all css_sets of scgrp together in same order to dcgrp,
 | |
| 			 * patch in-flight iterators to preserve correct iteration.
 | |
| 			 * since the iterator is always advanced right away and
 | |
| 			 * finished when it->cset_pos meets it->cset_head, so only
 | |
| 			 * update it->cset_head is enough here.
 | |
| 			 */
 | |
| 			list_for_each_entry(it, &cset->task_iters, iters_node)
 | |
| 				if (it->cset_head == &scgrp->e_csets[ss->id])
 | |
| 					it->cset_head = &dcgrp->e_csets[ss->id];
 | |
| 		}
 | |
| 		spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 		/* default hierarchy doesn't enable controllers by default */
 | |
| 		dst_root->subsys_mask |= 1 << ssid;
 | |
| 		if (dst_root == &cgrp_dfl_root) {
 | |
| 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
 | |
| 		} else {
 | |
| 			dcgrp->subtree_control |= 1 << ssid;
 | |
| 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
 | |
| 		}
 | |
| 
 | |
| 		ret = cgroup_apply_control(dcgrp);
 | |
| 		if (ret)
 | |
| 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
 | |
| 				ss->name, ret);
 | |
| 
 | |
| 		if (ss->bind)
 | |
| 			ss->bind(css);
 | |
| 	} while_each_subsys_mask();
 | |
| 
 | |
| 	kernfs_activate(dcgrp->kn);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
 | |
| 		     struct kernfs_root *kf_root)
 | |
| {
 | |
| 	int len = 0;
 | |
| 	char *buf = NULL;
 | |
| 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
 | |
| 	struct cgroup *ns_cgroup;
 | |
| 
 | |
| 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
 | |
| 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	if (len == -E2BIG)
 | |
| 		len = -ERANGE;
 | |
| 	else if (len > 0) {
 | |
| 		seq_escape(sf, buf, " \t\n\\");
 | |
| 		len = 0;
 | |
| 	}
 | |
| 	kfree(buf);
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| enum cgroup2_param {
 | |
| 	Opt_nsdelegate,
 | |
| 	Opt_favordynmods,
 | |
| 	Opt_memory_localevents,
 | |
| 	Opt_memory_recursiveprot,
 | |
| 	Opt_memory_hugetlb_accounting,
 | |
| 	Opt_pids_localevents,
 | |
| 	nr__cgroup2_params
 | |
| };
 | |
| 
 | |
| static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
 | |
| 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
 | |
| 	fsparam_flag("favordynmods",		Opt_favordynmods),
 | |
| 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
 | |
| 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
 | |
| 	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
 | |
| 	fsparam_flag("pids_localevents",	Opt_pids_localevents),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 	struct fs_parse_result result;
 | |
| 	int opt;
 | |
| 
 | |
| 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
 | |
| 	if (opt < 0)
 | |
| 		return opt;
 | |
| 
 | |
| 	switch (opt) {
 | |
| 	case Opt_nsdelegate:
 | |
| 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
 | |
| 		return 0;
 | |
| 	case Opt_favordynmods:
 | |
| 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
 | |
| 		return 0;
 | |
| 	case Opt_memory_localevents:
 | |
| 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
 | |
| 		return 0;
 | |
| 	case Opt_memory_recursiveprot:
 | |
| 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
 | |
| 		return 0;
 | |
| 	case Opt_memory_hugetlb_accounting:
 | |
| 		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
 | |
| 		return 0;
 | |
| 	case Opt_pids_localevents:
 | |
| 		ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
 | |
| {
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 
 | |
| 	return &ctx->peak;
 | |
| }
 | |
| 
 | |
| static void apply_cgroup_root_flags(unsigned int root_flags)
 | |
| {
 | |
| 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
 | |
| 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
 | |
| 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
 | |
| 		else
 | |
| 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
 | |
| 
 | |
| 		cgroup_favor_dynmods(&cgrp_dfl_root,
 | |
| 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
 | |
| 
 | |
| 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
 | |
| 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
 | |
| 		else
 | |
| 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
 | |
| 
 | |
| 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
 | |
| 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
 | |
| 		else
 | |
| 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
 | |
| 
 | |
| 		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
 | |
| 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
 | |
| 		else
 | |
| 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
 | |
| 
 | |
| 		if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
 | |
| 			cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
 | |
| 		else
 | |
| 			cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 | |
| {
 | |
| 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
 | |
| 		seq_puts(seq, ",nsdelegate");
 | |
| 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
 | |
| 		seq_puts(seq, ",favordynmods");
 | |
| 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
 | |
| 		seq_puts(seq, ",memory_localevents");
 | |
| 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
 | |
| 		seq_puts(seq, ",memory_recursiveprot");
 | |
| 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
 | |
| 		seq_puts(seq, ",memory_hugetlb_accounting");
 | |
| 	if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
 | |
| 		seq_puts(seq, ",pids_localevents");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cgroup_reconfigure(struct fs_context *fc)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 
 | |
| 	apply_cgroup_root_flags(ctx->flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void init_cgroup_housekeeping(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&cgrp->self.sibling);
 | |
| 	INIT_LIST_HEAD(&cgrp->self.children);
 | |
| 	INIT_LIST_HEAD(&cgrp->cset_links);
 | |
| 	INIT_LIST_HEAD(&cgrp->pidlists);
 | |
| 	mutex_init(&cgrp->pidlist_mutex);
 | |
| 	cgrp->self.cgroup = cgrp;
 | |
| 	cgrp->self.flags |= CSS_ONLINE;
 | |
| 	cgrp->dom_cgrp = cgrp;
 | |
| 	cgrp->max_descendants = INT_MAX;
 | |
| 	cgrp->max_depth = INT_MAX;
 | |
| 	prev_cputime_init(&cgrp->prev_cputime);
 | |
| 
 | |
| 	for_each_subsys(ss, ssid)
 | |
| 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_BPF
 | |
| 	for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++)
 | |
| 		cgrp->bpf.revisions[i] = 1;
 | |
| #endif
 | |
| 
 | |
| 	init_waitqueue_head(&cgrp->offline_waitq);
 | |
| 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
 | |
| }
 | |
| 
 | |
| void init_cgroup_root(struct cgroup_fs_context *ctx)
 | |
| {
 | |
| 	struct cgroup_root *root = ctx->root;
 | |
| 	struct cgroup *cgrp = &root->cgrp;
 | |
| 
 | |
| 	INIT_LIST_HEAD_RCU(&root->root_list);
 | |
| 	atomic_set(&root->nr_cgrps, 1);
 | |
| 	cgrp->root = root;
 | |
| 	init_cgroup_housekeeping(cgrp);
 | |
| 
 | |
| 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
 | |
| 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
 | |
| 	if (ctx->release_agent)
 | |
| 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
 | |
| 	if (ctx->name)
 | |
| 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
 | |
| 	if (ctx->cpuset_clone_children)
 | |
| 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
 | |
| }
 | |
| 
 | |
| int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
 | |
| {
 | |
| 	LIST_HEAD(tmp_links);
 | |
| 	struct cgroup *root_cgrp = &root->cgrp;
 | |
| 	struct kernfs_syscall_ops *kf_sops;
 | |
| 	struct css_set *cset;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
 | |
| 			      0, GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're accessing css_set_count without locking css_set_lock here,
 | |
| 	 * but that's OK - it can only be increased by someone holding
 | |
| 	 * cgroup_lock, and that's us.  Later rebinding may disable
 | |
| 	 * controllers on the default hierarchy and thus create new csets,
 | |
| 	 * which can't be more than the existing ones.  Allocate 2x.
 | |
| 	 */
 | |
| 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
 | |
| 	if (ret)
 | |
| 		goto cancel_ref;
 | |
| 
 | |
| 	ret = cgroup_init_root_id(root);
 | |
| 	if (ret)
 | |
| 		goto cancel_ref;
 | |
| 
 | |
| 	kf_sops = root == &cgrp_dfl_root ?
 | |
| 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
 | |
| 
 | |
| 	root->kf_root = kernfs_create_root(kf_sops,
 | |
| 					   KERNFS_ROOT_CREATE_DEACTIVATED |
 | |
| 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
 | |
| 					   KERNFS_ROOT_SUPPORT_USER_XATTR |
 | |
| 					   KERNFS_ROOT_INVARIANT_PARENT,
 | |
| 					   root_cgrp);
 | |
| 	if (IS_ERR(root->kf_root)) {
 | |
| 		ret = PTR_ERR(root->kf_root);
 | |
| 		goto exit_root_id;
 | |
| 	}
 | |
| 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
 | |
| 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
 | |
| 	root_cgrp->ancestors[0] = root_cgrp;
 | |
| 
 | |
| 	ret = css_populate_dir(&root_cgrp->self);
 | |
| 	if (ret)
 | |
| 		goto destroy_root;
 | |
| 
 | |
| 	ret = css_rstat_init(&root_cgrp->self);
 | |
| 	if (ret)
 | |
| 		goto destroy_root;
 | |
| 
 | |
| 	ret = rebind_subsystems(root, ss_mask);
 | |
| 	if (ret)
 | |
| 		goto exit_stats;
 | |
| 
 | |
| 	ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
 | |
| 					   CGROUP_LIFETIME_ONLINE, root_cgrp);
 | |
| 	WARN_ON_ONCE(notifier_to_errno(ret));
 | |
| 
 | |
| 	trace_cgroup_setup_root(root);
 | |
| 
 | |
| 	/*
 | |
| 	 * There must be no failure case after here, since rebinding takes
 | |
| 	 * care of subsystems' refcounts, which are explicitly dropped in
 | |
| 	 * the failure exit path.
 | |
| 	 */
 | |
| 	list_add_rcu(&root->root_list, &cgroup_roots);
 | |
| 	cgroup_root_count++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Link the root cgroup in this hierarchy into all the css_set
 | |
| 	 * objects.
 | |
| 	 */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	hash_for_each(css_set_table, i, cset, hlist) {
 | |
| 		link_css_set(&tmp_links, cset, root_cgrp);
 | |
| 		if (css_set_populated(cset))
 | |
| 			cgroup_update_populated(root_cgrp, true);
 | |
| 	}
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	BUG_ON(!list_empty(&root_cgrp->self.children));
 | |
| 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
 | |
| 
 | |
| 	ret = 0;
 | |
| 	goto out;
 | |
| 
 | |
| exit_stats:
 | |
| 	css_rstat_exit(&root_cgrp->self);
 | |
| destroy_root:
 | |
| 	kernfs_destroy_root(root->kf_root);
 | |
| 	root->kf_root = NULL;
 | |
| exit_root_id:
 | |
| 	cgroup_exit_root_id(root);
 | |
| cancel_ref:
 | |
| 	percpu_ref_exit(&root_cgrp->self.refcnt);
 | |
| out:
 | |
| 	free_cgrp_cset_links(&tmp_links);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int cgroup_do_get_tree(struct fs_context *fc)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 	int ret;
 | |
| 
 | |
| 	ctx->kfc.root = ctx->root->kf_root;
 | |
| 	if (fc->fs_type == &cgroup2_fs_type)
 | |
| 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
 | |
| 	else
 | |
| 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
 | |
| 	ret = kernfs_get_tree(fc);
 | |
| 
 | |
| 	/*
 | |
| 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
 | |
| 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
 | |
| 	 */
 | |
| 	if (!ret && ctx->ns != &init_cgroup_ns) {
 | |
| 		struct dentry *nsdentry;
 | |
| 		struct super_block *sb = fc->root->d_sb;
 | |
| 		struct cgroup *cgrp;
 | |
| 
 | |
| 		cgroup_lock();
 | |
| 		spin_lock_irq(&css_set_lock);
 | |
| 
 | |
| 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
 | |
| 
 | |
| 		spin_unlock_irq(&css_set_lock);
 | |
| 		cgroup_unlock();
 | |
| 
 | |
| 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
 | |
| 		dput(fc->root);
 | |
| 		if (IS_ERR(nsdentry)) {
 | |
| 			deactivate_locked_super(sb);
 | |
| 			ret = PTR_ERR(nsdentry);
 | |
| 			nsdentry = NULL;
 | |
| 		}
 | |
| 		fc->root = nsdentry;
 | |
| 	}
 | |
| 
 | |
| 	if (!ctx->kfc.new_sb_created)
 | |
| 		cgroup_put(&ctx->root->cgrp);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Destroy a cgroup filesystem context.
 | |
|  */
 | |
| static void cgroup_fs_context_free(struct fs_context *fc)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 
 | |
| 	kfree(ctx->name);
 | |
| 	kfree(ctx->release_agent);
 | |
| 	put_cgroup_ns(ctx->ns);
 | |
| 	kernfs_free_fs_context(fc);
 | |
| 	kfree(ctx);
 | |
| }
 | |
| 
 | |
| static int cgroup_get_tree(struct fs_context *fc)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 	int ret;
 | |
| 
 | |
| 	WRITE_ONCE(cgrp_dfl_visible, true);
 | |
| 	cgroup_get_live(&cgrp_dfl_root.cgrp);
 | |
| 	ctx->root = &cgrp_dfl_root;
 | |
| 
 | |
| 	ret = cgroup_do_get_tree(fc);
 | |
| 	if (!ret)
 | |
| 		apply_cgroup_root_flags(ctx->flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct fs_context_operations cgroup_fs_context_ops = {
 | |
| 	.free		= cgroup_fs_context_free,
 | |
| 	.parse_param	= cgroup2_parse_param,
 | |
| 	.get_tree	= cgroup_get_tree,
 | |
| 	.reconfigure	= cgroup_reconfigure,
 | |
| };
 | |
| 
 | |
| static const struct fs_context_operations cgroup1_fs_context_ops = {
 | |
| 	.free		= cgroup_fs_context_free,
 | |
| 	.parse_param	= cgroup1_parse_param,
 | |
| 	.get_tree	= cgroup1_get_tree,
 | |
| 	.reconfigure	= cgroup1_reconfigure,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
 | |
|  * we select the namespace we're going to use.
 | |
|  */
 | |
| static int cgroup_init_fs_context(struct fs_context *fc)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx->ns = current->nsproxy->cgroup_ns;
 | |
| 	get_cgroup_ns(ctx->ns);
 | |
| 	fc->fs_private = &ctx->kfc;
 | |
| 	if (fc->fs_type == &cgroup2_fs_type)
 | |
| 		fc->ops = &cgroup_fs_context_ops;
 | |
| 	else
 | |
| 		fc->ops = &cgroup1_fs_context_ops;
 | |
| 	put_user_ns(fc->user_ns);
 | |
| 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
 | |
| 	fc->global = true;
 | |
| 
 | |
| 	if (have_favordynmods)
 | |
| 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cgroup_kill_sb(struct super_block *sb)
 | |
| {
 | |
| 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
 | |
| 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 | |
| 
 | |
| 	/*
 | |
| 	 * If @root doesn't have any children, start killing it.
 | |
| 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
 | |
| 	 *
 | |
| 	 * And don't kill the default root.
 | |
| 	 */
 | |
| 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
 | |
| 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
 | |
| 		percpu_ref_kill(&root->cgrp.self.refcnt);
 | |
| 	cgroup_put(&root->cgrp);
 | |
| 	kernfs_kill_sb(sb);
 | |
| }
 | |
| 
 | |
| struct file_system_type cgroup_fs_type = {
 | |
| 	.name			= "cgroup",
 | |
| 	.init_fs_context	= cgroup_init_fs_context,
 | |
| 	.parameters		= cgroup1_fs_parameters,
 | |
| 	.kill_sb		= cgroup_kill_sb,
 | |
| 	.fs_flags		= FS_USERNS_MOUNT,
 | |
| };
 | |
| 
 | |
| static struct file_system_type cgroup2_fs_type = {
 | |
| 	.name			= "cgroup2",
 | |
| 	.init_fs_context	= cgroup_init_fs_context,
 | |
| 	.parameters		= cgroup2_fs_parameters,
 | |
| 	.kill_sb		= cgroup_kill_sb,
 | |
| 	.fs_flags		= FS_USERNS_MOUNT,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CPUSETS_V1
 | |
| enum cpuset_param {
 | |
| 	Opt_cpuset_v2_mode,
 | |
| };
 | |
| 
 | |
| static const struct fs_parameter_spec cpuset_fs_parameters[] = {
 | |
| 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 	struct fs_parse_result result;
 | |
| 	int opt;
 | |
| 
 | |
| 	opt = fs_parse(fc, cpuset_fs_parameters, param, &result);
 | |
| 	if (opt < 0)
 | |
| 		return opt;
 | |
| 
 | |
| 	switch (opt) {
 | |
| 	case Opt_cpuset_v2_mode:
 | |
| 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static const struct fs_context_operations cpuset_fs_context_ops = {
 | |
| 	.get_tree	= cgroup1_get_tree,
 | |
| 	.free		= cgroup_fs_context_free,
 | |
| 	.parse_param	= cpuset_parse_param,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is ugly, but preserves the userspace API for existing cpuset
 | |
|  * users. If someone tries to mount the "cpuset" filesystem, we
 | |
|  * silently switch it to mount "cgroup" instead
 | |
|  */
 | |
| static int cpuset_init_fs_context(struct fs_context *fc)
 | |
| {
 | |
| 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
 | |
| 	struct cgroup_fs_context *ctx;
 | |
| 	int err;
 | |
| 
 | |
| 	err = cgroup_init_fs_context(fc);
 | |
| 	if (err) {
 | |
| 		kfree(agent);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	fc->ops = &cpuset_fs_context_ops;
 | |
| 
 | |
| 	ctx = cgroup_fc2context(fc);
 | |
| 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
 | |
| 	ctx->flags |= CGRP_ROOT_NOPREFIX;
 | |
| 	ctx->release_agent = agent;
 | |
| 
 | |
| 	get_filesystem(&cgroup_fs_type);
 | |
| 	put_filesystem(fc->fs_type);
 | |
| 	fc->fs_type = &cgroup_fs_type;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct file_system_type cpuset_fs_type = {
 | |
| 	.name			= "cpuset",
 | |
| 	.init_fs_context	= cpuset_init_fs_context,
 | |
| 	.parameters		= cpuset_fs_parameters,
 | |
| 	.fs_flags		= FS_USERNS_MOUNT,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
 | |
| 			  struct cgroup_namespace *ns)
 | |
| {
 | |
| 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
 | |
| 
 | |
| 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
 | |
| }
 | |
| 
 | |
| int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
 | |
| 		   struct cgroup_namespace *ns)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 
 | |
| 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
 | |
| 
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_path_ns);
 | |
| 
 | |
| /**
 | |
|  * cgroup_attach_lock - Lock for ->attach()
 | |
|  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
 | |
|  *
 | |
|  * cgroup migration sometimes needs to stabilize threadgroups against forks and
 | |
|  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
 | |
|  * implementations (e.g. cpuset), also need to disable CPU hotplug.
 | |
|  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
 | |
|  * lead to deadlocks.
 | |
|  *
 | |
|  * Bringing up a CPU may involve creating and destroying tasks which requires
 | |
|  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
 | |
|  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
 | |
|  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
 | |
|  * waiting for an on-going CPU hotplug operation which in turn is waiting for
 | |
|  * the threadgroup_rwsem to be released to create new tasks. For more details:
 | |
|  *
 | |
|  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
 | |
|  *
 | |
|  * Resolve the situation by always acquiring cpus_read_lock() before optionally
 | |
|  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
 | |
|  * CPU hotplug is disabled on entry.
 | |
|  */
 | |
| void cgroup_attach_lock(bool lock_threadgroup)
 | |
| {
 | |
| 	cpus_read_lock();
 | |
| 	if (lock_threadgroup)
 | |
| 		percpu_down_write(&cgroup_threadgroup_rwsem);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_attach_unlock - Undo cgroup_attach_lock()
 | |
|  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
 | |
|  */
 | |
| void cgroup_attach_unlock(bool lock_threadgroup)
 | |
| {
 | |
| 	if (lock_threadgroup)
 | |
| 		percpu_up_write(&cgroup_threadgroup_rwsem);
 | |
| 	cpus_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_migrate_add_task - add a migration target task to a migration context
 | |
|  * @task: target task
 | |
|  * @mgctx: target migration context
 | |
|  *
 | |
|  * Add @task, which is a migration target, to @mgctx->tset.  This function
 | |
|  * becomes noop if @task doesn't need to be migrated.  @task's css_set
 | |
|  * should have been added as a migration source and @task->cg_list will be
 | |
|  * moved from the css_set's tasks list to mg_tasks one.
 | |
|  */
 | |
| static void cgroup_migrate_add_task(struct task_struct *task,
 | |
| 				    struct cgroup_mgctx *mgctx)
 | |
| {
 | |
| 	struct css_set *cset;
 | |
| 
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	/* @task either already exited or can't exit until the end */
 | |
| 	if (task->flags & PF_EXITING)
 | |
| 		return;
 | |
| 
 | |
| 	/* cgroup_threadgroup_rwsem protects racing against forks */
 | |
| 	WARN_ON_ONCE(list_empty(&task->cg_list));
 | |
| 
 | |
| 	cset = task_css_set(task);
 | |
| 	if (!cset->mg_src_cgrp)
 | |
| 		return;
 | |
| 
 | |
| 	mgctx->tset.nr_tasks++;
 | |
| 
 | |
| 	list_move_tail(&task->cg_list, &cset->mg_tasks);
 | |
| 	if (list_empty(&cset->mg_node))
 | |
| 		list_add_tail(&cset->mg_node,
 | |
| 			      &mgctx->tset.src_csets);
 | |
| 	if (list_empty(&cset->mg_dst_cset->mg_node))
 | |
| 		list_add_tail(&cset->mg_dst_cset->mg_node,
 | |
| 			      &mgctx->tset.dst_csets);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_taskset_first - reset taskset and return the first task
 | |
|  * @tset: taskset of interest
 | |
|  * @dst_cssp: output variable for the destination css
 | |
|  *
 | |
|  * @tset iteration is initialized and the first task is returned.
 | |
|  */
 | |
| struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
 | |
| 					 struct cgroup_subsys_state **dst_cssp)
 | |
| {
 | |
| 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
 | |
| 	tset->cur_task = NULL;
 | |
| 
 | |
| 	return cgroup_taskset_next(tset, dst_cssp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_taskset_next - iterate to the next task in taskset
 | |
|  * @tset: taskset of interest
 | |
|  * @dst_cssp: output variable for the destination css
 | |
|  *
 | |
|  * Return the next task in @tset.  Iteration must have been initialized
 | |
|  * with cgroup_taskset_first().
 | |
|  */
 | |
| struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
 | |
| 					struct cgroup_subsys_state **dst_cssp)
 | |
| {
 | |
| 	struct css_set *cset = tset->cur_cset;
 | |
| 	struct task_struct *task = tset->cur_task;
 | |
| 
 | |
| 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
 | |
| 		if (!task)
 | |
| 			task = list_first_entry(&cset->mg_tasks,
 | |
| 						struct task_struct, cg_list);
 | |
| 		else
 | |
| 			task = list_next_entry(task, cg_list);
 | |
| 
 | |
| 		if (&task->cg_list != &cset->mg_tasks) {
 | |
| 			tset->cur_cset = cset;
 | |
| 			tset->cur_task = task;
 | |
| 
 | |
| 			/*
 | |
| 			 * This function may be called both before and
 | |
| 			 * after cgroup_migrate_execute().  The two cases
 | |
| 			 * can be distinguished by looking at whether @cset
 | |
| 			 * has its ->mg_dst_cset set.
 | |
| 			 */
 | |
| 			if (cset->mg_dst_cset)
 | |
| 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
 | |
| 			else
 | |
| 				*dst_cssp = cset->subsys[tset->ssid];
 | |
| 
 | |
| 			return task;
 | |
| 		}
 | |
| 
 | |
| 		cset = list_next_entry(cset, mg_node);
 | |
| 		task = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_migrate_execute - migrate a taskset
 | |
|  * @mgctx: migration context
 | |
|  *
 | |
|  * Migrate tasks in @mgctx as setup by migration preparation functions.
 | |
|  * This function fails iff one of the ->can_attach callbacks fails and
 | |
|  * guarantees that either all or none of the tasks in @mgctx are migrated.
 | |
|  * @mgctx is consumed regardless of success.
 | |
|  */
 | |
| static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
 | |
| {
 | |
| 	struct cgroup_taskset *tset = &mgctx->tset;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	struct task_struct *task, *tmp_task;
 | |
| 	struct css_set *cset, *tmp_cset;
 | |
| 	int ssid, failed_ssid, ret;
 | |
| 
 | |
| 	/* check that we can legitimately attach to the cgroup */
 | |
| 	if (tset->nr_tasks) {
 | |
| 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
 | |
| 			if (ss->can_attach) {
 | |
| 				tset->ssid = ssid;
 | |
| 				ret = ss->can_attach(tset);
 | |
| 				if (ret) {
 | |
| 					failed_ssid = ssid;
 | |
| 					goto out_cancel_attach;
 | |
| 				}
 | |
| 			}
 | |
| 		} while_each_subsys_mask();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we're guaranteed success, proceed to move all tasks to
 | |
| 	 * the new cgroup.  There are no failure cases after here, so this
 | |
| 	 * is the commit point.
 | |
| 	 */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
 | |
| 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
 | |
| 			struct css_set *from_cset = task_css_set(task);
 | |
| 			struct css_set *to_cset = cset->mg_dst_cset;
 | |
| 
 | |
| 			get_css_set(to_cset);
 | |
| 			to_cset->nr_tasks++;
 | |
| 			css_set_move_task(task, from_cset, to_cset, true);
 | |
| 			from_cset->nr_tasks--;
 | |
| 			/*
 | |
| 			 * If the source or destination cgroup is frozen,
 | |
| 			 * the task might require to change its state.
 | |
| 			 */
 | |
| 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
 | |
| 						    to_cset->dfl_cgrp);
 | |
| 			put_css_set_locked(from_cset);
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Migration is committed, all target tasks are now on dst_csets.
 | |
| 	 * Nothing is sensitive to fork() after this point.  Notify
 | |
| 	 * controllers that migration is complete.
 | |
| 	 */
 | |
| 	tset->csets = &tset->dst_csets;
 | |
| 
 | |
| 	if (tset->nr_tasks) {
 | |
| 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
 | |
| 			if (ss->attach) {
 | |
| 				tset->ssid = ssid;
 | |
| 				ss->attach(tset);
 | |
| 			}
 | |
| 		} while_each_subsys_mask();
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 	goto out_release_tset;
 | |
| 
 | |
| out_cancel_attach:
 | |
| 	if (tset->nr_tasks) {
 | |
| 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
 | |
| 			if (ssid == failed_ssid)
 | |
| 				break;
 | |
| 			if (ss->cancel_attach) {
 | |
| 				tset->ssid = ssid;
 | |
| 				ss->cancel_attach(tset);
 | |
| 			}
 | |
| 		} while_each_subsys_mask();
 | |
| 	}
 | |
| out_release_tset:
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	list_splice_init(&tset->dst_csets, &tset->src_csets);
 | |
| 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
 | |
| 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
 | |
| 		list_del_init(&cset->mg_node);
 | |
| 	}
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-initialize the cgroup_taskset structure in case it is reused
 | |
| 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
 | |
| 	 * iteration.
 | |
| 	 */
 | |
| 	tset->nr_tasks = 0;
 | |
| 	tset->csets    = &tset->src_csets;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
 | |
|  * @dst_cgrp: destination cgroup to test
 | |
|  *
 | |
|  * On the default hierarchy, except for the mixable, (possible) thread root
 | |
|  * and threaded cgroups, subtree_control must be zero for migration
 | |
|  * destination cgroups with tasks so that child cgroups don't compete
 | |
|  * against tasks.
 | |
|  */
 | |
| int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
 | |
| {
 | |
| 	/* v1 doesn't have any restriction */
 | |
| 	if (!cgroup_on_dfl(dst_cgrp))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* verify @dst_cgrp can host resources */
 | |
| 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	/*
 | |
| 	 * If @dst_cgrp is already or can become a thread root or is
 | |
| 	 * threaded, it doesn't matter.
 | |
| 	 */
 | |
| 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* apply no-internal-process constraint */
 | |
| 	if (dst_cgrp->subtree_control)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_migrate_finish - cleanup after attach
 | |
|  * @mgctx: migration context
 | |
|  *
 | |
|  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
 | |
|  * those functions for details.
 | |
|  */
 | |
| void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
 | |
| {
 | |
| 	struct css_set *cset, *tmp_cset;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
 | |
| 				 mg_src_preload_node) {
 | |
| 		cset->mg_src_cgrp = NULL;
 | |
| 		cset->mg_dst_cgrp = NULL;
 | |
| 		cset->mg_dst_cset = NULL;
 | |
| 		list_del_init(&cset->mg_src_preload_node);
 | |
| 		put_css_set_locked(cset);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
 | |
| 				 mg_dst_preload_node) {
 | |
| 		cset->mg_src_cgrp = NULL;
 | |
| 		cset->mg_dst_cgrp = NULL;
 | |
| 		cset->mg_dst_cset = NULL;
 | |
| 		list_del_init(&cset->mg_dst_preload_node);
 | |
| 		put_css_set_locked(cset);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_migrate_add_src - add a migration source css_set
 | |
|  * @src_cset: the source css_set to add
 | |
|  * @dst_cgrp: the destination cgroup
 | |
|  * @mgctx: migration context
 | |
|  *
 | |
|  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
 | |
|  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
 | |
|  * up by cgroup_migrate_finish().
 | |
|  *
 | |
|  * This function may be called without holding cgroup_threadgroup_rwsem
 | |
|  * even if the target is a process.  Threads may be created and destroyed
 | |
|  * but as long as cgroup_mutex is not dropped, no new css_set can be put
 | |
|  * into play and the preloaded css_sets are guaranteed to cover all
 | |
|  * migrations.
 | |
|  */
 | |
| void cgroup_migrate_add_src(struct css_set *src_cset,
 | |
| 			    struct cgroup *dst_cgrp,
 | |
| 			    struct cgroup_mgctx *mgctx)
 | |
| {
 | |
| 	struct cgroup *src_cgrp;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If ->dead, @src_set is associated with one or more dead cgroups
 | |
| 	 * and doesn't contain any migratable tasks.  Ignore it early so
 | |
| 	 * that the rest of migration path doesn't get confused by it.
 | |
| 	 */
 | |
| 	if (src_cset->dead)
 | |
| 		return;
 | |
| 
 | |
| 	if (!list_empty(&src_cset->mg_src_preload_node))
 | |
| 		return;
 | |
| 
 | |
| 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
 | |
| 
 | |
| 	WARN_ON(src_cset->mg_src_cgrp);
 | |
| 	WARN_ON(src_cset->mg_dst_cgrp);
 | |
| 	WARN_ON(!list_empty(&src_cset->mg_tasks));
 | |
| 	WARN_ON(!list_empty(&src_cset->mg_node));
 | |
| 
 | |
| 	src_cset->mg_src_cgrp = src_cgrp;
 | |
| 	src_cset->mg_dst_cgrp = dst_cgrp;
 | |
| 	get_css_set(src_cset);
 | |
| 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
 | |
|  * @mgctx: migration context
 | |
|  *
 | |
|  * Tasks are about to be moved and all the source css_sets have been
 | |
|  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
 | |
|  * pins all destination css_sets, links each to its source, and append them
 | |
|  * to @mgctx->preloaded_dst_csets.
 | |
|  *
 | |
|  * This function must be called after cgroup_migrate_add_src() has been
 | |
|  * called on each migration source css_set.  After migration is performed
 | |
|  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
 | |
|  * @mgctx.
 | |
|  */
 | |
| int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
 | |
| {
 | |
| 	struct css_set *src_cset, *tmp_cset;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	/* look up the dst cset for each src cset and link it to src */
 | |
| 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
 | |
| 				 mg_src_preload_node) {
 | |
| 		struct css_set *dst_cset;
 | |
| 		struct cgroup_subsys *ss;
 | |
| 		int ssid;
 | |
| 
 | |
| 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
 | |
| 		if (!dst_cset)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
 | |
| 
 | |
| 		/*
 | |
| 		 * If src cset equals dst, it's noop.  Drop the src.
 | |
| 		 * cgroup_migrate() will skip the cset too.  Note that we
 | |
| 		 * can't handle src == dst as some nodes are used by both.
 | |
| 		 */
 | |
| 		if (src_cset == dst_cset) {
 | |
| 			src_cset->mg_src_cgrp = NULL;
 | |
| 			src_cset->mg_dst_cgrp = NULL;
 | |
| 			list_del_init(&src_cset->mg_src_preload_node);
 | |
| 			put_css_set(src_cset);
 | |
| 			put_css_set(dst_cset);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		src_cset->mg_dst_cset = dst_cset;
 | |
| 
 | |
| 		if (list_empty(&dst_cset->mg_dst_preload_node))
 | |
| 			list_add_tail(&dst_cset->mg_dst_preload_node,
 | |
| 				      &mgctx->preloaded_dst_csets);
 | |
| 		else
 | |
| 			put_css_set(dst_cset);
 | |
| 
 | |
| 		for_each_subsys(ss, ssid)
 | |
| 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
 | |
| 				mgctx->ss_mask |= 1 << ssid;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_migrate - migrate a process or task to a cgroup
 | |
|  * @leader: the leader of the process or the task to migrate
 | |
|  * @threadgroup: whether @leader points to the whole process or a single task
 | |
|  * @mgctx: migration context
 | |
|  *
 | |
|  * Migrate a process or task denoted by @leader.  If migrating a process,
 | |
|  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
 | |
|  * responsible for invoking cgroup_migrate_add_src() and
 | |
|  * cgroup_migrate_prepare_dst() on the targets before invoking this
 | |
|  * function and following up with cgroup_migrate_finish().
 | |
|  *
 | |
|  * As long as a controller's ->can_attach() doesn't fail, this function is
 | |
|  * guaranteed to succeed.  This means that, excluding ->can_attach()
 | |
|  * failure, when migrating multiple targets, the success or failure can be
 | |
|  * decided for all targets by invoking group_migrate_prepare_dst() before
 | |
|  * actually starting migrating.
 | |
|  */
 | |
| int cgroup_migrate(struct task_struct *leader, bool threadgroup,
 | |
| 		   struct cgroup_mgctx *mgctx)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following thread iteration should be inside an RCU critical
 | |
| 	 * section to prevent tasks from being freed while taking the snapshot.
 | |
| 	 * spin_lock_irq() implies RCU critical section here.
 | |
| 	 */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	task = leader;
 | |
| 	do {
 | |
| 		cgroup_migrate_add_task(task, mgctx);
 | |
| 		if (!threadgroup)
 | |
| 			break;
 | |
| 	} while_each_thread(leader, task);
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	return cgroup_migrate_execute(mgctx);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
 | |
|  * @dst_cgrp: the cgroup to attach to
 | |
|  * @leader: the task or the leader of the threadgroup to be attached
 | |
|  * @threadgroup: attach the whole threadgroup?
 | |
|  *
 | |
|  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
 | |
|  */
 | |
| int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
 | |
| 		       bool threadgroup)
 | |
| {
 | |
| 	DEFINE_CGROUP_MGCTX(mgctx);
 | |
| 	struct task_struct *task;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* look up all src csets */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	rcu_read_lock();
 | |
| 	task = leader;
 | |
| 	do {
 | |
| 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
 | |
| 		if (!threadgroup)
 | |
| 			break;
 | |
| 	} while_each_thread(leader, task);
 | |
| 	rcu_read_unlock();
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	/* prepare dst csets and commit */
 | |
| 	ret = cgroup_migrate_prepare_dst(&mgctx);
 | |
| 	if (!ret)
 | |
| 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
 | |
| 
 | |
| 	cgroup_migrate_finish(&mgctx);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
 | |
| 					     bool *threadgroup_locked)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	pid_t pid;
 | |
| 
 | |
| 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we migrate a single thread, we don't care about threadgroup
 | |
| 	 * stability. If the thread is `current`, it won't exit(2) under our
 | |
| 	 * hands or change PID through exec(2). We exclude
 | |
| 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
 | |
| 	 * callers by cgroup_mutex.
 | |
| 	 * Therefore, we can skip the global lock.
 | |
| 	 */
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 	*threadgroup_locked = pid || threadgroup;
 | |
| 	cgroup_attach_lock(*threadgroup_locked);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (pid) {
 | |
| 		tsk = find_task_by_vpid(pid);
 | |
| 		if (!tsk) {
 | |
| 			tsk = ERR_PTR(-ESRCH);
 | |
| 			goto out_unlock_threadgroup;
 | |
| 		}
 | |
| 	} else {
 | |
| 		tsk = current;
 | |
| 	}
 | |
| 
 | |
| 	if (threadgroup)
 | |
| 		tsk = tsk->group_leader;
 | |
| 
 | |
| 	/*
 | |
| 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
 | |
| 	 * If userland migrates such a kthread to a non-root cgroup, it can
 | |
| 	 * become trapped in a cpuset, or RT kthread may be born in a
 | |
| 	 * cgroup with no rt_runtime allocated.  Just say no.
 | |
| 	 */
 | |
| 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
 | |
| 		tsk = ERR_PTR(-EINVAL);
 | |
| 		goto out_unlock_threadgroup;
 | |
| 	}
 | |
| 
 | |
| 	get_task_struct(tsk);
 | |
| 	goto out_unlock_rcu;
 | |
| 
 | |
| out_unlock_threadgroup:
 | |
| 	cgroup_attach_unlock(*threadgroup_locked);
 | |
| 	*threadgroup_locked = false;
 | |
| out_unlock_rcu:
 | |
| 	rcu_read_unlock();
 | |
| 	return tsk;
 | |
| }
 | |
| 
 | |
| void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 
 | |
| 	/* release reference from cgroup_procs_write_start() */
 | |
| 	put_task_struct(task);
 | |
| 
 | |
| 	cgroup_attach_unlock(threadgroup_locked);
 | |
| 
 | |
| 	for_each_subsys(ss, ssid)
 | |
| 		if (ss->post_attach)
 | |
| 			ss->post_attach();
 | |
| }
 | |
| 
 | |
| static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	bool printed = false;
 | |
| 	int ssid;
 | |
| 
 | |
| 	do_each_subsys_mask(ss, ssid, ss_mask) {
 | |
| 		if (printed)
 | |
| 			seq_putc(seq, ' ');
 | |
| 		seq_puts(seq, ss->name);
 | |
| 		printed = true;
 | |
| 	} while_each_subsys_mask();
 | |
| 	if (printed)
 | |
| 		seq_putc(seq, '\n');
 | |
| }
 | |
| 
 | |
| /* show controllers which are enabled from the parent */
 | |
| static int cgroup_controllers_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 
 | |
| 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* show controllers which are enabled for a given cgroup's children */
 | |
| static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 
 | |
| 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
 | |
|  * @cgrp: root of the subtree to update csses for
 | |
|  *
 | |
|  * @cgrp's control masks have changed and its subtree's css associations
 | |
|  * need to be updated accordingly.  This function looks up all css_sets
 | |
|  * which are attached to the subtree, creates the matching updated css_sets
 | |
|  * and migrates the tasks to the new ones.
 | |
|  */
 | |
| static int cgroup_update_dfl_csses(struct cgroup *cgrp)
 | |
| {
 | |
| 	DEFINE_CGROUP_MGCTX(mgctx);
 | |
| 	struct cgroup_subsys_state *d_css;
 | |
| 	struct cgroup *dsct;
 | |
| 	struct css_set *src_cset;
 | |
| 	bool has_tasks;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	/* look up all csses currently attached to @cgrp's subtree */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
 | |
| 		struct cgrp_cset_link *link;
 | |
| 
 | |
| 		/*
 | |
| 		 * As cgroup_update_dfl_csses() is only called by
 | |
| 		 * cgroup_apply_control(). The csses associated with the
 | |
| 		 * given cgrp will not be affected by changes made to
 | |
| 		 * its subtree_control file. We can skip them.
 | |
| 		 */
 | |
| 		if (dsct == cgrp)
 | |
| 			continue;
 | |
| 
 | |
| 		list_for_each_entry(link, &dsct->cset_links, cset_link)
 | |
| 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
 | |
| 	}
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
 | |
| 	 * However, if there are no source csets for @cgrp, changing its
 | |
| 	 * controllers isn't gonna produce any task migrations and the
 | |
| 	 * write-locking can be skipped safely.
 | |
| 	 */
 | |
| 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
 | |
| 	cgroup_attach_lock(has_tasks);
 | |
| 
 | |
| 	/* NULL dst indicates self on default hierarchy */
 | |
| 	ret = cgroup_migrate_prepare_dst(&mgctx);
 | |
| 	if (ret)
 | |
| 		goto out_finish;
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
 | |
| 			    mg_src_preload_node) {
 | |
| 		struct task_struct *task, *ntask;
 | |
| 
 | |
| 		/* all tasks in src_csets need to be migrated */
 | |
| 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
 | |
| 			cgroup_migrate_add_task(task, &mgctx);
 | |
| 	}
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	ret = cgroup_migrate_execute(&mgctx);
 | |
| out_finish:
 | |
| 	cgroup_migrate_finish(&mgctx);
 | |
| 	cgroup_attach_unlock(has_tasks);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
 | |
|  * @cgrp: root of the target subtree
 | |
|  *
 | |
|  * Because css offlining is asynchronous, userland may try to re-enable a
 | |
|  * controller while the previous css is still around.  This function grabs
 | |
|  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
 | |
|  */
 | |
| void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
 | |
| 	__acquires(&cgroup_mutex)
 | |
| {
 | |
| 	struct cgroup *dsct;
 | |
| 	struct cgroup_subsys_state *d_css;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 
 | |
| restart:
 | |
| 	cgroup_lock();
 | |
| 
 | |
| 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
 | |
| 		for_each_subsys(ss, ssid) {
 | |
| 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
 | |
| 			DEFINE_WAIT(wait);
 | |
| 
 | |
| 			if (!css || !percpu_ref_is_dying(&css->refcnt))
 | |
| 				continue;
 | |
| 
 | |
| 			cgroup_get_live(dsct);
 | |
| 			prepare_to_wait(&dsct->offline_waitq, &wait,
 | |
| 					TASK_UNINTERRUPTIBLE);
 | |
| 
 | |
| 			cgroup_unlock();
 | |
| 			schedule();
 | |
| 			finish_wait(&dsct->offline_waitq, &wait);
 | |
| 
 | |
| 			cgroup_put(dsct);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_save_control - save control masks and dom_cgrp of a subtree
 | |
|  * @cgrp: root of the target subtree
 | |
|  *
 | |
|  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
 | |
|  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
 | |
|  * itself.
 | |
|  */
 | |
| static void cgroup_save_control(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup *dsct;
 | |
| 	struct cgroup_subsys_state *d_css;
 | |
| 
 | |
| 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
 | |
| 		dsct->old_subtree_control = dsct->subtree_control;
 | |
| 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
 | |
| 		dsct->old_dom_cgrp = dsct->dom_cgrp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_propagate_control - refresh control masks of a subtree
 | |
|  * @cgrp: root of the target subtree
 | |
|  *
 | |
|  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
 | |
|  * ->subtree_control and propagate controller availability through the
 | |
|  * subtree so that descendants don't have unavailable controllers enabled.
 | |
|  */
 | |
| static void cgroup_propagate_control(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup *dsct;
 | |
| 	struct cgroup_subsys_state *d_css;
 | |
| 
 | |
| 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
 | |
| 		dsct->subtree_control &= cgroup_control(dsct);
 | |
| 		dsct->subtree_ss_mask =
 | |
| 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
 | |
| 						    cgroup_ss_mask(dsct));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
 | |
|  * @cgrp: root of the target subtree
 | |
|  *
 | |
|  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
 | |
|  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
 | |
|  * itself.
 | |
|  */
 | |
| static void cgroup_restore_control(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup *dsct;
 | |
| 	struct cgroup_subsys_state *d_css;
 | |
| 
 | |
| 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
 | |
| 		dsct->subtree_control = dsct->old_subtree_control;
 | |
| 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
 | |
| 		dsct->dom_cgrp = dsct->old_dom_cgrp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool css_visible(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cgroup_subsys *ss = css->ss;
 | |
| 	struct cgroup *cgrp = css->cgroup;
 | |
| 
 | |
| 	if (cgroup_control(cgrp) & (1 << ss->id))
 | |
| 		return true;
 | |
| 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
 | |
| 		return false;
 | |
| 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_apply_control_enable - enable or show csses according to control
 | |
|  * @cgrp: root of the target subtree
 | |
|  *
 | |
|  * Walk @cgrp's subtree and create new csses or make the existing ones
 | |
|  * visible.  A css is created invisible if it's being implicitly enabled
 | |
|  * through dependency.  An invisible css is made visible when the userland
 | |
|  * explicitly enables it.
 | |
|  *
 | |
|  * Returns 0 on success, -errno on failure.  On failure, csses which have
 | |
|  * been processed already aren't cleaned up.  The caller is responsible for
 | |
|  * cleaning up with cgroup_apply_control_disable().
 | |
|  */
 | |
| static int cgroup_apply_control_enable(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup *dsct;
 | |
| 	struct cgroup_subsys_state *d_css;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid, ret;
 | |
| 
 | |
| 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
 | |
| 		for_each_subsys(ss, ssid) {
 | |
| 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
 | |
| 
 | |
| 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
 | |
| 				continue;
 | |
| 
 | |
| 			if (!css) {
 | |
| 				css = css_create(dsct, ss);
 | |
| 				if (IS_ERR(css))
 | |
| 					return PTR_ERR(css);
 | |
| 			}
 | |
| 
 | |
| 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
 | |
| 
 | |
| 			if (css_visible(css)) {
 | |
| 				ret = css_populate_dir(css);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_apply_control_disable - kill or hide csses according to control
 | |
|  * @cgrp: root of the target subtree
 | |
|  *
 | |
|  * Walk @cgrp's subtree and kill and hide csses so that they match
 | |
|  * cgroup_ss_mask() and cgroup_visible_mask().
 | |
|  *
 | |
|  * A css is hidden when the userland requests it to be disabled while other
 | |
|  * subsystems are still depending on it.  The css must not actively control
 | |
|  * resources and be in the vanilla state if it's made visible again later.
 | |
|  * Controllers which may be depended upon should provide ->css_reset() for
 | |
|  * this purpose.
 | |
|  */
 | |
| static void cgroup_apply_control_disable(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup *dsct;
 | |
| 	struct cgroup_subsys_state *d_css;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 
 | |
| 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
 | |
| 		for_each_subsys(ss, ssid) {
 | |
| 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
 | |
| 
 | |
| 			if (!css)
 | |
| 				continue;
 | |
| 
 | |
| 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
 | |
| 
 | |
| 			if (css->parent &&
 | |
| 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
 | |
| 				kill_css(css);
 | |
| 			} else if (!css_visible(css)) {
 | |
| 				css_clear_dir(css);
 | |
| 				if (ss->css_reset)
 | |
| 					ss->css_reset(css);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_apply_control - apply control mask updates to the subtree
 | |
|  * @cgrp: root of the target subtree
 | |
|  *
 | |
|  * subsystems can be enabled and disabled in a subtree using the following
 | |
|  * steps.
 | |
|  *
 | |
|  * 1. Call cgroup_save_control() to stash the current state.
 | |
|  * 2. Update ->subtree_control masks in the subtree as desired.
 | |
|  * 3. Call cgroup_apply_control() to apply the changes.
 | |
|  * 4. Optionally perform other related operations.
 | |
|  * 5. Call cgroup_finalize_control() to finish up.
 | |
|  *
 | |
|  * This function implements step 3 and propagates the mask changes
 | |
|  * throughout @cgrp's subtree, updates csses accordingly and perform
 | |
|  * process migrations.
 | |
|  */
 | |
| static int cgroup_apply_control(struct cgroup *cgrp)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	cgroup_propagate_control(cgrp);
 | |
| 
 | |
| 	ret = cgroup_apply_control_enable(cgrp);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
 | |
| 	 * making the following cgroup_update_dfl_csses() properly update
 | |
| 	 * css associations of all tasks in the subtree.
 | |
| 	 */
 | |
| 	return cgroup_update_dfl_csses(cgrp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_finalize_control - finalize control mask update
 | |
|  * @cgrp: root of the target subtree
 | |
|  * @ret: the result of the update
 | |
|  *
 | |
|  * Finalize control mask update.  See cgroup_apply_control() for more info.
 | |
|  */
 | |
| static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
 | |
| {
 | |
| 	if (ret) {
 | |
| 		cgroup_restore_control(cgrp);
 | |
| 		cgroup_propagate_control(cgrp);
 | |
| 	}
 | |
| 
 | |
| 	cgroup_apply_control_disable(cgrp);
 | |
| }
 | |
| 
 | |
| static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
 | |
| {
 | |
| 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
 | |
| 
 | |
| 	/* if nothing is getting enabled, nothing to worry about */
 | |
| 	if (!enable)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* can @cgrp host any resources? */
 | |
| 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	/* mixables don't care */
 | |
| 	if (cgroup_is_mixable(cgrp))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (domain_enable) {
 | |
| 		/* can't enable domain controllers inside a thread subtree */
 | |
| 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
 | |
| 			return -EOPNOTSUPP;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Threaded controllers can handle internal competitions
 | |
| 		 * and are always allowed inside a (prospective) thread
 | |
| 		 * subtree.
 | |
| 		 */
 | |
| 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Controllers can't be enabled for a cgroup with tasks to avoid
 | |
| 	 * child cgroups competing against tasks.
 | |
| 	 */
 | |
| 	if (cgroup_has_tasks(cgrp))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* change the enabled child controllers for a cgroup in the default hierarchy */
 | |
| static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
 | |
| 					    char *buf, size_t nbytes,
 | |
| 					    loff_t off)
 | |
| {
 | |
| 	u16 enable = 0, disable = 0;
 | |
| 	struct cgroup *cgrp, *child;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	char *tok;
 | |
| 	int ssid, ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Parse input - space separated list of subsystem names prefixed
 | |
| 	 * with either + or -.
 | |
| 	 */
 | |
| 	buf = strstrip(buf);
 | |
| 	while ((tok = strsep(&buf, " "))) {
 | |
| 		if (tok[0] == '\0')
 | |
| 			continue;
 | |
| 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
 | |
| 			if (!cgroup_ssid_enabled(ssid) ||
 | |
| 			    strcmp(tok + 1, ss->name))
 | |
| 				continue;
 | |
| 
 | |
| 			if (*tok == '+') {
 | |
| 				enable |= 1 << ssid;
 | |
| 				disable &= ~(1 << ssid);
 | |
| 			} else if (*tok == '-') {
 | |
| 				disable |= 1 << ssid;
 | |
| 				enable &= ~(1 << ssid);
 | |
| 			} else {
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			break;
 | |
| 		} while_each_subsys_mask();
 | |
| 		if (ssid == CGROUP_SUBSYS_COUNT)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, true);
 | |
| 	if (!cgrp)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	for_each_subsys(ss, ssid) {
 | |
| 		if (enable & (1 << ssid)) {
 | |
| 			if (cgrp->subtree_control & (1 << ssid)) {
 | |
| 				enable &= ~(1 << ssid);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
 | |
| 				ret = -ENOENT;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 		} else if (disable & (1 << ssid)) {
 | |
| 			if (!(cgrp->subtree_control & (1 << ssid))) {
 | |
| 				disable &= ~(1 << ssid);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* a child has it enabled? */
 | |
| 			cgroup_for_each_live_child(child, cgrp) {
 | |
| 				if (child->subtree_control & (1 << ssid)) {
 | |
| 					ret = -EBUSY;
 | |
| 					goto out_unlock;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!enable && !disable) {
 | |
| 		ret = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* save and update control masks and prepare csses */
 | |
| 	cgroup_save_control(cgrp);
 | |
| 
 | |
| 	cgrp->subtree_control |= enable;
 | |
| 	cgrp->subtree_control &= ~disable;
 | |
| 
 | |
| 	ret = cgroup_apply_control(cgrp);
 | |
| 	cgroup_finalize_control(cgrp, ret);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	kernfs_activate(cgrp->kn);
 | |
| out_unlock:
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 	return ret ?: nbytes;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_enable_threaded - make @cgrp threaded
 | |
|  * @cgrp: the target cgroup
 | |
|  *
 | |
|  * Called when "threaded" is written to the cgroup.type interface file and
 | |
|  * tries to make @cgrp threaded and join the parent's resource domain.
 | |
|  * This function is never called on the root cgroup as cgroup.type doesn't
 | |
|  * exist on it.
 | |
|  */
 | |
| static int cgroup_enable_threaded(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup *parent = cgroup_parent(cgrp);
 | |
| 	struct cgroup *dom_cgrp = parent->dom_cgrp;
 | |
| 	struct cgroup *dsct;
 | |
| 	struct cgroup_subsys_state *d_css;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	/* noop if already threaded */
 | |
| 	if (cgroup_is_threaded(cgrp))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If @cgroup is populated or has domain controllers enabled, it
 | |
| 	 * can't be switched.  While the below cgroup_can_be_thread_root()
 | |
| 	 * test can catch the same conditions, that's only when @parent is
 | |
| 	 * not mixable, so let's check it explicitly.
 | |
| 	 */
 | |
| 	if (cgroup_is_populated(cgrp) ||
 | |
| 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	/* we're joining the parent's domain, ensure its validity */
 | |
| 	if (!cgroup_is_valid_domain(dom_cgrp) ||
 | |
| 	    !cgroup_can_be_thread_root(dom_cgrp))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following shouldn't cause actual migrations and should
 | |
| 	 * always succeed.
 | |
| 	 */
 | |
| 	cgroup_save_control(cgrp);
 | |
| 
 | |
| 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
 | |
| 		if (dsct == cgrp || cgroup_is_threaded(dsct))
 | |
| 			dsct->dom_cgrp = dom_cgrp;
 | |
| 
 | |
| 	ret = cgroup_apply_control(cgrp);
 | |
| 	if (!ret)
 | |
| 		parent->nr_threaded_children++;
 | |
| 
 | |
| 	cgroup_finalize_control(cgrp, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cgroup_type_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 
 | |
| 	if (cgroup_is_threaded(cgrp))
 | |
| 		seq_puts(seq, "threaded\n");
 | |
| 	else if (!cgroup_is_valid_domain(cgrp))
 | |
| 		seq_puts(seq, "domain invalid\n");
 | |
| 	else if (cgroup_is_thread_root(cgrp))
 | |
| 		seq_puts(seq, "domain threaded\n");
 | |
| 	else
 | |
| 		seq_puts(seq, "domain\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
 | |
| 				 size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* only switching to threaded mode is supported */
 | |
| 	if (strcmp(strstrip(buf), "threaded"))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* drain dying csses before we re-apply (threaded) subtree control */
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, true);
 | |
| 	if (!cgrp)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/* threaded can only be enabled */
 | |
| 	ret = cgroup_enable_threaded(cgrp);
 | |
| 
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 	return ret ?: nbytes;
 | |
| }
 | |
| 
 | |
| static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 	int descendants = READ_ONCE(cgrp->max_descendants);
 | |
| 
 | |
| 	if (descendants == INT_MAX)
 | |
| 		seq_puts(seq, "max\n");
 | |
| 	else
 | |
| 		seq_printf(seq, "%d\n", descendants);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
 | |
| 					   char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 	int descendants;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	if (!strcmp(buf, "max")) {
 | |
| 		descendants = INT_MAX;
 | |
| 	} else {
 | |
| 		ret = kstrtoint(buf, 0, &descendants);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (descendants < 0)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, false);
 | |
| 	if (!cgrp)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	cgrp->max_descendants = descendants;
 | |
| 
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int cgroup_max_depth_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 	int depth = READ_ONCE(cgrp->max_depth);
 | |
| 
 | |
| 	if (depth == INT_MAX)
 | |
| 		seq_puts(seq, "max\n");
 | |
| 	else
 | |
| 		seq_printf(seq, "%d\n", depth);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
 | |
| 				      char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 	ssize_t ret;
 | |
| 	int depth;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	if (!strcmp(buf, "max")) {
 | |
| 		depth = INT_MAX;
 | |
| 	} else {
 | |
| 		ret = kstrtoint(buf, 0, &depth);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (depth < 0)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, false);
 | |
| 	if (!cgrp)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	cgrp->max_depth = depth;
 | |
| 
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int cgroup_events_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 
 | |
| 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
 | |
| 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cgroup_stat_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgroup = seq_css(seq)->cgroup;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	int dying_cnt[CGROUP_SUBSYS_COUNT];
 | |
| 	int ssid;
 | |
| 
 | |
| 	seq_printf(seq, "nr_descendants %d\n",
 | |
| 		   cgroup->nr_descendants);
 | |
| 
 | |
| 	/*
 | |
| 	 * Show the number of live and dying csses associated with each of
 | |
| 	 * non-inhibited cgroup subsystems that is bound to cgroup v2.
 | |
| 	 *
 | |
| 	 * Without proper lock protection, racing is possible. So the
 | |
| 	 * numbers may not be consistent when that happens.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
 | |
| 		dying_cnt[ssid] = -1;
 | |
| 		if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
 | |
| 		    (cgroup_subsys[ssid]->root !=  &cgrp_dfl_root))
 | |
| 			continue;
 | |
| 		css = rcu_dereference_raw(cgroup->subsys[ssid]);
 | |
| 		dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
 | |
| 		seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
 | |
| 			   css ? (css->nr_descendants + 1) : 0);
 | |
| 	}
 | |
| 
 | |
| 	seq_printf(seq, "nr_dying_descendants %d\n",
 | |
| 		   cgroup->nr_dying_descendants);
 | |
| 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
 | |
| 		if (dying_cnt[ssid] >= 0)
 | |
| 			seq_printf(seq, "nr_dying_subsys_%s %d\n",
 | |
| 				   cgroup_subsys[ssid]->name, dying_cnt[ssid]);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| /**
 | |
|  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 | |
|  * @cgrp: the cgroup of interest
 | |
|  * @ss: the subsystem of interest
 | |
|  *
 | |
|  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
 | |
|  * or is offline, %NULL is returned.
 | |
|  */
 | |
| static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 | |
| 						     struct cgroup_subsys *ss)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	css = cgroup_css(cgrp, ss);
 | |
| 	if (css && !css_tryget_online(css))
 | |
| 		css = NULL;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return css;
 | |
| }
 | |
| 
 | |
| static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!ss->css_extra_stat_show)
 | |
| 		return 0;
 | |
| 
 | |
| 	css = cgroup_tryget_css(cgrp, ss);
 | |
| 	if (!css)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = ss->css_extra_stat_show(seq, css);
 | |
| 	css_put(css);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cgroup_local_stat_show(struct seq_file *seq,
 | |
| 				  struct cgroup *cgrp, int ssid)
 | |
| {
 | |
| 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!ss->css_local_stat_show)
 | |
| 		return 0;
 | |
| 
 | |
| 	css = cgroup_tryget_css(cgrp, ss);
 | |
| 	if (!css)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = ss->css_local_stat_show(seq, css);
 | |
| 	css_put(css);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int cpu_stat_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cgroup_base_stat_cputime_show(seq);
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cpu_local_stat_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
 | |
| 	int ret = 0;
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PSI
 | |
| static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 	struct psi_group *psi = cgroup_psi(cgrp);
 | |
| 
 | |
| 	return psi_show(seq, psi, PSI_IO);
 | |
| }
 | |
| static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 	struct psi_group *psi = cgroup_psi(cgrp);
 | |
| 
 | |
| 	return psi_show(seq, psi, PSI_MEM);
 | |
| }
 | |
| static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 	struct psi_group *psi = cgroup_psi(cgrp);
 | |
| 
 | |
| 	return psi_show(seq, psi, PSI_CPU);
 | |
| }
 | |
| 
 | |
| static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
 | |
| 			      size_t nbytes, enum psi_res res)
 | |
| {
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 	struct psi_trigger *new;
 | |
| 	struct cgroup *cgrp;
 | |
| 	struct psi_group *psi;
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, false);
 | |
| 	if (!cgrp)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	cgroup_get(cgrp);
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 
 | |
| 	/* Allow only one trigger per file descriptor */
 | |
| 	if (ctx->psi.trigger) {
 | |
| 		cgroup_put(cgrp);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	psi = cgroup_psi(cgrp);
 | |
| 	new = psi_trigger_create(psi, buf, res, of->file, of);
 | |
| 	if (IS_ERR(new)) {
 | |
| 		cgroup_put(cgrp);
 | |
| 		return PTR_ERR(new);
 | |
| 	}
 | |
| 
 | |
| 	smp_store_release(&ctx->psi.trigger, new);
 | |
| 	cgroup_put(cgrp);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
 | |
| 					  char *buf, size_t nbytes,
 | |
| 					  loff_t off)
 | |
| {
 | |
| 	return pressure_write(of, buf, nbytes, PSI_IO);
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
 | |
| 					  char *buf, size_t nbytes,
 | |
| 					  loff_t off)
 | |
| {
 | |
| 	return pressure_write(of, buf, nbytes, PSI_MEM);
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
 | |
| 					  char *buf, size_t nbytes,
 | |
| 					  loff_t off)
 | |
| {
 | |
| 	return pressure_write(of, buf, nbytes, PSI_CPU);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 	struct psi_group *psi = cgroup_psi(cgrp);
 | |
| 
 | |
| 	return psi_show(seq, psi, PSI_IRQ);
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
 | |
| 					 char *buf, size_t nbytes,
 | |
| 					 loff_t off)
 | |
| {
 | |
| 	return pressure_write(of, buf, nbytes, PSI_IRQ);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int cgroup_pressure_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 	struct psi_group *psi = cgroup_psi(cgrp);
 | |
| 
 | |
| 	seq_printf(seq, "%d\n", psi->enabled);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
 | |
| 				     char *buf, size_t nbytes,
 | |
| 				     loff_t off)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 	int enable;
 | |
| 	struct cgroup *cgrp;
 | |
| 	struct psi_group *psi;
 | |
| 
 | |
| 	ret = kstrtoint(strstrip(buf), 0, &enable);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (enable < 0 || enable > 1)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, false);
 | |
| 	if (!cgrp)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	psi = cgroup_psi(cgrp);
 | |
| 	if (psi->enabled != enable) {
 | |
| 		int i;
 | |
| 
 | |
| 		/* show or hide {cpu,memory,io,irq}.pressure files */
 | |
| 		for (i = 0; i < NR_PSI_RESOURCES; i++)
 | |
| 			cgroup_file_show(&cgrp->psi_files[i], enable);
 | |
| 
 | |
| 		psi->enabled = enable;
 | |
| 		if (enable)
 | |
| 			psi_cgroup_restart(psi);
 | |
| 	}
 | |
| 
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
 | |
| 					  poll_table *pt)
 | |
| {
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 
 | |
| 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
 | |
| }
 | |
| 
 | |
| static void cgroup_pressure_release(struct kernfs_open_file *of)
 | |
| {
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 
 | |
| 	psi_trigger_destroy(ctx->psi.trigger);
 | |
| }
 | |
| 
 | |
| bool cgroup_psi_enabled(void)
 | |
| {
 | |
| 	if (static_branch_likely(&psi_disabled))
 | |
| 		return false;
 | |
| 
 | |
| 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_PSI */
 | |
| bool cgroup_psi_enabled(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PSI */
 | |
| 
 | |
| static int cgroup_freeze_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 
 | |
| 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
 | |
| 				   char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 	ssize_t ret;
 | |
| 	int freeze;
 | |
| 
 | |
| 	ret = kstrtoint(strstrip(buf), 0, &freeze);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (freeze < 0 || freeze > 1)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, false);
 | |
| 	if (!cgrp)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	cgroup_freeze(cgrp, freeze);
 | |
| 
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static void __cgroup_kill(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct css_task_iter it;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	cgrp->kill_seq++;
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
 | |
| 	while ((task = css_task_iter_next(&it))) {
 | |
| 		/* Ignore kernel threads here. */
 | |
| 		if (task->flags & PF_KTHREAD)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Skip tasks that are already dying. */
 | |
| 		if (__fatal_signal_pending(task))
 | |
| 			continue;
 | |
| 
 | |
| 		send_sig(SIGKILL, task, 0);
 | |
| 	}
 | |
| 	css_task_iter_end(&it);
 | |
| }
 | |
| 
 | |
| static void cgroup_kill(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cgroup *dsct;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
 | |
| 		__cgroup_kill(dsct);
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
 | |
| 				 size_t nbytes, loff_t off)
 | |
| {
 | |
| 	ssize_t ret = 0;
 | |
| 	int kill;
 | |
| 	struct cgroup *cgrp;
 | |
| 
 | |
| 	ret = kstrtoint(strstrip(buf), 0, &kill);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (kill != 1)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, false);
 | |
| 	if (!cgrp)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Killing is a process directed operation, i.e. the whole thread-group
 | |
| 	 * is taken down so act like we do for cgroup.procs and only make this
 | |
| 	 * writable in non-threaded cgroups.
 | |
| 	 */
 | |
| 	if (cgroup_is_threaded(cgrp))
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 	else
 | |
| 		cgroup_kill(cgrp);
 | |
| 
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 
 | |
| 	return ret ?: nbytes;
 | |
| }
 | |
| 
 | |
| static int cgroup_file_open(struct kernfs_open_file *of)
 | |
| {
 | |
| 	struct cftype *cft = of_cft(of);
 | |
| 	struct cgroup_file_ctx *ctx;
 | |
| 	int ret;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx->ns = current->nsproxy->cgroup_ns;
 | |
| 	get_cgroup_ns(ctx->ns);
 | |
| 	of->priv = ctx;
 | |
| 
 | |
| 	if (!cft->open)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = cft->open(of);
 | |
| 	if (ret) {
 | |
| 		put_cgroup_ns(ctx->ns);
 | |
| 		kfree(ctx);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cgroup_file_release(struct kernfs_open_file *of)
 | |
| {
 | |
| 	struct cftype *cft = of_cft(of);
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 
 | |
| 	if (cft->release)
 | |
| 		cft->release(of);
 | |
| 	put_cgroup_ns(ctx->ns);
 | |
| 	kfree(ctx);
 | |
| 	of->priv = NULL;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
 | |
| 				 size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 	struct cgroup *cgrp = kn_priv(of->kn);
 | |
| 	struct cftype *cft = of_cft(of);
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!nbytes)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If namespaces are delegation boundaries, disallow writes to
 | |
| 	 * files in an non-init namespace root from inside the namespace
 | |
| 	 * except for the files explicitly marked delegatable -
 | |
| 	 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
 | |
| 	 */
 | |
| 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
 | |
| 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
 | |
| 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (cft->write)
 | |
| 		return cft->write(of, buf, nbytes, off);
 | |
| 
 | |
| 	/*
 | |
| 	 * kernfs guarantees that a file isn't deleted with operations in
 | |
| 	 * flight, which means that the matching css is and stays alive and
 | |
| 	 * doesn't need to be pinned.  The RCU locking is not necessary
 | |
| 	 * either.  It's just for the convenience of using cgroup_css().
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	css = cgroup_css(cgrp, cft->ss);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (cft->write_u64) {
 | |
| 		unsigned long long v;
 | |
| 		ret = kstrtoull(buf, 0, &v);
 | |
| 		if (!ret)
 | |
| 			ret = cft->write_u64(css, cft, v);
 | |
| 	} else if (cft->write_s64) {
 | |
| 		long long v;
 | |
| 		ret = kstrtoll(buf, 0, &v);
 | |
| 		if (!ret)
 | |
| 			ret = cft->write_s64(css, cft, v);
 | |
| 	} else {
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return ret ?: nbytes;
 | |
| }
 | |
| 
 | |
| static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
 | |
| {
 | |
| 	struct cftype *cft = of_cft(of);
 | |
| 
 | |
| 	if (cft->poll)
 | |
| 		return cft->poll(of, pt);
 | |
| 
 | |
| 	return kernfs_generic_poll(of, pt);
 | |
| }
 | |
| 
 | |
| static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
 | |
| {
 | |
| 	return seq_cft(seq)->seq_start(seq, ppos);
 | |
| }
 | |
| 
 | |
| static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
 | |
| {
 | |
| 	return seq_cft(seq)->seq_next(seq, v, ppos);
 | |
| }
 | |
| 
 | |
| static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	if (seq_cft(seq)->seq_stop)
 | |
| 		seq_cft(seq)->seq_stop(seq, v);
 | |
| }
 | |
| 
 | |
| static int cgroup_seqfile_show(struct seq_file *m, void *arg)
 | |
| {
 | |
| 	struct cftype *cft = seq_cft(m);
 | |
| 	struct cgroup_subsys_state *css = seq_css(m);
 | |
| 
 | |
| 	if (cft->seq_show)
 | |
| 		return cft->seq_show(m, arg);
 | |
| 
 | |
| 	if (cft->read_u64)
 | |
| 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
 | |
| 	else if (cft->read_s64)
 | |
| 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct kernfs_ops cgroup_kf_single_ops = {
 | |
| 	.atomic_write_len	= PAGE_SIZE,
 | |
| 	.open			= cgroup_file_open,
 | |
| 	.release		= cgroup_file_release,
 | |
| 	.write			= cgroup_file_write,
 | |
| 	.poll			= cgroup_file_poll,
 | |
| 	.seq_show		= cgroup_seqfile_show,
 | |
| };
 | |
| 
 | |
| static struct kernfs_ops cgroup_kf_ops = {
 | |
| 	.atomic_write_len	= PAGE_SIZE,
 | |
| 	.open			= cgroup_file_open,
 | |
| 	.release		= cgroup_file_release,
 | |
| 	.write			= cgroup_file_write,
 | |
| 	.poll			= cgroup_file_poll,
 | |
| 	.seq_start		= cgroup_seqfile_start,
 | |
| 	.seq_next		= cgroup_seqfile_next,
 | |
| 	.seq_stop		= cgroup_seqfile_stop,
 | |
| 	.seq_show		= cgroup_seqfile_show,
 | |
| };
 | |
| 
 | |
| static void cgroup_file_notify_timer(struct timer_list *timer)
 | |
| {
 | |
| 	cgroup_file_notify(container_of(timer, struct cgroup_file,
 | |
| 					notify_timer));
 | |
| }
 | |
| 
 | |
| static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
 | |
| 			   struct cftype *cft)
 | |
| {
 | |
| 	char name[CGROUP_FILE_NAME_MAX];
 | |
| 	struct kernfs_node *kn;
 | |
| 	struct lock_class_key *key = NULL;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC
 | |
| 	key = &cft->lockdep_key;
 | |
| #endif
 | |
| 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
 | |
| 				  cgroup_file_mode(cft),
 | |
| 				  current_fsuid(), current_fsgid(),
 | |
| 				  0, cft->kf_ops, cft,
 | |
| 				  NULL, key);
 | |
| 	if (IS_ERR(kn))
 | |
| 		return PTR_ERR(kn);
 | |
| 
 | |
| 	if (cft->file_offset) {
 | |
| 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
 | |
| 
 | |
| 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
 | |
| 
 | |
| 		spin_lock_irq(&cgroup_file_kn_lock);
 | |
| 		cfile->kn = kn;
 | |
| 		spin_unlock_irq(&cgroup_file_kn_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_addrm_files - add or remove files to a cgroup directory
 | |
|  * @css: the target css
 | |
|  * @cgrp: the target cgroup (usually css->cgroup)
 | |
|  * @cfts: array of cftypes to be added
 | |
|  * @is_add: whether to add or remove
 | |
|  *
 | |
|  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
 | |
|  * For removals, this function never fails.
 | |
|  */
 | |
| static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 | |
| 			      struct cgroup *cgrp, struct cftype cfts[],
 | |
| 			      bool is_add)
 | |
| {
 | |
| 	struct cftype *cft, *cft_end = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| restart:
 | |
| 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
 | |
| 		/* does cft->flags tell us to skip this file on @cgrp? */
 | |
| 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
 | |
| 			continue;
 | |
| 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
 | |
| 			continue;
 | |
| 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
 | |
| 			continue;
 | |
| 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
 | |
| 			continue;
 | |
| 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
 | |
| 			continue;
 | |
| 		if (is_add) {
 | |
| 			ret = cgroup_add_file(css, cgrp, cft);
 | |
| 			if (ret) {
 | |
| 				pr_warn("%s: failed to add %s, err=%d\n",
 | |
| 					__func__, cft->name, ret);
 | |
| 				cft_end = cft;
 | |
| 				is_add = false;
 | |
| 				goto restart;
 | |
| 			}
 | |
| 		} else {
 | |
| 			cgroup_rm_file(cgrp, cft);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
 | |
| {
 | |
| 	struct cgroup_subsys *ss = cfts[0].ss;
 | |
| 	struct cgroup *root = &ss->root->cgrp;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	/* add/rm files for all cgroups created before */
 | |
| 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
 | |
| 		struct cgroup *cgrp = css->cgroup;
 | |
| 
 | |
| 		if (!(css->flags & CSS_VISIBLE))
 | |
| 			continue;
 | |
| 
 | |
| 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (is_add && !ret)
 | |
| 		kernfs_activate(root->kn);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cgroup_exit_cftypes(struct cftype *cfts)
 | |
| {
 | |
| 	struct cftype *cft;
 | |
| 
 | |
| 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
 | |
| 		/* free copy for custom atomic_write_len, see init_cftypes() */
 | |
| 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
 | |
| 			kfree(cft->kf_ops);
 | |
| 		cft->kf_ops = NULL;
 | |
| 		cft->ss = NULL;
 | |
| 
 | |
| 		/* revert flags set by cgroup core while adding @cfts */
 | |
| 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
 | |
| 				__CFTYPE_ADDED);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
 | |
| {
 | |
| 	struct cftype *cft;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
 | |
| 		struct kernfs_ops *kf_ops;
 | |
| 
 | |
| 		WARN_ON(cft->ss || cft->kf_ops);
 | |
| 
 | |
| 		if (cft->flags & __CFTYPE_ADDED) {
 | |
| 			ret = -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (cft->seq_start)
 | |
| 			kf_ops = &cgroup_kf_ops;
 | |
| 		else
 | |
| 			kf_ops = &cgroup_kf_single_ops;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ugh... if @cft wants a custom max_write_len, we need to
 | |
| 		 * make a copy of kf_ops to set its atomic_write_len.
 | |
| 		 */
 | |
| 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
 | |
| 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
 | |
| 			if (!kf_ops) {
 | |
| 				ret = -ENOMEM;
 | |
| 				break;
 | |
| 			}
 | |
| 			kf_ops->atomic_write_len = cft->max_write_len;
 | |
| 		}
 | |
| 
 | |
| 		cft->kf_ops = kf_ops;
 | |
| 		cft->ss = ss;
 | |
| 		cft->flags |= __CFTYPE_ADDED;
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		cgroup_exit_cftypes(cfts);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cgroup_rm_cftypes_locked(struct cftype *cfts)
 | |
| {
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	list_del(&cfts->node);
 | |
| 	cgroup_apply_cftypes(cfts, false);
 | |
| 	cgroup_exit_cftypes(cfts);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
 | |
|  * @cfts: zero-length name terminated array of cftypes
 | |
|  *
 | |
|  * Unregister @cfts.  Files described by @cfts are removed from all
 | |
|  * existing cgroups and all future cgroups won't have them either.  This
 | |
|  * function can be called anytime whether @cfts' subsys is attached or not.
 | |
|  *
 | |
|  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
 | |
|  * registered.
 | |
|  */
 | |
| int cgroup_rm_cftypes(struct cftype *cfts)
 | |
| {
 | |
| 	if (!cfts || cfts[0].name[0] == '\0')
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(cfts[0].flags & __CFTYPE_ADDED))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 	cgroup_rm_cftypes_locked(cfts);
 | |
| 	cgroup_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_add_cftypes - add an array of cftypes to a subsystem
 | |
|  * @ss: target cgroup subsystem
 | |
|  * @cfts: zero-length name terminated array of cftypes
 | |
|  *
 | |
|  * Register @cfts to @ss.  Files described by @cfts are created for all
 | |
|  * existing cgroups to which @ss is attached and all future cgroups will
 | |
|  * have them too.  This function can be called anytime whether @ss is
 | |
|  * attached or not.
 | |
|  *
 | |
|  * Returns 0 on successful registration, -errno on failure.  Note that this
 | |
|  * function currently returns 0 as long as @cfts registration is successful
 | |
|  * even if some file creation attempts on existing cgroups fail.
 | |
|  */
 | |
| int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!cgroup_ssid_enabled(ss->id))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!cfts || cfts[0].name[0] == '\0')
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = cgroup_init_cftypes(ss, cfts);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 
 | |
| 	list_add_tail(&cfts->node, &ss->cfts);
 | |
| 	ret = cgroup_apply_cftypes(cfts, true);
 | |
| 	if (ret)
 | |
| 		cgroup_rm_cftypes_locked(cfts);
 | |
| 
 | |
| 	cgroup_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
 | |
|  * @ss: target cgroup subsystem
 | |
|  * @cfts: zero-length name terminated array of cftypes
 | |
|  *
 | |
|  * Similar to cgroup_add_cftypes() but the added files are only used for
 | |
|  * the default hierarchy.
 | |
|  */
 | |
| int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
 | |
| {
 | |
| 	struct cftype *cft;
 | |
| 
 | |
| 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
 | |
| 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
 | |
| 	return cgroup_add_cftypes(ss, cfts);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
 | |
|  * @ss: target cgroup subsystem
 | |
|  * @cfts: zero-length name terminated array of cftypes
 | |
|  *
 | |
|  * Similar to cgroup_add_cftypes() but the added files are only used for
 | |
|  * the legacy hierarchies.
 | |
|  */
 | |
| int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
 | |
| {
 | |
| 	struct cftype *cft;
 | |
| 
 | |
| 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
 | |
| 		cft->flags |= __CFTYPE_NOT_ON_DFL;
 | |
| 	return cgroup_add_cftypes(ss, cfts);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_file_notify - generate a file modified event for a cgroup_file
 | |
|  * @cfile: target cgroup_file
 | |
|  *
 | |
|  * @cfile must have been obtained by setting cftype->file_offset.
 | |
|  */
 | |
| void cgroup_file_notify(struct cgroup_file *cfile)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
 | |
| 	if (cfile->kn) {
 | |
| 		unsigned long last = cfile->notified_at;
 | |
| 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
 | |
| 
 | |
| 		if (time_in_range(jiffies, last, next)) {
 | |
| 			timer_reduce(&cfile->notify_timer, next);
 | |
| 		} else {
 | |
| 			kernfs_notify(cfile->kn);
 | |
| 			cfile->notified_at = jiffies;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_file_show - show or hide a hidden cgroup file
 | |
|  * @cfile: target cgroup_file obtained by setting cftype->file_offset
 | |
|  * @show: whether to show or hide
 | |
|  */
 | |
| void cgroup_file_show(struct cgroup_file *cfile, bool show)
 | |
| {
 | |
| 	struct kernfs_node *kn;
 | |
| 
 | |
| 	spin_lock_irq(&cgroup_file_kn_lock);
 | |
| 	kn = cfile->kn;
 | |
| 	kernfs_get(kn);
 | |
| 	spin_unlock_irq(&cgroup_file_kn_lock);
 | |
| 
 | |
| 	if (kn)
 | |
| 		kernfs_show(kn, show);
 | |
| 
 | |
| 	kernfs_put(kn);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_next_child - find the next child of a given css
 | |
|  * @pos: the current position (%NULL to initiate traversal)
 | |
|  * @parent: css whose children to walk
 | |
|  *
 | |
|  * This function returns the next child of @parent and should be called
 | |
|  * under either cgroup_mutex or RCU read lock.  The only requirement is
 | |
|  * that @parent and @pos are accessible.  The next sibling is guaranteed to
 | |
|  * be returned regardless of their states.
 | |
|  *
 | |
|  * If a subsystem synchronizes ->css_online() and the start of iteration, a
 | |
|  * css which finished ->css_online() is guaranteed to be visible in the
 | |
|  * future iterations and will stay visible until the last reference is put.
 | |
|  * A css which hasn't finished ->css_online() or already finished
 | |
|  * ->css_offline() may show up during traversal.  It's each subsystem's
 | |
|  * responsibility to synchronize against on/offlining.
 | |
|  */
 | |
| struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
 | |
| 					   struct cgroup_subsys_state *parent)
 | |
| {
 | |
| 	struct cgroup_subsys_state *next;
 | |
| 
 | |
| 	cgroup_assert_mutex_or_rcu_locked();
 | |
| 
 | |
| 	/*
 | |
| 	 * @pos could already have been unlinked from the sibling list.
 | |
| 	 * Once a cgroup is removed, its ->sibling.next is no longer
 | |
| 	 * updated when its next sibling changes.  CSS_RELEASED is set when
 | |
| 	 * @pos is taken off list, at which time its next pointer is valid,
 | |
| 	 * and, as releases are serialized, the one pointed to by the next
 | |
| 	 * pointer is guaranteed to not have started release yet.  This
 | |
| 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
 | |
| 	 * critical section, the one pointed to by its next pointer is
 | |
| 	 * guaranteed to not have finished its RCU grace period even if we
 | |
| 	 * have dropped rcu_read_lock() in-between iterations.
 | |
| 	 *
 | |
| 	 * If @pos has CSS_RELEASED set, its next pointer can't be
 | |
| 	 * dereferenced; however, as each css is given a monotonically
 | |
| 	 * increasing unique serial number and always appended to the
 | |
| 	 * sibling list, the next one can be found by walking the parent's
 | |
| 	 * children until the first css with higher serial number than
 | |
| 	 * @pos's.  While this path can be slower, it happens iff iteration
 | |
| 	 * races against release and the race window is very small.
 | |
| 	 */
 | |
| 	if (!pos) {
 | |
| 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
 | |
| 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
 | |
| 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
 | |
| 	} else {
 | |
| 		list_for_each_entry_rcu(next, &parent->children, sibling,
 | |
| 					lockdep_is_held(&cgroup_mutex))
 | |
| 			if (next->serial_nr > pos->serial_nr)
 | |
| 				break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * @next, if not pointing to the head, can be dereferenced and is
 | |
| 	 * the next sibling.
 | |
| 	 */
 | |
| 	if (&next->sibling != &parent->children)
 | |
| 		return next;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_next_descendant_pre - find the next descendant for pre-order walk
 | |
|  * @pos: the current position (%NULL to initiate traversal)
 | |
|  * @root: css whose descendants to walk
 | |
|  *
 | |
|  * To be used by css_for_each_descendant_pre().  Find the next descendant
 | |
|  * to visit for pre-order traversal of @root's descendants.  @root is
 | |
|  * included in the iteration and the first node to be visited.
 | |
|  *
 | |
|  * While this function requires cgroup_mutex or RCU read locking, it
 | |
|  * doesn't require the whole traversal to be contained in a single critical
 | |
|  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
 | |
|  * This function will return the correct next descendant as long as both @pos
 | |
|  * and @root are accessible and @pos is a descendant of @root.
 | |
|  *
 | |
|  * If a subsystem synchronizes ->css_online() and the start of iteration, a
 | |
|  * css which finished ->css_online() is guaranteed to be visible in the
 | |
|  * future iterations and will stay visible until the last reference is put.
 | |
|  * A css which hasn't finished ->css_online() or already finished
 | |
|  * ->css_offline() may show up during traversal.  It's each subsystem's
 | |
|  * responsibility to synchronize against on/offlining.
 | |
|  */
 | |
| struct cgroup_subsys_state *
 | |
| css_next_descendant_pre(struct cgroup_subsys_state *pos,
 | |
| 			struct cgroup_subsys_state *root)
 | |
| {
 | |
| 	struct cgroup_subsys_state *next;
 | |
| 
 | |
| 	cgroup_assert_mutex_or_rcu_locked();
 | |
| 
 | |
| 	/* if first iteration, visit @root */
 | |
| 	if (!pos)
 | |
| 		return root;
 | |
| 
 | |
| 	/* visit the first child if exists */
 | |
| 	next = css_next_child(NULL, pos);
 | |
| 	if (next)
 | |
| 		return next;
 | |
| 
 | |
| 	/* no child, visit my or the closest ancestor's next sibling */
 | |
| 	while (pos != root) {
 | |
| 		next = css_next_child(pos, pos->parent);
 | |
| 		if (next)
 | |
| 			return next;
 | |
| 		pos = pos->parent;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(css_next_descendant_pre);
 | |
| 
 | |
| /**
 | |
|  * css_rightmost_descendant - return the rightmost descendant of a css
 | |
|  * @pos: css of interest
 | |
|  *
 | |
|  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
 | |
|  * is returned.  This can be used during pre-order traversal to skip
 | |
|  * subtree of @pos.
 | |
|  *
 | |
|  * While this function requires cgroup_mutex or RCU read locking, it
 | |
|  * doesn't require the whole traversal to be contained in a single critical
 | |
|  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
 | |
|  * This function will return the correct rightmost descendant as long as @pos
 | |
|  * is accessible.
 | |
|  */
 | |
| struct cgroup_subsys_state *
 | |
| css_rightmost_descendant(struct cgroup_subsys_state *pos)
 | |
| {
 | |
| 	struct cgroup_subsys_state *last, *tmp;
 | |
| 
 | |
| 	cgroup_assert_mutex_or_rcu_locked();
 | |
| 
 | |
| 	do {
 | |
| 		last = pos;
 | |
| 		/* ->prev isn't RCU safe, walk ->next till the end */
 | |
| 		pos = NULL;
 | |
| 		css_for_each_child(tmp, last)
 | |
| 			pos = tmp;
 | |
| 	} while (pos);
 | |
| 
 | |
| 	return last;
 | |
| }
 | |
| 
 | |
| static struct cgroup_subsys_state *
 | |
| css_leftmost_descendant(struct cgroup_subsys_state *pos)
 | |
| {
 | |
| 	struct cgroup_subsys_state *last;
 | |
| 
 | |
| 	do {
 | |
| 		last = pos;
 | |
| 		pos = css_next_child(NULL, pos);
 | |
| 	} while (pos);
 | |
| 
 | |
| 	return last;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_next_descendant_post - find the next descendant for post-order walk
 | |
|  * @pos: the current position (%NULL to initiate traversal)
 | |
|  * @root: css whose descendants to walk
 | |
|  *
 | |
|  * To be used by css_for_each_descendant_post().  Find the next descendant
 | |
|  * to visit for post-order traversal of @root's descendants.  @root is
 | |
|  * included in the iteration and the last node to be visited.
 | |
|  *
 | |
|  * While this function requires cgroup_mutex or RCU read locking, it
 | |
|  * doesn't require the whole traversal to be contained in a single critical
 | |
|  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
 | |
|  * This function will return the correct next descendant as long as both @pos
 | |
|  * and @cgroup are accessible and @pos is a descendant of @cgroup.
 | |
|  *
 | |
|  * If a subsystem synchronizes ->css_online() and the start of iteration, a
 | |
|  * css which finished ->css_online() is guaranteed to be visible in the
 | |
|  * future iterations and will stay visible until the last reference is put.
 | |
|  * A css which hasn't finished ->css_online() or already finished
 | |
|  * ->css_offline() may show up during traversal.  It's each subsystem's
 | |
|  * responsibility to synchronize against on/offlining.
 | |
|  */
 | |
| struct cgroup_subsys_state *
 | |
| css_next_descendant_post(struct cgroup_subsys_state *pos,
 | |
| 			 struct cgroup_subsys_state *root)
 | |
| {
 | |
| 	struct cgroup_subsys_state *next;
 | |
| 
 | |
| 	cgroup_assert_mutex_or_rcu_locked();
 | |
| 
 | |
| 	/* if first iteration, visit leftmost descendant which may be @root */
 | |
| 	if (!pos)
 | |
| 		return css_leftmost_descendant(root);
 | |
| 
 | |
| 	/* if we visited @root, we're done */
 | |
| 	if (pos == root)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* if there's an unvisited sibling, visit its leftmost descendant */
 | |
| 	next = css_next_child(pos, pos->parent);
 | |
| 	if (next)
 | |
| 		return css_leftmost_descendant(next);
 | |
| 
 | |
| 	/* no sibling left, visit parent */
 | |
| 	return pos->parent;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_has_online_children - does a css have online children
 | |
|  * @css: the target css
 | |
|  *
 | |
|  * Returns %true if @css has any online children; otherwise, %false.  This
 | |
|  * function can be called from any context but the caller is responsible
 | |
|  * for synchronizing against on/offlining as necessary.
 | |
|  */
 | |
| bool css_has_online_children(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cgroup_subsys_state *child;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	css_for_each_child(child, css) {
 | |
| 		if (child->flags & CSS_ONLINE) {
 | |
| 			ret = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
 | |
| {
 | |
| 	struct list_head *l;
 | |
| 	struct cgrp_cset_link *link;
 | |
| 	struct css_set *cset;
 | |
| 
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	/* find the next threaded cset */
 | |
| 	if (it->tcset_pos) {
 | |
| 		l = it->tcset_pos->next;
 | |
| 
 | |
| 		if (l != it->tcset_head) {
 | |
| 			it->tcset_pos = l;
 | |
| 			return container_of(l, struct css_set,
 | |
| 					    threaded_csets_node);
 | |
| 		}
 | |
| 
 | |
| 		it->tcset_pos = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* find the next cset */
 | |
| 	l = it->cset_pos;
 | |
| 	l = l->next;
 | |
| 	if (l == it->cset_head) {
 | |
| 		it->cset_pos = NULL;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (it->ss) {
 | |
| 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
 | |
| 	} else {
 | |
| 		link = list_entry(l, struct cgrp_cset_link, cset_link);
 | |
| 		cset = link->cset;
 | |
| 	}
 | |
| 
 | |
| 	it->cset_pos = l;
 | |
| 
 | |
| 	/* initialize threaded css_set walking */
 | |
| 	if (it->flags & CSS_TASK_ITER_THREADED) {
 | |
| 		if (it->cur_dcset)
 | |
| 			put_css_set_locked(it->cur_dcset);
 | |
| 		it->cur_dcset = cset;
 | |
| 		get_css_set(cset);
 | |
| 
 | |
| 		it->tcset_head = &cset->threaded_csets;
 | |
| 		it->tcset_pos = &cset->threaded_csets;
 | |
| 	}
 | |
| 
 | |
| 	return cset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
 | |
|  * @it: the iterator to advance
 | |
|  *
 | |
|  * Advance @it to the next css_set to walk.
 | |
|  */
 | |
| static void css_task_iter_advance_css_set(struct css_task_iter *it)
 | |
| {
 | |
| 	struct css_set *cset;
 | |
| 
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
 | |
| 	while ((cset = css_task_iter_next_css_set(it))) {
 | |
| 		if (!list_empty(&cset->tasks)) {
 | |
| 			it->cur_tasks_head = &cset->tasks;
 | |
| 			break;
 | |
| 		} else if (!list_empty(&cset->mg_tasks)) {
 | |
| 			it->cur_tasks_head = &cset->mg_tasks;
 | |
| 			break;
 | |
| 		} else if (!list_empty(&cset->dying_tasks)) {
 | |
| 			it->cur_tasks_head = &cset->dying_tasks;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!cset) {
 | |
| 		it->task_pos = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 	it->task_pos = it->cur_tasks_head->next;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't keep css_sets locked across iteration steps and thus
 | |
| 	 * need to take steps to ensure that iteration can be resumed after
 | |
| 	 * the lock is re-acquired.  Iteration is performed at two levels -
 | |
| 	 * css_sets and tasks in them.
 | |
| 	 *
 | |
| 	 * Once created, a css_set never leaves its cgroup lists, so a
 | |
| 	 * pinned css_set is guaranteed to stay put and we can resume
 | |
| 	 * iteration afterwards.
 | |
| 	 *
 | |
| 	 * Tasks may leave @cset across iteration steps.  This is resolved
 | |
| 	 * by registering each iterator with the css_set currently being
 | |
| 	 * walked and making css_set_move_task() advance iterators whose
 | |
| 	 * next task is leaving.
 | |
| 	 */
 | |
| 	if (it->cur_cset) {
 | |
| 		list_del(&it->iters_node);
 | |
| 		put_css_set_locked(it->cur_cset);
 | |
| 	}
 | |
| 	get_css_set(cset);
 | |
| 	it->cur_cset = cset;
 | |
| 	list_add(&it->iters_node, &cset->task_iters);
 | |
| }
 | |
| 
 | |
| static void css_task_iter_skip(struct css_task_iter *it,
 | |
| 			       struct task_struct *task)
 | |
| {
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| 
 | |
| 	if (it->task_pos == &task->cg_list) {
 | |
| 		it->task_pos = it->task_pos->next;
 | |
| 		it->flags |= CSS_TASK_ITER_SKIPPED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void css_task_iter_advance(struct css_task_iter *it)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	lockdep_assert_held(&css_set_lock);
 | |
| repeat:
 | |
| 	if (it->task_pos) {
 | |
| 		/*
 | |
| 		 * Advance iterator to find next entry. We go through cset
 | |
| 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
 | |
| 		 * the next cset.
 | |
| 		 */
 | |
| 		if (it->flags & CSS_TASK_ITER_SKIPPED)
 | |
| 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
 | |
| 		else
 | |
| 			it->task_pos = it->task_pos->next;
 | |
| 
 | |
| 		if (it->task_pos == &it->cur_cset->tasks) {
 | |
| 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
 | |
| 			it->task_pos = it->cur_tasks_head->next;
 | |
| 		}
 | |
| 		if (it->task_pos == &it->cur_cset->mg_tasks) {
 | |
| 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
 | |
| 			it->task_pos = it->cur_tasks_head->next;
 | |
| 		}
 | |
| 		if (it->task_pos == &it->cur_cset->dying_tasks)
 | |
| 			css_task_iter_advance_css_set(it);
 | |
| 	} else {
 | |
| 		/* called from start, proceed to the first cset */
 | |
| 		css_task_iter_advance_css_set(it);
 | |
| 	}
 | |
| 
 | |
| 	if (!it->task_pos)
 | |
| 		return;
 | |
| 
 | |
| 	task = list_entry(it->task_pos, struct task_struct, cg_list);
 | |
| 
 | |
| 	if (it->flags & CSS_TASK_ITER_PROCS) {
 | |
| 		/* if PROCS, skip over tasks which aren't group leaders */
 | |
| 		if (!thread_group_leader(task))
 | |
| 			goto repeat;
 | |
| 
 | |
| 		/* and dying leaders w/o live member threads */
 | |
| 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
 | |
| 		    !atomic_read(&task->signal->live))
 | |
| 			goto repeat;
 | |
| 	} else {
 | |
| 		/* skip all dying ones */
 | |
| 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
 | |
| 			goto repeat;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_task_iter_start - initiate task iteration
 | |
|  * @css: the css to walk tasks of
 | |
|  * @flags: CSS_TASK_ITER_* flags
 | |
|  * @it: the task iterator to use
 | |
|  *
 | |
|  * Initiate iteration through the tasks of @css.  The caller can call
 | |
|  * css_task_iter_next() to walk through the tasks until the function
 | |
|  * returns NULL.  On completion of iteration, css_task_iter_end() must be
 | |
|  * called.
 | |
|  */
 | |
| void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
 | |
| 			 struct css_task_iter *it)
 | |
| {
 | |
| 	unsigned long irqflags;
 | |
| 
 | |
| 	memset(it, 0, sizeof(*it));
 | |
| 
 | |
| 	spin_lock_irqsave(&css_set_lock, irqflags);
 | |
| 
 | |
| 	it->ss = css->ss;
 | |
| 	it->flags = flags;
 | |
| 
 | |
| 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
 | |
| 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
 | |
| 	else
 | |
| 		it->cset_pos = &css->cgroup->cset_links;
 | |
| 
 | |
| 	it->cset_head = it->cset_pos;
 | |
| 
 | |
| 	css_task_iter_advance(it);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&css_set_lock, irqflags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_task_iter_next - return the next task for the iterator
 | |
|  * @it: the task iterator being iterated
 | |
|  *
 | |
|  * The "next" function for task iteration.  @it should have been
 | |
|  * initialized via css_task_iter_start().  Returns NULL when the iteration
 | |
|  * reaches the end.
 | |
|  */
 | |
| struct task_struct *css_task_iter_next(struct css_task_iter *it)
 | |
| {
 | |
| 	unsigned long irqflags;
 | |
| 
 | |
| 	if (it->cur_task) {
 | |
| 		put_task_struct(it->cur_task);
 | |
| 		it->cur_task = NULL;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&css_set_lock, irqflags);
 | |
| 
 | |
| 	/* @it may be half-advanced by skips, finish advancing */
 | |
| 	if (it->flags & CSS_TASK_ITER_SKIPPED)
 | |
| 		css_task_iter_advance(it);
 | |
| 
 | |
| 	if (it->task_pos) {
 | |
| 		it->cur_task = list_entry(it->task_pos, struct task_struct,
 | |
| 					  cg_list);
 | |
| 		get_task_struct(it->cur_task);
 | |
| 		css_task_iter_advance(it);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&css_set_lock, irqflags);
 | |
| 
 | |
| 	return it->cur_task;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_task_iter_end - finish task iteration
 | |
|  * @it: the task iterator to finish
 | |
|  *
 | |
|  * Finish task iteration started by css_task_iter_start().
 | |
|  */
 | |
| void css_task_iter_end(struct css_task_iter *it)
 | |
| {
 | |
| 	unsigned long irqflags;
 | |
| 
 | |
| 	if (it->cur_cset) {
 | |
| 		spin_lock_irqsave(&css_set_lock, irqflags);
 | |
| 		list_del(&it->iters_node);
 | |
| 		put_css_set_locked(it->cur_cset);
 | |
| 		spin_unlock_irqrestore(&css_set_lock, irqflags);
 | |
| 	}
 | |
| 
 | |
| 	if (it->cur_dcset)
 | |
| 		put_css_set(it->cur_dcset);
 | |
| 
 | |
| 	if (it->cur_task)
 | |
| 		put_task_struct(it->cur_task);
 | |
| }
 | |
| 
 | |
| static void cgroup_procs_release(struct kernfs_open_file *of)
 | |
| {
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 
 | |
| 	if (ctx->procs.started)
 | |
| 		css_task_iter_end(&ctx->procs.iter);
 | |
| }
 | |
| 
 | |
| static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct kernfs_open_file *of = s->private;
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 
 | |
| 	if (pos)
 | |
| 		(*pos)++;
 | |
| 
 | |
| 	return css_task_iter_next(&ctx->procs.iter);
 | |
| }
 | |
| 
 | |
| static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
 | |
| 				  unsigned int iter_flags)
 | |
| {
 | |
| 	struct kernfs_open_file *of = s->private;
 | |
| 	struct cgroup *cgrp = seq_css(s)->cgroup;
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 	struct css_task_iter *it = &ctx->procs.iter;
 | |
| 
 | |
| 	/*
 | |
| 	 * When a seq_file is seeked, it's always traversed sequentially
 | |
| 	 * from position 0, so we can simply keep iterating on !0 *pos.
 | |
| 	 */
 | |
| 	if (!ctx->procs.started) {
 | |
| 		if (WARN_ON_ONCE((*pos)))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 		css_task_iter_start(&cgrp->self, iter_flags, it);
 | |
| 		ctx->procs.started = true;
 | |
| 	} else if (!(*pos)) {
 | |
| 		css_task_iter_end(it);
 | |
| 		css_task_iter_start(&cgrp->self, iter_flags, it);
 | |
| 	} else
 | |
| 		return it->cur_task;
 | |
| 
 | |
| 	return cgroup_procs_next(s, NULL, NULL);
 | |
| }
 | |
| 
 | |
| static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(s)->cgroup;
 | |
| 
 | |
| 	/*
 | |
| 	 * All processes of a threaded subtree belong to the domain cgroup
 | |
| 	 * of the subtree.  Only threads can be distributed across the
 | |
| 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
 | |
| 	 * They're always empty anyway.
 | |
| 	 */
 | |
| 	if (cgroup_is_threaded(cgrp))
 | |
| 		return ERR_PTR(-EOPNOTSUPP);
 | |
| 
 | |
| 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
 | |
| 					    CSS_TASK_ITER_THREADED);
 | |
| }
 | |
| 
 | |
| static int cgroup_procs_show(struct seq_file *s, void *v)
 | |
| {
 | |
| 	seq_printf(s, "%d\n", task_pid_vnr(v));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
 | |
| 	if (!inode)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
 | |
| 	iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
 | |
| 					 struct cgroup *dst_cgrp,
 | |
| 					 struct super_block *sb,
 | |
| 					 struct cgroup_namespace *ns)
 | |
| {
 | |
| 	struct cgroup *com_cgrp = src_cgrp;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	/* find the common ancestor */
 | |
| 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
 | |
| 		com_cgrp = cgroup_parent(com_cgrp);
 | |
| 
 | |
| 	/* %current should be authorized to migrate to the common ancestor */
 | |
| 	ret = cgroup_may_write(com_cgrp, sb);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If namespaces are delegation boundaries, %current must be able
 | |
| 	 * to see both source and destination cgroups from its namespace.
 | |
| 	 */
 | |
| 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
 | |
| 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
 | |
| 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cgroup_attach_permissions(struct cgroup *src_cgrp,
 | |
| 				     struct cgroup *dst_cgrp,
 | |
| 				     struct super_block *sb, bool threadgroup,
 | |
| 				     struct cgroup_namespace *ns)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = cgroup_migrate_vet_dst(dst_cgrp);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
 | |
| 				    bool threadgroup)
 | |
| {
 | |
| 	struct cgroup_file_ctx *ctx = of->priv;
 | |
| 	struct cgroup *src_cgrp, *dst_cgrp;
 | |
| 	struct task_struct *task;
 | |
| 	const struct cred *saved_cred;
 | |
| 	ssize_t ret;
 | |
| 	bool threadgroup_locked;
 | |
| 
 | |
| 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
 | |
| 	if (!dst_cgrp)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
 | |
| 	ret = PTR_ERR_OR_ZERO(task);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* find the source cgroup */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Process and thread migrations follow same delegation rule. Check
 | |
| 	 * permissions using the credentials from file open to protect against
 | |
| 	 * inherited fd attacks.
 | |
| 	 */
 | |
| 	saved_cred = override_creds(of->file->f_cred);
 | |
| 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
 | |
| 					of->file->f_path.dentry->d_sb,
 | |
| 					threadgroup, ctx->ns);
 | |
| 	revert_creds(saved_cred);
 | |
| 	if (ret)
 | |
| 		goto out_finish;
 | |
| 
 | |
| 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
 | |
| 
 | |
| out_finish:
 | |
| 	cgroup_procs_write_finish(task, threadgroup_locked);
 | |
| out_unlock:
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
 | |
| 				  char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
 | |
| }
 | |
| 
 | |
| static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
 | |
| {
 | |
| 	return __cgroup_procs_start(s, pos, 0);
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
 | |
| 				    char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
 | |
| }
 | |
| 
 | |
| /* cgroup core interface files for the default hierarchy */
 | |
| static struct cftype cgroup_base_files[] = {
 | |
| 	{
 | |
| 		.name = "cgroup.type",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = cgroup_type_show,
 | |
| 		.write = cgroup_type_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.procs",
 | |
| 		.flags = CFTYPE_NS_DELEGATABLE,
 | |
| 		.file_offset = offsetof(struct cgroup, procs_file),
 | |
| 		.release = cgroup_procs_release,
 | |
| 		.seq_start = cgroup_procs_start,
 | |
| 		.seq_next = cgroup_procs_next,
 | |
| 		.seq_show = cgroup_procs_show,
 | |
| 		.write = cgroup_procs_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.threads",
 | |
| 		.flags = CFTYPE_NS_DELEGATABLE,
 | |
| 		.release = cgroup_procs_release,
 | |
| 		.seq_start = cgroup_threads_start,
 | |
| 		.seq_next = cgroup_procs_next,
 | |
| 		.seq_show = cgroup_procs_show,
 | |
| 		.write = cgroup_threads_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.controllers",
 | |
| 		.seq_show = cgroup_controllers_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.subtree_control",
 | |
| 		.flags = CFTYPE_NS_DELEGATABLE,
 | |
| 		.seq_show = cgroup_subtree_control_show,
 | |
| 		.write = cgroup_subtree_control_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.events",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.file_offset = offsetof(struct cgroup, events_file),
 | |
| 		.seq_show = cgroup_events_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.max.descendants",
 | |
| 		.seq_show = cgroup_max_descendants_show,
 | |
| 		.write = cgroup_max_descendants_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.max.depth",
 | |
| 		.seq_show = cgroup_max_depth_show,
 | |
| 		.write = cgroup_max_depth_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.stat",
 | |
| 		.seq_show = cgroup_stat_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.freeze",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = cgroup_freeze_show,
 | |
| 		.write = cgroup_freeze_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.kill",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.write = cgroup_kill_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cpu.stat",
 | |
| 		.seq_show = cpu_stat_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cpu.stat.local",
 | |
| 		.seq_show = cpu_local_stat_show,
 | |
| 	},
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| 
 | |
| static struct cftype cgroup_psi_files[] = {
 | |
| #ifdef CONFIG_PSI
 | |
| 	{
 | |
| 		.name = "io.pressure",
 | |
| 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
 | |
| 		.seq_show = cgroup_io_pressure_show,
 | |
| 		.write = cgroup_io_pressure_write,
 | |
| 		.poll = cgroup_pressure_poll,
 | |
| 		.release = cgroup_pressure_release,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memory.pressure",
 | |
| 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
 | |
| 		.seq_show = cgroup_memory_pressure_show,
 | |
| 		.write = cgroup_memory_pressure_write,
 | |
| 		.poll = cgroup_pressure_poll,
 | |
| 		.release = cgroup_pressure_release,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cpu.pressure",
 | |
| 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
 | |
| 		.seq_show = cgroup_cpu_pressure_show,
 | |
| 		.write = cgroup_cpu_pressure_write,
 | |
| 		.poll = cgroup_pressure_poll,
 | |
| 		.release = cgroup_pressure_release,
 | |
| 	},
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| 	{
 | |
| 		.name = "irq.pressure",
 | |
| 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
 | |
| 		.seq_show = cgroup_irq_pressure_show,
 | |
| 		.write = cgroup_irq_pressure_write,
 | |
| 		.poll = cgroup_pressure_poll,
 | |
| 		.release = cgroup_pressure_release,
 | |
| 	},
 | |
| #endif
 | |
| 	{
 | |
| 		.name = "cgroup.pressure",
 | |
| 		.seq_show = cgroup_pressure_show,
 | |
| 		.write = cgroup_pressure_write,
 | |
| 	},
 | |
| #endif /* CONFIG_PSI */
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * css destruction is four-stage process.
 | |
|  *
 | |
|  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
 | |
|  *    Implemented in kill_css().
 | |
|  *
 | |
|  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
 | |
|  *    and thus css_tryget_online() is guaranteed to fail, the css can be
 | |
|  *    offlined by invoking offline_css().  After offlining, the base ref is
 | |
|  *    put.  Implemented in css_killed_work_fn().
 | |
|  *
 | |
|  * 3. When the percpu_ref reaches zero, the only possible remaining
 | |
|  *    accessors are inside RCU read sections.  css_release() schedules the
 | |
|  *    RCU callback.
 | |
|  *
 | |
|  * 4. After the grace period, the css can be freed.  Implemented in
 | |
|  *    css_free_rwork_fn().
 | |
|  *
 | |
|  * It is actually hairier because both step 2 and 4 require process context
 | |
|  * and thus involve punting to css->destroy_work adding two additional
 | |
|  * steps to the already complex sequence.
 | |
|  */
 | |
| static void css_free_rwork_fn(struct work_struct *work)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
 | |
| 				struct cgroup_subsys_state, destroy_rwork);
 | |
| 	struct cgroup_subsys *ss = css->ss;
 | |
| 	struct cgroup *cgrp = css->cgroup;
 | |
| 
 | |
| 	percpu_ref_exit(&css->refcnt);
 | |
| 	css_rstat_exit(css);
 | |
| 
 | |
| 	if (!css_is_self(css)) {
 | |
| 		/* css free path */
 | |
| 		struct cgroup_subsys_state *parent = css->parent;
 | |
| 		int id = css->id;
 | |
| 
 | |
| 		ss->css_free(css);
 | |
| 		cgroup_idr_remove(&ss->css_idr, id);
 | |
| 		cgroup_put(cgrp);
 | |
| 
 | |
| 		if (parent)
 | |
| 			css_put(parent);
 | |
| 	} else {
 | |
| 		/* cgroup free path */
 | |
| 		atomic_dec(&cgrp->root->nr_cgrps);
 | |
| 		if (!cgroup_on_dfl(cgrp))
 | |
| 			cgroup1_pidlist_destroy_all(cgrp);
 | |
| 		cancel_work_sync(&cgrp->release_agent_work);
 | |
| 		bpf_cgrp_storage_free(cgrp);
 | |
| 
 | |
| 		if (cgroup_parent(cgrp)) {
 | |
| 			/*
 | |
| 			 * We get a ref to the parent, and put the ref when
 | |
| 			 * this cgroup is being freed, so it's guaranteed
 | |
| 			 * that the parent won't be destroyed before its
 | |
| 			 * children.
 | |
| 			 */
 | |
| 			cgroup_put(cgroup_parent(cgrp));
 | |
| 			kernfs_put(cgrp->kn);
 | |
| 			psi_cgroup_free(cgrp);
 | |
| 			kfree(cgrp);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * This is root cgroup's refcnt reaching zero,
 | |
| 			 * which indicates that the root should be
 | |
| 			 * released.
 | |
| 			 */
 | |
| 			cgroup_destroy_root(cgrp->root);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void css_release_work_fn(struct work_struct *work)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css =
 | |
| 		container_of(work, struct cgroup_subsys_state, destroy_work);
 | |
| 	struct cgroup_subsys *ss = css->ss;
 | |
| 	struct cgroup *cgrp = css->cgroup;
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 
 | |
| 	css->flags |= CSS_RELEASED;
 | |
| 	list_del_rcu(&css->sibling);
 | |
| 
 | |
| 	if (!css_is_self(css)) {
 | |
| 		struct cgroup *parent_cgrp;
 | |
| 
 | |
| 		css_rstat_flush(css);
 | |
| 
 | |
| 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
 | |
| 		if (ss->css_released)
 | |
| 			ss->css_released(css);
 | |
| 
 | |
| 		cgrp->nr_dying_subsys[ss->id]--;
 | |
| 		/*
 | |
| 		 * When a css is released and ready to be freed, its
 | |
| 		 * nr_descendants must be zero. However, the corresponding
 | |
| 		 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
 | |
| 		 * is activated and deactivated multiple times with one or
 | |
| 		 * more of its previous activation leaving behind dying csses.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(css->nr_descendants);
 | |
| 		parent_cgrp = cgroup_parent(cgrp);
 | |
| 		while (parent_cgrp) {
 | |
| 			parent_cgrp->nr_dying_subsys[ss->id]--;
 | |
| 			parent_cgrp = cgroup_parent(parent_cgrp);
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct cgroup *tcgrp;
 | |
| 
 | |
| 		/* cgroup release path */
 | |
| 		TRACE_CGROUP_PATH(release, cgrp);
 | |
| 
 | |
| 		css_rstat_flush(&cgrp->self);
 | |
| 
 | |
| 		spin_lock_irq(&css_set_lock);
 | |
| 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
 | |
| 		     tcgrp = cgroup_parent(tcgrp))
 | |
| 			tcgrp->nr_dying_descendants--;
 | |
| 		spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * There are two control paths which try to determine
 | |
| 		 * cgroup from dentry without going through kernfs -
 | |
| 		 * cgroupstats_build() and css_tryget_online_from_dir().
 | |
| 		 * Those are supported by RCU protecting clearing of
 | |
| 		 * cgrp->kn->priv backpointer.
 | |
| 		 */
 | |
| 		if (cgrp->kn)
 | |
| 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
 | |
| 					 NULL);
 | |
| 	}
 | |
| 
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
 | |
| 	queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
 | |
| }
 | |
| 
 | |
| static void css_release(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css =
 | |
| 		container_of(ref, struct cgroup_subsys_state, refcnt);
 | |
| 
 | |
| 	INIT_WORK(&css->destroy_work, css_release_work_fn);
 | |
| 	queue_work(cgroup_release_wq, &css->destroy_work);
 | |
| }
 | |
| 
 | |
| static void init_and_link_css(struct cgroup_subsys_state *css,
 | |
| 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
 | |
| {
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	cgroup_get_live(cgrp);
 | |
| 
 | |
| 	memset(css, 0, sizeof(*css));
 | |
| 	css->cgroup = cgrp;
 | |
| 	css->ss = ss;
 | |
| 	css->id = -1;
 | |
| 	INIT_LIST_HEAD(&css->sibling);
 | |
| 	INIT_LIST_HEAD(&css->children);
 | |
| 	css->serial_nr = css_serial_nr_next++;
 | |
| 	atomic_set(&css->online_cnt, 0);
 | |
| 
 | |
| 	if (cgroup_parent(cgrp)) {
 | |
| 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
 | |
| 		css_get(css->parent);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(cgroup_css(cgrp, ss));
 | |
| }
 | |
| 
 | |
| /* invoke ->css_online() on a new CSS and mark it online if successful */
 | |
| static int online_css(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cgroup_subsys *ss = css->ss;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	if (ss->css_online)
 | |
| 		ret = ss->css_online(css);
 | |
| 	if (!ret) {
 | |
| 		css->flags |= CSS_ONLINE;
 | |
| 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
 | |
| 
 | |
| 		atomic_inc(&css->online_cnt);
 | |
| 		if (css->parent) {
 | |
| 			atomic_inc(&css->parent->online_cnt);
 | |
| 			while ((css = css->parent))
 | |
| 				css->nr_descendants++;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
 | |
| static void offline_css(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cgroup_subsys *ss = css->ss;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	if (!(css->flags & CSS_ONLINE))
 | |
| 		return;
 | |
| 
 | |
| 	if (ss->css_offline)
 | |
| 		ss->css_offline(css);
 | |
| 
 | |
| 	css->flags &= ~CSS_ONLINE;
 | |
| 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
 | |
| 
 | |
| 	wake_up_all(&css->cgroup->offline_waitq);
 | |
| 
 | |
| 	css->cgroup->nr_dying_subsys[ss->id]++;
 | |
| 	/*
 | |
| 	 * Parent css and cgroup cannot be freed until after the freeing
 | |
| 	 * of child css, see css_free_rwork_fn().
 | |
| 	 */
 | |
| 	while ((css = css->parent)) {
 | |
| 		css->nr_descendants--;
 | |
| 		css->cgroup->nr_dying_subsys[ss->id]++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_create - create a cgroup_subsys_state
 | |
|  * @cgrp: the cgroup new css will be associated with
 | |
|  * @ss: the subsys of new css
 | |
|  *
 | |
|  * Create a new css associated with @cgrp - @ss pair.  On success, the new
 | |
|  * css is online and installed in @cgrp.  This function doesn't create the
 | |
|  * interface files.  Returns 0 on success, -errno on failure.
 | |
|  */
 | |
| static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 | |
| 					      struct cgroup_subsys *ss)
 | |
| {
 | |
| 	struct cgroup *parent = cgroup_parent(cgrp);
 | |
| 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	int err;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	css = ss->css_alloc(parent_css);
 | |
| 	if (!css)
 | |
| 		css = ERR_PTR(-ENOMEM);
 | |
| 	if (IS_ERR(css))
 | |
| 		return css;
 | |
| 
 | |
| 	init_and_link_css(css, ss, cgrp);
 | |
| 
 | |
| 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
 | |
| 	if (err)
 | |
| 		goto err_free_css;
 | |
| 
 | |
| 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
 | |
| 	if (err < 0)
 | |
| 		goto err_free_css;
 | |
| 	css->id = err;
 | |
| 
 | |
| 	err = css_rstat_init(css);
 | |
| 	if (err)
 | |
| 		goto err_free_css;
 | |
| 
 | |
| 	/* @css is ready to be brought online now, make it visible */
 | |
| 	list_add_tail_rcu(&css->sibling, &parent_css->children);
 | |
| 	cgroup_idr_replace(&ss->css_idr, css, css->id);
 | |
| 
 | |
| 	err = online_css(css);
 | |
| 	if (err)
 | |
| 		goto err_list_del;
 | |
| 
 | |
| 	return css;
 | |
| 
 | |
| err_list_del:
 | |
| 	list_del_rcu(&css->sibling);
 | |
| err_free_css:
 | |
| 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
 | |
| 	queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The returned cgroup is fully initialized including its control mask, but
 | |
|  * it doesn't have the control mask applied.
 | |
|  */
 | |
| static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
 | |
| 				    umode_t mode)
 | |
| {
 | |
| 	struct cgroup_root *root = parent->root;
 | |
| 	struct cgroup *cgrp, *tcgrp;
 | |
| 	struct kernfs_node *kn;
 | |
| 	int i, level = parent->level + 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* allocate the cgroup and its ID, 0 is reserved for the root */
 | |
| 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
 | |
| 	if (!cgrp)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		goto out_free_cgrp;
 | |
| 
 | |
| 	/* create the directory */
 | |
| 	kn = kernfs_create_dir_ns(parent->kn, name, mode,
 | |
| 				  current_fsuid(), current_fsgid(),
 | |
| 				  cgrp, NULL);
 | |
| 	if (IS_ERR(kn)) {
 | |
| 		ret = PTR_ERR(kn);
 | |
| 		goto out_cancel_ref;
 | |
| 	}
 | |
| 	cgrp->kn = kn;
 | |
| 
 | |
| 	init_cgroup_housekeeping(cgrp);
 | |
| 
 | |
| 	cgrp->self.parent = &parent->self;
 | |
| 	cgrp->root = root;
 | |
| 	cgrp->level = level;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that init_cgroup_housekeeping() has been called and cgrp->self
 | |
| 	 * is setup, it is safe to perform rstat initialization on it.
 | |
| 	 */
 | |
| 	ret = css_rstat_init(&cgrp->self);
 | |
| 	if (ret)
 | |
| 		goto out_kernfs_remove;
 | |
| 
 | |
| 	ret = psi_cgroup_alloc(cgrp);
 | |
| 	if (ret)
 | |
| 		goto out_stat_exit;
 | |
| 
 | |
| 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
 | |
| 		cgrp->ancestors[tcgrp->level] = tcgrp;
 | |
| 
 | |
| 	/*
 | |
| 	 * New cgroup inherits effective freeze counter, and
 | |
| 	 * if the parent has to be frozen, the child has too.
 | |
| 	 */
 | |
| 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
 | |
| 	if (cgrp->freezer.e_freeze) {
 | |
| 		/*
 | |
| 		 * Set the CGRP_FREEZE flag, so when a process will be
 | |
| 		 * attached to the child cgroup, it will become frozen.
 | |
| 		 * At this point the new cgroup is unpopulated, so we can
 | |
| 		 * consider it frozen immediately.
 | |
| 		 */
 | |
| 		set_bit(CGRP_FREEZE, &cgrp->flags);
 | |
| 		set_bit(CGRP_FROZEN, &cgrp->flags);
 | |
| 	}
 | |
| 
 | |
| 	if (notify_on_release(parent))
 | |
| 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 | |
| 
 | |
| 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
 | |
| 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
 | |
| 
 | |
| 	cgrp->self.serial_nr = css_serial_nr_next++;
 | |
| 
 | |
| 	ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier,
 | |
| 						  CGROUP_LIFETIME_ONLINE,
 | |
| 						  CGROUP_LIFETIME_OFFLINE, cgrp);
 | |
| 	ret = notifier_to_errno(ret);
 | |
| 	if (ret)
 | |
| 		goto out_psi_free;
 | |
| 
 | |
| 	/* allocation complete, commit to creation */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	for (i = 0; i < level; i++) {
 | |
| 		tcgrp = cgrp->ancestors[i];
 | |
| 		tcgrp->nr_descendants++;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the new cgroup is frozen, all ancestor cgroups get a new
 | |
| 		 * frozen descendant, but their state can't change because of
 | |
| 		 * this.
 | |
| 		 */
 | |
| 		if (cgrp->freezer.e_freeze)
 | |
| 			tcgrp->freezer.nr_frozen_descendants++;
 | |
| 	}
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
 | |
| 	atomic_inc(&root->nr_cgrps);
 | |
| 	cgroup_get_live(parent);
 | |
| 
 | |
| 	/*
 | |
| 	 * On the default hierarchy, a child doesn't automatically inherit
 | |
| 	 * subtree_control from the parent.  Each is configured manually.
 | |
| 	 */
 | |
| 	if (!cgroup_on_dfl(cgrp))
 | |
| 		cgrp->subtree_control = cgroup_control(cgrp);
 | |
| 
 | |
| 	cgroup_propagate_control(cgrp);
 | |
| 
 | |
| 	return cgrp;
 | |
| 
 | |
| out_psi_free:
 | |
| 	psi_cgroup_free(cgrp);
 | |
| out_stat_exit:
 | |
| 	css_rstat_exit(&cgrp->self);
 | |
| out_kernfs_remove:
 | |
| 	kernfs_remove(cgrp->kn);
 | |
| out_cancel_ref:
 | |
| 	percpu_ref_exit(&cgrp->self.refcnt);
 | |
| out_free_cgrp:
 | |
| 	kfree(cgrp);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
 | |
| {
 | |
| 	struct cgroup *cgroup;
 | |
| 	int ret = false;
 | |
| 	int level = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
 | |
| 		if (cgroup->nr_descendants >= cgroup->max_descendants)
 | |
| 			goto fail;
 | |
| 
 | |
| 		if (level >= cgroup->max_depth)
 | |
| 			goto fail;
 | |
| 
 | |
| 		level++;
 | |
| 	}
 | |
| 
 | |
| 	ret = true;
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
 | |
| {
 | |
| 	struct cgroup *parent, *cgrp;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
 | |
| 	if (strchr(name, '\n'))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	parent = cgroup_kn_lock_live(parent_kn, false);
 | |
| 	if (!parent)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!cgroup_check_hierarchy_limits(parent)) {
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	cgrp = cgroup_create(parent, name, mode);
 | |
| 	if (IS_ERR(cgrp)) {
 | |
| 		ret = PTR_ERR(cgrp);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This extra ref will be put in css_free_rwork_fn() and guarantees
 | |
| 	 * that @cgrp->kn is always accessible.
 | |
| 	 */
 | |
| 	kernfs_get(cgrp->kn);
 | |
| 
 | |
| 	ret = css_populate_dir(&cgrp->self);
 | |
| 	if (ret)
 | |
| 		goto out_destroy;
 | |
| 
 | |
| 	ret = cgroup_apply_control_enable(cgrp);
 | |
| 	if (ret)
 | |
| 		goto out_destroy;
 | |
| 
 | |
| 	TRACE_CGROUP_PATH(mkdir, cgrp);
 | |
| 
 | |
| 	/* let's create and online css's */
 | |
| 	kernfs_activate(cgrp->kn);
 | |
| 
 | |
| 	ret = 0;
 | |
| 	goto out_unlock;
 | |
| 
 | |
| out_destroy:
 | |
| 	cgroup_destroy_locked(cgrp);
 | |
| out_unlock:
 | |
| 	cgroup_kn_unlock(parent_kn);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when the refcnt of a css is confirmed to be killed.
 | |
|  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
 | |
|  * initiate destruction and put the css ref from kill_css().
 | |
|  */
 | |
| static void css_killed_work_fn(struct work_struct *work)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css =
 | |
| 		container_of(work, struct cgroup_subsys_state, destroy_work);
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 
 | |
| 	do {
 | |
| 		offline_css(css);
 | |
| 		css_put(css);
 | |
| 		/* @css can't go away while we're holding cgroup_mutex */
 | |
| 		css = css->parent;
 | |
| 	} while (css && atomic_dec_and_test(&css->online_cnt));
 | |
| 
 | |
| 	cgroup_unlock();
 | |
| }
 | |
| 
 | |
| /* css kill confirmation processing requires process context, bounce */
 | |
| static void css_killed_ref_fn(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css =
 | |
| 		container_of(ref, struct cgroup_subsys_state, refcnt);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&css->online_cnt)) {
 | |
| 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
 | |
| 		queue_work(cgroup_offline_wq, &css->destroy_work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kill_css - destroy a css
 | |
|  * @css: css to destroy
 | |
|  *
 | |
|  * This function initiates destruction of @css by removing cgroup interface
 | |
|  * files and putting its base reference.  ->css_offline() will be invoked
 | |
|  * asynchronously once css_tryget_online() is guaranteed to fail and when
 | |
|  * the reference count reaches zero, @css will be released.
 | |
|  */
 | |
| static void kill_css(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	if (css->flags & CSS_DYING)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Call css_killed(), if defined, before setting the CSS_DYING flag
 | |
| 	 */
 | |
| 	if (css->ss->css_killed)
 | |
| 		css->ss->css_killed(css);
 | |
| 
 | |
| 	css->flags |= CSS_DYING;
 | |
| 
 | |
| 	/*
 | |
| 	 * This must happen before css is disassociated with its cgroup.
 | |
| 	 * See seq_css() for details.
 | |
| 	 */
 | |
| 	css_clear_dir(css);
 | |
| 
 | |
| 	/*
 | |
| 	 * Killing would put the base ref, but we need to keep it alive
 | |
| 	 * until after ->css_offline().
 | |
| 	 */
 | |
| 	css_get(css);
 | |
| 
 | |
| 	/*
 | |
| 	 * cgroup core guarantees that, by the time ->css_offline() is
 | |
| 	 * invoked, no new css reference will be given out via
 | |
| 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
 | |
| 	 * proceed to offlining css's because percpu_ref_kill() doesn't
 | |
| 	 * guarantee that the ref is seen as killed on all CPUs on return.
 | |
| 	 *
 | |
| 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
 | |
| 	 * css is confirmed to be seen as killed on all CPUs.
 | |
| 	 */
 | |
| 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_destroy_locked - the first stage of cgroup destruction
 | |
|  * @cgrp: cgroup to be destroyed
 | |
|  *
 | |
|  * css's make use of percpu refcnts whose killing latency shouldn't be
 | |
|  * exposed to userland and are RCU protected.  Also, cgroup core needs to
 | |
|  * guarantee that css_tryget_online() won't succeed by the time
 | |
|  * ->css_offline() is invoked.  To satisfy all the requirements,
 | |
|  * destruction is implemented in the following two steps.
 | |
|  *
 | |
|  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
 | |
|  *     userland visible parts and start killing the percpu refcnts of
 | |
|  *     css's.  Set up so that the next stage will be kicked off once all
 | |
|  *     the percpu refcnts are confirmed to be killed.
 | |
|  *
 | |
|  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
 | |
|  *     rest of destruction.  Once all cgroup references are gone, the
 | |
|  *     cgroup is RCU-freed.
 | |
|  *
 | |
|  * This function implements s1.  After this step, @cgrp is gone as far as
 | |
|  * the userland is concerned and a new cgroup with the same name may be
 | |
|  * created.  As cgroup doesn't care about the names internally, this
 | |
|  * doesn't cause any problem.
 | |
|  */
 | |
| static int cgroup_destroy_locked(struct cgroup *cgrp)
 | |
| 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
 | |
| {
 | |
| 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cgrp_cset_link *link;
 | |
| 	int ssid, ret;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only migration can raise populated from zero and we're already
 | |
| 	 * holding cgroup_mutex.
 | |
| 	 */
 | |
| 	if (cgroup_is_populated(cgrp))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure there's no live children.  We can't test emptiness of
 | |
| 	 * ->self.children as dead children linger on it while being
 | |
| 	 * drained; otherwise, "rmdir parent/child parent" may fail.
 | |
| 	 */
 | |
| 	if (css_has_online_children(&cgrp->self))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark @cgrp and the associated csets dead.  The former prevents
 | |
| 	 * further task migration and child creation by disabling
 | |
| 	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
 | |
| 	 * the migration path.
 | |
| 	 */
 | |
| 	cgrp->self.flags &= ~CSS_ONLINE;
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
 | |
| 		link->cset->dead = true;
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	/* initiate massacre of all css's */
 | |
| 	for_each_css(css, ssid, cgrp)
 | |
| 		kill_css(css);
 | |
| 
 | |
| 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
 | |
| 	css_clear_dir(&cgrp->self);
 | |
| 	kernfs_remove(cgrp->kn);
 | |
| 
 | |
| 	if (cgroup_is_threaded(cgrp))
 | |
| 		parent->nr_threaded_children--;
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
 | |
| 		tcgrp->nr_descendants--;
 | |
| 		tcgrp->nr_dying_descendants++;
 | |
| 		/*
 | |
| 		 * If the dying cgroup is frozen, decrease frozen descendants
 | |
| 		 * counters of ancestor cgroups.
 | |
| 		 */
 | |
| 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
 | |
| 			tcgrp->freezer.nr_frozen_descendants--;
 | |
| 	}
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	cgroup1_check_for_release(parent);
 | |
| 
 | |
| 	ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
 | |
| 					   CGROUP_LIFETIME_OFFLINE, cgrp);
 | |
| 	WARN_ON_ONCE(notifier_to_errno(ret));
 | |
| 
 | |
| 	/* put the base reference */
 | |
| 	percpu_ref_kill(&cgrp->self.refcnt);
 | |
| 
 | |
| 	return 0;
 | |
| };
 | |
| 
 | |
| int cgroup_rmdir(struct kernfs_node *kn)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(kn, false);
 | |
| 	if (!cgrp)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = cgroup_destroy_locked(cgrp);
 | |
| 	if (!ret)
 | |
| 		TRACE_CGROUP_PATH(rmdir, cgrp);
 | |
| 
 | |
| 	cgroup_kn_unlock(kn);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
 | |
| 	.show_options		= cgroup_show_options,
 | |
| 	.mkdir			= cgroup_mkdir,
 | |
| 	.rmdir			= cgroup_rmdir,
 | |
| 	.show_path		= cgroup_show_path,
 | |
| };
 | |
| 
 | |
| static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 
 | |
| 	idr_init(&ss->css_idr);
 | |
| 	INIT_LIST_HEAD(&ss->cfts);
 | |
| 
 | |
| 	/* Create the root cgroup state for this subsystem */
 | |
| 	ss->root = &cgrp_dfl_root;
 | |
| 	css = ss->css_alloc(NULL);
 | |
| 	/* We don't handle early failures gracefully */
 | |
| 	BUG_ON(IS_ERR(css));
 | |
| 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Root csses are never destroyed and we can't initialize
 | |
| 	 * percpu_ref during early init.  Disable refcnting.
 | |
| 	 */
 | |
| 	css->flags |= CSS_NO_REF;
 | |
| 
 | |
| 	if (early) {
 | |
| 		/* allocation can't be done safely during early init */
 | |
| 		css->id = 1;
 | |
| 	} else {
 | |
| 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
 | |
| 		BUG_ON(css->id < 0);
 | |
| 
 | |
| 		BUG_ON(ss_rstat_init(ss));
 | |
| 		BUG_ON(css_rstat_init(css));
 | |
| 	}
 | |
| 
 | |
| 	/* Update the init_css_set to contain a subsys
 | |
| 	 * pointer to this state - since the subsystem is
 | |
| 	 * newly registered, all tasks and hence the
 | |
| 	 * init_css_set is in the subsystem's root cgroup. */
 | |
| 	init_css_set.subsys[ss->id] = css;
 | |
| 
 | |
| 	have_fork_callback |= (bool)ss->fork << ss->id;
 | |
| 	have_exit_callback |= (bool)ss->exit << ss->id;
 | |
| 	have_release_callback |= (bool)ss->release << ss->id;
 | |
| 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
 | |
| 
 | |
| 	/* At system boot, before all subsystems have been
 | |
| 	 * registered, no tasks have been forked, so we don't
 | |
| 	 * need to invoke fork callbacks here. */
 | |
| 	BUG_ON(!list_empty(&init_task.tasks));
 | |
| 
 | |
| 	BUG_ON(online_css(css));
 | |
| 
 | |
| 	cgroup_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_init_early - cgroup initialization at system boot
 | |
|  *
 | |
|  * Initialize cgroups at system boot, and initialize any
 | |
|  * subsystems that request early init.
 | |
|  */
 | |
| int __init cgroup_init_early(void)
 | |
| {
 | |
| 	static struct cgroup_fs_context __initdata ctx;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int i;
 | |
| 
 | |
| 	ctx.root = &cgrp_dfl_root;
 | |
| 	init_cgroup_root(&ctx);
 | |
| 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
 | |
| 
 | |
| 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
 | |
| 
 | |
| 	for_each_subsys(ss, i) {
 | |
| 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
 | |
| 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
 | |
| 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
 | |
| 		     ss->id, ss->name);
 | |
| 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
 | |
| 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
 | |
| 		WARN(ss->early_init && ss->css_rstat_flush,
 | |
| 		     "cgroup rstat cannot be used with early init subsystem\n");
 | |
| 
 | |
| 		ss->id = i;
 | |
| 		ss->name = cgroup_subsys_name[i];
 | |
| 		if (!ss->legacy_name)
 | |
| 			ss->legacy_name = cgroup_subsys_name[i];
 | |
| 
 | |
| 		if (ss->early_init)
 | |
| 			cgroup_init_subsys(ss, true);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_init - cgroup initialization
 | |
|  *
 | |
|  * Register cgroup filesystem and /proc file, and initialize
 | |
|  * any subsystems that didn't request early init.
 | |
|  */
 | |
| int __init cgroup_init(void)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 
 | |
| 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
 | |
| 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
 | |
| 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
 | |
| 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
 | |
| 
 | |
| 	BUG_ON(ss_rstat_init(NULL));
 | |
| 
 | |
| 	get_user_ns(init_cgroup_ns.user_ns);
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Add init_css_set to the hash table so that dfl_root can link to
 | |
| 	 * it during init.
 | |
| 	 */
 | |
| 	hash_add(css_set_table, &init_css_set.hlist,
 | |
| 		 css_set_hash(init_css_set.subsys));
 | |
| 
 | |
| 	cgroup_bpf_lifetime_notifier_init();
 | |
| 
 | |
| 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
 | |
| 
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	for_each_subsys(ss, ssid) {
 | |
| 		if (ss->early_init) {
 | |
| 			struct cgroup_subsys_state *css =
 | |
| 				init_css_set.subsys[ss->id];
 | |
| 
 | |
| 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
 | |
| 						   GFP_KERNEL);
 | |
| 			BUG_ON(css->id < 0);
 | |
| 		} else {
 | |
| 			cgroup_init_subsys(ss, false);
 | |
| 		}
 | |
| 
 | |
| 		list_add_tail(&init_css_set.e_cset_node[ssid],
 | |
| 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
 | |
| 
 | |
| 		/*
 | |
| 		 * Setting dfl_root subsys_mask needs to consider the
 | |
| 		 * disabled flag and cftype registration needs kmalloc,
 | |
| 		 * both of which aren't available during early_init.
 | |
| 		 */
 | |
| 		if (!cgroup_ssid_enabled(ssid))
 | |
| 			continue;
 | |
| 
 | |
| 		if (cgroup1_ssid_disabled(ssid))
 | |
| 			pr_info("Disabling %s control group subsystem in v1 mounts\n",
 | |
| 				ss->legacy_name);
 | |
| 
 | |
| 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
 | |
| 
 | |
| 		/* implicit controllers must be threaded too */
 | |
| 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
 | |
| 
 | |
| 		if (ss->implicit_on_dfl)
 | |
| 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
 | |
| 		else if (!ss->dfl_cftypes)
 | |
| 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
 | |
| 
 | |
| 		if (ss->threaded)
 | |
| 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
 | |
| 
 | |
| 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
 | |
| 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
 | |
| 		} else {
 | |
| 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
 | |
| 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
 | |
| 		}
 | |
| 
 | |
| 		if (ss->bind)
 | |
| 			ss->bind(init_css_set.subsys[ssid]);
 | |
| 
 | |
| 		cgroup_lock();
 | |
| 		css_populate_dir(init_css_set.subsys[ssid]);
 | |
| 		cgroup_unlock();
 | |
| 	}
 | |
| 
 | |
| 	/* init_css_set.subsys[] has been updated, re-hash */
 | |
| 	hash_del(&init_css_set.hlist);
 | |
| 	hash_add(css_set_table, &init_css_set.hlist,
 | |
| 		 css_set_hash(init_css_set.subsys));
 | |
| 
 | |
| 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
 | |
| 	WARN_ON(register_filesystem(&cgroup_fs_type));
 | |
| 	WARN_ON(register_filesystem(&cgroup2_fs_type));
 | |
| 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
 | |
| #ifdef CONFIG_CPUSETS_V1
 | |
| 	WARN_ON(register_filesystem(&cpuset_fs_type));
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init cgroup_wq_init(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * There isn't much point in executing destruction path in
 | |
| 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
 | |
| 	 * Use 1 for @max_active.
 | |
| 	 *
 | |
| 	 * We would prefer to do this in cgroup_init() above, but that
 | |
| 	 * is called before init_workqueues(): so leave this until after.
 | |
| 	 */
 | |
| 	cgroup_offline_wq = alloc_workqueue("cgroup_offline", 0, 1);
 | |
| 	BUG_ON(!cgroup_offline_wq);
 | |
| 
 | |
| 	cgroup_release_wq = alloc_workqueue("cgroup_release", 0, 1);
 | |
| 	BUG_ON(!cgroup_release_wq);
 | |
| 
 | |
| 	cgroup_free_wq = alloc_workqueue("cgroup_free", 0, 1);
 | |
| 	BUG_ON(!cgroup_free_wq);
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(cgroup_wq_init);
 | |
| 
 | |
| void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
 | |
| {
 | |
| 	struct kernfs_node *kn;
 | |
| 
 | |
| 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
 | |
| 	if (!kn)
 | |
| 		return;
 | |
| 	kernfs_path(kn, buf, buflen);
 | |
| 	kernfs_put(kn);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cgroup_get_from_id : get the cgroup associated with cgroup id
 | |
|  * @id: cgroup id
 | |
|  * On success return the cgrp or ERR_PTR on failure
 | |
|  * Only cgroups within current task's cgroup NS are valid.
 | |
|  */
 | |
| struct cgroup *cgroup_get_from_id(u64 id)
 | |
| {
 | |
| 	struct kernfs_node *kn;
 | |
| 	struct cgroup *cgrp, *root_cgrp;
 | |
| 
 | |
| 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
 | |
| 	if (!kn)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	if (kernfs_type(kn) != KERNFS_DIR) {
 | |
| 		kernfs_put(kn);
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 | |
| 	if (cgrp && !cgroup_tryget(cgrp))
 | |
| 		cgrp = NULL;
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 	kernfs_put(kn);
 | |
| 
 | |
| 	if (!cgrp)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	root_cgrp = current_cgns_cgroup_dfl();
 | |
| 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
 | |
| 		cgroup_put(cgrp);
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	}
 | |
| 
 | |
| 	return cgrp;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_get_from_id);
 | |
| 
 | |
| /*
 | |
|  * proc_cgroup_show()
 | |
|  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 | |
|  *  - Used for /proc/<pid>/cgroup.
 | |
|  */
 | |
| int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
 | |
| 		     struct pid *pid, struct task_struct *tsk)
 | |
| {
 | |
| 	char *buf;
 | |
| 	int retval;
 | |
| 	struct cgroup_root *root;
 | |
| 
 | |
| 	retval = -ENOMEM;
 | |
| 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		goto out;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 
 | |
| 	for_each_root(root) {
 | |
| 		struct cgroup_subsys *ss;
 | |
| 		struct cgroup *cgrp;
 | |
| 		int ssid, count = 0;
 | |
| 
 | |
| 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
 | |
| 			continue;
 | |
| 
 | |
| 		cgrp = task_cgroup_from_root(tsk, root);
 | |
| 		/* The root has already been unmounted. */
 | |
| 		if (!cgrp)
 | |
| 			continue;
 | |
| 
 | |
| 		seq_printf(m, "%d:", root->hierarchy_id);
 | |
| 		if (root != &cgrp_dfl_root)
 | |
| 			for_each_subsys(ss, ssid)
 | |
| 				if (root->subsys_mask & (1 << ssid))
 | |
| 					seq_printf(m, "%s%s", count++ ? "," : "",
 | |
| 						   ss->legacy_name);
 | |
| 		if (strlen(root->name))
 | |
| 			seq_printf(m, "%sname=%s", count ? "," : "",
 | |
| 				   root->name);
 | |
| 		seq_putc(m, ':');
 | |
| 		/*
 | |
| 		 * On traditional hierarchies, all zombie tasks show up as
 | |
| 		 * belonging to the root cgroup.  On the default hierarchy,
 | |
| 		 * while a zombie doesn't show up in "cgroup.procs" and
 | |
| 		 * thus can't be migrated, its /proc/PID/cgroup keeps
 | |
| 		 * reporting the cgroup it belonged to before exiting.  If
 | |
| 		 * the cgroup is removed before the zombie is reaped,
 | |
| 		 * " (deleted)" is appended to the cgroup path.
 | |
| 		 */
 | |
| 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
 | |
| 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
 | |
| 						current->nsproxy->cgroup_ns);
 | |
| 			if (retval == -E2BIG)
 | |
| 				retval = -ENAMETOOLONG;
 | |
| 			if (retval < 0)
 | |
| 				goto out_unlock;
 | |
| 
 | |
| 			seq_puts(m, buf);
 | |
| 		} else {
 | |
| 			seq_puts(m, "/");
 | |
| 		}
 | |
| 
 | |
| 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
 | |
| 			seq_puts(m, " (deleted)\n");
 | |
| 		else
 | |
| 			seq_putc(m, '\n');
 | |
| 	}
 | |
| 
 | |
| 	retval = 0;
 | |
| out_unlock:
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 	rcu_read_unlock();
 | |
| 	kfree(buf);
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_fork - initialize cgroup related fields during copy_process()
 | |
|  * @child: pointer to task_struct of forking parent process.
 | |
|  *
 | |
|  * A task is associated with the init_css_set until cgroup_post_fork()
 | |
|  * attaches it to the target css_set.
 | |
|  */
 | |
| void cgroup_fork(struct task_struct *child)
 | |
| {
 | |
| 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
 | |
| 	INIT_LIST_HEAD(&child->cg_list);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
 | |
|  * @f: file corresponding to cgroup_dir
 | |
|  *
 | |
|  * Find the cgroup from a file pointer associated with a cgroup directory.
 | |
|  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
 | |
|  * cgroup cannot be found.
 | |
|  */
 | |
| static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
 | |
| 	if (IS_ERR(css))
 | |
| 		return ERR_CAST(css);
 | |
| 
 | |
| 	return css->cgroup;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
 | |
|  * cgroup2.
 | |
|  * @f: file corresponding to cgroup2_dir
 | |
|  */
 | |
| static struct cgroup *cgroup_get_from_file(struct file *f)
 | |
| {
 | |
| 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
 | |
| 
 | |
| 	if (IS_ERR(cgrp))
 | |
| 		return ERR_CAST(cgrp);
 | |
| 
 | |
| 	if (!cgroup_on_dfl(cgrp)) {
 | |
| 		cgroup_put(cgrp);
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 	}
 | |
| 
 | |
| 	return cgrp;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_css_set_fork - find or create a css_set for a child process
 | |
|  * @kargs: the arguments passed to create the child process
 | |
|  *
 | |
|  * This functions finds or creates a new css_set which the child
 | |
|  * process will be attached to in cgroup_post_fork(). By default,
 | |
|  * the child process will be given the same css_set as its parent.
 | |
|  *
 | |
|  * If CLONE_INTO_CGROUP is specified this function will try to find an
 | |
|  * existing css_set which includes the requested cgroup and if not create
 | |
|  * a new css_set that the child will be attached to later. If this function
 | |
|  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
 | |
|  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
 | |
|  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
 | |
|  * to the target cgroup.
 | |
|  */
 | |
| static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
 | |
| 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct cgroup *dst_cgrp = NULL;
 | |
| 	struct css_set *cset;
 | |
| 	struct super_block *sb;
 | |
| 
 | |
| 	if (kargs->flags & CLONE_INTO_CGROUP)
 | |
| 		cgroup_lock();
 | |
| 
 | |
| 	cgroup_threadgroup_change_begin(current);
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	cset = task_css_set(current);
 | |
| 	get_css_set(cset);
 | |
| 	if (kargs->cgrp)
 | |
| 		kargs->kill_seq = kargs->cgrp->kill_seq;
 | |
| 	else
 | |
| 		kargs->kill_seq = cset->dfl_cgrp->kill_seq;
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
 | |
| 		kargs->cset = cset;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	CLASS(fd_raw, f)(kargs->cgroup);
 | |
| 	if (fd_empty(f)) {
 | |
| 		ret = -EBADF;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	sb = fd_file(f)->f_path.dentry->d_sb;
 | |
| 
 | |
| 	dst_cgrp = cgroup_get_from_file(fd_file(f));
 | |
| 	if (IS_ERR(dst_cgrp)) {
 | |
| 		ret = PTR_ERR(dst_cgrp);
 | |
| 		dst_cgrp = NULL;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (cgroup_is_dead(dst_cgrp)) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that we the target cgroup is writable for us. This is
 | |
| 	 * usually done by the vfs layer but since we're not going through
 | |
| 	 * the vfs layer here we need to do it "manually".
 | |
| 	 */
 | |
| 	ret = cgroup_may_write(dst_cgrp, sb);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Spawning a task directly into a cgroup works by passing a file
 | |
| 	 * descriptor to the target cgroup directory. This can even be an O_PATH
 | |
| 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
 | |
| 	 * This was done on purpose so spawning into a cgroup could be
 | |
| 	 * conceptualized as an atomic
 | |
| 	 *
 | |
| 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
 | |
| 	 *   write(fd, <child-pid>, ...);
 | |
| 	 *
 | |
| 	 * sequence, i.e. it's a shorthand for the caller opening and writing
 | |
| 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
 | |
| 	 * to always use the caller's credentials.
 | |
| 	 */
 | |
| 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
 | |
| 					!(kargs->flags & CLONE_THREAD),
 | |
| 					current->nsproxy->cgroup_ns);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	kargs->cset = find_css_set(cset, dst_cgrp);
 | |
| 	if (!kargs->cset) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	put_css_set(cset);
 | |
| 	kargs->cgrp = dst_cgrp;
 | |
| 	return ret;
 | |
| 
 | |
| err:
 | |
| 	cgroup_threadgroup_change_end(current);
 | |
| 	cgroup_unlock();
 | |
| 	if (dst_cgrp)
 | |
| 		cgroup_put(dst_cgrp);
 | |
| 	put_css_set(cset);
 | |
| 	if (kargs->cset)
 | |
| 		put_css_set(kargs->cset);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_css_set_put_fork - drop references we took during fork
 | |
|  * @kargs: the arguments passed to create the child process
 | |
|  *
 | |
|  * Drop references to the prepared css_set and target cgroup if
 | |
|  * CLONE_INTO_CGROUP was requested.
 | |
|  */
 | |
| static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
 | |
| 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
 | |
| {
 | |
| 	struct cgroup *cgrp = kargs->cgrp;
 | |
| 	struct css_set *cset = kargs->cset;
 | |
| 
 | |
| 	cgroup_threadgroup_change_end(current);
 | |
| 
 | |
| 	if (cset) {
 | |
| 		put_css_set(cset);
 | |
| 		kargs->cset = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (kargs->flags & CLONE_INTO_CGROUP) {
 | |
| 		cgroup_unlock();
 | |
| 		if (cgrp) {
 | |
| 			cgroup_put(cgrp);
 | |
| 			kargs->cgrp = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_can_fork - called on a new task before the process is exposed
 | |
|  * @child: the child process
 | |
|  * @kargs: the arguments passed to create the child process
 | |
|  *
 | |
|  * This prepares a new css_set for the child process which the child will
 | |
|  * be attached to in cgroup_post_fork().
 | |
|  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
 | |
|  * callback returns an error, the fork aborts with that error code. This
 | |
|  * allows for a cgroup subsystem to conditionally allow or deny new forks.
 | |
|  */
 | |
| int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int i, j, ret;
 | |
| 
 | |
| 	ret = cgroup_css_set_fork(kargs);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	do_each_subsys_mask(ss, i, have_canfork_callback) {
 | |
| 		ret = ss->can_fork(child, kargs->cset);
 | |
| 		if (ret)
 | |
| 			goto out_revert;
 | |
| 	} while_each_subsys_mask();
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_revert:
 | |
| 	for_each_subsys(ss, j) {
 | |
| 		if (j >= i)
 | |
| 			break;
 | |
| 		if (ss->cancel_fork)
 | |
| 			ss->cancel_fork(child, kargs->cset);
 | |
| 	}
 | |
| 
 | |
| 	cgroup_css_set_put_fork(kargs);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
 | |
|  * @child: the child process
 | |
|  * @kargs: the arguments passed to create the child process
 | |
|  *
 | |
|  * This calls the cancel_fork() callbacks if a fork failed *after*
 | |
|  * cgroup_can_fork() succeeded and cleans up references we took to
 | |
|  * prepare a new css_set for the child process in cgroup_can_fork().
 | |
|  */
 | |
| void cgroup_cancel_fork(struct task_struct *child,
 | |
| 			struct kernel_clone_args *kargs)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_subsys(ss, i)
 | |
| 		if (ss->cancel_fork)
 | |
| 			ss->cancel_fork(child, kargs->cset);
 | |
| 
 | |
| 	cgroup_css_set_put_fork(kargs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_post_fork - finalize cgroup setup for the child process
 | |
|  * @child: the child process
 | |
|  * @kargs: the arguments passed to create the child process
 | |
|  *
 | |
|  * Attach the child process to its css_set calling the subsystem fork()
 | |
|  * callbacks.
 | |
|  */
 | |
| void cgroup_post_fork(struct task_struct *child,
 | |
| 		      struct kernel_clone_args *kargs)
 | |
| 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
 | |
| {
 | |
| 	unsigned int cgrp_kill_seq = 0;
 | |
| 	unsigned long cgrp_flags = 0;
 | |
| 	bool kill = false;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	struct css_set *cset;
 | |
| 	int i;
 | |
| 
 | |
| 	cset = kargs->cset;
 | |
| 	kargs->cset = NULL;
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 
 | |
| 	/* init tasks are special, only link regular threads */
 | |
| 	if (likely(child->pid)) {
 | |
| 		if (kargs->cgrp) {
 | |
| 			cgrp_flags = kargs->cgrp->flags;
 | |
| 			cgrp_kill_seq = kargs->cgrp->kill_seq;
 | |
| 		} else {
 | |
| 			cgrp_flags = cset->dfl_cgrp->flags;
 | |
| 			cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON_ONCE(!list_empty(&child->cg_list));
 | |
| 		cset->nr_tasks++;
 | |
| 		css_set_move_task(child, NULL, cset, false);
 | |
| 	} else {
 | |
| 		put_css_set(cset);
 | |
| 		cset = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!(child->flags & PF_KTHREAD)) {
 | |
| 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
 | |
| 			/*
 | |
| 			 * If the cgroup has to be frozen, the new task has
 | |
| 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
 | |
| 			 * get the task into the frozen state.
 | |
| 			 */
 | |
| 			spin_lock(&child->sighand->siglock);
 | |
| 			WARN_ON_ONCE(child->frozen);
 | |
| 			child->jobctl |= JOBCTL_TRAP_FREEZE;
 | |
| 			spin_unlock(&child->sighand->siglock);
 | |
| 
 | |
| 			/*
 | |
| 			 * Calling cgroup_update_frozen() isn't required here,
 | |
| 			 * because it will be called anyway a bit later from
 | |
| 			 * do_freezer_trap(). So we avoid cgroup's transient
 | |
| 			 * switch from the frozen state and back.
 | |
| 			 */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the cgroup is to be killed notice it now and take the
 | |
| 		 * child down right after we finished preparing it for
 | |
| 		 * userspace.
 | |
| 		 */
 | |
| 		kill = kargs->kill_seq != cgrp_kill_seq;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Call ss->fork().  This must happen after @child is linked on
 | |
| 	 * css_set; otherwise, @child might change state between ->fork()
 | |
| 	 * and addition to css_set.
 | |
| 	 */
 | |
| 	do_each_subsys_mask(ss, i, have_fork_callback) {
 | |
| 		ss->fork(child);
 | |
| 	} while_each_subsys_mask();
 | |
| 
 | |
| 	/* Make the new cset the root_cset of the new cgroup namespace. */
 | |
| 	if (kargs->flags & CLONE_NEWCGROUP) {
 | |
| 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
 | |
| 
 | |
| 		get_css_set(cset);
 | |
| 		child->nsproxy->cgroup_ns->root_cset = cset;
 | |
| 		put_css_set(rcset);
 | |
| 	}
 | |
| 
 | |
| 	/* Cgroup has to be killed so take down child immediately. */
 | |
| 	if (unlikely(kill))
 | |
| 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
 | |
| 
 | |
| 	cgroup_css_set_put_fork(kargs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_exit - detach cgroup from exiting task
 | |
|  * @tsk: pointer to task_struct of exiting process
 | |
|  *
 | |
|  * Description: Detach cgroup from @tsk.
 | |
|  *
 | |
|  */
 | |
| void cgroup_exit(struct task_struct *tsk)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	struct css_set *cset;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 
 | |
| 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
 | |
| 	cset = task_css_set(tsk);
 | |
| 	css_set_move_task(tsk, cset, NULL, false);
 | |
| 	cset->nr_tasks--;
 | |
| 	/* matches the signal->live check in css_task_iter_advance() */
 | |
| 	if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
 | |
| 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
 | |
| 
 | |
| 	if (dl_task(tsk))
 | |
| 		dec_dl_tasks_cs(tsk);
 | |
| 
 | |
| 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
 | |
| 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
 | |
| 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
 | |
| 		cgroup_update_frozen(task_dfl_cgroup(tsk));
 | |
| 
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	/* see cgroup_post_fork() for details */
 | |
| 	do_each_subsys_mask(ss, i, have_exit_callback) {
 | |
| 		ss->exit(tsk);
 | |
| 	} while_each_subsys_mask();
 | |
| }
 | |
| 
 | |
| void cgroup_release(struct task_struct *task)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 
 | |
| 	do_each_subsys_mask(ss, ssid, have_release_callback) {
 | |
| 		ss->release(task);
 | |
| 	} while_each_subsys_mask();
 | |
| 
 | |
| 	if (!list_empty(&task->cg_list)) {
 | |
| 		spin_lock_irq(&css_set_lock);
 | |
| 		css_set_skip_task_iters(task_css_set(task), task);
 | |
| 		list_del_init(&task->cg_list);
 | |
| 		spin_unlock_irq(&css_set_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void cgroup_free(struct task_struct *task)
 | |
| {
 | |
| 	struct css_set *cset = task_css_set(task);
 | |
| 	put_css_set(cset);
 | |
| }
 | |
| 
 | |
| static int __init cgroup_disable(char *str)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	char *token;
 | |
| 	int i;
 | |
| 
 | |
| 	while ((token = strsep(&str, ",")) != NULL) {
 | |
| 		if (!*token)
 | |
| 			continue;
 | |
| 
 | |
| 		for_each_subsys(ss, i) {
 | |
| 			if (strcmp(token, ss->name) &&
 | |
| 			    strcmp(token, ss->legacy_name))
 | |
| 				continue;
 | |
| 
 | |
| 			static_branch_disable(cgroup_subsys_enabled_key[i]);
 | |
| 			pr_info("Disabling %s control group subsystem\n",
 | |
| 				ss->name);
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
 | |
| 			if (strcmp(token, cgroup_opt_feature_names[i]))
 | |
| 				continue;
 | |
| 			cgroup_feature_disable_mask |= 1 << i;
 | |
| 			pr_info("Disabling %s control group feature\n",
 | |
| 				cgroup_opt_feature_names[i]);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| __setup("cgroup_disable=", cgroup_disable);
 | |
| 
 | |
| void __init __weak enable_debug_cgroup(void) { }
 | |
| 
 | |
| static int __init enable_cgroup_debug(char *str)
 | |
| {
 | |
| 	cgroup_debug = true;
 | |
| 	enable_debug_cgroup();
 | |
| 	return 1;
 | |
| }
 | |
| __setup("cgroup_debug", enable_cgroup_debug);
 | |
| 
 | |
| static int __init cgroup_favordynmods_setup(char *str)
 | |
| {
 | |
| 	return (kstrtobool(str, &have_favordynmods) == 0);
 | |
| }
 | |
| __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
 | |
| 
 | |
| /**
 | |
|  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
 | |
|  * @dentry: directory dentry of interest
 | |
|  * @ss: subsystem of interest
 | |
|  *
 | |
|  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
 | |
|  * to get the corresponding css and return it.  If such css doesn't exist
 | |
|  * or can't be pinned, an ERR_PTR value is returned.
 | |
|  */
 | |
| struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
 | |
| 						       struct cgroup_subsys *ss)
 | |
| {
 | |
| 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 | |
| 	struct file_system_type *s_type = dentry->d_sb->s_type;
 | |
| 	struct cgroup_subsys_state *css = NULL;
 | |
| 	struct cgroup *cgrp;
 | |
| 
 | |
| 	/* is @dentry a cgroup dir? */
 | |
| 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
 | |
| 	    !kn || kernfs_type(kn) != KERNFS_DIR)
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	/*
 | |
| 	 * This path doesn't originate from kernfs and @kn could already
 | |
| 	 * have been or be removed at any point.  @kn->priv is RCU
 | |
| 	 * protected for this access.  See css_release_work_fn() for details.
 | |
| 	 */
 | |
| 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 | |
| 	if (cgrp)
 | |
| 		css = cgroup_css(cgrp, ss);
 | |
| 
 | |
| 	if (!css || !css_tryget_online(css))
 | |
| 		css = ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 	return css;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * css_from_id - lookup css by id
 | |
|  * @id: the cgroup id
 | |
|  * @ss: cgroup subsys to be looked into
 | |
|  *
 | |
|  * Returns the css if there's valid one with @id, otherwise returns NULL.
 | |
|  * Should be called under rcu_read_lock().
 | |
|  */
 | |
| struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
 | |
| {
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held());
 | |
| 	return idr_find(&ss->css_idr, id);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
 | |
|  * @path: path on the default hierarchy
 | |
|  *
 | |
|  * Find the cgroup at @path on the default hierarchy, increment its
 | |
|  * reference count and return it.  Returns pointer to the found cgroup on
 | |
|  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
 | |
|  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
 | |
|  */
 | |
| struct cgroup *cgroup_get_from_path(const char *path)
 | |
| {
 | |
| 	struct kernfs_node *kn;
 | |
| 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
 | |
| 	struct cgroup *root_cgrp;
 | |
| 
 | |
| 	root_cgrp = current_cgns_cgroup_dfl();
 | |
| 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
 | |
| 	if (!kn)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (kernfs_type(kn) != KERNFS_DIR) {
 | |
| 		cgrp = ERR_PTR(-ENOTDIR);
 | |
| 		goto out_kernfs;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 | |
| 	if (!cgrp || !cgroup_tryget(cgrp))
 | |
| 		cgrp = ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| out_kernfs:
 | |
| 	kernfs_put(kn);
 | |
| out:
 | |
| 	return cgrp;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_get_from_path);
 | |
| 
 | |
| /**
 | |
|  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
 | |
|  * @fd: fd obtained by open(cgroup_dir)
 | |
|  *
 | |
|  * Find the cgroup from a fd which should be obtained
 | |
|  * by opening a cgroup directory.  Returns a pointer to the
 | |
|  * cgroup on success. ERR_PTR is returned if the cgroup
 | |
|  * cannot be found.
 | |
|  */
 | |
| struct cgroup *cgroup_v1v2_get_from_fd(int fd)
 | |
| {
 | |
| 	CLASS(fd_raw, f)(fd);
 | |
| 	if (fd_empty(f))
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 
 | |
| 	return cgroup_v1v2_get_from_file(fd_file(f));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
 | |
|  * cgroup2.
 | |
|  * @fd: fd obtained by open(cgroup2_dir)
 | |
|  */
 | |
| struct cgroup *cgroup_get_from_fd(int fd)
 | |
| {
 | |
| 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
 | |
| 
 | |
| 	if (IS_ERR(cgrp))
 | |
| 		return ERR_CAST(cgrp);
 | |
| 
 | |
| 	if (!cgroup_on_dfl(cgrp)) {
 | |
| 		cgroup_put(cgrp);
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 	}
 | |
| 	return cgrp;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
 | |
| 
 | |
| static u64 power_of_ten(int power)
 | |
| {
 | |
| 	u64 v = 1;
 | |
| 	while (power--)
 | |
| 		v *= 10;
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_parse_float - parse a floating number
 | |
|  * @input: input string
 | |
|  * @dec_shift: number of decimal digits to shift
 | |
|  * @v: output
 | |
|  *
 | |
|  * Parse a decimal floating point number in @input and store the result in
 | |
|  * @v with decimal point right shifted @dec_shift times.  For example, if
 | |
|  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
 | |
|  * Returns 0 on success, -errno otherwise.
 | |
|  *
 | |
|  * There's nothing cgroup specific about this function except that it's
 | |
|  * currently the only user.
 | |
|  */
 | |
| int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
 | |
| {
 | |
| 	s64 whole, frac = 0;
 | |
| 	int fstart = 0, fend = 0, flen;
 | |
| 
 | |
| 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
 | |
| 		return -EINVAL;
 | |
| 	if (frac < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	flen = fend > fstart ? fend - fstart : 0;
 | |
| 	if (flen < dec_shift)
 | |
| 		frac *= power_of_ten(dec_shift - flen);
 | |
| 	else
 | |
| 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
 | |
| 
 | |
| 	*v = whole * power_of_ten(dec_shift) + frac;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
 | |
|  * definition in cgroup-defs.h.
 | |
|  */
 | |
| #ifdef CONFIG_SOCK_CGROUP_DATA
 | |
| 
 | |
| void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
 | |
| {
 | |
| 	struct cgroup *cgroup;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
 | |
| 	if (in_interrupt()) {
 | |
| 		cgroup = &cgrp_dfl_root.cgrp;
 | |
| 		cgroup_get(cgroup);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (true) {
 | |
| 		struct css_set *cset;
 | |
| 
 | |
| 		cset = task_css_set(current);
 | |
| 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
 | |
| 			cgroup = cset->dfl_cgrp;
 | |
| 			break;
 | |
| 		}
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| out:
 | |
| 	skcd->cgroup = cgroup;
 | |
| 	cgroup_bpf_get(cgroup);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void cgroup_sk_clone(struct sock_cgroup_data *skcd)
 | |
| {
 | |
| 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
 | |
| 
 | |
| 	/*
 | |
| 	 * We might be cloning a socket which is left in an empty
 | |
| 	 * cgroup and the cgroup might have already been rmdir'd.
 | |
| 	 * Don't use cgroup_get_live().
 | |
| 	 */
 | |
| 	cgroup_get(cgrp);
 | |
| 	cgroup_bpf_get(cgrp);
 | |
| }
 | |
| 
 | |
| void cgroup_sk_free(struct sock_cgroup_data *skcd)
 | |
| {
 | |
| 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
 | |
| 
 | |
| 	cgroup_bpf_put(cgrp);
 | |
| 	cgroup_put(cgrp);
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_SOCK_CGROUP_DATA */
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static ssize_t show_delegatable_files(struct cftype *files, char *buf,
 | |
| 				      ssize_t size, const char *prefix)
 | |
| {
 | |
| 	struct cftype *cft;
 | |
| 	ssize_t ret = 0;
 | |
| 
 | |
| 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
 | |
| 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
 | |
| 			continue;
 | |
| 
 | |
| 		if (prefix)
 | |
| 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
 | |
| 
 | |
| 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
 | |
| 
 | |
| 		if (WARN_ON(ret >= size))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
 | |
| 			      char *buf)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 	ssize_t ret = 0;
 | |
| 
 | |
| 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
 | |
| 				     PAGE_SIZE - ret, NULL);
 | |
| 	if (cgroup_psi_enabled())
 | |
| 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
 | |
| 					      PAGE_SIZE - ret, NULL);
 | |
| 
 | |
| 	for_each_subsys(ss, ssid)
 | |
| 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
 | |
| 					      PAGE_SIZE - ret,
 | |
| 					      cgroup_subsys_name[ssid]);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
 | |
| 
 | |
| static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
 | |
| 			     char *buf)
 | |
| {
 | |
| 	return snprintf(buf, PAGE_SIZE,
 | |
| 			"nsdelegate\n"
 | |
| 			"favordynmods\n"
 | |
| 			"memory_localevents\n"
 | |
| 			"memory_recursiveprot\n"
 | |
| 			"memory_hugetlb_accounting\n"
 | |
| 			"pids_localevents\n");
 | |
| }
 | |
| static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
 | |
| 
 | |
| static struct attribute *cgroup_sysfs_attrs[] = {
 | |
| 	&cgroup_delegate_attr.attr,
 | |
| 	&cgroup_features_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group cgroup_sysfs_attr_group = {
 | |
| 	.attrs = cgroup_sysfs_attrs,
 | |
| 	.name = "cgroup",
 | |
| };
 | |
| 
 | |
| static int __init cgroup_sysfs_init(void)
 | |
| {
 | |
| 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
 | |
| }
 | |
| subsys_initcall(cgroup_sysfs_init);
 | |
| 
 | |
| #endif /* CONFIG_SYSFS */
 |