mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 7e2368a217
			
		
	
	
		7e2368a217
		
	
	
	
	
		
			
			As discussed in [1], there is no need to enforce dma mapping check on
noncoherent allocations, a simple test on the returned CPU address is
good enough.
Add a new pair of debug helpers and use them for noncoherent alloc/free
to fix this issue.
Fixes: efa70f2fdc ("dma-mapping: add a new dma_alloc_pages API")
Link: https://lore.kernel.org/all/ff6c1fe6-820f-4e58-8395-df06aa91706c@oss.qualcomm.com # 1
Signed-off-by: Baochen Qiang <baochen.qiang@oss.qualcomm.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Link: https://lore.kernel.org/r/20250828-dma-debug-fix-noncoherent-dma-check-v1-1-76e9be0dd7fc@oss.qualcomm.com
		
	
			
		
			
				
	
	
		
			1004 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1004 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * arch-independent dma-mapping routines
 | |
|  *
 | |
|  * Copyright (c) 2006  SUSE Linux Products GmbH
 | |
|  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
 | |
|  */
 | |
| #include <linux/memblock.h> /* for max_pfn */
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/dma-map-ops.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/iommu-dma.h>
 | |
| #include <linux/kmsan.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include "debug.h"
 | |
| #include "direct.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/dma.h>
 | |
| 
 | |
| #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
 | |
| 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
 | |
| 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
 | |
| bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Managed DMA API
 | |
|  */
 | |
| struct dma_devres {
 | |
| 	size_t		size;
 | |
| 	void		*vaddr;
 | |
| 	dma_addr_t	dma_handle;
 | |
| 	unsigned long	attrs;
 | |
| };
 | |
| 
 | |
| static void dmam_release(struct device *dev, void *res)
 | |
| {
 | |
| 	struct dma_devres *this = res;
 | |
| 
 | |
| 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 | |
| 			this->attrs);
 | |
| }
 | |
| 
 | |
| static int dmam_match(struct device *dev, void *res, void *match_data)
 | |
| {
 | |
| 	struct dma_devres *this = res, *match = match_data;
 | |
| 
 | |
| 	if (this->vaddr == match->vaddr) {
 | |
| 		WARN_ON(this->size != match->size ||
 | |
| 			this->dma_handle != match->dma_handle);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dmam_free_coherent - Managed dma_free_coherent()
 | |
|  * @dev: Device to free coherent memory for
 | |
|  * @size: Size of allocation
 | |
|  * @vaddr: Virtual address of the memory to free
 | |
|  * @dma_handle: DMA handle of the memory to free
 | |
|  *
 | |
|  * Managed dma_free_coherent().
 | |
|  */
 | |
| void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 | |
| 			dma_addr_t dma_handle)
 | |
| {
 | |
| 	struct dma_devres match_data = { size, vaddr, dma_handle };
 | |
| 
 | |
| 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 | |
| 	dma_free_coherent(dev, size, vaddr, dma_handle);
 | |
| }
 | |
| EXPORT_SYMBOL(dmam_free_coherent);
 | |
| 
 | |
| /**
 | |
|  * dmam_alloc_attrs - Managed dma_alloc_attrs()
 | |
|  * @dev: Device to allocate non_coherent memory for
 | |
|  * @size: Size of allocation
 | |
|  * @dma_handle: Out argument for allocated DMA handle
 | |
|  * @gfp: Allocation flags
 | |
|  * @attrs: Flags in the DMA_ATTR_* namespace.
 | |
|  *
 | |
|  * Managed dma_alloc_attrs().  Memory allocated using this function will be
 | |
|  * automatically released on driver detach.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Pointer to allocated memory on success, NULL on failure.
 | |
|  */
 | |
| void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 | |
| 		gfp_t gfp, unsigned long attrs)
 | |
| {
 | |
| 	struct dma_devres *dr;
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 | |
| 	if (!dr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
 | |
| 	if (!vaddr) {
 | |
| 		devres_free(dr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	dr->vaddr = vaddr;
 | |
| 	dr->dma_handle = *dma_handle;
 | |
| 	dr->size = size;
 | |
| 	dr->attrs = attrs;
 | |
| 
 | |
| 	devres_add(dev, dr);
 | |
| 
 | |
| 	return vaddr;
 | |
| }
 | |
| EXPORT_SYMBOL(dmam_alloc_attrs);
 | |
| 
 | |
| static bool dma_go_direct(struct device *dev, dma_addr_t mask,
 | |
| 		const struct dma_map_ops *ops)
 | |
| {
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		return false;
 | |
| 
 | |
| 	if (likely(!ops))
 | |
| 		return true;
 | |
| 
 | |
| #ifdef CONFIG_DMA_OPS_BYPASS
 | |
| 	if (dev->dma_ops_bypass)
 | |
| 		return min_not_zero(mask, dev->bus_dma_limit) >=
 | |
| 			    dma_direct_get_required_mask(dev);
 | |
| #endif
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Check if the devices uses a direct mapping for streaming DMA operations.
 | |
|  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
 | |
|  * enough.
 | |
|  */
 | |
| static inline bool dma_alloc_direct(struct device *dev,
 | |
| 		const struct dma_map_ops *ops)
 | |
| {
 | |
| 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
 | |
| }
 | |
| 
 | |
| static inline bool dma_map_direct(struct device *dev,
 | |
| 		const struct dma_map_ops *ops)
 | |
| {
 | |
| 	return dma_go_direct(dev, *dev->dma_mask, ops);
 | |
| }
 | |
| 
 | |
| dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
 | |
| 		size_t offset, size_t size, enum dma_data_direction dir,
 | |
| 		unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	dma_addr_t addr;
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!dev->dma_mask))
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 
 | |
| 	if (dma_map_direct(dev, ops) ||
 | |
| 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
 | |
| 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
 | |
| 	else
 | |
| 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
 | |
| 	kmsan_handle_dma(page, offset, size, dir);
 | |
| 	trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
 | |
| 			   attrs);
 | |
| 	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_map_page_attrs);
 | |
| 
 | |
| void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
 | |
| 		enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 	if (dma_map_direct(dev, ops) ||
 | |
| 	    arch_dma_unmap_page_direct(dev, addr + size))
 | |
| 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		iommu_dma_unmap_page(dev, addr, size, dir, attrs);
 | |
| 	else
 | |
| 		ops->unmap_page(dev, addr, size, dir, attrs);
 | |
| 	trace_dma_unmap_page(dev, addr, size, dir, attrs);
 | |
| 	debug_dma_unmap_page(dev, addr, size, dir);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_unmap_page_attrs);
 | |
| 
 | |
| static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
 | |
| 	 int nents, enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	int ents;
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!dev->dma_mask))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (dma_map_direct(dev, ops) ||
 | |
| 	    arch_dma_map_sg_direct(dev, sg, nents))
 | |
| 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
 | |
| 	else
 | |
| 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
 | |
| 
 | |
| 	if (ents > 0) {
 | |
| 		kmsan_handle_dma_sg(sg, nents, dir);
 | |
| 		trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
 | |
| 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
 | |
| 	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
 | |
| 				ents != -EIO && ents != -EREMOTEIO)) {
 | |
| 		trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return ents;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dma_map_sg_attrs - Map the given buffer for DMA
 | |
|  * @dev:	The device for which to perform the DMA operation
 | |
|  * @sg:		The sg_table object describing the buffer
 | |
|  * @nents:	Number of entries to map
 | |
|  * @dir:	DMA direction
 | |
|  * @attrs:	Optional DMA attributes for the map operation
 | |
|  *
 | |
|  * Maps a buffer described by a scatterlist passed in the sg argument with
 | |
|  * nents segments for the @dir DMA operation by the @dev device.
 | |
|  *
 | |
|  * Returns the number of mapped entries (which can be less than nents)
 | |
|  * on success. Zero is returned for any error.
 | |
|  *
 | |
|  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
 | |
|  * original sg and original nents (not the value returned by this funciton).
 | |
|  */
 | |
| unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
 | |
| 		    int nents, enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
 | |
| 	if (ret < 0)
 | |
| 		return 0;
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_map_sg_attrs);
 | |
| 
 | |
| /**
 | |
|  * dma_map_sgtable - Map the given buffer for DMA
 | |
|  * @dev:	The device for which to perform the DMA operation
 | |
|  * @sgt:	The sg_table object describing the buffer
 | |
|  * @dir:	DMA direction
 | |
|  * @attrs:	Optional DMA attributes for the map operation
 | |
|  *
 | |
|  * Maps a buffer described by a scatterlist stored in the given sg_table
 | |
|  * object for the @dir DMA operation by the @dev device. After success, the
 | |
|  * ownership for the buffer is transferred to the DMA domain.  One has to
 | |
|  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
 | |
|  * ownership of the buffer back to the CPU domain before touching the
 | |
|  * buffer by the CPU.
 | |
|  *
 | |
|  * Returns 0 on success or a negative error code on error. The following
 | |
|  * error codes are supported with the given meaning:
 | |
|  *
 | |
|  *   -EINVAL		An invalid argument, unaligned access or other error
 | |
|  *			in usage. Will not succeed if retried.
 | |
|  *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
 | |
|  *			complete the mapping. Should succeed if retried later.
 | |
|  *   -EIO		Legacy error code with an unknown meaning. eg. this is
 | |
|  *			returned if a lower level call returned
 | |
|  *			DMA_MAPPING_ERROR.
 | |
|  *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
 | |
|  *			in the sg_table. This will not succeed if retried.
 | |
|  */
 | |
| int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
 | |
| 		    enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	int nents;
 | |
| 
 | |
| 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
 | |
| 	if (nents < 0)
 | |
| 		return nents;
 | |
| 	sgt->nents = nents;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_map_sgtable);
 | |
| 
 | |
| void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
 | |
| 				      int nents, enum dma_data_direction dir,
 | |
| 				      unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 	trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
 | |
| 	debug_dma_unmap_sg(dev, sg, nents, dir);
 | |
| 	if (dma_map_direct(dev, ops) ||
 | |
| 	    arch_dma_unmap_sg_direct(dev, sg, nents))
 | |
| 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
 | |
| 	else if (ops->unmap_sg)
 | |
| 		ops->unmap_sg(dev, sg, nents, dir, attrs);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_unmap_sg_attrs);
 | |
| 
 | |
| dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
 | |
| 		size_t size, enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	dma_addr_t addr = DMA_MAPPING_ERROR;
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!dev->dma_mask))
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 
 | |
| 	if (dma_map_direct(dev, ops))
 | |
| 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
 | |
| 	else if (ops->map_resource)
 | |
| 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
 | |
| 
 | |
| 	trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
 | |
| 	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
 | |
| 	return addr;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_map_resource);
 | |
| 
 | |
| void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
 | |
| 		enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 	if (dma_map_direct(dev, ops))
 | |
| 		; /* nothing to do: uncached and no swiotlb */
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
 | |
| 	else if (ops->unmap_resource)
 | |
| 		ops->unmap_resource(dev, addr, size, dir, attrs);
 | |
| 	trace_dma_unmap_resource(dev, addr, size, dir, attrs);
 | |
| 	debug_dma_unmap_resource(dev, addr, size, dir);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_unmap_resource);
 | |
| 
 | |
| #ifdef CONFIG_DMA_NEED_SYNC
 | |
| void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 | |
| 		enum dma_data_direction dir)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 	if (dma_map_direct(dev, ops))
 | |
| 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
 | |
| 	else if (ops->sync_single_for_cpu)
 | |
| 		ops->sync_single_for_cpu(dev, addr, size, dir);
 | |
| 	trace_dma_sync_single_for_cpu(dev, addr, size, dir);
 | |
| 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
 | |
| }
 | |
| EXPORT_SYMBOL(__dma_sync_single_for_cpu);
 | |
| 
 | |
| void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
 | |
| 		size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 	if (dma_map_direct(dev, ops))
 | |
| 		dma_direct_sync_single_for_device(dev, addr, size, dir);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		iommu_dma_sync_single_for_device(dev, addr, size, dir);
 | |
| 	else if (ops->sync_single_for_device)
 | |
| 		ops->sync_single_for_device(dev, addr, size, dir);
 | |
| 	trace_dma_sync_single_for_device(dev, addr, size, dir);
 | |
| 	debug_dma_sync_single_for_device(dev, addr, size, dir);
 | |
| }
 | |
| EXPORT_SYMBOL(__dma_sync_single_for_device);
 | |
| 
 | |
| void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 | |
| 		    int nelems, enum dma_data_direction dir)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 	if (dma_map_direct(dev, ops))
 | |
| 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
 | |
| 	else if (ops->sync_sg_for_cpu)
 | |
| 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
 | |
| 	trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
 | |
| 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
 | |
| }
 | |
| EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
 | |
| 
 | |
| void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 | |
| 		       int nelems, enum dma_data_direction dir)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(dir));
 | |
| 	if (dma_map_direct(dev, ops))
 | |
| 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
 | |
| 	else if (ops->sync_sg_for_device)
 | |
| 		ops->sync_sg_for_device(dev, sg, nelems, dir);
 | |
| 	trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
 | |
| 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
 | |
| }
 | |
| EXPORT_SYMBOL(__dma_sync_sg_for_device);
 | |
| 
 | |
| bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (dma_map_direct(dev, ops))
 | |
| 		/*
 | |
| 		 * dma_skip_sync could've been reset on first SWIOTLB buffer
 | |
| 		 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
 | |
| 		 * In this case, fall back to more granular check.
 | |
| 		 */
 | |
| 		return dma_direct_need_sync(dev, dma_addr);
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__dma_need_sync);
 | |
| 
 | |
| /**
 | |
|  * dma_need_unmap - does this device need dma_unmap_* operations
 | |
|  * @dev: device to check
 | |
|  *
 | |
|  * If this function returns %false, drivers can skip calling dma_unmap_* after
 | |
|  * finishing an I/O.  This function must be called after all mappings that might
 | |
|  * need to be unmapped have been performed.
 | |
|  */
 | |
| bool dma_need_unmap(struct device *dev)
 | |
| {
 | |
| 	if (!dma_map_direct(dev, get_dma_ops(dev)))
 | |
| 		return true;
 | |
| 	if (!dev->dma_skip_sync)
 | |
| 		return true;
 | |
| 	return IS_ENABLED(CONFIG_DMA_API_DEBUG);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_need_unmap);
 | |
| 
 | |
| static void dma_setup_need_sync(struct device *dev)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
 | |
| 		/*
 | |
| 		 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
 | |
| 		 * mapping, if any. During the device initialization, it's
 | |
| 		 * enough to check only for the DMA coherence.
 | |
| 		 */
 | |
| 		dev->dma_skip_sync = dev_is_dma_coherent(dev);
 | |
| 	else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
 | |
| 		 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
 | |
| 		/*
 | |
| 		 * Synchronization is not possible when none of DMA sync ops
 | |
| 		 * is set.
 | |
| 		 */
 | |
| 		dev->dma_skip_sync = true;
 | |
| 	else
 | |
| 		dev->dma_skip_sync = false;
 | |
| }
 | |
| #else /* !CONFIG_DMA_NEED_SYNC */
 | |
| static inline void dma_setup_need_sync(struct device *dev) { }
 | |
| #endif /* !CONFIG_DMA_NEED_SYNC */
 | |
| 
 | |
| /*
 | |
|  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
 | |
|  * that the intention is to allow exporting memory allocated via the
 | |
|  * coherent DMA APIs through the dma_buf API, which only accepts a
 | |
|  * scattertable.  This presents a couple of problems:
 | |
|  * 1. Not all memory allocated via the coherent DMA APIs is backed by
 | |
|  *    a struct page
 | |
|  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
 | |
|  *    as we will try to flush the memory through a different alias to that
 | |
|  *    actually being used (and the flushes are redundant.)
 | |
|  */
 | |
| int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
 | |
| 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
 | |
| 		unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (dma_alloc_direct(dev, ops))
 | |
| 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
 | |
| 				size, attrs);
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
 | |
| 				size, attrs);
 | |
| 	if (!ops->get_sgtable)
 | |
| 		return -ENXIO;
 | |
| 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_get_sgtable_attrs);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /*
 | |
|  * Return the page attributes used for mapping dma_alloc_* memory, either in
 | |
|  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
 | |
|  */
 | |
| pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
 | |
| {
 | |
| 	if (dev_is_dma_coherent(dev))
 | |
| 		return prot;
 | |
| #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
 | |
| 	if (attrs & DMA_ATTR_WRITE_COMBINE)
 | |
| 		return pgprot_writecombine(prot);
 | |
| #endif
 | |
| 	return pgprot_dmacoherent(prot);
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| /**
 | |
|  * dma_can_mmap - check if a given device supports dma_mmap_*
 | |
|  * @dev: device to check
 | |
|  *
 | |
|  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
 | |
|  * map DMA allocations to userspace.
 | |
|  */
 | |
| bool dma_can_mmap(struct device *dev)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (dma_alloc_direct(dev, ops))
 | |
| 		return dma_direct_can_mmap(dev);
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		return true;
 | |
| 	return ops->mmap != NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_can_mmap);
 | |
| 
 | |
| /**
 | |
|  * dma_mmap_attrs - map a coherent DMA allocation into user space
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @vma: vm_area_struct describing requested user mapping
 | |
|  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
 | |
|  * @dma_addr: device-view address returned from dma_alloc_attrs
 | |
|  * @size: size of memory originally requested in dma_alloc_attrs
 | |
|  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
 | |
|  *
 | |
|  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
 | |
|  * space.  The coherent DMA buffer must not be freed by the driver until the
 | |
|  * user space mapping has been released.
 | |
|  */
 | |
| int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
 | |
| 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
 | |
| 		unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (dma_alloc_direct(dev, ops))
 | |
| 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
 | |
| 				attrs);
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
 | |
| 				      attrs);
 | |
| 	if (!ops->mmap)
 | |
| 		return -ENXIO;
 | |
| 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_mmap_attrs);
 | |
| 
 | |
| u64 dma_get_required_mask(struct device *dev)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (dma_alloc_direct(dev, ops))
 | |
| 		return dma_direct_get_required_mask(dev);
 | |
| 
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		return DMA_BIT_MASK(32);
 | |
| 
 | |
| 	if (ops->get_required_mask)
 | |
| 		return ops->get_required_mask(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * We require every DMA ops implementation to at least support a 32-bit
 | |
| 	 * DMA mask (and use bounce buffering if that isn't supported in
 | |
| 	 * hardware).  As the direct mapping code has its own routine to
 | |
| 	 * actually report an optimal mask we default to 32-bit here as that
 | |
| 	 * is the right thing for most IOMMUs, and at least not actively
 | |
| 	 * harmful in general.
 | |
| 	 */
 | |
| 	return DMA_BIT_MASK(32);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_get_required_mask);
 | |
| 
 | |
| void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 | |
| 		gfp_t flag, unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	void *cpu_addr;
 | |
| 
 | |
| 	WARN_ON_ONCE(!dev->coherent_dma_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * DMA allocations can never be turned back into a page pointer, so
 | |
| 	 * requesting compound pages doesn't make sense (and can't even be
 | |
| 	 * supported at all by various backends).
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(flag & __GFP_COMP))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
 | |
| 		trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
 | |
| 				DMA_BIDIRECTIONAL, flag, attrs);
 | |
| 		return cpu_addr;
 | |
| 	}
 | |
| 
 | |
| 	/* let the implementation decide on the zone to allocate from: */
 | |
| 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 | |
| 
 | |
| 	if (dma_alloc_direct(dev, ops)) {
 | |
| 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
 | |
| 	} else if (use_dma_iommu(dev)) {
 | |
| 		cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
 | |
| 	} else if (ops->alloc) {
 | |
| 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
 | |
| 	} else {
 | |
| 		trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
 | |
| 				attrs);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
 | |
| 			flag, attrs);
 | |
| 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
 | |
| 	return cpu_addr;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_alloc_attrs);
 | |
| 
 | |
| void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
 | |
| 		dma_addr_t dma_handle, unsigned long attrs)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * On non-coherent platforms which implement DMA-coherent buffers via
 | |
| 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
 | |
| 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
 | |
| 	 * sleep on some machines, and b) an indication that the driver is
 | |
| 	 * probably misusing the coherent API anyway.
 | |
| 	 */
 | |
| 	WARN_ON(irqs_disabled());
 | |
| 
 | |
| 	trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
 | |
| 		       attrs);
 | |
| 	if (!cpu_addr)
 | |
| 		return;
 | |
| 
 | |
| 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
 | |
| 	if (dma_alloc_direct(dev, ops))
 | |
| 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
 | |
| 	else if (ops->free)
 | |
| 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_free_attrs);
 | |
| 
 | |
| static struct page *__dma_alloc_pages(struct device *dev, size_t size,
 | |
| 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
 | |
| 		return NULL;
 | |
| 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
 | |
| 		return NULL;
 | |
| 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
 | |
| 		return NULL;
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	if (dma_alloc_direct(dev, ops))
 | |
| 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
 | |
| 	if (!ops->alloc_pages_op)
 | |
| 		return NULL;
 | |
| 	return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
 | |
| }
 | |
| 
 | |
| struct page *dma_alloc_pages(struct device *dev, size_t size,
 | |
| 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
 | |
| {
 | |
| 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
 | |
| 
 | |
| 	if (page) {
 | |
| 		trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
 | |
| 				      size, dir, gfp, 0);
 | |
| 		debug_dma_alloc_pages(dev, page, size, dir, *dma_handle, 0);
 | |
| 	} else {
 | |
| 		trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_alloc_pages);
 | |
| 
 | |
| static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
 | |
| 		dma_addr_t dma_handle, enum dma_data_direction dir)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	if (dma_alloc_direct(dev, ops))
 | |
| 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		dma_common_free_pages(dev, size, page, dma_handle, dir);
 | |
| 	else if (ops->free_pages)
 | |
| 		ops->free_pages(dev, size, page, dma_handle, dir);
 | |
| }
 | |
| 
 | |
| void dma_free_pages(struct device *dev, size_t size, struct page *page,
 | |
| 		dma_addr_t dma_handle, enum dma_data_direction dir)
 | |
| {
 | |
| 	trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
 | |
| 	debug_dma_free_pages(dev, page, size, dir, dma_handle);
 | |
| 	__dma_free_pages(dev, size, page, dma_handle, dir);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_free_pages);
 | |
| 
 | |
| int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
 | |
| 		size_t size, struct page *page)
 | |
| {
 | |
| 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
 | |
| 		return -ENXIO;
 | |
| 	return remap_pfn_range(vma, vma->vm_start,
 | |
| 			       page_to_pfn(page) + vma->vm_pgoff,
 | |
| 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_mmap_pages);
 | |
| 
 | |
| static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
 | |
| 		enum dma_data_direction dir, gfp_t gfp)
 | |
| {
 | |
| 	struct sg_table *sgt;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	sgt = kmalloc(sizeof(*sgt), gfp);
 | |
| 	if (!sgt)
 | |
| 		return NULL;
 | |
| 	if (sg_alloc_table(sgt, 1, gfp))
 | |
| 		goto out_free_sgt;
 | |
| 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
 | |
| 	if (!page)
 | |
| 		goto out_free_table;
 | |
| 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 | |
| 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
 | |
| 	return sgt;
 | |
| out_free_table:
 | |
| 	sg_free_table(sgt);
 | |
| out_free_sgt:
 | |
| 	kfree(sgt);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
 | |
| 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
 | |
| {
 | |
| 	struct sg_table *sgt;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
 | |
| 		return NULL;
 | |
| 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
 | |
| 	else
 | |
| 		sgt = alloc_single_sgt(dev, size, dir, gfp);
 | |
| 
 | |
| 	if (sgt) {
 | |
| 		sgt->nents = 1;
 | |
| 		trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
 | |
| 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
 | |
| 	} else {
 | |
| 		trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
 | |
| 	}
 | |
| 	return sgt;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
 | |
| 
 | |
| static void free_single_sgt(struct device *dev, size_t size,
 | |
| 		struct sg_table *sgt, enum dma_data_direction dir)
 | |
| {
 | |
| 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
 | |
| 			 dir);
 | |
| 	sg_free_table(sgt);
 | |
| 	kfree(sgt);
 | |
| }
 | |
| 
 | |
| void dma_free_noncontiguous(struct device *dev, size_t size,
 | |
| 		struct sg_table *sgt, enum dma_data_direction dir)
 | |
| {
 | |
| 	trace_dma_free_sgt(dev, sgt, size, dir);
 | |
| 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 | |
| 
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		iommu_dma_free_noncontiguous(dev, size, sgt, dir);
 | |
| 	else
 | |
| 		free_single_sgt(dev, size, sgt, dir);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
 | |
| 
 | |
| void *dma_vmap_noncontiguous(struct device *dev, size_t size,
 | |
| 		struct sg_table *sgt)
 | |
| {
 | |
| 
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		return iommu_dma_vmap_noncontiguous(dev, size, sgt);
 | |
| 
 | |
| 	return page_address(sg_page(sgt->sgl));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
 | |
| 
 | |
| void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
 | |
| {
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		iommu_dma_vunmap_noncontiguous(dev, vaddr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
 | |
| 
 | |
| int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
 | |
| 		size_t size, struct sg_table *sgt)
 | |
| {
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
 | |
| 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
 | |
| 
 | |
| static int dma_supported(struct device *dev, u64 mask)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (use_dma_iommu(dev)) {
 | |
| 		if (WARN_ON(ops))
 | |
| 			return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ->dma_supported sets and clears the bypass flag, so ignore it here
 | |
| 	 * and always call into the method if there is one.
 | |
| 	 */
 | |
| 	if (ops) {
 | |
| 		if (!ops->dma_supported)
 | |
| 			return true;
 | |
| 		return ops->dma_supported(dev, mask);
 | |
| 	}
 | |
| 
 | |
| 	return dma_direct_supported(dev, mask);
 | |
| }
 | |
| 
 | |
| bool dma_pci_p2pdma_supported(struct device *dev)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: dma_ops_bypass is not checked here because P2PDMA should
 | |
| 	 * not be used with dma mapping ops that do not have support even
 | |
| 	 * if the specific device is bypassing them.
 | |
| 	 */
 | |
| 
 | |
| 	/* if ops is not set, dma direct and default IOMMU support P2PDMA */
 | |
| 	return !ops;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
 | |
| 
 | |
| int dma_set_mask(struct device *dev, u64 mask)
 | |
| {
 | |
| 	/*
 | |
| 	 * Truncate the mask to the actually supported dma_addr_t width to
 | |
| 	 * avoid generating unsupportable addresses.
 | |
| 	 */
 | |
| 	mask = (dma_addr_t)mask;
 | |
| 
 | |
| 	if (!dev->dma_mask || !dma_supported(dev, mask))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	arch_dma_set_mask(dev, mask);
 | |
| 	*dev->dma_mask = mask;
 | |
| 	dma_setup_need_sync(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_set_mask);
 | |
| 
 | |
| int dma_set_coherent_mask(struct device *dev, u64 mask)
 | |
| {
 | |
| 	/*
 | |
| 	 * Truncate the mask to the actually supported dma_addr_t width to
 | |
| 	 * avoid generating unsupportable addresses.
 | |
| 	 */
 | |
| 	mask = (dma_addr_t)mask;
 | |
| 
 | |
| 	if (!dma_supported(dev, mask))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	dev->coherent_dma_mask = mask;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_set_coherent_mask);
 | |
| 
 | |
| static bool __dma_addressing_limited(struct device *dev)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
 | |
| 			 dma_get_required_mask(dev))
 | |
| 		return true;
 | |
| 
 | |
| 	if (unlikely(ops) || use_dma_iommu(dev))
 | |
| 		return false;
 | |
| 	return !dma_direct_all_ram_mapped(dev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dma_addressing_limited - return if the device is addressing limited
 | |
|  * @dev:	device to check
 | |
|  *
 | |
|  * Return %true if the devices DMA mask is too small to address all memory in
 | |
|  * the system, else %false.  Lack of addressing bits is the prime reason for
 | |
|  * bounce buffering, but might not be the only one.
 | |
|  */
 | |
| bool dma_addressing_limited(struct device *dev)
 | |
| {
 | |
| 	if (!__dma_addressing_limited(dev))
 | |
| 		return false;
 | |
| 
 | |
| 	dev_dbg(dev, "device is DMA addressing limited\n");
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_addressing_limited);
 | |
| 
 | |
| size_t dma_max_mapping_size(struct device *dev)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	size_t size = SIZE_MAX;
 | |
| 
 | |
| 	if (dma_map_direct(dev, ops))
 | |
| 		size = dma_direct_max_mapping_size(dev);
 | |
| 	else if (use_dma_iommu(dev))
 | |
| 		size = iommu_dma_max_mapping_size(dev);
 | |
| 	else if (ops && ops->max_mapping_size)
 | |
| 		size = ops->max_mapping_size(dev);
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_max_mapping_size);
 | |
| 
 | |
| size_t dma_opt_mapping_size(struct device *dev)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	size_t size = SIZE_MAX;
 | |
| 
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		size = iommu_dma_opt_mapping_size();
 | |
| 	else if (ops && ops->opt_mapping_size)
 | |
| 		size = ops->opt_mapping_size();
 | |
| 
 | |
| 	return min(dma_max_mapping_size(dev), size);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
 | |
| 
 | |
| unsigned long dma_get_merge_boundary(struct device *dev)
 | |
| {
 | |
| 	const struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 
 | |
| 	if (use_dma_iommu(dev))
 | |
| 		return iommu_dma_get_merge_boundary(dev);
 | |
| 
 | |
| 	if (!ops || !ops->get_merge_boundary)
 | |
| 		return 0;	/* can't merge */
 | |
| 
 | |
| 	return ops->get_merge_boundary(dev);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
 |