mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 ba0fb44aed
			
		
	
	
		ba0fb44aed
		
	
	
	
	
		
			
			The hardware DMA limit might not be power of 2. When RAM range starts above 0, say 4GB, DMA limit of 30 bits should end at 5GB. A single high bit can not encode this limit. Use a plain address for the DMA zone limit instead. Since the DMA zone can now potentially span beyond 4GB physical limit of DMA32, make sure to use DMA zone for GFP_DMA32 allocations in that case. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Co-developed-by: Baruch Siach <baruch@tkos.co.il> Signed-off-by: Baruch Siach <baruch@tkos.co.il> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Petr Tesarik <ptesarik@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
		
			
				
	
	
		
			1883 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1883 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Dynamic DMA mapping support.
 | |
|  *
 | |
|  * This implementation is a fallback for platforms that do not support
 | |
|  * I/O TLBs (aka DMA address translation hardware).
 | |
|  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
 | |
|  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
 | |
|  * Copyright (C) 2000, 2003 Hewlett-Packard Co
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  *
 | |
|  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 | |
|  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 | |
|  *			unnecessary i-cache flushing.
 | |
|  * 04/07/.. ak		Better overflow handling. Assorted fixes.
 | |
|  * 05/09/10 linville	Add support for syncing ranges, support syncing for
 | |
|  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 | |
|  * 08/12/11 beckyb	Add highmem support
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "software IO TLB: " fmt
 | |
| 
 | |
| #include <linux/cache.h>
 | |
| #include <linux/cc_platform.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/dma-direct.h>
 | |
| #include <linux/dma-map-ops.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/iommu-helper.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/set_memory.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/swiotlb.h>
 | |
| #include <linux/types.h>
 | |
| #ifdef CONFIG_DMA_RESTRICTED_POOL
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_fdt.h>
 | |
| #include <linux/of_reserved_mem.h>
 | |
| #include <linux/slab.h>
 | |
| #endif
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/swiotlb.h>
 | |
| 
 | |
| #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 | |
| 
 | |
| /*
 | |
|  * Minimum IO TLB size to bother booting with.  Systems with mainly
 | |
|  * 64bit capable cards will only lightly use the swiotlb.  If we can't
 | |
|  * allocate a contiguous 1MB, we're probably in trouble anyway.
 | |
|  */
 | |
| #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 | |
| 
 | |
| #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
 | |
| 
 | |
| /**
 | |
|  * struct io_tlb_slot - IO TLB slot descriptor
 | |
|  * @orig_addr:	The original address corresponding to a mapped entry.
 | |
|  * @alloc_size:	Size of the allocated buffer.
 | |
|  * @list:	The free list describing the number of free entries available
 | |
|  *		from each index.
 | |
|  * @pad_slots:	Number of preceding padding slots. Valid only in the first
 | |
|  *		allocated non-padding slot.
 | |
|  */
 | |
| struct io_tlb_slot {
 | |
| 	phys_addr_t orig_addr;
 | |
| 	size_t alloc_size;
 | |
| 	unsigned short list;
 | |
| 	unsigned short pad_slots;
 | |
| };
 | |
| 
 | |
| static bool swiotlb_force_bounce;
 | |
| static bool swiotlb_force_disable;
 | |
| 
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 
 | |
| static void swiotlb_dyn_alloc(struct work_struct *work);
 | |
| 
 | |
| static struct io_tlb_mem io_tlb_default_mem = {
 | |
| 	.lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock),
 | |
| 	.pools = LIST_HEAD_INIT(io_tlb_default_mem.pools),
 | |
| 	.dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc,
 | |
| 					swiotlb_dyn_alloc),
 | |
| };
 | |
| 
 | |
| #else  /* !CONFIG_SWIOTLB_DYNAMIC */
 | |
| 
 | |
| static struct io_tlb_mem io_tlb_default_mem;
 | |
| 
 | |
| #endif	/* CONFIG_SWIOTLB_DYNAMIC */
 | |
| 
 | |
| static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
 | |
| static unsigned long default_nareas;
 | |
| 
 | |
| /**
 | |
|  * struct io_tlb_area - IO TLB memory area descriptor
 | |
|  *
 | |
|  * This is a single area with a single lock.
 | |
|  *
 | |
|  * @used:	The number of used IO TLB block.
 | |
|  * @index:	The slot index to start searching in this area for next round.
 | |
|  * @lock:	The lock to protect the above data structures in the map and
 | |
|  *		unmap calls.
 | |
|  */
 | |
| struct io_tlb_area {
 | |
| 	unsigned long used;
 | |
| 	unsigned int index;
 | |
| 	spinlock_t lock;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Round up number of slabs to the next power of 2. The last area is going
 | |
|  * be smaller than the rest if default_nslabs is not power of two.
 | |
|  * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
 | |
|  * otherwise a segment may span two or more areas. It conflicts with free
 | |
|  * contiguous slots tracking: free slots are treated contiguous no matter
 | |
|  * whether they cross an area boundary.
 | |
|  *
 | |
|  * Return true if default_nslabs is rounded up.
 | |
|  */
 | |
| static bool round_up_default_nslabs(void)
 | |
| {
 | |
| 	if (!default_nareas)
 | |
| 		return false;
 | |
| 
 | |
| 	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
 | |
| 		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
 | |
| 	else if (is_power_of_2(default_nslabs))
 | |
| 		return false;
 | |
| 	default_nslabs = roundup_pow_of_two(default_nslabs);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swiotlb_adjust_nareas() - adjust the number of areas and slots
 | |
|  * @nareas:	Desired number of areas. Zero is treated as 1.
 | |
|  *
 | |
|  * Adjust the default number of areas in a memory pool.
 | |
|  * The default size of the memory pool may also change to meet minimum area
 | |
|  * size requirements.
 | |
|  */
 | |
| static void swiotlb_adjust_nareas(unsigned int nareas)
 | |
| {
 | |
| 	if (!nareas)
 | |
| 		nareas = 1;
 | |
| 	else if (!is_power_of_2(nareas))
 | |
| 		nareas = roundup_pow_of_two(nareas);
 | |
| 
 | |
| 	default_nareas = nareas;
 | |
| 
 | |
| 	pr_info("area num %d.\n", nareas);
 | |
| 	if (round_up_default_nslabs())
 | |
| 		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
 | |
| 			(default_nslabs << IO_TLB_SHIFT) >> 20);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * limit_nareas() - get the maximum number of areas for a given memory pool size
 | |
|  * @nareas:	Desired number of areas.
 | |
|  * @nslots:	Total number of slots in the memory pool.
 | |
|  *
 | |
|  * Limit the number of areas to the maximum possible number of areas in
 | |
|  * a memory pool of the given size.
 | |
|  *
 | |
|  * Return: Maximum possible number of areas.
 | |
|  */
 | |
| static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
 | |
| {
 | |
| 	if (nslots < nareas * IO_TLB_SEGSIZE)
 | |
| 		return nslots / IO_TLB_SEGSIZE;
 | |
| 	return nareas;
 | |
| }
 | |
| 
 | |
| static int __init
 | |
| setup_io_tlb_npages(char *str)
 | |
| {
 | |
| 	if (isdigit(*str)) {
 | |
| 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
 | |
| 		default_nslabs =
 | |
| 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
 | |
| 	}
 | |
| 	if (*str == ',')
 | |
| 		++str;
 | |
| 	if (isdigit(*str))
 | |
| 		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
 | |
| 	if (*str == ',')
 | |
| 		++str;
 | |
| 	if (!strcmp(str, "force"))
 | |
| 		swiotlb_force_bounce = true;
 | |
| 	else if (!strcmp(str, "noforce"))
 | |
| 		swiotlb_force_disable = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("swiotlb", setup_io_tlb_npages);
 | |
| 
 | |
| unsigned long swiotlb_size_or_default(void)
 | |
| {
 | |
| 	return default_nslabs << IO_TLB_SHIFT;
 | |
| }
 | |
| 
 | |
| void __init swiotlb_adjust_size(unsigned long size)
 | |
| {
 | |
| 	/*
 | |
| 	 * If swiotlb parameter has not been specified, give a chance to
 | |
| 	 * architectures such as those supporting memory encryption to
 | |
| 	 * adjust/expand SWIOTLB size for their use.
 | |
| 	 */
 | |
| 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
 | |
| 		return;
 | |
| 
 | |
| 	size = ALIGN(size, IO_TLB_SIZE);
 | |
| 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
 | |
| 	if (round_up_default_nslabs())
 | |
| 		size = default_nslabs << IO_TLB_SHIFT;
 | |
| 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
 | |
| }
 | |
| 
 | |
| void swiotlb_print_info(void)
 | |
| {
 | |
| 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
 | |
| 
 | |
| 	if (!mem->nslabs) {
 | |
| 		pr_warn("No low mem\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
 | |
| 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
 | |
| }
 | |
| 
 | |
| static inline unsigned long io_tlb_offset(unsigned long val)
 | |
| {
 | |
| 	return val & (IO_TLB_SEGSIZE - 1);
 | |
| }
 | |
| 
 | |
| static inline unsigned long nr_slots(u64 val)
 | |
| {
 | |
| 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Early SWIOTLB allocation may be too early to allow an architecture to
 | |
|  * perform the desired operations.  This function allows the architecture to
 | |
|  * call SWIOTLB when the operations are possible.  It needs to be called
 | |
|  * before the SWIOTLB memory is used.
 | |
|  */
 | |
| void __init swiotlb_update_mem_attributes(void)
 | |
| {
 | |
| 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
 | |
| 	unsigned long bytes;
 | |
| 
 | |
| 	if (!mem->nslabs || mem->late_alloc)
 | |
| 		return;
 | |
| 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
 | |
| 	set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
 | |
| 		unsigned long nslabs, bool late_alloc, unsigned int nareas)
 | |
| {
 | |
| 	void *vaddr = phys_to_virt(start);
 | |
| 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
 | |
| 
 | |
| 	mem->nslabs = nslabs;
 | |
| 	mem->start = start;
 | |
| 	mem->end = mem->start + bytes;
 | |
| 	mem->late_alloc = late_alloc;
 | |
| 	mem->nareas = nareas;
 | |
| 	mem->area_nslabs = nslabs / mem->nareas;
 | |
| 
 | |
| 	for (i = 0; i < mem->nareas; i++) {
 | |
| 		spin_lock_init(&mem->areas[i].lock);
 | |
| 		mem->areas[i].index = 0;
 | |
| 		mem->areas[i].used = 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < mem->nslabs; i++) {
 | |
| 		mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i),
 | |
| 					 mem->nslabs - i);
 | |
| 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
 | |
| 		mem->slots[i].alloc_size = 0;
 | |
| 		mem->slots[i].pad_slots = 0;
 | |
| 	}
 | |
| 
 | |
| 	memset(vaddr, 0, bytes);
 | |
| 	mem->vaddr = vaddr;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_mem_pool() - add a memory pool to the allocator
 | |
|  * @mem:	Software IO TLB allocator.
 | |
|  * @pool:	Memory pool to be added.
 | |
|  */
 | |
| static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool)
 | |
| {
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 	spin_lock(&mem->lock);
 | |
| 	list_add_rcu(&pool->node, &mem->pools);
 | |
| 	mem->nslabs += pool->nslabs;
 | |
| 	spin_unlock(&mem->lock);
 | |
| #else
 | |
| 	mem->nslabs = pool->nslabs;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
 | |
| 		unsigned int flags,
 | |
| 		int (*remap)(void *tlb, unsigned long nslabs))
 | |
| {
 | |
| 	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
 | |
| 	void *tlb;
 | |
| 
 | |
| 	/*
 | |
| 	 * By default allocate the bounce buffer memory from low memory, but
 | |
| 	 * allow to pick a location everywhere for hypervisors with guest
 | |
| 	 * memory encryption.
 | |
| 	 */
 | |
| 	if (flags & SWIOTLB_ANY)
 | |
| 		tlb = memblock_alloc(bytes, PAGE_SIZE);
 | |
| 	else
 | |
| 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
 | |
| 
 | |
| 	if (!tlb) {
 | |
| 		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
 | |
| 			__func__, bytes);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (remap && remap(tlb, nslabs) < 0) {
 | |
| 		memblock_free(tlb, PAGE_ALIGN(bytes));
 | |
| 		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return tlb;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Statically reserve bounce buffer space and initialize bounce buffer data
 | |
|  * structures for the software IO TLB used to implement the DMA API.
 | |
|  */
 | |
| void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
 | |
| 		int (*remap)(void *tlb, unsigned long nslabs))
 | |
| {
 | |
| 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
 | |
| 	unsigned long nslabs;
 | |
| 	unsigned int nareas;
 | |
| 	size_t alloc_size;
 | |
| 	void *tlb;
 | |
| 
 | |
| 	if (!addressing_limit && !swiotlb_force_bounce)
 | |
| 		return;
 | |
| 	if (swiotlb_force_disable)
 | |
| 		return;
 | |
| 
 | |
| 	io_tlb_default_mem.force_bounce =
 | |
| 		swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
 | |
| 
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 	if (!remap)
 | |
| 		io_tlb_default_mem.can_grow = true;
 | |
| 	if (flags & SWIOTLB_ANY)
 | |
| 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
 | |
| 	else
 | |
| 		io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT;
 | |
| #endif
 | |
| 
 | |
| 	if (!default_nareas)
 | |
| 		swiotlb_adjust_nareas(num_possible_cpus());
 | |
| 
 | |
| 	nslabs = default_nslabs;
 | |
| 	nareas = limit_nareas(default_nareas, nslabs);
 | |
| 	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
 | |
| 		if (nslabs <= IO_TLB_MIN_SLABS)
 | |
| 			return;
 | |
| 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
 | |
| 		nareas = limit_nareas(nareas, nslabs);
 | |
| 	}
 | |
| 
 | |
| 	if (default_nslabs != nslabs) {
 | |
| 		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
 | |
| 			default_nslabs, nslabs);
 | |
| 		default_nslabs = nslabs;
 | |
| 	}
 | |
| 
 | |
| 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
 | |
| 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
 | |
| 	if (!mem->slots) {
 | |
| 		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
 | |
| 			__func__, alloc_size, PAGE_SIZE);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
 | |
| 		nareas), SMP_CACHE_BYTES);
 | |
| 	if (!mem->areas) {
 | |
| 		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas);
 | |
| 	add_mem_pool(&io_tlb_default_mem, mem);
 | |
| 
 | |
| 	if (flags & SWIOTLB_VERBOSE)
 | |
| 		swiotlb_print_info();
 | |
| }
 | |
| 
 | |
| void __init swiotlb_init(bool addressing_limit, unsigned int flags)
 | |
| {
 | |
| 	swiotlb_init_remap(addressing_limit, flags, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Systems with larger DMA zones (those that don't support ISA) can
 | |
|  * initialize the swiotlb later using the slab allocator if needed.
 | |
|  * This should be just like above, but with some error catching.
 | |
|  */
 | |
| int swiotlb_init_late(size_t size, gfp_t gfp_mask,
 | |
| 		int (*remap)(void *tlb, unsigned long nslabs))
 | |
| {
 | |
| 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
 | |
| 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
 | |
| 	unsigned int nareas;
 | |
| 	unsigned char *vstart = NULL;
 | |
| 	unsigned int order, area_order;
 | |
| 	bool retried = false;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (io_tlb_default_mem.nslabs)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (swiotlb_force_disable)
 | |
| 		return 0;
 | |
| 
 | |
| 	io_tlb_default_mem.force_bounce = swiotlb_force_bounce;
 | |
| 
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 	if (!remap)
 | |
| 		io_tlb_default_mem.can_grow = true;
 | |
| 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA))
 | |
| 		io_tlb_default_mem.phys_limit = zone_dma_limit;
 | |
| 	else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32))
 | |
| 		io_tlb_default_mem.phys_limit = max(DMA_BIT_MASK(32), zone_dma_limit);
 | |
| 	else
 | |
| 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
 | |
| #endif
 | |
| 
 | |
| 	if (!default_nareas)
 | |
| 		swiotlb_adjust_nareas(num_possible_cpus());
 | |
| 
 | |
| retry:
 | |
| 	order = get_order(nslabs << IO_TLB_SHIFT);
 | |
| 	nslabs = SLABS_PER_PAGE << order;
 | |
| 
 | |
| 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 | |
| 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
 | |
| 						  order);
 | |
| 		if (vstart)
 | |
| 			break;
 | |
| 		order--;
 | |
| 		nslabs = SLABS_PER_PAGE << order;
 | |
| 		retried = true;
 | |
| 	}
 | |
| 
 | |
| 	if (!vstart)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (remap)
 | |
| 		rc = remap(vstart, nslabs);
 | |
| 	if (rc) {
 | |
| 		free_pages((unsigned long)vstart, order);
 | |
| 
 | |
| 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
 | |
| 		if (nslabs < IO_TLB_MIN_SLABS)
 | |
| 			return rc;
 | |
| 		retried = true;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (retried) {
 | |
| 		pr_warn("only able to allocate %ld MB\n",
 | |
| 			(PAGE_SIZE << order) >> 20);
 | |
| 	}
 | |
| 
 | |
| 	nareas = limit_nareas(default_nareas, nslabs);
 | |
| 	area_order = get_order(array_size(sizeof(*mem->areas), nareas));
 | |
| 	mem->areas = (struct io_tlb_area *)
 | |
| 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
 | |
| 	if (!mem->areas)
 | |
| 		goto error_area;
 | |
| 
 | |
| 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
 | |
| 		get_order(array_size(sizeof(*mem->slots), nslabs)));
 | |
| 	if (!mem->slots)
 | |
| 		goto error_slots;
 | |
| 
 | |
| 	set_memory_decrypted((unsigned long)vstart,
 | |
| 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
 | |
| 	swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true,
 | |
| 				 nareas);
 | |
| 	add_mem_pool(&io_tlb_default_mem, mem);
 | |
| 
 | |
| 	swiotlb_print_info();
 | |
| 	return 0;
 | |
| 
 | |
| error_slots:
 | |
| 	free_pages((unsigned long)mem->areas, area_order);
 | |
| error_area:
 | |
| 	free_pages((unsigned long)vstart, order);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void __init swiotlb_exit(void)
 | |
| {
 | |
| 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
 | |
| 	unsigned long tbl_vaddr;
 | |
| 	size_t tbl_size, slots_size;
 | |
| 	unsigned int area_order;
 | |
| 
 | |
| 	if (swiotlb_force_bounce)
 | |
| 		return;
 | |
| 
 | |
| 	if (!mem->nslabs)
 | |
| 		return;
 | |
| 
 | |
| 	pr_info("tearing down default memory pool\n");
 | |
| 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
 | |
| 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
 | |
| 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
 | |
| 
 | |
| 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
 | |
| 	if (mem->late_alloc) {
 | |
| 		area_order = get_order(array_size(sizeof(*mem->areas),
 | |
| 			mem->nareas));
 | |
| 		free_pages((unsigned long)mem->areas, area_order);
 | |
| 		free_pages(tbl_vaddr, get_order(tbl_size));
 | |
| 		free_pages((unsigned long)mem->slots, get_order(slots_size));
 | |
| 	} else {
 | |
| 		memblock_free_late(__pa(mem->areas),
 | |
| 			array_size(sizeof(*mem->areas), mem->nareas));
 | |
| 		memblock_free_late(mem->start, tbl_size);
 | |
| 		memblock_free_late(__pa(mem->slots), slots_size);
 | |
| 	}
 | |
| 
 | |
| 	memset(mem, 0, sizeof(*mem));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 
 | |
| /**
 | |
|  * alloc_dma_pages() - allocate pages to be used for DMA
 | |
|  * @gfp:	GFP flags for the allocation.
 | |
|  * @bytes:	Size of the buffer.
 | |
|  * @phys_limit:	Maximum allowed physical address of the buffer.
 | |
|  *
 | |
|  * Allocate pages from the buddy allocator. If successful, make the allocated
 | |
|  * pages decrypted that they can be used for DMA.
 | |
|  *
 | |
|  * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN)
 | |
|  * if the allocated physical address was above @phys_limit.
 | |
|  */
 | |
| static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit)
 | |
| {
 | |
| 	unsigned int order = get_order(bytes);
 | |
| 	struct page *page;
 | |
| 	phys_addr_t paddr;
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	page = alloc_pages(gfp, order);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	paddr = page_to_phys(page);
 | |
| 	if (paddr + bytes - 1 > phys_limit) {
 | |
| 		__free_pages(page, order);
 | |
| 		return ERR_PTR(-EAGAIN);
 | |
| 	}
 | |
| 
 | |
| 	vaddr = phys_to_virt(paddr);
 | |
| 	if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
 | |
| 		goto error;
 | |
| 	return page;
 | |
| 
 | |
| error:
 | |
| 	/* Intentional leak if pages cannot be encrypted again. */
 | |
| 	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
 | |
| 		__free_pages(page, order);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer
 | |
|  * @dev:	Device for which a memory pool is allocated.
 | |
|  * @bytes:	Size of the buffer.
 | |
|  * @phys_limit:	Maximum allowed physical address of the buffer.
 | |
|  * @gfp:	GFP flags for the allocation.
 | |
|  *
 | |
|  * Return: Allocated pages, or %NULL on allocation failure.
 | |
|  */
 | |
| static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
 | |
| 		u64 phys_limit, gfp_t gfp)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate from the atomic pools if memory is encrypted and
 | |
| 	 * the allocation is atomic, because decrypting may block.
 | |
| 	 */
 | |
| 	if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) {
 | |
| 		void *vaddr;
 | |
| 
 | |
| 		if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
 | |
| 			return NULL;
 | |
| 
 | |
| 		return dma_alloc_from_pool(dev, bytes, &vaddr, gfp,
 | |
| 					   dma_coherent_ok);
 | |
| 	}
 | |
| 
 | |
| 	gfp &= ~GFP_ZONEMASK;
 | |
| 	if (phys_limit <= zone_dma_limit)
 | |
| 		gfp |= __GFP_DMA;
 | |
| 	else if (phys_limit <= DMA_BIT_MASK(32))
 | |
| 		gfp |= __GFP_DMA32;
 | |
| 
 | |
| 	while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) {
 | |
| 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
 | |
| 		    phys_limit < DMA_BIT_MASK(64) &&
 | |
| 		    !(gfp & (__GFP_DMA32 | __GFP_DMA)))
 | |
| 			gfp |= __GFP_DMA32;
 | |
| 		else if (IS_ENABLED(CONFIG_ZONE_DMA) &&
 | |
| 			 !(gfp & __GFP_DMA))
 | |
| 			gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA;
 | |
| 		else
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer
 | |
|  * @vaddr:	Virtual address of the buffer.
 | |
|  * @bytes:	Size of the buffer.
 | |
|  */
 | |
| static void swiotlb_free_tlb(void *vaddr, size_t bytes)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
 | |
| 	    dma_free_from_pool(NULL, vaddr, bytes))
 | |
| 		return;
 | |
| 
 | |
| 	/* Intentional leak if pages cannot be encrypted again. */
 | |
| 	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
 | |
| 		__free_pages(virt_to_page(vaddr), get_order(bytes));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swiotlb_alloc_pool() - allocate a new IO TLB memory pool
 | |
|  * @dev:	Device for which a memory pool is allocated.
 | |
|  * @minslabs:	Minimum number of slabs.
 | |
|  * @nslabs:	Desired (maximum) number of slabs.
 | |
|  * @nareas:	Number of areas.
 | |
|  * @phys_limit:	Maximum DMA buffer physical address.
 | |
|  * @gfp:	GFP flags for the allocations.
 | |
|  *
 | |
|  * Allocate and initialize a new IO TLB memory pool. The actual number of
 | |
|  * slabs may be reduced if allocation of @nslabs fails. If even
 | |
|  * @minslabs cannot be allocated, this function fails.
 | |
|  *
 | |
|  * Return: New memory pool, or %NULL on allocation failure.
 | |
|  */
 | |
| static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev,
 | |
| 		unsigned long minslabs, unsigned long nslabs,
 | |
| 		unsigned int nareas, u64 phys_limit, gfp_t gfp)
 | |
| {
 | |
| 	struct io_tlb_pool *pool;
 | |
| 	unsigned int slot_order;
 | |
| 	struct page *tlb;
 | |
| 	size_t pool_size;
 | |
| 	size_t tlb_size;
 | |
| 
 | |
| 	if (nslabs > SLABS_PER_PAGE << MAX_PAGE_ORDER) {
 | |
| 		nslabs = SLABS_PER_PAGE << MAX_PAGE_ORDER;
 | |
| 		nareas = limit_nareas(nareas, nslabs);
 | |
| 	}
 | |
| 
 | |
| 	pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas);
 | |
| 	pool = kzalloc(pool_size, gfp);
 | |
| 	if (!pool)
 | |
| 		goto error;
 | |
| 	pool->areas = (void *)pool + sizeof(*pool);
 | |
| 
 | |
| 	tlb_size = nslabs << IO_TLB_SHIFT;
 | |
| 	while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) {
 | |
| 		if (nslabs <= minslabs)
 | |
| 			goto error_tlb;
 | |
| 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
 | |
| 		nareas = limit_nareas(nareas, nslabs);
 | |
| 		tlb_size = nslabs << IO_TLB_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	slot_order = get_order(array_size(sizeof(*pool->slots), nslabs));
 | |
| 	pool->slots = (struct io_tlb_slot *)
 | |
| 		__get_free_pages(gfp, slot_order);
 | |
| 	if (!pool->slots)
 | |
| 		goto error_slots;
 | |
| 
 | |
| 	swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas);
 | |
| 	return pool;
 | |
| 
 | |
| error_slots:
 | |
| 	swiotlb_free_tlb(page_address(tlb), tlb_size);
 | |
| error_tlb:
 | |
| 	kfree(pool);
 | |
| error:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swiotlb_dyn_alloc() - dynamic memory pool allocation worker
 | |
|  * @work:	Pointer to dyn_alloc in struct io_tlb_mem.
 | |
|  */
 | |
| static void swiotlb_dyn_alloc(struct work_struct *work)
 | |
| {
 | |
| 	struct io_tlb_mem *mem =
 | |
| 		container_of(work, struct io_tlb_mem, dyn_alloc);
 | |
| 	struct io_tlb_pool *pool;
 | |
| 
 | |
| 	pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs,
 | |
| 				  default_nareas, mem->phys_limit, GFP_KERNEL);
 | |
| 	if (!pool) {
 | |
| 		pr_warn_ratelimited("Failed to allocate new pool");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	add_mem_pool(mem, pool);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swiotlb_dyn_free() - RCU callback to free a memory pool
 | |
|  * @rcu:	RCU head in the corresponding struct io_tlb_pool.
 | |
|  */
 | |
| static void swiotlb_dyn_free(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu);
 | |
| 	size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs);
 | |
| 	size_t tlb_size = pool->end - pool->start;
 | |
| 
 | |
| 	free_pages((unsigned long)pool->slots, get_order(slots_size));
 | |
| 	swiotlb_free_tlb(pool->vaddr, tlb_size);
 | |
| 	kfree(pool);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __swiotlb_find_pool() - find the IO TLB pool for a physical address
 | |
|  * @dev:        Device which has mapped the DMA buffer.
 | |
|  * @paddr:      Physical address within the DMA buffer.
 | |
|  *
 | |
|  * Find the IO TLB memory pool descriptor which contains the given physical
 | |
|  * address, if any. This function is for use only when the dev is known to
 | |
|  * be using swiotlb. Use swiotlb_find_pool() for the more general case
 | |
|  * when this condition is not met.
 | |
|  *
 | |
|  * Return: Memory pool which contains @paddr, or %NULL if none.
 | |
|  */
 | |
| struct io_tlb_pool *__swiotlb_find_pool(struct device *dev, phys_addr_t paddr)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
 | |
| 	struct io_tlb_pool *pool;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pool, &mem->pools, node) {
 | |
| 		if (paddr >= pool->start && paddr < pool->end)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) {
 | |
| 		if (paddr >= pool->start && paddr < pool->end)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	pool = NULL;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return pool;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swiotlb_del_pool() - remove an IO TLB pool from a device
 | |
|  * @dev:	Owning device.
 | |
|  * @pool:	Memory pool to be removed.
 | |
|  */
 | |
| static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
 | |
| 	list_del_rcu(&pool->node);
 | |
| 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
 | |
| 
 | |
| 	call_rcu(&pool->rcu, swiotlb_dyn_free);
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_SWIOTLB_DYNAMIC */
 | |
| 
 | |
| /**
 | |
|  * swiotlb_dev_init() - initialize swiotlb fields in &struct device
 | |
|  * @dev:	Device to be initialized.
 | |
|  */
 | |
| void swiotlb_dev_init(struct device *dev)
 | |
| {
 | |
| 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 	INIT_LIST_HEAD(&dev->dma_io_tlb_pools);
 | |
| 	spin_lock_init(&dev->dma_io_tlb_lock);
 | |
| 	dev->dma_uses_io_tlb = false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swiotlb_align_offset() - Get required offset into an IO TLB allocation.
 | |
|  * @dev:         Owning device.
 | |
|  * @align_mask:  Allocation alignment mask.
 | |
|  * @addr:        DMA address.
 | |
|  *
 | |
|  * Return the minimum offset from the start of an IO TLB allocation which is
 | |
|  * required for a given buffer address and allocation alignment to keep the
 | |
|  * device happy.
 | |
|  *
 | |
|  * First, the address bits covered by min_align_mask must be identical in the
 | |
|  * original address and the bounce buffer address. High bits are preserved by
 | |
|  * choosing a suitable IO TLB slot, but bits below IO_TLB_SHIFT require extra
 | |
|  * padding bytes before the bounce buffer.
 | |
|  *
 | |
|  * Second, @align_mask specifies which bits of the first allocated slot must
 | |
|  * be zero. This may require allocating additional padding slots, and then the
 | |
|  * offset (in bytes) from the first such padding slot is returned.
 | |
|  */
 | |
| static unsigned int swiotlb_align_offset(struct device *dev,
 | |
| 					 unsigned int align_mask, u64 addr)
 | |
| {
 | |
| 	return addr & dma_get_min_align_mask(dev) &
 | |
| 		(align_mask | (IO_TLB_SIZE - 1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bounce: copy the swiotlb buffer from or back to the original dma location
 | |
|  */
 | |
| static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
 | |
| 			   enum dma_data_direction dir, struct io_tlb_pool *mem)
 | |
| {
 | |
| 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
 | |
| 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
 | |
| 	size_t alloc_size = mem->slots[index].alloc_size;
 | |
| 	unsigned long pfn = PFN_DOWN(orig_addr);
 | |
| 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
 | |
| 	int tlb_offset;
 | |
| 
 | |
| 	if (orig_addr == INVALID_PHYS_ADDR)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * It's valid for tlb_offset to be negative. This can happen when the
 | |
| 	 * "offset" returned by swiotlb_align_offset() is non-zero, and the
 | |
| 	 * tlb_addr is pointing within the first "offset" bytes of the second
 | |
| 	 * or subsequent slots of the allocated swiotlb area. While it's not
 | |
| 	 * valid for tlb_addr to be pointing within the first "offset" bytes
 | |
| 	 * of the first slot, there's no way to check for such an error since
 | |
| 	 * this function can't distinguish the first slot from the second and
 | |
| 	 * subsequent slots.
 | |
| 	 */
 | |
| 	tlb_offset = (tlb_addr & (IO_TLB_SIZE - 1)) -
 | |
| 		     swiotlb_align_offset(dev, 0, orig_addr);
 | |
| 
 | |
| 	orig_addr += tlb_offset;
 | |
| 	alloc_size -= tlb_offset;
 | |
| 
 | |
| 	if (size > alloc_size) {
 | |
| 		dev_WARN_ONCE(dev, 1,
 | |
| 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
 | |
| 			alloc_size, size);
 | |
| 		size = alloc_size;
 | |
| 	}
 | |
| 
 | |
| 	if (PageHighMem(pfn_to_page(pfn))) {
 | |
| 		unsigned int offset = orig_addr & ~PAGE_MASK;
 | |
| 		struct page *page;
 | |
| 		unsigned int sz = 0;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		while (size) {
 | |
| 			sz = min_t(size_t, PAGE_SIZE - offset, size);
 | |
| 
 | |
| 			local_irq_save(flags);
 | |
| 			page = pfn_to_page(pfn);
 | |
| 			if (dir == DMA_TO_DEVICE)
 | |
| 				memcpy_from_page(vaddr, page, offset, sz);
 | |
| 			else
 | |
| 				memcpy_to_page(page, offset, vaddr, sz);
 | |
| 			local_irq_restore(flags);
 | |
| 
 | |
| 			size -= sz;
 | |
| 			pfn++;
 | |
| 			vaddr += sz;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	} else if (dir == DMA_TO_DEVICE) {
 | |
| 		memcpy(vaddr, phys_to_virt(orig_addr), size);
 | |
| 	} else {
 | |
| 		memcpy(phys_to_virt(orig_addr), vaddr, size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
 | |
| {
 | |
| 	return start + (idx << IO_TLB_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
 | |
|  */
 | |
| static inline unsigned long get_max_slots(unsigned long boundary_mask)
 | |
| {
 | |
| 	return (boundary_mask >> IO_TLB_SHIFT) + 1;
 | |
| }
 | |
| 
 | |
| static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index)
 | |
| {
 | |
| 	if (index >= mem->area_nslabs)
 | |
| 		return 0;
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Track the total used slots with a global atomic value in order to have
 | |
|  * correct information to determine the high water mark. The mem_used()
 | |
|  * function gives imprecise results because there's no locking across
 | |
|  * multiple areas.
 | |
|  */
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
 | |
| {
 | |
| 	unsigned long old_hiwater, new_used;
 | |
| 
 | |
| 	new_used = atomic_long_add_return(nslots, &mem->total_used);
 | |
| 	old_hiwater = atomic_long_read(&mem->used_hiwater);
 | |
| 	do {
 | |
| 		if (new_used <= old_hiwater)
 | |
| 			break;
 | |
| 	} while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
 | |
| 					  &old_hiwater, new_used));
 | |
| }
 | |
| 
 | |
| static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
 | |
| {
 | |
| 	atomic_long_sub(nslots, &mem->total_used);
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_DEBUG_FS */
 | |
| static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
 | |
| {
 | |
| }
 | |
| static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_DEBUG_FS */
 | |
| 
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
 | |
| {
 | |
| 	atomic_long_add(nslots, &mem->transient_nslabs);
 | |
| }
 | |
| 
 | |
| static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
 | |
| {
 | |
| 	atomic_long_sub(nslots, &mem->transient_nslabs);
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_DEBUG_FS */
 | |
| static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
 | |
| {
 | |
| }
 | |
| static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_DEBUG_FS */
 | |
| #endif /* CONFIG_SWIOTLB_DYNAMIC */
 | |
| 
 | |
| /**
 | |
|  * swiotlb_search_pool_area() - search one memory area in one pool
 | |
|  * @dev:	Device which maps the buffer.
 | |
|  * @pool:	Memory pool to be searched.
 | |
|  * @area_index:	Index of the IO TLB memory area to be searched.
 | |
|  * @orig_addr:	Original (non-bounced) IO buffer address.
 | |
|  * @alloc_size: Total requested size of the bounce buffer,
 | |
|  *		including initial alignment padding.
 | |
|  * @alloc_align_mask:	Required alignment of the allocated buffer.
 | |
|  *
 | |
|  * Find a suitable sequence of IO TLB entries for the request and allocate
 | |
|  * a buffer from the given IO TLB memory area.
 | |
|  * This function takes care of locking.
 | |
|  *
 | |
|  * Return: Index of the first allocated slot, or -1 on error.
 | |
|  */
 | |
| static int swiotlb_search_pool_area(struct device *dev, struct io_tlb_pool *pool,
 | |
| 		int area_index, phys_addr_t orig_addr, size_t alloc_size,
 | |
| 		unsigned int alloc_align_mask)
 | |
| {
 | |
| 	struct io_tlb_area *area = pool->areas + area_index;
 | |
| 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
 | |
| 	dma_addr_t tbl_dma_addr =
 | |
| 		phys_to_dma_unencrypted(dev, pool->start) & boundary_mask;
 | |
| 	unsigned long max_slots = get_max_slots(boundary_mask);
 | |
| 	unsigned int iotlb_align_mask = dma_get_min_align_mask(dev);
 | |
| 	unsigned int nslots = nr_slots(alloc_size), stride;
 | |
| 	unsigned int offset = swiotlb_align_offset(dev, 0, orig_addr);
 | |
| 	unsigned int index, slots_checked, count = 0, i;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int slot_base;
 | |
| 	unsigned int slot_index;
 | |
| 
 | |
| 	BUG_ON(!nslots);
 | |
| 	BUG_ON(area_index >= pool->nareas);
 | |
| 
 | |
| 	/*
 | |
| 	 * Historically, swiotlb allocations >= PAGE_SIZE were guaranteed to be
 | |
| 	 * page-aligned in the absence of any other alignment requirements.
 | |
| 	 * 'alloc_align_mask' was later introduced to specify the alignment
 | |
| 	 * explicitly, however this is passed as zero for streaming mappings
 | |
| 	 * and so we preserve the old behaviour there in case any drivers are
 | |
| 	 * relying on it.
 | |
| 	 */
 | |
| 	if (!alloc_align_mask && !iotlb_align_mask && alloc_size >= PAGE_SIZE)
 | |
| 		alloc_align_mask = PAGE_SIZE - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the allocation is at least slot-aligned and update
 | |
| 	 * 'iotlb_align_mask' to ignore bits that will be preserved when
 | |
| 	 * offsetting into the allocation.
 | |
| 	 */
 | |
| 	alloc_align_mask |= (IO_TLB_SIZE - 1);
 | |
| 	iotlb_align_mask &= ~alloc_align_mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * For mappings with an alignment requirement don't bother looping to
 | |
| 	 * unaligned slots once we found an aligned one.
 | |
| 	 */
 | |
| 	stride = get_max_slots(max(alloc_align_mask, iotlb_align_mask));
 | |
| 
 | |
| 	spin_lock_irqsave(&area->lock, flags);
 | |
| 	if (unlikely(nslots > pool->area_nslabs - area->used))
 | |
| 		goto not_found;
 | |
| 
 | |
| 	slot_base = area_index * pool->area_nslabs;
 | |
| 	index = area->index;
 | |
| 
 | |
| 	for (slots_checked = 0; slots_checked < pool->area_nslabs; ) {
 | |
| 		phys_addr_t tlb_addr;
 | |
| 
 | |
| 		slot_index = slot_base + index;
 | |
| 		tlb_addr = slot_addr(tbl_dma_addr, slot_index);
 | |
| 
 | |
| 		if ((tlb_addr & alloc_align_mask) ||
 | |
| 		    (orig_addr && (tlb_addr & iotlb_align_mask) !=
 | |
| 				  (orig_addr & iotlb_align_mask))) {
 | |
| 			index = wrap_area_index(pool, index + 1);
 | |
| 			slots_checked++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!iommu_is_span_boundary(slot_index, nslots,
 | |
| 					    nr_slots(tbl_dma_addr),
 | |
| 					    max_slots)) {
 | |
| 			if (pool->slots[slot_index].list >= nslots)
 | |
| 				goto found;
 | |
| 		}
 | |
| 		index = wrap_area_index(pool, index + stride);
 | |
| 		slots_checked += stride;
 | |
| 	}
 | |
| 
 | |
| not_found:
 | |
| 	spin_unlock_irqrestore(&area->lock, flags);
 | |
| 	return -1;
 | |
| 
 | |
| found:
 | |
| 	/*
 | |
| 	 * If we find a slot that indicates we have 'nslots' number of
 | |
| 	 * contiguous buffers, we allocate the buffers from that slot onwards
 | |
| 	 * and set the list of free entries to '0' indicating unavailable.
 | |
| 	 */
 | |
| 	for (i = slot_index; i < slot_index + nslots; i++) {
 | |
| 		pool->slots[i].list = 0;
 | |
| 		pool->slots[i].alloc_size = alloc_size - (offset +
 | |
| 				((i - slot_index) << IO_TLB_SHIFT));
 | |
| 	}
 | |
| 	for (i = slot_index - 1;
 | |
| 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
 | |
| 	     pool->slots[i].list; i--)
 | |
| 		pool->slots[i].list = ++count;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the indices to avoid searching in the next round.
 | |
| 	 */
 | |
| 	area->index = wrap_area_index(pool, index + nslots);
 | |
| 	area->used += nslots;
 | |
| 	spin_unlock_irqrestore(&area->lock, flags);
 | |
| 
 | |
| 	inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots);
 | |
| 	return slot_index;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 
 | |
| /**
 | |
|  * swiotlb_search_area() - search one memory area in all pools
 | |
|  * @dev:	Device which maps the buffer.
 | |
|  * @start_cpu:	Start CPU number.
 | |
|  * @cpu_offset:	Offset from @start_cpu.
 | |
|  * @orig_addr:	Original (non-bounced) IO buffer address.
 | |
|  * @alloc_size: Total requested size of the bounce buffer,
 | |
|  *		including initial alignment padding.
 | |
|  * @alloc_align_mask:	Required alignment of the allocated buffer.
 | |
|  * @retpool:	Used memory pool, updated on return.
 | |
|  *
 | |
|  * Search one memory area in all pools for a sequence of slots that match the
 | |
|  * allocation constraints.
 | |
|  *
 | |
|  * Return: Index of the first allocated slot, or -1 on error.
 | |
|  */
 | |
| static int swiotlb_search_area(struct device *dev, int start_cpu,
 | |
| 		int cpu_offset, phys_addr_t orig_addr, size_t alloc_size,
 | |
| 		unsigned int alloc_align_mask, struct io_tlb_pool **retpool)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
 | |
| 	struct io_tlb_pool *pool;
 | |
| 	int area_index;
 | |
| 	int index = -1;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pool, &mem->pools, node) {
 | |
| 		if (cpu_offset >= pool->nareas)
 | |
| 			continue;
 | |
| 		area_index = (start_cpu + cpu_offset) & (pool->nareas - 1);
 | |
| 		index = swiotlb_search_pool_area(dev, pool, area_index,
 | |
| 						 orig_addr, alloc_size,
 | |
| 						 alloc_align_mask);
 | |
| 		if (index >= 0) {
 | |
| 			*retpool = pool;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swiotlb_find_slots() - search for slots in the whole swiotlb
 | |
|  * @dev:	Device which maps the buffer.
 | |
|  * @orig_addr:	Original (non-bounced) IO buffer address.
 | |
|  * @alloc_size: Total requested size of the bounce buffer,
 | |
|  *		including initial alignment padding.
 | |
|  * @alloc_align_mask:	Required alignment of the allocated buffer.
 | |
|  * @retpool:	Used memory pool, updated on return.
 | |
|  *
 | |
|  * Search through the whole software IO TLB to find a sequence of slots that
 | |
|  * match the allocation constraints.
 | |
|  *
 | |
|  * Return: Index of the first allocated slot, or -1 on error.
 | |
|  */
 | |
| static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
 | |
| 		size_t alloc_size, unsigned int alloc_align_mask,
 | |
| 		struct io_tlb_pool **retpool)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
 | |
| 	struct io_tlb_pool *pool;
 | |
| 	unsigned long nslabs;
 | |
| 	unsigned long flags;
 | |
| 	u64 phys_limit;
 | |
| 	int cpu, i;
 | |
| 	int index;
 | |
| 
 | |
| 	if (alloc_size > IO_TLB_SEGSIZE * IO_TLB_SIZE)
 | |
| 		return -1;
 | |
| 
 | |
| 	cpu = raw_smp_processor_id();
 | |
| 	for (i = 0; i < default_nareas; ++i) {
 | |
| 		index = swiotlb_search_area(dev, cpu, i, orig_addr, alloc_size,
 | |
| 					    alloc_align_mask, &pool);
 | |
| 		if (index >= 0)
 | |
| 			goto found;
 | |
| 	}
 | |
| 
 | |
| 	if (!mem->can_grow)
 | |
| 		return -1;
 | |
| 
 | |
| 	schedule_work(&mem->dyn_alloc);
 | |
| 
 | |
| 	nslabs = nr_slots(alloc_size);
 | |
| 	phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit);
 | |
| 	pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit,
 | |
| 				  GFP_NOWAIT | __GFP_NOWARN);
 | |
| 	if (!pool)
 | |
| 		return -1;
 | |
| 
 | |
| 	index = swiotlb_search_pool_area(dev, pool, 0, orig_addr,
 | |
| 					 alloc_size, alloc_align_mask);
 | |
| 	if (index < 0) {
 | |
| 		swiotlb_dyn_free(&pool->rcu);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	pool->transient = true;
 | |
| 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
 | |
| 	list_add_rcu(&pool->node, &dev->dma_io_tlb_pools);
 | |
| 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
 | |
| 	inc_transient_used(mem, pool->nslabs);
 | |
| 
 | |
| found:
 | |
| 	WRITE_ONCE(dev->dma_uses_io_tlb, true);
 | |
| 
 | |
| 	/*
 | |
| 	 * The general barrier orders reads and writes against a presumed store
 | |
| 	 * of the SWIOTLB buffer address by a device driver (to a driver private
 | |
| 	 * data structure). It serves two purposes.
 | |
| 	 *
 | |
| 	 * First, the store to dev->dma_uses_io_tlb must be ordered before the
 | |
| 	 * presumed store. This guarantees that the returned buffer address
 | |
| 	 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb.
 | |
| 	 *
 | |
| 	 * Second, the load from mem->pools must be ordered before the same
 | |
| 	 * presumed store. This guarantees that the returned buffer address
 | |
| 	 * cannot be observed by another CPU before an update of the RCU list
 | |
| 	 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy
 | |
| 	 * atomicity).
 | |
| 	 *
 | |
| 	 * See also the comment in swiotlb_find_pool().
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	*retpool = pool;
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| #else  /* !CONFIG_SWIOTLB_DYNAMIC */
 | |
| 
 | |
| static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
 | |
| 		size_t alloc_size, unsigned int alloc_align_mask,
 | |
| 		struct io_tlb_pool **retpool)
 | |
| {
 | |
| 	struct io_tlb_pool *pool;
 | |
| 	int start, i;
 | |
| 	int index;
 | |
| 
 | |
| 	*retpool = pool = &dev->dma_io_tlb_mem->defpool;
 | |
| 	i = start = raw_smp_processor_id() & (pool->nareas - 1);
 | |
| 	do {
 | |
| 		index = swiotlb_search_pool_area(dev, pool, i, orig_addr,
 | |
| 						 alloc_size, alloc_align_mask);
 | |
| 		if (index >= 0)
 | |
| 			return index;
 | |
| 		if (++i >= pool->nareas)
 | |
| 			i = 0;
 | |
| 	} while (i != start);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SWIOTLB_DYNAMIC */
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| 
 | |
| /**
 | |
|  * mem_used() - get number of used slots in an allocator
 | |
|  * @mem:	Software IO TLB allocator.
 | |
|  *
 | |
|  * The result is accurate in this version of the function, because an atomic
 | |
|  * counter is available if CONFIG_DEBUG_FS is set.
 | |
|  *
 | |
|  * Return: Number of used slots.
 | |
|  */
 | |
| static unsigned long mem_used(struct io_tlb_mem *mem)
 | |
| {
 | |
| 	return atomic_long_read(&mem->total_used);
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_DEBUG_FS */
 | |
| 
 | |
| /**
 | |
|  * mem_pool_used() - get number of used slots in a memory pool
 | |
|  * @pool:	Software IO TLB memory pool.
 | |
|  *
 | |
|  * The result is not accurate, see mem_used().
 | |
|  *
 | |
|  * Return: Approximate number of used slots.
 | |
|  */
 | |
| static unsigned long mem_pool_used(struct io_tlb_pool *pool)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long used = 0;
 | |
| 
 | |
| 	for (i = 0; i < pool->nareas; i++)
 | |
| 		used += pool->areas[i].used;
 | |
| 	return used;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_used() - get number of used slots in an allocator
 | |
|  * @mem:	Software IO TLB allocator.
 | |
|  *
 | |
|  * The result is not accurate, because there is no locking of individual
 | |
|  * areas.
 | |
|  *
 | |
|  * Return: Approximate number of used slots.
 | |
|  */
 | |
| static unsigned long mem_used(struct io_tlb_mem *mem)
 | |
| {
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 	struct io_tlb_pool *pool;
 | |
| 	unsigned long used = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pool, &mem->pools, node)
 | |
| 		used += mem_pool_used(pool);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return used;
 | |
| #else
 | |
| 	return mem_pool_used(&mem->defpool);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_FS */
 | |
| 
 | |
| /**
 | |
|  * swiotlb_tbl_map_single() - bounce buffer map a single contiguous physical area
 | |
|  * @dev:		Device which maps the buffer.
 | |
|  * @orig_addr:		Original (non-bounced) physical IO buffer address
 | |
|  * @mapping_size:	Requested size of the actual bounce buffer, excluding
 | |
|  *			any pre- or post-padding for alignment
 | |
|  * @alloc_align_mask:	Required start and end alignment of the allocated buffer
 | |
|  * @dir:		DMA direction
 | |
|  * @attrs:		Optional DMA attributes for the map operation
 | |
|  *
 | |
|  * Find and allocate a suitable sequence of IO TLB slots for the request.
 | |
|  * The allocated space starts at an alignment specified by alloc_align_mask,
 | |
|  * and the size of the allocated space is rounded up so that the total amount
 | |
|  * of allocated space is a multiple of (alloc_align_mask + 1). If
 | |
|  * alloc_align_mask is zero, the allocated space may be at any alignment and
 | |
|  * the size is not rounded up.
 | |
|  *
 | |
|  * The returned address is within the allocated space and matches the bits
 | |
|  * of orig_addr that are specified in the DMA min_align_mask for the device. As
 | |
|  * such, this returned address may be offset from the beginning of the allocated
 | |
|  * space. The bounce buffer space starting at the returned address for
 | |
|  * mapping_size bytes is initialized to the contents of the original IO buffer
 | |
|  * area. Any pre-padding (due to an offset) and any post-padding (due to
 | |
|  * rounding-up the size) is not initialized.
 | |
|  */
 | |
| phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
 | |
| 		size_t mapping_size, unsigned int alloc_align_mask,
 | |
| 		enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
 | |
| 	unsigned int offset;
 | |
| 	struct io_tlb_pool *pool;
 | |
| 	unsigned int i;
 | |
| 	size_t size;
 | |
| 	int index;
 | |
| 	phys_addr_t tlb_addr;
 | |
| 	unsigned short pad_slots;
 | |
| 
 | |
| 	if (!mem || !mem->nslabs) {
 | |
| 		dev_warn_ratelimited(dev,
 | |
| 			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
 | |
| 		return (phys_addr_t)DMA_MAPPING_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
 | |
| 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * The default swiotlb memory pool is allocated with PAGE_SIZE
 | |
| 	 * alignment. If a mapping is requested with larger alignment,
 | |
| 	 * the mapping may be unable to use the initial slot(s) in all
 | |
| 	 * sets of IO_TLB_SEGSIZE slots. In such case, a mapping request
 | |
| 	 * of or near the maximum mapping size would always fail.
 | |
| 	 */
 | |
| 	dev_WARN_ONCE(dev, alloc_align_mask > ~PAGE_MASK,
 | |
| 		"Alloc alignment may prevent fulfilling requests with max mapping_size\n");
 | |
| 
 | |
| 	offset = swiotlb_align_offset(dev, alloc_align_mask, orig_addr);
 | |
| 	size = ALIGN(mapping_size + offset, alloc_align_mask + 1);
 | |
| 	index = swiotlb_find_slots(dev, orig_addr, size, alloc_align_mask, &pool);
 | |
| 	if (index == -1) {
 | |
| 		if (!(attrs & DMA_ATTR_NO_WARN))
 | |
| 			dev_warn_ratelimited(dev,
 | |
| 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
 | |
| 				 size, mem->nslabs, mem_used(mem));
 | |
| 		return (phys_addr_t)DMA_MAPPING_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If dma_skip_sync was set, reset it on first SWIOTLB buffer
 | |
| 	 * mapping to always sync SWIOTLB buffers.
 | |
| 	 */
 | |
| 	dma_reset_need_sync(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Save away the mapping from the original address to the DMA address.
 | |
| 	 * This is needed when we sync the memory.  Then we sync the buffer if
 | |
| 	 * needed.
 | |
| 	 */
 | |
| 	pad_slots = offset >> IO_TLB_SHIFT;
 | |
| 	offset &= (IO_TLB_SIZE - 1);
 | |
| 	index += pad_slots;
 | |
| 	pool->slots[index].pad_slots = pad_slots;
 | |
| 	for (i = 0; i < (nr_slots(size) - pad_slots); i++)
 | |
| 		pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
 | |
| 	tlb_addr = slot_addr(pool->start, index) + offset;
 | |
| 	/*
 | |
| 	 * When the device is writing memory, i.e. dir == DMA_FROM_DEVICE, copy
 | |
| 	 * the original buffer to the TLB buffer before initiating DMA in order
 | |
| 	 * to preserve the original's data if the device does a partial write,
 | |
| 	 * i.e. if the device doesn't overwrite the entire buffer.  Preserving
 | |
| 	 * the original data, even if it's garbage, is necessary to match
 | |
| 	 * hardware behavior.  Use of swiotlb is supposed to be transparent,
 | |
| 	 * i.e. swiotlb must not corrupt memory by clobbering unwritten bytes.
 | |
| 	 */
 | |
| 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE, pool);
 | |
| 	return tlb_addr;
 | |
| }
 | |
| 
 | |
| static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr,
 | |
| 				  struct io_tlb_pool *mem)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned int offset = swiotlb_align_offset(dev, 0, tlb_addr);
 | |
| 	int index, nslots, aindex;
 | |
| 	struct io_tlb_area *area;
 | |
| 	int count, i;
 | |
| 
 | |
| 	index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
 | |
| 	index -= mem->slots[index].pad_slots;
 | |
| 	nslots = nr_slots(mem->slots[index].alloc_size + offset);
 | |
| 	aindex = index / mem->area_nslabs;
 | |
| 	area = &mem->areas[aindex];
 | |
| 
 | |
| 	/*
 | |
| 	 * Return the buffer to the free list by setting the corresponding
 | |
| 	 * entries to indicate the number of contiguous entries available.
 | |
| 	 * While returning the entries to the free list, we merge the entries
 | |
| 	 * with slots below and above the pool being returned.
 | |
| 	 */
 | |
| 	BUG_ON(aindex >= mem->nareas);
 | |
| 
 | |
| 	spin_lock_irqsave(&area->lock, flags);
 | |
| 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
 | |
| 		count = mem->slots[index + nslots].list;
 | |
| 	else
 | |
| 		count = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 1: return the slots to the free list, merging the slots with
 | |
| 	 * superceeding slots
 | |
| 	 */
 | |
| 	for (i = index + nslots - 1; i >= index; i--) {
 | |
| 		mem->slots[i].list = ++count;
 | |
| 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
 | |
| 		mem->slots[i].alloc_size = 0;
 | |
| 		mem->slots[i].pad_slots = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 2: merge the returned slots with the preceding slots, if
 | |
| 	 * available (non zero)
 | |
| 	 */
 | |
| 	for (i = index - 1;
 | |
| 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
 | |
| 	     i--)
 | |
| 		mem->slots[i].list = ++count;
 | |
| 	area->used -= nslots;
 | |
| 	spin_unlock_irqrestore(&area->lock, flags);
 | |
| 
 | |
| 	dec_used(dev->dma_io_tlb_mem, nslots);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 
 | |
| /**
 | |
|  * swiotlb_del_transient() - delete a transient memory pool
 | |
|  * @dev:	Device which mapped the buffer.
 | |
|  * @tlb_addr:	Physical address within a bounce buffer.
 | |
|  * @pool:       Pointer to the transient memory pool to be checked and deleted.
 | |
|  *
 | |
|  * Check whether the address belongs to a transient SWIOTLB memory pool.
 | |
|  * If yes, then delete the pool.
 | |
|  *
 | |
|  * Return: %true if @tlb_addr belonged to a transient pool that was released.
 | |
|  */
 | |
| static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr,
 | |
| 		struct io_tlb_pool *pool)
 | |
| {
 | |
| 	if (!pool->transient)
 | |
| 		return false;
 | |
| 
 | |
| 	dec_used(dev->dma_io_tlb_mem, pool->nslabs);
 | |
| 	swiotlb_del_pool(dev, pool);
 | |
| 	dec_transient_used(dev->dma_io_tlb_mem, pool->nslabs);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #else  /* !CONFIG_SWIOTLB_DYNAMIC */
 | |
| 
 | |
| static inline bool swiotlb_del_transient(struct device *dev,
 | |
| 		phys_addr_t tlb_addr, struct io_tlb_pool *pool)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_SWIOTLB_DYNAMIC */
 | |
| 
 | |
| /*
 | |
|  * tlb_addr is the physical address of the bounce buffer to unmap.
 | |
|  */
 | |
| void __swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
 | |
| 		size_t mapping_size, enum dma_data_direction dir,
 | |
| 		unsigned long attrs, struct io_tlb_pool *pool)
 | |
| {
 | |
| 	/*
 | |
| 	 * First, sync the memory before unmapping the entry
 | |
| 	 */
 | |
| 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 | |
| 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 | |
| 		swiotlb_bounce(dev, tlb_addr, mapping_size,
 | |
| 						DMA_FROM_DEVICE, pool);
 | |
| 
 | |
| 	if (swiotlb_del_transient(dev, tlb_addr, pool))
 | |
| 		return;
 | |
| 	swiotlb_release_slots(dev, tlb_addr, pool);
 | |
| }
 | |
| 
 | |
| void __swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
 | |
| 		size_t size, enum dma_data_direction dir,
 | |
| 		struct io_tlb_pool *pool)
 | |
| {
 | |
| 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
 | |
| 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE, pool);
 | |
| 	else
 | |
| 		BUG_ON(dir != DMA_FROM_DEVICE);
 | |
| }
 | |
| 
 | |
| void __swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
 | |
| 		size_t size, enum dma_data_direction dir,
 | |
| 		struct io_tlb_pool *pool)
 | |
| {
 | |
| 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
 | |
| 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE, pool);
 | |
| 	else
 | |
| 		BUG_ON(dir != DMA_TO_DEVICE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
 | |
|  * to the device copy the data into it as well.
 | |
|  */
 | |
| dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
 | |
| 		enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	phys_addr_t swiotlb_addr;
 | |
| 	dma_addr_t dma_addr;
 | |
| 
 | |
| 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
 | |
| 
 | |
| 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, 0, dir, attrs);
 | |
| 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 
 | |
| 	/* Ensure that the address returned is DMA'ble */
 | |
| 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
 | |
| 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
 | |
| 		__swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
 | |
| 			attrs | DMA_ATTR_SKIP_CPU_SYNC,
 | |
| 			swiotlb_find_pool(dev, swiotlb_addr));
 | |
| 		dev_WARN_ONCE(dev, 1,
 | |
| 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
 | |
| 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 | |
| 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
 | |
| 	return dma_addr;
 | |
| }
 | |
| 
 | |
| size_t swiotlb_max_mapping_size(struct device *dev)
 | |
| {
 | |
| 	int min_align_mask = dma_get_min_align_mask(dev);
 | |
| 	int min_align = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * swiotlb_find_slots() skips slots according to
 | |
| 	 * min align mask. This affects max mapping size.
 | |
| 	 * Take it into acount here.
 | |
| 	 */
 | |
| 	if (min_align_mask)
 | |
| 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
 | |
| 
 | |
| 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_swiotlb_allocated() - check if the default software IO TLB is initialized
 | |
|  */
 | |
| bool is_swiotlb_allocated(void)
 | |
| {
 | |
| 	return io_tlb_default_mem.nslabs;
 | |
| }
 | |
| 
 | |
| bool is_swiotlb_active(struct device *dev)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
 | |
| 
 | |
| 	return mem && mem->nslabs;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * default_swiotlb_base() - get the base address of the default SWIOTLB
 | |
|  *
 | |
|  * Get the lowest physical address used by the default software IO TLB pool.
 | |
|  */
 | |
| phys_addr_t default_swiotlb_base(void)
 | |
| {
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 	io_tlb_default_mem.can_grow = false;
 | |
| #endif
 | |
| 	return io_tlb_default_mem.defpool.start;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * default_swiotlb_limit() - get the address limit of the default SWIOTLB
 | |
|  *
 | |
|  * Get the highest physical address used by the default software IO TLB pool.
 | |
|  */
 | |
| phys_addr_t default_swiotlb_limit(void)
 | |
| {
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 	return io_tlb_default_mem.phys_limit;
 | |
| #else
 | |
| 	return io_tlb_default_mem.defpool.end - 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| static unsigned long mem_transient_used(struct io_tlb_mem *mem)
 | |
| {
 | |
| 	return atomic_long_read(&mem->transient_nslabs);
 | |
| }
 | |
| 
 | |
| static int io_tlb_transient_used_get(void *data, u64 *val)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = data;
 | |
| 
 | |
| 	*val = mem_transient_used(mem);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_transient_used, io_tlb_transient_used_get,
 | |
| 			 NULL, "%llu\n");
 | |
| #endif /* CONFIG_SWIOTLB_DYNAMIC */
 | |
| 
 | |
| static int io_tlb_used_get(void *data, u64 *val)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = data;
 | |
| 
 | |
| 	*val = mem_used(mem);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_tlb_hiwater_get(void *data, u64 *val)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = data;
 | |
| 
 | |
| 	*val = atomic_long_read(&mem->used_hiwater);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_tlb_hiwater_set(void *data, u64 val)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = data;
 | |
| 
 | |
| 	/* Only allow setting to zero */
 | |
| 	if (val != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	atomic_long_set(&mem->used_hiwater, val);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
 | |
| DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
 | |
| 				io_tlb_hiwater_set, "%llu\n");
 | |
| 
 | |
| static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
 | |
| 					 const char *dirname)
 | |
| {
 | |
| 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
 | |
| 	if (!mem->nslabs)
 | |
| 		return;
 | |
| 
 | |
| 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
 | |
| 	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
 | |
| 			&fops_io_tlb_used);
 | |
| 	debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
 | |
| 			&fops_io_tlb_hiwater);
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 	debugfs_create_file("io_tlb_transient_nslabs", 0400, mem->debugfs,
 | |
| 			    mem, &fops_io_tlb_transient_used);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int __init swiotlb_create_default_debugfs(void)
 | |
| {
 | |
| 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| late_initcall(swiotlb_create_default_debugfs);
 | |
| 
 | |
| #else  /* !CONFIG_DEBUG_FS */
 | |
| 
 | |
| static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
 | |
| 						const char *dirname)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_DEBUG_FS */
 | |
| 
 | |
| #ifdef CONFIG_DMA_RESTRICTED_POOL
 | |
| 
 | |
| struct page *swiotlb_alloc(struct device *dev, size_t size)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
 | |
| 	struct io_tlb_pool *pool;
 | |
| 	phys_addr_t tlb_addr;
 | |
| 	unsigned int align;
 | |
| 	int index;
 | |
| 
 | |
| 	if (!mem)
 | |
| 		return NULL;
 | |
| 
 | |
| 	align = (1 << (get_order(size) + PAGE_SHIFT)) - 1;
 | |
| 	index = swiotlb_find_slots(dev, 0, size, align, &pool);
 | |
| 	if (index == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	tlb_addr = slot_addr(pool->start, index);
 | |
| 	if (unlikely(!PAGE_ALIGNED(tlb_addr))) {
 | |
| 		dev_WARN_ONCE(dev, 1, "Cannot allocate pages from non page-aligned swiotlb addr 0x%pa.\n",
 | |
| 			      &tlb_addr);
 | |
| 		swiotlb_release_slots(dev, tlb_addr, pool);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return pfn_to_page(PFN_DOWN(tlb_addr));
 | |
| }
 | |
| 
 | |
| bool swiotlb_free(struct device *dev, struct page *page, size_t size)
 | |
| {
 | |
| 	phys_addr_t tlb_addr = page_to_phys(page);
 | |
| 	struct io_tlb_pool *pool;
 | |
| 
 | |
| 	pool = swiotlb_find_pool(dev, tlb_addr);
 | |
| 	if (!pool)
 | |
| 		return false;
 | |
| 
 | |
| 	swiotlb_release_slots(dev, tlb_addr, pool);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
 | |
| 				    struct device *dev)
 | |
| {
 | |
| 	struct io_tlb_mem *mem = rmem->priv;
 | |
| 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
 | |
| 
 | |
| 	/* Set Per-device io tlb area to one */
 | |
| 	unsigned int nareas = 1;
 | |
| 
 | |
| 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
 | |
| 		dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since multiple devices can share the same pool, the private data,
 | |
| 	 * io_tlb_mem struct, will be initialized by the first device attached
 | |
| 	 * to it.
 | |
| 	 */
 | |
| 	if (!mem) {
 | |
| 		struct io_tlb_pool *pool;
 | |
| 
 | |
| 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 | |
| 		if (!mem)
 | |
| 			return -ENOMEM;
 | |
| 		pool = &mem->defpool;
 | |
| 
 | |
| 		pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL);
 | |
| 		if (!pool->slots) {
 | |
| 			kfree(mem);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		pool->areas = kcalloc(nareas, sizeof(*pool->areas),
 | |
| 				GFP_KERNEL);
 | |
| 		if (!pool->areas) {
 | |
| 			kfree(pool->slots);
 | |
| 			kfree(mem);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
 | |
| 				     rmem->size >> PAGE_SHIFT);
 | |
| 		swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs,
 | |
| 					 false, nareas);
 | |
| 		mem->force_bounce = true;
 | |
| 		mem->for_alloc = true;
 | |
| #ifdef CONFIG_SWIOTLB_DYNAMIC
 | |
| 		spin_lock_init(&mem->lock);
 | |
| 		INIT_LIST_HEAD_RCU(&mem->pools);
 | |
| #endif
 | |
| 		add_mem_pool(mem, pool);
 | |
| 
 | |
| 		rmem->priv = mem;
 | |
| 
 | |
| 		swiotlb_create_debugfs_files(mem, rmem->name);
 | |
| 	}
 | |
| 
 | |
| 	dev->dma_io_tlb_mem = mem;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
 | |
| 					struct device *dev)
 | |
| {
 | |
| 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
 | |
| }
 | |
| 
 | |
| static const struct reserved_mem_ops rmem_swiotlb_ops = {
 | |
| 	.device_init = rmem_swiotlb_device_init,
 | |
| 	.device_release = rmem_swiotlb_device_release,
 | |
| };
 | |
| 
 | |
| static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
 | |
| {
 | |
| 	unsigned long node = rmem->fdt_node;
 | |
| 
 | |
| 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
 | |
| 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
 | |
| 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
 | |
| 	    of_get_flat_dt_prop(node, "no-map", NULL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rmem->ops = &rmem_swiotlb_ops;
 | |
| 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
 | |
| 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
 | |
| #endif /* CONFIG_DMA_RESTRICTED_POOL */
 |