mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-01 00:58:39 +02:00 
			
		
		
		
	 3aea745a2a
			
		
	
	
		3aea745a2a
		
	
	
	
	
		
			
			Currently, SRCU-fast grace periods use synchronize_rcu() to provide the needed ordering with readers, even given an expedited SRCU-fast grace period, which isn't all that expedited. This commit therefore instead uses synchronize_rcu_expedited() if there is an expedited SRCU-fast grace period in flight. Of course, given an non-expedited SRCU-fast grace period blocked in synchronize_rcu(), a later request for an expedited SRCU-fast grace period will wait for that synchronize_rcu() to return before switching to use of synchronize_rcu_expedited(). If this turns out to be a real problem for a production workload, we can increase the complexity (but likely also degrade the energy efficiency) to speed things up further. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.upadhyay@kernel.org>
		
			
				
	
	
		
			2076 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2076 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Sleepable Read-Copy Update mechanism for mutual exclusion.
 | |
|  *
 | |
|  * Copyright (C) IBM Corporation, 2006
 | |
|  * Copyright (C) Fujitsu, 2012
 | |
|  *
 | |
|  * Authors: Paul McKenney <paulmck@linux.ibm.com>
 | |
|  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
 | |
|  *
 | |
|  * For detailed explanation of Read-Copy Update mechanism see -
 | |
|  *		Documentation/RCU/ *.txt
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "rcu: " fmt
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/rcupdate_wait.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/srcu.h>
 | |
| 
 | |
| #include "rcu.h"
 | |
| #include "rcu_segcblist.h"
 | |
| 
 | |
| /* Holdoff in nanoseconds for auto-expediting. */
 | |
| #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
 | |
| static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
 | |
| module_param(exp_holdoff, ulong, 0444);
 | |
| 
 | |
| /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
 | |
| static ulong counter_wrap_check = (ULONG_MAX >> 2);
 | |
| module_param(counter_wrap_check, ulong, 0444);
 | |
| 
 | |
| /*
 | |
|  * Control conversion to SRCU_SIZE_BIG:
 | |
|  *    0: Don't convert at all.
 | |
|  *    1: Convert at init_srcu_struct() time.
 | |
|  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
 | |
|  *    3: Decide at boot time based on system shape (default).
 | |
|  * 0x1x: Convert when excessive contention encountered.
 | |
|  */
 | |
| #define SRCU_SIZING_NONE	0
 | |
| #define SRCU_SIZING_INIT	1
 | |
| #define SRCU_SIZING_TORTURE	2
 | |
| #define SRCU_SIZING_AUTO	3
 | |
| #define SRCU_SIZING_CONTEND	0x10
 | |
| #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
 | |
| #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
 | |
| #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
 | |
| #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
 | |
| #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
 | |
| static int convert_to_big = SRCU_SIZING_AUTO;
 | |
| module_param(convert_to_big, int, 0444);
 | |
| 
 | |
| /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
 | |
| static int big_cpu_lim __read_mostly = 128;
 | |
| module_param(big_cpu_lim, int, 0444);
 | |
| 
 | |
| /* Contention events per jiffy to initiate transition to big. */
 | |
| static int small_contention_lim __read_mostly = 100;
 | |
| module_param(small_contention_lim, int, 0444);
 | |
| 
 | |
| /* Early-boot callback-management, so early that no lock is required! */
 | |
| static LIST_HEAD(srcu_boot_list);
 | |
| static bool __read_mostly srcu_init_done;
 | |
| 
 | |
| static void srcu_invoke_callbacks(struct work_struct *work);
 | |
| static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
 | |
| static void process_srcu(struct work_struct *work);
 | |
| static void srcu_delay_timer(struct timer_list *t);
 | |
| 
 | |
| /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
 | |
| #define spin_lock_rcu_node(p)							\
 | |
| do {										\
 | |
| 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
 | |
| 	smp_mb__after_unlock_lock();						\
 | |
| } while (0)
 | |
| 
 | |
| #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
 | |
| 
 | |
| #define spin_lock_irq_rcu_node(p)						\
 | |
| do {										\
 | |
| 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
 | |
| 	smp_mb__after_unlock_lock();						\
 | |
| } while (0)
 | |
| 
 | |
| #define spin_unlock_irq_rcu_node(p)						\
 | |
| 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
 | |
| 
 | |
| #define spin_lock_irqsave_rcu_node(p, flags)					\
 | |
| do {										\
 | |
| 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
 | |
| 	smp_mb__after_unlock_lock();						\
 | |
| } while (0)
 | |
| 
 | |
| #define spin_trylock_irqsave_rcu_node(p, flags)					\
 | |
| ({										\
 | |
| 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
 | |
| 										\
 | |
| 	if (___locked)								\
 | |
| 		smp_mb__after_unlock_lock();					\
 | |
| 	___locked;								\
 | |
| })
 | |
| 
 | |
| #define spin_unlock_irqrestore_rcu_node(p, flags)				\
 | |
| 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
 | |
| 
 | |
| /*
 | |
|  * Initialize SRCU per-CPU data.  Note that statically allocated
 | |
|  * srcu_struct structures might already have srcu_read_lock() and
 | |
|  * srcu_read_unlock() running against them.  So if the is_static
 | |
|  * parameter is set, don't initialize ->srcu_ctrs[].srcu_locks and
 | |
|  * ->srcu_ctrs[].srcu_unlocks.
 | |
|  */
 | |
| static void init_srcu_struct_data(struct srcu_struct *ssp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct srcu_data *sdp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the per-CPU srcu_data array, which feeds into the
 | |
| 	 * leaves of the srcu_node tree.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		sdp = per_cpu_ptr(ssp->sda, cpu);
 | |
| 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
 | |
| 		rcu_segcblist_init(&sdp->srcu_cblist);
 | |
| 		sdp->srcu_cblist_invoking = false;
 | |
| 		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
 | |
| 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
 | |
| 		sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head;
 | |
| 		sdp->mynode = NULL;
 | |
| 		sdp->cpu = cpu;
 | |
| 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
 | |
| 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
 | |
| 		sdp->ssp = ssp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Invalid seq state, used during snp node initialization */
 | |
| #define SRCU_SNP_INIT_SEQ		0x2
 | |
| 
 | |
| /*
 | |
|  * Check whether sequence number corresponding to snp node,
 | |
|  * is invalid.
 | |
|  */
 | |
| static inline bool srcu_invl_snp_seq(unsigned long s)
 | |
| {
 | |
| 	return s == SRCU_SNP_INIT_SEQ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocated and initialize SRCU combining tree.  Returns @true if
 | |
|  * allocation succeeded and @false otherwise.
 | |
|  */
 | |
| static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int i;
 | |
| 	int level = 0;
 | |
| 	int levelspread[RCU_NUM_LVLS];
 | |
| 	struct srcu_data *sdp;
 | |
| 	struct srcu_node *snp;
 | |
| 	struct srcu_node *snp_first;
 | |
| 
 | |
| 	/* Initialize geometry if it has not already been initialized. */
 | |
| 	rcu_init_geometry();
 | |
| 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
 | |
| 	if (!ssp->srcu_sup->node)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Work out the overall tree geometry. */
 | |
| 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
 | |
| 	for (i = 1; i < rcu_num_lvls; i++)
 | |
| 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
 | |
| 	rcu_init_levelspread(levelspread, num_rcu_lvl);
 | |
| 
 | |
| 	/* Each pass through this loop initializes one srcu_node structure. */
 | |
| 	srcu_for_each_node_breadth_first(ssp, snp) {
 | |
| 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
 | |
| 		BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) !=
 | |
| 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
 | |
| 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
 | |
| 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
 | |
| 			snp->srcu_data_have_cbs[i] = 0;
 | |
| 		}
 | |
| 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
 | |
| 		snp->grplo = -1;
 | |
| 		snp->grphi = -1;
 | |
| 		if (snp == &ssp->srcu_sup->node[0]) {
 | |
| 			/* Root node, special case. */
 | |
| 			snp->srcu_parent = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Non-root node. */
 | |
| 		if (snp == ssp->srcu_sup->level[level + 1])
 | |
| 			level++;
 | |
| 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
 | |
| 				   (snp - ssp->srcu_sup->level[level]) /
 | |
| 				   levelspread[level - 1];
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the per-CPU srcu_data array, which feeds into the
 | |
| 	 * leaves of the srcu_node tree.
 | |
| 	 */
 | |
| 	level = rcu_num_lvls - 1;
 | |
| 	snp_first = ssp->srcu_sup->level[level];
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		sdp = per_cpu_ptr(ssp->sda, cpu);
 | |
| 		sdp->mynode = &snp_first[cpu / levelspread[level]];
 | |
| 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
 | |
| 			if (snp->grplo < 0)
 | |
| 				snp->grplo = cpu;
 | |
| 			snp->grphi = cpu;
 | |
| 		}
 | |
| 		sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
 | |
| 	}
 | |
| 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize non-compile-time initialized fields, including the
 | |
|  * associated srcu_node and srcu_data structures.  The is_static parameter
 | |
|  * tells us that ->sda has already been wired up to srcu_data.
 | |
|  */
 | |
| static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
 | |
| {
 | |
| 	if (!is_static)
 | |
| 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
 | |
| 	if (!ssp->srcu_sup)
 | |
| 		return -ENOMEM;
 | |
| 	if (!is_static)
 | |
| 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
 | |
| 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
 | |
| 	ssp->srcu_sup->node = NULL;
 | |
| 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
 | |
| 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
 | |
| 	ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL;
 | |
| 	ssp->srcu_sup->srcu_barrier_seq = 0;
 | |
| 	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
 | |
| 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
 | |
| 	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
 | |
| 	ssp->srcu_sup->sda_is_static = is_static;
 | |
| 	if (!is_static) {
 | |
| 		ssp->sda = alloc_percpu(struct srcu_data);
 | |
| 		ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
 | |
| 	}
 | |
| 	if (!ssp->sda)
 | |
| 		goto err_free_sup;
 | |
| 	init_srcu_struct_data(ssp);
 | |
| 	ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL;
 | |
| 	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
 | |
| 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
 | |
| 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
 | |
| 			goto err_free_sda;
 | |
| 		WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
 | |
| 	}
 | |
| 	ssp->srcu_sup->srcu_ssp = ssp;
 | |
| 	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed,
 | |
| 			SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */
 | |
| 	return 0;
 | |
| 
 | |
| err_free_sda:
 | |
| 	if (!is_static) {
 | |
| 		free_percpu(ssp->sda);
 | |
| 		ssp->sda = NULL;
 | |
| 	}
 | |
| err_free_sup:
 | |
| 	if (!is_static) {
 | |
| 		kfree(ssp->srcu_sup);
 | |
| 		ssp->srcu_sup = NULL;
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC
 | |
| 
 | |
| int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
 | |
| 		       struct lock_class_key *key)
 | |
| {
 | |
| 	/* Don't re-initialize a lock while it is held. */
 | |
| 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
 | |
| 	lockdep_init_map(&ssp->dep_map, name, key, 0);
 | |
| 	return init_srcu_struct_fields(ssp, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__init_srcu_struct);
 | |
| 
 | |
| #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 | |
| 
 | |
| /**
 | |
|  * init_srcu_struct - initialize a sleep-RCU structure
 | |
|  * @ssp: structure to initialize.
 | |
|  *
 | |
|  * Must invoke this on a given srcu_struct before passing that srcu_struct
 | |
|  * to any other function.  Each srcu_struct represents a separate domain
 | |
|  * of SRCU protection.
 | |
|  */
 | |
| int init_srcu_struct(struct srcu_struct *ssp)
 | |
| {
 | |
| 	return init_srcu_struct_fields(ssp, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(init_srcu_struct);
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 | |
| 
 | |
| /*
 | |
|  * Initiate a transition to SRCU_SIZE_BIG with lock held.
 | |
|  */
 | |
| static void __srcu_transition_to_big(struct srcu_struct *ssp)
 | |
| {
 | |
| 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
 | |
| 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initiate an idempotent transition to SRCU_SIZE_BIG.
 | |
|  */
 | |
| static void srcu_transition_to_big(struct srcu_struct *ssp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Double-checked locking on ->srcu_size-state. */
 | |
| 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
 | |
| 		return;
 | |
| 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
 | |
| 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
 | |
| 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	__srcu_transition_to_big(ssp);
 | |
| 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if the just-encountered contention event justifies
 | |
|  * a transition to SRCU_SIZE_BIG.
 | |
|  */
 | |
| static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
 | |
| {
 | |
| 	unsigned long j;
 | |
| 
 | |
| 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
 | |
| 		return;
 | |
| 	j = jiffies;
 | |
| 	if (ssp->srcu_sup->srcu_size_jiffies != j) {
 | |
| 		ssp->srcu_sup->srcu_size_jiffies = j;
 | |
| 		ssp->srcu_sup->srcu_n_lock_retries = 0;
 | |
| 	}
 | |
| 	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
 | |
| 		return;
 | |
| 	__srcu_transition_to_big(ssp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Acquire the specified srcu_data structure's ->lock, but check for
 | |
|  * excessive contention, which results in initiation of a transition
 | |
|  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
 | |
|  * parameter permits this.
 | |
|  */
 | |
| static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
 | |
| {
 | |
| 	struct srcu_struct *ssp = sdp->ssp;
 | |
| 
 | |
| 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
 | |
| 		return;
 | |
| 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
 | |
| 	spin_lock_irqsave_check_contention(ssp);
 | |
| 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
 | |
| 	spin_lock_irqsave_rcu_node(sdp, *flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Acquire the specified srcu_struct structure's ->lock, but check for
 | |
|  * excessive contention, which results in initiation of a transition
 | |
|  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
 | |
|  * parameter permits this.
 | |
|  */
 | |
| static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
 | |
| {
 | |
| 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
 | |
| 		return;
 | |
| 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
 | |
| 	spin_lock_irqsave_check_contention(ssp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * First-use initialization of statically allocated srcu_struct
 | |
|  * structure.  Wiring up the combining tree is more than can be
 | |
|  * done with compile-time initialization, so this check is added
 | |
|  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
 | |
|  * compile-time initialized, to resolve races involving multiple
 | |
|  * CPUs trying to garner first-use privileges.
 | |
|  */
 | |
| static void check_init_srcu_struct(struct srcu_struct *ssp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* The smp_load_acquire() pairs with the smp_store_release(). */
 | |
| 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
 | |
| 		return; /* Already initialized. */
 | |
| 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
 | |
| 	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
 | |
| 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	init_srcu_struct_fields(ssp, true);
 | |
| 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the current or any upcoming grace period to be expedited?
 | |
|  */
 | |
| static bool srcu_gp_is_expedited(struct srcu_struct *ssp)
 | |
| {
 | |
| 	struct srcu_usage *sup = ssp->srcu_sup;
 | |
| 
 | |
| 	return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Computes approximate total of the readers' ->srcu_ctrs[].srcu_locks
 | |
|  * values for the rank of per-CPU counters specified by idx, and returns
 | |
|  * true if the caller did the proper barrier (gp), and if the count of
 | |
|  * the locks matches that of the unlocks passed in.
 | |
|  */
 | |
| static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long mask = 0;
 | |
| 	unsigned long sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
 | |
| 
 | |
| 		sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks);
 | |
| 		if (IS_ENABLED(CONFIG_PROVE_RCU))
 | |
| 			mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
 | |
| 	}
 | |
| 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
 | |
| 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
 | |
| 	if (mask & SRCU_READ_FLAVOR_SLOWGP && !gp)
 | |
| 		return false;
 | |
| 	return sum == unlocks;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns approximate total of the readers' ->srcu_ctrs[].srcu_unlocks
 | |
|  * values for the rank of per-CPU counters specified by idx.
 | |
|  */
 | |
| static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long mask = 0;
 | |
| 	unsigned long sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
 | |
| 
 | |
| 		sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks);
 | |
| 		mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
 | |
| 	}
 | |
| 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
 | |
| 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
 | |
| 	*rdm = mask;
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the number of pre-existing readers is determined to
 | |
|  * be zero.
 | |
|  */
 | |
| static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
 | |
| {
 | |
| 	bool did_gp;
 | |
| 	unsigned long rdm;
 | |
| 	unsigned long unlocks;
 | |
| 
 | |
| 	unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm);
 | |
| 	did_gp = !!(rdm & SRCU_READ_FLAVOR_SLOWGP);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that a lock is always counted if the corresponding
 | |
| 	 * unlock is counted. Needs to be a smp_mb() as the read side may
 | |
| 	 * contain a read from a variable that is written to before the
 | |
| 	 * synchronize_srcu() in the write side. In this case smp_mb()s
 | |
| 	 * A and B (or X and Y) act like the store buffering pattern.
 | |
| 	 *
 | |
| 	 * This smp_mb() also pairs with smp_mb() C (or, in the case of X,
 | |
| 	 * Z) to prevent accesses after the synchronize_srcu() from being
 | |
| 	 * executed before the grace period ends.
 | |
| 	 */
 | |
| 	if (!did_gp)
 | |
| 		smp_mb(); /* A */
 | |
| 	else if (srcu_gp_is_expedited(ssp))
 | |
| 		synchronize_rcu_expedited(); /* X */
 | |
| 	else
 | |
| 		synchronize_rcu(); /* X */
 | |
| 
 | |
| 	/*
 | |
| 	 * If the locks are the same as the unlocks, then there must have
 | |
| 	 * been no readers on this index at some point in this function.
 | |
| 	 * But there might be more readers, as a task might have read
 | |
| 	 * the current ->srcu_ctrp but not yet have incremented its CPU's
 | |
| 	 * ->srcu_ctrs[idx].srcu_locks counter.  In fact, it is possible
 | |
| 	 * that most of the tasks have been preempted between fetching
 | |
| 	 * ->srcu_ctrp and incrementing ->srcu_ctrs[idx].srcu_locks.  And
 | |
| 	 * there could be almost (ULONG_MAX / sizeof(struct task_struct))
 | |
| 	 * tasks in a system whose address space was fully populated
 | |
| 	 * with memory.  Call this quantity Nt.
 | |
| 	 *
 | |
| 	 * So suppose that the updater is preempted at this
 | |
| 	 * point in the code for a long time.  That now-preempted
 | |
| 	 * updater has already flipped ->srcu_ctrp (possibly during
 | |
| 	 * the preceding grace period), done an smp_mb() (again,
 | |
| 	 * possibly during the preceding grace period), and summed up
 | |
| 	 * the ->srcu_ctrs[idx].srcu_unlocks counters.  How many times
 | |
| 	 * can a given one of the aforementioned Nt tasks increment the
 | |
| 	 * old ->srcu_ctrp value's ->srcu_ctrs[idx].srcu_locks counter,
 | |
| 	 * in the absence of nesting?
 | |
| 	 *
 | |
| 	 * It can clearly do so once, given that it has already fetched
 | |
| 	 * the old value of ->srcu_ctrp and is just about to use that
 | |
| 	 * value to index its increment of ->srcu_ctrs[idx].srcu_locks.
 | |
| 	 * But as soon as it leaves that SRCU read-side critical section,
 | |
| 	 * it will increment ->srcu_ctrs[idx].srcu_unlocks, which must
 | |
| 	 * follow the updater's above read from that same value.  Thus,
 | |
| 	   as soon the reading task does an smp_mb() and a later fetch from
 | |
| 	 * ->srcu_ctrp, that task will be guaranteed to get the new index.
 | |
| 	 * Except that the increment of ->srcu_ctrs[idx].srcu_unlocks
 | |
| 	 * in __srcu_read_unlock() is after the smp_mb(), and the fetch
 | |
| 	 * from ->srcu_ctrp in __srcu_read_lock() is before the smp_mb().
 | |
| 	 * Thus, that task might not see the new value of ->srcu_ctrp until
 | |
| 	 * the -second- __srcu_read_lock(), which in turn means that this
 | |
| 	 * task might well increment ->srcu_ctrs[idx].srcu_locks for the
 | |
| 	 * old value of ->srcu_ctrp twice, not just once.
 | |
| 	 *
 | |
| 	 * However, it is important to note that a given smp_mb() takes
 | |
| 	 * effect not just for the task executing it, but also for any
 | |
| 	 * later task running on that same CPU.
 | |
| 	 *
 | |
| 	 * That is, there can be almost Nt + Nc further increments
 | |
| 	 * of ->srcu_ctrs[idx].srcu_locks for the old index, where Nc
 | |
| 	 * is the number of CPUs.  But this is OK because the size of
 | |
| 	 * the task_struct structure limits the value of Nt and current
 | |
| 	 * systems limit Nc to a few thousand.
 | |
| 	 *
 | |
| 	 * OK, but what about nesting?  This does impose a limit on
 | |
| 	 * nesting of half of the size of the task_struct structure
 | |
| 	 * (measured in bytes), which should be sufficient.  A late 2022
 | |
| 	 * TREE01 rcutorture run reported this size to be no less than
 | |
| 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
 | |
| 	 * comfortably beyond excessive.  Especially on 64-bit systems,
 | |
| 	 * which are unlikely to be configured with an address space fully
 | |
| 	 * populated with memory, at least not anytime soon.
 | |
| 	 */
 | |
| 	return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * srcu_readers_active - returns true if there are readers. and false
 | |
|  *                       otherwise
 | |
|  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
 | |
|  *
 | |
|  * Note that this is not an atomic primitive, and can therefore suffer
 | |
|  * severe errors when invoked on an active srcu_struct.  That said, it
 | |
|  * can be useful as an error check at cleanup time.
 | |
|  */
 | |
| static bool srcu_readers_active(struct srcu_struct *ssp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
 | |
| 
 | |
| 		sum += atomic_long_read(&sdp->srcu_ctrs[0].srcu_locks);
 | |
| 		sum += atomic_long_read(&sdp->srcu_ctrs[1].srcu_locks);
 | |
| 		sum -= atomic_long_read(&sdp->srcu_ctrs[0].srcu_unlocks);
 | |
| 		sum -= atomic_long_read(&sdp->srcu_ctrs[1].srcu_unlocks);
 | |
| 	}
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use an adaptive strategy for synchronize_srcu() and especially for
 | |
|  * synchronize_srcu_expedited().  We spin for a fixed time period
 | |
|  * (defined below, boot time configurable) to allow SRCU readers to exit
 | |
|  * their read-side critical sections.  If there are still some readers
 | |
|  * after one jiffy, we repeatedly block for one jiffy time periods.
 | |
|  * The blocking time is increased as the grace-period age increases,
 | |
|  * with max blocking time capped at 10 jiffies.
 | |
|  */
 | |
| #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
 | |
| 
 | |
| static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
 | |
| module_param(srcu_retry_check_delay, ulong, 0444);
 | |
| 
 | |
| #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
 | |
| #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
 | |
| 
 | |
| #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
 | |
| 							// no-delay instances.
 | |
| #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
 | |
| 							// no-delay instances.
 | |
| 
 | |
| #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
 | |
| #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
 | |
| #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
 | |
| // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
 | |
| // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
 | |
| // called from process_srcu().
 | |
| #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
 | |
| 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
 | |
| 
 | |
| // Maximum per-GP-phase consecutive no-delay instances.
 | |
| #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
 | |
| 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
 | |
| 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
 | |
| 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
 | |
| 
 | |
| static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
 | |
| module_param(srcu_max_nodelay_phase, ulong, 0444);
 | |
| 
 | |
| // Maximum consecutive no-delay instances.
 | |
| #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
 | |
| 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
 | |
| 
 | |
| static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
 | |
| module_param(srcu_max_nodelay, ulong, 0444);
 | |
| 
 | |
| /*
 | |
|  * Return grace-period delay, zero if there are expedited grace
 | |
|  * periods pending, SRCU_INTERVAL otherwise.
 | |
|  */
 | |
| static unsigned long srcu_get_delay(struct srcu_struct *ssp)
 | |
| {
 | |
| 	unsigned long gpstart;
 | |
| 	unsigned long j;
 | |
| 	unsigned long jbase = SRCU_INTERVAL;
 | |
| 	struct srcu_usage *sup = ssp->srcu_sup;
 | |
| 
 | |
| 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
 | |
| 	if (srcu_gp_is_expedited(ssp))
 | |
| 		jbase = 0;
 | |
| 	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
 | |
| 		j = jiffies - 1;
 | |
| 		gpstart = READ_ONCE(sup->srcu_gp_start);
 | |
| 		if (time_after(j, gpstart))
 | |
| 			jbase += j - gpstart;
 | |
| 		if (!jbase) {
 | |
| 			ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay);
 | |
| 			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
 | |
| 			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
 | |
| 				jbase = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
 | |
|  * @ssp: structure to clean up.
 | |
|  *
 | |
|  * Must invoke this after you are finished using a given srcu_struct that
 | |
|  * was initialized via init_srcu_struct(), else you leak memory.
 | |
|  */
 | |
| void cleanup_srcu_struct(struct srcu_struct *ssp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long delay;
 | |
| 	struct srcu_usage *sup = ssp->srcu_sup;
 | |
| 
 | |
| 	spin_lock_irq_rcu_node(ssp->srcu_sup);
 | |
| 	delay = srcu_get_delay(ssp);
 | |
| 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
 | |
| 	if (WARN_ON(!delay))
 | |
| 		return; /* Just leak it! */
 | |
| 	if (WARN_ON(srcu_readers_active(ssp)))
 | |
| 		return; /* Just leak it! */
 | |
| 	flush_delayed_work(&sup->work);
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
 | |
| 
 | |
| 		timer_delete_sync(&sdp->delay_work);
 | |
| 		flush_work(&sdp->work);
 | |
| 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
 | |
| 			return; /* Forgot srcu_barrier(), so just leak it! */
 | |
| 	}
 | |
| 	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
 | |
| 	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
 | |
| 	    WARN_ON(srcu_readers_active(ssp))) {
 | |
| 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
 | |
| 			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
 | |
| 			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
 | |
| 		return; // Caller forgot to stop doing call_srcu()?
 | |
| 			// Or caller invoked start_poll_synchronize_srcu()
 | |
| 			// and then cleanup_srcu_struct() before that grace
 | |
| 			// period ended?
 | |
| 	}
 | |
| 	kfree(sup->node);
 | |
| 	sup->node = NULL;
 | |
| 	sup->srcu_size_state = SRCU_SIZE_SMALL;
 | |
| 	if (!sup->sda_is_static) {
 | |
| 		free_percpu(ssp->sda);
 | |
| 		ssp->sda = NULL;
 | |
| 		kfree(sup);
 | |
| 		ssp->srcu_sup = NULL;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
 | |
| 
 | |
| /*
 | |
|  * Check for consistent reader flavor.
 | |
|  */
 | |
| void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor)
 | |
| {
 | |
| 	int old_read_flavor;
 | |
| 	struct srcu_data *sdp;
 | |
| 
 | |
| 	/* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */
 | |
| 	WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi());
 | |
| 	WARN_ON_ONCE(read_flavor & (read_flavor - 1));
 | |
| 
 | |
| 	sdp = raw_cpu_ptr(ssp->sda);
 | |
| 	old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor);
 | |
| 	if (!old_read_flavor) {
 | |
| 		old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor);
 | |
| 		if (!old_read_flavor)
 | |
| 			return;
 | |
| 	}
 | |
| 	WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__srcu_check_read_flavor);
 | |
| 
 | |
| /*
 | |
|  * Counts the new reader in the appropriate per-CPU element of the
 | |
|  * srcu_struct.
 | |
|  * Returns a guaranteed non-negative index that must be passed to the
 | |
|  * matching __srcu_read_unlock().
 | |
|  */
 | |
| int __srcu_read_lock(struct srcu_struct *ssp)
 | |
| {
 | |
| 	struct srcu_ctr __percpu *scp = READ_ONCE(ssp->srcu_ctrp);
 | |
| 
 | |
| 	this_cpu_inc(scp->srcu_locks.counter);
 | |
| 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
 | |
| 	return __srcu_ptr_to_ctr(ssp, scp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__srcu_read_lock);
 | |
| 
 | |
| /*
 | |
|  * Removes the count for the old reader from the appropriate per-CPU
 | |
|  * element of the srcu_struct.  Note that this may well be a different
 | |
|  * CPU than that which was incremented by the corresponding srcu_read_lock().
 | |
|  */
 | |
| void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
 | |
| {
 | |
| 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
 | |
| 	this_cpu_inc(__srcu_ctr_to_ptr(ssp, idx)->srcu_unlocks.counter);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__srcu_read_unlock);
 | |
| 
 | |
| #ifdef CONFIG_NEED_SRCU_NMI_SAFE
 | |
| 
 | |
| /*
 | |
|  * Counts the new reader in the appropriate per-CPU element of the
 | |
|  * srcu_struct, but in an NMI-safe manner using RMW atomics.
 | |
|  * Returns an index that must be passed to the matching srcu_read_unlock().
 | |
|  */
 | |
| int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
 | |
| {
 | |
| 	struct srcu_ctr __percpu *scpp = READ_ONCE(ssp->srcu_ctrp);
 | |
| 	struct srcu_ctr *scp = raw_cpu_ptr(scpp);
 | |
| 
 | |
| 	atomic_long_inc(&scp->srcu_locks);
 | |
| 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
 | |
| 	return __srcu_ptr_to_ctr(ssp, scpp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
 | |
| 
 | |
| /*
 | |
|  * Removes the count for the old reader from the appropriate per-CPU
 | |
|  * element of the srcu_struct.  Note that this may well be a different
 | |
|  * CPU than that which was incremented by the corresponding srcu_read_lock().
 | |
|  */
 | |
| void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
 | |
| {
 | |
| 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
 | |
| 	atomic_long_inc(&raw_cpu_ptr(__srcu_ctr_to_ptr(ssp, idx))->srcu_unlocks);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
 | |
| 
 | |
| #endif // CONFIG_NEED_SRCU_NMI_SAFE
 | |
| 
 | |
| /*
 | |
|  * Start an SRCU grace period.
 | |
|  */
 | |
| static void srcu_gp_start(struct srcu_struct *ssp)
 | |
| {
 | |
| 	int state;
 | |
| 
 | |
| 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
 | |
| 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
 | |
| 	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
 | |
| 	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
 | |
| 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
 | |
| 	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
 | |
| 	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
 | |
| 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void srcu_delay_timer(struct timer_list *t)
 | |
| {
 | |
| 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
 | |
| 
 | |
| 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 | |
| }
 | |
| 
 | |
| static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
 | |
| 				       unsigned long delay)
 | |
| {
 | |
| 	if (!delay) {
 | |
| 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	timer_reduce(&sdp->delay_work, jiffies + delay);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Schedule callback invocation for the specified srcu_data structure,
 | |
|  * if possible, on the corresponding CPU.
 | |
|  */
 | |
| static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
 | |
| {
 | |
| 	srcu_queue_delayed_work_on(sdp, delay);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Schedule callback invocation for all srcu_data structures associated
 | |
|  * with the specified srcu_node structure that have callbacks for the
 | |
|  * just-completed grace period, the one corresponding to idx.  If possible,
 | |
|  * schedule this invocation on the corresponding CPUs.
 | |
|  */
 | |
| static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
 | |
| 				  unsigned long mask, unsigned long delay)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 | |
| 		if (!(mask & (1UL << (cpu - snp->grplo))))
 | |
| 			continue;
 | |
| 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note the end of an SRCU grace period.  Initiates callback invocation
 | |
|  * and starts a new grace period if needed.
 | |
|  *
 | |
|  * The ->srcu_cb_mutex acquisition does not protect any data, but
 | |
|  * instead prevents more than one grace period from starting while we
 | |
|  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
 | |
|  * array to have a finite number of elements.
 | |
|  */
 | |
| static void srcu_gp_end(struct srcu_struct *ssp)
 | |
| {
 | |
| 	unsigned long cbdelay = 1;
 | |
| 	bool cbs;
 | |
| 	bool last_lvl;
 | |
| 	int cpu;
 | |
| 	unsigned long gpseq;
 | |
| 	int idx;
 | |
| 	unsigned long mask;
 | |
| 	struct srcu_data *sdp;
 | |
| 	unsigned long sgsne;
 | |
| 	struct srcu_node *snp;
 | |
| 	int ss_state;
 | |
| 	struct srcu_usage *sup = ssp->srcu_sup;
 | |
| 
 | |
| 	/* Prevent more than one additional grace period. */
 | |
| 	mutex_lock(&sup->srcu_cb_mutex);
 | |
| 
 | |
| 	/* End the current grace period. */
 | |
| 	spin_lock_irq_rcu_node(sup);
 | |
| 	idx = rcu_seq_state(sup->srcu_gp_seq);
 | |
| 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
 | |
| 	if (srcu_gp_is_expedited(ssp))
 | |
| 		cbdelay = 0;
 | |
| 
 | |
| 	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
 | |
| 	rcu_seq_end(&sup->srcu_gp_seq);
 | |
| 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
 | |
| 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
 | |
| 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
 | |
| 	spin_unlock_irq_rcu_node(sup);
 | |
| 	mutex_unlock(&sup->srcu_gp_mutex);
 | |
| 	/* A new grace period can start at this point.  But only one. */
 | |
| 
 | |
| 	/* Initiate callback invocation as needed. */
 | |
| 	ss_state = smp_load_acquire(&sup->srcu_size_state);
 | |
| 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
 | |
| 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
 | |
| 					cbdelay);
 | |
| 	} else {
 | |
| 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
 | |
| 		srcu_for_each_node_breadth_first(ssp, snp) {
 | |
| 			spin_lock_irq_rcu_node(snp);
 | |
| 			cbs = false;
 | |
| 			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
 | |
| 			if (last_lvl)
 | |
| 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
 | |
| 			snp->srcu_have_cbs[idx] = gpseq;
 | |
| 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
 | |
| 			sgsne = snp->srcu_gp_seq_needed_exp;
 | |
| 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
 | |
| 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
 | |
| 			if (ss_state < SRCU_SIZE_BIG)
 | |
| 				mask = ~0;
 | |
| 			else
 | |
| 				mask = snp->srcu_data_have_cbs[idx];
 | |
| 			snp->srcu_data_have_cbs[idx] = 0;
 | |
| 			spin_unlock_irq_rcu_node(snp);
 | |
| 			if (cbs)
 | |
| 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Occasionally prevent srcu_data counter wrap. */
 | |
| 	if (!(gpseq & counter_wrap_check))
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			sdp = per_cpu_ptr(ssp->sda, cpu);
 | |
| 			spin_lock_irq_rcu_node(sdp);
 | |
| 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
 | |
| 				sdp->srcu_gp_seq_needed = gpseq;
 | |
| 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
 | |
| 				sdp->srcu_gp_seq_needed_exp = gpseq;
 | |
| 			spin_unlock_irq_rcu_node(sdp);
 | |
| 		}
 | |
| 
 | |
| 	/* Callback initiation done, allow grace periods after next. */
 | |
| 	mutex_unlock(&sup->srcu_cb_mutex);
 | |
| 
 | |
| 	/* Start a new grace period if needed. */
 | |
| 	spin_lock_irq_rcu_node(sup);
 | |
| 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
 | |
| 	if (!rcu_seq_state(gpseq) &&
 | |
| 	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
 | |
| 		srcu_gp_start(ssp);
 | |
| 		spin_unlock_irq_rcu_node(sup);
 | |
| 		srcu_reschedule(ssp, 0);
 | |
| 	} else {
 | |
| 		spin_unlock_irq_rcu_node(sup);
 | |
| 	}
 | |
| 
 | |
| 	/* Transition to big if needed. */
 | |
| 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
 | |
| 		if (ss_state == SRCU_SIZE_ALLOC)
 | |
| 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
 | |
| 		else
 | |
| 			smp_store_release(&sup->srcu_size_state, ss_state + 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Funnel-locking scheme to scalably mediate many concurrent expedited
 | |
|  * grace-period requests.  This function is invoked for the first known
 | |
|  * expedited request for a grace period that has already been requested,
 | |
|  * but without expediting.  To start a completely new grace period,
 | |
|  * whether expedited or not, use srcu_funnel_gp_start() instead.
 | |
|  */
 | |
| static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
 | |
| 				  unsigned long s)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long sgsne;
 | |
| 
 | |
| 	if (snp)
 | |
| 		for (; snp != NULL; snp = snp->srcu_parent) {
 | |
| 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
 | |
| 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
 | |
| 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
 | |
| 				return;
 | |
| 			spin_lock_irqsave_rcu_node(snp, flags);
 | |
| 			sgsne = snp->srcu_gp_seq_needed_exp;
 | |
| 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
 | |
| 				spin_unlock_irqrestore_rcu_node(snp, flags);
 | |
| 				return;
 | |
| 			}
 | |
| 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 | |
| 			spin_unlock_irqrestore_rcu_node(snp, flags);
 | |
| 		}
 | |
| 	spin_lock_irqsave_ssp_contention(ssp, &flags);
 | |
| 	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
 | |
| 		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
 | |
| 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Funnel-locking scheme to scalably mediate many concurrent grace-period
 | |
|  * requests.  The winner has to do the work of actually starting grace
 | |
|  * period s.  Losers must either ensure that their desired grace-period
 | |
|  * number is recorded on at least their leaf srcu_node structure, or they
 | |
|  * must take steps to invoke their own callbacks.
 | |
|  *
 | |
|  * Note that this function also does the work of srcu_funnel_exp_start(),
 | |
|  * in some cases by directly invoking it.
 | |
|  *
 | |
|  * The srcu read lock should be hold around this function. And s is a seq snap
 | |
|  * after holding that lock.
 | |
|  */
 | |
| static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
 | |
| 				 unsigned long s, bool do_norm)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
 | |
| 	unsigned long sgsne;
 | |
| 	struct srcu_node *snp;
 | |
| 	struct srcu_node *snp_leaf;
 | |
| 	unsigned long snp_seq;
 | |
| 	struct srcu_usage *sup = ssp->srcu_sup;
 | |
| 
 | |
| 	/* Ensure that snp node tree is fully initialized before traversing it */
 | |
| 	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
 | |
| 		snp_leaf = NULL;
 | |
| 	else
 | |
| 		snp_leaf = sdp->mynode;
 | |
| 
 | |
| 	if (snp_leaf)
 | |
| 		/* Each pass through the loop does one level of the srcu_node tree. */
 | |
| 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
 | |
| 			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
 | |
| 				return; /* GP already done and CBs recorded. */
 | |
| 			spin_lock_irqsave_rcu_node(snp, flags);
 | |
| 			snp_seq = snp->srcu_have_cbs[idx];
 | |
| 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
 | |
| 				if (snp == snp_leaf && snp_seq == s)
 | |
| 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 | |
| 				spin_unlock_irqrestore_rcu_node(snp, flags);
 | |
| 				if (snp == snp_leaf && snp_seq != s) {
 | |
| 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
 | |
| 					return;
 | |
| 				}
 | |
| 				if (!do_norm)
 | |
| 					srcu_funnel_exp_start(ssp, snp, s);
 | |
| 				return;
 | |
| 			}
 | |
| 			snp->srcu_have_cbs[idx] = s;
 | |
| 			if (snp == snp_leaf)
 | |
| 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 | |
| 			sgsne = snp->srcu_gp_seq_needed_exp;
 | |
| 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
 | |
| 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 | |
| 			spin_unlock_irqrestore_rcu_node(snp, flags);
 | |
| 		}
 | |
| 
 | |
| 	/* Top of tree, must ensure the grace period will be started. */
 | |
| 	spin_lock_irqsave_ssp_contention(ssp, &flags);
 | |
| 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
 | |
| 		/*
 | |
| 		 * Record need for grace period s.  Pair with load
 | |
| 		 * acquire setting up for initialization.
 | |
| 		 */
 | |
| 		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
 | |
| 	}
 | |
| 	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
 | |
| 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
 | |
| 
 | |
| 	/* If grace period not already in progress, start it. */
 | |
| 	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
 | |
| 	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
 | |
| 		srcu_gp_start(ssp);
 | |
| 
 | |
| 		// And how can that list_add() in the "else" clause
 | |
| 		// possibly be safe for concurrent execution?  Well,
 | |
| 		// it isn't.  And it does not have to be.  After all, it
 | |
| 		// can only be executed during early boot when there is only
 | |
| 		// the one boot CPU running with interrupts still disabled.
 | |
| 		if (likely(srcu_init_done))
 | |
| 			queue_delayed_work(rcu_gp_wq, &sup->work,
 | |
| 					   !!srcu_get_delay(ssp));
 | |
| 		else if (list_empty(&sup->work.work.entry))
 | |
| 			list_add(&sup->work.work.entry, &srcu_boot_list);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore_rcu_node(sup, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait until all readers counted by array index idx complete, but
 | |
|  * loop an additional time if there is an expedited grace period pending.
 | |
|  * The caller must ensure that ->srcu_ctrp is not changed while checking.
 | |
|  */
 | |
| static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
 | |
| {
 | |
| 	unsigned long curdelay;
 | |
| 
 | |
| 	spin_lock_irq_rcu_node(ssp->srcu_sup);
 | |
| 	curdelay = !srcu_get_delay(ssp);
 | |
| 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (srcu_readers_active_idx_check(ssp, idx))
 | |
| 			return true;
 | |
| 		if ((--trycount + curdelay) <= 0)
 | |
| 			return false;
 | |
| 		udelay(srcu_retry_check_delay);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increment the ->srcu_ctrp counter so that future SRCU readers will
 | |
|  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
 | |
|  * us to wait for pre-existing readers in a starvation-free manner.
 | |
|  */
 | |
| static void srcu_flip(struct srcu_struct *ssp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Because the flip of ->srcu_ctrp is executed only if the
 | |
| 	 * preceding call to srcu_readers_active_idx_check() found that
 | |
| 	 * the ->srcu_ctrs[].srcu_unlocks and ->srcu_ctrs[].srcu_locks sums
 | |
| 	 * matched and because that summing uses atomic_long_read(),
 | |
| 	 * there is ordering due to a control dependency between that
 | |
| 	 * summing and the WRITE_ONCE() in this call to srcu_flip().
 | |
| 	 * This ordering ensures that if this updater saw a given reader's
 | |
| 	 * increment from __srcu_read_lock(), that reader was using a value
 | |
| 	 * of ->srcu_ctrp from before the previous call to srcu_flip(),
 | |
| 	 * which should be quite rare.  This ordering thus helps forward
 | |
| 	 * progress because the grace period could otherwise be delayed
 | |
| 	 * by additional calls to __srcu_read_lock() using that old (soon
 | |
| 	 * to be new) value of ->srcu_ctrp.
 | |
| 	 *
 | |
| 	 * This sum-equality check and ordering also ensures that if
 | |
| 	 * a given call to __srcu_read_lock() uses the new value of
 | |
| 	 * ->srcu_ctrp, this updater's earlier scans cannot have seen
 | |
| 	 * that reader's increments, which is all to the good, because
 | |
| 	 * this grace period need not wait on that reader.  After all,
 | |
| 	 * if those earlier scans had seen that reader, there would have
 | |
| 	 * been a sum mismatch and this code would not be reached.
 | |
| 	 *
 | |
| 	 * This means that the following smp_mb() is redundant, but
 | |
| 	 * it stays until either (1) Compilers learn about this sort of
 | |
| 	 * control dependency or (2) Some production workload running on
 | |
| 	 * a production system is unduly delayed by this slowpath smp_mb().
 | |
| 	 * Except for _lite() readers, where it is inoperative, which
 | |
| 	 * means that it is a good thing that it is redundant.
 | |
| 	 */
 | |
| 	smp_mb(); /* E */  /* Pairs with B and C. */
 | |
| 
 | |
| 	WRITE_ONCE(ssp->srcu_ctrp,
 | |
| 		   &ssp->sda->srcu_ctrs[!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0])]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that if the updater misses an __srcu_read_unlock()
 | |
| 	 * increment, that task's __srcu_read_lock() following its next
 | |
| 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
 | |
| 	 * counter update.  Note that both this memory barrier and the
 | |
| 	 * one in srcu_readers_active_idx_check() provide the guarantee
 | |
| 	 * for __srcu_read_lock().
 | |
| 	 */
 | |
| 	smp_mb(); /* D */  /* Pairs with C. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If SRCU is likely idle, in other words, the next SRCU grace period
 | |
|  * should be expedited, return true, otherwise return false.  Except that
 | |
|  * in the presence of _lite() readers, always return false.
 | |
|  *
 | |
|  * Note that it is OK for several current from-idle requests for a new
 | |
|  * grace period from idle to specify expediting because they will all end
 | |
|  * up requesting the same grace period anyhow.  So no loss.
 | |
|  *
 | |
|  * Note also that if any CPU (including the current one) is still invoking
 | |
|  * callbacks, this function will nevertheless say "idle".  This is not
 | |
|  * ideal, but the overhead of checking all CPUs' callback lists is even
 | |
|  * less ideal, especially on large systems.  Furthermore, the wakeup
 | |
|  * can happen before the callback is fully removed, so we have no choice
 | |
|  * but to accept this type of error.
 | |
|  *
 | |
|  * This function is also subject to counter-wrap errors, but let's face
 | |
|  * it, if this function was preempted for enough time for the counters
 | |
|  * to wrap, it really doesn't matter whether or not we expedite the grace
 | |
|  * period.  The extra overhead of a needlessly expedited grace period is
 | |
|  * negligible when amortized over that time period, and the extra latency
 | |
|  * of a needlessly non-expedited grace period is similarly negligible.
 | |
|  */
 | |
| static bool srcu_should_expedite(struct srcu_struct *ssp)
 | |
| {
 | |
| 	unsigned long curseq;
 | |
| 	unsigned long flags;
 | |
| 	struct srcu_data *sdp;
 | |
| 	unsigned long t;
 | |
| 	unsigned long tlast;
 | |
| 
 | |
| 	check_init_srcu_struct(ssp);
 | |
| 	/* If _lite() readers, don't do unsolicited expediting. */
 | |
| 	if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_SLOWGP)
 | |
| 		return false;
 | |
| 	/* If the local srcu_data structure has callbacks, not idle.  */
 | |
| 	sdp = raw_cpu_ptr(ssp->sda);
 | |
| 	spin_lock_irqsave_rcu_node(sdp, flags);
 | |
| 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
 | |
| 		spin_unlock_irqrestore_rcu_node(sdp, flags);
 | |
| 		return false; /* Callbacks already present, so not idle. */
 | |
| 	}
 | |
| 	spin_unlock_irqrestore_rcu_node(sdp, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * No local callbacks, so probabilistically probe global state.
 | |
| 	 * Exact information would require acquiring locks, which would
 | |
| 	 * kill scalability, hence the probabilistic nature of the probe.
 | |
| 	 */
 | |
| 
 | |
| 	/* First, see if enough time has passed since the last GP. */
 | |
| 	t = ktime_get_mono_fast_ns();
 | |
| 	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
 | |
| 	if (exp_holdoff == 0 ||
 | |
| 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
 | |
| 		return false; /* Too soon after last GP. */
 | |
| 
 | |
| 	/* Next, check for probable idleness. */
 | |
| 	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
 | |
| 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
 | |
| 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
 | |
| 		return false; /* Grace period in progress, so not idle. */
 | |
| 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
 | |
| 	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
 | |
| 		return false; /* GP # changed, so not idle. */
 | |
| 	return true; /* With reasonable probability, idle! */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SRCU callback function to leak a callback.
 | |
|  */
 | |
| static void srcu_leak_callback(struct rcu_head *rhp)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start an SRCU grace period, and also queue the callback if non-NULL.
 | |
|  */
 | |
| static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
 | |
| 					     struct rcu_head *rhp, bool do_norm)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int idx;
 | |
| 	bool needexp = false;
 | |
| 	bool needgp = false;
 | |
| 	unsigned long s;
 | |
| 	struct srcu_data *sdp;
 | |
| 	struct srcu_node *sdp_mynode;
 | |
| 	int ss_state;
 | |
| 
 | |
| 	check_init_srcu_struct(ssp);
 | |
| 	/*
 | |
| 	 * While starting a new grace period, make sure we are in an
 | |
| 	 * SRCU read-side critical section so that the grace-period
 | |
| 	 * sequence number cannot wrap around in the meantime.
 | |
| 	 */
 | |
| 	idx = __srcu_read_lock_nmisafe(ssp);
 | |
| 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
 | |
| 	if (ss_state < SRCU_SIZE_WAIT_CALL)
 | |
| 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
 | |
| 	else
 | |
| 		sdp = raw_cpu_ptr(ssp->sda);
 | |
| 	spin_lock_irqsave_sdp_contention(sdp, &flags);
 | |
| 	if (rhp)
 | |
| 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
 | |
| 	/*
 | |
| 	 * It's crucial to capture the snapshot 's' for acceleration before
 | |
| 	 * reading the current gp_seq that is used for advancing. This is
 | |
| 	 * essential because if the acceleration snapshot is taken after a
 | |
| 	 * failed advancement attempt, there's a risk that a grace period may
 | |
| 	 * conclude and a new one may start in the interim. If the snapshot is
 | |
| 	 * captured after this sequence of events, the acceleration snapshot 's'
 | |
| 	 * could be excessively advanced, leading to acceleration failure.
 | |
| 	 * In such a scenario, an 'acceleration leak' can occur, where new
 | |
| 	 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
 | |
| 	 * Also note that encountering advancing failures is a normal
 | |
| 	 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
 | |
| 	 *
 | |
| 	 * To see this, consider the following events which occur if
 | |
| 	 * rcu_seq_snap() were to be called after advance:
 | |
| 	 *
 | |
| 	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
 | |
| 	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
 | |
| 	 *
 | |
| 	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
 | |
| 	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
 | |
| 	 *
 | |
| 	 *  3) This value is passed to rcu_segcblist_advance() which can't move
 | |
| 	 *     any segment forward and fails.
 | |
| 	 *
 | |
| 	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
 | |
| 	 *     But then the call to rcu_seq_snap() observes the grace period for the
 | |
| 	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
 | |
| 	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
 | |
| 	 *     so it returns a snapshot of the next grace period, which is X + 12.
 | |
| 	 *
 | |
| 	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
 | |
| 	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
 | |
| 	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
 | |
| 	 *     period (gp_num = X + 8). So acceleration fails.
 | |
| 	 */
 | |
| 	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
 | |
| 	if (rhp) {
 | |
| 		rcu_segcblist_advance(&sdp->srcu_cblist,
 | |
| 				      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
 | |
| 		/*
 | |
| 		 * Acceleration can never fail because the base current gp_seq
 | |
| 		 * used for acceleration is <= the value of gp_seq used for
 | |
| 		 * advancing. This means that RCU_NEXT_TAIL segment will
 | |
| 		 * always be able to be emptied by the acceleration into the
 | |
| 		 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
 | |
| 	}
 | |
| 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
 | |
| 		sdp->srcu_gp_seq_needed = s;
 | |
| 		needgp = true;
 | |
| 	}
 | |
| 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
 | |
| 		sdp->srcu_gp_seq_needed_exp = s;
 | |
| 		needexp = true;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore_rcu_node(sdp, flags);
 | |
| 
 | |
| 	/* Ensure that snp node tree is fully initialized before traversing it */
 | |
| 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
 | |
| 		sdp_mynode = NULL;
 | |
| 	else
 | |
| 		sdp_mynode = sdp->mynode;
 | |
| 
 | |
| 	if (needgp)
 | |
| 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
 | |
| 	else if (needexp)
 | |
| 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
 | |
| 	__srcu_read_unlock_nmisafe(ssp, idx);
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enqueue an SRCU callback on the srcu_data structure associated with
 | |
|  * the current CPU and the specified srcu_struct structure, initiating
 | |
|  * grace-period processing if it is not already running.
 | |
|  *
 | |
|  * Note that all CPUs must agree that the grace period extended beyond
 | |
|  * all pre-existing SRCU read-side critical section.  On systems with
 | |
|  * more than one CPU, this means that when "func()" is invoked, each CPU
 | |
|  * is guaranteed to have executed a full memory barrier since the end of
 | |
|  * its last corresponding SRCU read-side critical section whose beginning
 | |
|  * preceded the call to call_srcu().  It also means that each CPU executing
 | |
|  * an SRCU read-side critical section that continues beyond the start of
 | |
|  * "func()" must have executed a memory barrier after the call_srcu()
 | |
|  * but before the beginning of that SRCU read-side critical section.
 | |
|  * Note that these guarantees include CPUs that are offline, idle, or
 | |
|  * executing in user mode, as well as CPUs that are executing in the kernel.
 | |
|  *
 | |
|  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
 | |
|  * resulting SRCU callback function "func()", then both CPU A and CPU
 | |
|  * B are guaranteed to execute a full memory barrier during the time
 | |
|  * interval between the call to call_srcu() and the invocation of "func()".
 | |
|  * This guarantee applies even if CPU A and CPU B are the same CPU (but
 | |
|  * again only if the system has more than one CPU).
 | |
|  *
 | |
|  * Of course, these guarantees apply only for invocations of call_srcu(),
 | |
|  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
 | |
|  * srcu_struct structure.
 | |
|  */
 | |
| static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
 | |
| 			rcu_callback_t func, bool do_norm)
 | |
| {
 | |
| 	if (debug_rcu_head_queue(rhp)) {
 | |
| 		/* Probable double call_srcu(), so leak the callback. */
 | |
| 		WRITE_ONCE(rhp->func, srcu_leak_callback);
 | |
| 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	rhp->func = func;
 | |
| 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * call_srcu() - Queue a callback for invocation after an SRCU grace period
 | |
|  * @ssp: srcu_struct in queue the callback
 | |
|  * @rhp: structure to be used for queueing the SRCU callback.
 | |
|  * @func: function to be invoked after the SRCU grace period
 | |
|  *
 | |
|  * The callback function will be invoked some time after a full SRCU
 | |
|  * grace period elapses, in other words after all pre-existing SRCU
 | |
|  * read-side critical sections have completed.  However, the callback
 | |
|  * function might well execute concurrently with other SRCU read-side
 | |
|  * critical sections that started after call_srcu() was invoked.  SRCU
 | |
|  * read-side critical sections are delimited by srcu_read_lock() and
 | |
|  * srcu_read_unlock(), and may be nested.
 | |
|  *
 | |
|  * The callback will be invoked from process context, but with bh
 | |
|  * disabled.  The callback function must therefore be fast and must
 | |
|  * not block.
 | |
|  *
 | |
|  * See the description of call_rcu() for more detailed information on
 | |
|  * memory ordering guarantees.
 | |
|  */
 | |
| void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
 | |
| 	       rcu_callback_t func)
 | |
| {
 | |
| 	__call_srcu(ssp, rhp, func, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(call_srcu);
 | |
| 
 | |
| /*
 | |
|  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
 | |
|  */
 | |
| static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
 | |
| {
 | |
| 	struct rcu_synchronize rcu;
 | |
| 
 | |
| 	srcu_lock_sync(&ssp->dep_map);
 | |
| 
 | |
| 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
 | |
| 			 lock_is_held(&rcu_bh_lock_map) ||
 | |
| 			 lock_is_held(&rcu_lock_map) ||
 | |
| 			 lock_is_held(&rcu_sched_lock_map),
 | |
| 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
 | |
| 
 | |
| 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 | |
| 		return;
 | |
| 	might_sleep();
 | |
| 	check_init_srcu_struct(ssp);
 | |
| 	init_completion(&rcu.completion);
 | |
| 	init_rcu_head_on_stack(&rcu.head);
 | |
| 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
 | |
| 	wait_for_completion(&rcu.completion);
 | |
| 	destroy_rcu_head_on_stack(&rcu.head);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that later code is ordered after the SRCU grace
 | |
| 	 * period.  This pairs with the spin_lock_irq_rcu_node()
 | |
| 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
 | |
| 	 * because the current CPU might have been totally uninvolved with
 | |
| 	 * (and thus unordered against) that grace period.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * synchronize_srcu_expedited - Brute-force SRCU grace period
 | |
|  * @ssp: srcu_struct with which to synchronize.
 | |
|  *
 | |
|  * Wait for an SRCU grace period to elapse, but be more aggressive about
 | |
|  * spinning rather than blocking when waiting.
 | |
|  *
 | |
|  * Note that synchronize_srcu_expedited() has the same deadlock and
 | |
|  * memory-ordering properties as does synchronize_srcu().
 | |
|  */
 | |
| void synchronize_srcu_expedited(struct srcu_struct *ssp)
 | |
| {
 | |
| 	__synchronize_srcu(ssp, rcu_gp_is_normal());
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
 | |
| 
 | |
| /**
 | |
|  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
 | |
|  * @ssp: srcu_struct with which to synchronize.
 | |
|  *
 | |
|  * Wait for the count to drain to zero of both indexes. To avoid the
 | |
|  * possible starvation of synchronize_srcu(), it waits for the count of
 | |
|  * the index=!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]) to drain to zero
 | |
|  * at first, and then flip the ->srcu_ctrp and wait for the count of the
 | |
|  * other index.
 | |
|  *
 | |
|  * Can block; must be called from process context.
 | |
|  *
 | |
|  * Note that it is illegal to call synchronize_srcu() from the corresponding
 | |
|  * SRCU read-side critical section; doing so will result in deadlock.
 | |
|  * However, it is perfectly legal to call synchronize_srcu() on one
 | |
|  * srcu_struct from some other srcu_struct's read-side critical section,
 | |
|  * as long as the resulting graph of srcu_structs is acyclic.
 | |
|  *
 | |
|  * There are memory-ordering constraints implied by synchronize_srcu().
 | |
|  * On systems with more than one CPU, when synchronize_srcu() returns,
 | |
|  * each CPU is guaranteed to have executed a full memory barrier since
 | |
|  * the end of its last corresponding SRCU read-side critical section
 | |
|  * whose beginning preceded the call to synchronize_srcu().  In addition,
 | |
|  * each CPU having an SRCU read-side critical section that extends beyond
 | |
|  * the return from synchronize_srcu() is guaranteed to have executed a
 | |
|  * full memory barrier after the beginning of synchronize_srcu() and before
 | |
|  * the beginning of that SRCU read-side critical section.  Note that these
 | |
|  * guarantees include CPUs that are offline, idle, or executing in user mode,
 | |
|  * as well as CPUs that are executing in the kernel.
 | |
|  *
 | |
|  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
 | |
|  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 | |
|  * to have executed a full memory barrier during the execution of
 | |
|  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
 | |
|  * are the same CPU, but again only if the system has more than one CPU.
 | |
|  *
 | |
|  * Of course, these memory-ordering guarantees apply only when
 | |
|  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
 | |
|  * passed the same srcu_struct structure.
 | |
|  *
 | |
|  * Implementation of these memory-ordering guarantees is similar to
 | |
|  * that of synchronize_rcu().
 | |
|  *
 | |
|  * If SRCU is likely idle as determined by srcu_should_expedite(),
 | |
|  * expedite the first request.  This semantic was provided by Classic SRCU,
 | |
|  * and is relied upon by its users, so TREE SRCU must also provide it.
 | |
|  * Note that detecting idleness is heuristic and subject to both false
 | |
|  * positives and negatives.
 | |
|  */
 | |
| void synchronize_srcu(struct srcu_struct *ssp)
 | |
| {
 | |
| 	if (srcu_should_expedite(ssp) || rcu_gp_is_expedited())
 | |
| 		synchronize_srcu_expedited(ssp);
 | |
| 	else
 | |
| 		__synchronize_srcu(ssp, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_srcu);
 | |
| 
 | |
| /**
 | |
|  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
 | |
|  * @ssp: srcu_struct to provide cookie for.
 | |
|  *
 | |
|  * This function returns a cookie that can be passed to
 | |
|  * poll_state_synchronize_srcu(), which will return true if a full grace
 | |
|  * period has elapsed in the meantime.  It is the caller's responsibility
 | |
|  * to make sure that grace period happens, for example, by invoking
 | |
|  * call_srcu() after return from get_state_synchronize_srcu().
 | |
|  */
 | |
| unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
 | |
| {
 | |
| 	// Any prior manipulation of SRCU-protected data must happen
 | |
| 	// before the load from ->srcu_gp_seq.
 | |
| 	smp_mb();
 | |
| 	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
 | |
| 
 | |
| /**
 | |
|  * start_poll_synchronize_srcu - Provide cookie and start grace period
 | |
|  * @ssp: srcu_struct to provide cookie for.
 | |
|  *
 | |
|  * This function returns a cookie that can be passed to
 | |
|  * poll_state_synchronize_srcu(), which will return true if a full grace
 | |
|  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
 | |
|  * this function also ensures that any needed SRCU grace period will be
 | |
|  * started.  This convenience does come at a cost in terms of CPU overhead.
 | |
|  */
 | |
| unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
 | |
| {
 | |
| 	return srcu_gp_start_if_needed(ssp, NULL, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
 | |
| 
 | |
| /**
 | |
|  * poll_state_synchronize_srcu - Has cookie's grace period ended?
 | |
|  * @ssp: srcu_struct to provide cookie for.
 | |
|  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
 | |
|  *
 | |
|  * This function takes the cookie that was returned from either
 | |
|  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
 | |
|  * returns @true if an SRCU grace period elapsed since the time that the
 | |
|  * cookie was created.
 | |
|  *
 | |
|  * Because cookies are finite in size, wrapping/overflow is possible.
 | |
|  * This is more pronounced on 32-bit systems where cookies are 32 bits,
 | |
|  * where in theory wrapping could happen in about 14 hours assuming
 | |
|  * 25-microsecond expedited SRCU grace periods.  However, a more likely
 | |
|  * overflow lower bound is on the order of 24 days in the case of
 | |
|  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
 | |
|  * system requires geologic timespans, as in more than seven million years
 | |
|  * even for expedited SRCU grace periods.
 | |
|  *
 | |
|  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
 | |
|  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
 | |
|  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
 | |
|  * few minutes.  If this proves to be a problem, this counter will be
 | |
|  * expanded to the same size as for Tree SRCU.
 | |
|  */
 | |
| bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
 | |
| {
 | |
| 	if (cookie != SRCU_GET_STATE_COMPLETED &&
 | |
| 	    !rcu_seq_done_exact(&ssp->srcu_sup->srcu_gp_seq, cookie))
 | |
| 		return false;
 | |
| 	// Ensure that the end of the SRCU grace period happens before
 | |
| 	// any subsequent code that the caller might execute.
 | |
| 	smp_mb(); // ^^^
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
 | |
| 
 | |
| /*
 | |
|  * Callback function for srcu_barrier() use.
 | |
|  */
 | |
| static void srcu_barrier_cb(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct srcu_data *sdp;
 | |
| 	struct srcu_struct *ssp;
 | |
| 
 | |
| 	rhp->next = rhp; // Mark the callback as having been invoked.
 | |
| 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
 | |
| 	ssp = sdp->ssp;
 | |
| 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
 | |
| 		complete(&ssp->srcu_sup->srcu_barrier_completion);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enqueue an srcu_barrier() callback on the specified srcu_data
 | |
|  * structure's ->cblist.  but only if that ->cblist already has at least one
 | |
|  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
 | |
|  * it must have already registered the need for a future grace period,
 | |
|  * so all we need do is enqueue a callback that will use the same grace
 | |
|  * period as the last callback already in the queue.
 | |
|  */
 | |
| static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
 | |
| {
 | |
| 	spin_lock_irq_rcu_node(sdp);
 | |
| 	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
 | |
| 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
 | |
| 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
 | |
| 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
 | |
| 				   &sdp->srcu_barrier_head)) {
 | |
| 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
 | |
| 		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
 | |
| 	}
 | |
| 	spin_unlock_irq_rcu_node(sdp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
 | |
|  * @ssp: srcu_struct on which to wait for in-flight callbacks.
 | |
|  */
 | |
| void srcu_barrier(struct srcu_struct *ssp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int idx;
 | |
| 	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
 | |
| 
 | |
| 	check_init_srcu_struct(ssp);
 | |
| 	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
 | |
| 	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
 | |
| 		smp_mb(); /* Force ordering following return. */
 | |
| 		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
 | |
| 		return; /* Someone else did our work for us. */
 | |
| 	}
 | |
| 	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
 | |
| 	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
 | |
| 
 | |
| 	/* Initial count prevents reaching zero until all CBs are posted. */
 | |
| 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
 | |
| 
 | |
| 	idx = __srcu_read_lock_nmisafe(ssp);
 | |
| 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
 | |
| 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
 | |
| 	else
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
 | |
| 	__srcu_read_unlock_nmisafe(ssp, idx);
 | |
| 
 | |
| 	/* Remove the initial count, at which point reaching zero can happen. */
 | |
| 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
 | |
| 		complete(&ssp->srcu_sup->srcu_barrier_completion);
 | |
| 	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
 | |
| 
 | |
| 	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
 | |
| 	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(srcu_barrier);
 | |
| 
 | |
| /**
 | |
|  * srcu_batches_completed - return batches completed.
 | |
|  * @ssp: srcu_struct on which to report batch completion.
 | |
|  *
 | |
|  * Report the number of batches, correlated with, but not necessarily
 | |
|  * precisely the same as, the number of grace periods that have elapsed.
 | |
|  */
 | |
| unsigned long srcu_batches_completed(struct srcu_struct *ssp)
 | |
| {
 | |
| 	return READ_ONCE(ssp->srcu_sup->srcu_gp_seq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(srcu_batches_completed);
 | |
| 
 | |
| /*
 | |
|  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
 | |
|  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
 | |
|  * completed in that state.
 | |
|  */
 | |
| static void srcu_advance_state(struct srcu_struct *ssp)
 | |
| {
 | |
| 	int idx;
 | |
| 
 | |
| 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Because readers might be delayed for an extended period after
 | |
| 	 * fetching ->srcu_ctrp for their index, at any point in time there
 | |
| 	 * might well be readers using both idx=0 and idx=1.  We therefore
 | |
| 	 * need to wait for readers to clear from both index values before
 | |
| 	 * invoking a callback.
 | |
| 	 *
 | |
| 	 * The load-acquire ensures that we see the accesses performed
 | |
| 	 * by the prior grace period.
 | |
| 	 */
 | |
| 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
 | |
| 	if (idx == SRCU_STATE_IDLE) {
 | |
| 		spin_lock_irq_rcu_node(ssp->srcu_sup);
 | |
| 		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
 | |
| 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
 | |
| 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
 | |
| 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
 | |
| 			return;
 | |
| 		}
 | |
| 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
 | |
| 		if (idx == SRCU_STATE_IDLE)
 | |
| 			srcu_gp_start(ssp);
 | |
| 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
 | |
| 		if (idx != SRCU_STATE_IDLE) {
 | |
| 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
 | |
| 			return; /* Someone else started the grace period. */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
 | |
| 		idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
 | |
| 		if (!try_check_zero(ssp, idx, 1)) {
 | |
| 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
 | |
| 			return; /* readers present, retry later. */
 | |
| 		}
 | |
| 		srcu_flip(ssp);
 | |
| 		spin_lock_irq_rcu_node(ssp->srcu_sup);
 | |
| 		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
 | |
| 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
 | |
| 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
 | |
| 	}
 | |
| 
 | |
| 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
 | |
| 
 | |
| 		/*
 | |
| 		 * SRCU read-side critical sections are normally short,
 | |
| 		 * so check at least twice in quick succession after a flip.
 | |
| 		 */
 | |
| 		idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
 | |
| 		if (!try_check_zero(ssp, idx, 2)) {
 | |
| 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
 | |
| 			return; /* readers present, retry later. */
 | |
| 		}
 | |
| 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
 | |
| 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoke a limited number of SRCU callbacks that have passed through
 | |
|  * their grace period.  If there are more to do, SRCU will reschedule
 | |
|  * the workqueue.  Note that needed memory barriers have been executed
 | |
|  * in this task's context by srcu_readers_active_idx_check().
 | |
|  */
 | |
| static void srcu_invoke_callbacks(struct work_struct *work)
 | |
| {
 | |
| 	long len;
 | |
| 	bool more;
 | |
| 	struct rcu_cblist ready_cbs;
 | |
| 	struct rcu_head *rhp;
 | |
| 	struct srcu_data *sdp;
 | |
| 	struct srcu_struct *ssp;
 | |
| 
 | |
| 	sdp = container_of(work, struct srcu_data, work);
 | |
| 
 | |
| 	ssp = sdp->ssp;
 | |
| 	rcu_cblist_init(&ready_cbs);
 | |
| 	spin_lock_irq_rcu_node(sdp);
 | |
| 	WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
 | |
| 	rcu_segcblist_advance(&sdp->srcu_cblist,
 | |
| 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
 | |
| 	/*
 | |
| 	 * Although this function is theoretically re-entrant, concurrent
 | |
| 	 * callbacks invocation is disallowed to avoid executing an SRCU barrier
 | |
| 	 * too early.
 | |
| 	 */
 | |
| 	if (sdp->srcu_cblist_invoking ||
 | |
| 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
 | |
| 		spin_unlock_irq_rcu_node(sdp);
 | |
| 		return;  /* Someone else on the job or nothing to do. */
 | |
| 	}
 | |
| 
 | |
| 	/* We are on the job!  Extract and invoke ready callbacks. */
 | |
| 	sdp->srcu_cblist_invoking = true;
 | |
| 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
 | |
| 	len = ready_cbs.len;
 | |
| 	spin_unlock_irq_rcu_node(sdp);
 | |
| 	rhp = rcu_cblist_dequeue(&ready_cbs);
 | |
| 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
 | |
| 		debug_rcu_head_unqueue(rhp);
 | |
| 		debug_rcu_head_callback(rhp);
 | |
| 		local_bh_disable();
 | |
| 		rhp->func(rhp);
 | |
| 		local_bh_enable();
 | |
| 	}
 | |
| 	WARN_ON_ONCE(ready_cbs.len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update counts, accelerate new callbacks, and if needed,
 | |
| 	 * schedule another round of callback invocation.
 | |
| 	 */
 | |
| 	spin_lock_irq_rcu_node(sdp);
 | |
| 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
 | |
| 	sdp->srcu_cblist_invoking = false;
 | |
| 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
 | |
| 	spin_unlock_irq_rcu_node(sdp);
 | |
| 	/* An SRCU barrier or callbacks from previous nesting work pending */
 | |
| 	if (more)
 | |
| 		srcu_schedule_cbs_sdp(sdp, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finished one round of SRCU grace period.  Start another if there are
 | |
|  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
 | |
|  */
 | |
| static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
 | |
| {
 | |
| 	bool pushgp = true;
 | |
| 
 | |
| 	spin_lock_irq_rcu_node(ssp->srcu_sup);
 | |
| 	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
 | |
| 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
 | |
| 			/* All requests fulfilled, time to go idle. */
 | |
| 			pushgp = false;
 | |
| 		}
 | |
| 	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
 | |
| 		/* Outstanding request and no GP.  Start one. */
 | |
| 		srcu_gp_start(ssp);
 | |
| 	}
 | |
| 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
 | |
| 
 | |
| 	if (pushgp)
 | |
| 		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the work-queue function that handles SRCU grace periods.
 | |
|  */
 | |
| static void process_srcu(struct work_struct *work)
 | |
| {
 | |
| 	unsigned long curdelay;
 | |
| 	unsigned long j;
 | |
| 	struct srcu_struct *ssp;
 | |
| 	struct srcu_usage *sup;
 | |
| 
 | |
| 	sup = container_of(work, struct srcu_usage, work.work);
 | |
| 	ssp = sup->srcu_ssp;
 | |
| 
 | |
| 	srcu_advance_state(ssp);
 | |
| 	spin_lock_irq_rcu_node(ssp->srcu_sup);
 | |
| 	curdelay = srcu_get_delay(ssp);
 | |
| 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
 | |
| 	if (curdelay) {
 | |
| 		WRITE_ONCE(sup->reschedule_count, 0);
 | |
| 	} else {
 | |
| 		j = jiffies;
 | |
| 		if (READ_ONCE(sup->reschedule_jiffies) == j) {
 | |
| 			ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count);
 | |
| 			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
 | |
| 			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
 | |
| 				curdelay = 1;
 | |
| 		} else {
 | |
| 			WRITE_ONCE(sup->reschedule_count, 1);
 | |
| 			WRITE_ONCE(sup->reschedule_jiffies, j);
 | |
| 		}
 | |
| 	}
 | |
| 	srcu_reschedule(ssp, curdelay);
 | |
| }
 | |
| 
 | |
| void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
 | |
| 			     unsigned long *gp_seq)
 | |
| {
 | |
| 	*flags = 0;
 | |
| 	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
 | |
| 
 | |
| static const char * const srcu_size_state_name[] = {
 | |
| 	"SRCU_SIZE_SMALL",
 | |
| 	"SRCU_SIZE_ALLOC",
 | |
| 	"SRCU_SIZE_WAIT_BARRIER",
 | |
| 	"SRCU_SIZE_WAIT_CALL",
 | |
| 	"SRCU_SIZE_WAIT_CBS1",
 | |
| 	"SRCU_SIZE_WAIT_CBS2",
 | |
| 	"SRCU_SIZE_WAIT_CBS3",
 | |
| 	"SRCU_SIZE_WAIT_CBS4",
 | |
| 	"SRCU_SIZE_BIG",
 | |
| 	"SRCU_SIZE_???",
 | |
| };
 | |
| 
 | |
| void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int idx;
 | |
| 	unsigned long s0 = 0, s1 = 0;
 | |
| 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
 | |
| 	int ss_state_idx = ss_state;
 | |
| 
 | |
| 	idx = ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0];
 | |
| 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
 | |
| 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
 | |
| 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
 | |
| 		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
 | |
| 		 srcu_size_state_name[ss_state_idx]);
 | |
| 	if (!ssp->sda) {
 | |
| 		// Called after cleanup_srcu_struct(), perhaps.
 | |
| 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
 | |
| 	} else {
 | |
| 		pr_cont(" per-CPU(idx=%d):", idx);
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			unsigned long l0, l1;
 | |
| 			unsigned long u0, u1;
 | |
| 			long c0, c1;
 | |
| 			struct srcu_data *sdp;
 | |
| 
 | |
| 			sdp = per_cpu_ptr(ssp->sda, cpu);
 | |
| 			u0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_unlocks));
 | |
| 			u1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks));
 | |
| 
 | |
| 			/*
 | |
| 			 * Make sure that a lock is always counted if the corresponding
 | |
| 			 * unlock is counted.
 | |
| 			 */
 | |
| 			smp_rmb();
 | |
| 
 | |
| 			l0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_locks));
 | |
| 			l1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks));
 | |
| 
 | |
| 			c0 = l0 - u0;
 | |
| 			c1 = l1 - u1;
 | |
| 			pr_cont(" %d(%ld,%ld %c)",
 | |
| 				cpu, c0, c1,
 | |
| 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
 | |
| 			s0 += c0;
 | |
| 			s1 += c1;
 | |
| 		}
 | |
| 		pr_cont(" T(%ld,%ld)\n", s0, s1);
 | |
| 	}
 | |
| 	if (SRCU_SIZING_IS_TORTURE())
 | |
| 		srcu_transition_to_big(ssp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
 | |
| 
 | |
| static int __init srcu_bootup_announce(void)
 | |
| {
 | |
| 	pr_info("Hierarchical SRCU implementation.\n");
 | |
| 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
 | |
| 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
 | |
| 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
 | |
| 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
 | |
| 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
 | |
| 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
 | |
| 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(srcu_bootup_announce);
 | |
| 
 | |
| void __init srcu_init(void)
 | |
| {
 | |
| 	struct srcu_usage *sup;
 | |
| 
 | |
| 	/* Decide on srcu_struct-size strategy. */
 | |
| 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
 | |
| 		if (nr_cpu_ids >= big_cpu_lim) {
 | |
| 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
 | |
| 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
 | |
| 		} else {
 | |
| 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
 | |
| 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Once that is set, call_srcu() can follow the normal path and
 | |
| 	 * queue delayed work. This must follow RCU workqueues creation
 | |
| 	 * and timers initialization.
 | |
| 	 */
 | |
| 	srcu_init_done = true;
 | |
| 	while (!list_empty(&srcu_boot_list)) {
 | |
| 		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
 | |
| 				      work.work.entry);
 | |
| 		list_del_init(&sup->work.work.entry);
 | |
| 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
 | |
| 		    sup->srcu_size_state == SRCU_SIZE_SMALL)
 | |
| 			sup->srcu_size_state = SRCU_SIZE_ALLOC;
 | |
| 		queue_work(rcu_gp_wq, &sup->work.work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MODULES
 | |
| 
 | |
| /* Initialize any global-scope srcu_struct structures used by this module. */
 | |
| static int srcu_module_coming(struct module *mod)
 | |
| {
 | |
| 	int i;
 | |
| 	struct srcu_struct *ssp;
 | |
| 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
 | |
| 
 | |
| 	for (i = 0; i < mod->num_srcu_structs; i++) {
 | |
| 		ssp = *(sspp++);
 | |
| 		ssp->sda = alloc_percpu(struct srcu_data);
 | |
| 		if (WARN_ON_ONCE(!ssp->sda))
 | |
| 			return -ENOMEM;
 | |
| 		ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Clean up any global-scope srcu_struct structures used by this module. */
 | |
| static void srcu_module_going(struct module *mod)
 | |
| {
 | |
| 	int i;
 | |
| 	struct srcu_struct *ssp;
 | |
| 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
 | |
| 
 | |
| 	for (i = 0; i < mod->num_srcu_structs; i++) {
 | |
| 		ssp = *(sspp++);
 | |
| 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
 | |
| 		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
 | |
| 			cleanup_srcu_struct(ssp);
 | |
| 		if (!WARN_ON(srcu_readers_active(ssp)))
 | |
| 			free_percpu(ssp->sda);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle one module, either coming or going. */
 | |
| static int srcu_module_notify(struct notifier_block *self,
 | |
| 			      unsigned long val, void *data)
 | |
| {
 | |
| 	struct module *mod = data;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case MODULE_STATE_COMING:
 | |
| 		ret = srcu_module_coming(mod);
 | |
| 		break;
 | |
| 	case MODULE_STATE_GOING:
 | |
| 		srcu_module_going(mod);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct notifier_block srcu_module_nb = {
 | |
| 	.notifier_call = srcu_module_notify,
 | |
| 	.priority = 0,
 | |
| };
 | |
| 
 | |
| static __init int init_srcu_module_notifier(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = register_module_notifier(&srcu_module_nb);
 | |
| 	if (ret)
 | |
| 		pr_warn("Failed to register srcu module notifier\n");
 | |
| 	return ret;
 | |
| }
 | |
| late_initcall(init_srcu_module_notifier);
 | |
| 
 | |
| #endif /* #ifdef CONFIG_MODULES */
 |