mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 bbb1b274e8
			
		
	
	
		bbb1b274e8
		
	
	
	
	
		
			
			- Use the standard #ifdef marker format for larger blocks,
   where appropriate:
        #if CONFIG_FOO
        ...
        #else /* !CONFIG_FOO: */
        ...
        #endif /* !CONFIG_FOO */
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20250528080924.2273858-3-mingo@kernel.org
		
	
			
		
			
				
	
	
		
			508 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			508 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * sched_clock() for unstable CPU clocks
 | |
|  *
 | |
|  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
 | |
|  *
 | |
|  *  Updates and enhancements:
 | |
|  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
 | |
|  *
 | |
|  * Based on code by:
 | |
|  *   Ingo Molnar <mingo@redhat.com>
 | |
|  *   Guillaume Chazarain <guichaz@gmail.com>
 | |
|  *
 | |
|  *
 | |
|  * What this file implements:
 | |
|  *
 | |
|  * cpu_clock(i) provides a fast (execution time) high resolution
 | |
|  * clock with bounded drift between CPUs. The value of cpu_clock(i)
 | |
|  * is monotonic for constant i. The timestamp returned is in nanoseconds.
 | |
|  *
 | |
|  * ######################### BIG FAT WARNING ##########################
 | |
|  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
 | |
|  * # go backwards !!                                                  #
 | |
|  * ####################################################################
 | |
|  *
 | |
|  * There is no strict promise about the base, although it tends to start
 | |
|  * at 0 on boot (but people really shouldn't rely on that).
 | |
|  *
 | |
|  * cpu_clock(i)       -- can be used from any context, including NMI.
 | |
|  * local_clock()      -- is cpu_clock() on the current CPU.
 | |
|  *
 | |
|  * sched_clock_cpu(i)
 | |
|  *
 | |
|  * How it is implemented:
 | |
|  *
 | |
|  * The implementation either uses sched_clock() when
 | |
|  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
 | |
|  * sched_clock() is assumed to provide these properties (mostly it means
 | |
|  * the architecture provides a globally synchronized highres time source).
 | |
|  *
 | |
|  * Otherwise it tries to create a semi stable clock from a mixture of other
 | |
|  * clocks, including:
 | |
|  *
 | |
|  *  - GTOD (clock monotonic)
 | |
|  *  - sched_clock()
 | |
|  *  - explicit idle events
 | |
|  *
 | |
|  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
 | |
|  * deltas are filtered to provide monotonicity and keeping it within an
 | |
|  * expected window.
 | |
|  *
 | |
|  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
 | |
|  * that is otherwise invisible (TSC gets stopped).
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/sched/clock.h>
 | |
| #include "sched.h"
 | |
| 
 | |
| /*
 | |
|  * Scheduler clock - returns current time in nanosec units.
 | |
|  * This is default implementation.
 | |
|  * Architectures and sub-architectures can override this.
 | |
|  */
 | |
| notrace unsigned long long __weak sched_clock(void)
 | |
| {
 | |
| 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
 | |
| 					* (NSEC_PER_SEC / HZ);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_clock);
 | |
| 
 | |
| static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
 | |
| 
 | |
| #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 | |
| /*
 | |
|  * We must start with !__sched_clock_stable because the unstable -> stable
 | |
|  * transition is accurate, while the stable -> unstable transition is not.
 | |
|  *
 | |
|  * Similarly we start with __sched_clock_stable_early, thereby assuming we
 | |
|  * will become stable, such that there's only a single 1 -> 0 transition.
 | |
|  */
 | |
| static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
 | |
| static int __sched_clock_stable_early = 1;
 | |
| 
 | |
| /*
 | |
|  * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
 | |
|  */
 | |
| __read_mostly u64 __sched_clock_offset;
 | |
| static __read_mostly u64 __gtod_offset;
 | |
| 
 | |
| struct sched_clock_data {
 | |
| 	u64			tick_raw;
 | |
| 	u64			tick_gtod;
 | |
| 	u64			clock;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
 | |
| 
 | |
| static __always_inline struct sched_clock_data *this_scd(void)
 | |
| {
 | |
| 	return this_cpu_ptr(&sched_clock_data);
 | |
| }
 | |
| 
 | |
| notrace static inline struct sched_clock_data *cpu_sdc(int cpu)
 | |
| {
 | |
| 	return &per_cpu(sched_clock_data, cpu);
 | |
| }
 | |
| 
 | |
| notrace int sched_clock_stable(void)
 | |
| {
 | |
| 	return static_branch_likely(&__sched_clock_stable);
 | |
| }
 | |
| 
 | |
| notrace static void __scd_stamp(struct sched_clock_data *scd)
 | |
| {
 | |
| 	scd->tick_gtod = ktime_get_ns();
 | |
| 	scd->tick_raw = sched_clock();
 | |
| }
 | |
| 
 | |
| notrace static void __set_sched_clock_stable(void)
 | |
| {
 | |
| 	struct sched_clock_data *scd;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we're still unstable and the tick is already running, we have
 | |
| 	 * to disable IRQs in order to get a consistent scd->tick* reading.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	scd = this_scd();
 | |
| 	/*
 | |
| 	 * Attempt to make the (initial) unstable->stable transition continuous.
 | |
| 	 */
 | |
| 	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
 | |
| 			scd->tick_gtod, __gtod_offset,
 | |
| 			scd->tick_raw,  __sched_clock_offset);
 | |
| 
 | |
| 	static_branch_enable(&__sched_clock_stable);
 | |
| 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we ever get here, we're screwed, because we found out -- typically after
 | |
|  * the fact -- that TSC wasn't good. This means all our clocksources (including
 | |
|  * ktime) could have reported wrong values.
 | |
|  *
 | |
|  * What we do here is an attempt to fix up and continue sort of where we left
 | |
|  * off in a coherent manner.
 | |
|  *
 | |
|  * The only way to fully avoid random clock jumps is to boot with:
 | |
|  * "tsc=unstable".
 | |
|  */
 | |
| notrace static void __sched_clock_work(struct work_struct *work)
 | |
| {
 | |
| 	struct sched_clock_data *scd;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* take a current timestamp and set 'now' */
 | |
| 	preempt_disable();
 | |
| 	scd = this_scd();
 | |
| 	__scd_stamp(scd);
 | |
| 	scd->clock = scd->tick_gtod + __gtod_offset;
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	/* clone to all CPUs */
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		per_cpu(sched_clock_data, cpu) = *scd;
 | |
| 
 | |
| 	printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
 | |
| 	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
 | |
| 			scd->tick_gtod, __gtod_offset,
 | |
| 			scd->tick_raw,  __sched_clock_offset);
 | |
| 
 | |
| 	static_branch_disable(&__sched_clock_stable);
 | |
| }
 | |
| 
 | |
| static DECLARE_WORK(sched_clock_work, __sched_clock_work);
 | |
| 
 | |
| notrace static void __clear_sched_clock_stable(void)
 | |
| {
 | |
| 	if (!sched_clock_stable())
 | |
| 		return;
 | |
| 
 | |
| 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
 | |
| 	schedule_work(&sched_clock_work);
 | |
| }
 | |
| 
 | |
| notrace void clear_sched_clock_stable(void)
 | |
| {
 | |
| 	__sched_clock_stable_early = 0;
 | |
| 
 | |
| 	smp_mb(); /* matches sched_clock_init_late() */
 | |
| 
 | |
| 	if (static_key_count(&sched_clock_running.key) == 2)
 | |
| 		__clear_sched_clock_stable();
 | |
| }
 | |
| 
 | |
| notrace static void __sched_clock_gtod_offset(void)
 | |
| {
 | |
| 	struct sched_clock_data *scd = this_scd();
 | |
| 
 | |
| 	__scd_stamp(scd);
 | |
| 	__gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
 | |
| }
 | |
| 
 | |
| void __init sched_clock_init(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Set __gtod_offset such that once we mark sched_clock_running,
 | |
| 	 * sched_clock_tick() continues where sched_clock() left off.
 | |
| 	 *
 | |
| 	 * Even if TSC is buggered, we're still UP at this point so it
 | |
| 	 * can't really be out of sync.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	__sched_clock_gtod_offset();
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	static_branch_inc(&sched_clock_running);
 | |
| }
 | |
| /*
 | |
|  * We run this as late_initcall() such that it runs after all built-in drivers,
 | |
|  * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
 | |
|  */
 | |
| static int __init sched_clock_init_late(void)
 | |
| {
 | |
| 	static_branch_inc(&sched_clock_running);
 | |
| 	/*
 | |
| 	 * Ensure that it is impossible to not do a static_key update.
 | |
| 	 *
 | |
| 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
 | |
| 	 * and do the update, or we must see their __sched_clock_stable_early
 | |
| 	 * and do the update, or both.
 | |
| 	 */
 | |
| 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
 | |
| 
 | |
| 	if (__sched_clock_stable_early)
 | |
| 		__set_sched_clock_stable();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(sched_clock_init_late);
 | |
| 
 | |
| /*
 | |
|  * min, max except they take wrapping into account
 | |
|  */
 | |
| 
 | |
| static __always_inline u64 wrap_min(u64 x, u64 y)
 | |
| {
 | |
| 	return (s64)(x - y) < 0 ? x : y;
 | |
| }
 | |
| 
 | |
| static __always_inline u64 wrap_max(u64 x, u64 y)
 | |
| {
 | |
| 	return (s64)(x - y) > 0 ? x : y;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update the percpu scd from the raw @now value
 | |
|  *
 | |
|  *  - filter out backward motion
 | |
|  *  - use the GTOD tick value to create a window to filter crazy TSC values
 | |
|  */
 | |
| static __always_inline u64 sched_clock_local(struct sched_clock_data *scd)
 | |
| {
 | |
| 	u64 now, clock, old_clock, min_clock, max_clock, gtod;
 | |
| 	s64 delta;
 | |
| 
 | |
| again:
 | |
| 	now = sched_clock_noinstr();
 | |
| 	delta = now - scd->tick_raw;
 | |
| 	if (unlikely(delta < 0))
 | |
| 		delta = 0;
 | |
| 
 | |
| 	old_clock = scd->clock;
 | |
| 
 | |
| 	/*
 | |
| 	 * scd->clock = clamp(scd->tick_gtod + delta,
 | |
| 	 *		      max(scd->tick_gtod, scd->clock),
 | |
| 	 *		      scd->tick_gtod + TICK_NSEC);
 | |
| 	 */
 | |
| 
 | |
| 	gtod = scd->tick_gtod + __gtod_offset;
 | |
| 	clock = gtod + delta;
 | |
| 	min_clock = wrap_max(gtod, old_clock);
 | |
| 	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
 | |
| 
 | |
| 	clock = wrap_max(clock, min_clock);
 | |
| 	clock = wrap_min(clock, max_clock);
 | |
| 
 | |
| 	if (!raw_try_cmpxchg64(&scd->clock, &old_clock, clock))
 | |
| 		goto again;
 | |
| 
 | |
| 	return clock;
 | |
| }
 | |
| 
 | |
| noinstr u64 local_clock_noinstr(void)
 | |
| {
 | |
| 	u64 clock;
 | |
| 
 | |
| 	if (static_branch_likely(&__sched_clock_stable))
 | |
| 		return sched_clock_noinstr() + __sched_clock_offset;
 | |
| 
 | |
| 	if (!static_branch_likely(&sched_clock_running))
 | |
| 		return sched_clock_noinstr();
 | |
| 
 | |
| 	clock = sched_clock_local(this_scd());
 | |
| 
 | |
| 	return clock;
 | |
| }
 | |
| 
 | |
| u64 local_clock(void)
 | |
| {
 | |
| 	u64 now;
 | |
| 	preempt_disable_notrace();
 | |
| 	now = local_clock_noinstr();
 | |
| 	preempt_enable_notrace();
 | |
| 	return now;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(local_clock);
 | |
| 
 | |
| static notrace u64 sched_clock_remote(struct sched_clock_data *scd)
 | |
| {
 | |
| 	struct sched_clock_data *my_scd = this_scd();
 | |
| 	u64 this_clock, remote_clock;
 | |
| 	u64 *ptr, old_val, val;
 | |
| 
 | |
| #if BITS_PER_LONG != 64
 | |
| again:
 | |
| 	/*
 | |
| 	 * Careful here: The local and the remote clock values need to
 | |
| 	 * be read out atomic as we need to compare the values and
 | |
| 	 * then update either the local or the remote side. So the
 | |
| 	 * cmpxchg64 below only protects one readout.
 | |
| 	 *
 | |
| 	 * We must reread via sched_clock_local() in the retry case on
 | |
| 	 * 32-bit kernels as an NMI could use sched_clock_local() via the
 | |
| 	 * tracer and hit between the readout of
 | |
| 	 * the low 32-bit and the high 32-bit portion.
 | |
| 	 */
 | |
| 	this_clock = sched_clock_local(my_scd);
 | |
| 	/*
 | |
| 	 * We must enforce atomic readout on 32-bit, otherwise the
 | |
| 	 * update on the remote CPU can hit in between the readout of
 | |
| 	 * the low 32-bit and the high 32-bit portion.
 | |
| 	 */
 | |
| 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
 | |
| #else
 | |
| 	/*
 | |
| 	 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
 | |
| 	 * update, so we can avoid the above 32-bit dance.
 | |
| 	 */
 | |
| 	sched_clock_local(my_scd);
 | |
| again:
 | |
| 	this_clock = my_scd->clock;
 | |
| 	remote_clock = scd->clock;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the opportunity that we have both locks
 | |
| 	 * taken to couple the two clocks: we take the
 | |
| 	 * larger time as the latest time for both
 | |
| 	 * runqueues. (this creates monotonic movement)
 | |
| 	 */
 | |
| 	if (likely((s64)(remote_clock - this_clock) < 0)) {
 | |
| 		ptr = &scd->clock;
 | |
| 		old_val = remote_clock;
 | |
| 		val = this_clock;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Should be rare, but possible:
 | |
| 		 */
 | |
| 		ptr = &my_scd->clock;
 | |
| 		old_val = this_clock;
 | |
| 		val = remote_clock;
 | |
| 	}
 | |
| 
 | |
| 	if (!try_cmpxchg64(ptr, &old_val, val))
 | |
| 		goto again;
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to cpu_clock(), but requires local IRQs to be disabled.
 | |
|  *
 | |
|  * See cpu_clock().
 | |
|  */
 | |
| notrace u64 sched_clock_cpu(int cpu)
 | |
| {
 | |
| 	struct sched_clock_data *scd;
 | |
| 	u64 clock;
 | |
| 
 | |
| 	if (sched_clock_stable())
 | |
| 		return sched_clock() + __sched_clock_offset;
 | |
| 
 | |
| 	if (!static_branch_likely(&sched_clock_running))
 | |
| 		return sched_clock();
 | |
| 
 | |
| 	preempt_disable_notrace();
 | |
| 	scd = cpu_sdc(cpu);
 | |
| 
 | |
| 	if (cpu != smp_processor_id())
 | |
| 		clock = sched_clock_remote(scd);
 | |
| 	else
 | |
| 		clock = sched_clock_local(scd);
 | |
| 	preempt_enable_notrace();
 | |
| 
 | |
| 	return clock;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_clock_cpu);
 | |
| 
 | |
| notrace void sched_clock_tick(void)
 | |
| {
 | |
| 	struct sched_clock_data *scd;
 | |
| 
 | |
| 	if (sched_clock_stable())
 | |
| 		return;
 | |
| 
 | |
| 	if (!static_branch_likely(&sched_clock_running))
 | |
| 		return;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	scd = this_scd();
 | |
| 	__scd_stamp(scd);
 | |
| 	sched_clock_local(scd);
 | |
| }
 | |
| 
 | |
| notrace void sched_clock_tick_stable(void)
 | |
| {
 | |
| 	if (!sched_clock_stable())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Called under watchdog_lock.
 | |
| 	 *
 | |
| 	 * The watchdog just found this TSC to (still) be stable, so now is a
 | |
| 	 * good moment to update our __gtod_offset. Because once we find the
 | |
| 	 * TSC to be unstable, any computation will be computing crap.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	__sched_clock_gtod_offset();
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are going deep-idle (IRQs are disabled):
 | |
|  */
 | |
| notrace void sched_clock_idle_sleep_event(void)
 | |
| {
 | |
| 	sched_clock_cpu(smp_processor_id());
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
 | |
| 
 | |
| /*
 | |
|  * We just idled; resync with ktime.
 | |
|  */
 | |
| notrace void sched_clock_idle_wakeup_event(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (sched_clock_stable())
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(timekeeping_suspended))
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	sched_clock_tick();
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
 | |
| 
 | |
| #else /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK: */
 | |
| 
 | |
| void __init sched_clock_init(void)
 | |
| {
 | |
| 	static_branch_inc(&sched_clock_running);
 | |
| 	local_irq_disable();
 | |
| 	generic_sched_clock_init();
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| notrace u64 sched_clock_cpu(int cpu)
 | |
| {
 | |
| 	if (!static_branch_likely(&sched_clock_running))
 | |
| 		return 0;
 | |
| 
 | |
| 	return sched_clock();
 | |
| }
 | |
| 
 | |
| #endif /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 | |
| 
 | |
| /*
 | |
|  * Running clock - returns the time that has elapsed while a guest has been
 | |
|  * running.
 | |
|  * On a guest this value should be local_clock minus the time the guest was
 | |
|  * suspended by the hypervisor (for any reason).
 | |
|  * On bare metal this function should return the same as local_clock.
 | |
|  * Architectures and sub-architectures can override this.
 | |
|  */
 | |
| notrace u64 __weak running_clock(void)
 | |
| {
 | |
| 	return local_clock();
 | |
| }
 |