mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Introduce a new trait `RawDeviceIdIndex`, which extends `RawDeviceId` to provide support for device ID types that include an index or context field (e.g., `driver_data`). This separates the concerns of layout compatibility and index-based data embedding, and allows `RawDeviceId` to be implemented for types that do not contain a `driver_data` field. Several such structures are defined in include/linux/mod_devicetable.h. Refactor `IdArray::new()` into a generic `build()` function, which takes an optional offset. Based on the presence of `RawDeviceIdIndex`, index writing is conditionally enabled. A new `new_without_index()` constructor is also provided for use cases where no index should be written. This refactoring is a preparation for enabling the PHY abstractions to use the RawDeviceId trait. The changes to acpi.rs and driver.rs were made by Danilo. Reviewed-by: Trevor Gross <tmgross@umich.edu> Signed-off-by: FUJITA Tomonori <fujita.tomonori@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Link: https://lore.kernel.org/r/20250711040947.1252162-2-fujita.tomonori@gmail.com Signed-off-by: Danilo Krummrich <dakr@kernel.org>
		
			
				
	
	
		
			357 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			357 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
 | 
						|
//! Abstractions for the auxiliary bus.
 | 
						|
//!
 | 
						|
//! C header: [`include/linux/auxiliary_bus.h`](srctree/include/linux/auxiliary_bus.h)
 | 
						|
 | 
						|
use crate::{
 | 
						|
    bindings, container_of, device,
 | 
						|
    device_id::{RawDeviceId, RawDeviceIdIndex},
 | 
						|
    driver,
 | 
						|
    error::{from_result, to_result, Result},
 | 
						|
    prelude::*,
 | 
						|
    types::Opaque,
 | 
						|
    ThisModule,
 | 
						|
};
 | 
						|
use core::{
 | 
						|
    marker::PhantomData,
 | 
						|
    ptr::{addr_of_mut, NonNull},
 | 
						|
};
 | 
						|
 | 
						|
/// An adapter for the registration of auxiliary drivers.
 | 
						|
pub struct Adapter<T: Driver>(T);
 | 
						|
 | 
						|
// SAFETY: A call to `unregister` for a given instance of `RegType` is guaranteed to be valid if
 | 
						|
// a preceding call to `register` has been successful.
 | 
						|
unsafe impl<T: Driver + 'static> driver::RegistrationOps for Adapter<T> {
 | 
						|
    type RegType = bindings::auxiliary_driver;
 | 
						|
 | 
						|
    unsafe fn register(
 | 
						|
        adrv: &Opaque<Self::RegType>,
 | 
						|
        name: &'static CStr,
 | 
						|
        module: &'static ThisModule,
 | 
						|
    ) -> Result {
 | 
						|
        // SAFETY: It's safe to set the fields of `struct auxiliary_driver` on initialization.
 | 
						|
        unsafe {
 | 
						|
            (*adrv.get()).name = name.as_char_ptr();
 | 
						|
            (*adrv.get()).probe = Some(Self::probe_callback);
 | 
						|
            (*adrv.get()).remove = Some(Self::remove_callback);
 | 
						|
            (*adrv.get()).id_table = T::ID_TABLE.as_ptr();
 | 
						|
        }
 | 
						|
 | 
						|
        // SAFETY: `adrv` is guaranteed to be a valid `RegType`.
 | 
						|
        to_result(unsafe {
 | 
						|
            bindings::__auxiliary_driver_register(adrv.get(), module.0, name.as_char_ptr())
 | 
						|
        })
 | 
						|
    }
 | 
						|
 | 
						|
    unsafe fn unregister(adrv: &Opaque<Self::RegType>) {
 | 
						|
        // SAFETY: `adrv` is guaranteed to be a valid `RegType`.
 | 
						|
        unsafe { bindings::auxiliary_driver_unregister(adrv.get()) }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: Driver + 'static> Adapter<T> {
 | 
						|
    extern "C" fn probe_callback(
 | 
						|
        adev: *mut bindings::auxiliary_device,
 | 
						|
        id: *const bindings::auxiliary_device_id,
 | 
						|
    ) -> kernel::ffi::c_int {
 | 
						|
        // SAFETY: The auxiliary bus only ever calls the probe callback with a valid pointer to a
 | 
						|
        // `struct auxiliary_device`.
 | 
						|
        //
 | 
						|
        // INVARIANT: `adev` is valid for the duration of `probe_callback()`.
 | 
						|
        let adev = unsafe { &*adev.cast::<Device<device::CoreInternal>>() };
 | 
						|
 | 
						|
        // SAFETY: `DeviceId` is a `#[repr(transparent)`] wrapper of `struct auxiliary_device_id`
 | 
						|
        // and does not add additional invariants, so it's safe to transmute.
 | 
						|
        let id = unsafe { &*id.cast::<DeviceId>() };
 | 
						|
        let info = T::ID_TABLE.info(id.index());
 | 
						|
 | 
						|
        from_result(|| {
 | 
						|
            let data = T::probe(adev, info)?;
 | 
						|
 | 
						|
            adev.as_ref().set_drvdata(data);
 | 
						|
            Ok(0)
 | 
						|
        })
 | 
						|
    }
 | 
						|
 | 
						|
    extern "C" fn remove_callback(adev: *mut bindings::auxiliary_device) {
 | 
						|
        // SAFETY: The auxiliary bus only ever calls the probe callback with a valid pointer to a
 | 
						|
        // `struct auxiliary_device`.
 | 
						|
        //
 | 
						|
        // INVARIANT: `adev` is valid for the duration of `probe_callback()`.
 | 
						|
        let adev = unsafe { &*adev.cast::<Device<device::CoreInternal>>() };
 | 
						|
 | 
						|
        // SAFETY: `remove_callback` is only ever called after a successful call to
 | 
						|
        // `probe_callback`, hence it's guaranteed that `Device::set_drvdata()` has been called
 | 
						|
        // and stored a `Pin<KBox<T>>`.
 | 
						|
        drop(unsafe { adev.as_ref().drvdata_obtain::<Pin<KBox<T>>>() });
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// Declares a kernel module that exposes a single auxiliary driver.
 | 
						|
#[macro_export]
 | 
						|
macro_rules! module_auxiliary_driver {
 | 
						|
    ($($f:tt)*) => {
 | 
						|
        $crate::module_driver!(<T>, $crate::auxiliary::Adapter<T>, { $($f)* });
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
/// Abstraction for `bindings::auxiliary_device_id`.
 | 
						|
#[repr(transparent)]
 | 
						|
#[derive(Clone, Copy)]
 | 
						|
pub struct DeviceId(bindings::auxiliary_device_id);
 | 
						|
 | 
						|
impl DeviceId {
 | 
						|
    /// Create a new [`DeviceId`] from name.
 | 
						|
    pub const fn new(modname: &'static CStr, name: &'static CStr) -> Self {
 | 
						|
        let name = name.as_bytes_with_nul();
 | 
						|
        let modname = modname.as_bytes_with_nul();
 | 
						|
 | 
						|
        // TODO: Replace with `bindings::auxiliary_device_id::default()` once stabilized for
 | 
						|
        // `const`.
 | 
						|
        //
 | 
						|
        // SAFETY: FFI type is valid to be zero-initialized.
 | 
						|
        let mut id: bindings::auxiliary_device_id = unsafe { core::mem::zeroed() };
 | 
						|
 | 
						|
        let mut i = 0;
 | 
						|
        while i < modname.len() {
 | 
						|
            id.name[i] = modname[i];
 | 
						|
            i += 1;
 | 
						|
        }
 | 
						|
 | 
						|
        // Reuse the space of the NULL terminator.
 | 
						|
        id.name[i - 1] = b'.';
 | 
						|
 | 
						|
        let mut j = 0;
 | 
						|
        while j < name.len() {
 | 
						|
            id.name[i] = name[j];
 | 
						|
            i += 1;
 | 
						|
            j += 1;
 | 
						|
        }
 | 
						|
 | 
						|
        Self(id)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `auxiliary_device_id` and does not add
 | 
						|
// additional invariants, so it's safe to transmute to `RawType`.
 | 
						|
unsafe impl RawDeviceId for DeviceId {
 | 
						|
    type RawType = bindings::auxiliary_device_id;
 | 
						|
}
 | 
						|
 | 
						|
// SAFETY: `DRIVER_DATA_OFFSET` is the offset to the `driver_data` field.
 | 
						|
unsafe impl RawDeviceIdIndex for DeviceId {
 | 
						|
    const DRIVER_DATA_OFFSET: usize =
 | 
						|
        core::mem::offset_of!(bindings::auxiliary_device_id, driver_data);
 | 
						|
 | 
						|
    fn index(&self) -> usize {
 | 
						|
        self.0.driver_data
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// IdTable type for auxiliary drivers.
 | 
						|
pub type IdTable<T> = &'static dyn kernel::device_id::IdTable<DeviceId, T>;
 | 
						|
 | 
						|
/// Create a auxiliary `IdTable` with its alias for modpost.
 | 
						|
#[macro_export]
 | 
						|
macro_rules! auxiliary_device_table {
 | 
						|
    ($table_name:ident, $module_table_name:ident, $id_info_type: ty, $table_data: expr) => {
 | 
						|
        const $table_name: $crate::device_id::IdArray<
 | 
						|
            $crate::auxiliary::DeviceId,
 | 
						|
            $id_info_type,
 | 
						|
            { $table_data.len() },
 | 
						|
        > = $crate::device_id::IdArray::new($table_data);
 | 
						|
 | 
						|
        $crate::module_device_table!("auxiliary", $module_table_name, $table_name);
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
/// The auxiliary driver trait.
 | 
						|
///
 | 
						|
/// Drivers must implement this trait in order to get an auxiliary driver registered.
 | 
						|
pub trait Driver {
 | 
						|
    /// The type holding information about each device id supported by the driver.
 | 
						|
    ///
 | 
						|
    /// TODO: Use associated_type_defaults once stabilized:
 | 
						|
    ///
 | 
						|
    /// type IdInfo: 'static = ();
 | 
						|
    type IdInfo: 'static;
 | 
						|
 | 
						|
    /// The table of device ids supported by the driver.
 | 
						|
    const ID_TABLE: IdTable<Self::IdInfo>;
 | 
						|
 | 
						|
    /// Auxiliary driver probe.
 | 
						|
    ///
 | 
						|
    /// Called when an auxiliary device is matches a corresponding driver.
 | 
						|
    fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> Result<Pin<KBox<Self>>>;
 | 
						|
}
 | 
						|
 | 
						|
/// The auxiliary device representation.
 | 
						|
///
 | 
						|
/// This structure represents the Rust abstraction for a C `struct auxiliary_device`. The
 | 
						|
/// implementation abstracts the usage of an already existing C `struct auxiliary_device` within
 | 
						|
/// Rust code that we get passed from the C side.
 | 
						|
///
 | 
						|
/// # Invariants
 | 
						|
///
 | 
						|
/// A [`Device`] instance represents a valid `struct auxiliary_device` created by the C portion of
 | 
						|
/// the kernel.
 | 
						|
#[repr(transparent)]
 | 
						|
pub struct Device<Ctx: device::DeviceContext = device::Normal>(
 | 
						|
    Opaque<bindings::auxiliary_device>,
 | 
						|
    PhantomData<Ctx>,
 | 
						|
);
 | 
						|
 | 
						|
impl<Ctx: device::DeviceContext> Device<Ctx> {
 | 
						|
    fn as_raw(&self) -> *mut bindings::auxiliary_device {
 | 
						|
        self.0.get()
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns the auxiliary device' id.
 | 
						|
    pub fn id(&self) -> u32 {
 | 
						|
        // SAFETY: By the type invariant `self.as_raw()` is a valid pointer to a
 | 
						|
        // `struct auxiliary_device`.
 | 
						|
        unsafe { (*self.as_raw()).id }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns a reference to the parent [`device::Device`], if any.
 | 
						|
    pub fn parent(&self) -> Option<&device::Device> {
 | 
						|
        let ptr: *const Self = self;
 | 
						|
        // CAST: `Device<Ctx: DeviceContext>` types are transparent to each other.
 | 
						|
        let ptr: *const Device = ptr.cast();
 | 
						|
        // SAFETY: `ptr` was derived from `&self`.
 | 
						|
        let this = unsafe { &*ptr };
 | 
						|
 | 
						|
        this.as_ref().parent()
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl Device {
 | 
						|
    extern "C" fn release(dev: *mut bindings::device) {
 | 
						|
        // SAFETY: By the type invariant `self.0.as_raw` is a pointer to the `struct device`
 | 
						|
        // embedded in `struct auxiliary_device`.
 | 
						|
        let adev = unsafe { container_of!(dev, bindings::auxiliary_device, dev) };
 | 
						|
 | 
						|
        // SAFETY: `adev` points to the memory that has been allocated in `Registration::new`, via
 | 
						|
        // `KBox::new(Opaque::<bindings::auxiliary_device>::zeroed(), GFP_KERNEL)`.
 | 
						|
        let _ = unsafe { KBox::<Opaque<bindings::auxiliary_device>>::from_raw(adev.cast()) };
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
 | 
						|
// argument.
 | 
						|
kernel::impl_device_context_deref!(unsafe { Device });
 | 
						|
kernel::impl_device_context_into_aref!(Device);
 | 
						|
 | 
						|
// SAFETY: Instances of `Device` are always reference-counted.
 | 
						|
unsafe impl crate::types::AlwaysRefCounted for Device {
 | 
						|
    fn inc_ref(&self) {
 | 
						|
        // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
 | 
						|
        unsafe { bindings::get_device(self.as_ref().as_raw()) };
 | 
						|
    }
 | 
						|
 | 
						|
    unsafe fn dec_ref(obj: NonNull<Self>) {
 | 
						|
        // CAST: `Self` a transparent wrapper of `bindings::auxiliary_device`.
 | 
						|
        let adev: *mut bindings::auxiliary_device = obj.cast().as_ptr();
 | 
						|
 | 
						|
        // SAFETY: By the type invariant of `Self`, `adev` is a pointer to a valid
 | 
						|
        // `struct auxiliary_device`.
 | 
						|
        let dev = unsafe { addr_of_mut!((*adev).dev) };
 | 
						|
 | 
						|
        // SAFETY: The safety requirements guarantee that the refcount is non-zero.
 | 
						|
        unsafe { bindings::put_device(dev) }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
 | 
						|
    fn as_ref(&self) -> &device::Device<Ctx> {
 | 
						|
        // SAFETY: By the type invariant of `Self`, `self.as_raw()` is a pointer to a valid
 | 
						|
        // `struct auxiliary_device`.
 | 
						|
        let dev = unsafe { addr_of_mut!((*self.as_raw()).dev) };
 | 
						|
 | 
						|
        // SAFETY: `dev` points to a valid `struct device`.
 | 
						|
        unsafe { device::Device::from_raw(dev) }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// SAFETY: A `Device` is always reference-counted and can be released from any thread.
 | 
						|
unsafe impl Send for Device {}
 | 
						|
 | 
						|
// SAFETY: `Device` can be shared among threads because all methods of `Device`
 | 
						|
// (i.e. `Device<Normal>) are thread safe.
 | 
						|
unsafe impl Sync for Device {}
 | 
						|
 | 
						|
/// The registration of an auxiliary device.
 | 
						|
///
 | 
						|
/// This type represents the registration of a [`struct auxiliary_device`]. When an instance of this
 | 
						|
/// type is dropped, its respective auxiliary device will be unregistered from the system.
 | 
						|
///
 | 
						|
/// # Invariants
 | 
						|
///
 | 
						|
/// `self.0` always holds a valid pointer to an initialized and registered
 | 
						|
/// [`struct auxiliary_device`].
 | 
						|
pub struct Registration(NonNull<bindings::auxiliary_device>);
 | 
						|
 | 
						|
impl Registration {
 | 
						|
    /// Create and register a new auxiliary device.
 | 
						|
    pub fn new(parent: &device::Device, name: &CStr, id: u32, modname: &CStr) -> Result<Self> {
 | 
						|
        let boxed = KBox::new(Opaque::<bindings::auxiliary_device>::zeroed(), GFP_KERNEL)?;
 | 
						|
        let adev = boxed.get();
 | 
						|
 | 
						|
        // SAFETY: It's safe to set the fields of `struct auxiliary_device` on initialization.
 | 
						|
        unsafe {
 | 
						|
            (*adev).dev.parent = parent.as_raw();
 | 
						|
            (*adev).dev.release = Some(Device::release);
 | 
						|
            (*adev).name = name.as_char_ptr();
 | 
						|
            (*adev).id = id;
 | 
						|
        }
 | 
						|
 | 
						|
        // SAFETY: `adev` is guaranteed to be a valid pointer to a `struct auxiliary_device`,
 | 
						|
        // which has not been initialized yet.
 | 
						|
        unsafe { bindings::auxiliary_device_init(adev) };
 | 
						|
 | 
						|
        // Now that `adev` is initialized, leak the `Box`; the corresponding memory will be freed
 | 
						|
        // by `Device::release` when the last reference to the `struct auxiliary_device` is dropped.
 | 
						|
        let _ = KBox::into_raw(boxed);
 | 
						|
 | 
						|
        // SAFETY:
 | 
						|
        // - `adev` is guaranteed to be a valid pointer to a `struct auxiliary_device`, which has
 | 
						|
        //   been initialialized,
 | 
						|
        // - `modname.as_char_ptr()` is a NULL terminated string.
 | 
						|
        let ret = unsafe { bindings::__auxiliary_device_add(adev, modname.as_char_ptr()) };
 | 
						|
        if ret != 0 {
 | 
						|
            // SAFETY: `adev` is guaranteed to be a valid pointer to a `struct auxiliary_device`,
 | 
						|
            // which has been initialialized.
 | 
						|
            unsafe { bindings::auxiliary_device_uninit(adev) };
 | 
						|
 | 
						|
            return Err(Error::from_errno(ret));
 | 
						|
        }
 | 
						|
 | 
						|
        // SAFETY: `adev` is guaranteed to be non-null, since the `KBox` was allocated successfully.
 | 
						|
        //
 | 
						|
        // INVARIANT: The device will remain registered until `auxiliary_device_delete()` is called,
 | 
						|
        // which happens in `Self::drop()`.
 | 
						|
        Ok(Self(unsafe { NonNull::new_unchecked(adev) }))
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl Drop for Registration {
 | 
						|
    fn drop(&mut self) {
 | 
						|
        // SAFETY: By the type invariant of `Self`, `self.0.as_ptr()` is a valid registered
 | 
						|
        // `struct auxiliary_device`.
 | 
						|
        unsafe { bindings::auxiliary_device_delete(self.0.as_ptr()) };
 | 
						|
 | 
						|
        // This drops the reference we acquired through `auxiliary_device_init()`.
 | 
						|
        //
 | 
						|
        // SAFETY: By the type invariant of `Self`, `self.0.as_ptr()` is a valid registered
 | 
						|
        // `struct auxiliary_device`.
 | 
						|
        unsafe { bindings::auxiliary_device_uninit(self.0.as_ptr()) };
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// SAFETY: A `Registration` of a `struct auxiliary_device` can be released from any thread.
 | 
						|
unsafe impl Send for Registration {}
 | 
						|
 | 
						|
// SAFETY: `Registration` does not expose any methods or fields that need synchronization.
 | 
						|
unsafe impl Sync for Registration {}
 |