mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 f77183dc1f
			
		
	
	
		f77183dc1f
		
	
	
	
	
		
			
			There is only one caller for that helper now, and we're definitely fine to open-code it. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			2828 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2828 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2012 Fusion-io  All rights reserved.
 | |
|  * Copyright (C) 2012 Intel Corp. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/raid/pq.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/list_sort.h>
 | |
| #include <linux/raid/xor.h>
 | |
| #include <linux/mm.h>
 | |
| #include "misc.h"
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "volumes.h"
 | |
| #include "raid56.h"
 | |
| #include "async-thread.h"
 | |
| 
 | |
| /* set when additional merges to this rbio are not allowed */
 | |
| #define RBIO_RMW_LOCKED_BIT	1
 | |
| 
 | |
| /*
 | |
|  * set when this rbio is sitting in the hash, but it is just a cache
 | |
|  * of past RMW
 | |
|  */
 | |
| #define RBIO_CACHE_BIT		2
 | |
| 
 | |
| /*
 | |
|  * set when it is safe to trust the stripe_pages for caching
 | |
|  */
 | |
| #define RBIO_CACHE_READY_BIT	3
 | |
| 
 | |
| #define RBIO_CACHE_SIZE 1024
 | |
| 
 | |
| #define BTRFS_STRIPE_HASH_TABLE_BITS				11
 | |
| 
 | |
| /* Used by the raid56 code to lock stripes for read/modify/write */
 | |
| struct btrfs_stripe_hash {
 | |
| 	struct list_head hash_list;
 | |
| 	spinlock_t lock;
 | |
| };
 | |
| 
 | |
| /* Used by the raid56 code to lock stripes for read/modify/write */
 | |
| struct btrfs_stripe_hash_table {
 | |
| 	struct list_head stripe_cache;
 | |
| 	spinlock_t cache_lock;
 | |
| 	int cache_size;
 | |
| 	struct btrfs_stripe_hash table[];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * A bvec like structure to present a sector inside a page.
 | |
|  *
 | |
|  * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 | |
|  */
 | |
| struct sector_ptr {
 | |
| 	struct page *page;
 | |
| 	unsigned int pgoff:24;
 | |
| 	unsigned int uptodate:8;
 | |
| };
 | |
| 
 | |
| enum btrfs_rbio_ops {
 | |
| 	BTRFS_RBIO_WRITE,
 | |
| 	BTRFS_RBIO_READ_REBUILD,
 | |
| 	BTRFS_RBIO_PARITY_SCRUB,
 | |
| 	BTRFS_RBIO_REBUILD_MISSING,
 | |
| };
 | |
| 
 | |
| struct btrfs_raid_bio {
 | |
| 	struct btrfs_io_context *bioc;
 | |
| 
 | |
| 	/* while we're doing rmw on a stripe
 | |
| 	 * we put it into a hash table so we can
 | |
| 	 * lock the stripe and merge more rbios
 | |
| 	 * into it.
 | |
| 	 */
 | |
| 	struct list_head hash_list;
 | |
| 
 | |
| 	/*
 | |
| 	 * LRU list for the stripe cache
 | |
| 	 */
 | |
| 	struct list_head stripe_cache;
 | |
| 
 | |
| 	/*
 | |
| 	 * for scheduling work in the helper threads
 | |
| 	 */
 | |
| 	struct btrfs_work work;
 | |
| 
 | |
| 	/*
 | |
| 	 * bio list and bio_list_lock are used
 | |
| 	 * to add more bios into the stripe
 | |
| 	 * in hopes of avoiding the full rmw
 | |
| 	 */
 | |
| 	struct bio_list bio_list;
 | |
| 	spinlock_t bio_list_lock;
 | |
| 
 | |
| 	/* also protected by the bio_list_lock, the
 | |
| 	 * plug list is used by the plugging code
 | |
| 	 * to collect partial bios while plugged.  The
 | |
| 	 * stripe locking code also uses it to hand off
 | |
| 	 * the stripe lock to the next pending IO
 | |
| 	 */
 | |
| 	struct list_head plug_list;
 | |
| 
 | |
| 	/*
 | |
| 	 * flags that tell us if it is safe to
 | |
| 	 * merge with this bio
 | |
| 	 */
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * set if we're doing a parity rebuild
 | |
| 	 * for a read from higher up, which is handled
 | |
| 	 * differently from a parity rebuild as part of
 | |
| 	 * rmw
 | |
| 	 */
 | |
| 	enum btrfs_rbio_ops operation;
 | |
| 
 | |
| 	/* Size of each individual stripe on disk */
 | |
| 	u32 stripe_len;
 | |
| 
 | |
| 	/* How many pages there are for the full stripe including P/Q */
 | |
| 	u16 nr_pages;
 | |
| 
 | |
| 	/* How many sectors there are for the full stripe including P/Q */
 | |
| 	u16 nr_sectors;
 | |
| 
 | |
| 	/* Number of data stripes (no p/q) */
 | |
| 	u8 nr_data;
 | |
| 
 | |
| 	/* Numer of all stripes (including P/Q) */
 | |
| 	u8 real_stripes;
 | |
| 
 | |
| 	/* How many pages there are for each stripe */
 | |
| 	u8 stripe_npages;
 | |
| 
 | |
| 	/* How many sectors there are for each stripe */
 | |
| 	u8 stripe_nsectors;
 | |
| 
 | |
| 	/* First bad stripe, -1 means no corruption */
 | |
| 	s8 faila;
 | |
| 
 | |
| 	/* Second bad stripe (for RAID6 use) */
 | |
| 	s8 failb;
 | |
| 
 | |
| 	/* Stripe number that we're scrubbing  */
 | |
| 	u8 scrubp;
 | |
| 
 | |
| 	/*
 | |
| 	 * size of all the bios in the bio_list.  This
 | |
| 	 * helps us decide if the rbio maps to a full
 | |
| 	 * stripe or not
 | |
| 	 */
 | |
| 	int bio_list_bytes;
 | |
| 
 | |
| 	int generic_bio_cnt;
 | |
| 
 | |
| 	refcount_t refs;
 | |
| 
 | |
| 	atomic_t stripes_pending;
 | |
| 
 | |
| 	atomic_t error;
 | |
| 	/*
 | |
| 	 * these are two arrays of pointers.  We allocate the
 | |
| 	 * rbio big enough to hold them both and setup their
 | |
| 	 * locations when the rbio is allocated
 | |
| 	 */
 | |
| 
 | |
| 	/* pointers to pages that we allocated for
 | |
| 	 * reading/writing stripes directly from the disk (including P/Q)
 | |
| 	 */
 | |
| 	struct page **stripe_pages;
 | |
| 
 | |
| 	/* Pointers to the sectors in the bio_list, for faster lookup */
 | |
| 	struct sector_ptr *bio_sectors;
 | |
| 
 | |
| 	/*
 | |
| 	 * pointers to the pages in the bio_list.  Stored
 | |
| 	 * here for faster lookup
 | |
| 	 */
 | |
| 	struct page **bio_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * For subpage support, we need to map each sector to above
 | |
| 	 * stripe_pages.
 | |
| 	 */
 | |
| 	struct sector_ptr *stripe_sectors;
 | |
| 
 | |
| 	/* Bitmap to record which horizontal stripe has data */
 | |
| 	unsigned long *dbitmap;
 | |
| 
 | |
| 	/* allocated with real_stripes-many pointers for finish_*() calls */
 | |
| 	void **finish_pointers;
 | |
| 
 | |
| 	/* Allocated with stripe_nsectors-many bits for finish_*() calls */
 | |
| 	unsigned long *finish_pbitmap;
 | |
| };
 | |
| 
 | |
| static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 | |
| static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 | |
| static void rmw_work(struct btrfs_work *work);
 | |
| static void read_rebuild_work(struct btrfs_work *work);
 | |
| static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 | |
| static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 | |
| static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 | |
| static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 | |
| static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 | |
| 
 | |
| static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 | |
| 					 int need_check);
 | |
| static void scrub_parity_work(struct btrfs_work *work);
 | |
| 
 | |
| static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
 | |
| {
 | |
| 	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
 | |
| 	btrfs_queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the stripe hash table is used for locking, and to collect
 | |
|  * bios in hopes of making a full stripe
 | |
|  */
 | |
| int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	struct btrfs_stripe_hash_table *x;
 | |
| 	struct btrfs_stripe_hash *cur;
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 | |
| 	int i;
 | |
| 
 | |
| 	if (info->stripe_hash_table)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The table is large, starting with order 4 and can go as high as
 | |
| 	 * order 7 in case lock debugging is turned on.
 | |
| 	 *
 | |
| 	 * Try harder to allocate and fallback to vmalloc to lower the chance
 | |
| 	 * of a failing mount.
 | |
| 	 */
 | |
| 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 | |
| 	if (!table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_init(&table->cache_lock);
 | |
| 	INIT_LIST_HEAD(&table->stripe_cache);
 | |
| 
 | |
| 	h = table->table;
 | |
| 
 | |
| 	for (i = 0; i < num_entries; i++) {
 | |
| 		cur = h + i;
 | |
| 		INIT_LIST_HEAD(&cur->hash_list);
 | |
| 		spin_lock_init(&cur->lock);
 | |
| 	}
 | |
| 
 | |
| 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 | |
| 	kvfree(x);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * caching an rbio means to copy anything from the
 | |
|  * bio_pages array into the stripe_pages array.  We
 | |
|  * use the page uptodate bit in the stripe cache array
 | |
|  * to indicate if it has valid data
 | |
|  *
 | |
|  * once the caching is done, we set the cache ready
 | |
|  * bit.
 | |
|  */
 | |
| static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = alloc_rbio_pages(rbio);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_pages; i++) {
 | |
| 		if (!rbio->bio_pages[i])
 | |
| 			continue;
 | |
| 
 | |
| 		copy_highpage(rbio->stripe_pages[i], rbio->bio_pages[i]);
 | |
| 		SetPageUptodate(rbio->stripe_pages[i]);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This work is duplicated with the above loop, will be removed when
 | |
| 	 * the switch is done.
 | |
| 	 */
 | |
| 	for (i = 0; i < rbio->nr_sectors; i++) {
 | |
| 		/* Some range not covered by bio (partial write), skip it */
 | |
| 		if (!rbio->bio_sectors[i].page)
 | |
| 			continue;
 | |
| 
 | |
| 		ASSERT(rbio->stripe_sectors[i].page);
 | |
| 		memcpy_page(rbio->stripe_sectors[i].page,
 | |
| 			    rbio->stripe_sectors[i].pgoff,
 | |
| 			    rbio->bio_sectors[i].page,
 | |
| 			    rbio->bio_sectors[i].pgoff,
 | |
| 			    rbio->bioc->fs_info->sectorsize);
 | |
| 		rbio->stripe_sectors[i].uptodate = 1;
 | |
| 	}
 | |
| 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we hash on the first logical address of the stripe
 | |
|  */
 | |
| static int rbio_bucket(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	u64 num = rbio->bioc->raid_map[0];
 | |
| 
 | |
| 	/*
 | |
| 	 * we shift down quite a bit.  We're using byte
 | |
| 	 * addressing, and most of the lower bits are zeros.
 | |
| 	 * This tends to upset hash_64, and it consistently
 | |
| 	 * returns just one or two different values.
 | |
| 	 *
 | |
| 	 * shifting off the lower bits fixes things.
 | |
| 	 */
 | |
| 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the stripe_sectors[] array to use correct page and pgoff
 | |
|  *
 | |
|  * Should be called every time any page pointer in stripes_pages[] got modified.
 | |
|  */
 | |
| static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	u32 offset;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
 | |
| 		int page_index = offset >> PAGE_SHIFT;
 | |
| 
 | |
| 		ASSERT(page_index < rbio->nr_pages);
 | |
| 		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
 | |
| 		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * stealing an rbio means taking all the uptodate pages from the stripe
 | |
|  * array in the source rbio and putting them into the destination rbio
 | |
|  */
 | |
| static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 | |
| {
 | |
| 	int i;
 | |
| 	struct page *s;
 | |
| 	struct page *d;
 | |
| 
 | |
| 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < dest->nr_pages; i++) {
 | |
| 		s = src->stripe_pages[i];
 | |
| 		if (!s || !PageUptodate(s)) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		d = dest->stripe_pages[i];
 | |
| 		if (d)
 | |
| 			__free_page(d);
 | |
| 
 | |
| 		dest->stripe_pages[i] = s;
 | |
| 		src->stripe_pages[i] = NULL;
 | |
| 	}
 | |
| 	index_stripe_sectors(dest);
 | |
| 	index_stripe_sectors(src);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * merging means we take the bio_list from the victim and
 | |
|  * splice it into the destination.  The victim should
 | |
|  * be discarded afterwards.
 | |
|  *
 | |
|  * must be called with dest->rbio_list_lock held
 | |
|  */
 | |
| static void merge_rbio(struct btrfs_raid_bio *dest,
 | |
| 		       struct btrfs_raid_bio *victim)
 | |
| {
 | |
| 	bio_list_merge(&dest->bio_list, &victim->bio_list);
 | |
| 	dest->bio_list_bytes += victim->bio_list_bytes;
 | |
| 	dest->generic_bio_cnt += victim->generic_bio_cnt;
 | |
| 	bio_list_init(&victim->bio_list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * used to prune items that are in the cache.  The caller
 | |
|  * must hold the hash table lock.
 | |
|  */
 | |
| static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bucket = rbio_bucket(rbio);
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	int freeit = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * check the bit again under the hash table lock.
 | |
| 	 */
 | |
| 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 | |
| 		return;
 | |
| 
 | |
| 	table = rbio->bioc->fs_info->stripe_hash_table;
 | |
| 	h = table->table + bucket;
 | |
| 
 | |
| 	/* hold the lock for the bucket because we may be
 | |
| 	 * removing it from the hash table
 | |
| 	 */
 | |
| 	spin_lock(&h->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * hold the lock for the bio list because we need
 | |
| 	 * to make sure the bio list is empty
 | |
| 	 */
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 | |
| 		list_del_init(&rbio->stripe_cache);
 | |
| 		table->cache_size -= 1;
 | |
| 		freeit = 1;
 | |
| 
 | |
| 		/* if the bio list isn't empty, this rbio is
 | |
| 		 * still involved in an IO.  We take it out
 | |
| 		 * of the cache list, and drop the ref that
 | |
| 		 * was held for the list.
 | |
| 		 *
 | |
| 		 * If the bio_list was empty, we also remove
 | |
| 		 * the rbio from the hash_table, and drop
 | |
| 		 * the corresponding ref
 | |
| 		 */
 | |
| 		if (bio_list_empty(&rbio->bio_list)) {
 | |
| 			if (!list_empty(&rbio->hash_list)) {
 | |
| 				list_del_init(&rbio->hash_list);
 | |
| 				refcount_dec(&rbio->refs);
 | |
| 				BUG_ON(!list_empty(&rbio->plug_list));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 	spin_unlock(&h->lock);
 | |
| 
 | |
| 	if (freeit)
 | |
| 		__free_raid_bio(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prune a given rbio from the cache
 | |
|  */
 | |
| static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 | |
| 		return;
 | |
| 
 | |
| 	table = rbio->bioc->fs_info->stripe_hash_table;
 | |
| 
 | |
| 	spin_lock_irqsave(&table->cache_lock, flags);
 | |
| 	__remove_rbio_from_cache(rbio);
 | |
| 	spin_unlock_irqrestore(&table->cache_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove everything in the cache
 | |
|  */
 | |
| static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	unsigned long flags;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	table = info->stripe_hash_table;
 | |
| 
 | |
| 	spin_lock_irqsave(&table->cache_lock, flags);
 | |
| 	while (!list_empty(&table->stripe_cache)) {
 | |
| 		rbio = list_entry(table->stripe_cache.next,
 | |
| 				  struct btrfs_raid_bio,
 | |
| 				  stripe_cache);
 | |
| 		__remove_rbio_from_cache(rbio);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&table->cache_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove all cached entries and free the hash table
 | |
|  * used by unmount
 | |
|  */
 | |
| void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	if (!info->stripe_hash_table)
 | |
| 		return;
 | |
| 	btrfs_clear_rbio_cache(info);
 | |
| 	kvfree(info->stripe_hash_table);
 | |
| 	info->stripe_hash_table = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * insert an rbio into the stripe cache.  It
 | |
|  * must have already been prepared by calling
 | |
|  * cache_rbio_pages
 | |
|  *
 | |
|  * If this rbio was already cached, it gets
 | |
|  * moved to the front of the lru.
 | |
|  *
 | |
|  * If the size of the rbio cache is too big, we
 | |
|  * prune an item.
 | |
|  */
 | |
| static void cache_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 | |
| 		return;
 | |
| 
 | |
| 	table = rbio->bioc->fs_info->stripe_hash_table;
 | |
| 
 | |
| 	spin_lock_irqsave(&table->cache_lock, flags);
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	/* bump our ref if we were not in the list before */
 | |
| 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 | |
| 		refcount_inc(&rbio->refs);
 | |
| 
 | |
| 	if (!list_empty(&rbio->stripe_cache)){
 | |
| 		list_move(&rbio->stripe_cache, &table->stripe_cache);
 | |
| 	} else {
 | |
| 		list_add(&rbio->stripe_cache, &table->stripe_cache);
 | |
| 		table->cache_size += 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (table->cache_size > RBIO_CACHE_SIZE) {
 | |
| 		struct btrfs_raid_bio *found;
 | |
| 
 | |
| 		found = list_entry(table->stripe_cache.prev,
 | |
| 				  struct btrfs_raid_bio,
 | |
| 				  stripe_cache);
 | |
| 
 | |
| 		if (found != rbio)
 | |
| 			__remove_rbio_from_cache(found);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&table->cache_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to run the xor_blocks api.  It is only
 | |
|  * able to do MAX_XOR_BLOCKS at a time, so we need to
 | |
|  * loop through.
 | |
|  */
 | |
| static void run_xor(void **pages, int src_cnt, ssize_t len)
 | |
| {
 | |
| 	int src_off = 0;
 | |
| 	int xor_src_cnt = 0;
 | |
| 	void *dest = pages[src_cnt];
 | |
| 
 | |
| 	while(src_cnt > 0) {
 | |
| 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 | |
| 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 | |
| 
 | |
| 		src_cnt -= xor_src_cnt;
 | |
| 		src_off += xor_src_cnt;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the bio list inside this rbio covers an entire stripe (no
 | |
|  * rmw required).
 | |
|  */
 | |
| static int rbio_is_full(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long size = rbio->bio_list_bytes;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 | |
| 	if (size != rbio->nr_data * rbio->stripe_len)
 | |
| 		ret = 0;
 | |
| 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 | |
| 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns 1 if it is safe to merge two rbios together.
 | |
|  * The merging is safe if the two rbios correspond to
 | |
|  * the same stripe and if they are both going in the same
 | |
|  * direction (read vs write), and if neither one is
 | |
|  * locked for final IO
 | |
|  *
 | |
|  * The caller is responsible for locking such that
 | |
|  * rmw_locked is safe to test
 | |
|  */
 | |
| static int rbio_can_merge(struct btrfs_raid_bio *last,
 | |
| 			  struct btrfs_raid_bio *cur)
 | |
| {
 | |
| 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 | |
| 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * we can't merge with cached rbios, since the
 | |
| 	 * idea is that when we merge the destination
 | |
| 	 * rbio is going to run our IO for us.  We can
 | |
| 	 * steal from cached rbios though, other functions
 | |
| 	 * handle that.
 | |
| 	 */
 | |
| 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 | |
| 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
 | |
| 		return 0;
 | |
| 
 | |
| 	/* we can't merge with different operations */
 | |
| 	if (last->operation != cur->operation)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We've need read the full stripe from the drive.
 | |
| 	 * check and repair the parity and write the new results.
 | |
| 	 *
 | |
| 	 * We're not allowed to add any new bios to the
 | |
| 	 * bio list here, anyone else that wants to
 | |
| 	 * change this stripe needs to do their own rmw.
 | |
| 	 */
 | |
| 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
 | |
| 		int fa = last->faila;
 | |
| 		int fb = last->failb;
 | |
| 		int cur_fa = cur->faila;
 | |
| 		int cur_fb = cur->failb;
 | |
| 
 | |
| 		if (last->faila >= last->failb) {
 | |
| 			fa = last->failb;
 | |
| 			fb = last->faila;
 | |
| 		}
 | |
| 
 | |
| 		if (cur->faila >= cur->failb) {
 | |
| 			cur_fa = cur->failb;
 | |
| 			cur_fb = cur->faila;
 | |
| 		}
 | |
| 
 | |
| 		if (fa != cur_fa || fb != cur_fb)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
 | |
| 					     unsigned int stripe_nr,
 | |
| 					     unsigned int sector_nr)
 | |
| {
 | |
| 	ASSERT(stripe_nr < rbio->real_stripes);
 | |
| 	ASSERT(sector_nr < rbio->stripe_nsectors);
 | |
| 
 | |
| 	return stripe_nr * rbio->stripe_nsectors + sector_nr;
 | |
| }
 | |
| 
 | |
| /* Return a sector from rbio->stripe_sectors, not from the bio list */
 | |
| static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
 | |
| 					     unsigned int stripe_nr,
 | |
| 					     unsigned int sector_nr)
 | |
| {
 | |
| 	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
 | |
| 							      sector_nr)];
 | |
| }
 | |
| 
 | |
| /* Grab a sector inside P stripe */
 | |
| static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
 | |
| 					      unsigned int sector_nr)
 | |
| {
 | |
| 	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
 | |
| }
 | |
| 
 | |
| /* Grab a sector inside Q stripe, return NULL if not RAID6 */
 | |
| static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
 | |
| 					      unsigned int sector_nr)
 | |
| {
 | |
| 	if (rbio->nr_data + 1 == rbio->real_stripes)
 | |
| 		return NULL;
 | |
| 	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The first stripe in the table for a logical address
 | |
|  * has the lock.  rbios are added in one of three ways:
 | |
|  *
 | |
|  * 1) Nobody has the stripe locked yet.  The rbio is given
 | |
|  * the lock and 0 is returned.  The caller must start the IO
 | |
|  * themselves.
 | |
|  *
 | |
|  * 2) Someone has the stripe locked, but we're able to merge
 | |
|  * with the lock owner.  The rbio is freed and the IO will
 | |
|  * start automatically along with the existing rbio.  1 is returned.
 | |
|  *
 | |
|  * 3) Someone has the stripe locked, but we're not able to merge.
 | |
|  * The rbio is added to the lock owner's plug list, or merged into
 | |
|  * an rbio already on the plug list.  When the lock owner unlocks,
 | |
|  * the next rbio on the list is run and the IO is started automatically.
 | |
|  * 1 is returned
 | |
|  *
 | |
|  * If we return 0, the caller still owns the rbio and must continue with
 | |
|  * IO submission.  If we return 1, the caller must assume the rbio has
 | |
|  * already been freed.
 | |
|  */
 | |
| static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	struct btrfs_raid_bio *cur;
 | |
| 	struct btrfs_raid_bio *pending;
 | |
| 	unsigned long flags;
 | |
| 	struct btrfs_raid_bio *freeit = NULL;
 | |
| 	struct btrfs_raid_bio *cache_drop = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 | |
| 
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	list_for_each_entry(cur, &h->hash_list, hash_list) {
 | |
| 		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&cur->bio_list_lock);
 | |
| 
 | |
| 		/* Can we steal this cached rbio's pages? */
 | |
| 		if (bio_list_empty(&cur->bio_list) &&
 | |
| 		    list_empty(&cur->plug_list) &&
 | |
| 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 | |
| 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 | |
| 			list_del_init(&cur->hash_list);
 | |
| 			refcount_dec(&cur->refs);
 | |
| 
 | |
| 			steal_rbio(cur, rbio);
 | |
| 			cache_drop = cur;
 | |
| 			spin_unlock(&cur->bio_list_lock);
 | |
| 
 | |
| 			goto lockit;
 | |
| 		}
 | |
| 
 | |
| 		/* Can we merge into the lock owner? */
 | |
| 		if (rbio_can_merge(cur, rbio)) {
 | |
| 			merge_rbio(cur, rbio);
 | |
| 			spin_unlock(&cur->bio_list_lock);
 | |
| 			freeit = rbio;
 | |
| 			ret = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * We couldn't merge with the running rbio, see if we can merge
 | |
| 		 * with the pending ones.  We don't have to check for rmw_locked
 | |
| 		 * because there is no way they are inside finish_rmw right now
 | |
| 		 */
 | |
| 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 | |
| 			if (rbio_can_merge(pending, rbio)) {
 | |
| 				merge_rbio(pending, rbio);
 | |
| 				spin_unlock(&cur->bio_list_lock);
 | |
| 				freeit = rbio;
 | |
| 				ret = 1;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * No merging, put us on the tail of the plug list, our rbio
 | |
| 		 * will be started with the currently running rbio unlocks
 | |
| 		 */
 | |
| 		list_add_tail(&rbio->plug_list, &cur->plug_list);
 | |
| 		spin_unlock(&cur->bio_list_lock);
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| lockit:
 | |
| 	refcount_inc(&rbio->refs);
 | |
| 	list_add(&rbio->hash_list, &h->hash_list);
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	if (cache_drop)
 | |
| 		remove_rbio_from_cache(cache_drop);
 | |
| 	if (freeit)
 | |
| 		__free_raid_bio(freeit);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called as rmw or parity rebuild is completed.  If the plug list has more
 | |
|  * rbios waiting for this stripe, the next one on the list will be started
 | |
|  */
 | |
| static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bucket;
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	unsigned long flags;
 | |
| 	int keep_cache = 0;
 | |
| 
 | |
| 	bucket = rbio_bucket(rbio);
 | |
| 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
 | |
| 
 | |
| 	if (list_empty(&rbio->plug_list))
 | |
| 		cache_rbio(rbio);
 | |
| 
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (!list_empty(&rbio->hash_list)) {
 | |
| 		/*
 | |
| 		 * if we're still cached and there is no other IO
 | |
| 		 * to perform, just leave this rbio here for others
 | |
| 		 * to steal from later
 | |
| 		 */
 | |
| 		if (list_empty(&rbio->plug_list) &&
 | |
| 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 | |
| 			keep_cache = 1;
 | |
| 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 | |
| 			BUG_ON(!bio_list_empty(&rbio->bio_list));
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		list_del_init(&rbio->hash_list);
 | |
| 		refcount_dec(&rbio->refs);
 | |
| 
 | |
| 		/*
 | |
| 		 * we use the plug list to hold all the rbios
 | |
| 		 * waiting for the chance to lock this stripe.
 | |
| 		 * hand the lock over to one of them.
 | |
| 		 */
 | |
| 		if (!list_empty(&rbio->plug_list)) {
 | |
| 			struct btrfs_raid_bio *next;
 | |
| 			struct list_head *head = rbio->plug_list.next;
 | |
| 
 | |
| 			next = list_entry(head, struct btrfs_raid_bio,
 | |
| 					  plug_list);
 | |
| 
 | |
| 			list_del_init(&rbio->plug_list);
 | |
| 
 | |
| 			list_add(&next->hash_list, &h->hash_list);
 | |
| 			refcount_inc(&next->refs);
 | |
| 			spin_unlock(&rbio->bio_list_lock);
 | |
| 			spin_unlock_irqrestore(&h->lock, flags);
 | |
| 
 | |
| 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 | |
| 				start_async_work(next, read_rebuild_work);
 | |
| 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 | |
| 				steal_rbio(rbio, next);
 | |
| 				start_async_work(next, read_rebuild_work);
 | |
| 			} else if (next->operation == BTRFS_RBIO_WRITE) {
 | |
| 				steal_rbio(rbio, next);
 | |
| 				start_async_work(next, rmw_work);
 | |
| 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 | |
| 				steal_rbio(rbio, next);
 | |
| 				start_async_work(next, scrub_parity_work);
 | |
| 			}
 | |
| 
 | |
| 			goto done_nolock;
 | |
| 		}
 | |
| 	}
 | |
| done:
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 
 | |
| done_nolock:
 | |
| 	if (!keep_cache)
 | |
| 		remove_rbio_from_cache(rbio);
 | |
| }
 | |
| 
 | |
| static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!refcount_dec_and_test(&rbio->refs))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(!list_empty(&rbio->stripe_cache));
 | |
| 	WARN_ON(!list_empty(&rbio->hash_list));
 | |
| 	WARN_ON(!bio_list_empty(&rbio->bio_list));
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_pages; i++) {
 | |
| 		if (rbio->stripe_pages[i]) {
 | |
| 			__free_page(rbio->stripe_pages[i]);
 | |
| 			rbio->stripe_pages[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_put_bioc(rbio->bioc);
 | |
| 	kfree(rbio);
 | |
| }
 | |
| 
 | |
| static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 | |
| {
 | |
| 	struct bio *next;
 | |
| 
 | |
| 	while (cur) {
 | |
| 		next = cur->bi_next;
 | |
| 		cur->bi_next = NULL;
 | |
| 		cur->bi_status = err;
 | |
| 		bio_endio(cur);
 | |
| 		cur = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this frees the rbio and runs through all the bios in the
 | |
|  * bio_list and calls end_io on them
 | |
|  */
 | |
| static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 | |
| {
 | |
| 	struct bio *cur = bio_list_get(&rbio->bio_list);
 | |
| 	struct bio *extra;
 | |
| 
 | |
| 	if (rbio->generic_bio_cnt)
 | |
| 		btrfs_bio_counter_sub(rbio->bioc->fs_info, rbio->generic_bio_cnt);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this moment, rbio->bio_list is empty, however since rbio does not
 | |
| 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 | |
| 	 * hash list, rbio may be merged with others so that rbio->bio_list
 | |
| 	 * becomes non-empty.
 | |
| 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 | |
| 	 * more and we can call bio_endio() on all queued bios.
 | |
| 	 */
 | |
| 	unlock_stripe(rbio);
 | |
| 	extra = bio_list_get(&rbio->bio_list);
 | |
| 	__free_raid_bio(rbio);
 | |
| 
 | |
| 	rbio_endio_bio_list(cur, err);
 | |
| 	if (extra)
 | |
| 		rbio_endio_bio_list(extra, err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * end io function used by finish_rmw.  When we finally
 | |
|  * get here, we've written a full stripe
 | |
|  */
 | |
| static void raid_write_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 	blk_status_t err = bio->bi_status;
 | |
| 	int max_errors;
 | |
| 
 | |
| 	if (err)
 | |
| 		fail_bio_stripe(rbio, bio);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		return;
 | |
| 
 | |
| 	err = BLK_STS_OK;
 | |
| 
 | |
| 	/* OK, we have read all the stripes we need to. */
 | |
| 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 | |
| 		     0 : rbio->bioc->max_errors;
 | |
| 	if (atomic_read(&rbio->error) > max_errors)
 | |
| 		err = BLK_STS_IOERR;
 | |
| 
 | |
| 	rbio_orig_end_io(rbio, err);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get a sector pointer specified by its @stripe_nr and @sector_nr
 | |
|  *
 | |
|  * @rbio:               The raid bio
 | |
|  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 | |
|  * @sector_nr:		Sector number inside the stripe,
 | |
|  *			valid range [0, stripe_nsectors)
 | |
|  * @bio_list_only:      Whether to use sectors inside the bio list only.
 | |
|  *
 | |
|  * The read/modify/write code wants to reuse the original bio page as much
 | |
|  * as possible, and only use stripe_sectors as fallback.
 | |
|  */
 | |
| static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
 | |
| 					 int stripe_nr, int sector_nr,
 | |
| 					 bool bio_list_only)
 | |
| {
 | |
| 	struct sector_ptr *sector;
 | |
| 	int index;
 | |
| 
 | |
| 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
 | |
| 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
 | |
| 
 | |
| 	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
 | |
| 	ASSERT(index >= 0 && index < rbio->nr_sectors);
 | |
| 
 | |
| 	spin_lock_irq(&rbio->bio_list_lock);
 | |
| 	sector = &rbio->bio_sectors[index];
 | |
| 	if (sector->page || bio_list_only) {
 | |
| 		/* Don't return sector without a valid page pointer */
 | |
| 		if (!sector->page)
 | |
| 			sector = NULL;
 | |
| 		spin_unlock_irq(&rbio->bio_list_lock);
 | |
| 		return sector;
 | |
| 	}
 | |
| 	spin_unlock_irq(&rbio->bio_list_lock);
 | |
| 
 | |
| 	return &rbio->stripe_sectors[index];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocation and initial setup for the btrfs_raid_bio.  Not
 | |
|  * this does not allocate any pages for rbio->pages.
 | |
|  */
 | |
| static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 | |
| 					 struct btrfs_io_context *bioc,
 | |
| 					 u32 stripe_len)
 | |
| {
 | |
| 	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
 | |
| 	const unsigned int stripe_npages = stripe_len >> PAGE_SHIFT;
 | |
| 	const unsigned int num_pages = stripe_npages * real_stripes;
 | |
| 	const unsigned int stripe_nsectors = stripe_len >> fs_info->sectorsize_bits;
 | |
| 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	int nr_data = 0;
 | |
| 	void *p;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(stripe_len, PAGE_SIZE));
 | |
| 	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
 | |
| 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
 | |
| 
 | |
| 	rbio = kzalloc(sizeof(*rbio) +
 | |
| 		       sizeof(*rbio->stripe_pages) * num_pages +
 | |
| 		       sizeof(*rbio->bio_sectors) * num_sectors +
 | |
| 		       sizeof(*rbio->stripe_sectors) * num_sectors +
 | |
| 		       sizeof(*rbio->finish_pointers) * real_stripes +
 | |
| 		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_nsectors) +
 | |
| 		       sizeof(*rbio->finish_pbitmap) * BITS_TO_LONGS(stripe_nsectors),
 | |
| 		       GFP_NOFS);
 | |
| 	if (!rbio)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	bio_list_init(&rbio->bio_list);
 | |
| 	INIT_LIST_HEAD(&rbio->plug_list);
 | |
| 	spin_lock_init(&rbio->bio_list_lock);
 | |
| 	INIT_LIST_HEAD(&rbio->stripe_cache);
 | |
| 	INIT_LIST_HEAD(&rbio->hash_list);
 | |
| 	rbio->bioc = bioc;
 | |
| 	rbio->stripe_len = stripe_len;
 | |
| 	rbio->nr_pages = num_pages;
 | |
| 	rbio->nr_sectors = num_sectors;
 | |
| 	rbio->real_stripes = real_stripes;
 | |
| 	rbio->stripe_npages = stripe_npages;
 | |
| 	rbio->stripe_nsectors = stripe_nsectors;
 | |
| 	rbio->faila = -1;
 | |
| 	rbio->failb = -1;
 | |
| 	refcount_set(&rbio->refs, 1);
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 	atomic_set(&rbio->stripes_pending, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * the stripe_pages, bio_pages, etc arrays point to the extra
 | |
| 	 * memory we allocated past the end of the rbio
 | |
| 	 */
 | |
| 	p = rbio + 1;
 | |
| #define CONSUME_ALLOC(ptr, count)	do {				\
 | |
| 		ptr = p;						\
 | |
| 		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
 | |
| 	} while (0)
 | |
| 	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
 | |
| 	CONSUME_ALLOC(rbio->bio_pages, num_pages);
 | |
| 	CONSUME_ALLOC(rbio->bio_sectors, num_sectors);
 | |
| 	CONSUME_ALLOC(rbio->stripe_sectors, num_sectors);
 | |
| 	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
 | |
| 	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_nsectors));
 | |
| 	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_nsectors));
 | |
| #undef  CONSUME_ALLOC
 | |
| 
 | |
| 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
 | |
| 		nr_data = real_stripes - 1;
 | |
| 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 		nr_data = real_stripes - 2;
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	rbio->nr_data = nr_data;
 | |
| 	return rbio;
 | |
| }
 | |
| 
 | |
| /* allocate pages for all the stripes in the bio, including parity */
 | |
| static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	/* Mapping all sectors */
 | |
| 	index_stripe_sectors(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* only allocate pages for p/q stripes */
 | |
| static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
 | |
| 				     rbio->stripe_pages + data_pages);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	index_stripe_sectors(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a single sector @sector into our list of bios for IO.
 | |
|  *
 | |
|  * Return 0 if everything went well.
 | |
|  * Return <0 for error.
 | |
|  */
 | |
| static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
 | |
| 			      struct bio_list *bio_list,
 | |
| 			      struct sector_ptr *sector,
 | |
| 			      unsigned int stripe_nr,
 | |
| 			      unsigned int sector_nr,
 | |
| 			      unsigned long bio_max_len,
 | |
| 			      unsigned int opf)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	struct bio *last = bio_list->tail;
 | |
| 	int ret;
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_io_stripe *stripe;
 | |
| 	u64 disk_start;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: here stripe_nr has taken device replace into consideration,
 | |
| 	 * thus it can be larger than rbio->real_stripe.
 | |
| 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
 | |
| 	 */
 | |
| 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
 | |
| 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
 | |
| 	ASSERT(sector->page);
 | |
| 
 | |
| 	/* We don't yet support subpage, thus pgoff should always be 0 */
 | |
| 	ASSERT(sector->pgoff == 0);
 | |
| 
 | |
| 	stripe = &rbio->bioc->stripes[stripe_nr];
 | |
| 	disk_start = stripe->physical + sector_nr * sectorsize;
 | |
| 
 | |
| 	/* if the device is missing, just fail this stripe */
 | |
| 	if (!stripe->dev->bdev)
 | |
| 		return fail_rbio_index(rbio, stripe_nr);
 | |
| 
 | |
| 	/* see if we can add this page onto our existing bio */
 | |
| 	if (last) {
 | |
| 		u64 last_end = last->bi_iter.bi_sector << 9;
 | |
| 		last_end += last->bi_iter.bi_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * we can't merge these if they are from different
 | |
| 		 * devices or if they are not contiguous
 | |
| 		 */
 | |
| 		if (last_end == disk_start && !last->bi_status &&
 | |
| 		    last->bi_bdev == stripe->dev->bdev) {
 | |
| 			ret = bio_add_page(last, sector->page, sectorsize,
 | |
| 					   sector->pgoff);
 | |
| 			if (ret == sectorsize)
 | |
| 				return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* put a new bio on the list */
 | |
| 	bio = bio_alloc(stripe->dev->bdev, max(bio_max_len >> PAGE_SHIFT, 1UL),
 | |
| 			opf, GFP_NOFS);
 | |
| 	bio->bi_iter.bi_sector = disk_start >> 9;
 | |
| 	bio->bi_private = rbio;
 | |
| 
 | |
| 	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
 | |
| 	bio_list_add(bio_list, bio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * while we're doing the read/modify/write cycle, we could
 | |
|  * have errors in reading pages off the disk.  This checks
 | |
|  * for errors and if we're not able to read the page it'll
 | |
|  * trigger parity reconstruction.  The rmw will be finished
 | |
|  * after we've reconstructed the failed stripes
 | |
|  */
 | |
| static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (rbio->faila >= 0 || rbio->failb >= 0) {
 | |
| 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
 | |
| 		__raid56_parity_recover(rbio);
 | |
| 	} else {
 | |
| 		finish_rmw(rbio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	struct bio_vec bvec;
 | |
| 	struct bvec_iter iter;
 | |
| 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
 | |
| 		     rbio->bioc->raid_map[0];
 | |
| 
 | |
| 	if (bio_flagged(bio, BIO_CLONED))
 | |
| 		bio->bi_iter = btrfs_bio(bio)->iter;
 | |
| 
 | |
| 	bio_for_each_segment(bvec, bio, iter) {
 | |
| 		u32 bvec_offset;
 | |
| 
 | |
| 		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
 | |
| 		     bvec_offset += sectorsize, offset += sectorsize) {
 | |
| 			int index = offset / sectorsize;
 | |
| 			struct sector_ptr *sector = &rbio->bio_sectors[index];
 | |
| 
 | |
| 			sector->page = bvec.bv_page;
 | |
| 			sector->pgoff = bvec.bv_offset + bvec_offset;
 | |
| 			ASSERT(sector->pgoff < PAGE_SIZE);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to walk our bio list and populate the bio_pages array with
 | |
|  * the result.  This seems expensive, but it is faster than constantly
 | |
|  * searching through the bio list as we setup the IO in finish_rmw or stripe
 | |
|  * reconstruction.
 | |
|  *
 | |
|  * This must be called before you trust the answers from page_in_rbio
 | |
|  */
 | |
| static void index_rbio_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	u64 start;
 | |
| 	unsigned long stripe_offset;
 | |
| 	unsigned long page_index;
 | |
| 
 | |
| 	spin_lock_irq(&rbio->bio_list_lock);
 | |
| 	bio_list_for_each(bio, &rbio->bio_list) {
 | |
| 		struct bio_vec bvec;
 | |
| 		struct bvec_iter iter;
 | |
| 		int i = 0;
 | |
| 
 | |
| 		start = bio->bi_iter.bi_sector << 9;
 | |
| 		stripe_offset = start - rbio->bioc->raid_map[0];
 | |
| 		page_index = stripe_offset >> PAGE_SHIFT;
 | |
| 
 | |
| 		bio_for_each_segment(bvec, bio, iter) {
 | |
| 			rbio->bio_pages[page_index + i] = bvec.bv_page;
 | |
| 			i++;
 | |
| 		}
 | |
| 	}
 | |
| 	/* This loop will replace above loop when the full switch is done */
 | |
| 	bio_list_for_each(bio, &rbio->bio_list)
 | |
| 		index_one_bio(rbio, bio);
 | |
| 
 | |
| 	spin_unlock_irq(&rbio->bio_list_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is called from one of two situations.  We either
 | |
|  * have a full stripe from the higher layers, or we've read all
 | |
|  * the missing bits off disk.
 | |
|  *
 | |
|  * This will calculate the parity and then send down any
 | |
|  * changed blocks.
 | |
|  */
 | |
| static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_io_context *bioc = rbio->bioc;
 | |
| 	const u32 sectorsize = bioc->fs_info->sectorsize;
 | |
| 	void **pointers = rbio->finish_pointers;
 | |
| 	int nr_data = rbio->nr_data;
 | |
| 	int stripe;
 | |
| 	int sectornr;
 | |
| 	bool has_qstripe;
 | |
| 	struct bio_list bio_list;
 | |
| 	struct bio *bio;
 | |
| 	int ret;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	if (rbio->real_stripes - rbio->nr_data == 1)
 | |
| 		has_qstripe = false;
 | |
| 	else if (rbio->real_stripes - rbio->nr_data == 2)
 | |
| 		has_qstripe = true;
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	/* at this point we either have a full stripe,
 | |
| 	 * or we've read the full stripe from the drive.
 | |
| 	 * recalculate the parity and write the new results.
 | |
| 	 *
 | |
| 	 * We're not allowed to add any new bios to the
 | |
| 	 * bio list here, anyone else that wants to
 | |
| 	 * change this stripe needs to do their own rmw.
 | |
| 	 */
 | |
| 	spin_lock_irq(&rbio->bio_list_lock);
 | |
| 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 | |
| 	spin_unlock_irq(&rbio->bio_list_lock);
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * now that we've set rmw_locked, run through the
 | |
| 	 * bio list one last time and map the page pointers
 | |
| 	 *
 | |
| 	 * We don't cache full rbios because we're assuming
 | |
| 	 * the higher layers are unlikely to use this area of
 | |
| 	 * the disk again soon.  If they do use it again,
 | |
| 	 * hopefully they will send another full bio.
 | |
| 	 */
 | |
| 	index_rbio_pages(rbio);
 | |
| 	if (!rbio_is_full(rbio))
 | |
| 		cache_rbio_pages(rbio);
 | |
| 	else
 | |
| 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| 
 | |
| 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		/* First collect one sector from each data stripe */
 | |
| 		for (stripe = 0; stripe < nr_data; stripe++) {
 | |
| 			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
 | |
| 			pointers[stripe] = kmap_local_page(sector->page) +
 | |
| 					   sector->pgoff;
 | |
| 		}
 | |
| 
 | |
| 		/* Then add the parity stripe */
 | |
| 		sector = rbio_pstripe_sector(rbio, sectornr);
 | |
| 		sector->uptodate = 1;
 | |
| 		pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
 | |
| 
 | |
| 		if (has_qstripe) {
 | |
| 			/*
 | |
| 			 * RAID6, add the qstripe and call the library function
 | |
| 			 * to fill in our p/q
 | |
| 			 */
 | |
| 			sector = rbio_qstripe_sector(rbio, sectornr);
 | |
| 			sector->uptodate = 1;
 | |
| 			pointers[stripe++] = kmap_local_page(sector->page) +
 | |
| 					     sector->pgoff;
 | |
| 
 | |
| 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
 | |
| 						pointers);
 | |
| 		} else {
 | |
| 			/* raid5 */
 | |
| 			memcpy(pointers[nr_data], pointers[0], sectorsize);
 | |
| 			run_xor(pointers + 1, nr_data - 1, sectorsize);
 | |
| 		}
 | |
| 		for (stripe = stripe - 1; stripe >= 0; stripe--)
 | |
| 			kunmap_local(pointers[stripe]);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * time to start writing.  Make bios for everything from the
 | |
| 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
 | |
| 	 * everything else.
 | |
| 	 */
 | |
| 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
 | |
| 			struct sector_ptr *sector;
 | |
| 
 | |
| 			if (stripe < rbio->nr_data) {
 | |
| 				sector = sector_in_rbio(rbio, stripe, sectornr, 1);
 | |
| 				if (!sector)
 | |
| 					continue;
 | |
| 			} else {
 | |
| 				sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 			}
 | |
| 
 | |
| 			ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
 | |
| 						 sectornr, rbio->stripe_len,
 | |
| 						 REQ_OP_WRITE);
 | |
| 			if (ret)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!bioc->num_tgtdevs))
 | |
| 		goto write_data;
 | |
| 
 | |
| 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 		if (!bioc->tgtdev_map[stripe])
 | |
| 			continue;
 | |
| 
 | |
| 		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
 | |
| 			struct sector_ptr *sector;
 | |
| 
 | |
| 			if (stripe < rbio->nr_data) {
 | |
| 				sector = sector_in_rbio(rbio, stripe, sectornr, 1);
 | |
| 				if (!sector)
 | |
| 					continue;
 | |
| 			} else {
 | |
| 				sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 			}
 | |
| 
 | |
| 			ret = rbio_add_io_sector(rbio, &bio_list, sector,
 | |
| 					       rbio->bioc->tgtdev_map[stripe],
 | |
| 					       sectornr, rbio->stripe_len,
 | |
| 					       REQ_OP_WRITE);
 | |
| 			if (ret)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| write_data:
 | |
| 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
 | |
| 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bio_list))) {
 | |
| 		bio->bi_end_io = raid_write_end_io;
 | |
| 
 | |
| 		submit_bio(bio);
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bio_list)))
 | |
| 		bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to find the stripe number for a given bio.  Used to figure out which
 | |
|  * stripe has failed.  This expects the bio to correspond to a physical disk,
 | |
|  * so it looks up based on physical sector numbers.
 | |
|  */
 | |
| static int find_bio_stripe(struct btrfs_raid_bio *rbio,
 | |
| 			   struct bio *bio)
 | |
| {
 | |
| 	u64 physical = bio->bi_iter.bi_sector;
 | |
| 	int i;
 | |
| 	struct btrfs_io_stripe *stripe;
 | |
| 
 | |
| 	physical <<= 9;
 | |
| 
 | |
| 	for (i = 0; i < rbio->bioc->num_stripes; i++) {
 | |
| 		stripe = &rbio->bioc->stripes[i];
 | |
| 		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
 | |
| 		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
 | |
| 			return i;
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to find the stripe number for a given
 | |
|  * bio (before mapping).  Used to figure out which stripe has
 | |
|  * failed.  This looks up based on logical block numbers.
 | |
|  */
 | |
| static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
 | |
| 				   struct bio *bio)
 | |
| {
 | |
| 	u64 logical = bio->bi_iter.bi_sector << 9;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_data; i++) {
 | |
| 		u64 stripe_start = rbio->bioc->raid_map[i];
 | |
| 
 | |
| 		if (in_range(logical, stripe_start, rbio->stripe_len))
 | |
| 			return i;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns -EIO if we had too many failures
 | |
|  */
 | |
| static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 | |
| 
 | |
| 	/* we already know this stripe is bad, move on */
 | |
| 	if (rbio->faila == failed || rbio->failb == failed)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (rbio->faila == -1) {
 | |
| 		/* first failure on this rbio */
 | |
| 		rbio->faila = failed;
 | |
| 		atomic_inc(&rbio->error);
 | |
| 	} else if (rbio->failb == -1) {
 | |
| 		/* second failure on this rbio */
 | |
| 		rbio->failb = failed;
 | |
| 		atomic_inc(&rbio->error);
 | |
| 	} else {
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to fail a stripe based on a physical disk
 | |
|  * bio.
 | |
|  */
 | |
| static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
 | |
| 			   struct bio *bio)
 | |
| {
 | |
| 	int failed = find_bio_stripe(rbio, bio);
 | |
| 
 | |
| 	if (failed < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return fail_rbio_index(rbio, failed);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this sets each page in the bio uptodate.  It should only be used on private
 | |
|  * rbio pages, nothing that comes in from the higher layers
 | |
|  */
 | |
| static void set_bio_pages_uptodate(struct bio *bio)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	struct bvec_iter_all iter_all;
 | |
| 
 | |
| 	ASSERT(!bio_flagged(bio, BIO_CLONED));
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, iter_all)
 | |
| 		SetPageUptodate(bvec->bv_page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * end io for the read phase of the rmw cycle.  All the bios here are physical
 | |
|  * stripe bios we've read from the disk so we can recalculate the parity of the
 | |
|  * stripe.
 | |
|  *
 | |
|  * This will usually kick off finish_rmw once all the bios are read in, but it
 | |
|  * may trigger parity reconstruction if we had any errors along the way
 | |
|  */
 | |
| static void raid_rmw_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		fail_bio_stripe(rbio, bio);
 | |
| 	else
 | |
| 		set_bio_pages_uptodate(bio);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		return;
 | |
| 
 | |
| 	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	/*
 | |
| 	 * this will normally call finish_rmw to start our write
 | |
| 	 * but if there are any failed stripes we'll reconstruct
 | |
| 	 * from parity first
 | |
| 	 */
 | |
| 	validate_rbio_for_rmw(rbio);
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
| 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the stripe must be locked by the caller.  It will
 | |
|  * unlock after all the writes are done
 | |
|  */
 | |
| static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bios_to_read = 0;
 | |
| 	struct bio_list bio_list;
 | |
| 	int ret;
 | |
| 	int sectornr;
 | |
| 	int stripe;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	ret = alloc_rbio_pages(rbio);
 | |
| 	if (ret)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	index_rbio_pages(rbio);
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 	/*
 | |
| 	 * build a list of bios to read all the missing parts of this
 | |
| 	 * stripe
 | |
| 	 */
 | |
| 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
 | |
| 		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
 | |
| 			struct sector_ptr *sector;
 | |
| 
 | |
| 			/*
 | |
| 			 * We want to find all the sectors missing from the
 | |
| 			 * rbio and read them from the disk.  If * sector_in_rbio()
 | |
| 			 * finds a page in the bio list we don't need to read
 | |
| 			 * it off the stripe.
 | |
| 			 */
 | |
| 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
 | |
| 			if (sector)
 | |
| 				continue;
 | |
| 
 | |
| 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 			/*
 | |
| 			 * The bio cache may have handed us an uptodate page.
 | |
| 			 * If so, be happy and use it.
 | |
| 			 */
 | |
| 			if (sector->uptodate)
 | |
| 				continue;
 | |
| 
 | |
| 			ret = rbio_add_io_sector(rbio, &bio_list, sector,
 | |
| 				       stripe, sectornr, rbio->stripe_len,
 | |
| 				       REQ_OP_READ);
 | |
| 			if (ret)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bios_to_read = bio_list_size(&bio_list);
 | |
| 	if (!bios_to_read) {
 | |
| 		/*
 | |
| 		 * this can happen if others have merged with
 | |
| 		 * us, it means there is nothing left to read.
 | |
| 		 * But if there are missing devices it may not be
 | |
| 		 * safe to do the full stripe write yet.
 | |
| 		 */
 | |
| 		goto finish;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The bioc may be freed once we submit the last bio. Make sure not to
 | |
| 	 * touch it after that.
 | |
| 	 */
 | |
| 	atomic_set(&rbio->stripes_pending, bios_to_read);
 | |
| 	while ((bio = bio_list_pop(&bio_list))) {
 | |
| 		bio->bi_end_io = raid_rmw_end_io;
 | |
| 
 | |
| 		btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 | |
| 
 | |
| 		submit_bio(bio);
 | |
| 	}
 | |
| 	/* the actual write will happen once the reads are done */
 | |
| 	return 0;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bio_list)))
 | |
| 		bio_put(bio);
 | |
| 
 | |
| 	return -EIO;
 | |
| 
 | |
| finish:
 | |
| 	validate_rbio_for_rmw(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * if the upper layers pass in a full stripe, we thank them by only allocating
 | |
|  * enough pages to hold the parity, and sending it all down quickly.
 | |
|  */
 | |
| static int full_stripe_write(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = alloc_rbio_parity_pages(rbio);
 | |
| 	if (ret) {
 | |
| 		__free_raid_bio(rbio);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = lock_stripe_add(rbio);
 | |
| 	if (ret == 0)
 | |
| 		finish_rmw(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * partial stripe writes get handed over to async helpers.
 | |
|  * We're really hoping to merge a few more writes into this
 | |
|  * rbio before calculating new parity
 | |
|  */
 | |
| static int partial_stripe_write(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = lock_stripe_add(rbio);
 | |
| 	if (ret == 0)
 | |
| 		start_async_work(rbio, rmw_work);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sometimes while we were reading from the drive to
 | |
|  * recalculate parity, enough new bios come into create
 | |
|  * a full stripe.  So we do a check here to see if we can
 | |
|  * go directly to finish_rmw
 | |
|  */
 | |
| static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	/* head off into rmw land if we don't have a full stripe */
 | |
| 	if (!rbio_is_full(rbio))
 | |
| 		return partial_stripe_write(rbio);
 | |
| 	return full_stripe_write(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use plugging call backs to collect full stripes.
 | |
|  * Any time we get a partial stripe write while plugged
 | |
|  * we collect it into a list.  When the unplug comes down,
 | |
|  * we sort the list by logical block number and merge
 | |
|  * everything we can into the same rbios
 | |
|  */
 | |
| struct btrfs_plug_cb {
 | |
| 	struct blk_plug_cb cb;
 | |
| 	struct btrfs_fs_info *info;
 | |
| 	struct list_head rbio_list;
 | |
| 	struct btrfs_work work;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * rbios on the plug list are sorted for easier merging.
 | |
|  */
 | |
| static int plug_cmp(void *priv, const struct list_head *a,
 | |
| 		    const struct list_head *b)
 | |
| {
 | |
| 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
 | |
| 						       plug_list);
 | |
| 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
 | |
| 						       plug_list);
 | |
| 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
 | |
| 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
 | |
| 
 | |
| 	if (a_sector < b_sector)
 | |
| 		return -1;
 | |
| 	if (a_sector > b_sector)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void run_plug(struct btrfs_plug_cb *plug)
 | |
| {
 | |
| 	struct btrfs_raid_bio *cur;
 | |
| 	struct btrfs_raid_bio *last = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * sort our plug list then try to merge
 | |
| 	 * everything we can in hopes of creating full
 | |
| 	 * stripes.
 | |
| 	 */
 | |
| 	list_sort(NULL, &plug->rbio_list, plug_cmp);
 | |
| 	while (!list_empty(&plug->rbio_list)) {
 | |
| 		cur = list_entry(plug->rbio_list.next,
 | |
| 				 struct btrfs_raid_bio, plug_list);
 | |
| 		list_del_init(&cur->plug_list);
 | |
| 
 | |
| 		if (rbio_is_full(cur)) {
 | |
| 			int ret;
 | |
| 
 | |
| 			/* we have a full stripe, send it down */
 | |
| 			ret = full_stripe_write(cur);
 | |
| 			BUG_ON(ret);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (last) {
 | |
| 			if (rbio_can_merge(last, cur)) {
 | |
| 				merge_rbio(last, cur);
 | |
| 				__free_raid_bio(cur);
 | |
| 				continue;
 | |
| 
 | |
| 			}
 | |
| 			__raid56_parity_write(last);
 | |
| 		}
 | |
| 		last = cur;
 | |
| 	}
 | |
| 	if (last) {
 | |
| 		__raid56_parity_write(last);
 | |
| 	}
 | |
| 	kfree(plug);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * if the unplug comes from schedule, we have to push the
 | |
|  * work off to a helper thread
 | |
|  */
 | |
| static void unplug_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_plug_cb *plug;
 | |
| 	plug = container_of(work, struct btrfs_plug_cb, work);
 | |
| 	run_plug(plug);
 | |
| }
 | |
| 
 | |
| static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
 | |
| {
 | |
| 	struct btrfs_plug_cb *plug;
 | |
| 	plug = container_of(cb, struct btrfs_plug_cb, cb);
 | |
| 
 | |
| 	if (from_schedule) {
 | |
| 		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
 | |
| 		btrfs_queue_work(plug->info->rmw_workers,
 | |
| 				 &plug->work);
 | |
| 		return;
 | |
| 	}
 | |
| 	run_plug(plug);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * our main entry point for writes from the rest of the FS.
 | |
|  */
 | |
| int raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc, u32 stripe_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bioc->fs_info;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	struct btrfs_plug_cb *plug = NULL;
 | |
| 	struct blk_plug_cb *cb;
 | |
| 	int ret;
 | |
| 
 | |
| 	rbio = alloc_rbio(fs_info, bioc, stripe_len);
 | |
| 	if (IS_ERR(rbio)) {
 | |
| 		btrfs_put_bioc(bioc);
 | |
| 		return PTR_ERR(rbio);
 | |
| 	}
 | |
| 	bio_list_add(&rbio->bio_list, bio);
 | |
| 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 | |
| 	rbio->operation = BTRFS_RBIO_WRITE;
 | |
| 
 | |
| 	btrfs_bio_counter_inc_noblocked(fs_info);
 | |
| 	rbio->generic_bio_cnt = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * don't plug on full rbios, just get them out the door
 | |
| 	 * as quickly as we can
 | |
| 	 */
 | |
| 	if (rbio_is_full(rbio)) {
 | |
| 		ret = full_stripe_write(rbio);
 | |
| 		if (ret)
 | |
| 			btrfs_bio_counter_dec(fs_info);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
 | |
| 	if (cb) {
 | |
| 		plug = container_of(cb, struct btrfs_plug_cb, cb);
 | |
| 		if (!plug->info) {
 | |
| 			plug->info = fs_info;
 | |
| 			INIT_LIST_HEAD(&plug->rbio_list);
 | |
| 		}
 | |
| 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		ret = __raid56_parity_write(rbio);
 | |
| 		if (ret)
 | |
| 			btrfs_bio_counter_dec(fs_info);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * all parity reconstruction happens here.  We've read in everything
 | |
|  * we can find from the drives and this does the heavy lifting of
 | |
|  * sorting the good from the bad.
 | |
|  */
 | |
| static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	int sectornr, stripe;
 | |
| 	void **pointers;
 | |
| 	void **unmap_array;
 | |
| 	int faila = -1, failb = -1;
 | |
| 	blk_status_t err;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * This array stores the pointer for each sector, thus it has the extra
 | |
| 	 * pgoff value added from each sector
 | |
| 	 */
 | |
| 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
 | |
| 	if (!pointers) {
 | |
| 		err = BLK_STS_RESOURCE;
 | |
| 		goto cleanup_io;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Store copy of pointers that does not get reordered during
 | |
| 	 * reconstruction so that kunmap_local works.
 | |
| 	 */
 | |
| 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
 | |
| 	if (!unmap_array) {
 | |
| 		err = BLK_STS_RESOURCE;
 | |
| 		goto cleanup_pointers;
 | |
| 	}
 | |
| 
 | |
| 	faila = rbio->faila;
 | |
| 	failb = rbio->failb;
 | |
| 
 | |
| 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
 | |
| 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
 | |
| 		spin_lock_irq(&rbio->bio_list_lock);
 | |
| 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 | |
| 		spin_unlock_irq(&rbio->bio_list_lock);
 | |
| 	}
 | |
| 
 | |
| 	index_rbio_pages(rbio);
 | |
| 
 | |
| 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we just use bitmap to mark the horizontal stripes in
 | |
| 		 * which we have data when doing parity scrub.
 | |
| 		 */
 | |
| 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
 | |
| 		    !test_bit(sectornr, rbio->dbitmap))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Setup our array of pointers with sectors from each stripe
 | |
| 		 *
 | |
| 		 * NOTE: store a duplicate array of pointers to preserve the
 | |
| 		 * pointer order
 | |
| 		 */
 | |
| 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 			/*
 | |
| 			 * If we're rebuilding a read, we have to use
 | |
| 			 * pages from the bio list
 | |
| 			 */
 | |
| 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
 | |
| 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
 | |
| 			    (stripe == faila || stripe == failb)) {
 | |
| 				sector = sector_in_rbio(rbio, stripe, sectornr, 0);
 | |
| 			} else {
 | |
| 				sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 			}
 | |
| 			ASSERT(sector->page);
 | |
| 			pointers[stripe] = kmap_local_page(sector->page) +
 | |
| 					   sector->pgoff;
 | |
| 			unmap_array[stripe] = pointers[stripe];
 | |
| 		}
 | |
| 
 | |
| 		/* All raid6 handling here */
 | |
| 		if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
 | |
| 			/* Single failure, rebuild from parity raid5 style */
 | |
| 			if (failb < 0) {
 | |
| 				if (faila == rbio->nr_data) {
 | |
| 					/*
 | |
| 					 * Just the P stripe has failed, without
 | |
| 					 * a bad data or Q stripe.
 | |
| 					 * TODO, we should redo the xor here.
 | |
| 					 */
 | |
| 					err = BLK_STS_IOERR;
 | |
| 					goto cleanup;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * a single failure in raid6 is rebuilt
 | |
| 				 * in the pstripe code below
 | |
| 				 */
 | |
| 				goto pstripe;
 | |
| 			}
 | |
| 
 | |
| 			/* make sure our ps and qs are in order */
 | |
| 			if (faila > failb)
 | |
| 				swap(faila, failb);
 | |
| 
 | |
| 			/* if the q stripe is failed, do a pstripe reconstruction
 | |
| 			 * from the xors.
 | |
| 			 * If both the q stripe and the P stripe are failed, we're
 | |
| 			 * here due to a crc mismatch and we can't give them the
 | |
| 			 * data they want
 | |
| 			 */
 | |
| 			if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
 | |
| 				if (rbio->bioc->raid_map[faila] ==
 | |
| 				    RAID5_P_STRIPE) {
 | |
| 					err = BLK_STS_IOERR;
 | |
| 					goto cleanup;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * otherwise we have one bad data stripe and
 | |
| 				 * a good P stripe.  raid5!
 | |
| 				 */
 | |
| 				goto pstripe;
 | |
| 			}
 | |
| 
 | |
| 			if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
 | |
| 				raid6_datap_recov(rbio->real_stripes,
 | |
| 						  sectorsize, faila, pointers);
 | |
| 			} else {
 | |
| 				raid6_2data_recov(rbio->real_stripes,
 | |
| 						  sectorsize, faila, failb,
 | |
| 						  pointers);
 | |
| 			}
 | |
| 		} else {
 | |
| 			void *p;
 | |
| 
 | |
| 			/* rebuild from P stripe here (raid5 or raid6) */
 | |
| 			BUG_ON(failb != -1);
 | |
| pstripe:
 | |
| 			/* Copy parity block into failed block to start with */
 | |
| 			memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
 | |
| 
 | |
| 			/* rearrange the pointer array */
 | |
| 			p = pointers[faila];
 | |
| 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
 | |
| 				pointers[stripe] = pointers[stripe + 1];
 | |
| 			pointers[rbio->nr_data - 1] = p;
 | |
| 
 | |
| 			/* xor in the rest */
 | |
| 			run_xor(pointers, rbio->nr_data - 1, sectorsize);
 | |
| 		}
 | |
| 		/* if we're doing this rebuild as part of an rmw, go through
 | |
| 		 * and set all of our private rbio pages in the
 | |
| 		 * failed stripes as uptodate.  This way finish_rmw will
 | |
| 		 * know they can be trusted.  If this was a read reconstruction,
 | |
| 		 * other endio functions will fiddle the uptodate bits
 | |
| 		 */
 | |
| 		if (rbio->operation == BTRFS_RBIO_WRITE) {
 | |
| 			for (i = 0;  i < rbio->stripe_nsectors; i++) {
 | |
| 				if (faila != -1) {
 | |
| 					sector = rbio_stripe_sector(rbio, faila, i);
 | |
| 					sector->uptodate = 1;
 | |
| 				}
 | |
| 				if (failb != -1) {
 | |
| 					sector = rbio_stripe_sector(rbio, failb, i);
 | |
| 					sector->uptodate = 1;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--)
 | |
| 			kunmap_local(unmap_array[stripe]);
 | |
| 	}
 | |
| 
 | |
| 	err = BLK_STS_OK;
 | |
| cleanup:
 | |
| 	kfree(unmap_array);
 | |
| cleanup_pointers:
 | |
| 	kfree(pointers);
 | |
| 
 | |
| cleanup_io:
 | |
| 	/*
 | |
| 	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
 | |
| 	 * valid rbio which is consistent with ondisk content, thus such a
 | |
| 	 * valid rbio can be cached to avoid further disk reads.
 | |
| 	 */
 | |
| 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
 | |
| 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
 | |
| 		/*
 | |
| 		 * - In case of two failures, where rbio->failb != -1:
 | |
| 		 *
 | |
| 		 *   Do not cache this rbio since the above read reconstruction
 | |
| 		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
 | |
| 		 *   changed some content of stripes which are not identical to
 | |
| 		 *   on-disk content any more, otherwise, a later write/recover
 | |
| 		 *   may steal stripe_pages from this rbio and end up with
 | |
| 		 *   corruptions or rebuild failures.
 | |
| 		 *
 | |
| 		 * - In case of single failure, where rbio->failb == -1:
 | |
| 		 *
 | |
| 		 *   Cache this rbio iff the above read reconstruction is
 | |
| 		 *   executed without problems.
 | |
| 		 */
 | |
| 		if (err == BLK_STS_OK && rbio->failb < 0)
 | |
| 			cache_rbio_pages(rbio);
 | |
| 		else
 | |
| 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| 
 | |
| 		rbio_orig_end_io(rbio, err);
 | |
| 	} else if (err == BLK_STS_OK) {
 | |
| 		rbio->faila = -1;
 | |
| 		rbio->failb = -1;
 | |
| 
 | |
| 		if (rbio->operation == BTRFS_RBIO_WRITE)
 | |
| 			finish_rmw(rbio);
 | |
| 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
 | |
| 			finish_parity_scrub(rbio, 0);
 | |
| 		else
 | |
| 			BUG();
 | |
| 	} else {
 | |
| 		rbio_orig_end_io(rbio, err);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called only for stripes we've read from disk to
 | |
|  * reconstruct the parity.
 | |
|  */
 | |
| static void raid_recover_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 
 | |
| 	/*
 | |
| 	 * we only read stripe pages off the disk, set them
 | |
| 	 * up to date if there were no errors
 | |
| 	 */
 | |
| 	if (bio->bi_status)
 | |
| 		fail_bio_stripe(rbio, bio);
 | |
| 	else
 | |
| 		set_bio_pages_uptodate(bio);
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		return;
 | |
| 
 | |
| 	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
 | |
| 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
 | |
| 	else
 | |
| 		__raid_recover_end_io(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * reads everything we need off the disk to reconstruct
 | |
|  * the parity. endio handlers trigger final reconstruction
 | |
|  * when the IO is done.
 | |
|  *
 | |
|  * This is used both for reads from the higher layers and for
 | |
|  * parity construction required to finish a rmw cycle.
 | |
|  */
 | |
| static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bios_to_read = 0;
 | |
| 	struct bio_list bio_list;
 | |
| 	int ret;
 | |
| 	int sectornr;
 | |
| 	int stripe;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	ret = alloc_rbio_pages(rbio);
 | |
| 	if (ret)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * read everything that hasn't failed.  Thanks to the
 | |
| 	 * stripe cache, it is possible that some or all of these
 | |
| 	 * pages are going to be uptodate.
 | |
| 	 */
 | |
| 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 		if (rbio->faila == stripe || rbio->failb == stripe) {
 | |
| 			atomic_inc(&rbio->error);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
 | |
| 			struct sector_ptr *sector;
 | |
| 
 | |
| 			/*
 | |
| 			 * the rmw code may have already read this
 | |
| 			 * page in
 | |
| 			 */
 | |
| 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 			if (sector->uptodate)
 | |
| 				continue;
 | |
| 
 | |
| 			ret = rbio_add_io_sector(rbio, &bio_list, sector,
 | |
| 						 stripe, sectornr, rbio->stripe_len,
 | |
| 						 REQ_OP_READ);
 | |
| 			if (ret < 0)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bios_to_read = bio_list_size(&bio_list);
 | |
| 	if (!bios_to_read) {
 | |
| 		/*
 | |
| 		 * we might have no bios to read just because the pages
 | |
| 		 * were up to date, or we might have no bios to read because
 | |
| 		 * the devices were gone.
 | |
| 		 */
 | |
| 		if (atomic_read(&rbio->error) <= rbio->bioc->max_errors) {
 | |
| 			__raid_recover_end_io(rbio);
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The bioc may be freed once we submit the last bio. Make sure not to
 | |
| 	 * touch it after that.
 | |
| 	 */
 | |
| 	atomic_set(&rbio->stripes_pending, bios_to_read);
 | |
| 	while ((bio = bio_list_pop(&bio_list))) {
 | |
| 		bio->bi_end_io = raid_recover_end_io;
 | |
| 
 | |
| 		btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 | |
| 
 | |
| 		submit_bio(bio);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| cleanup:
 | |
| 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
 | |
| 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
 | |
| 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bio_list)))
 | |
| 		bio_put(bio);
 | |
| 
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the main entry point for reads from the higher layers.  This
 | |
|  * is really only called when the normal read path had a failure,
 | |
|  * so we assume the bio they send down corresponds to a failed part
 | |
|  * of the drive.
 | |
|  */
 | |
| int raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
 | |
| 			  u32 stripe_len, int mirror_num, int generic_io)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bioc->fs_info;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (generic_io) {
 | |
| 		ASSERT(bioc->mirror_num == mirror_num);
 | |
| 		btrfs_bio(bio)->mirror_num = mirror_num;
 | |
| 	}
 | |
| 
 | |
| 	rbio = alloc_rbio(fs_info, bioc, stripe_len);
 | |
| 	if (IS_ERR(rbio)) {
 | |
| 		if (generic_io)
 | |
| 			btrfs_put_bioc(bioc);
 | |
| 		return PTR_ERR(rbio);
 | |
| 	}
 | |
| 
 | |
| 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
 | |
| 	bio_list_add(&rbio->bio_list, bio);
 | |
| 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 | |
| 
 | |
| 	rbio->faila = find_logical_bio_stripe(rbio, bio);
 | |
| 	if (rbio->faila == -1) {
 | |
| 		btrfs_warn(fs_info,
 | |
| "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)",
 | |
| 			   __func__, bio->bi_iter.bi_sector << 9,
 | |
| 			   (u64)bio->bi_iter.bi_size, bioc->map_type);
 | |
| 		if (generic_io)
 | |
| 			btrfs_put_bioc(bioc);
 | |
| 		kfree(rbio);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (generic_io) {
 | |
| 		btrfs_bio_counter_inc_noblocked(fs_info);
 | |
| 		rbio->generic_bio_cnt = 1;
 | |
| 	} else {
 | |
| 		btrfs_get_bioc(bioc);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop retry:
 | |
| 	 * for 'mirror == 2', reconstruct from all other stripes.
 | |
| 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
 | |
| 	 */
 | |
| 	if (mirror_num > 2) {
 | |
| 		/*
 | |
| 		 * 'mirror == 3' is to fail the p stripe and
 | |
| 		 * reconstruct from the q stripe.  'mirror > 3' is to
 | |
| 		 * fail a data stripe and reconstruct from p+q stripe.
 | |
| 		 */
 | |
| 		rbio->failb = rbio->real_stripes - (mirror_num - 1);
 | |
| 		ASSERT(rbio->failb > 0);
 | |
| 		if (rbio->failb <= rbio->faila)
 | |
| 			rbio->failb--;
 | |
| 	}
 | |
| 
 | |
| 	ret = lock_stripe_add(rbio);
 | |
| 
 | |
| 	/*
 | |
| 	 * __raid56_parity_recover will end the bio with
 | |
| 	 * any errors it hits.  We don't want to return
 | |
| 	 * its error value up the stack because our caller
 | |
| 	 * will end up calling bio_endio with any nonzero
 | |
| 	 * return
 | |
| 	 */
 | |
| 	if (ret == 0)
 | |
| 		__raid56_parity_recover(rbio);
 | |
| 	/*
 | |
| 	 * our rbio has been added to the list of
 | |
| 	 * rbios that will be handled after the
 | |
| 	 * currently lock owner is done
 | |
| 	 */
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void rmw_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = container_of(work, struct btrfs_raid_bio, work);
 | |
| 	raid56_rmw_stripe(rbio);
 | |
| }
 | |
| 
 | |
| static void read_rebuild_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = container_of(work, struct btrfs_raid_bio, work);
 | |
| 	__raid56_parity_recover(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following code is used to scrub/replace the parity stripe
 | |
|  *
 | |
|  * Caller must have already increased bio_counter for getting @bioc.
 | |
|  *
 | |
|  * Note: We need make sure all the pages that add into the scrub/replace
 | |
|  * raid bio are correct and not be changed during the scrub/replace. That
 | |
|  * is those pages just hold metadata or file data with checksum.
 | |
|  */
 | |
| 
 | |
| struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
 | |
| 				struct btrfs_io_context *bioc,
 | |
| 				u32 stripe_len, struct btrfs_device *scrub_dev,
 | |
| 				unsigned long *dbitmap, int stripe_nsectors)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bioc->fs_info;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	int i;
 | |
| 
 | |
| 	rbio = alloc_rbio(fs_info, bioc, stripe_len);
 | |
| 	if (IS_ERR(rbio))
 | |
| 		return NULL;
 | |
| 	bio_list_add(&rbio->bio_list, bio);
 | |
| 	/*
 | |
| 	 * This is a special bio which is used to hold the completion handler
 | |
| 	 * and make the scrub rbio is similar to the other types
 | |
| 	 */
 | |
| 	ASSERT(!bio->bi_iter.bi_size);
 | |
| 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
 | |
| 
 | |
| 	/*
 | |
| 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
 | |
| 	 * to the end position, so this search can start from the first parity
 | |
| 	 * stripe.
 | |
| 	 */
 | |
| 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
 | |
| 		if (bioc->stripes[i].dev == scrub_dev) {
 | |
| 			rbio->scrubp = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	ASSERT(i < rbio->real_stripes);
 | |
| 
 | |
| 	/* Now we just support the sectorsize equals to page size */
 | |
| 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
 | |
| 	ASSERT(rbio->stripe_npages == stripe_nsectors);
 | |
| 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have already increased bio_counter when getting bioc, record it
 | |
| 	 * so we can free it at rbio_orig_end_io().
 | |
| 	 */
 | |
| 	rbio->generic_bio_cnt = 1;
 | |
| 
 | |
| 	return rbio;
 | |
| }
 | |
| 
 | |
| /* Used for both parity scrub and missing. */
 | |
| void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
 | |
| 			    u64 logical)
 | |
| {
 | |
| 	int stripe_offset;
 | |
| 	int index;
 | |
| 
 | |
| 	ASSERT(logical >= rbio->bioc->raid_map[0]);
 | |
| 	ASSERT(logical + PAGE_SIZE <= rbio->bioc->raid_map[0] +
 | |
| 				rbio->stripe_len * rbio->nr_data);
 | |
| 	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
 | |
| 	index = stripe_offset >> PAGE_SHIFT;
 | |
| 	rbio->bio_pages[index] = page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We just scrub the parity that we have correct data on the same horizontal,
 | |
|  * so we needn't allocate all pages for all the stripes.
 | |
|  */
 | |
| static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 	int bit;
 | |
| 	int index;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
 | |
| 		for (i = 0; i < rbio->real_stripes; i++) {
 | |
| 			index = i * rbio->stripe_npages + bit;
 | |
| 			if (rbio->stripe_pages[index])
 | |
| 				continue;
 | |
| 
 | |
| 			page = alloc_page(GFP_NOFS);
 | |
| 			if (!page)
 | |
| 				return -ENOMEM;
 | |
| 			rbio->stripe_pages[index] = page;
 | |
| 		}
 | |
| 	}
 | |
| 	index_stripe_sectors(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 | |
| 					 int need_check)
 | |
| {
 | |
| 	struct btrfs_io_context *bioc = rbio->bioc;
 | |
| 	const u32 sectorsize = bioc->fs_info->sectorsize;
 | |
| 	void **pointers = rbio->finish_pointers;
 | |
| 	unsigned long *pbitmap = rbio->finish_pbitmap;
 | |
| 	int nr_data = rbio->nr_data;
 | |
| 	int stripe;
 | |
| 	int sectornr;
 | |
| 	bool has_qstripe;
 | |
| 	struct sector_ptr p_sector = { 0 };
 | |
| 	struct sector_ptr q_sector = { 0 };
 | |
| 	struct bio_list bio_list;
 | |
| 	struct bio *bio;
 | |
| 	int is_replace = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	if (rbio->real_stripes - rbio->nr_data == 1)
 | |
| 		has_qstripe = false;
 | |
| 	else if (rbio->real_stripes - rbio->nr_data == 2)
 | |
| 		has_qstripe = true;
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
 | |
| 		is_replace = 1;
 | |
| 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_nsectors);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because the higher layers(scrubber) are unlikely to
 | |
| 	 * use this area of the disk again soon, so don't cache
 | |
| 	 * it.
 | |
| 	 */
 | |
| 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| 
 | |
| 	if (!need_check)
 | |
| 		goto writeback;
 | |
| 
 | |
| 	p_sector.page = alloc_page(GFP_NOFS);
 | |
| 	if (!p_sector.page)
 | |
| 		goto cleanup;
 | |
| 	p_sector.pgoff = 0;
 | |
| 	p_sector.uptodate = 1;
 | |
| 
 | |
| 	if (has_qstripe) {
 | |
| 		/* RAID6, allocate and map temp space for the Q stripe */
 | |
| 		q_sector.page = alloc_page(GFP_NOFS);
 | |
| 		if (!q_sector.page) {
 | |
| 			__free_page(p_sector.page);
 | |
| 			p_sector.page = NULL;
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 		q_sector.pgoff = 0;
 | |
| 		q_sector.uptodate = 1;
 | |
| 		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 
 | |
| 	/* Map the parity stripe just once */
 | |
| 	pointers[nr_data] = kmap_local_page(p_sector.page);
 | |
| 
 | |
| 	for_each_set_bit(sectornr, rbio->dbitmap, rbio->stripe_nsectors) {
 | |
| 		struct sector_ptr *sector;
 | |
| 		void *parity;
 | |
| 
 | |
| 		/* first collect one page from each data stripe */
 | |
| 		for (stripe = 0; stripe < nr_data; stripe++) {
 | |
| 			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
 | |
| 			pointers[stripe] = kmap_local_page(sector->page) +
 | |
| 					   sector->pgoff;
 | |
| 		}
 | |
| 
 | |
| 		if (has_qstripe) {
 | |
| 			/* RAID6, call the library function to fill in our P/Q */
 | |
| 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
 | |
| 						pointers);
 | |
| 		} else {
 | |
| 			/* raid5 */
 | |
| 			memcpy(pointers[nr_data], pointers[0], sectorsize);
 | |
| 			run_xor(pointers + 1, nr_data - 1, sectorsize);
 | |
| 		}
 | |
| 
 | |
| 		/* Check scrubbing parity and repair it */
 | |
| 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
 | |
| 		parity = kmap_local_page(sector->page) + sector->pgoff;
 | |
| 		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
 | |
| 			memcpy(parity, pointers[rbio->scrubp], sectorsize);
 | |
| 		else
 | |
| 			/* Parity is right, needn't writeback */
 | |
| 			bitmap_clear(rbio->dbitmap, sectornr, 1);
 | |
| 		kunmap_local(parity);
 | |
| 
 | |
| 		for (stripe = nr_data - 1; stripe >= 0; stripe--)
 | |
| 			kunmap_local(pointers[stripe]);
 | |
| 	}
 | |
| 
 | |
| 	kunmap_local(pointers[nr_data]);
 | |
| 	__free_page(p_sector.page);
 | |
| 	p_sector.page = NULL;
 | |
| 	if (q_sector.page) {
 | |
| 		kunmap_local(pointers[rbio->real_stripes - 1]);
 | |
| 		__free_page(q_sector.page);
 | |
| 		q_sector.page = NULL;
 | |
| 	}
 | |
| 
 | |
| writeback:
 | |
| 	/*
 | |
| 	 * time to start writing.  Make bios for everything from the
 | |
| 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
 | |
| 	 * everything else.
 | |
| 	 */
 | |
| 	for_each_set_bit(sectornr, rbio->dbitmap, rbio->stripe_nsectors) {
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
 | |
| 		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
 | |
| 					 sectornr, rbio->stripe_len, REQ_OP_WRITE);
 | |
| 		if (ret)
 | |
| 			goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_replace)
 | |
| 		goto submit_write;
 | |
| 
 | |
| 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
 | |
| 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
 | |
| 				       bioc->tgtdev_map[rbio->scrubp],
 | |
| 				       sectornr, rbio->stripe_len, REQ_OP_WRITE);
 | |
| 		if (ret)
 | |
| 			goto cleanup;
 | |
| 	}
 | |
| 
 | |
| submit_write:
 | |
| 	nr_data = bio_list_size(&bio_list);
 | |
| 	if (!nr_data) {
 | |
| 		/* Every parity is right */
 | |
| 		rbio_orig_end_io(rbio, BLK_STS_OK);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&rbio->stripes_pending, nr_data);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bio_list))) {
 | |
| 		bio->bi_end_io = raid_write_end_io;
 | |
| 
 | |
| 		submit_bio(bio);
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bio_list)))
 | |
| 		bio_put(bio);
 | |
| }
 | |
| 
 | |
| static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
 | |
| {
 | |
| 	if (stripe >= 0 && stripe < rbio->nr_data)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While we're doing the parity check and repair, we could have errors
 | |
|  * in reading pages off the disk.  This checks for errors and if we're
 | |
|  * not able to read the page it'll trigger parity reconstruction.  The
 | |
|  * parity scrub will be finished after we've reconstructed the failed
 | |
|  * stripes
 | |
|  */
 | |
| static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	if (rbio->faila >= 0 || rbio->failb >= 0) {
 | |
| 		int dfail = 0, failp = -1;
 | |
| 
 | |
| 		if (is_data_stripe(rbio, rbio->faila))
 | |
| 			dfail++;
 | |
| 		else if (is_parity_stripe(rbio->faila))
 | |
| 			failp = rbio->faila;
 | |
| 
 | |
| 		if (is_data_stripe(rbio, rbio->failb))
 | |
| 			dfail++;
 | |
| 		else if (is_parity_stripe(rbio->failb))
 | |
| 			failp = rbio->failb;
 | |
| 
 | |
| 		/*
 | |
| 		 * Because we can not use a scrubbing parity to repair
 | |
| 		 * the data, so the capability of the repair is declined.
 | |
| 		 * (In the case of RAID5, we can not repair anything)
 | |
| 		 */
 | |
| 		if (dfail > rbio->bioc->max_errors - 1)
 | |
| 			goto cleanup;
 | |
| 
 | |
| 		/*
 | |
| 		 * If all data is good, only parity is correctly, just
 | |
| 		 * repair the parity.
 | |
| 		 */
 | |
| 		if (dfail == 0) {
 | |
| 			finish_parity_scrub(rbio, 0);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Here means we got one corrupted data stripe and one
 | |
| 		 * corrupted parity on RAID6, if the corrupted parity
 | |
| 		 * is scrubbing parity, luckily, use the other one to repair
 | |
| 		 * the data, or we can not repair the data stripe.
 | |
| 		 */
 | |
| 		if (failp != rbio->scrubp)
 | |
| 			goto cleanup;
 | |
| 
 | |
| 		__raid_recover_end_io(rbio);
 | |
| 	} else {
 | |
| 		finish_parity_scrub(rbio, 1);
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * end io for the read phase of the rmw cycle.  All the bios here are physical
 | |
|  * stripe bios we've read from the disk so we can recalculate the parity of the
 | |
|  * stripe.
 | |
|  *
 | |
|  * This will usually kick off finish_rmw once all the bios are read in, but it
 | |
|  * may trigger parity reconstruction if we had any errors along the way
 | |
|  */
 | |
| static void raid56_parity_scrub_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		fail_bio_stripe(rbio, bio);
 | |
| 	else
 | |
| 		set_bio_pages_uptodate(bio);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * this will normally call finish_rmw to start our write
 | |
| 	 * but if there are any failed stripes we'll reconstruct
 | |
| 	 * from parity first
 | |
| 	 */
 | |
| 	validate_rbio_for_parity_scrub(rbio);
 | |
| }
 | |
| 
 | |
| static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bios_to_read = 0;
 | |
| 	struct bio_list bio_list;
 | |
| 	int ret;
 | |
| 	int sectornr;
 | |
| 	int stripe;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	ret = alloc_rbio_essential_pages(rbio);
 | |
| 	if (ret)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 	/*
 | |
| 	 * build a list of bios to read all the missing parts of this
 | |
| 	 * stripe
 | |
| 	 */
 | |
| 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 		for_each_set_bit(sectornr , rbio->dbitmap, rbio->stripe_nsectors) {
 | |
| 			struct sector_ptr *sector;
 | |
| 			/*
 | |
| 			 * We want to find all the sectors missing from the
 | |
| 			 * rbio and read them from the disk.  If * sector_in_rbio()
 | |
| 			 * finds a sector in the bio list we don't need to read
 | |
| 			 * it off the stripe.
 | |
| 			 */
 | |
| 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
 | |
| 			if (sector)
 | |
| 				continue;
 | |
| 
 | |
| 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 			/*
 | |
| 			 * The bio cache may have handed us an uptodate sector.
 | |
| 			 * If so, be happy and use it.
 | |
| 			 */
 | |
| 			if (sector->uptodate)
 | |
| 				continue;
 | |
| 
 | |
| 			ret = rbio_add_io_sector(rbio, &bio_list, sector,
 | |
| 						 stripe, sectornr, rbio->stripe_len,
 | |
| 						 REQ_OP_READ);
 | |
| 			if (ret)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bios_to_read = bio_list_size(&bio_list);
 | |
| 	if (!bios_to_read) {
 | |
| 		/*
 | |
| 		 * this can happen if others have merged with
 | |
| 		 * us, it means there is nothing left to read.
 | |
| 		 * But if there are missing devices it may not be
 | |
| 		 * safe to do the full stripe write yet.
 | |
| 		 */
 | |
| 		goto finish;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The bioc may be freed once we submit the last bio. Make sure not to
 | |
| 	 * touch it after that.
 | |
| 	 */
 | |
| 	atomic_set(&rbio->stripes_pending, bios_to_read);
 | |
| 	while ((bio = bio_list_pop(&bio_list))) {
 | |
| 		bio->bi_end_io = raid56_parity_scrub_end_io;
 | |
| 
 | |
| 		btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 | |
| 
 | |
| 		submit_bio(bio);
 | |
| 	}
 | |
| 	/* the actual write will happen once the reads are done */
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bio_list)))
 | |
| 		bio_put(bio);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| finish:
 | |
| 	validate_rbio_for_parity_scrub(rbio);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = container_of(work, struct btrfs_raid_bio, work);
 | |
| 	raid56_parity_scrub_stripe(rbio);
 | |
| }
 | |
| 
 | |
| void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (!lock_stripe_add(rbio))
 | |
| 		start_async_work(rbio, scrub_parity_work);
 | |
| }
 | |
| 
 | |
| /* The following code is used for dev replace of a missing RAID 5/6 device. */
 | |
| 
 | |
| struct btrfs_raid_bio *
 | |
| raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc,
 | |
| 			  u64 length)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bioc->fs_info;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = alloc_rbio(fs_info, bioc, length);
 | |
| 	if (IS_ERR(rbio))
 | |
| 		return NULL;
 | |
| 
 | |
| 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
 | |
| 	bio_list_add(&rbio->bio_list, bio);
 | |
| 	/*
 | |
| 	 * This is a special bio which is used to hold the completion handler
 | |
| 	 * and make the scrub rbio is similar to the other types
 | |
| 	 */
 | |
| 	ASSERT(!bio->bi_iter.bi_size);
 | |
| 
 | |
| 	rbio->faila = find_logical_bio_stripe(rbio, bio);
 | |
| 	if (rbio->faila == -1) {
 | |
| 		BUG();
 | |
| 		kfree(rbio);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When we get bioc, we have already increased bio_counter, record it
 | |
| 	 * so we can free it at rbio_orig_end_io()
 | |
| 	 */
 | |
| 	rbio->generic_bio_cnt = 1;
 | |
| 
 | |
| 	return rbio;
 | |
| }
 | |
| 
 | |
| void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (!lock_stripe_add(rbio))
 | |
| 		start_async_work(rbio, read_rebuild_work);
 | |
| }
 |