mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	When using mutex_acquire_nest() with a nest_lock, lockdep refcounts the number of acquired lockdep_maps of mutexes of the same class, and also keeps a pointer to the first acquired lockdep_map of a class. That pointer is then used for various comparison-, printing- and checking purposes, but there is no mechanism to actively ensure that lockdep_map stays in memory. Instead, a warning is printed if the lockdep_map is freed and there are still held locks of the same lock class, even if the lockdep_map itself has been released. In the context of WW/WD transactions that means that if a user unlocks and frees a ww_mutex from within an ongoing ww transaction, and that mutex happens to be the first ww_mutex grabbed in the transaction, such a warning is printed and there might be a risk of a UAF. Note that this is only problem when lockdep is enabled and affects only dereferences of struct lockdep_map. Adjust to this by adding a fake lockdep_map to the acquired context and make sure it is the first acquired lockdep map of the associated ww_mutex class. Then hold it for the duration of the WW/WD transaction. This has the side effect that trying to lock a ww mutex *without* a ww_acquire_context but where a such context has been acquire, we'd see a lockdep splat. The test-ww_mutex.c selftest attempts to do that, so modify that particular test to not acquire a ww_acquire_context if it is not going to be used. Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20241009092031.6356-1-thomas.hellstrom@linux.intel.com
		
			
				
	
	
		
			702 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			702 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 * Module-based API test facility for ww_mutexes
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
 | 
						|
#include <linux/completion.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/prandom.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/ww_mutex.h>
 | 
						|
 | 
						|
static DEFINE_WD_CLASS(ww_class);
 | 
						|
struct workqueue_struct *wq;
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 | 
						|
#define ww_acquire_init_noinject(a, b) do { \
 | 
						|
		ww_acquire_init((a), (b)); \
 | 
						|
		(a)->deadlock_inject_countdown = ~0U; \
 | 
						|
	} while (0)
 | 
						|
#else
 | 
						|
#define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
 | 
						|
#endif
 | 
						|
 | 
						|
struct test_mutex {
 | 
						|
	struct work_struct work;
 | 
						|
	struct ww_mutex mutex;
 | 
						|
	struct completion ready, go, done;
 | 
						|
	unsigned int flags;
 | 
						|
};
 | 
						|
 | 
						|
#define TEST_MTX_SPIN BIT(0)
 | 
						|
#define TEST_MTX_TRY BIT(1)
 | 
						|
#define TEST_MTX_CTX BIT(2)
 | 
						|
#define __TEST_MTX_LAST BIT(3)
 | 
						|
 | 
						|
static void test_mutex_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
 | 
						|
 | 
						|
	complete(&mtx->ready);
 | 
						|
	wait_for_completion(&mtx->go);
 | 
						|
 | 
						|
	if (mtx->flags & TEST_MTX_TRY) {
 | 
						|
		while (!ww_mutex_trylock(&mtx->mutex, NULL))
 | 
						|
			cond_resched();
 | 
						|
	} else {
 | 
						|
		ww_mutex_lock(&mtx->mutex, NULL);
 | 
						|
	}
 | 
						|
	complete(&mtx->done);
 | 
						|
	ww_mutex_unlock(&mtx->mutex);
 | 
						|
}
 | 
						|
 | 
						|
static int __test_mutex(unsigned int flags)
 | 
						|
{
 | 
						|
#define TIMEOUT (HZ / 16)
 | 
						|
	struct test_mutex mtx;
 | 
						|
	struct ww_acquire_ctx ctx;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ww_mutex_init(&mtx.mutex, &ww_class);
 | 
						|
	if (flags & TEST_MTX_CTX)
 | 
						|
		ww_acquire_init(&ctx, &ww_class);
 | 
						|
 | 
						|
	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
 | 
						|
	init_completion(&mtx.ready);
 | 
						|
	init_completion(&mtx.go);
 | 
						|
	init_completion(&mtx.done);
 | 
						|
	mtx.flags = flags;
 | 
						|
 | 
						|
	schedule_work(&mtx.work);
 | 
						|
 | 
						|
	wait_for_completion(&mtx.ready);
 | 
						|
	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
 | 
						|
	complete(&mtx.go);
 | 
						|
	if (flags & TEST_MTX_SPIN) {
 | 
						|
		unsigned long timeout = jiffies + TIMEOUT;
 | 
						|
 | 
						|
		ret = 0;
 | 
						|
		do {
 | 
						|
			if (completion_done(&mtx.done)) {
 | 
						|
				ret = -EINVAL;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			cond_resched();
 | 
						|
		} while (time_before(jiffies, timeout));
 | 
						|
	} else {
 | 
						|
		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
 | 
						|
	}
 | 
						|
	ww_mutex_unlock(&mtx.mutex);
 | 
						|
	if (flags & TEST_MTX_CTX)
 | 
						|
		ww_acquire_fini(&ctx);
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		pr_err("%s(flags=%x): mutual exclusion failure\n",
 | 
						|
		       __func__, flags);
 | 
						|
		ret = -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	flush_work(&mtx.work);
 | 
						|
	destroy_work_on_stack(&mtx.work);
 | 
						|
	return ret;
 | 
						|
#undef TIMEOUT
 | 
						|
}
 | 
						|
 | 
						|
static int test_mutex(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < __TEST_MTX_LAST; i++) {
 | 
						|
		ret = __test_mutex(i);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int test_aa(bool trylock)
 | 
						|
{
 | 
						|
	struct ww_mutex mutex;
 | 
						|
	struct ww_acquire_ctx ctx;
 | 
						|
	int ret;
 | 
						|
	const char *from = trylock ? "trylock" : "lock";
 | 
						|
 | 
						|
	ww_mutex_init(&mutex, &ww_class);
 | 
						|
	ww_acquire_init(&ctx, &ww_class);
 | 
						|
 | 
						|
	if (!trylock) {
 | 
						|
		ret = ww_mutex_lock(&mutex, &ctx);
 | 
						|
		if (ret) {
 | 
						|
			pr_err("%s: initial lock failed!\n", __func__);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		ret = !ww_mutex_trylock(&mutex, &ctx);
 | 
						|
		if (ret) {
 | 
						|
			pr_err("%s: initial trylock failed!\n", __func__);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (ww_mutex_trylock(&mutex, NULL))  {
 | 
						|
		pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
 | 
						|
		ww_mutex_unlock(&mutex);
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ww_mutex_trylock(&mutex, &ctx))  {
 | 
						|
		pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
 | 
						|
		ww_mutex_unlock(&mutex);
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = ww_mutex_lock(&mutex, &ctx);
 | 
						|
	if (ret != -EALREADY) {
 | 
						|
		pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
 | 
						|
		       __func__, ret, from);
 | 
						|
		if (!ret)
 | 
						|
			ww_mutex_unlock(&mutex);
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ww_mutex_unlock(&mutex);
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	ww_acquire_fini(&ctx);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
struct test_abba {
 | 
						|
	struct work_struct work;
 | 
						|
	struct ww_mutex a_mutex;
 | 
						|
	struct ww_mutex b_mutex;
 | 
						|
	struct completion a_ready;
 | 
						|
	struct completion b_ready;
 | 
						|
	bool resolve, trylock;
 | 
						|
	int result;
 | 
						|
};
 | 
						|
 | 
						|
static void test_abba_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct test_abba *abba = container_of(work, typeof(*abba), work);
 | 
						|
	struct ww_acquire_ctx ctx;
 | 
						|
	int err;
 | 
						|
 | 
						|
	ww_acquire_init_noinject(&ctx, &ww_class);
 | 
						|
	if (!abba->trylock)
 | 
						|
		ww_mutex_lock(&abba->b_mutex, &ctx);
 | 
						|
	else
 | 
						|
		WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
 | 
						|
 | 
						|
	WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
 | 
						|
 | 
						|
	complete(&abba->b_ready);
 | 
						|
	wait_for_completion(&abba->a_ready);
 | 
						|
 | 
						|
	err = ww_mutex_lock(&abba->a_mutex, &ctx);
 | 
						|
	if (abba->resolve && err == -EDEADLK) {
 | 
						|
		ww_mutex_unlock(&abba->b_mutex);
 | 
						|
		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
 | 
						|
		err = ww_mutex_lock(&abba->b_mutex, &ctx);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!err)
 | 
						|
		ww_mutex_unlock(&abba->a_mutex);
 | 
						|
	ww_mutex_unlock(&abba->b_mutex);
 | 
						|
	ww_acquire_fini(&ctx);
 | 
						|
 | 
						|
	abba->result = err;
 | 
						|
}
 | 
						|
 | 
						|
static int test_abba(bool trylock, bool resolve)
 | 
						|
{
 | 
						|
	struct test_abba abba;
 | 
						|
	struct ww_acquire_ctx ctx;
 | 
						|
	int err, ret;
 | 
						|
 | 
						|
	ww_mutex_init(&abba.a_mutex, &ww_class);
 | 
						|
	ww_mutex_init(&abba.b_mutex, &ww_class);
 | 
						|
	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
 | 
						|
	init_completion(&abba.a_ready);
 | 
						|
	init_completion(&abba.b_ready);
 | 
						|
	abba.trylock = trylock;
 | 
						|
	abba.resolve = resolve;
 | 
						|
 | 
						|
	schedule_work(&abba.work);
 | 
						|
 | 
						|
	ww_acquire_init_noinject(&ctx, &ww_class);
 | 
						|
	if (!trylock)
 | 
						|
		ww_mutex_lock(&abba.a_mutex, &ctx);
 | 
						|
	else
 | 
						|
		WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
 | 
						|
 | 
						|
	WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
 | 
						|
 | 
						|
	complete(&abba.a_ready);
 | 
						|
	wait_for_completion(&abba.b_ready);
 | 
						|
 | 
						|
	err = ww_mutex_lock(&abba.b_mutex, &ctx);
 | 
						|
	if (resolve && err == -EDEADLK) {
 | 
						|
		ww_mutex_unlock(&abba.a_mutex);
 | 
						|
		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
 | 
						|
		err = ww_mutex_lock(&abba.a_mutex, &ctx);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!err)
 | 
						|
		ww_mutex_unlock(&abba.b_mutex);
 | 
						|
	ww_mutex_unlock(&abba.a_mutex);
 | 
						|
	ww_acquire_fini(&ctx);
 | 
						|
 | 
						|
	flush_work(&abba.work);
 | 
						|
	destroy_work_on_stack(&abba.work);
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	if (resolve) {
 | 
						|
		if (err || abba.result) {
 | 
						|
			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
 | 
						|
			       __func__, err, abba.result);
 | 
						|
			ret = -EINVAL;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (err != -EDEADLK && abba.result != -EDEADLK) {
 | 
						|
			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
 | 
						|
			       __func__, err, abba.result);
 | 
						|
			ret = -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
struct test_cycle {
 | 
						|
	struct work_struct work;
 | 
						|
	struct ww_mutex a_mutex;
 | 
						|
	struct ww_mutex *b_mutex;
 | 
						|
	struct completion *a_signal;
 | 
						|
	struct completion b_signal;
 | 
						|
	int result;
 | 
						|
};
 | 
						|
 | 
						|
static void test_cycle_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
 | 
						|
	struct ww_acquire_ctx ctx;
 | 
						|
	int err, erra = 0;
 | 
						|
 | 
						|
	ww_acquire_init_noinject(&ctx, &ww_class);
 | 
						|
	ww_mutex_lock(&cycle->a_mutex, &ctx);
 | 
						|
 | 
						|
	complete(cycle->a_signal);
 | 
						|
	wait_for_completion(&cycle->b_signal);
 | 
						|
 | 
						|
	err = ww_mutex_lock(cycle->b_mutex, &ctx);
 | 
						|
	if (err == -EDEADLK) {
 | 
						|
		err = 0;
 | 
						|
		ww_mutex_unlock(&cycle->a_mutex);
 | 
						|
		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
 | 
						|
		erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!err)
 | 
						|
		ww_mutex_unlock(cycle->b_mutex);
 | 
						|
	if (!erra)
 | 
						|
		ww_mutex_unlock(&cycle->a_mutex);
 | 
						|
	ww_acquire_fini(&ctx);
 | 
						|
 | 
						|
	cycle->result = err ?: erra;
 | 
						|
}
 | 
						|
 | 
						|
static int __test_cycle(unsigned int nthreads)
 | 
						|
{
 | 
						|
	struct test_cycle *cycles;
 | 
						|
	unsigned int n, last = nthreads - 1;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
 | 
						|
	if (!cycles)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	for (n = 0; n < nthreads; n++) {
 | 
						|
		struct test_cycle *cycle = &cycles[n];
 | 
						|
 | 
						|
		ww_mutex_init(&cycle->a_mutex, &ww_class);
 | 
						|
		if (n == last)
 | 
						|
			cycle->b_mutex = &cycles[0].a_mutex;
 | 
						|
		else
 | 
						|
			cycle->b_mutex = &cycles[n + 1].a_mutex;
 | 
						|
 | 
						|
		if (n == 0)
 | 
						|
			cycle->a_signal = &cycles[last].b_signal;
 | 
						|
		else
 | 
						|
			cycle->a_signal = &cycles[n - 1].b_signal;
 | 
						|
		init_completion(&cycle->b_signal);
 | 
						|
 | 
						|
		INIT_WORK(&cycle->work, test_cycle_work);
 | 
						|
		cycle->result = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	for (n = 0; n < nthreads; n++)
 | 
						|
		queue_work(wq, &cycles[n].work);
 | 
						|
 | 
						|
	flush_workqueue(wq);
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	for (n = 0; n < nthreads; n++) {
 | 
						|
		struct test_cycle *cycle = &cycles[n];
 | 
						|
 | 
						|
		if (!cycle->result)
 | 
						|
			continue;
 | 
						|
 | 
						|
		pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
 | 
						|
		       n, nthreads, cycle->result);
 | 
						|
		ret = -EINVAL;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	for (n = 0; n < nthreads; n++)
 | 
						|
		ww_mutex_destroy(&cycles[n].a_mutex);
 | 
						|
	kfree(cycles);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int test_cycle(unsigned int ncpus)
 | 
						|
{
 | 
						|
	unsigned int n;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	for (n = 2; n <= ncpus + 1; n++) {
 | 
						|
		ret = __test_cycle(n);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct stress {
 | 
						|
	struct work_struct work;
 | 
						|
	struct ww_mutex *locks;
 | 
						|
	unsigned long timeout;
 | 
						|
	int nlocks;
 | 
						|
};
 | 
						|
 | 
						|
struct rnd_state rng;
 | 
						|
DEFINE_SPINLOCK(rng_lock);
 | 
						|
 | 
						|
static inline u32 prandom_u32_below(u32 ceil)
 | 
						|
{
 | 
						|
	u32 ret;
 | 
						|
 | 
						|
	spin_lock(&rng_lock);
 | 
						|
	ret = prandom_u32_state(&rng) % ceil;
 | 
						|
	spin_unlock(&rng_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int *get_random_order(int count)
 | 
						|
{
 | 
						|
	int *order;
 | 
						|
	int n, r, tmp;
 | 
						|
 | 
						|
	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
 | 
						|
	if (!order)
 | 
						|
		return order;
 | 
						|
 | 
						|
	for (n = 0; n < count; n++)
 | 
						|
		order[n] = n;
 | 
						|
 | 
						|
	for (n = count - 1; n > 1; n--) {
 | 
						|
		r = prandom_u32_below(n + 1);
 | 
						|
		if (r != n) {
 | 
						|
			tmp = order[n];
 | 
						|
			order[n] = order[r];
 | 
						|
			order[r] = tmp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return order;
 | 
						|
}
 | 
						|
 | 
						|
static void dummy_load(struct stress *stress)
 | 
						|
{
 | 
						|
	usleep_range(1000, 2000);
 | 
						|
}
 | 
						|
 | 
						|
static void stress_inorder_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct stress *stress = container_of(work, typeof(*stress), work);
 | 
						|
	const int nlocks = stress->nlocks;
 | 
						|
	struct ww_mutex *locks = stress->locks;
 | 
						|
	struct ww_acquire_ctx ctx;
 | 
						|
	int *order;
 | 
						|
 | 
						|
	order = get_random_order(nlocks);
 | 
						|
	if (!order)
 | 
						|
		return;
 | 
						|
 | 
						|
	do {
 | 
						|
		int contended = -1;
 | 
						|
		int n, err;
 | 
						|
 | 
						|
		ww_acquire_init(&ctx, &ww_class);
 | 
						|
retry:
 | 
						|
		err = 0;
 | 
						|
		for (n = 0; n < nlocks; n++) {
 | 
						|
			if (n == contended)
 | 
						|
				continue;
 | 
						|
 | 
						|
			err = ww_mutex_lock(&locks[order[n]], &ctx);
 | 
						|
			if (err < 0)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (!err)
 | 
						|
			dummy_load(stress);
 | 
						|
 | 
						|
		if (contended > n)
 | 
						|
			ww_mutex_unlock(&locks[order[contended]]);
 | 
						|
		contended = n;
 | 
						|
		while (n--)
 | 
						|
			ww_mutex_unlock(&locks[order[n]]);
 | 
						|
 | 
						|
		if (err == -EDEADLK) {
 | 
						|
			if (!time_after(jiffies, stress->timeout)) {
 | 
						|
				ww_mutex_lock_slow(&locks[order[contended]], &ctx);
 | 
						|
				goto retry;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		ww_acquire_fini(&ctx);
 | 
						|
		if (err) {
 | 
						|
			pr_err_once("stress (%s) failed with %d\n",
 | 
						|
				    __func__, err);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	} while (!time_after(jiffies, stress->timeout));
 | 
						|
 | 
						|
	kfree(order);
 | 
						|
}
 | 
						|
 | 
						|
struct reorder_lock {
 | 
						|
	struct list_head link;
 | 
						|
	struct ww_mutex *lock;
 | 
						|
};
 | 
						|
 | 
						|
static void stress_reorder_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct stress *stress = container_of(work, typeof(*stress), work);
 | 
						|
	LIST_HEAD(locks);
 | 
						|
	struct ww_acquire_ctx ctx;
 | 
						|
	struct reorder_lock *ll, *ln;
 | 
						|
	int *order;
 | 
						|
	int n, err;
 | 
						|
 | 
						|
	order = get_random_order(stress->nlocks);
 | 
						|
	if (!order)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (n = 0; n < stress->nlocks; n++) {
 | 
						|
		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
 | 
						|
		if (!ll)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		ll->lock = &stress->locks[order[n]];
 | 
						|
		list_add(&ll->link, &locks);
 | 
						|
	}
 | 
						|
	kfree(order);
 | 
						|
	order = NULL;
 | 
						|
 | 
						|
	do {
 | 
						|
		ww_acquire_init(&ctx, &ww_class);
 | 
						|
 | 
						|
		list_for_each_entry(ll, &locks, link) {
 | 
						|
			err = ww_mutex_lock(ll->lock, &ctx);
 | 
						|
			if (!err)
 | 
						|
				continue;
 | 
						|
 | 
						|
			ln = ll;
 | 
						|
			list_for_each_entry_continue_reverse(ln, &locks, link)
 | 
						|
				ww_mutex_unlock(ln->lock);
 | 
						|
 | 
						|
			if (err != -EDEADLK) {
 | 
						|
				pr_err_once("stress (%s) failed with %d\n",
 | 
						|
					    __func__, err);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			ww_mutex_lock_slow(ll->lock, &ctx);
 | 
						|
			list_move(&ll->link, &locks); /* restarts iteration */
 | 
						|
		}
 | 
						|
 | 
						|
		dummy_load(stress);
 | 
						|
		list_for_each_entry(ll, &locks, link)
 | 
						|
			ww_mutex_unlock(ll->lock);
 | 
						|
 | 
						|
		ww_acquire_fini(&ctx);
 | 
						|
	} while (!time_after(jiffies, stress->timeout));
 | 
						|
 | 
						|
out:
 | 
						|
	list_for_each_entry_safe(ll, ln, &locks, link)
 | 
						|
		kfree(ll);
 | 
						|
	kfree(order);
 | 
						|
}
 | 
						|
 | 
						|
static void stress_one_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct stress *stress = container_of(work, typeof(*stress), work);
 | 
						|
	const int nlocks = stress->nlocks;
 | 
						|
	struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
 | 
						|
	int err;
 | 
						|
 | 
						|
	do {
 | 
						|
		err = ww_mutex_lock(lock, NULL);
 | 
						|
		if (!err) {
 | 
						|
			dummy_load(stress);
 | 
						|
			ww_mutex_unlock(lock);
 | 
						|
		} else {
 | 
						|
			pr_err_once("stress (%s) failed with %d\n",
 | 
						|
				    __func__, err);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	} while (!time_after(jiffies, stress->timeout));
 | 
						|
}
 | 
						|
 | 
						|
#define STRESS_INORDER BIT(0)
 | 
						|
#define STRESS_REORDER BIT(1)
 | 
						|
#define STRESS_ONE BIT(2)
 | 
						|
#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
 | 
						|
 | 
						|
static int stress(int nlocks, int nthreads, unsigned int flags)
 | 
						|
{
 | 
						|
	struct ww_mutex *locks;
 | 
						|
	struct stress *stress_array;
 | 
						|
	int n, count;
 | 
						|
 | 
						|
	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
 | 
						|
	if (!locks)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	stress_array = kmalloc_array(nthreads, sizeof(*stress_array),
 | 
						|
				     GFP_KERNEL);
 | 
						|
	if (!stress_array) {
 | 
						|
		kfree(locks);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	for (n = 0; n < nlocks; n++)
 | 
						|
		ww_mutex_init(&locks[n], &ww_class);
 | 
						|
 | 
						|
	count = 0;
 | 
						|
	for (n = 0; nthreads; n++) {
 | 
						|
		struct stress *stress;
 | 
						|
		void (*fn)(struct work_struct *work);
 | 
						|
 | 
						|
		fn = NULL;
 | 
						|
		switch (n & 3) {
 | 
						|
		case 0:
 | 
						|
			if (flags & STRESS_INORDER)
 | 
						|
				fn = stress_inorder_work;
 | 
						|
			break;
 | 
						|
		case 1:
 | 
						|
			if (flags & STRESS_REORDER)
 | 
						|
				fn = stress_reorder_work;
 | 
						|
			break;
 | 
						|
		case 2:
 | 
						|
			if (flags & STRESS_ONE)
 | 
						|
				fn = stress_one_work;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!fn)
 | 
						|
			continue;
 | 
						|
 | 
						|
		stress = &stress_array[count++];
 | 
						|
 | 
						|
		INIT_WORK(&stress->work, fn);
 | 
						|
		stress->locks = locks;
 | 
						|
		stress->nlocks = nlocks;
 | 
						|
		stress->timeout = jiffies + 2*HZ;
 | 
						|
 | 
						|
		queue_work(wq, &stress->work);
 | 
						|
		nthreads--;
 | 
						|
	}
 | 
						|
 | 
						|
	flush_workqueue(wq);
 | 
						|
 | 
						|
	for (n = 0; n < nlocks; n++)
 | 
						|
		ww_mutex_destroy(&locks[n]);
 | 
						|
	kfree(stress_array);
 | 
						|
	kfree(locks);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init test_ww_mutex_init(void)
 | 
						|
{
 | 
						|
	int ncpus = num_online_cpus();
 | 
						|
	int ret, i;
 | 
						|
 | 
						|
	printk(KERN_INFO "Beginning ww mutex selftests\n");
 | 
						|
 | 
						|
	prandom_seed_state(&rng, get_random_u64());
 | 
						|
 | 
						|
	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
 | 
						|
	if (!wq)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = test_mutex();
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = test_aa(false);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = test_aa(true);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
		ret = test_abba(i & 1, i & 2);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = test_cycle(ncpus);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = stress(16, 2*ncpus, STRESS_INORDER);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = stress(16, 2*ncpus, STRESS_REORDER);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = stress(2046, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	printk(KERN_INFO "All ww mutex selftests passed\n");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit test_ww_mutex_exit(void)
 | 
						|
{
 | 
						|
	destroy_workqueue(wq);
 | 
						|
}
 | 
						|
 | 
						|
module_init(test_ww_mutex_init);
 | 
						|
module_exit(test_ww_mutex_exit);
 | 
						|
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_AUTHOR("Intel Corporation");
 | 
						|
MODULE_DESCRIPTION("API test facility for ww_mutexes");
 |