mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 7dd5ad2d3e
			
		
	
	
		7dd5ad2d3e
		
	
	
	
	
		
			
			Revert commit bf9ad37dc8. It needs to be better encapsulated and
generalized.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
		
	
			
		
			
				
	
	
		
			4804 lines
		
	
	
	
		
			123 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4804 lines
		
	
	
	
		
			123 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/kernel/signal.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *
 | |
|  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
 | |
|  *
 | |
|  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
 | |
|  *		Changes to use preallocated sigqueue structures
 | |
|  *		to allow signals to be sent reliably.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/user.h>
 | |
| #include <linux/sched/debug.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/sched/cputime.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/coredump.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/signalfd.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/task_work.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/user_namespace.h>
 | |
| #include <linux/uprobes.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/audit.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/signal.h>
 | |
| 
 | |
| #include <asm/param.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/siginfo.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/syscall.h>	/* for syscall_get_* */
 | |
| 
 | |
| /*
 | |
|  * SLAB caches for signal bits.
 | |
|  */
 | |
| 
 | |
| static struct kmem_cache *sigqueue_cachep;
 | |
| 
 | |
| int print_fatal_signals __read_mostly;
 | |
| 
 | |
| static void __user *sig_handler(struct task_struct *t, int sig)
 | |
| {
 | |
| 	return t->sighand->action[sig - 1].sa.sa_handler;
 | |
| }
 | |
| 
 | |
| static inline bool sig_handler_ignored(void __user *handler, int sig)
 | |
| {
 | |
| 	/* Is it explicitly or implicitly ignored? */
 | |
| 	return handler == SIG_IGN ||
 | |
| 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
 | |
| }
 | |
| 
 | |
| static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
 | |
| {
 | |
| 	void __user *handler;
 | |
| 
 | |
| 	handler = sig_handler(t, sig);
 | |
| 
 | |
| 	/* SIGKILL and SIGSTOP may not be sent to the global init */
 | |
| 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
 | |
| 		return true;
 | |
| 
 | |
| 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
 | |
| 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Only allow kernel generated signals to this kthread */
 | |
| 	if (unlikely((t->flags & PF_KTHREAD) &&
 | |
| 		     (handler == SIG_KTHREAD_KERNEL) && !force))
 | |
| 		return true;
 | |
| 
 | |
| 	return sig_handler_ignored(handler, sig);
 | |
| }
 | |
| 
 | |
| static bool sig_ignored(struct task_struct *t, int sig, bool force)
 | |
| {
 | |
| 	/*
 | |
| 	 * Blocked signals are never ignored, since the
 | |
| 	 * signal handler may change by the time it is
 | |
| 	 * unblocked.
 | |
| 	 */
 | |
| 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tracers may want to know about even ignored signal unless it
 | |
| 	 * is SIGKILL which can't be reported anyway but can be ignored
 | |
| 	 * by SIGNAL_UNKILLABLE task.
 | |
| 	 */
 | |
| 	if (t->ptrace && sig != SIGKILL)
 | |
| 		return false;
 | |
| 
 | |
| 	return sig_task_ignored(t, sig, force);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-calculate pending state from the set of locally pending
 | |
|  * signals, globally pending signals, and blocked signals.
 | |
|  */
 | |
| static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 | |
| {
 | |
| 	unsigned long ready;
 | |
| 	long i;
 | |
| 
 | |
| 	switch (_NSIG_WORDS) {
 | |
| 	default:
 | |
| 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 | |
| 			ready |= signal->sig[i] &~ blocked->sig[i];
 | |
| 		break;
 | |
| 
 | |
| 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 | |
| 		ready |= signal->sig[2] &~ blocked->sig[2];
 | |
| 		ready |= signal->sig[1] &~ blocked->sig[1];
 | |
| 		ready |= signal->sig[0] &~ blocked->sig[0];
 | |
| 		break;
 | |
| 
 | |
| 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 | |
| 		ready |= signal->sig[0] &~ blocked->sig[0];
 | |
| 		break;
 | |
| 
 | |
| 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 | |
| 	}
 | |
| 	return ready !=	0;
 | |
| }
 | |
| 
 | |
| #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 | |
| 
 | |
| static bool recalc_sigpending_tsk(struct task_struct *t)
 | |
| {
 | |
| 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 | |
| 	    PENDING(&t->pending, &t->blocked) ||
 | |
| 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 | |
| 	    cgroup_task_frozen(t)) {
 | |
| 		set_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We must never clear the flag in another thread, or in current
 | |
| 	 * when it's possible the current syscall is returning -ERESTART*.
 | |
| 	 * So we don't clear it here, and only callers who know they should do.
 | |
| 	 */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 | |
|  * This is superfluous when called on current, the wakeup is a harmless no-op.
 | |
|  */
 | |
| void recalc_sigpending_and_wake(struct task_struct *t)
 | |
| {
 | |
| 	if (recalc_sigpending_tsk(t))
 | |
| 		signal_wake_up(t, 0);
 | |
| }
 | |
| 
 | |
| void recalc_sigpending(void)
 | |
| {
 | |
| 	if (!recalc_sigpending_tsk(current) && !freezing(current))
 | |
| 		clear_thread_flag(TIF_SIGPENDING);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(recalc_sigpending);
 | |
| 
 | |
| void calculate_sigpending(void)
 | |
| {
 | |
| 	/* Have any signals or users of TIF_SIGPENDING been delayed
 | |
| 	 * until after fork?
 | |
| 	 */
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	set_tsk_thread_flag(current, TIF_SIGPENDING);
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| }
 | |
| 
 | |
| /* Given the mask, find the first available signal that should be serviced. */
 | |
| 
 | |
| #define SYNCHRONOUS_MASK \
 | |
| 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 | |
| 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 | |
| 
 | |
| int next_signal(struct sigpending *pending, sigset_t *mask)
 | |
| {
 | |
| 	unsigned long i, *s, *m, x;
 | |
| 	int sig = 0;
 | |
| 
 | |
| 	s = pending->signal.sig;
 | |
| 	m = mask->sig;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the first word specially: it contains the
 | |
| 	 * synchronous signals that need to be dequeued first.
 | |
| 	 */
 | |
| 	x = *s &~ *m;
 | |
| 	if (x) {
 | |
| 		if (x & SYNCHRONOUS_MASK)
 | |
| 			x &= SYNCHRONOUS_MASK;
 | |
| 		sig = ffz(~x) + 1;
 | |
| 		return sig;
 | |
| 	}
 | |
| 
 | |
| 	switch (_NSIG_WORDS) {
 | |
| 	default:
 | |
| 		for (i = 1; i < _NSIG_WORDS; ++i) {
 | |
| 			x = *++s &~ *++m;
 | |
| 			if (!x)
 | |
| 				continue;
 | |
| 			sig = ffz(~x) + i*_NSIG_BPW + 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 2:
 | |
| 		x = s[1] &~ m[1];
 | |
| 		if (!x)
 | |
| 			break;
 | |
| 		sig = ffz(~x) + _NSIG_BPW + 1;
 | |
| 		break;
 | |
| 
 | |
| 	case 1:
 | |
| 		/* Nothing to do */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return sig;
 | |
| }
 | |
| 
 | |
| static inline void print_dropped_signal(int sig)
 | |
| {
 | |
| 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 | |
| 
 | |
| 	if (!print_fatal_signals)
 | |
| 		return;
 | |
| 
 | |
| 	if (!__ratelimit(&ratelimit_state))
 | |
| 		return;
 | |
| 
 | |
| 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 | |
| 				current->comm, current->pid, sig);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_set_jobctl_pending - set jobctl pending bits
 | |
|  * @task: target task
 | |
|  * @mask: pending bits to set
 | |
|  *
 | |
|  * Clear @mask from @task->jobctl.  @mask must be subset of
 | |
|  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 | |
|  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 | |
|  * cleared.  If @task is already being killed or exiting, this function
 | |
|  * becomes noop.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Must be called with @task->sighand->siglock held.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * %true if @mask is set, %false if made noop because @task was dying.
 | |
|  */
 | |
| bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 | |
| {
 | |
| 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 | |
| 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 | |
| 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 | |
| 
 | |
| 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (mask & JOBCTL_STOP_SIGMASK)
 | |
| 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 | |
| 
 | |
| 	task->jobctl |= mask;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_clear_jobctl_trapping - clear jobctl trapping bit
 | |
|  * @task: target task
 | |
|  *
 | |
|  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 | |
|  * Clear it and wake up the ptracer.  Note that we don't need any further
 | |
|  * locking.  @task->siglock guarantees that @task->parent points to the
 | |
|  * ptracer.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Must be called with @task->sighand->siglock held.
 | |
|  */
 | |
| void task_clear_jobctl_trapping(struct task_struct *task)
 | |
| {
 | |
| 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 | |
| 		task->jobctl &= ~JOBCTL_TRAPPING;
 | |
| 		smp_mb();	/* advised by wake_up_bit() */
 | |
| 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_clear_jobctl_pending - clear jobctl pending bits
 | |
|  * @task: target task
 | |
|  * @mask: pending bits to clear
 | |
|  *
 | |
|  * Clear @mask from @task->jobctl.  @mask must be subset of
 | |
|  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 | |
|  * STOP bits are cleared together.
 | |
|  *
 | |
|  * If clearing of @mask leaves no stop or trap pending, this function calls
 | |
|  * task_clear_jobctl_trapping().
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Must be called with @task->sighand->siglock held.
 | |
|  */
 | |
| void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 | |
| {
 | |
| 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 | |
| 
 | |
| 	if (mask & JOBCTL_STOP_PENDING)
 | |
| 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 | |
| 
 | |
| 	task->jobctl &= ~mask;
 | |
| 
 | |
| 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 | |
| 		task_clear_jobctl_trapping(task);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_participate_group_stop - participate in a group stop
 | |
|  * @task: task participating in a group stop
 | |
|  *
 | |
|  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 | |
|  * Group stop states are cleared and the group stop count is consumed if
 | |
|  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 | |
|  * stop, the appropriate `SIGNAL_*` flags are set.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Must be called with @task->sighand->siglock held.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * %true if group stop completion should be notified to the parent, %false
 | |
|  * otherwise.
 | |
|  */
 | |
| static bool task_participate_group_stop(struct task_struct *task)
 | |
| {
 | |
| 	struct signal_struct *sig = task->signal;
 | |
| 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 | |
| 
 | |
| 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 | |
| 
 | |
| 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 | |
| 
 | |
| 	if (!consume)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 | |
| 		sig->group_stop_count--;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell the caller to notify completion iff we are entering into a
 | |
| 	 * fresh group stop.  Read comment in do_signal_stop() for details.
 | |
| 	 */
 | |
| 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 | |
| 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void task_join_group_stop(struct task_struct *task)
 | |
| {
 | |
| 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 | |
| 	struct signal_struct *sig = current->signal;
 | |
| 
 | |
| 	if (sig->group_stop_count) {
 | |
| 		sig->group_stop_count++;
 | |
| 		mask |= JOBCTL_STOP_CONSUME;
 | |
| 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 | |
| 		return;
 | |
| 
 | |
| 	/* Have the new thread join an on-going signal group stop */
 | |
| 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocate a new signal queue record
 | |
|  * - this may be called without locks if and only if t == current, otherwise an
 | |
|  *   appropriate lock must be held to stop the target task from exiting
 | |
|  */
 | |
| static struct sigqueue *
 | |
| __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 | |
| 		 int override_rlimit, const unsigned int sigqueue_flags)
 | |
| {
 | |
| 	struct sigqueue *q = NULL;
 | |
| 	struct ucounts *ucounts = NULL;
 | |
| 	long sigpending;
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect access to @t credentials. This can go away when all
 | |
| 	 * callers hold rcu read lock.
 | |
| 	 *
 | |
| 	 * NOTE! A pending signal will hold on to the user refcount,
 | |
| 	 * and we get/put the refcount only when the sigpending count
 | |
| 	 * changes from/to zero.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	ucounts = task_ucounts(t);
 | |
| 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 | |
| 	rcu_read_unlock();
 | |
| 	if (!sigpending)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 | |
| 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 | |
| 	} else {
 | |
| 		print_dropped_signal(sig);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(q == NULL)) {
 | |
| 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 | |
| 	} else {
 | |
| 		INIT_LIST_HEAD(&q->list);
 | |
| 		q->flags = sigqueue_flags;
 | |
| 		q->ucounts = ucounts;
 | |
| 	}
 | |
| 	return q;
 | |
| }
 | |
| 
 | |
| static void __sigqueue_free(struct sigqueue *q)
 | |
| {
 | |
| 	if (q->flags & SIGQUEUE_PREALLOC)
 | |
| 		return;
 | |
| 	if (q->ucounts) {
 | |
| 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 | |
| 		q->ucounts = NULL;
 | |
| 	}
 | |
| 	kmem_cache_free(sigqueue_cachep, q);
 | |
| }
 | |
| 
 | |
| void flush_sigqueue(struct sigpending *queue)
 | |
| {
 | |
| 	struct sigqueue *q;
 | |
| 
 | |
| 	sigemptyset(&queue->signal);
 | |
| 	while (!list_empty(&queue->list)) {
 | |
| 		q = list_entry(queue->list.next, struct sigqueue , list);
 | |
| 		list_del_init(&q->list);
 | |
| 		__sigqueue_free(q);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush all pending signals for this kthread.
 | |
|  */
 | |
| void flush_signals(struct task_struct *t)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&t->sighand->siglock, flags);
 | |
| 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 	flush_sigqueue(&t->pending);
 | |
| 	flush_sigqueue(&t->signal->shared_pending);
 | |
| 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(flush_signals);
 | |
| 
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| static void __flush_itimer_signals(struct sigpending *pending)
 | |
| {
 | |
| 	sigset_t signal, retain;
 | |
| 	struct sigqueue *q, *n;
 | |
| 
 | |
| 	signal = pending->signal;
 | |
| 	sigemptyset(&retain);
 | |
| 
 | |
| 	list_for_each_entry_safe(q, n, &pending->list, list) {
 | |
| 		int sig = q->info.si_signo;
 | |
| 
 | |
| 		if (likely(q->info.si_code != SI_TIMER)) {
 | |
| 			sigaddset(&retain, sig);
 | |
| 		} else {
 | |
| 			sigdelset(&signal, sig);
 | |
| 			list_del_init(&q->list);
 | |
| 			__sigqueue_free(q);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sigorsets(&pending->signal, &signal, &retain);
 | |
| }
 | |
| 
 | |
| void flush_itimer_signals(void)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 | |
| 	__flush_itimer_signals(&tsk->pending);
 | |
| 	__flush_itimer_signals(&tsk->signal->shared_pending);
 | |
| 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ignore_signals(struct task_struct *t)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < _NSIG; ++i)
 | |
| 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 | |
| 
 | |
| 	flush_signals(t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush all handlers for a task.
 | |
|  */
 | |
| 
 | |
| void
 | |
| flush_signal_handlers(struct task_struct *t, int force_default)
 | |
| {
 | |
| 	int i;
 | |
| 	struct k_sigaction *ka = &t->sighand->action[0];
 | |
| 	for (i = _NSIG ; i != 0 ; i--) {
 | |
| 		if (force_default || ka->sa.sa_handler != SIG_IGN)
 | |
| 			ka->sa.sa_handler = SIG_DFL;
 | |
| 		ka->sa.sa_flags = 0;
 | |
| #ifdef __ARCH_HAS_SA_RESTORER
 | |
| 		ka->sa.sa_restorer = NULL;
 | |
| #endif
 | |
| 		sigemptyset(&ka->sa.sa_mask);
 | |
| 		ka++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool unhandled_signal(struct task_struct *tsk, int sig)
 | |
| {
 | |
| 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 | |
| 	if (is_global_init(tsk))
 | |
| 		return true;
 | |
| 
 | |
| 	if (handler != SIG_IGN && handler != SIG_DFL)
 | |
| 		return false;
 | |
| 
 | |
| 	/* if ptraced, let the tracer determine */
 | |
| 	return !tsk->ptrace;
 | |
| }
 | |
| 
 | |
| static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 | |
| 			   bool *resched_timer)
 | |
| {
 | |
| 	struct sigqueue *q, *first = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect the siginfo appropriate to this signal.  Check if
 | |
| 	 * there is another siginfo for the same signal.
 | |
| 	*/
 | |
| 	list_for_each_entry(q, &list->list, list) {
 | |
| 		if (q->info.si_signo == sig) {
 | |
| 			if (first)
 | |
| 				goto still_pending;
 | |
| 			first = q;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sigdelset(&list->signal, sig);
 | |
| 
 | |
| 	if (first) {
 | |
| still_pending:
 | |
| 		list_del_init(&first->list);
 | |
| 		copy_siginfo(info, &first->info);
 | |
| 
 | |
| 		*resched_timer =
 | |
| 			(first->flags & SIGQUEUE_PREALLOC) &&
 | |
| 			(info->si_code == SI_TIMER) &&
 | |
| 			(info->si_sys_private);
 | |
| 
 | |
| 		__sigqueue_free(first);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Ok, it wasn't in the queue.  This must be
 | |
| 		 * a fast-pathed signal or we must have been
 | |
| 		 * out of queue space.  So zero out the info.
 | |
| 		 */
 | |
| 		clear_siginfo(info);
 | |
| 		info->si_signo = sig;
 | |
| 		info->si_errno = 0;
 | |
| 		info->si_code = SI_USER;
 | |
| 		info->si_pid = 0;
 | |
| 		info->si_uid = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 | |
| 			kernel_siginfo_t *info, bool *resched_timer)
 | |
| {
 | |
| 	int sig = next_signal(pending, mask);
 | |
| 
 | |
| 	if (sig)
 | |
| 		collect_signal(sig, pending, info, resched_timer);
 | |
| 	return sig;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dequeue a signal and return the element to the caller, which is
 | |
|  * expected to free it.
 | |
|  *
 | |
|  * All callers have to hold the siglock.
 | |
|  */
 | |
| int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 | |
| 		   kernel_siginfo_t *info, enum pid_type *type)
 | |
| {
 | |
| 	bool resched_timer = false;
 | |
| 	int signr;
 | |
| 
 | |
| 	/* We only dequeue private signals from ourselves, we don't let
 | |
| 	 * signalfd steal them
 | |
| 	 */
 | |
| 	*type = PIDTYPE_PID;
 | |
| 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 | |
| 	if (!signr) {
 | |
| 		*type = PIDTYPE_TGID;
 | |
| 		signr = __dequeue_signal(&tsk->signal->shared_pending,
 | |
| 					 mask, info, &resched_timer);
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| 		/*
 | |
| 		 * itimer signal ?
 | |
| 		 *
 | |
| 		 * itimers are process shared and we restart periodic
 | |
| 		 * itimers in the signal delivery path to prevent DoS
 | |
| 		 * attacks in the high resolution timer case. This is
 | |
| 		 * compliant with the old way of self-restarting
 | |
| 		 * itimers, as the SIGALRM is a legacy signal and only
 | |
| 		 * queued once. Changing the restart behaviour to
 | |
| 		 * restart the timer in the signal dequeue path is
 | |
| 		 * reducing the timer noise on heavy loaded !highres
 | |
| 		 * systems too.
 | |
| 		 */
 | |
| 		if (unlikely(signr == SIGALRM)) {
 | |
| 			struct hrtimer *tmr = &tsk->signal->real_timer;
 | |
| 
 | |
| 			if (!hrtimer_is_queued(tmr) &&
 | |
| 			    tsk->signal->it_real_incr != 0) {
 | |
| 				hrtimer_forward(tmr, tmr->base->get_time(),
 | |
| 						tsk->signal->it_real_incr);
 | |
| 				hrtimer_restart(tmr);
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	recalc_sigpending();
 | |
| 	if (!signr)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(sig_kernel_stop(signr))) {
 | |
| 		/*
 | |
| 		 * Set a marker that we have dequeued a stop signal.  Our
 | |
| 		 * caller might release the siglock and then the pending
 | |
| 		 * stop signal it is about to process is no longer in the
 | |
| 		 * pending bitmasks, but must still be cleared by a SIGCONT
 | |
| 		 * (and overruled by a SIGKILL).  So those cases clear this
 | |
| 		 * shared flag after we've set it.  Note that this flag may
 | |
| 		 * remain set after the signal we return is ignored or
 | |
| 		 * handled.  That doesn't matter because its only purpose
 | |
| 		 * is to alert stop-signal processing code when another
 | |
| 		 * processor has come along and cleared the flag.
 | |
| 		 */
 | |
| 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 | |
| 	}
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| 	if (resched_timer) {
 | |
| 		/*
 | |
| 		 * Release the siglock to ensure proper locking order
 | |
| 		 * of timer locks outside of siglocks.  Note, we leave
 | |
| 		 * irqs disabled here, since the posix-timers code is
 | |
| 		 * about to disable them again anyway.
 | |
| 		 */
 | |
| 		spin_unlock(&tsk->sighand->siglock);
 | |
| 		posixtimer_rearm(info);
 | |
| 		spin_lock(&tsk->sighand->siglock);
 | |
| 
 | |
| 		/* Don't expose the si_sys_private value to userspace */
 | |
| 		info->si_sys_private = 0;
 | |
| 	}
 | |
| #endif
 | |
| 	return signr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dequeue_signal);
 | |
| 
 | |
| static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct sigpending *pending = &tsk->pending;
 | |
| 	struct sigqueue *q, *sync = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Might a synchronous signal be in the queue?
 | |
| 	 */
 | |
| 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Return the first synchronous signal in the queue.
 | |
| 	 */
 | |
| 	list_for_each_entry(q, &pending->list, list) {
 | |
| 		/* Synchronous signals have a positive si_code */
 | |
| 		if ((q->info.si_code > SI_USER) &&
 | |
| 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 | |
| 			sync = q;
 | |
| 			goto next;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| next:
 | |
| 	/*
 | |
| 	 * Check if there is another siginfo for the same signal.
 | |
| 	 */
 | |
| 	list_for_each_entry_continue(q, &pending->list, list) {
 | |
| 		if (q->info.si_signo == sync->info.si_signo)
 | |
| 			goto still_pending;
 | |
| 	}
 | |
| 
 | |
| 	sigdelset(&pending->signal, sync->info.si_signo);
 | |
| 	recalc_sigpending();
 | |
| still_pending:
 | |
| 	list_del_init(&sync->list);
 | |
| 	copy_siginfo(info, &sync->info);
 | |
| 	__sigqueue_free(sync);
 | |
| 	return info->si_signo;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tell a process that it has a new active signal..
 | |
|  *
 | |
|  * NOTE! we rely on the previous spin_lock to
 | |
|  * lock interrupts for us! We can only be called with
 | |
|  * "siglock" held, and the local interrupt must
 | |
|  * have been disabled when that got acquired!
 | |
|  *
 | |
|  * No need to set need_resched since signal event passing
 | |
|  * goes through ->blocked
 | |
|  */
 | |
| void signal_wake_up_state(struct task_struct *t, unsigned int state)
 | |
| {
 | |
| 	set_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 	/*
 | |
| 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 | |
| 	 * case. We don't check t->state here because there is a race with it
 | |
| 	 * executing another processor and just now entering stopped state.
 | |
| 	 * By using wake_up_state, we ensure the process will wake up and
 | |
| 	 * handle its death signal.
 | |
| 	 */
 | |
| 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 | |
| 		kick_process(t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove signals in mask from the pending set and queue.
 | |
|  * Returns 1 if any signals were found.
 | |
|  *
 | |
|  * All callers must be holding the siglock.
 | |
|  */
 | |
| static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 | |
| {
 | |
| 	struct sigqueue *q, *n;
 | |
| 	sigset_t m;
 | |
| 
 | |
| 	sigandsets(&m, mask, &s->signal);
 | |
| 	if (sigisemptyset(&m))
 | |
| 		return;
 | |
| 
 | |
| 	sigandnsets(&s->signal, &s->signal, mask);
 | |
| 	list_for_each_entry_safe(q, n, &s->list, list) {
 | |
| 		if (sigismember(mask, q->info.si_signo)) {
 | |
| 			list_del_init(&q->list);
 | |
| 			__sigqueue_free(q);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int is_si_special(const struct kernel_siginfo *info)
 | |
| {
 | |
| 	return info <= SEND_SIG_PRIV;
 | |
| }
 | |
| 
 | |
| static inline bool si_fromuser(const struct kernel_siginfo *info)
 | |
| {
 | |
| 	return info == SEND_SIG_NOINFO ||
 | |
| 		(!is_si_special(info) && SI_FROMUSER(info));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called with RCU read lock from check_kill_permission()
 | |
|  */
 | |
| static bool kill_ok_by_cred(struct task_struct *t)
 | |
| {
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	const struct cred *tcred = __task_cred(t);
 | |
| 
 | |
| 	return uid_eq(cred->euid, tcred->suid) ||
 | |
| 	       uid_eq(cred->euid, tcred->uid) ||
 | |
| 	       uid_eq(cred->uid, tcred->suid) ||
 | |
| 	       uid_eq(cred->uid, tcred->uid) ||
 | |
| 	       ns_capable(tcred->user_ns, CAP_KILL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bad permissions for sending the signal
 | |
|  * - the caller must hold the RCU read lock
 | |
|  */
 | |
| static int check_kill_permission(int sig, struct kernel_siginfo *info,
 | |
| 				 struct task_struct *t)
 | |
| {
 | |
| 	struct pid *sid;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!valid_signal(sig))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!si_fromuser(info))
 | |
| 		return 0;
 | |
| 
 | |
| 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (!same_thread_group(current, t) &&
 | |
| 	    !kill_ok_by_cred(t)) {
 | |
| 		switch (sig) {
 | |
| 		case SIGCONT:
 | |
| 			sid = task_session(t);
 | |
| 			/*
 | |
| 			 * We don't return the error if sid == NULL. The
 | |
| 			 * task was unhashed, the caller must notice this.
 | |
| 			 */
 | |
| 			if (!sid || sid == task_session(current))
 | |
| 				break;
 | |
| 			fallthrough;
 | |
| 		default:
 | |
| 			return -EPERM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return security_task_kill(t, info, sig, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ptrace_trap_notify - schedule trap to notify ptracer
 | |
|  * @t: tracee wanting to notify tracer
 | |
|  *
 | |
|  * This function schedules sticky ptrace trap which is cleared on the next
 | |
|  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 | |
|  * ptracer.
 | |
|  *
 | |
|  * If @t is running, STOP trap will be taken.  If trapped for STOP and
 | |
|  * ptracer is listening for events, tracee is woken up so that it can
 | |
|  * re-trap for the new event.  If trapped otherwise, STOP trap will be
 | |
|  * eventually taken without returning to userland after the existing traps
 | |
|  * are finished by PTRACE_CONT.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Must be called with @task->sighand->siglock held.
 | |
|  */
 | |
| static void ptrace_trap_notify(struct task_struct *t)
 | |
| {
 | |
| 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 | |
| 	assert_spin_locked(&t->sighand->siglock);
 | |
| 
 | |
| 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 | |
| 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle magic process-wide effects of stop/continue signals. Unlike
 | |
|  * the signal actions, these happen immediately at signal-generation
 | |
|  * time regardless of blocking, ignoring, or handling.  This does the
 | |
|  * actual continuing for SIGCONT, but not the actual stopping for stop
 | |
|  * signals. The process stop is done as a signal action for SIG_DFL.
 | |
|  *
 | |
|  * Returns true if the signal should be actually delivered, otherwise
 | |
|  * it should be dropped.
 | |
|  */
 | |
| static bool prepare_signal(int sig, struct task_struct *p, bool force)
 | |
| {
 | |
| 	struct signal_struct *signal = p->signal;
 | |
| 	struct task_struct *t;
 | |
| 	sigset_t flush;
 | |
| 
 | |
| 	if (signal->flags & SIGNAL_GROUP_EXIT) {
 | |
| 		if (signal->core_state)
 | |
| 			return sig == SIGKILL;
 | |
| 		/*
 | |
| 		 * The process is in the middle of dying, nothing to do.
 | |
| 		 */
 | |
| 	} else if (sig_kernel_stop(sig)) {
 | |
| 		/*
 | |
| 		 * This is a stop signal.  Remove SIGCONT from all queues.
 | |
| 		 */
 | |
| 		siginitset(&flush, sigmask(SIGCONT));
 | |
| 		flush_sigqueue_mask(&flush, &signal->shared_pending);
 | |
| 		for_each_thread(p, t)
 | |
| 			flush_sigqueue_mask(&flush, &t->pending);
 | |
| 	} else if (sig == SIGCONT) {
 | |
| 		unsigned int why;
 | |
| 		/*
 | |
| 		 * Remove all stop signals from all queues, wake all threads.
 | |
| 		 */
 | |
| 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 | |
| 		flush_sigqueue_mask(&flush, &signal->shared_pending);
 | |
| 		for_each_thread(p, t) {
 | |
| 			flush_sigqueue_mask(&flush, &t->pending);
 | |
| 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 | |
| 			if (likely(!(t->ptrace & PT_SEIZED)))
 | |
| 				wake_up_state(t, __TASK_STOPPED);
 | |
| 			else
 | |
| 				ptrace_trap_notify(t);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Notify the parent with CLD_CONTINUED if we were stopped.
 | |
| 		 *
 | |
| 		 * If we were in the middle of a group stop, we pretend it
 | |
| 		 * was already finished, and then continued. Since SIGCHLD
 | |
| 		 * doesn't queue we report only CLD_STOPPED, as if the next
 | |
| 		 * CLD_CONTINUED was dropped.
 | |
| 		 */
 | |
| 		why = 0;
 | |
| 		if (signal->flags & SIGNAL_STOP_STOPPED)
 | |
| 			why |= SIGNAL_CLD_CONTINUED;
 | |
| 		else if (signal->group_stop_count)
 | |
| 			why |= SIGNAL_CLD_STOPPED;
 | |
| 
 | |
| 		if (why) {
 | |
| 			/*
 | |
| 			 * The first thread which returns from do_signal_stop()
 | |
| 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 | |
| 			 * notify its parent. See get_signal().
 | |
| 			 */
 | |
| 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 | |
| 			signal->group_stop_count = 0;
 | |
| 			signal->group_exit_code = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return !sig_ignored(p, sig, force);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test if P wants to take SIG.  After we've checked all threads with this,
 | |
|  * it's equivalent to finding no threads not blocking SIG.  Any threads not
 | |
|  * blocking SIG were ruled out because they are not running and already
 | |
|  * have pending signals.  Such threads will dequeue from the shared queue
 | |
|  * as soon as they're available, so putting the signal on the shared queue
 | |
|  * will be equivalent to sending it to one such thread.
 | |
|  */
 | |
| static inline bool wants_signal(int sig, struct task_struct *p)
 | |
| {
 | |
| 	if (sigismember(&p->blocked, sig))
 | |
| 		return false;
 | |
| 
 | |
| 	if (p->flags & PF_EXITING)
 | |
| 		return false;
 | |
| 
 | |
| 	if (sig == SIGKILL)
 | |
| 		return true;
 | |
| 
 | |
| 	if (task_is_stopped_or_traced(p))
 | |
| 		return false;
 | |
| 
 | |
| 	return task_curr(p) || !task_sigpending(p);
 | |
| }
 | |
| 
 | |
| static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 | |
| {
 | |
| 	struct signal_struct *signal = p->signal;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now find a thread we can wake up to take the signal off the queue.
 | |
| 	 *
 | |
| 	 * If the main thread wants the signal, it gets first crack.
 | |
| 	 * Probably the least surprising to the average bear.
 | |
| 	 */
 | |
| 	if (wants_signal(sig, p))
 | |
| 		t = p;
 | |
| 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 | |
| 		/*
 | |
| 		 * There is just one thread and it does not need to be woken.
 | |
| 		 * It will dequeue unblocked signals before it runs again.
 | |
| 		 */
 | |
| 		return;
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Otherwise try to find a suitable thread.
 | |
| 		 */
 | |
| 		t = signal->curr_target;
 | |
| 		while (!wants_signal(sig, t)) {
 | |
| 			t = next_thread(t);
 | |
| 			if (t == signal->curr_target)
 | |
| 				/*
 | |
| 				 * No thread needs to be woken.
 | |
| 				 * Any eligible threads will see
 | |
| 				 * the signal in the queue soon.
 | |
| 				 */
 | |
| 				return;
 | |
| 		}
 | |
| 		signal->curr_target = t;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Found a killable thread.  If the signal will be fatal,
 | |
| 	 * then start taking the whole group down immediately.
 | |
| 	 */
 | |
| 	if (sig_fatal(p, sig) &&
 | |
| 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
 | |
| 	    !sigismember(&t->real_blocked, sig) &&
 | |
| 	    (sig == SIGKILL || !p->ptrace)) {
 | |
| 		/*
 | |
| 		 * This signal will be fatal to the whole group.
 | |
| 		 */
 | |
| 		if (!sig_kernel_coredump(sig)) {
 | |
| 			/*
 | |
| 			 * Start a group exit and wake everybody up.
 | |
| 			 * This way we don't have other threads
 | |
| 			 * running and doing things after a slower
 | |
| 			 * thread has the fatal signal pending.
 | |
| 			 */
 | |
| 			signal->flags = SIGNAL_GROUP_EXIT;
 | |
| 			signal->group_exit_code = sig;
 | |
| 			signal->group_stop_count = 0;
 | |
| 			t = p;
 | |
| 			do {
 | |
| 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 | |
| 				sigaddset(&t->pending.signal, SIGKILL);
 | |
| 				signal_wake_up(t, 1);
 | |
| 			} while_each_thread(p, t);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The signal is already in the shared-pending queue.
 | |
| 	 * Tell the chosen thread to wake up and dequeue it.
 | |
| 	 */
 | |
| 	signal_wake_up(t, sig == SIGKILL);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline bool legacy_queue(struct sigpending *signals, int sig)
 | |
| {
 | |
| 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 | |
| }
 | |
| 
 | |
| static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
 | |
| 			enum pid_type type, bool force)
 | |
| {
 | |
| 	struct sigpending *pending;
 | |
| 	struct sigqueue *q;
 | |
| 	int override_rlimit;
 | |
| 	int ret = 0, result;
 | |
| 
 | |
| 	assert_spin_locked(&t->sighand->siglock);
 | |
| 
 | |
| 	result = TRACE_SIGNAL_IGNORED;
 | |
| 	if (!prepare_signal(sig, t, force))
 | |
| 		goto ret;
 | |
| 
 | |
| 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
 | |
| 	/*
 | |
| 	 * Short-circuit ignored signals and support queuing
 | |
| 	 * exactly one non-rt signal, so that we can get more
 | |
| 	 * detailed information about the cause of the signal.
 | |
| 	 */
 | |
| 	result = TRACE_SIGNAL_ALREADY_PENDING;
 | |
| 	if (legacy_queue(pending, sig))
 | |
| 		goto ret;
 | |
| 
 | |
| 	result = TRACE_SIGNAL_DELIVERED;
 | |
| 	/*
 | |
| 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 | |
| 	 */
 | |
| 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
 | |
| 		goto out_set;
 | |
| 
 | |
| 	/*
 | |
| 	 * Real-time signals must be queued if sent by sigqueue, or
 | |
| 	 * some other real-time mechanism.  It is implementation
 | |
| 	 * defined whether kill() does so.  We attempt to do so, on
 | |
| 	 * the principle of least surprise, but since kill is not
 | |
| 	 * allowed to fail with EAGAIN when low on memory we just
 | |
| 	 * make sure at least one signal gets delivered and don't
 | |
| 	 * pass on the info struct.
 | |
| 	 */
 | |
| 	if (sig < SIGRTMIN)
 | |
| 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
 | |
| 	else
 | |
| 		override_rlimit = 0;
 | |
| 
 | |
| 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
 | |
| 
 | |
| 	if (q) {
 | |
| 		list_add_tail(&q->list, &pending->list);
 | |
| 		switch ((unsigned long) info) {
 | |
| 		case (unsigned long) SEND_SIG_NOINFO:
 | |
| 			clear_siginfo(&q->info);
 | |
| 			q->info.si_signo = sig;
 | |
| 			q->info.si_errno = 0;
 | |
| 			q->info.si_code = SI_USER;
 | |
| 			q->info.si_pid = task_tgid_nr_ns(current,
 | |
| 							task_active_pid_ns(t));
 | |
| 			rcu_read_lock();
 | |
| 			q->info.si_uid =
 | |
| 				from_kuid_munged(task_cred_xxx(t, user_ns),
 | |
| 						 current_uid());
 | |
| 			rcu_read_unlock();
 | |
| 			break;
 | |
| 		case (unsigned long) SEND_SIG_PRIV:
 | |
| 			clear_siginfo(&q->info);
 | |
| 			q->info.si_signo = sig;
 | |
| 			q->info.si_errno = 0;
 | |
| 			q->info.si_code = SI_KERNEL;
 | |
| 			q->info.si_pid = 0;
 | |
| 			q->info.si_uid = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			copy_siginfo(&q->info, info);
 | |
| 			break;
 | |
| 		}
 | |
| 	} else if (!is_si_special(info) &&
 | |
| 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
 | |
| 		/*
 | |
| 		 * Queue overflow, abort.  We may abort if the
 | |
| 		 * signal was rt and sent by user using something
 | |
| 		 * other than kill().
 | |
| 		 */
 | |
| 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
 | |
| 		ret = -EAGAIN;
 | |
| 		goto ret;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * This is a silent loss of information.  We still
 | |
| 		 * send the signal, but the *info bits are lost.
 | |
| 		 */
 | |
| 		result = TRACE_SIGNAL_LOSE_INFO;
 | |
| 	}
 | |
| 
 | |
| out_set:
 | |
| 	signalfd_notify(t, sig);
 | |
| 	sigaddset(&pending->signal, sig);
 | |
| 
 | |
| 	/* Let multiprocess signals appear after on-going forks */
 | |
| 	if (type > PIDTYPE_TGID) {
 | |
| 		struct multiprocess_signals *delayed;
 | |
| 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
 | |
| 			sigset_t *signal = &delayed->signal;
 | |
| 			/* Can't queue both a stop and a continue signal */
 | |
| 			if (sig == SIGCONT)
 | |
| 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
 | |
| 			else if (sig_kernel_stop(sig))
 | |
| 				sigdelset(signal, SIGCONT);
 | |
| 			sigaddset(signal, sig);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	complete_signal(sig, t, type);
 | |
| ret:
 | |
| 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 	switch (siginfo_layout(info->si_signo, info->si_code)) {
 | |
| 	case SIL_KILL:
 | |
| 	case SIL_CHLD:
 | |
| 	case SIL_RT:
 | |
| 		ret = true;
 | |
| 		break;
 | |
| 	case SIL_TIMER:
 | |
| 	case SIL_POLL:
 | |
| 	case SIL_FAULT:
 | |
| 	case SIL_FAULT_TRAPNO:
 | |
| 	case SIL_FAULT_MCEERR:
 | |
| 	case SIL_FAULT_BNDERR:
 | |
| 	case SIL_FAULT_PKUERR:
 | |
| 	case SIL_FAULT_PERF_EVENT:
 | |
| 	case SIL_SYS:
 | |
| 		ret = false;
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
 | |
| 			enum pid_type type)
 | |
| {
 | |
| 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
 | |
| 	bool force = false;
 | |
| 
 | |
| 	if (info == SEND_SIG_NOINFO) {
 | |
| 		/* Force if sent from an ancestor pid namespace */
 | |
| 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
 | |
| 	} else if (info == SEND_SIG_PRIV) {
 | |
| 		/* Don't ignore kernel generated signals */
 | |
| 		force = true;
 | |
| 	} else if (has_si_pid_and_uid(info)) {
 | |
| 		/* SIGKILL and SIGSTOP is special or has ids */
 | |
| 		struct user_namespace *t_user_ns;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		t_user_ns = task_cred_xxx(t, user_ns);
 | |
| 		if (current_user_ns() != t_user_ns) {
 | |
| 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
 | |
| 			info->si_uid = from_kuid_munged(t_user_ns, uid);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		/* A kernel generated signal? */
 | |
| 		force = (info->si_code == SI_KERNEL);
 | |
| 
 | |
| 		/* From an ancestor pid namespace? */
 | |
| 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
 | |
| 			info->si_pid = 0;
 | |
| 			force = true;
 | |
| 		}
 | |
| 	}
 | |
| 	return __send_signal(sig, info, t, type, force);
 | |
| }
 | |
| 
 | |
| static void print_fatal_signal(int signr)
 | |
| {
 | |
| 	struct pt_regs *regs = signal_pt_regs();
 | |
| 	pr_info("potentially unexpected fatal signal %d.\n", signr);
 | |
| 
 | |
| #if defined(__i386__) && !defined(__arch_um__)
 | |
| 	pr_info("code at %08lx: ", regs->ip);
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < 16; i++) {
 | |
| 			unsigned char insn;
 | |
| 
 | |
| 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
 | |
| 				break;
 | |
| 			pr_cont("%02x ", insn);
 | |
| 		}
 | |
| 	}
 | |
| 	pr_cont("\n");
 | |
| #endif
 | |
| 	preempt_disable();
 | |
| 	show_regs(regs);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static int __init setup_print_fatal_signals(char *str)
 | |
| {
 | |
| 	get_option (&str, &print_fatal_signals);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("print-fatal-signals=", setup_print_fatal_signals);
 | |
| 
 | |
| int
 | |
| __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
 | |
| {
 | |
| 	return send_signal(sig, info, p, PIDTYPE_TGID);
 | |
| }
 | |
| 
 | |
| int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
 | |
| 			enum pid_type type)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = -ESRCH;
 | |
| 
 | |
| 	if (lock_task_sighand(p, &flags)) {
 | |
| 		ret = send_signal(sig, info, p, type);
 | |
| 		unlock_task_sighand(p, &flags);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| enum sig_handler {
 | |
| 	HANDLER_CURRENT, /* If reachable use the current handler */
 | |
| 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
 | |
| 	HANDLER_EXIT,	 /* Only visible as the process exit code */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Force a signal that the process can't ignore: if necessary
 | |
|  * we unblock the signal and change any SIG_IGN to SIG_DFL.
 | |
|  *
 | |
|  * Note: If we unblock the signal, we always reset it to SIG_DFL,
 | |
|  * since we do not want to have a signal handler that was blocked
 | |
|  * be invoked when user space had explicitly blocked it.
 | |
|  *
 | |
|  * We don't want to have recursive SIGSEGV's etc, for example,
 | |
|  * that is why we also clear SIGNAL_UNKILLABLE.
 | |
|  */
 | |
| static int
 | |
| force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
 | |
| 	enum sig_handler handler)
 | |
| {
 | |
| 	unsigned long int flags;
 | |
| 	int ret, blocked, ignored;
 | |
| 	struct k_sigaction *action;
 | |
| 	int sig = info->si_signo;
 | |
| 
 | |
| 	spin_lock_irqsave(&t->sighand->siglock, flags);
 | |
| 	action = &t->sighand->action[sig-1];
 | |
| 	ignored = action->sa.sa_handler == SIG_IGN;
 | |
| 	blocked = sigismember(&t->blocked, sig);
 | |
| 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
 | |
| 		action->sa.sa_handler = SIG_DFL;
 | |
| 		if (handler == HANDLER_EXIT)
 | |
| 			action->sa.sa_flags |= SA_IMMUTABLE;
 | |
| 		if (blocked) {
 | |
| 			sigdelset(&t->blocked, sig);
 | |
| 			recalc_sigpending_and_wake(t);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
 | |
| 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
 | |
| 	 */
 | |
| 	if (action->sa.sa_handler == SIG_DFL &&
 | |
| 	    (!t->ptrace || (handler == HANDLER_EXIT)))
 | |
| 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
 | |
| 	ret = send_signal(sig, info, t, PIDTYPE_PID);
 | |
| 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int force_sig_info(struct kernel_siginfo *info)
 | |
| {
 | |
| 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Nuke all other threads in the group.
 | |
|  */
 | |
| int zap_other_threads(struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *t = p;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	p->signal->group_stop_count = 0;
 | |
| 
 | |
| 	while_each_thread(p, t) {
 | |
| 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 | |
| 		count++;
 | |
| 
 | |
| 		/* Don't bother with already dead threads */
 | |
| 		if (t->exit_state)
 | |
| 			continue;
 | |
| 		sigaddset(&t->pending.signal, SIGKILL);
 | |
| 		signal_wake_up(t, 1);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
 | |
| 					   unsigned long *flags)
 | |
| {
 | |
| 	struct sighand_struct *sighand;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (;;) {
 | |
| 		sighand = rcu_dereference(tsk->sighand);
 | |
| 		if (unlikely(sighand == NULL))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * This sighand can be already freed and even reused, but
 | |
| 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
 | |
| 		 * initializes ->siglock: this slab can't go away, it has
 | |
| 		 * the same object type, ->siglock can't be reinitialized.
 | |
| 		 *
 | |
| 		 * We need to ensure that tsk->sighand is still the same
 | |
| 		 * after we take the lock, we can race with de_thread() or
 | |
| 		 * __exit_signal(). In the latter case the next iteration
 | |
| 		 * must see ->sighand == NULL.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&sighand->siglock, *flags);
 | |
| 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
 | |
| 			break;
 | |
| 		spin_unlock_irqrestore(&sighand->siglock, *flags);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return sighand;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| void lockdep_assert_task_sighand_held(struct task_struct *task)
 | |
| {
 | |
| 	struct sighand_struct *sighand;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	sighand = rcu_dereference(task->sighand);
 | |
| 	if (sighand)
 | |
| 		lockdep_assert_held(&sighand->siglock);
 | |
| 	else
 | |
| 		WARN_ON_ONCE(1);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * send signal info to all the members of a group
 | |
|  */
 | |
| int group_send_sig_info(int sig, struct kernel_siginfo *info,
 | |
| 			struct task_struct *p, enum pid_type type)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ret = check_kill_permission(sig, info, p);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!ret && sig)
 | |
| 		ret = do_send_sig_info(sig, info, p, type);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
 | |
|  * control characters do (^C, ^Z etc)
 | |
|  * - the caller must hold at least a readlock on tasklist_lock
 | |
|  */
 | |
| int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
 | |
| {
 | |
| 	struct task_struct *p = NULL;
 | |
| 	int retval, success;
 | |
| 
 | |
| 	success = 0;
 | |
| 	retval = -ESRCH;
 | |
| 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | |
| 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
 | |
| 		success |= !err;
 | |
| 		retval = err;
 | |
| 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | |
| 	return success ? 0 : retval;
 | |
| }
 | |
| 
 | |
| int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
 | |
| {
 | |
| 	int error = -ESRCH;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		rcu_read_lock();
 | |
| 		p = pid_task(pid, PIDTYPE_PID);
 | |
| 		if (p)
 | |
| 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
 | |
| 		rcu_read_unlock();
 | |
| 		if (likely(!p || error != -ESRCH))
 | |
| 			return error;
 | |
| 
 | |
| 		/*
 | |
| 		 * The task was unhashed in between, try again.  If it
 | |
| 		 * is dead, pid_task() will return NULL, if we race with
 | |
| 		 * de_thread() it will find the new leader.
 | |
| 		 */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
 | |
| {
 | |
| 	int error;
 | |
| 	rcu_read_lock();
 | |
| 	error = kill_pid_info(sig, info, find_vpid(pid));
 | |
| 	rcu_read_unlock();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static inline bool kill_as_cred_perm(const struct cred *cred,
 | |
| 				     struct task_struct *target)
 | |
| {
 | |
| 	const struct cred *pcred = __task_cred(target);
 | |
| 
 | |
| 	return uid_eq(cred->euid, pcred->suid) ||
 | |
| 	       uid_eq(cred->euid, pcred->uid) ||
 | |
| 	       uid_eq(cred->uid, pcred->suid) ||
 | |
| 	       uid_eq(cred->uid, pcred->uid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The usb asyncio usage of siginfo is wrong.  The glibc support
 | |
|  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
 | |
|  * AKA after the generic fields:
 | |
|  *	kernel_pid_t	si_pid;
 | |
|  *	kernel_uid32_t	si_uid;
 | |
|  *	sigval_t	si_value;
 | |
|  *
 | |
|  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
 | |
|  * after the generic fields is:
 | |
|  *	void __user 	*si_addr;
 | |
|  *
 | |
|  * This is a practical problem when there is a 64bit big endian kernel
 | |
|  * and a 32bit userspace.  As the 32bit address will encoded in the low
 | |
|  * 32bits of the pointer.  Those low 32bits will be stored at higher
 | |
|  * address than appear in a 32 bit pointer.  So userspace will not
 | |
|  * see the address it was expecting for it's completions.
 | |
|  *
 | |
|  * There is nothing in the encoding that can allow
 | |
|  * copy_siginfo_to_user32 to detect this confusion of formats, so
 | |
|  * handle this by requiring the caller of kill_pid_usb_asyncio to
 | |
|  * notice when this situration takes place and to store the 32bit
 | |
|  * pointer in sival_int, instead of sival_addr of the sigval_t addr
 | |
|  * parameter.
 | |
|  */
 | |
| int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
 | |
| 			 struct pid *pid, const struct cred *cred)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 	struct task_struct *p;
 | |
| 	unsigned long flags;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (!valid_signal(sig))
 | |
| 		return ret;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = errno;
 | |
| 	info.si_code = SI_ASYNCIO;
 | |
| 	*((sigval_t *)&info.si_pid) = addr;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = pid_task(pid, PIDTYPE_PID);
 | |
| 	if (!p) {
 | |
| 		ret = -ESRCH;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	if (!kill_as_cred_perm(cred, p)) {
 | |
| 		ret = -EPERM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	ret = security_task_kill(p, &info, sig, cred);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (sig) {
 | |
| 		if (lock_task_sighand(p, &flags)) {
 | |
| 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
 | |
| 			unlock_task_sighand(p, &flags);
 | |
| 		} else
 | |
| 			ret = -ESRCH;
 | |
| 	}
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
 | |
| 
 | |
| /*
 | |
|  * kill_something_info() interprets pid in interesting ways just like kill(2).
 | |
|  *
 | |
|  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
 | |
|  * is probably wrong.  Should make it like BSD or SYSV.
 | |
|  */
 | |
| 
 | |
| static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (pid > 0)
 | |
| 		return kill_proc_info(sig, info, pid);
 | |
| 
 | |
| 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
 | |
| 	if (pid == INT_MIN)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (pid != -1) {
 | |
| 		ret = __kill_pgrp_info(sig, info,
 | |
| 				pid ? find_vpid(-pid) : task_pgrp(current));
 | |
| 	} else {
 | |
| 		int retval = 0, count = 0;
 | |
| 		struct task_struct * p;
 | |
| 
 | |
| 		for_each_process(p) {
 | |
| 			if (task_pid_vnr(p) > 1 &&
 | |
| 					!same_thread_group(p, current)) {
 | |
| 				int err = group_send_sig_info(sig, info, p,
 | |
| 							      PIDTYPE_MAX);
 | |
| 				++count;
 | |
| 				if (err != -EPERM)
 | |
| 					retval = err;
 | |
| 			}
 | |
| 		}
 | |
| 		ret = count ? retval : -ESRCH;
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are for backward compatibility with the rest of the kernel source.
 | |
|  */
 | |
| 
 | |
| int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Make sure legacy kernel users don't send in bad values
 | |
| 	 * (normal paths check this in check_kill_permission).
 | |
| 	 */
 | |
| 	if (!valid_signal(sig))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
 | |
| }
 | |
| EXPORT_SYMBOL(send_sig_info);
 | |
| 
 | |
| #define __si_special(priv) \
 | |
| 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
 | |
| 
 | |
| int
 | |
| send_sig(int sig, struct task_struct *p, int priv)
 | |
| {
 | |
| 	return send_sig_info(sig, __si_special(priv), p);
 | |
| }
 | |
| EXPORT_SYMBOL(send_sig);
 | |
| 
 | |
| void force_sig(int sig)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = SI_KERNEL;
 | |
| 	info.si_pid = 0;
 | |
| 	info.si_uid = 0;
 | |
| 	force_sig_info(&info);
 | |
| }
 | |
| EXPORT_SYMBOL(force_sig);
 | |
| 
 | |
| void force_fatal_sig(int sig)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = SI_KERNEL;
 | |
| 	info.si_pid = 0;
 | |
| 	info.si_uid = 0;
 | |
| 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
 | |
| }
 | |
| 
 | |
| void force_exit_sig(int sig)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = SI_KERNEL;
 | |
| 	info.si_pid = 0;
 | |
| 	info.si_uid = 0;
 | |
| 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When things go south during signal handling, we
 | |
|  * will force a SIGSEGV. And if the signal that caused
 | |
|  * the problem was already a SIGSEGV, we'll want to
 | |
|  * make sure we don't even try to deliver the signal..
 | |
|  */
 | |
| void force_sigsegv(int sig)
 | |
| {
 | |
| 	if (sig == SIGSEGV)
 | |
| 		force_fatal_sig(SIGSEGV);
 | |
| 	else
 | |
| 		force_sig(SIGSEGV);
 | |
| }
 | |
| 
 | |
| int force_sig_fault_to_task(int sig, int code, void __user *addr
 | |
| 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 | |
| 	, struct task_struct *t)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code  = code;
 | |
| 	info.si_addr  = addr;
 | |
| #ifdef __ia64__
 | |
| 	info.si_imm = imm;
 | |
| 	info.si_flags = flags;
 | |
| 	info.si_isr = isr;
 | |
| #endif
 | |
| 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
 | |
| }
 | |
| 
 | |
| int force_sig_fault(int sig, int code, void __user *addr
 | |
| 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
 | |
| {
 | |
| 	return force_sig_fault_to_task(sig, code, addr
 | |
| 				       ___ARCH_SI_IA64(imm, flags, isr), current);
 | |
| }
 | |
| 
 | |
| int send_sig_fault(int sig, int code, void __user *addr
 | |
| 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 | |
| 	, struct task_struct *t)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code  = code;
 | |
| 	info.si_addr  = addr;
 | |
| #ifdef __ia64__
 | |
| 	info.si_imm = imm;
 | |
| 	info.si_flags = flags;
 | |
| 	info.si_isr = isr;
 | |
| #endif
 | |
| 	return send_sig_info(info.si_signo, &info, t);
 | |
| }
 | |
| 
 | |
| int force_sig_mceerr(int code, void __user *addr, short lsb)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = SIGBUS;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = code;
 | |
| 	info.si_addr = addr;
 | |
| 	info.si_addr_lsb = lsb;
 | |
| 	return force_sig_info(&info);
 | |
| }
 | |
| 
 | |
| int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = SIGBUS;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = code;
 | |
| 	info.si_addr = addr;
 | |
| 	info.si_addr_lsb = lsb;
 | |
| 	return send_sig_info(info.si_signo, &info, t);
 | |
| }
 | |
| EXPORT_SYMBOL(send_sig_mceerr);
 | |
| 
 | |
| int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = SIGSEGV;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code  = SEGV_BNDERR;
 | |
| 	info.si_addr  = addr;
 | |
| 	info.si_lower = lower;
 | |
| 	info.si_upper = upper;
 | |
| 	return force_sig_info(&info);
 | |
| }
 | |
| 
 | |
| #ifdef SEGV_PKUERR
 | |
| int force_sig_pkuerr(void __user *addr, u32 pkey)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = SIGSEGV;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code  = SEGV_PKUERR;
 | |
| 	info.si_addr  = addr;
 | |
| 	info.si_pkey  = pkey;
 | |
| 	return force_sig_info(&info);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo     = SIGTRAP;
 | |
| 	info.si_errno     = 0;
 | |
| 	info.si_code      = TRAP_PERF;
 | |
| 	info.si_addr      = addr;
 | |
| 	info.si_perf_data = sig_data;
 | |
| 	info.si_perf_type = type;
 | |
| 
 | |
| 	return force_sig_info(&info);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * force_sig_seccomp - signals the task to allow in-process syscall emulation
 | |
|  * @syscall: syscall number to send to userland
 | |
|  * @reason: filter-supplied reason code to send to userland (via si_errno)
 | |
|  * @force_coredump: true to trigger a coredump
 | |
|  *
 | |
|  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
 | |
|  */
 | |
| int force_sig_seccomp(int syscall, int reason, bool force_coredump)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = SIGSYS;
 | |
| 	info.si_code = SYS_SECCOMP;
 | |
| 	info.si_call_addr = (void __user *)KSTK_EIP(current);
 | |
| 	info.si_errno = reason;
 | |
| 	info.si_arch = syscall_get_arch(current);
 | |
| 	info.si_syscall = syscall;
 | |
| 	return force_sig_info_to_task(&info, current,
 | |
| 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
 | |
| }
 | |
| 
 | |
| /* For the crazy architectures that include trap information in
 | |
|  * the errno field, instead of an actual errno value.
 | |
|  */
 | |
| int force_sig_ptrace_errno_trap(int errno, void __user *addr)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = SIGTRAP;
 | |
| 	info.si_errno = errno;
 | |
| 	info.si_code  = TRAP_HWBKPT;
 | |
| 	info.si_addr  = addr;
 | |
| 	return force_sig_info(&info);
 | |
| }
 | |
| 
 | |
| /* For the rare architectures that include trap information using
 | |
|  * si_trapno.
 | |
|  */
 | |
| int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code  = code;
 | |
| 	info.si_addr  = addr;
 | |
| 	info.si_trapno = trapno;
 | |
| 	return force_sig_info(&info);
 | |
| }
 | |
| 
 | |
| /* For the rare architectures that include trap information using
 | |
|  * si_trapno.
 | |
|  */
 | |
| int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
 | |
| 			  struct task_struct *t)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code  = code;
 | |
| 	info.si_addr  = addr;
 | |
| 	info.si_trapno = trapno;
 | |
| 	return send_sig_info(info.si_signo, &info, t);
 | |
| }
 | |
| 
 | |
| int kill_pgrp(struct pid *pid, int sig, int priv)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kill_pgrp);
 | |
| 
 | |
| int kill_pid(struct pid *pid, int sig, int priv)
 | |
| {
 | |
| 	return kill_pid_info(sig, __si_special(priv), pid);
 | |
| }
 | |
| EXPORT_SYMBOL(kill_pid);
 | |
| 
 | |
| /*
 | |
|  * These functions support sending signals using preallocated sigqueue
 | |
|  * structures.  This is needed "because realtime applications cannot
 | |
|  * afford to lose notifications of asynchronous events, like timer
 | |
|  * expirations or I/O completions".  In the case of POSIX Timers
 | |
|  * we allocate the sigqueue structure from the timer_create.  If this
 | |
|  * allocation fails we are able to report the failure to the application
 | |
|  * with an EAGAIN error.
 | |
|  */
 | |
| struct sigqueue *sigqueue_alloc(void)
 | |
| {
 | |
| 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 | |
| }
 | |
| 
 | |
| void sigqueue_free(struct sigqueue *q)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	spinlock_t *lock = ¤t->sighand->siglock;
 | |
| 
 | |
| 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 | |
| 	/*
 | |
| 	 * We must hold ->siglock while testing q->list
 | |
| 	 * to serialize with collect_signal() or with
 | |
| 	 * __exit_signal()->flush_sigqueue().
 | |
| 	 */
 | |
| 	spin_lock_irqsave(lock, flags);
 | |
| 	q->flags &= ~SIGQUEUE_PREALLOC;
 | |
| 	/*
 | |
| 	 * If it is queued it will be freed when dequeued,
 | |
| 	 * like the "regular" sigqueue.
 | |
| 	 */
 | |
| 	if (!list_empty(&q->list))
 | |
| 		q = NULL;
 | |
| 	spin_unlock_irqrestore(lock, flags);
 | |
| 
 | |
| 	if (q)
 | |
| 		__sigqueue_free(q);
 | |
| }
 | |
| 
 | |
| int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
 | |
| {
 | |
| 	int sig = q->info.si_signo;
 | |
| 	struct sigpending *pending;
 | |
| 	struct task_struct *t;
 | |
| 	unsigned long flags;
 | |
| 	int ret, result;
 | |
| 
 | |
| 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 | |
| 
 | |
| 	ret = -1;
 | |
| 	rcu_read_lock();
 | |
| 	t = pid_task(pid, type);
 | |
| 	if (!t || !likely(lock_task_sighand(t, &flags)))
 | |
| 		goto ret;
 | |
| 
 | |
| 	ret = 1; /* the signal is ignored */
 | |
| 	result = TRACE_SIGNAL_IGNORED;
 | |
| 	if (!prepare_signal(sig, t, false))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	if (unlikely(!list_empty(&q->list))) {
 | |
| 		/*
 | |
| 		 * If an SI_TIMER entry is already queue just increment
 | |
| 		 * the overrun count.
 | |
| 		 */
 | |
| 		BUG_ON(q->info.si_code != SI_TIMER);
 | |
| 		q->info.si_overrun++;
 | |
| 		result = TRACE_SIGNAL_ALREADY_PENDING;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	q->info.si_overrun = 0;
 | |
| 
 | |
| 	signalfd_notify(t, sig);
 | |
| 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
 | |
| 	list_add_tail(&q->list, &pending->list);
 | |
| 	sigaddset(&pending->signal, sig);
 | |
| 	complete_signal(sig, t, type);
 | |
| 	result = TRACE_SIGNAL_DELIVERED;
 | |
| out:
 | |
| 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
 | |
| 	unlock_task_sighand(t, &flags);
 | |
| ret:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void do_notify_pidfd(struct task_struct *task)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	WARN_ON(task->exit_state == 0);
 | |
| 	pid = task_pid(task);
 | |
| 	wake_up_all(&pid->wait_pidfd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Let a parent know about the death of a child.
 | |
|  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
 | |
|  *
 | |
|  * Returns true if our parent ignored us and so we've switched to
 | |
|  * self-reaping.
 | |
|  */
 | |
| bool do_notify_parent(struct task_struct *tsk, int sig)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 	unsigned long flags;
 | |
| 	struct sighand_struct *psig;
 | |
| 	bool autoreap = false;
 | |
| 	u64 utime, stime;
 | |
| 
 | |
| 	BUG_ON(sig == -1);
 | |
| 
 | |
|  	/* do_notify_parent_cldstop should have been called instead.  */
 | |
|  	BUG_ON(task_is_stopped_or_traced(tsk));
 | |
| 
 | |
| 	BUG_ON(!tsk->ptrace &&
 | |
| 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
 | |
| 
 | |
| 	/* Wake up all pidfd waiters */
 | |
| 	do_notify_pidfd(tsk);
 | |
| 
 | |
| 	if (sig != SIGCHLD) {
 | |
| 		/*
 | |
| 		 * This is only possible if parent == real_parent.
 | |
| 		 * Check if it has changed security domain.
 | |
| 		 */
 | |
| 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
 | |
| 			sig = SIGCHLD;
 | |
| 	}
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	/*
 | |
| 	 * We are under tasklist_lock here so our parent is tied to
 | |
| 	 * us and cannot change.
 | |
| 	 *
 | |
| 	 * task_active_pid_ns will always return the same pid namespace
 | |
| 	 * until a task passes through release_task.
 | |
| 	 *
 | |
| 	 * write_lock() currently calls preempt_disable() which is the
 | |
| 	 * same as rcu_read_lock(), but according to Oleg, this is not
 | |
| 	 * correct to rely on this
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
 | |
| 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
 | |
| 				       task_uid(tsk));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	task_cputime(tsk, &utime, &stime);
 | |
| 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
 | |
| 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
 | |
| 
 | |
| 	info.si_status = tsk->exit_code & 0x7f;
 | |
| 	if (tsk->exit_code & 0x80)
 | |
| 		info.si_code = CLD_DUMPED;
 | |
| 	else if (tsk->exit_code & 0x7f)
 | |
| 		info.si_code = CLD_KILLED;
 | |
| 	else {
 | |
| 		info.si_code = CLD_EXITED;
 | |
| 		info.si_status = tsk->exit_code >> 8;
 | |
| 	}
 | |
| 
 | |
| 	psig = tsk->parent->sighand;
 | |
| 	spin_lock_irqsave(&psig->siglock, flags);
 | |
| 	if (!tsk->ptrace && sig == SIGCHLD &&
 | |
| 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
 | |
| 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
 | |
| 		/*
 | |
| 		 * We are exiting and our parent doesn't care.  POSIX.1
 | |
| 		 * defines special semantics for setting SIGCHLD to SIG_IGN
 | |
| 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
 | |
| 		 * automatically and not left for our parent's wait4 call.
 | |
| 		 * Rather than having the parent do it as a magic kind of
 | |
| 		 * signal handler, we just set this to tell do_exit that we
 | |
| 		 * can be cleaned up without becoming a zombie.  Note that
 | |
| 		 * we still call __wake_up_parent in this case, because a
 | |
| 		 * blocked sys_wait4 might now return -ECHILD.
 | |
| 		 *
 | |
| 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
 | |
| 		 * is implementation-defined: we do (if you don't want
 | |
| 		 * it, just use SIG_IGN instead).
 | |
| 		 */
 | |
| 		autoreap = true;
 | |
| 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
 | |
| 			sig = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Send with __send_signal as si_pid and si_uid are in the
 | |
| 	 * parent's namespaces.
 | |
| 	 */
 | |
| 	if (valid_signal(sig) && sig)
 | |
| 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
 | |
| 	__wake_up_parent(tsk, tsk->parent);
 | |
| 	spin_unlock_irqrestore(&psig->siglock, flags);
 | |
| 
 | |
| 	return autoreap;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_notify_parent_cldstop - notify parent of stopped/continued state change
 | |
|  * @tsk: task reporting the state change
 | |
|  * @for_ptracer: the notification is for ptracer
 | |
|  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
 | |
|  *
 | |
|  * Notify @tsk's parent that the stopped/continued state has changed.  If
 | |
|  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
 | |
|  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Must be called with tasklist_lock at least read locked.
 | |
|  */
 | |
| static void do_notify_parent_cldstop(struct task_struct *tsk,
 | |
| 				     bool for_ptracer, int why)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *parent;
 | |
| 	struct sighand_struct *sighand;
 | |
| 	u64 utime, stime;
 | |
| 
 | |
| 	if (for_ptracer) {
 | |
| 		parent = tsk->parent;
 | |
| 	} else {
 | |
| 		tsk = tsk->group_leader;
 | |
| 		parent = tsk->real_parent;
 | |
| 	}
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = SIGCHLD;
 | |
| 	info.si_errno = 0;
 | |
| 	/*
 | |
| 	 * see comment in do_notify_parent() about the following 4 lines
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
 | |
| 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	task_cputime(tsk, &utime, &stime);
 | |
| 	info.si_utime = nsec_to_clock_t(utime);
 | |
| 	info.si_stime = nsec_to_clock_t(stime);
 | |
| 
 | |
|  	info.si_code = why;
 | |
|  	switch (why) {
 | |
|  	case CLD_CONTINUED:
 | |
|  		info.si_status = SIGCONT;
 | |
|  		break;
 | |
|  	case CLD_STOPPED:
 | |
|  		info.si_status = tsk->signal->group_exit_code & 0x7f;
 | |
|  		break;
 | |
|  	case CLD_TRAPPED:
 | |
|  		info.si_status = tsk->exit_code & 0x7f;
 | |
|  		break;
 | |
|  	default:
 | |
|  		BUG();
 | |
|  	}
 | |
| 
 | |
| 	sighand = parent->sighand;
 | |
| 	spin_lock_irqsave(&sighand->siglock, flags);
 | |
| 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
 | |
| 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
 | |
| 		__group_send_sig_info(SIGCHLD, &info, parent);
 | |
| 	/*
 | |
| 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
 | |
| 	 */
 | |
| 	__wake_up_parent(tsk, parent);
 | |
| 	spin_unlock_irqrestore(&sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be called with current->sighand->siglock held.
 | |
|  *
 | |
|  * This should be the path for all ptrace stops.
 | |
|  * We always set current->last_siginfo while stopped here.
 | |
|  * That makes it a way to test a stopped process for
 | |
|  * being ptrace-stopped vs being job-control-stopped.
 | |
|  *
 | |
|  * Returns the signal the ptracer requested the code resume
 | |
|  * with.  If the code did not stop because the tracer is gone,
 | |
|  * the stop signal remains unchanged unless clear_code.
 | |
|  */
 | |
| static int ptrace_stop(int exit_code, int why, int clear_code,
 | |
| 			unsigned long message, kernel_siginfo_t *info)
 | |
| 	__releases(¤t->sighand->siglock)
 | |
| 	__acquires(¤t->sighand->siglock)
 | |
| {
 | |
| 	bool gstop_done = false;
 | |
| 	bool read_code = true;
 | |
| 
 | |
| 	if (arch_ptrace_stop_needed()) {
 | |
| 		/*
 | |
| 		 * The arch code has something special to do before a
 | |
| 		 * ptrace stop.  This is allowed to block, e.g. for faults
 | |
| 		 * on user stack pages.  We can't keep the siglock while
 | |
| 		 * calling arch_ptrace_stop, so we must release it now.
 | |
| 		 * To preserve proper semantics, we must do this before
 | |
| 		 * any signal bookkeeping like checking group_stop_count.
 | |
| 		 */
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 		arch_ptrace_stop();
 | |
| 		spin_lock_irq(¤t->sighand->siglock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * schedule() will not sleep if there is a pending signal that
 | |
| 	 * can awaken the task.
 | |
| 	 */
 | |
| 	set_special_state(TASK_TRACED);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're committing to trapping.  TRACED should be visible before
 | |
| 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
 | |
| 	 * Also, transition to TRACED and updates to ->jobctl should be
 | |
| 	 * atomic with respect to siglock and should be done after the arch
 | |
| 	 * hook as siglock is released and regrabbed across it.
 | |
| 	 *
 | |
| 	 *     TRACER				    TRACEE
 | |
| 	 *
 | |
| 	 *     ptrace_attach()
 | |
| 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
 | |
| 	 *     do_wait()
 | |
| 	 *       set_current_state()                smp_wmb();
 | |
| 	 *       ptrace_do_wait()
 | |
| 	 *         wait_task_stopped()
 | |
| 	 *           task_stopped_code()
 | |
| 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	current->ptrace_message = message;
 | |
| 	current->last_siginfo = info;
 | |
| 	current->exit_code = exit_code;
 | |
| 
 | |
| 	/*
 | |
| 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
 | |
| 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
 | |
| 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
 | |
| 	 * could be clear now.  We act as if SIGCONT is received after
 | |
| 	 * TASK_TRACED is entered - ignore it.
 | |
| 	 */
 | |
| 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
 | |
| 		gstop_done = task_participate_group_stop(current);
 | |
| 
 | |
| 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
 | |
| 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
 | |
| 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
 | |
| 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
 | |
| 
 | |
| 	/* entering a trap, clear TRAPPING */
 | |
| 	task_clear_jobctl_trapping(current);
 | |
| 
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (likely(current->ptrace)) {
 | |
| 		/*
 | |
| 		 * Notify parents of the stop.
 | |
| 		 *
 | |
| 		 * While ptraced, there are two parents - the ptracer and
 | |
| 		 * the real_parent of the group_leader.  The ptracer should
 | |
| 		 * know about every stop while the real parent is only
 | |
| 		 * interested in the completion of group stop.  The states
 | |
| 		 * for the two don't interact with each other.  Notify
 | |
| 		 * separately unless they're gonna be duplicates.
 | |
| 		 */
 | |
| 		do_notify_parent_cldstop(current, true, why);
 | |
| 		if (gstop_done && ptrace_reparented(current))
 | |
| 			do_notify_parent_cldstop(current, false, why);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't want to allow preemption here, because
 | |
| 		 * sys_ptrace() needs this task to be inactive.
 | |
| 		 *
 | |
| 		 * XXX: implement read_unlock_no_resched().
 | |
| 		 */
 | |
| 		preempt_disable();
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		cgroup_enter_frozen();
 | |
| 		preempt_enable_no_resched();
 | |
| 		freezable_schedule();
 | |
| 		cgroup_leave_frozen(true);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * By the time we got the lock, our tracer went away.
 | |
| 		 * Don't drop the lock yet, another tracer may come.
 | |
| 		 *
 | |
| 		 * If @gstop_done, the ptracer went away between group stop
 | |
| 		 * completion and here.  During detach, it would have set
 | |
| 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
 | |
| 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
 | |
| 		 * the real parent of the group stop completion is enough.
 | |
| 		 */
 | |
| 		if (gstop_done)
 | |
| 			do_notify_parent_cldstop(current, false, why);
 | |
| 
 | |
| 		/* tasklist protects us from ptrace_freeze_traced() */
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 		read_code = false;
 | |
| 		if (clear_code)
 | |
| 			exit_code = 0;
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are back.  Now reacquire the siglock before touching
 | |
| 	 * last_siginfo, so that we are sure to have synchronized with
 | |
| 	 * any signal-sending on another CPU that wants to examine it.
 | |
| 	 */
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	if (read_code)
 | |
| 		exit_code = current->exit_code;
 | |
| 	current->last_siginfo = NULL;
 | |
| 	current->ptrace_message = 0;
 | |
| 	current->exit_code = 0;
 | |
| 
 | |
| 	/* LISTENING can be set only during STOP traps, clear it */
 | |
| 	current->jobctl &= ~JOBCTL_LISTENING;
 | |
| 
 | |
| 	/*
 | |
| 	 * Queued signals ignored us while we were stopped for tracing.
 | |
| 	 * So check for any that we should take before resuming user mode.
 | |
| 	 * This sets TIF_SIGPENDING, but never clears it.
 | |
| 	 */
 | |
| 	recalc_sigpending_tsk(current);
 | |
| 	return exit_code;
 | |
| }
 | |
| 
 | |
| static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
 | |
| {
 | |
| 	kernel_siginfo_t info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = signr;
 | |
| 	info.si_code = exit_code;
 | |
| 	info.si_pid = task_pid_vnr(current);
 | |
| 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 | |
| 
 | |
| 	/* Let the debugger run.  */
 | |
| 	return ptrace_stop(exit_code, why, 1, message, &info);
 | |
| }
 | |
| 
 | |
| int ptrace_notify(int exit_code, unsigned long message)
 | |
| {
 | |
| 	int signr;
 | |
| 
 | |
| 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 | |
| 	if (unlikely(task_work_pending(current)))
 | |
| 		task_work_run();
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	return signr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
 | |
|  * @signr: signr causing group stop if initiating
 | |
|  *
 | |
|  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
 | |
|  * and participate in it.  If already set, participate in the existing
 | |
|  * group stop.  If participated in a group stop (and thus slept), %true is
 | |
|  * returned with siglock released.
 | |
|  *
 | |
|  * If ptraced, this function doesn't handle stop itself.  Instead,
 | |
|  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
 | |
|  * untouched.  The caller must ensure that INTERRUPT trap handling takes
 | |
|  * places afterwards.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Must be called with @current->sighand->siglock held, which is released
 | |
|  * on %true return.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * %false if group stop is already cancelled or ptrace trap is scheduled.
 | |
|  * %true if participated in group stop.
 | |
|  */
 | |
| static bool do_signal_stop(int signr)
 | |
| 	__releases(¤t->sighand->siglock)
 | |
| {
 | |
| 	struct signal_struct *sig = current->signal;
 | |
| 
 | |
| 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
 | |
| 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 | |
| 		struct task_struct *t;
 | |
| 
 | |
| 		/* signr will be recorded in task->jobctl for retries */
 | |
| 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
 | |
| 
 | |
| 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
 | |
| 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
 | |
| 		    unlikely(sig->group_exec_task))
 | |
| 			return false;
 | |
| 		/*
 | |
| 		 * There is no group stop already in progress.  We must
 | |
| 		 * initiate one now.
 | |
| 		 *
 | |
| 		 * While ptraced, a task may be resumed while group stop is
 | |
| 		 * still in effect and then receive a stop signal and
 | |
| 		 * initiate another group stop.  This deviates from the
 | |
| 		 * usual behavior as two consecutive stop signals can't
 | |
| 		 * cause two group stops when !ptraced.  That is why we
 | |
| 		 * also check !task_is_stopped(t) below.
 | |
| 		 *
 | |
| 		 * The condition can be distinguished by testing whether
 | |
| 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
 | |
| 		 * group_exit_code in such case.
 | |
| 		 *
 | |
| 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
 | |
| 		 * an intervening stop signal is required to cause two
 | |
| 		 * continued events regardless of ptrace.
 | |
| 		 */
 | |
| 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
 | |
| 			sig->group_exit_code = signr;
 | |
| 
 | |
| 		sig->group_stop_count = 0;
 | |
| 
 | |
| 		if (task_set_jobctl_pending(current, signr | gstop))
 | |
| 			sig->group_stop_count++;
 | |
| 
 | |
| 		t = current;
 | |
| 		while_each_thread(current, t) {
 | |
| 			/*
 | |
| 			 * Setting state to TASK_STOPPED for a group
 | |
| 			 * stop is always done with the siglock held,
 | |
| 			 * so this check has no races.
 | |
| 			 */
 | |
| 			if (!task_is_stopped(t) &&
 | |
| 			    task_set_jobctl_pending(t, signr | gstop)) {
 | |
| 				sig->group_stop_count++;
 | |
| 				if (likely(!(t->ptrace & PT_SEIZED)))
 | |
| 					signal_wake_up(t, 0);
 | |
| 				else
 | |
| 					ptrace_trap_notify(t);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!current->ptrace)) {
 | |
| 		int notify = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there are no other threads in the group, or if there
 | |
| 		 * is a group stop in progress and we are the last to stop,
 | |
| 		 * report to the parent.
 | |
| 		 */
 | |
| 		if (task_participate_group_stop(current))
 | |
| 			notify = CLD_STOPPED;
 | |
| 
 | |
| 		set_special_state(TASK_STOPPED);
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Notify the parent of the group stop completion.  Because
 | |
| 		 * we're not holding either the siglock or tasklist_lock
 | |
| 		 * here, ptracer may attach inbetween; however, this is for
 | |
| 		 * group stop and should always be delivered to the real
 | |
| 		 * parent of the group leader.  The new ptracer will get
 | |
| 		 * its notification when this task transitions into
 | |
| 		 * TASK_TRACED.
 | |
| 		 */
 | |
| 		if (notify) {
 | |
| 			read_lock(&tasklist_lock);
 | |
| 			do_notify_parent_cldstop(current, false, notify);
 | |
| 			read_unlock(&tasklist_lock);
 | |
| 		}
 | |
| 
 | |
| 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
 | |
| 		cgroup_enter_frozen();
 | |
| 		freezable_schedule();
 | |
| 		return true;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * While ptraced, group stop is handled by STOP trap.
 | |
| 		 * Schedule it and let the caller deal with it.
 | |
| 		 */
 | |
| 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_jobctl_trap - take care of ptrace jobctl traps
 | |
|  *
 | |
|  * When PT_SEIZED, it's used for both group stop and explicit
 | |
|  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
 | |
|  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
 | |
|  * the stop signal; otherwise, %SIGTRAP.
 | |
|  *
 | |
|  * When !PT_SEIZED, it's used only for group stop trap with stop signal
 | |
|  * number as exit_code and no siginfo.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Must be called with @current->sighand->siglock held, which may be
 | |
|  * released and re-acquired before returning with intervening sleep.
 | |
|  */
 | |
| static void do_jobctl_trap(void)
 | |
| {
 | |
| 	struct signal_struct *signal = current->signal;
 | |
| 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
 | |
| 
 | |
| 	if (current->ptrace & PT_SEIZED) {
 | |
| 		if (!signal->group_stop_count &&
 | |
| 		    !(signal->flags & SIGNAL_STOP_STOPPED))
 | |
| 			signr = SIGTRAP;
 | |
| 		WARN_ON_ONCE(!signr);
 | |
| 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
 | |
| 				 CLD_STOPPED, 0);
 | |
| 	} else {
 | |
| 		WARN_ON_ONCE(!signr);
 | |
| 		ptrace_stop(signr, CLD_STOPPED, 0, 0, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_freezer_trap - handle the freezer jobctl trap
 | |
|  *
 | |
|  * Puts the task into frozen state, if only the task is not about to quit.
 | |
|  * In this case it drops JOBCTL_TRAP_FREEZE.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Must be called with @current->sighand->siglock held,
 | |
|  * which is always released before returning.
 | |
|  */
 | |
| static void do_freezer_trap(void)
 | |
| 	__releases(¤t->sighand->siglock)
 | |
| {
 | |
| 	/*
 | |
| 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
 | |
| 	 * let's make another loop to give it a chance to be handled.
 | |
| 	 * In any case, we'll return back.
 | |
| 	 */
 | |
| 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
 | |
| 	     JOBCTL_TRAP_FREEZE) {
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we're sure that there is no pending fatal signal and no
 | |
| 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
 | |
| 	 * immediately (if there is a non-fatal signal pending), and
 | |
| 	 * put the task into sleep.
 | |
| 	 */
 | |
| 	__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 	clear_thread_flag(TIF_SIGPENDING);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	cgroup_enter_frozen();
 | |
| 	freezable_schedule();
 | |
| }
 | |
| 
 | |
| static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
 | |
| {
 | |
| 	/*
 | |
| 	 * We do not check sig_kernel_stop(signr) but set this marker
 | |
| 	 * unconditionally because we do not know whether debugger will
 | |
| 	 * change signr. This flag has no meaning unless we are going
 | |
| 	 * to stop after return from ptrace_stop(). In this case it will
 | |
| 	 * be checked in do_signal_stop(), we should only stop if it was
 | |
| 	 * not cleared by SIGCONT while we were sleeping. See also the
 | |
| 	 * comment in dequeue_signal().
 | |
| 	 */
 | |
| 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
 | |
| 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, 0, info);
 | |
| 
 | |
| 	/* We're back.  Did the debugger cancel the sig?  */
 | |
| 	if (signr == 0)
 | |
| 		return signr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the siginfo structure if the signal has
 | |
| 	 * changed.  If the debugger wanted something
 | |
| 	 * specific in the siginfo structure then it should
 | |
| 	 * have updated *info via PTRACE_SETSIGINFO.
 | |
| 	 */
 | |
| 	if (signr != info->si_signo) {
 | |
| 		clear_siginfo(info);
 | |
| 		info->si_signo = signr;
 | |
| 		info->si_errno = 0;
 | |
| 		info->si_code = SI_USER;
 | |
| 		rcu_read_lock();
 | |
| 		info->si_pid = task_pid_vnr(current->parent);
 | |
| 		info->si_uid = from_kuid_munged(current_user_ns(),
 | |
| 						task_uid(current->parent));
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	/* If the (new) signal is now blocked, requeue it.  */
 | |
| 	if (sigismember(¤t->blocked, signr) ||
 | |
| 	    fatal_signal_pending(current)) {
 | |
| 		send_signal(signr, info, current, type);
 | |
| 		signr = 0;
 | |
| 	}
 | |
| 
 | |
| 	return signr;
 | |
| }
 | |
| 
 | |
| static void hide_si_addr_tag_bits(struct ksignal *ksig)
 | |
| {
 | |
| 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
 | |
| 	case SIL_FAULT:
 | |
| 	case SIL_FAULT_TRAPNO:
 | |
| 	case SIL_FAULT_MCEERR:
 | |
| 	case SIL_FAULT_BNDERR:
 | |
| 	case SIL_FAULT_PKUERR:
 | |
| 	case SIL_FAULT_PERF_EVENT:
 | |
| 		ksig->info.si_addr = arch_untagged_si_addr(
 | |
| 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
 | |
| 		break;
 | |
| 	case SIL_KILL:
 | |
| 	case SIL_TIMER:
 | |
| 	case SIL_POLL:
 | |
| 	case SIL_CHLD:
 | |
| 	case SIL_RT:
 | |
| 	case SIL_SYS:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool get_signal(struct ksignal *ksig)
 | |
| {
 | |
| 	struct sighand_struct *sighand = current->sighand;
 | |
| 	struct signal_struct *signal = current->signal;
 | |
| 	int signr;
 | |
| 
 | |
| 	clear_notify_signal();
 | |
| 	if (unlikely(task_work_pending(current)))
 | |
| 		task_work_run();
 | |
| 
 | |
| 	if (!task_sigpending(current))
 | |
| 		return false;
 | |
| 
 | |
| 	if (unlikely(uprobe_deny_signal()))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do this once, we can't return to user-mode if freezing() == T.
 | |
| 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
 | |
| 	 * thus do not need another check after return.
 | |
| 	 */
 | |
| 	try_to_freeze();
 | |
| 
 | |
| relock:
 | |
| 	spin_lock_irq(&sighand->siglock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Every stopped thread goes here after wakeup. Check to see if
 | |
| 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
 | |
| 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
 | |
| 	 */
 | |
| 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
 | |
| 		int why;
 | |
| 
 | |
| 		if (signal->flags & SIGNAL_CLD_CONTINUED)
 | |
| 			why = CLD_CONTINUED;
 | |
| 		else
 | |
| 			why = CLD_STOPPED;
 | |
| 
 | |
| 		signal->flags &= ~SIGNAL_CLD_MASK;
 | |
| 
 | |
| 		spin_unlock_irq(&sighand->siglock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Notify the parent that we're continuing.  This event is
 | |
| 		 * always per-process and doesn't make whole lot of sense
 | |
| 		 * for ptracers, who shouldn't consume the state via
 | |
| 		 * wait(2) either, but, for backward compatibility, notify
 | |
| 		 * the ptracer of the group leader too unless it's gonna be
 | |
| 		 * a duplicate.
 | |
| 		 */
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		do_notify_parent_cldstop(current, false, why);
 | |
| 
 | |
| 		if (ptrace_reparented(current->group_leader))
 | |
| 			do_notify_parent_cldstop(current->group_leader,
 | |
| 						true, why);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 
 | |
| 		goto relock;
 | |
| 	}
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct k_sigaction *ka;
 | |
| 		enum pid_type type;
 | |
| 
 | |
| 		/* Has this task already been marked for death? */
 | |
| 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
 | |
| 		     signal->group_exec_task) {
 | |
| 			ksig->info.si_signo = signr = SIGKILL;
 | |
| 			sigdelset(¤t->pending.signal, SIGKILL);
 | |
| 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
 | |
| 				&sighand->action[SIGKILL - 1]);
 | |
| 			recalc_sigpending();
 | |
| 			goto fatal;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
 | |
| 		    do_signal_stop(0))
 | |
| 			goto relock;
 | |
| 
 | |
| 		if (unlikely(current->jobctl &
 | |
| 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
 | |
| 			if (current->jobctl & JOBCTL_TRAP_MASK) {
 | |
| 				do_jobctl_trap();
 | |
| 				spin_unlock_irq(&sighand->siglock);
 | |
| 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
 | |
| 				do_freezer_trap();
 | |
| 
 | |
| 			goto relock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the task is leaving the frozen state, let's update
 | |
| 		 * cgroup counters and reset the frozen bit.
 | |
| 		 */
 | |
| 		if (unlikely(cgroup_task_frozen(current))) {
 | |
| 			spin_unlock_irq(&sighand->siglock);
 | |
| 			cgroup_leave_frozen(false);
 | |
| 			goto relock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Signals generated by the execution of an instruction
 | |
| 		 * need to be delivered before any other pending signals
 | |
| 		 * so that the instruction pointer in the signal stack
 | |
| 		 * frame points to the faulting instruction.
 | |
| 		 */
 | |
| 		type = PIDTYPE_PID;
 | |
| 		signr = dequeue_synchronous_signal(&ksig->info);
 | |
| 		if (!signr)
 | |
| 			signr = dequeue_signal(current, ¤t->blocked,
 | |
| 					       &ksig->info, &type);
 | |
| 
 | |
| 		if (!signr)
 | |
| 			break; /* will return 0 */
 | |
| 
 | |
| 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
 | |
| 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
 | |
| 			signr = ptrace_signal(signr, &ksig->info, type);
 | |
| 			if (!signr)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		ka = &sighand->action[signr-1];
 | |
| 
 | |
| 		/* Trace actually delivered signals. */
 | |
| 		trace_signal_deliver(signr, &ksig->info, ka);
 | |
| 
 | |
| 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
 | |
| 			continue;
 | |
| 		if (ka->sa.sa_handler != SIG_DFL) {
 | |
| 			/* Run the handler.  */
 | |
| 			ksig->ka = *ka;
 | |
| 
 | |
| 			if (ka->sa.sa_flags & SA_ONESHOT)
 | |
| 				ka->sa.sa_handler = SIG_DFL;
 | |
| 
 | |
| 			break; /* will return non-zero "signr" value */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we are doing the default action for this signal.
 | |
| 		 */
 | |
| 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Global init gets no signals it doesn't want.
 | |
| 		 * Container-init gets no signals it doesn't want from same
 | |
| 		 * container.
 | |
| 		 *
 | |
| 		 * Note that if global/container-init sees a sig_kernel_only()
 | |
| 		 * signal here, the signal must have been generated internally
 | |
| 		 * or must have come from an ancestor namespace. In either
 | |
| 		 * case, the signal cannot be dropped.
 | |
| 		 */
 | |
| 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
 | |
| 				!sig_kernel_only(signr))
 | |
| 			continue;
 | |
| 
 | |
| 		if (sig_kernel_stop(signr)) {
 | |
| 			/*
 | |
| 			 * The default action is to stop all threads in
 | |
| 			 * the thread group.  The job control signals
 | |
| 			 * do nothing in an orphaned pgrp, but SIGSTOP
 | |
| 			 * always works.  Note that siglock needs to be
 | |
| 			 * dropped during the call to is_orphaned_pgrp()
 | |
| 			 * because of lock ordering with tasklist_lock.
 | |
| 			 * This allows an intervening SIGCONT to be posted.
 | |
| 			 * We need to check for that and bail out if necessary.
 | |
| 			 */
 | |
| 			if (signr != SIGSTOP) {
 | |
| 				spin_unlock_irq(&sighand->siglock);
 | |
| 
 | |
| 				/* signals can be posted during this window */
 | |
| 
 | |
| 				if (is_current_pgrp_orphaned())
 | |
| 					goto relock;
 | |
| 
 | |
| 				spin_lock_irq(&sighand->siglock);
 | |
| 			}
 | |
| 
 | |
| 			if (likely(do_signal_stop(ksig->info.si_signo))) {
 | |
| 				/* It released the siglock.  */
 | |
| 				goto relock;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We didn't actually stop, due to a race
 | |
| 			 * with SIGCONT or something like that.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 	fatal:
 | |
| 		spin_unlock_irq(&sighand->siglock);
 | |
| 		if (unlikely(cgroup_task_frozen(current)))
 | |
| 			cgroup_leave_frozen(true);
 | |
| 
 | |
| 		/*
 | |
| 		 * Anything else is fatal, maybe with a core dump.
 | |
| 		 */
 | |
| 		current->flags |= PF_SIGNALED;
 | |
| 
 | |
| 		if (sig_kernel_coredump(signr)) {
 | |
| 			if (print_fatal_signals)
 | |
| 				print_fatal_signal(ksig->info.si_signo);
 | |
| 			proc_coredump_connector(current);
 | |
| 			/*
 | |
| 			 * If it was able to dump core, this kills all
 | |
| 			 * other threads in the group and synchronizes with
 | |
| 			 * their demise.  If we lost the race with another
 | |
| 			 * thread getting here, it set group_exit_code
 | |
| 			 * first and our do_group_exit call below will use
 | |
| 			 * that value and ignore the one we pass it.
 | |
| 			 */
 | |
| 			do_coredump(&ksig->info);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * PF_IO_WORKER threads will catch and exit on fatal signals
 | |
| 		 * themselves. They have cleanup that must be performed, so
 | |
| 		 * we cannot call do_exit() on their behalf.
 | |
| 		 */
 | |
| 		if (current->flags & PF_IO_WORKER)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * Death signals, no core dump.
 | |
| 		 */
 | |
| 		do_group_exit(ksig->info.si_signo);
 | |
| 		/* NOTREACHED */
 | |
| 	}
 | |
| 	spin_unlock_irq(&sighand->siglock);
 | |
| out:
 | |
| 	ksig->sig = signr;
 | |
| 
 | |
| 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
 | |
| 		hide_si_addr_tag_bits(ksig);
 | |
| 
 | |
| 	return ksig->sig > 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * signal_delivered - called after signal delivery to update blocked signals
 | |
|  * @ksig:		kernel signal struct
 | |
|  * @stepping:		nonzero if debugger single-step or block-step in use
 | |
|  *
 | |
|  * This function should be called when a signal has successfully been
 | |
|  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
 | |
|  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
 | |
|  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
 | |
|  */
 | |
| static void signal_delivered(struct ksignal *ksig, int stepping)
 | |
| {
 | |
| 	sigset_t blocked;
 | |
| 
 | |
| 	/* A signal was successfully delivered, and the
 | |
| 	   saved sigmask was stored on the signal frame,
 | |
| 	   and will be restored by sigreturn.  So we can
 | |
| 	   simply clear the restore sigmask flag.  */
 | |
| 	clear_restore_sigmask();
 | |
| 
 | |
| 	sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
 | |
| 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
 | |
| 		sigaddset(&blocked, ksig->sig);
 | |
| 	set_current_blocked(&blocked);
 | |
| 	if (current->sas_ss_flags & SS_AUTODISARM)
 | |
| 		sas_ss_reset(current);
 | |
| 	if (stepping)
 | |
| 		ptrace_notify(SIGTRAP, 0);
 | |
| }
 | |
| 
 | |
| void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
 | |
| {
 | |
| 	if (failed)
 | |
| 		force_sigsegv(ksig->sig);
 | |
| 	else
 | |
| 		signal_delivered(ksig, stepping);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It could be that complete_signal() picked us to notify about the
 | |
|  * group-wide signal. Other threads should be notified now to take
 | |
|  * the shared signals in @which since we will not.
 | |
|  */
 | |
| static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
 | |
| {
 | |
| 	sigset_t retarget;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
 | |
| 	if (sigisemptyset(&retarget))
 | |
| 		return;
 | |
| 
 | |
| 	t = tsk;
 | |
| 	while_each_thread(tsk, t) {
 | |
| 		if (t->flags & PF_EXITING)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!has_pending_signals(&retarget, &t->blocked))
 | |
| 			continue;
 | |
| 		/* Remove the signals this thread can handle. */
 | |
| 		sigandsets(&retarget, &retarget, &t->blocked);
 | |
| 
 | |
| 		if (!task_sigpending(t))
 | |
| 			signal_wake_up(t, 0);
 | |
| 
 | |
| 		if (sigisemptyset(&retarget))
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void exit_signals(struct task_struct *tsk)
 | |
| {
 | |
| 	int group_stop = 0;
 | |
| 	sigset_t unblocked;
 | |
| 
 | |
| 	/*
 | |
| 	 * @tsk is about to have PF_EXITING set - lock out users which
 | |
| 	 * expect stable threadgroup.
 | |
| 	 */
 | |
| 	cgroup_threadgroup_change_begin(tsk);
 | |
| 
 | |
| 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
 | |
| 		tsk->flags |= PF_EXITING;
 | |
| 		cgroup_threadgroup_change_end(tsk);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&tsk->sighand->siglock);
 | |
| 	/*
 | |
| 	 * From now this task is not visible for group-wide signals,
 | |
| 	 * see wants_signal(), do_signal_stop().
 | |
| 	 */
 | |
| 	tsk->flags |= PF_EXITING;
 | |
| 
 | |
| 	cgroup_threadgroup_change_end(tsk);
 | |
| 
 | |
| 	if (!task_sigpending(tsk))
 | |
| 		goto out;
 | |
| 
 | |
| 	unblocked = tsk->blocked;
 | |
| 	signotset(&unblocked);
 | |
| 	retarget_shared_pending(tsk, &unblocked);
 | |
| 
 | |
| 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
 | |
| 	    task_participate_group_stop(tsk))
 | |
| 		group_stop = CLD_STOPPED;
 | |
| out:
 | |
| 	spin_unlock_irq(&tsk->sighand->siglock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If group stop has completed, deliver the notification.  This
 | |
| 	 * should always go to the real parent of the group leader.
 | |
| 	 */
 | |
| 	if (unlikely(group_stop)) {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		do_notify_parent_cldstop(tsk, false, group_stop);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * System call entry points.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  *  sys_restart_syscall - restart a system call
 | |
|  */
 | |
| SYSCALL_DEFINE0(restart_syscall)
 | |
| {
 | |
| 	struct restart_block *restart = ¤t->restart_block;
 | |
| 	return restart->fn(restart);
 | |
| }
 | |
| 
 | |
| long do_no_restart_syscall(struct restart_block *param)
 | |
| {
 | |
| 	return -EINTR;
 | |
| }
 | |
| 
 | |
| static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
 | |
| {
 | |
| 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
 | |
| 		sigset_t newblocked;
 | |
| 		/* A set of now blocked but previously unblocked signals. */
 | |
| 		sigandnsets(&newblocked, newset, ¤t->blocked);
 | |
| 		retarget_shared_pending(tsk, &newblocked);
 | |
| 	}
 | |
| 	tsk->blocked = *newset;
 | |
| 	recalc_sigpending();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_current_blocked - change current->blocked mask
 | |
|  * @newset: new mask
 | |
|  *
 | |
|  * It is wrong to change ->blocked directly, this helper should be used
 | |
|  * to ensure the process can't miss a shared signal we are going to block.
 | |
|  */
 | |
| void set_current_blocked(sigset_t *newset)
 | |
| {
 | |
| 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
 | |
| 	__set_current_blocked(newset);
 | |
| }
 | |
| 
 | |
| void __set_current_blocked(const sigset_t *newset)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case the signal mask hasn't changed, there is nothing we need
 | |
| 	 * to do. The current->blocked shouldn't be modified by other task.
 | |
| 	 */
 | |
| 	if (sigequalsets(&tsk->blocked, newset))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irq(&tsk->sighand->siglock);
 | |
| 	__set_task_blocked(tsk, newset);
 | |
| 	spin_unlock_irq(&tsk->sighand->siglock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is also useful for kernel threads that want to temporarily
 | |
|  * (or permanently) block certain signals.
 | |
|  *
 | |
|  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
 | |
|  * interface happily blocks "unblockable" signals like SIGKILL
 | |
|  * and friends.
 | |
|  */
 | |
| int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	sigset_t newset;
 | |
| 
 | |
| 	/* Lockless, only current can change ->blocked, never from irq */
 | |
| 	if (oldset)
 | |
| 		*oldset = tsk->blocked;
 | |
| 
 | |
| 	switch (how) {
 | |
| 	case SIG_BLOCK:
 | |
| 		sigorsets(&newset, &tsk->blocked, set);
 | |
| 		break;
 | |
| 	case SIG_UNBLOCK:
 | |
| 		sigandnsets(&newset, &tsk->blocked, set);
 | |
| 		break;
 | |
| 	case SIG_SETMASK:
 | |
| 		newset = *set;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	__set_current_blocked(&newset);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(sigprocmask);
 | |
| 
 | |
| /*
 | |
|  * The api helps set app-provided sigmasks.
 | |
|  *
 | |
|  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
 | |
|  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
 | |
|  *
 | |
|  * Note that it does set_restore_sigmask() in advance, so it must be always
 | |
|  * paired with restore_saved_sigmask_unless() before return from syscall.
 | |
|  */
 | |
| int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
 | |
| {
 | |
| 	sigset_t kmask;
 | |
| 
 | |
| 	if (!umask)
 | |
| 		return 0;
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	set_restore_sigmask();
 | |
| 	current->saved_sigmask = current->blocked;
 | |
| 	set_current_blocked(&kmask);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| int set_compat_user_sigmask(const compat_sigset_t __user *umask,
 | |
| 			    size_t sigsetsize)
 | |
| {
 | |
| 	sigset_t kmask;
 | |
| 
 | |
| 	if (!umask)
 | |
| 		return 0;
 | |
| 	if (sigsetsize != sizeof(compat_sigset_t))
 | |
| 		return -EINVAL;
 | |
| 	if (get_compat_sigset(&kmask, umask))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	set_restore_sigmask();
 | |
| 	current->saved_sigmask = current->blocked;
 | |
| 	set_current_blocked(&kmask);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  *  sys_rt_sigprocmask - change the list of currently blocked signals
 | |
|  *  @how: whether to add, remove, or set signals
 | |
|  *  @nset: stores pending signals
 | |
|  *  @oset: previous value of signal mask if non-null
 | |
|  *  @sigsetsize: size of sigset_t type
 | |
|  */
 | |
| SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
 | |
| 		sigset_t __user *, oset, size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t old_set, new_set;
 | |
| 	int error;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	old_set = current->blocked;
 | |
| 
 | |
| 	if (nset) {
 | |
| 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
 | |
| 			return -EFAULT;
 | |
| 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
 | |
| 
 | |
| 		error = sigprocmask(how, &new_set, NULL);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	if (oset) {
 | |
| 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
 | |
| 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t old_set = current->blocked;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (nset) {
 | |
| 		sigset_t new_set;
 | |
| 		int error;
 | |
| 		if (get_compat_sigset(&new_set, nset))
 | |
| 			return -EFAULT;
 | |
| 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
 | |
| 
 | |
| 		error = sigprocmask(how, &new_set, NULL);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void do_sigpending(sigset_t *set)
 | |
| {
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	sigorsets(set, ¤t->pending.signal,
 | |
| 		  ¤t->signal->shared_pending.signal);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	/* Outside the lock because only this thread touches it.  */
 | |
| 	sigandsets(set, ¤t->blocked, set);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  sys_rt_sigpending - examine a pending signal that has been raised
 | |
|  *			while blocked
 | |
|  *  @uset: stores pending signals
 | |
|  *  @sigsetsize: size of sigset_t type or larger
 | |
|  */
 | |
| SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t set;
 | |
| 
 | |
| 	if (sigsetsize > sizeof(*uset))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	do_sigpending(&set);
 | |
| 
 | |
| 	if (copy_to_user(uset, &set, sigsetsize))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
 | |
| 		compat_size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t set;
 | |
| 
 | |
| 	if (sigsetsize > sizeof(*uset))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	do_sigpending(&set);
 | |
| 
 | |
| 	return put_compat_sigset(uset, &set, sigsetsize);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct {
 | |
| 	unsigned char limit, layout;
 | |
| } sig_sicodes[] = {
 | |
| 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
 | |
| 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
 | |
| 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
 | |
| 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
 | |
| 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
 | |
| #if defined(SIGEMT)
 | |
| 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
 | |
| #endif
 | |
| 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
 | |
| 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
 | |
| 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
 | |
| };
 | |
| 
 | |
| static bool known_siginfo_layout(unsigned sig, int si_code)
 | |
| {
 | |
| 	if (si_code == SI_KERNEL)
 | |
| 		return true;
 | |
| 	else if ((si_code > SI_USER)) {
 | |
| 		if (sig_specific_sicodes(sig)) {
 | |
| 			if (si_code <= sig_sicodes[sig].limit)
 | |
| 				return true;
 | |
| 		}
 | |
| 		else if (si_code <= NSIGPOLL)
 | |
| 			return true;
 | |
| 	}
 | |
| 	else if (si_code >= SI_DETHREAD)
 | |
| 		return true;
 | |
| 	else if (si_code == SI_ASYNCNL)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
 | |
| {
 | |
| 	enum siginfo_layout layout = SIL_KILL;
 | |
| 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
 | |
| 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
 | |
| 		    (si_code <= sig_sicodes[sig].limit)) {
 | |
| 			layout = sig_sicodes[sig].layout;
 | |
| 			/* Handle the exceptions */
 | |
| 			if ((sig == SIGBUS) &&
 | |
| 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
 | |
| 				layout = SIL_FAULT_MCEERR;
 | |
| 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
 | |
| 				layout = SIL_FAULT_BNDERR;
 | |
| #ifdef SEGV_PKUERR
 | |
| 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
 | |
| 				layout = SIL_FAULT_PKUERR;
 | |
| #endif
 | |
| 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
 | |
| 				layout = SIL_FAULT_PERF_EVENT;
 | |
| 			else if (IS_ENABLED(CONFIG_SPARC) &&
 | |
| 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
 | |
| 				layout = SIL_FAULT_TRAPNO;
 | |
| 			else if (IS_ENABLED(CONFIG_ALPHA) &&
 | |
| 				 ((sig == SIGFPE) ||
 | |
| 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
 | |
| 				layout = SIL_FAULT_TRAPNO;
 | |
| 		}
 | |
| 		else if (si_code <= NSIGPOLL)
 | |
| 			layout = SIL_POLL;
 | |
| 	} else {
 | |
| 		if (si_code == SI_TIMER)
 | |
| 			layout = SIL_TIMER;
 | |
| 		else if (si_code == SI_SIGIO)
 | |
| 			layout = SIL_POLL;
 | |
| 		else if (si_code < 0)
 | |
| 			layout = SIL_RT;
 | |
| 	}
 | |
| 	return layout;
 | |
| }
 | |
| 
 | |
| static inline char __user *si_expansion(const siginfo_t __user *info)
 | |
| {
 | |
| 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
 | |
| }
 | |
| 
 | |
| int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
 | |
| {
 | |
| 	char __user *expansion = si_expansion(to);
 | |
| 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
 | |
| 		return -EFAULT;
 | |
| 	if (clear_user(expansion, SI_EXPANSION_SIZE))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
 | |
| 				       const siginfo_t __user *from)
 | |
| {
 | |
| 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
 | |
| 		char __user *expansion = si_expansion(from);
 | |
| 		char buf[SI_EXPANSION_SIZE];
 | |
| 		int i;
 | |
| 		/*
 | |
| 		 * An unknown si_code might need more than
 | |
| 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
 | |
| 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
 | |
| 		 * will return this data to userspace exactly.
 | |
| 		 */
 | |
| 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
 | |
| 			return -EFAULT;
 | |
| 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
 | |
| 			if (buf[i] != 0)
 | |
| 				return -E2BIG;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
 | |
| 				    const siginfo_t __user *from)
 | |
| {
 | |
| 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
 | |
| 		return -EFAULT;
 | |
| 	to->si_signo = signo;
 | |
| 	return post_copy_siginfo_from_user(to, from);
 | |
| }
 | |
| 
 | |
| int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
 | |
| {
 | |
| 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
 | |
| 		return -EFAULT;
 | |
| 	return post_copy_siginfo_from_user(to, from);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| /**
 | |
|  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
 | |
|  * @to: compat siginfo destination
 | |
|  * @from: kernel siginfo source
 | |
|  *
 | |
|  * Note: This function does not work properly for the SIGCHLD on x32, but
 | |
|  * fortunately it doesn't have to.  The only valid callers for this function are
 | |
|  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
 | |
|  * The latter does not care because SIGCHLD will never cause a coredump.
 | |
|  */
 | |
| void copy_siginfo_to_external32(struct compat_siginfo *to,
 | |
| 		const struct kernel_siginfo *from)
 | |
| {
 | |
| 	memset(to, 0, sizeof(*to));
 | |
| 
 | |
| 	to->si_signo = from->si_signo;
 | |
| 	to->si_errno = from->si_errno;
 | |
| 	to->si_code  = from->si_code;
 | |
| 	switch(siginfo_layout(from->si_signo, from->si_code)) {
 | |
| 	case SIL_KILL:
 | |
| 		to->si_pid = from->si_pid;
 | |
| 		to->si_uid = from->si_uid;
 | |
| 		break;
 | |
| 	case SIL_TIMER:
 | |
| 		to->si_tid     = from->si_tid;
 | |
| 		to->si_overrun = from->si_overrun;
 | |
| 		to->si_int     = from->si_int;
 | |
| 		break;
 | |
| 	case SIL_POLL:
 | |
| 		to->si_band = from->si_band;
 | |
| 		to->si_fd   = from->si_fd;
 | |
| 		break;
 | |
| 	case SIL_FAULT:
 | |
| 		to->si_addr = ptr_to_compat(from->si_addr);
 | |
| 		break;
 | |
| 	case SIL_FAULT_TRAPNO:
 | |
| 		to->si_addr = ptr_to_compat(from->si_addr);
 | |
| 		to->si_trapno = from->si_trapno;
 | |
| 		break;
 | |
| 	case SIL_FAULT_MCEERR:
 | |
| 		to->si_addr = ptr_to_compat(from->si_addr);
 | |
| 		to->si_addr_lsb = from->si_addr_lsb;
 | |
| 		break;
 | |
| 	case SIL_FAULT_BNDERR:
 | |
| 		to->si_addr = ptr_to_compat(from->si_addr);
 | |
| 		to->si_lower = ptr_to_compat(from->si_lower);
 | |
| 		to->si_upper = ptr_to_compat(from->si_upper);
 | |
| 		break;
 | |
| 	case SIL_FAULT_PKUERR:
 | |
| 		to->si_addr = ptr_to_compat(from->si_addr);
 | |
| 		to->si_pkey = from->si_pkey;
 | |
| 		break;
 | |
| 	case SIL_FAULT_PERF_EVENT:
 | |
| 		to->si_addr = ptr_to_compat(from->si_addr);
 | |
| 		to->si_perf_data = from->si_perf_data;
 | |
| 		to->si_perf_type = from->si_perf_type;
 | |
| 		break;
 | |
| 	case SIL_CHLD:
 | |
| 		to->si_pid = from->si_pid;
 | |
| 		to->si_uid = from->si_uid;
 | |
| 		to->si_status = from->si_status;
 | |
| 		to->si_utime = from->si_utime;
 | |
| 		to->si_stime = from->si_stime;
 | |
| 		break;
 | |
| 	case SIL_RT:
 | |
| 		to->si_pid = from->si_pid;
 | |
| 		to->si_uid = from->si_uid;
 | |
| 		to->si_int = from->si_int;
 | |
| 		break;
 | |
| 	case SIL_SYS:
 | |
| 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
 | |
| 		to->si_syscall   = from->si_syscall;
 | |
| 		to->si_arch      = from->si_arch;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
 | |
| 			   const struct kernel_siginfo *from)
 | |
| {
 | |
| 	struct compat_siginfo new;
 | |
| 
 | |
| 	copy_siginfo_to_external32(&new, from);
 | |
| 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
 | |
| 					 const struct compat_siginfo *from)
 | |
| {
 | |
| 	clear_siginfo(to);
 | |
| 	to->si_signo = from->si_signo;
 | |
| 	to->si_errno = from->si_errno;
 | |
| 	to->si_code  = from->si_code;
 | |
| 	switch(siginfo_layout(from->si_signo, from->si_code)) {
 | |
| 	case SIL_KILL:
 | |
| 		to->si_pid = from->si_pid;
 | |
| 		to->si_uid = from->si_uid;
 | |
| 		break;
 | |
| 	case SIL_TIMER:
 | |
| 		to->si_tid     = from->si_tid;
 | |
| 		to->si_overrun = from->si_overrun;
 | |
| 		to->si_int     = from->si_int;
 | |
| 		break;
 | |
| 	case SIL_POLL:
 | |
| 		to->si_band = from->si_band;
 | |
| 		to->si_fd   = from->si_fd;
 | |
| 		break;
 | |
| 	case SIL_FAULT:
 | |
| 		to->si_addr = compat_ptr(from->si_addr);
 | |
| 		break;
 | |
| 	case SIL_FAULT_TRAPNO:
 | |
| 		to->si_addr = compat_ptr(from->si_addr);
 | |
| 		to->si_trapno = from->si_trapno;
 | |
| 		break;
 | |
| 	case SIL_FAULT_MCEERR:
 | |
| 		to->si_addr = compat_ptr(from->si_addr);
 | |
| 		to->si_addr_lsb = from->si_addr_lsb;
 | |
| 		break;
 | |
| 	case SIL_FAULT_BNDERR:
 | |
| 		to->si_addr = compat_ptr(from->si_addr);
 | |
| 		to->si_lower = compat_ptr(from->si_lower);
 | |
| 		to->si_upper = compat_ptr(from->si_upper);
 | |
| 		break;
 | |
| 	case SIL_FAULT_PKUERR:
 | |
| 		to->si_addr = compat_ptr(from->si_addr);
 | |
| 		to->si_pkey = from->si_pkey;
 | |
| 		break;
 | |
| 	case SIL_FAULT_PERF_EVENT:
 | |
| 		to->si_addr = compat_ptr(from->si_addr);
 | |
| 		to->si_perf_data = from->si_perf_data;
 | |
| 		to->si_perf_type = from->si_perf_type;
 | |
| 		break;
 | |
| 	case SIL_CHLD:
 | |
| 		to->si_pid    = from->si_pid;
 | |
| 		to->si_uid    = from->si_uid;
 | |
| 		to->si_status = from->si_status;
 | |
| #ifdef CONFIG_X86_X32_ABI
 | |
| 		if (in_x32_syscall()) {
 | |
| 			to->si_utime = from->_sifields._sigchld_x32._utime;
 | |
| 			to->si_stime = from->_sifields._sigchld_x32._stime;
 | |
| 		} else
 | |
| #endif
 | |
| 		{
 | |
| 			to->si_utime = from->si_utime;
 | |
| 			to->si_stime = from->si_stime;
 | |
| 		}
 | |
| 		break;
 | |
| 	case SIL_RT:
 | |
| 		to->si_pid = from->si_pid;
 | |
| 		to->si_uid = from->si_uid;
 | |
| 		to->si_int = from->si_int;
 | |
| 		break;
 | |
| 	case SIL_SYS:
 | |
| 		to->si_call_addr = compat_ptr(from->si_call_addr);
 | |
| 		to->si_syscall   = from->si_syscall;
 | |
| 		to->si_arch      = from->si_arch;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
 | |
| 				      const struct compat_siginfo __user *ufrom)
 | |
| {
 | |
| 	struct compat_siginfo from;
 | |
| 
 | |
| 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	from.si_signo = signo;
 | |
| 	return post_copy_siginfo_from_user32(to, &from);
 | |
| }
 | |
| 
 | |
| int copy_siginfo_from_user32(struct kernel_siginfo *to,
 | |
| 			     const struct compat_siginfo __user *ufrom)
 | |
| {
 | |
| 	struct compat_siginfo from;
 | |
| 
 | |
| 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return post_copy_siginfo_from_user32(to, &from);
 | |
| }
 | |
| #endif /* CONFIG_COMPAT */
 | |
| 
 | |
| /**
 | |
|  *  do_sigtimedwait - wait for queued signals specified in @which
 | |
|  *  @which: queued signals to wait for
 | |
|  *  @info: if non-null, the signal's siginfo is returned here
 | |
|  *  @ts: upper bound on process time suspension
 | |
|  */
 | |
| static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
 | |
| 		    const struct timespec64 *ts)
 | |
| {
 | |
| 	ktime_t *to = NULL, timeout = KTIME_MAX;
 | |
| 	struct task_struct *tsk = current;
 | |
| 	sigset_t mask = *which;
 | |
| 	enum pid_type type;
 | |
| 	int sig, ret = 0;
 | |
| 
 | |
| 	if (ts) {
 | |
| 		if (!timespec64_valid(ts))
 | |
| 			return -EINVAL;
 | |
| 		timeout = timespec64_to_ktime(*ts);
 | |
| 		to = &timeout;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Invert the set of allowed signals to get those we want to block.
 | |
| 	 */
 | |
| 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
 | |
| 	signotset(&mask);
 | |
| 
 | |
| 	spin_lock_irq(&tsk->sighand->siglock);
 | |
| 	sig = dequeue_signal(tsk, &mask, info, &type);
 | |
| 	if (!sig && timeout) {
 | |
| 		/*
 | |
| 		 * None ready, temporarily unblock those we're interested
 | |
| 		 * while we are sleeping in so that we'll be awakened when
 | |
| 		 * they arrive. Unblocking is always fine, we can avoid
 | |
| 		 * set_current_blocked().
 | |
| 		 */
 | |
| 		tsk->real_blocked = tsk->blocked;
 | |
| 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
 | |
| 		recalc_sigpending();
 | |
| 		spin_unlock_irq(&tsk->sighand->siglock);
 | |
| 
 | |
| 		__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
 | |
| 							 HRTIMER_MODE_REL);
 | |
| 		spin_lock_irq(&tsk->sighand->siglock);
 | |
| 		__set_task_blocked(tsk, &tsk->real_blocked);
 | |
| 		sigemptyset(&tsk->real_blocked);
 | |
| 		sig = dequeue_signal(tsk, &mask, info, &type);
 | |
| 	}
 | |
| 	spin_unlock_irq(&tsk->sighand->siglock);
 | |
| 
 | |
| 	if (sig)
 | |
| 		return sig;
 | |
| 	return ret ? -EINTR : -EAGAIN;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
 | |
|  *			in @uthese
 | |
|  *  @uthese: queued signals to wait for
 | |
|  *  @uinfo: if non-null, the signal's siginfo is returned here
 | |
|  *  @uts: upper bound on process time suspension
 | |
|  *  @sigsetsize: size of sigset_t type
 | |
|  */
 | |
| SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
 | |
| 		siginfo_t __user *, uinfo,
 | |
| 		const struct __kernel_timespec __user *, uts,
 | |
| 		size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t these;
 | |
| 	struct timespec64 ts;
 | |
| 	kernel_siginfo_t info;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&these, uthese, sizeof(these)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (uts) {
 | |
| 		if (get_timespec64(&ts, uts))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
 | |
| 
 | |
| 	if (ret > 0 && uinfo) {
 | |
| 		if (copy_siginfo_to_user(uinfo, &info))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT_32BIT_TIME
 | |
| SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
 | |
| 		siginfo_t __user *, uinfo,
 | |
| 		const struct old_timespec32 __user *, uts,
 | |
| 		size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t these;
 | |
| 	struct timespec64 ts;
 | |
| 	kernel_siginfo_t info;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&these, uthese, sizeof(these)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (uts) {
 | |
| 		if (get_old_timespec32(&ts, uts))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
 | |
| 
 | |
| 	if (ret > 0 && uinfo) {
 | |
| 		if (copy_siginfo_to_user(uinfo, &info))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
 | |
| 		struct compat_siginfo __user *, uinfo,
 | |
| 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t s;
 | |
| 	struct timespec64 t;
 | |
| 	kernel_siginfo_t info;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (get_compat_sigset(&s, uthese))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (uts) {
 | |
| 		if (get_timespec64(&t, uts))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
 | |
| 
 | |
| 	if (ret > 0 && uinfo) {
 | |
| 		if (copy_siginfo_to_user32(uinfo, &info))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT_32BIT_TIME
 | |
| COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
 | |
| 		struct compat_siginfo __user *, uinfo,
 | |
| 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t s;
 | |
| 	struct timespec64 t;
 | |
| 	kernel_siginfo_t info;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (get_compat_sigset(&s, uthese))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (uts) {
 | |
| 		if (get_old_timespec32(&t, uts))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
 | |
| 
 | |
| 	if (ret > 0 && uinfo) {
 | |
| 		if (copy_siginfo_to_user32(uinfo, &info))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
 | |
| {
 | |
| 	clear_siginfo(info);
 | |
| 	info->si_signo = sig;
 | |
| 	info->si_errno = 0;
 | |
| 	info->si_code = SI_USER;
 | |
| 	info->si_pid = task_tgid_vnr(current);
 | |
| 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  sys_kill - send a signal to a process
 | |
|  *  @pid: the PID of the process
 | |
|  *  @sig: signal to be sent
 | |
|  */
 | |
| SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	prepare_kill_siginfo(sig, &info);
 | |
| 
 | |
| 	return kill_something_info(sig, &info, pid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that the signaler and signalee either are in the same pid namespace
 | |
|  * or that the signaler's pid namespace is an ancestor of the signalee's pid
 | |
|  * namespace.
 | |
|  */
 | |
| static bool access_pidfd_pidns(struct pid *pid)
 | |
| {
 | |
| 	struct pid_namespace *active = task_active_pid_ns(current);
 | |
| 	struct pid_namespace *p = ns_of_pid(pid);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (!p)
 | |
| 			return false;
 | |
| 		if (p == active)
 | |
| 			break;
 | |
| 		p = p->parent;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
 | |
| 		siginfo_t __user *info)
 | |
| {
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	/*
 | |
| 	 * Avoid hooking up compat syscalls and instead handle necessary
 | |
| 	 * conversions here. Note, this is a stop-gap measure and should not be
 | |
| 	 * considered a generic solution.
 | |
| 	 */
 | |
| 	if (in_compat_syscall())
 | |
| 		return copy_siginfo_from_user32(
 | |
| 			kinfo, (struct compat_siginfo __user *)info);
 | |
| #endif
 | |
| 	return copy_siginfo_from_user(kinfo, info);
 | |
| }
 | |
| 
 | |
| static struct pid *pidfd_to_pid(const struct file *file)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	pid = pidfd_pid(file);
 | |
| 	if (!IS_ERR(pid))
 | |
| 		return pid;
 | |
| 
 | |
| 	return tgid_pidfd_to_pid(file);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_pidfd_send_signal - Signal a process through a pidfd
 | |
|  * @pidfd:  file descriptor of the process
 | |
|  * @sig:    signal to send
 | |
|  * @info:   signal info
 | |
|  * @flags:  future flags
 | |
|  *
 | |
|  * The syscall currently only signals via PIDTYPE_PID which covers
 | |
|  * kill(<positive-pid>, <signal>. It does not signal threads or process
 | |
|  * groups.
 | |
|  * In order to extend the syscall to threads and process groups the @flags
 | |
|  * argument should be used. In essence, the @flags argument will determine
 | |
|  * what is signaled and not the file descriptor itself. Put in other words,
 | |
|  * grouping is a property of the flags argument not a property of the file
 | |
|  * descriptor.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on failure
 | |
|  */
 | |
| SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
 | |
| 		siginfo_t __user *, info, unsigned int, flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct fd f;
 | |
| 	struct pid *pid;
 | |
| 	kernel_siginfo_t kinfo;
 | |
| 
 | |
| 	/* Enforce flags be set to 0 until we add an extension. */
 | |
| 	if (flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	f = fdget(pidfd);
 | |
| 	if (!f.file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	/* Is this a pidfd? */
 | |
| 	pid = pidfd_to_pid(f.file);
 | |
| 	if (IS_ERR(pid)) {
 | |
| 		ret = PTR_ERR(pid);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (!access_pidfd_pidns(pid))
 | |
| 		goto err;
 | |
| 
 | |
| 	if (info) {
 | |
| 		ret = copy_siginfo_from_user_any(&kinfo, info);
 | |
| 		if (unlikely(ret))
 | |
| 			goto err;
 | |
| 
 | |
| 		ret = -EINVAL;
 | |
| 		if (unlikely(sig != kinfo.si_signo))
 | |
| 			goto err;
 | |
| 
 | |
| 		/* Only allow sending arbitrary signals to yourself. */
 | |
| 		ret = -EPERM;
 | |
| 		if ((task_pid(current) != pid) &&
 | |
| 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
 | |
| 			goto err;
 | |
| 	} else {
 | |
| 		prepare_kill_siginfo(sig, &kinfo);
 | |
| 	}
 | |
| 
 | |
| 	ret = kill_pid_info(sig, &kinfo, pid);
 | |
| 
 | |
| err:
 | |
| 	fdput(f);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int error = -ESRCH;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = find_task_by_vpid(pid);
 | |
| 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
 | |
| 		error = check_kill_permission(sig, info, p);
 | |
| 		/*
 | |
| 		 * The null signal is a permissions and process existence
 | |
| 		 * probe.  No signal is actually delivered.
 | |
| 		 */
 | |
| 		if (!error && sig) {
 | |
| 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
 | |
| 			/*
 | |
| 			 * If lock_task_sighand() failed we pretend the task
 | |
| 			 * dies after receiving the signal. The window is tiny,
 | |
| 			 * and the signal is private anyway.
 | |
| 			 */
 | |
| 			if (unlikely(error == -ESRCH))
 | |
| 				error = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int do_tkill(pid_t tgid, pid_t pid, int sig)
 | |
| {
 | |
| 	struct kernel_siginfo info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = SI_TKILL;
 | |
| 	info.si_pid = task_tgid_vnr(current);
 | |
| 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 | |
| 
 | |
| 	return do_send_specific(tgid, pid, sig, &info);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  sys_tgkill - send signal to one specific thread
 | |
|  *  @tgid: the thread group ID of the thread
 | |
|  *  @pid: the PID of the thread
 | |
|  *  @sig: signal to be sent
 | |
|  *
 | |
|  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
 | |
|  *  exists but it's not belonging to the target process anymore. This
 | |
|  *  method solves the problem of threads exiting and PIDs getting reused.
 | |
|  */
 | |
| SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
 | |
| {
 | |
| 	/* This is only valid for single tasks */
 | |
| 	if (pid <= 0 || tgid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_tkill(tgid, pid, sig);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  sys_tkill - send signal to one specific task
 | |
|  *  @pid: the PID of the task
 | |
|  *  @sig: signal to be sent
 | |
|  *
 | |
|  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
 | |
|  */
 | |
| SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
 | |
| {
 | |
| 	/* This is only valid for single tasks */
 | |
| 	if (pid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_tkill(0, pid, sig);
 | |
| }
 | |
| 
 | |
| static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
 | |
| {
 | |
| 	/* Not even root can pretend to send signals from the kernel.
 | |
| 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
 | |
| 	 */
 | |
| 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
 | |
| 	    (task_pid_vnr(current) != pid))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* POSIX.1b doesn't mention process groups.  */
 | |
| 	return kill_proc_info(sig, info, pid);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  sys_rt_sigqueueinfo - send signal information to a signal
 | |
|  *  @pid: the PID of the thread
 | |
|  *  @sig: signal to be sent
 | |
|  *  @uinfo: signal info to be sent
 | |
|  */
 | |
| SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
 | |
| 		siginfo_t __user *, uinfo)
 | |
| {
 | |
| 	kernel_siginfo_t info;
 | |
| 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 	return do_rt_sigqueueinfo(pid, sig, &info);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
 | |
| 			compat_pid_t, pid,
 | |
| 			int, sig,
 | |
| 			struct compat_siginfo __user *, uinfo)
 | |
| {
 | |
| 	kernel_siginfo_t info;
 | |
| 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 	return do_rt_sigqueueinfo(pid, sig, &info);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
 | |
| {
 | |
| 	/* This is only valid for single tasks */
 | |
| 	if (pid <= 0 || tgid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Not even root can pretend to send signals from the kernel.
 | |
| 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
 | |
| 	 */
 | |
| 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
 | |
| 	    (task_pid_vnr(current) != pid))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	return do_send_specific(tgid, pid, sig, info);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
 | |
| 		siginfo_t __user *, uinfo)
 | |
| {
 | |
| 	kernel_siginfo_t info;
 | |
| 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
 | |
| 			compat_pid_t, tgid,
 | |
| 			compat_pid_t, pid,
 | |
| 			int, sig,
 | |
| 			struct compat_siginfo __user *, uinfo)
 | |
| {
 | |
| 	kernel_siginfo_t info;
 | |
| 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
 | |
|  */
 | |
| void kernel_sigaction(int sig, __sighandler_t action)
 | |
| {
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	current->sighand->action[sig - 1].sa.sa_handler = action;
 | |
| 	if (action == SIG_IGN) {
 | |
| 		sigset_t mask;
 | |
| 
 | |
| 		sigemptyset(&mask);
 | |
| 		sigaddset(&mask, sig);
 | |
| 
 | |
| 		flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
 | |
| 		flush_sigqueue_mask(&mask, ¤t->pending);
 | |
| 		recalc_sigpending();
 | |
| 	}
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| }
 | |
| EXPORT_SYMBOL(kernel_sigaction);
 | |
| 
 | |
| void __weak sigaction_compat_abi(struct k_sigaction *act,
 | |
| 		struct k_sigaction *oact)
 | |
| {
 | |
| }
 | |
| 
 | |
| int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
 | |
| {
 | |
| 	struct task_struct *p = current, *t;
 | |
| 	struct k_sigaction *k;
 | |
| 	sigset_t mask;
 | |
| 
 | |
| 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	k = &p->sighand->action[sig-1];
 | |
| 
 | |
| 	spin_lock_irq(&p->sighand->siglock);
 | |
| 	if (k->sa.sa_flags & SA_IMMUTABLE) {
 | |
| 		spin_unlock_irq(&p->sighand->siglock);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (oact)
 | |
| 		*oact = *k;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
 | |
| 	 * e.g. by having an architecture use the bit in their uapi.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear unknown flag bits in order to allow userspace to detect missing
 | |
| 	 * support for flag bits and to allow the kernel to use non-uapi bits
 | |
| 	 * internally.
 | |
| 	 */
 | |
| 	if (act)
 | |
| 		act->sa.sa_flags &= UAPI_SA_FLAGS;
 | |
| 	if (oact)
 | |
| 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
 | |
| 
 | |
| 	sigaction_compat_abi(act, oact);
 | |
| 
 | |
| 	if (act) {
 | |
| 		sigdelsetmask(&act->sa.sa_mask,
 | |
| 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
 | |
| 		*k = *act;
 | |
| 		/*
 | |
| 		 * POSIX 3.3.1.3:
 | |
| 		 *  "Setting a signal action to SIG_IGN for a signal that is
 | |
| 		 *   pending shall cause the pending signal to be discarded,
 | |
| 		 *   whether or not it is blocked."
 | |
| 		 *
 | |
| 		 *  "Setting a signal action to SIG_DFL for a signal that is
 | |
| 		 *   pending and whose default action is to ignore the signal
 | |
| 		 *   (for example, SIGCHLD), shall cause the pending signal to
 | |
| 		 *   be discarded, whether or not it is blocked"
 | |
| 		 */
 | |
| 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
 | |
| 			sigemptyset(&mask);
 | |
| 			sigaddset(&mask, sig);
 | |
| 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
 | |
| 			for_each_thread(p, t)
 | |
| 				flush_sigqueue_mask(&mask, &t->pending);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&p->sighand->siglock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DYNAMIC_SIGFRAME
 | |
| static inline void sigaltstack_lock(void)
 | |
| 	__acquires(¤t->sighand->siglock)
 | |
| {
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| }
 | |
| 
 | |
| static inline void sigaltstack_unlock(void)
 | |
| 	__releases(¤t->sighand->siglock)
 | |
| {
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| }
 | |
| #else
 | |
| static inline void sigaltstack_lock(void) { }
 | |
| static inline void sigaltstack_unlock(void) { }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
 | |
| 		size_t min_ss_size)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (oss) {
 | |
| 		memset(oss, 0, sizeof(stack_t));
 | |
| 		oss->ss_sp = (void __user *) t->sas_ss_sp;
 | |
| 		oss->ss_size = t->sas_ss_size;
 | |
| 		oss->ss_flags = sas_ss_flags(sp) |
 | |
| 			(current->sas_ss_flags & SS_FLAG_BITS);
 | |
| 	}
 | |
| 
 | |
| 	if (ss) {
 | |
| 		void __user *ss_sp = ss->ss_sp;
 | |
| 		size_t ss_size = ss->ss_size;
 | |
| 		unsigned ss_flags = ss->ss_flags;
 | |
| 		int ss_mode;
 | |
| 
 | |
| 		if (unlikely(on_sig_stack(sp)))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		ss_mode = ss_flags & ~SS_FLAG_BITS;
 | |
| 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
 | |
| 				ss_mode != 0))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Return before taking any locks if no actual
 | |
| 		 * sigaltstack changes were requested.
 | |
| 		 */
 | |
| 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
 | |
| 		    t->sas_ss_size == ss_size &&
 | |
| 		    t->sas_ss_flags == ss_flags)
 | |
| 			return 0;
 | |
| 
 | |
| 		sigaltstack_lock();
 | |
| 		if (ss_mode == SS_DISABLE) {
 | |
| 			ss_size = 0;
 | |
| 			ss_sp = NULL;
 | |
| 		} else {
 | |
| 			if (unlikely(ss_size < min_ss_size))
 | |
| 				ret = -ENOMEM;
 | |
| 			if (!sigaltstack_size_valid(ss_size))
 | |
| 				ret = -ENOMEM;
 | |
| 		}
 | |
| 		if (!ret) {
 | |
| 			t->sas_ss_sp = (unsigned long) ss_sp;
 | |
| 			t->sas_ss_size = ss_size;
 | |
| 			t->sas_ss_flags = ss_flags;
 | |
| 		}
 | |
| 		sigaltstack_unlock();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
 | |
| {
 | |
| 	stack_t new, old;
 | |
| 	int err;
 | |
| 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
 | |
| 		return -EFAULT;
 | |
| 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
 | |
| 			      current_user_stack_pointer(),
 | |
| 			      MINSIGSTKSZ);
 | |
| 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
 | |
| 		err = -EFAULT;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int restore_altstack(const stack_t __user *uss)
 | |
| {
 | |
| 	stack_t new;
 | |
| 	if (copy_from_user(&new, uss, sizeof(stack_t)))
 | |
| 		return -EFAULT;
 | |
| 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
 | |
| 			     MINSIGSTKSZ);
 | |
| 	/* squash all but EFAULT for now */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __save_altstack(stack_t __user *uss, unsigned long sp)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
 | |
| 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
 | |
| 		__put_user(t->sas_ss_size, &uss->ss_size);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
 | |
| 				 compat_stack_t __user *uoss_ptr)
 | |
| {
 | |
| 	stack_t uss, uoss;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (uss_ptr) {
 | |
| 		compat_stack_t uss32;
 | |
| 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
 | |
| 			return -EFAULT;
 | |
| 		uss.ss_sp = compat_ptr(uss32.ss_sp);
 | |
| 		uss.ss_flags = uss32.ss_flags;
 | |
| 		uss.ss_size = uss32.ss_size;
 | |
| 	}
 | |
| 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
 | |
| 			     compat_user_stack_pointer(),
 | |
| 			     COMPAT_MINSIGSTKSZ);
 | |
| 	if (ret >= 0 && uoss_ptr)  {
 | |
| 		compat_stack_t old;
 | |
| 		memset(&old, 0, sizeof(old));
 | |
| 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
 | |
| 		old.ss_flags = uoss.ss_flags;
 | |
| 		old.ss_size = uoss.ss_size;
 | |
| 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| COMPAT_SYSCALL_DEFINE2(sigaltstack,
 | |
| 			const compat_stack_t __user *, uss_ptr,
 | |
| 			compat_stack_t __user *, uoss_ptr)
 | |
| {
 | |
| 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
 | |
| }
 | |
| 
 | |
| int compat_restore_altstack(const compat_stack_t __user *uss)
 | |
| {
 | |
| 	int err = do_compat_sigaltstack(uss, NULL);
 | |
| 	/* squash all but -EFAULT for now */
 | |
| 	return err == -EFAULT ? err : 0;
 | |
| }
 | |
| 
 | |
| int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
 | |
| {
 | |
| 	int err;
 | |
| 	struct task_struct *t = current;
 | |
| 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
 | |
| 			 &uss->ss_sp) |
 | |
| 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
 | |
| 		__put_user(t->sas_ss_size, &uss->ss_size);
 | |
| 	return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SIGPENDING
 | |
| 
 | |
| /**
 | |
|  *  sys_sigpending - examine pending signals
 | |
|  *  @uset: where mask of pending signal is returned
 | |
|  */
 | |
| SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
 | |
| {
 | |
| 	sigset_t set;
 | |
| 
 | |
| 	if (sizeof(old_sigset_t) > sizeof(*uset))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	do_sigpending(&set);
 | |
| 
 | |
| 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
 | |
| {
 | |
| 	sigset_t set;
 | |
| 
 | |
| 	do_sigpending(&set);
 | |
| 
 | |
| 	return put_user(set.sig[0], set32);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SIGPROCMASK
 | |
| /**
 | |
|  *  sys_sigprocmask - examine and change blocked signals
 | |
|  *  @how: whether to add, remove, or set signals
 | |
|  *  @nset: signals to add or remove (if non-null)
 | |
|  *  @oset: previous value of signal mask if non-null
 | |
|  *
 | |
|  * Some platforms have their own version with special arguments;
 | |
|  * others support only sys_rt_sigprocmask.
 | |
|  */
 | |
| 
 | |
| SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
 | |
| 		old_sigset_t __user *, oset)
 | |
| {
 | |
| 	old_sigset_t old_set, new_set;
 | |
| 	sigset_t new_blocked;
 | |
| 
 | |
| 	old_set = current->blocked.sig[0];
 | |
| 
 | |
| 	if (nset) {
 | |
| 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		new_blocked = current->blocked;
 | |
| 
 | |
| 		switch (how) {
 | |
| 		case SIG_BLOCK:
 | |
| 			sigaddsetmask(&new_blocked, new_set);
 | |
| 			break;
 | |
| 		case SIG_UNBLOCK:
 | |
| 			sigdelsetmask(&new_blocked, new_set);
 | |
| 			break;
 | |
| 		case SIG_SETMASK:
 | |
| 			new_blocked.sig[0] = new_set;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		set_current_blocked(&new_blocked);
 | |
| 	}
 | |
| 
 | |
| 	if (oset) {
 | |
| 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
 | |
| 
 | |
| #ifndef CONFIG_ODD_RT_SIGACTION
 | |
| /**
 | |
|  *  sys_rt_sigaction - alter an action taken by a process
 | |
|  *  @sig: signal to be sent
 | |
|  *  @act: new sigaction
 | |
|  *  @oact: used to save the previous sigaction
 | |
|  *  @sigsetsize: size of sigset_t type
 | |
|  */
 | |
| SYSCALL_DEFINE4(rt_sigaction, int, sig,
 | |
| 		const struct sigaction __user *, act,
 | |
| 		struct sigaction __user *, oact,
 | |
| 		size_t, sigsetsize)
 | |
| {
 | |
| 	struct k_sigaction new_sa, old_sa;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
 | |
| 		const struct compat_sigaction __user *, act,
 | |
| 		struct compat_sigaction __user *, oact,
 | |
| 		compat_size_t, sigsetsize)
 | |
| {
 | |
| 	struct k_sigaction new_ka, old_ka;
 | |
| #ifdef __ARCH_HAS_SA_RESTORER
 | |
| 	compat_uptr_t restorer;
 | |
| #endif
 | |
| 	int ret;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(compat_sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (act) {
 | |
| 		compat_uptr_t handler;
 | |
| 		ret = get_user(handler, &act->sa_handler);
 | |
| 		new_ka.sa.sa_handler = compat_ptr(handler);
 | |
| #ifdef __ARCH_HAS_SA_RESTORER
 | |
| 		ret |= get_user(restorer, &act->sa_restorer);
 | |
| 		new_ka.sa.sa_restorer = compat_ptr(restorer);
 | |
| #endif
 | |
| 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
 | |
| 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
 | |
| 		if (ret)
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
 | |
| 	if (!ret && oact) {
 | |
| 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
 | |
| 			       &oact->sa_handler);
 | |
| 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
 | |
| 					 sizeof(oact->sa_mask));
 | |
| 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
 | |
| #ifdef __ARCH_HAS_SA_RESTORER
 | |
| 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
 | |
| 				&oact->sa_restorer);
 | |
| #endif
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| #endif /* !CONFIG_ODD_RT_SIGACTION */
 | |
| 
 | |
| #ifdef CONFIG_OLD_SIGACTION
 | |
| SYSCALL_DEFINE3(sigaction, int, sig,
 | |
| 		const struct old_sigaction __user *, act,
 | |
| 	        struct old_sigaction __user *, oact)
 | |
| {
 | |
| 	struct k_sigaction new_ka, old_ka;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (act) {
 | |
| 		old_sigset_t mask;
 | |
| 		if (!access_ok(act, sizeof(*act)) ||
 | |
| 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
 | |
| 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
 | |
| 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
 | |
| 		    __get_user(mask, &act->sa_mask))
 | |
| 			return -EFAULT;
 | |
| #ifdef __ARCH_HAS_KA_RESTORER
 | |
| 		new_ka.ka_restorer = NULL;
 | |
| #endif
 | |
| 		siginitset(&new_ka.sa.sa_mask, mask);
 | |
| 	}
 | |
| 
 | |
| 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
 | |
| 
 | |
| 	if (!ret && oact) {
 | |
| 		if (!access_ok(oact, sizeof(*oact)) ||
 | |
| 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
 | |
| 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
 | |
| 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
 | |
| 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| #ifdef CONFIG_COMPAT_OLD_SIGACTION
 | |
| COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
 | |
| 		const struct compat_old_sigaction __user *, act,
 | |
| 	        struct compat_old_sigaction __user *, oact)
 | |
| {
 | |
| 	struct k_sigaction new_ka, old_ka;
 | |
| 	int ret;
 | |
| 	compat_old_sigset_t mask;
 | |
| 	compat_uptr_t handler, restorer;
 | |
| 
 | |
| 	if (act) {
 | |
| 		if (!access_ok(act, sizeof(*act)) ||
 | |
| 		    __get_user(handler, &act->sa_handler) ||
 | |
| 		    __get_user(restorer, &act->sa_restorer) ||
 | |
| 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
 | |
| 		    __get_user(mask, &act->sa_mask))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| #ifdef __ARCH_HAS_KA_RESTORER
 | |
| 		new_ka.ka_restorer = NULL;
 | |
| #endif
 | |
| 		new_ka.sa.sa_handler = compat_ptr(handler);
 | |
| 		new_ka.sa.sa_restorer = compat_ptr(restorer);
 | |
| 		siginitset(&new_ka.sa.sa_mask, mask);
 | |
| 	}
 | |
| 
 | |
| 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
 | |
| 
 | |
| 	if (!ret && oact) {
 | |
| 		if (!access_ok(oact, sizeof(*oact)) ||
 | |
| 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
 | |
| 			       &oact->sa_handler) ||
 | |
| 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
 | |
| 			       &oact->sa_restorer) ||
 | |
| 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
 | |
| 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SGETMASK_SYSCALL
 | |
| 
 | |
| /*
 | |
|  * For backwards compatibility.  Functionality superseded by sigprocmask.
 | |
|  */
 | |
| SYSCALL_DEFINE0(sgetmask)
 | |
| {
 | |
| 	/* SMP safe */
 | |
| 	return current->blocked.sig[0];
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(ssetmask, int, newmask)
 | |
| {
 | |
| 	int old = current->blocked.sig[0];
 | |
| 	sigset_t newset;
 | |
| 
 | |
| 	siginitset(&newset, newmask);
 | |
| 	set_current_blocked(&newset);
 | |
| 
 | |
| 	return old;
 | |
| }
 | |
| #endif /* CONFIG_SGETMASK_SYSCALL */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SIGNAL
 | |
| /*
 | |
|  * For backwards compatibility.  Functionality superseded by sigaction.
 | |
|  */
 | |
| SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
 | |
| {
 | |
| 	struct k_sigaction new_sa, old_sa;
 | |
| 	int ret;
 | |
| 
 | |
| 	new_sa.sa.sa_handler = handler;
 | |
| 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
 | |
| 	sigemptyset(&new_sa.sa.sa_mask);
 | |
| 
 | |
| 	ret = do_sigaction(sig, &new_sa, &old_sa);
 | |
| 
 | |
| 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_SIGNAL */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_PAUSE
 | |
| 
 | |
| SYSCALL_DEFINE0(pause)
 | |
| {
 | |
| 	while (!signal_pending(current)) {
 | |
| 		__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		schedule();
 | |
| 	}
 | |
| 	return -ERESTARTNOHAND;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int sigsuspend(sigset_t *set)
 | |
| {
 | |
| 	current->saved_sigmask = current->blocked;
 | |
| 	set_current_blocked(set);
 | |
| 
 | |
| 	while (!signal_pending(current)) {
 | |
| 		__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		schedule();
 | |
| 	}
 | |
| 	set_restore_sigmask();
 | |
| 	return -ERESTARTNOHAND;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  sys_rt_sigsuspend - replace the signal mask for a value with the
 | |
|  *	@unewset value until a signal is received
 | |
|  *  @unewset: new signal mask value
 | |
|  *  @sigsetsize: size of sigset_t type
 | |
|  */
 | |
| SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t newset;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&newset, unewset, sizeof(newset)))
 | |
| 		return -EFAULT;
 | |
| 	return sigsuspend(&newset);
 | |
| }
 | |
|  
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t newset;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (get_compat_sigset(&newset, unewset))
 | |
| 		return -EFAULT;
 | |
| 	return sigsuspend(&newset);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_OLD_SIGSUSPEND
 | |
| SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
 | |
| {
 | |
| 	sigset_t blocked;
 | |
| 	siginitset(&blocked, mask);
 | |
| 	return sigsuspend(&blocked);
 | |
| }
 | |
| #endif
 | |
| #ifdef CONFIG_OLD_SIGSUSPEND3
 | |
| SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
 | |
| {
 | |
| 	sigset_t blocked;
 | |
| 	siginitset(&blocked, mask);
 | |
| 	return sigsuspend(&blocked);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| __weak const char *arch_vma_name(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void siginfo_buildtime_checks(void)
 | |
| {
 | |
| 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
 | |
| 
 | |
| 	/* Verify the offsets in the two siginfos match */
 | |
| #define CHECK_OFFSET(field) \
 | |
| 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
 | |
| 
 | |
| 	/* kill */
 | |
| 	CHECK_OFFSET(si_pid);
 | |
| 	CHECK_OFFSET(si_uid);
 | |
| 
 | |
| 	/* timer */
 | |
| 	CHECK_OFFSET(si_tid);
 | |
| 	CHECK_OFFSET(si_overrun);
 | |
| 	CHECK_OFFSET(si_value);
 | |
| 
 | |
| 	/* rt */
 | |
| 	CHECK_OFFSET(si_pid);
 | |
| 	CHECK_OFFSET(si_uid);
 | |
| 	CHECK_OFFSET(si_value);
 | |
| 
 | |
| 	/* sigchld */
 | |
| 	CHECK_OFFSET(si_pid);
 | |
| 	CHECK_OFFSET(si_uid);
 | |
| 	CHECK_OFFSET(si_status);
 | |
| 	CHECK_OFFSET(si_utime);
 | |
| 	CHECK_OFFSET(si_stime);
 | |
| 
 | |
| 	/* sigfault */
 | |
| 	CHECK_OFFSET(si_addr);
 | |
| 	CHECK_OFFSET(si_trapno);
 | |
| 	CHECK_OFFSET(si_addr_lsb);
 | |
| 	CHECK_OFFSET(si_lower);
 | |
| 	CHECK_OFFSET(si_upper);
 | |
| 	CHECK_OFFSET(si_pkey);
 | |
| 	CHECK_OFFSET(si_perf_data);
 | |
| 	CHECK_OFFSET(si_perf_type);
 | |
| 
 | |
| 	/* sigpoll */
 | |
| 	CHECK_OFFSET(si_band);
 | |
| 	CHECK_OFFSET(si_fd);
 | |
| 
 | |
| 	/* sigsys */
 | |
| 	CHECK_OFFSET(si_call_addr);
 | |
| 	CHECK_OFFSET(si_syscall);
 | |
| 	CHECK_OFFSET(si_arch);
 | |
| #undef CHECK_OFFSET
 | |
| 
 | |
| 	/* usb asyncio */
 | |
| 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
 | |
| 		     offsetof(struct siginfo, si_addr));
 | |
| 	if (sizeof(int) == sizeof(void __user *)) {
 | |
| 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
 | |
| 			     sizeof(void __user *));
 | |
| 	} else {
 | |
| 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
 | |
| 			      sizeof_field(struct siginfo, si_uid)) !=
 | |
| 			     sizeof(void __user *));
 | |
| 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
 | |
| 			     offsetof(struct siginfo, si_uid));
 | |
| 	}
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
 | |
| 		     offsetof(struct compat_siginfo, si_addr));
 | |
| 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
 | |
| 		     sizeof(compat_uptr_t));
 | |
| 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
 | |
| 		     sizeof_field(struct siginfo, si_pid));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __init signals_init(void)
 | |
| {
 | |
| 	siginfo_buildtime_checks();
 | |
| 
 | |
| 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KGDB_KDB
 | |
| #include <linux/kdb.h>
 | |
| /*
 | |
|  * kdb_send_sig - Allows kdb to send signals without exposing
 | |
|  * signal internals.  This function checks if the required locks are
 | |
|  * available before calling the main signal code, to avoid kdb
 | |
|  * deadlocks.
 | |
|  */
 | |
| void kdb_send_sig(struct task_struct *t, int sig)
 | |
| {
 | |
| 	static struct task_struct *kdb_prev_t;
 | |
| 	int new_t, ret;
 | |
| 	if (!spin_trylock(&t->sighand->siglock)) {
 | |
| 		kdb_printf("Can't do kill command now.\n"
 | |
| 			   "The sigmask lock is held somewhere else in "
 | |
| 			   "kernel, try again later\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	new_t = kdb_prev_t != t;
 | |
| 	kdb_prev_t = t;
 | |
| 	if (!task_is_running(t) && new_t) {
 | |
| 		spin_unlock(&t->sighand->siglock);
 | |
| 		kdb_printf("Process is not RUNNING, sending a signal from "
 | |
| 			   "kdb risks deadlock\n"
 | |
| 			   "on the run queue locks. "
 | |
| 			   "The signal has _not_ been sent.\n"
 | |
| 			   "Reissue the kill command if you want to risk "
 | |
| 			   "the deadlock.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
 | |
| 	spin_unlock(&t->sighand->siglock);
 | |
| 	if (ret)
 | |
| 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
 | |
| 			   sig, t->pid);
 | |
| 	else
 | |
| 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
 | |
| }
 | |
| #endif	/* CONFIG_KGDB_KDB */
 |