mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 f9e83489cb
			
		
	
	
		f9e83489cb
		
	
	
	
	
		
			
			This patch fixes the c_entry_count counter of the mbcache. Currently it increments the counter first & allocate the cache entry later. In case of failure to allocate the entry due to insufficient memory this counter is still left incremented. This patch fixes this anomaly. Signed-off-by: Ram Gupta <ram.gupta5@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			679 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			679 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/fs/mbcache.c
 | |
|  * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Filesystem Meta Information Block Cache (mbcache)
 | |
|  *
 | |
|  * The mbcache caches blocks of block devices that need to be located
 | |
|  * by their device/block number, as well as by other criteria (such
 | |
|  * as the block's contents).
 | |
|  *
 | |
|  * There can only be one cache entry in a cache per device and block number.
 | |
|  * Additional indexes need not be unique in this sense. The number of
 | |
|  * additional indexes (=other criteria) can be hardwired at compile time
 | |
|  * or specified at cache create time.
 | |
|  *
 | |
|  * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
 | |
|  * in the cache. A valid entry is in the main hash tables of the cache,
 | |
|  * and may also be in the lru list. An invalid entry is not in any hashes
 | |
|  * or lists.
 | |
|  *
 | |
|  * A valid cache entry is only in the lru list if no handles refer to it.
 | |
|  * Invalid cache entries will be freed when the last handle to the cache
 | |
|  * entry is released. Entries that cannot be freed immediately are put
 | |
|  * back on the lru list.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include <linux/hash.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mbcache.h>
 | |
| 
 | |
| 
 | |
| #ifdef MB_CACHE_DEBUG
 | |
| # define mb_debug(f...) do { \
 | |
| 		printk(KERN_DEBUG f); \
 | |
| 		printk("\n"); \
 | |
| 	} while (0)
 | |
| #define mb_assert(c) do { if (!(c)) \
 | |
| 		printk(KERN_ERR "assertion " #c " failed\n"); \
 | |
| 	} while(0)
 | |
| #else
 | |
| # define mb_debug(f...) do { } while(0)
 | |
| # define mb_assert(c) do { } while(0)
 | |
| #endif
 | |
| #define mb_error(f...) do { \
 | |
| 		printk(KERN_ERR f); \
 | |
| 		printk("\n"); \
 | |
| 	} while(0)
 | |
| 
 | |
| #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
 | |
| 		
 | |
| MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
 | |
| MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| EXPORT_SYMBOL(mb_cache_create);
 | |
| EXPORT_SYMBOL(mb_cache_shrink);
 | |
| EXPORT_SYMBOL(mb_cache_destroy);
 | |
| EXPORT_SYMBOL(mb_cache_entry_alloc);
 | |
| EXPORT_SYMBOL(mb_cache_entry_insert);
 | |
| EXPORT_SYMBOL(mb_cache_entry_release);
 | |
| EXPORT_SYMBOL(mb_cache_entry_free);
 | |
| EXPORT_SYMBOL(mb_cache_entry_get);
 | |
| #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
 | |
| EXPORT_SYMBOL(mb_cache_entry_find_first);
 | |
| EXPORT_SYMBOL(mb_cache_entry_find_next);
 | |
| #endif
 | |
| 
 | |
| struct mb_cache {
 | |
| 	struct list_head		c_cache_list;
 | |
| 	const char			*c_name;
 | |
| 	struct mb_cache_op		c_op;
 | |
| 	atomic_t			c_entry_count;
 | |
| 	int				c_bucket_bits;
 | |
| #ifndef MB_CACHE_INDEXES_COUNT
 | |
| 	int				c_indexes_count;
 | |
| #endif
 | |
| 	struct kmem_cache			*c_entry_cache;
 | |
| 	struct list_head		*c_block_hash;
 | |
| 	struct list_head		*c_indexes_hash[0];
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Global data: list of all mbcache's, lru list, and a spinlock for
 | |
|  * accessing cache data structures on SMP machines. The lru list is
 | |
|  * global across all mbcaches.
 | |
|  */
 | |
| 
 | |
| static LIST_HEAD(mb_cache_list);
 | |
| static LIST_HEAD(mb_cache_lru_list);
 | |
| static DEFINE_SPINLOCK(mb_cache_spinlock);
 | |
| 
 | |
| static inline int
 | |
| mb_cache_indexes(struct mb_cache *cache)
 | |
| {
 | |
| #ifdef MB_CACHE_INDEXES_COUNT
 | |
| 	return MB_CACHE_INDEXES_COUNT;
 | |
| #else
 | |
| 	return cache->c_indexes_count;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * What the mbcache registers as to get shrunk dynamically.
 | |
|  */
 | |
| 
 | |
| static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask);
 | |
| 
 | |
| static struct shrinker mb_cache_shrinker = {
 | |
| 	.shrink = mb_cache_shrink_fn,
 | |
| 	.seeks = DEFAULT_SEEKS,
 | |
| };
 | |
| 
 | |
| static inline int
 | |
| __mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
 | |
| {
 | |
| 	return !list_empty(&ce->e_block_list);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| __mb_cache_entry_unhash(struct mb_cache_entry *ce)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	if (__mb_cache_entry_is_hashed(ce)) {
 | |
| 		list_del_init(&ce->e_block_list);
 | |
| 		for (n=0; n<mb_cache_indexes(ce->e_cache); n++)
 | |
| 			list_del(&ce->e_indexes[n].o_list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct mb_cache *cache = ce->e_cache;
 | |
| 
 | |
| 	mb_assert(!(ce->e_used || ce->e_queued));
 | |
| 	if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) {
 | |
| 		/* free failed -- put back on the lru list
 | |
| 		   for freeing later. */
 | |
| 		spin_lock(&mb_cache_spinlock);
 | |
| 		list_add(&ce->e_lru_list, &mb_cache_lru_list);
 | |
| 		spin_unlock(&mb_cache_spinlock);
 | |
| 	} else {
 | |
| 		kmem_cache_free(cache->c_entry_cache, ce);
 | |
| 		atomic_dec(&cache->c_entry_count);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| __mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
 | |
| 	__releases(mb_cache_spinlock)
 | |
| {
 | |
| 	/* Wake up all processes queuing for this cache entry. */
 | |
| 	if (ce->e_queued)
 | |
| 		wake_up_all(&mb_cache_queue);
 | |
| 	if (ce->e_used >= MB_CACHE_WRITER)
 | |
| 		ce->e_used -= MB_CACHE_WRITER;
 | |
| 	ce->e_used--;
 | |
| 	if (!(ce->e_used || ce->e_queued)) {
 | |
| 		if (!__mb_cache_entry_is_hashed(ce))
 | |
| 			goto forget;
 | |
| 		mb_assert(list_empty(&ce->e_lru_list));
 | |
| 		list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
 | |
| 	}
 | |
| 	spin_unlock(&mb_cache_spinlock);
 | |
| 	return;
 | |
| forget:
 | |
| 	spin_unlock(&mb_cache_spinlock);
 | |
| 	__mb_cache_entry_forget(ce, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_shrink_fn()  memory pressure callback
 | |
|  *
 | |
|  * This function is called by the kernel memory management when memory
 | |
|  * gets low.
 | |
|  *
 | |
|  * @nr_to_scan: Number of objects to scan
 | |
|  * @gfp_mask: (ignored)
 | |
|  *
 | |
|  * Returns the number of objects which are present in the cache.
 | |
|  */
 | |
| static int
 | |
| mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask)
 | |
| {
 | |
| 	LIST_HEAD(free_list);
 | |
| 	struct list_head *l, *ltmp;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	list_for_each(l, &mb_cache_list) {
 | |
| 		struct mb_cache *cache =
 | |
| 			list_entry(l, struct mb_cache, c_cache_list);
 | |
| 		mb_debug("cache %s (%d)", cache->c_name,
 | |
| 			  atomic_read(&cache->c_entry_count));
 | |
| 		count += atomic_read(&cache->c_entry_count);
 | |
| 	}
 | |
| 	mb_debug("trying to free %d entries", nr_to_scan);
 | |
| 	if (nr_to_scan == 0) {
 | |
| 		spin_unlock(&mb_cache_spinlock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
 | |
| 		struct mb_cache_entry *ce =
 | |
| 			list_entry(mb_cache_lru_list.next,
 | |
| 				   struct mb_cache_entry, e_lru_list);
 | |
| 		list_move_tail(&ce->e_lru_list, &free_list);
 | |
| 		__mb_cache_entry_unhash(ce);
 | |
| 	}
 | |
| 	spin_unlock(&mb_cache_spinlock);
 | |
| 	list_for_each_safe(l, ltmp, &free_list) {
 | |
| 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
 | |
| 						   e_lru_list), gfp_mask);
 | |
| 	}
 | |
| out:
 | |
| 	return (count / 100) * sysctl_vfs_cache_pressure;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_create()  create a new cache
 | |
|  *
 | |
|  * All entries in one cache are equal size. Cache entries may be from
 | |
|  * multiple devices. If this is the first mbcache created, registers
 | |
|  * the cache with kernel memory management. Returns NULL if no more
 | |
|  * memory was available.
 | |
|  *
 | |
|  * @name: name of the cache (informal)
 | |
|  * @cache_op: contains the callback called when freeing a cache entry
 | |
|  * @entry_size: The size of a cache entry, including
 | |
|  *              struct mb_cache_entry
 | |
|  * @indexes_count: number of additional indexes in the cache. Must equal
 | |
|  *                 MB_CACHE_INDEXES_COUNT if the number of indexes is
 | |
|  *                 hardwired.
 | |
|  * @bucket_bits: log2(number of hash buckets)
 | |
|  */
 | |
| struct mb_cache *
 | |
| mb_cache_create(const char *name, struct mb_cache_op *cache_op,
 | |
| 		size_t entry_size, int indexes_count, int bucket_bits)
 | |
| {
 | |
| 	int m=0, n, bucket_count = 1 << bucket_bits;
 | |
| 	struct mb_cache *cache = NULL;
 | |
| 
 | |
| 	if(entry_size < sizeof(struct mb_cache_entry) +
 | |
| 	   indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]))
 | |
| 		return NULL;
 | |
| 
 | |
| 	cache = kmalloc(sizeof(struct mb_cache) +
 | |
| 	                indexes_count * sizeof(struct list_head), GFP_KERNEL);
 | |
| 	if (!cache)
 | |
| 		goto fail;
 | |
| 	cache->c_name = name;
 | |
| 	cache->c_op.free = NULL;
 | |
| 	if (cache_op)
 | |
| 		cache->c_op.free = cache_op->free;
 | |
| 	atomic_set(&cache->c_entry_count, 0);
 | |
| 	cache->c_bucket_bits = bucket_bits;
 | |
| #ifdef MB_CACHE_INDEXES_COUNT
 | |
| 	mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT);
 | |
| #else
 | |
| 	cache->c_indexes_count = indexes_count;
 | |
| #endif
 | |
| 	cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
 | |
| 	                              GFP_KERNEL);
 | |
| 	if (!cache->c_block_hash)
 | |
| 		goto fail;
 | |
| 	for (n=0; n<bucket_count; n++)
 | |
| 		INIT_LIST_HEAD(&cache->c_block_hash[n]);
 | |
| 	for (m=0; m<indexes_count; m++) {
 | |
| 		cache->c_indexes_hash[m] = kmalloc(bucket_count *
 | |
| 		                                 sizeof(struct list_head),
 | |
| 		                                 GFP_KERNEL);
 | |
| 		if (!cache->c_indexes_hash[m])
 | |
| 			goto fail;
 | |
| 		for (n=0; n<bucket_count; n++)
 | |
| 			INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]);
 | |
| 	}
 | |
| 	cache->c_entry_cache = kmem_cache_create(name, entry_size, 0,
 | |
| 		SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
 | |
| 	if (!cache->c_entry_cache)
 | |
| 		goto fail;
 | |
| 
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	list_add(&cache->c_cache_list, &mb_cache_list);
 | |
| 	spin_unlock(&mb_cache_spinlock);
 | |
| 	return cache;
 | |
| 
 | |
| fail:
 | |
| 	if (cache) {
 | |
| 		while (--m >= 0)
 | |
| 			kfree(cache->c_indexes_hash[m]);
 | |
| 		kfree(cache->c_block_hash);
 | |
| 		kfree(cache);
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_shrink()
 | |
|  *
 | |
|  * Removes all cache entries of a device from the cache. All cache entries
 | |
|  * currently in use cannot be freed, and thus remain in the cache. All others
 | |
|  * are freed.
 | |
|  *
 | |
|  * @bdev: which device's cache entries to shrink
 | |
|  */
 | |
| void
 | |
| mb_cache_shrink(struct block_device *bdev)
 | |
| {
 | |
| 	LIST_HEAD(free_list);
 | |
| 	struct list_head *l, *ltmp;
 | |
| 
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
 | |
| 		struct mb_cache_entry *ce =
 | |
| 			list_entry(l, struct mb_cache_entry, e_lru_list);
 | |
| 		if (ce->e_bdev == bdev) {
 | |
| 			list_move_tail(&ce->e_lru_list, &free_list);
 | |
| 			__mb_cache_entry_unhash(ce);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&mb_cache_spinlock);
 | |
| 	list_for_each_safe(l, ltmp, &free_list) {
 | |
| 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
 | |
| 						   e_lru_list), GFP_KERNEL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_destroy()
 | |
|  *
 | |
|  * Shrinks the cache to its minimum possible size (hopefully 0 entries),
 | |
|  * and then destroys it. If this was the last mbcache, un-registers the
 | |
|  * mbcache from kernel memory management.
 | |
|  */
 | |
| void
 | |
| mb_cache_destroy(struct mb_cache *cache)
 | |
| {
 | |
| 	LIST_HEAD(free_list);
 | |
| 	struct list_head *l, *ltmp;
 | |
| 	int n;
 | |
| 
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
 | |
| 		struct mb_cache_entry *ce =
 | |
| 			list_entry(l, struct mb_cache_entry, e_lru_list);
 | |
| 		if (ce->e_cache == cache) {
 | |
| 			list_move_tail(&ce->e_lru_list, &free_list);
 | |
| 			__mb_cache_entry_unhash(ce);
 | |
| 		}
 | |
| 	}
 | |
| 	list_del(&cache->c_cache_list);
 | |
| 	spin_unlock(&mb_cache_spinlock);
 | |
| 
 | |
| 	list_for_each_safe(l, ltmp, &free_list) {
 | |
| 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
 | |
| 						   e_lru_list), GFP_KERNEL);
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_read(&cache->c_entry_count) > 0) {
 | |
| 		mb_error("cache %s: %d orphaned entries",
 | |
| 			  cache->c_name,
 | |
| 			  atomic_read(&cache->c_entry_count));
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_destroy(cache->c_entry_cache);
 | |
| 
 | |
| 	for (n=0; n < mb_cache_indexes(cache); n++)
 | |
| 		kfree(cache->c_indexes_hash[n]);
 | |
| 	kfree(cache->c_block_hash);
 | |
| 	kfree(cache);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_entry_alloc()
 | |
|  *
 | |
|  * Allocates a new cache entry. The new entry will not be valid initially,
 | |
|  * and thus cannot be looked up yet. It should be filled with data, and
 | |
|  * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
 | |
|  * if no more memory was available.
 | |
|  */
 | |
| struct mb_cache_entry *
 | |
| mb_cache_entry_alloc(struct mb_cache *cache)
 | |
| {
 | |
| 	struct mb_cache_entry *ce;
 | |
| 
 | |
| 	ce = kmem_cache_alloc(cache->c_entry_cache, GFP_KERNEL);
 | |
| 	if (ce) {
 | |
| 		atomic_inc(&cache->c_entry_count);
 | |
| 		INIT_LIST_HEAD(&ce->e_lru_list);
 | |
| 		INIT_LIST_HEAD(&ce->e_block_list);
 | |
| 		ce->e_cache = cache;
 | |
| 		ce->e_used = 1 + MB_CACHE_WRITER;
 | |
| 		ce->e_queued = 0;
 | |
| 	}
 | |
| 	return ce;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_entry_insert()
 | |
|  *
 | |
|  * Inserts an entry that was allocated using mb_cache_entry_alloc() into
 | |
|  * the cache. After this, the cache entry can be looked up, but is not yet
 | |
|  * in the lru list as the caller still holds a handle to it. Returns 0 on
 | |
|  * success, or -EBUSY if a cache entry for that device + inode exists
 | |
|  * already (this may happen after a failed lookup, but when another process
 | |
|  * has inserted the same cache entry in the meantime).
 | |
|  *
 | |
|  * @bdev: device the cache entry belongs to
 | |
|  * @block: block number
 | |
|  * @keys: array of additional keys. There must be indexes_count entries
 | |
|  *        in the array (as specified when creating the cache).
 | |
|  */
 | |
| int
 | |
| mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
 | |
| 		      sector_t block, unsigned int keys[])
 | |
| {
 | |
| 	struct mb_cache *cache = ce->e_cache;
 | |
| 	unsigned int bucket;
 | |
| 	struct list_head *l;
 | |
| 	int error = -EBUSY, n;
 | |
| 
 | |
| 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 
 | |
| 			   cache->c_bucket_bits);
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	list_for_each_prev(l, &cache->c_block_hash[bucket]) {
 | |
| 		struct mb_cache_entry *ce =
 | |
| 			list_entry(l, struct mb_cache_entry, e_block_list);
 | |
| 		if (ce->e_bdev == bdev && ce->e_block == block)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	__mb_cache_entry_unhash(ce);
 | |
| 	ce->e_bdev = bdev;
 | |
| 	ce->e_block = block;
 | |
| 	list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
 | |
| 	for (n=0; n<mb_cache_indexes(cache); n++) {
 | |
| 		ce->e_indexes[n].o_key = keys[n];
 | |
| 		bucket = hash_long(keys[n], cache->c_bucket_bits);
 | |
| 		list_add(&ce->e_indexes[n].o_list,
 | |
| 			 &cache->c_indexes_hash[n][bucket]);
 | |
| 	}
 | |
| 	error = 0;
 | |
| out:
 | |
| 	spin_unlock(&mb_cache_spinlock);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_entry_release()
 | |
|  *
 | |
|  * Release a handle to a cache entry. When the last handle to a cache entry
 | |
|  * is released it is either freed (if it is invalid) or otherwise inserted
 | |
|  * in to the lru list.
 | |
|  */
 | |
| void
 | |
| mb_cache_entry_release(struct mb_cache_entry *ce)
 | |
| {
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	__mb_cache_entry_release_unlock(ce);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_entry_free()
 | |
|  *
 | |
|  * This is equivalent to the sequence mb_cache_entry_takeout() --
 | |
|  * mb_cache_entry_release().
 | |
|  */
 | |
| void
 | |
| mb_cache_entry_free(struct mb_cache_entry *ce)
 | |
| {
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	mb_assert(list_empty(&ce->e_lru_list));
 | |
| 	__mb_cache_entry_unhash(ce);
 | |
| 	__mb_cache_entry_release_unlock(ce);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_entry_get()
 | |
|  *
 | |
|  * Get a cache entry  by device / block number. (There can only be one entry
 | |
|  * in the cache per device and block.) Returns NULL if no such cache entry
 | |
|  * exists. The returned cache entry is locked for exclusive access ("single
 | |
|  * writer").
 | |
|  */
 | |
| struct mb_cache_entry *
 | |
| mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
 | |
| 		   sector_t block)
 | |
| {
 | |
| 	unsigned int bucket;
 | |
| 	struct list_head *l;
 | |
| 	struct mb_cache_entry *ce;
 | |
| 
 | |
| 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
 | |
| 			   cache->c_bucket_bits);
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	list_for_each(l, &cache->c_block_hash[bucket]) {
 | |
| 		ce = list_entry(l, struct mb_cache_entry, e_block_list);
 | |
| 		if (ce->e_bdev == bdev && ce->e_block == block) {
 | |
| 			DEFINE_WAIT(wait);
 | |
| 
 | |
| 			if (!list_empty(&ce->e_lru_list))
 | |
| 				list_del_init(&ce->e_lru_list);
 | |
| 
 | |
| 			while (ce->e_used > 0) {
 | |
| 				ce->e_queued++;
 | |
| 				prepare_to_wait(&mb_cache_queue, &wait,
 | |
| 						TASK_UNINTERRUPTIBLE);
 | |
| 				spin_unlock(&mb_cache_spinlock);
 | |
| 				schedule();
 | |
| 				spin_lock(&mb_cache_spinlock);
 | |
| 				ce->e_queued--;
 | |
| 			}
 | |
| 			finish_wait(&mb_cache_queue, &wait);
 | |
| 			ce->e_used += 1 + MB_CACHE_WRITER;
 | |
| 
 | |
| 			if (!__mb_cache_entry_is_hashed(ce)) {
 | |
| 				__mb_cache_entry_release_unlock(ce);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 	ce = NULL;
 | |
| 
 | |
| cleanup:
 | |
| 	spin_unlock(&mb_cache_spinlock);
 | |
| 	return ce;
 | |
| }
 | |
| 
 | |
| #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
 | |
| 
 | |
| static struct mb_cache_entry *
 | |
| __mb_cache_entry_find(struct list_head *l, struct list_head *head,
 | |
| 		      int index, struct block_device *bdev, unsigned int key)
 | |
| {
 | |
| 	while (l != head) {
 | |
| 		struct mb_cache_entry *ce =
 | |
| 			list_entry(l, struct mb_cache_entry,
 | |
| 			           e_indexes[index].o_list);
 | |
| 		if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) {
 | |
| 			DEFINE_WAIT(wait);
 | |
| 
 | |
| 			if (!list_empty(&ce->e_lru_list))
 | |
| 				list_del_init(&ce->e_lru_list);
 | |
| 
 | |
| 			/* Incrementing before holding the lock gives readers
 | |
| 			   priority over writers. */
 | |
| 			ce->e_used++;
 | |
| 			while (ce->e_used >= MB_CACHE_WRITER) {
 | |
| 				ce->e_queued++;
 | |
| 				prepare_to_wait(&mb_cache_queue, &wait,
 | |
| 						TASK_UNINTERRUPTIBLE);
 | |
| 				spin_unlock(&mb_cache_spinlock);
 | |
| 				schedule();
 | |
| 				spin_lock(&mb_cache_spinlock);
 | |
| 				ce->e_queued--;
 | |
| 			}
 | |
| 			finish_wait(&mb_cache_queue, &wait);
 | |
| 
 | |
| 			if (!__mb_cache_entry_is_hashed(ce)) {
 | |
| 				__mb_cache_entry_release_unlock(ce);
 | |
| 				spin_lock(&mb_cache_spinlock);
 | |
| 				return ERR_PTR(-EAGAIN);
 | |
| 			}
 | |
| 			return ce;
 | |
| 		}
 | |
| 		l = l->next;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_entry_find_first()
 | |
|  *
 | |
|  * Find the first cache entry on a given device with a certain key in
 | |
|  * an additional index. Additonal matches can be found with
 | |
|  * mb_cache_entry_find_next(). Returns NULL if no match was found. The
 | |
|  * returned cache entry is locked for shared access ("multiple readers").
 | |
|  *
 | |
|  * @cache: the cache to search
 | |
|  * @index: the number of the additonal index to search (0<=index<indexes_count)
 | |
|  * @bdev: the device the cache entry should belong to
 | |
|  * @key: the key in the index
 | |
|  */
 | |
| struct mb_cache_entry *
 | |
| mb_cache_entry_find_first(struct mb_cache *cache, int index,
 | |
| 			  struct block_device *bdev, unsigned int key)
 | |
| {
 | |
| 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
 | |
| 	struct list_head *l;
 | |
| 	struct mb_cache_entry *ce;
 | |
| 
 | |
| 	mb_assert(index < mb_cache_indexes(cache));
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	l = cache->c_indexes_hash[index][bucket].next;
 | |
| 	ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
 | |
| 	                           index, bdev, key);
 | |
| 	spin_unlock(&mb_cache_spinlock);
 | |
| 	return ce;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mb_cache_entry_find_next()
 | |
|  *
 | |
|  * Find the next cache entry on a given device with a certain key in an
 | |
|  * additional index. Returns NULL if no match could be found. The previous
 | |
|  * entry is atomatically released, so that mb_cache_entry_find_next() can
 | |
|  * be called like this:
 | |
|  *
 | |
|  * entry = mb_cache_entry_find_first();
 | |
|  * while (entry) {
 | |
|  * 	...
 | |
|  *	entry = mb_cache_entry_find_next(entry, ...);
 | |
|  * }
 | |
|  *
 | |
|  * @prev: The previous match
 | |
|  * @index: the number of the additonal index to search (0<=index<indexes_count)
 | |
|  * @bdev: the device the cache entry should belong to
 | |
|  * @key: the key in the index
 | |
|  */
 | |
| struct mb_cache_entry *
 | |
| mb_cache_entry_find_next(struct mb_cache_entry *prev, int index,
 | |
| 			 struct block_device *bdev, unsigned int key)
 | |
| {
 | |
| 	struct mb_cache *cache = prev->e_cache;
 | |
| 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
 | |
| 	struct list_head *l;
 | |
| 	struct mb_cache_entry *ce;
 | |
| 
 | |
| 	mb_assert(index < mb_cache_indexes(cache));
 | |
| 	spin_lock(&mb_cache_spinlock);
 | |
| 	l = prev->e_indexes[index].o_list.next;
 | |
| 	ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
 | |
| 	                           index, bdev, key);
 | |
| 	__mb_cache_entry_release_unlock(prev);
 | |
| 	return ce;
 | |
| }
 | |
| 
 | |
| #endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
 | |
| 
 | |
| static int __init init_mbcache(void)
 | |
| {
 | |
| 	register_shrinker(&mb_cache_shrinker);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit exit_mbcache(void)
 | |
| {
 | |
| 	unregister_shrinker(&mb_cache_shrinker);
 | |
| }
 | |
| 
 | |
| module_init(init_mbcache)
 | |
| module_exit(exit_mbcache)
 | |
| 
 |