mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	When CONFIG_CPUMASK_OFFSTACK isn't enabled, 'cpumask_var_t' is as
'typedef struct cpumask cpumask_var_t[1]',
so the argument 'node_to_cpumask' alloc_nodes_vectors() can't be declared
as 'const cpumask_var_t *'
Fixes the following warning:
   kernel/irq/affinity.c: In function '__irq_build_affinity_masks':
     alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
                                  ^
   kernel/irq/affinity.c:128:13: note: expected 'const struct cpumask (*)[1]' but argument is of type 'struct cpumask (*)[1]'
    static void alloc_nodes_vectors(unsigned int numvecs,
                ^
Fixes: b1a5a73e64 ("genirq/affinity: Spread vectors on node according to nr_cpu ratio")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190828085815.19931-1-ming.lei@redhat.com
		
	
			
		
			
				
	
	
		
			514 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			514 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (C) 2016 Thomas Gleixner.
 | 
						|
 * Copyright (C) 2016-2017 Christoph Hellwig.
 | 
						|
 */
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/sort.h>
 | 
						|
 | 
						|
static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
 | 
						|
				unsigned int cpus_per_vec)
 | 
						|
{
 | 
						|
	const struct cpumask *siblmsk;
 | 
						|
	int cpu, sibl;
 | 
						|
 | 
						|
	for ( ; cpus_per_vec > 0; ) {
 | 
						|
		cpu = cpumask_first(nmsk);
 | 
						|
 | 
						|
		/* Should not happen, but I'm too lazy to think about it */
 | 
						|
		if (cpu >= nr_cpu_ids)
 | 
						|
			return;
 | 
						|
 | 
						|
		cpumask_clear_cpu(cpu, nmsk);
 | 
						|
		cpumask_set_cpu(cpu, irqmsk);
 | 
						|
		cpus_per_vec--;
 | 
						|
 | 
						|
		/* If the cpu has siblings, use them first */
 | 
						|
		siblmsk = topology_sibling_cpumask(cpu);
 | 
						|
		for (sibl = -1; cpus_per_vec > 0; ) {
 | 
						|
			sibl = cpumask_next(sibl, siblmsk);
 | 
						|
			if (sibl >= nr_cpu_ids)
 | 
						|
				break;
 | 
						|
			if (!cpumask_test_and_clear_cpu(sibl, nmsk))
 | 
						|
				continue;
 | 
						|
			cpumask_set_cpu(sibl, irqmsk);
 | 
						|
			cpus_per_vec--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static cpumask_var_t *alloc_node_to_cpumask(void)
 | 
						|
{
 | 
						|
	cpumask_var_t *masks;
 | 
						|
	int node;
 | 
						|
 | 
						|
	masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
 | 
						|
	if (!masks)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	for (node = 0; node < nr_node_ids; node++) {
 | 
						|
		if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
 | 
						|
			goto out_unwind;
 | 
						|
	}
 | 
						|
 | 
						|
	return masks;
 | 
						|
 | 
						|
out_unwind:
 | 
						|
	while (--node >= 0)
 | 
						|
		free_cpumask_var(masks[node]);
 | 
						|
	kfree(masks);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void free_node_to_cpumask(cpumask_var_t *masks)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
 | 
						|
	for (node = 0; node < nr_node_ids; node++)
 | 
						|
		free_cpumask_var(masks[node]);
 | 
						|
	kfree(masks);
 | 
						|
}
 | 
						|
 | 
						|
static void build_node_to_cpumask(cpumask_var_t *masks)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
 | 
						|
}
 | 
						|
 | 
						|
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
 | 
						|
				const struct cpumask *mask, nodemask_t *nodemsk)
 | 
						|
{
 | 
						|
	int n, nodes = 0;
 | 
						|
 | 
						|
	/* Calculate the number of nodes in the supplied affinity mask */
 | 
						|
	for_each_node(n) {
 | 
						|
		if (cpumask_intersects(mask, node_to_cpumask[n])) {
 | 
						|
			node_set(n, *nodemsk);
 | 
						|
			nodes++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nodes;
 | 
						|
}
 | 
						|
 | 
						|
struct node_vectors {
 | 
						|
	unsigned id;
 | 
						|
 | 
						|
	union {
 | 
						|
		unsigned nvectors;
 | 
						|
		unsigned ncpus;
 | 
						|
	};
 | 
						|
};
 | 
						|
 | 
						|
static int ncpus_cmp_func(const void *l, const void *r)
 | 
						|
{
 | 
						|
	const struct node_vectors *ln = l;
 | 
						|
	const struct node_vectors *rn = r;
 | 
						|
 | 
						|
	return ln->ncpus - rn->ncpus;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate vector number for each node, so that for each node:
 | 
						|
 *
 | 
						|
 * 1) the allocated number is >= 1
 | 
						|
 *
 | 
						|
 * 2) the allocated numbver is <= active CPU number of this node
 | 
						|
 *
 | 
						|
 * The actual allocated total vectors may be less than @numvecs when
 | 
						|
 * active total CPU number is less than @numvecs.
 | 
						|
 *
 | 
						|
 * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
 | 
						|
 * for each node.
 | 
						|
 */
 | 
						|
static void alloc_nodes_vectors(unsigned int numvecs,
 | 
						|
				cpumask_var_t *node_to_cpumask,
 | 
						|
				const struct cpumask *cpu_mask,
 | 
						|
				const nodemask_t nodemsk,
 | 
						|
				struct cpumask *nmsk,
 | 
						|
				struct node_vectors *node_vectors)
 | 
						|
{
 | 
						|
	unsigned n, remaining_ncpus = 0;
 | 
						|
 | 
						|
	for (n = 0; n < nr_node_ids; n++) {
 | 
						|
		node_vectors[n].id = n;
 | 
						|
		node_vectors[n].ncpus = UINT_MAX;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_node_mask(n, nodemsk) {
 | 
						|
		unsigned ncpus;
 | 
						|
 | 
						|
		cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
 | 
						|
		ncpus = cpumask_weight(nmsk);
 | 
						|
 | 
						|
		if (!ncpus)
 | 
						|
			continue;
 | 
						|
		remaining_ncpus += ncpus;
 | 
						|
		node_vectors[n].ncpus = ncpus;
 | 
						|
	}
 | 
						|
 | 
						|
	numvecs = min_t(unsigned, remaining_ncpus, numvecs);
 | 
						|
 | 
						|
	sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
 | 
						|
	     ncpus_cmp_func, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate vectors for each node according to the ratio of this
 | 
						|
	 * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
 | 
						|
	 * bigger than number of active numa nodes. Always start the
 | 
						|
	 * allocation from the node with minimized nr_cpus.
 | 
						|
	 *
 | 
						|
	 * This way guarantees that each active node gets allocated at
 | 
						|
	 * least one vector, and the theory is simple: over-allocation
 | 
						|
	 * is only done when this node is assigned by one vector, so
 | 
						|
	 * other nodes will be allocated >= 1 vector, since 'numvecs' is
 | 
						|
	 * bigger than number of numa nodes.
 | 
						|
	 *
 | 
						|
	 * One perfect invariant is that number of allocated vectors for
 | 
						|
	 * each node is <= CPU count of this node:
 | 
						|
	 *
 | 
						|
	 * 1) suppose there are two nodes: A and B
 | 
						|
	 * 	ncpu(X) is CPU count of node X
 | 
						|
	 * 	vecs(X) is the vector count allocated to node X via this
 | 
						|
	 * 	algorithm
 | 
						|
	 *
 | 
						|
	 * 	ncpu(A) <= ncpu(B)
 | 
						|
	 * 	ncpu(A) + ncpu(B) = N
 | 
						|
	 * 	vecs(A) + vecs(B) = V
 | 
						|
	 *
 | 
						|
	 * 	vecs(A) = max(1, round_down(V * ncpu(A) / N))
 | 
						|
	 * 	vecs(B) = V - vecs(A)
 | 
						|
	 *
 | 
						|
	 * 	both N and V are integer, and 2 <= V <= N, suppose
 | 
						|
	 * 	V = N - delta, and 0 <= delta <= N - 2
 | 
						|
	 *
 | 
						|
	 * 2) obviously vecs(A) <= ncpu(A) because:
 | 
						|
	 *
 | 
						|
	 * 	if vecs(A) is 1, then vecs(A) <= ncpu(A) given
 | 
						|
	 * 	ncpu(A) >= 1
 | 
						|
	 *
 | 
						|
	 * 	otherwise,
 | 
						|
	 * 		vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
 | 
						|
	 *
 | 
						|
	 * 3) prove how vecs(B) <= ncpu(B):
 | 
						|
	 *
 | 
						|
	 * 	if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
 | 
						|
	 * 	over-allocated, so vecs(B) <= ncpu(B),
 | 
						|
	 *
 | 
						|
	 * 	otherwise:
 | 
						|
	 *
 | 
						|
	 * 	vecs(A) =
 | 
						|
	 * 		round_down(V * ncpu(A) / N) =
 | 
						|
	 * 		round_down((N - delta) * ncpu(A) / N) =
 | 
						|
	 * 		round_down((N * ncpu(A) - delta * ncpu(A)) / N)	 >=
 | 
						|
	 * 		round_down((N * ncpu(A) - delta * N) / N)	 =
 | 
						|
	 * 		cpu(A) - delta
 | 
						|
	 *
 | 
						|
	 * 	then:
 | 
						|
	 *
 | 
						|
	 * 	vecs(A) - V >= ncpu(A) - delta - V
 | 
						|
	 * 	=>
 | 
						|
	 * 	V - vecs(A) <= V + delta - ncpu(A)
 | 
						|
	 * 	=>
 | 
						|
	 * 	vecs(B) <= N - ncpu(A)
 | 
						|
	 * 	=>
 | 
						|
	 * 	vecs(B) <= cpu(B)
 | 
						|
	 *
 | 
						|
	 * For nodes >= 3, it can be thought as one node and another big
 | 
						|
	 * node given that is exactly what this algorithm is implemented,
 | 
						|
	 * and we always re-calculate 'remaining_ncpus' & 'numvecs', and
 | 
						|
	 * finally for each node X: vecs(X) <= ncpu(X).
 | 
						|
	 *
 | 
						|
	 */
 | 
						|
	for (n = 0; n < nr_node_ids; n++) {
 | 
						|
		unsigned nvectors, ncpus;
 | 
						|
 | 
						|
		if (node_vectors[n].ncpus == UINT_MAX)
 | 
						|
			continue;
 | 
						|
 | 
						|
		WARN_ON_ONCE(numvecs == 0);
 | 
						|
 | 
						|
		ncpus = node_vectors[n].ncpus;
 | 
						|
		nvectors = max_t(unsigned, 1,
 | 
						|
				 numvecs * ncpus / remaining_ncpus);
 | 
						|
		WARN_ON_ONCE(nvectors > ncpus);
 | 
						|
 | 
						|
		node_vectors[n].nvectors = nvectors;
 | 
						|
 | 
						|
		remaining_ncpus -= ncpus;
 | 
						|
		numvecs -= nvectors;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int __irq_build_affinity_masks(unsigned int startvec,
 | 
						|
				      unsigned int numvecs,
 | 
						|
				      unsigned int firstvec,
 | 
						|
				      cpumask_var_t *node_to_cpumask,
 | 
						|
				      const struct cpumask *cpu_mask,
 | 
						|
				      struct cpumask *nmsk,
 | 
						|
				      struct irq_affinity_desc *masks)
 | 
						|
{
 | 
						|
	unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
 | 
						|
	unsigned int last_affv = firstvec + numvecs;
 | 
						|
	unsigned int curvec = startvec;
 | 
						|
	nodemask_t nodemsk = NODE_MASK_NONE;
 | 
						|
	struct node_vectors *node_vectors;
 | 
						|
 | 
						|
	if (!cpumask_weight(cpu_mask))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the number of nodes in the mask is greater than or equal the
 | 
						|
	 * number of vectors we just spread the vectors across the nodes.
 | 
						|
	 */
 | 
						|
	if (numvecs <= nodes) {
 | 
						|
		for_each_node_mask(n, nodemsk) {
 | 
						|
			cpumask_or(&masks[curvec].mask, &masks[curvec].mask,
 | 
						|
				   node_to_cpumask[n]);
 | 
						|
			if (++curvec == last_affv)
 | 
						|
				curvec = firstvec;
 | 
						|
		}
 | 
						|
		return numvecs;
 | 
						|
	}
 | 
						|
 | 
						|
	node_vectors = kcalloc(nr_node_ids,
 | 
						|
			       sizeof(struct node_vectors),
 | 
						|
			       GFP_KERNEL);
 | 
						|
	if (!node_vectors)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/* allocate vector number for each node */
 | 
						|
	alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
 | 
						|
			    nodemsk, nmsk, node_vectors);
 | 
						|
 | 
						|
	for (i = 0; i < nr_node_ids; i++) {
 | 
						|
		unsigned int ncpus, v;
 | 
						|
		struct node_vectors *nv = &node_vectors[i];
 | 
						|
 | 
						|
		if (nv->nvectors == UINT_MAX)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Get the cpus on this node which are in the mask */
 | 
						|
		cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
 | 
						|
		ncpus = cpumask_weight(nmsk);
 | 
						|
		if (!ncpus)
 | 
						|
			continue;
 | 
						|
 | 
						|
		WARN_ON_ONCE(nv->nvectors > ncpus);
 | 
						|
 | 
						|
		/* Account for rounding errors */
 | 
						|
		extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
 | 
						|
 | 
						|
		/* Spread allocated vectors on CPUs of the current node */
 | 
						|
		for (v = 0; v < nv->nvectors; v++, curvec++) {
 | 
						|
			cpus_per_vec = ncpus / nv->nvectors;
 | 
						|
 | 
						|
			/* Account for extra vectors to compensate rounding errors */
 | 
						|
			if (extra_vecs) {
 | 
						|
				cpus_per_vec++;
 | 
						|
				--extra_vecs;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * wrapping has to be considered given 'startvec'
 | 
						|
			 * may start anywhere
 | 
						|
			 */
 | 
						|
			if (curvec >= last_affv)
 | 
						|
				curvec = firstvec;
 | 
						|
			irq_spread_init_one(&masks[curvec].mask, nmsk,
 | 
						|
						cpus_per_vec);
 | 
						|
		}
 | 
						|
		done += nv->nvectors;
 | 
						|
	}
 | 
						|
	kfree(node_vectors);
 | 
						|
	return done;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * build affinity in two stages:
 | 
						|
 *	1) spread present CPU on these vectors
 | 
						|
 *	2) spread other possible CPUs on these vectors
 | 
						|
 */
 | 
						|
static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
 | 
						|
				    unsigned int firstvec,
 | 
						|
				    struct irq_affinity_desc *masks)
 | 
						|
{
 | 
						|
	unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
 | 
						|
	cpumask_var_t *node_to_cpumask;
 | 
						|
	cpumask_var_t nmsk, npresmsk;
 | 
						|
	int ret = -ENOMEM;
 | 
						|
 | 
						|
	if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
 | 
						|
		goto fail_nmsk;
 | 
						|
 | 
						|
	node_to_cpumask = alloc_node_to_cpumask();
 | 
						|
	if (!node_to_cpumask)
 | 
						|
		goto fail_npresmsk;
 | 
						|
 | 
						|
	/* Stabilize the cpumasks */
 | 
						|
	get_online_cpus();
 | 
						|
	build_node_to_cpumask(node_to_cpumask);
 | 
						|
 | 
						|
	/* Spread on present CPUs starting from affd->pre_vectors */
 | 
						|
	ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
 | 
						|
					 node_to_cpumask, cpu_present_mask,
 | 
						|
					 nmsk, masks);
 | 
						|
	if (ret < 0)
 | 
						|
		goto fail_build_affinity;
 | 
						|
	nr_present = ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Spread on non present CPUs starting from the next vector to be
 | 
						|
	 * handled. If the spreading of present CPUs already exhausted the
 | 
						|
	 * vector space, assign the non present CPUs to the already spread
 | 
						|
	 * out vectors.
 | 
						|
	 */
 | 
						|
	if (nr_present >= numvecs)
 | 
						|
		curvec = firstvec;
 | 
						|
	else
 | 
						|
		curvec = firstvec + nr_present;
 | 
						|
	cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
 | 
						|
	ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
 | 
						|
					 node_to_cpumask, npresmsk, nmsk,
 | 
						|
					 masks);
 | 
						|
	if (ret >= 0)
 | 
						|
		nr_others = ret;
 | 
						|
 | 
						|
 fail_build_affinity:
 | 
						|
	put_online_cpus();
 | 
						|
 | 
						|
	if (ret >= 0)
 | 
						|
		WARN_ON(nr_present + nr_others < numvecs);
 | 
						|
 | 
						|
	free_node_to_cpumask(node_to_cpumask);
 | 
						|
 | 
						|
 fail_npresmsk:
 | 
						|
	free_cpumask_var(npresmsk);
 | 
						|
 | 
						|
 fail_nmsk:
 | 
						|
	free_cpumask_var(nmsk);
 | 
						|
	return ret < 0 ? ret : 0;
 | 
						|
}
 | 
						|
 | 
						|
static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
 | 
						|
{
 | 
						|
	affd->nr_sets = 1;
 | 
						|
	affd->set_size[0] = affvecs;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
 | 
						|
 * @nvecs:	The total number of vectors
 | 
						|
 * @affd:	Description of the affinity requirements
 | 
						|
 *
 | 
						|
 * Returns the irq_affinity_desc pointer or NULL if allocation failed.
 | 
						|
 */
 | 
						|
struct irq_affinity_desc *
 | 
						|
irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
 | 
						|
{
 | 
						|
	unsigned int affvecs, curvec, usedvecs, i;
 | 
						|
	struct irq_affinity_desc *masks = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine the number of vectors which need interrupt affinities
 | 
						|
	 * assigned. If the pre/post request exhausts the available vectors
 | 
						|
	 * then nothing to do here except for invoking the calc_sets()
 | 
						|
	 * callback so the device driver can adjust to the situation.
 | 
						|
	 */
 | 
						|
	if (nvecs > affd->pre_vectors + affd->post_vectors)
 | 
						|
		affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
 | 
						|
	else
 | 
						|
		affvecs = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Simple invocations do not provide a calc_sets() callback. Install
 | 
						|
	 * the generic one.
 | 
						|
	 */
 | 
						|
	if (!affd->calc_sets)
 | 
						|
		affd->calc_sets = default_calc_sets;
 | 
						|
 | 
						|
	/* Recalculate the sets */
 | 
						|
	affd->calc_sets(affd, affvecs);
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Nothing to assign? */
 | 
						|
	if (!affvecs)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
 | 
						|
	if (!masks)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Fill out vectors at the beginning that don't need affinity */
 | 
						|
	for (curvec = 0; curvec < affd->pre_vectors; curvec++)
 | 
						|
		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Spread on present CPUs starting from affd->pre_vectors. If we
 | 
						|
	 * have multiple sets, build each sets affinity mask separately.
 | 
						|
	 */
 | 
						|
	for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
 | 
						|
		unsigned int this_vecs = affd->set_size[i];
 | 
						|
		int ret;
 | 
						|
 | 
						|
		ret = irq_build_affinity_masks(curvec, this_vecs,
 | 
						|
					       curvec, masks);
 | 
						|
		if (ret) {
 | 
						|
			kfree(masks);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		curvec += this_vecs;
 | 
						|
		usedvecs += this_vecs;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fill out vectors at the end that don't need affinity */
 | 
						|
	if (usedvecs >= affvecs)
 | 
						|
		curvec = affd->pre_vectors + affvecs;
 | 
						|
	else
 | 
						|
		curvec = affd->pre_vectors + usedvecs;
 | 
						|
	for (; curvec < nvecs; curvec++)
 | 
						|
		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
 | 
						|
 | 
						|
	/* Mark the managed interrupts */
 | 
						|
	for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
 | 
						|
		masks[i].is_managed = 1;
 | 
						|
 | 
						|
	return masks;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * irq_calc_affinity_vectors - Calculate the optimal number of vectors
 | 
						|
 * @minvec:	The minimum number of vectors available
 | 
						|
 * @maxvec:	The maximum number of vectors available
 | 
						|
 * @affd:	Description of the affinity requirements
 | 
						|
 */
 | 
						|
unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
 | 
						|
				       const struct irq_affinity *affd)
 | 
						|
{
 | 
						|
	unsigned int resv = affd->pre_vectors + affd->post_vectors;
 | 
						|
	unsigned int set_vecs;
 | 
						|
 | 
						|
	if (resv > minvec)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (affd->calc_sets) {
 | 
						|
		set_vecs = maxvec - resv;
 | 
						|
	} else {
 | 
						|
		get_online_cpus();
 | 
						|
		set_vecs = cpumask_weight(cpu_possible_mask);
 | 
						|
		put_online_cpus();
 | 
						|
	}
 | 
						|
 | 
						|
	return resv + min(set_vecs, maxvec - resv);
 | 
						|
}
 |