mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (28 commits) perf session: Fix infinite loop in __perf_session__process_events perf evsel: Support perf_evsel__open(cpus > 1 && threads > 1) perf sched: Use PTHREAD_STACK_MIN to avoid pthread_attr_setstacksize() fail perf tools: Emit clearer message for sys_perf_event_open ENOENT return perf stat: better error message for unsupported events perf sched: Fix allocation result check perf, x86: P4 PMU - Fix unflagged overflows handling dynamic debug: Fix build issue with older gcc tracing: Fix TRACE_EVENT power tracepoint creation tracing: Fix preempt count leak tracepoint: Add __rcu annotation tracing: remove duplicate null-pointer check in skb tracepoint tracing/trivial: Add missing comma in TRACE_EVENT comment tracing: Include module.h in define_trace.h x86: Save rbp in pt_regs on irq entry x86, dumpstack: Fix unused variable warning x86, NMI: Clean-up default_do_nmi() x86, NMI: Allow NMI reason io port (0x61) to be processed on any CPU x86, NMI: Remove DIE_NMI_IPI x86, NMI: Add priorities to handlers ...
		
			
				
	
	
		
			1802 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1802 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/kernel/exit.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991, 1992  Linus Torvalds
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/capability.h>
 | 
						|
#include <linux/completion.h>
 | 
						|
#include <linux/personality.h>
 | 
						|
#include <linux/tty.h>
 | 
						|
#include <linux/iocontext.h>
 | 
						|
#include <linux/key.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/acct.h>
 | 
						|
#include <linux/tsacct_kern.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/fdtable.h>
 | 
						|
#include <linux/binfmts.h>
 | 
						|
#include <linux/nsproxy.h>
 | 
						|
#include <linux/pid_namespace.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
#include <linux/profile.h>
 | 
						|
#include <linux/mount.h>
 | 
						|
#include <linux/proc_fs.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/mempolicy.h>
 | 
						|
#include <linux/taskstats_kern.h>
 | 
						|
#include <linux/delayacct.h>
 | 
						|
#include <linux/freezer.h>
 | 
						|
#include <linux/cgroup.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/signal.h>
 | 
						|
#include <linux/posix-timers.h>
 | 
						|
#include <linux/cn_proc.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/futex.h>
 | 
						|
#include <linux/pipe_fs_i.h>
 | 
						|
#include <linux/audit.h> /* for audit_free() */
 | 
						|
#include <linux/resource.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/task_io_accounting_ops.h>
 | 
						|
#include <linux/tracehook.h>
 | 
						|
#include <linux/fs_struct.h>
 | 
						|
#include <linux/init_task.h>
 | 
						|
#include <linux/perf_event.h>
 | 
						|
#include <trace/events/sched.h>
 | 
						|
#include <linux/hw_breakpoint.h>
 | 
						|
#include <linux/oom.h>
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/unistd.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/mmu_context.h>
 | 
						|
 | 
						|
static void exit_mm(struct task_struct * tsk);
 | 
						|
 | 
						|
static void __unhash_process(struct task_struct *p, bool group_dead)
 | 
						|
{
 | 
						|
	nr_threads--;
 | 
						|
	detach_pid(p, PIDTYPE_PID);
 | 
						|
	if (group_dead) {
 | 
						|
		detach_pid(p, PIDTYPE_PGID);
 | 
						|
		detach_pid(p, PIDTYPE_SID);
 | 
						|
 | 
						|
		list_del_rcu(&p->tasks);
 | 
						|
		list_del_init(&p->sibling);
 | 
						|
		__this_cpu_dec(process_counts);
 | 
						|
	}
 | 
						|
	list_del_rcu(&p->thread_group);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function expects the tasklist_lock write-locked.
 | 
						|
 */
 | 
						|
static void __exit_signal(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct signal_struct *sig = tsk->signal;
 | 
						|
	bool group_dead = thread_group_leader(tsk);
 | 
						|
	struct sighand_struct *sighand;
 | 
						|
	struct tty_struct *uninitialized_var(tty);
 | 
						|
 | 
						|
	sighand = rcu_dereference_check(tsk->sighand,
 | 
						|
					rcu_read_lock_held() ||
 | 
						|
					lockdep_tasklist_lock_is_held());
 | 
						|
	spin_lock(&sighand->siglock);
 | 
						|
 | 
						|
	posix_cpu_timers_exit(tsk);
 | 
						|
	if (group_dead) {
 | 
						|
		posix_cpu_timers_exit_group(tsk);
 | 
						|
		tty = sig->tty;
 | 
						|
		sig->tty = NULL;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * This can only happen if the caller is de_thread().
 | 
						|
		 * FIXME: this is the temporary hack, we should teach
 | 
						|
		 * posix-cpu-timers to handle this case correctly.
 | 
						|
		 */
 | 
						|
		if (unlikely(has_group_leader_pid(tsk)))
 | 
						|
			posix_cpu_timers_exit_group(tsk);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there is any task waiting for the group exit
 | 
						|
		 * then notify it:
 | 
						|
		 */
 | 
						|
		if (sig->notify_count > 0 && !--sig->notify_count)
 | 
						|
			wake_up_process(sig->group_exit_task);
 | 
						|
 | 
						|
		if (tsk == sig->curr_target)
 | 
						|
			sig->curr_target = next_thread(tsk);
 | 
						|
		/*
 | 
						|
		 * Accumulate here the counters for all threads but the
 | 
						|
		 * group leader as they die, so they can be added into
 | 
						|
		 * the process-wide totals when those are taken.
 | 
						|
		 * The group leader stays around as a zombie as long
 | 
						|
		 * as there are other threads.  When it gets reaped,
 | 
						|
		 * the exit.c code will add its counts into these totals.
 | 
						|
		 * We won't ever get here for the group leader, since it
 | 
						|
		 * will have been the last reference on the signal_struct.
 | 
						|
		 */
 | 
						|
		sig->utime = cputime_add(sig->utime, tsk->utime);
 | 
						|
		sig->stime = cputime_add(sig->stime, tsk->stime);
 | 
						|
		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
 | 
						|
		sig->min_flt += tsk->min_flt;
 | 
						|
		sig->maj_flt += tsk->maj_flt;
 | 
						|
		sig->nvcsw += tsk->nvcsw;
 | 
						|
		sig->nivcsw += tsk->nivcsw;
 | 
						|
		sig->inblock += task_io_get_inblock(tsk);
 | 
						|
		sig->oublock += task_io_get_oublock(tsk);
 | 
						|
		task_io_accounting_add(&sig->ioac, &tsk->ioac);
 | 
						|
		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 | 
						|
	}
 | 
						|
 | 
						|
	sig->nr_threads--;
 | 
						|
	__unhash_process(tsk, group_dead);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do this under ->siglock, we can race with another thread
 | 
						|
	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 | 
						|
	 */
 | 
						|
	flush_sigqueue(&tsk->pending);
 | 
						|
	tsk->sighand = NULL;
 | 
						|
	spin_unlock(&sighand->siglock);
 | 
						|
 | 
						|
	__cleanup_sighand(sighand);
 | 
						|
	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
 | 
						|
	if (group_dead) {
 | 
						|
		flush_sigqueue(&sig->shared_pending);
 | 
						|
		tty_kref_put(tty);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void delayed_put_task_struct(struct rcu_head *rhp)
 | 
						|
{
 | 
						|
	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 | 
						|
 | 
						|
	perf_event_delayed_put(tsk);
 | 
						|
	trace_sched_process_free(tsk);
 | 
						|
	put_task_struct(tsk);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void release_task(struct task_struct * p)
 | 
						|
{
 | 
						|
	struct task_struct *leader;
 | 
						|
	int zap_leader;
 | 
						|
repeat:
 | 
						|
	tracehook_prepare_release_task(p);
 | 
						|
	/* don't need to get the RCU readlock here - the process is dead and
 | 
						|
	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 | 
						|
	rcu_read_lock();
 | 
						|
	atomic_dec(&__task_cred(p)->user->processes);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	proc_flush_task(p);
 | 
						|
 | 
						|
	write_lock_irq(&tasklist_lock);
 | 
						|
	tracehook_finish_release_task(p);
 | 
						|
	__exit_signal(p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are the last non-leader member of the thread
 | 
						|
	 * group, and the leader is zombie, then notify the
 | 
						|
	 * group leader's parent process. (if it wants notification.)
 | 
						|
	 */
 | 
						|
	zap_leader = 0;
 | 
						|
	leader = p->group_leader;
 | 
						|
	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
 | 
						|
		BUG_ON(task_detached(leader));
 | 
						|
		do_notify_parent(leader, leader->exit_signal);
 | 
						|
		/*
 | 
						|
		 * If we were the last child thread and the leader has
 | 
						|
		 * exited already, and the leader's parent ignores SIGCHLD,
 | 
						|
		 * then we are the one who should release the leader.
 | 
						|
		 *
 | 
						|
		 * do_notify_parent() will have marked it self-reaping in
 | 
						|
		 * that case.
 | 
						|
		 */
 | 
						|
		zap_leader = task_detached(leader);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This maintains the invariant that release_task()
 | 
						|
		 * only runs on a task in EXIT_DEAD, just for sanity.
 | 
						|
		 */
 | 
						|
		if (zap_leader)
 | 
						|
			leader->exit_state = EXIT_DEAD;
 | 
						|
	}
 | 
						|
 | 
						|
	write_unlock_irq(&tasklist_lock);
 | 
						|
	release_thread(p);
 | 
						|
	call_rcu(&p->rcu, delayed_put_task_struct);
 | 
						|
 | 
						|
	p = leader;
 | 
						|
	if (unlikely(zap_leader))
 | 
						|
		goto repeat;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This checks not only the pgrp, but falls back on the pid if no
 | 
						|
 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 | 
						|
 * without this...
 | 
						|
 *
 | 
						|
 * The caller must hold rcu lock or the tasklist lock.
 | 
						|
 */
 | 
						|
struct pid *session_of_pgrp(struct pid *pgrp)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
	struct pid *sid = NULL;
 | 
						|
 | 
						|
	p = pid_task(pgrp, PIDTYPE_PGID);
 | 
						|
	if (p == NULL)
 | 
						|
		p = pid_task(pgrp, PIDTYPE_PID);
 | 
						|
	if (p != NULL)
 | 
						|
		sid = task_session(p);
 | 
						|
 | 
						|
	return sid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine if a process group is "orphaned", according to the POSIX
 | 
						|
 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 | 
						|
 * by terminal-generated stop signals.  Newly orphaned process groups are
 | 
						|
 * to receive a SIGHUP and a SIGCONT.
 | 
						|
 *
 | 
						|
 * "I ask you, have you ever known what it is to be an orphan?"
 | 
						|
 */
 | 
						|
static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | 
						|
		if ((p == ignored_task) ||
 | 
						|
		    (p->exit_state && thread_group_empty(p)) ||
 | 
						|
		    is_global_init(p->real_parent))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (task_pgrp(p->real_parent) != pgrp &&
 | 
						|
		    task_session(p->real_parent) == task_session(p))
 | 
						|
			return 0;
 | 
						|
	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
int is_current_pgrp_orphaned(void)
 | 
						|
{
 | 
						|
	int retval;
 | 
						|
 | 
						|
	read_lock(&tasklist_lock);
 | 
						|
	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static int has_stopped_jobs(struct pid *pgrp)
 | 
						|
{
 | 
						|
	int retval = 0;
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | 
						|
		if (!task_is_stopped(p))
 | 
						|
			continue;
 | 
						|
		retval = 1;
 | 
						|
		break;
 | 
						|
	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if any process groups have become orphaned as
 | 
						|
 * a result of our exiting, and if they have any stopped jobs,
 | 
						|
 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 | 
						|
 */
 | 
						|
static void
 | 
						|
kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 | 
						|
{
 | 
						|
	struct pid *pgrp = task_pgrp(tsk);
 | 
						|
	struct task_struct *ignored_task = tsk;
 | 
						|
 | 
						|
	if (!parent)
 | 
						|
		 /* exit: our father is in a different pgrp than
 | 
						|
		  * we are and we were the only connection outside.
 | 
						|
		  */
 | 
						|
		parent = tsk->real_parent;
 | 
						|
	else
 | 
						|
		/* reparent: our child is in a different pgrp than
 | 
						|
		 * we are, and it was the only connection outside.
 | 
						|
		 */
 | 
						|
		ignored_task = NULL;
 | 
						|
 | 
						|
	if (task_pgrp(parent) != pgrp &&
 | 
						|
	    task_session(parent) == task_session(tsk) &&
 | 
						|
	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 | 
						|
	    has_stopped_jobs(pgrp)) {
 | 
						|
		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 | 
						|
		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
 | 
						|
 *
 | 
						|
 * If a kernel thread is launched as a result of a system call, or if
 | 
						|
 * it ever exits, it should generally reparent itself to kthreadd so it
 | 
						|
 * isn't in the way of other processes and is correctly cleaned up on exit.
 | 
						|
 *
 | 
						|
 * The various task state such as scheduling policy and priority may have
 | 
						|
 * been inherited from a user process, so we reset them to sane values here.
 | 
						|
 *
 | 
						|
 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
 | 
						|
 */
 | 
						|
static void reparent_to_kthreadd(void)
 | 
						|
{
 | 
						|
	write_lock_irq(&tasklist_lock);
 | 
						|
 | 
						|
	ptrace_unlink(current);
 | 
						|
	/* Reparent to init */
 | 
						|
	current->real_parent = current->parent = kthreadd_task;
 | 
						|
	list_move_tail(¤t->sibling, ¤t->real_parent->children);
 | 
						|
 | 
						|
	/* Set the exit signal to SIGCHLD so we signal init on exit */
 | 
						|
	current->exit_signal = SIGCHLD;
 | 
						|
 | 
						|
	if (task_nice(current) < 0)
 | 
						|
		set_user_nice(current, 0);
 | 
						|
	/* cpus_allowed? */
 | 
						|
	/* rt_priority? */
 | 
						|
	/* signals? */
 | 
						|
	memcpy(current->signal->rlim, init_task.signal->rlim,
 | 
						|
	       sizeof(current->signal->rlim));
 | 
						|
 | 
						|
	atomic_inc(&init_cred.usage);
 | 
						|
	commit_creds(&init_cred);
 | 
						|
	write_unlock_irq(&tasklist_lock);
 | 
						|
}
 | 
						|
 | 
						|
void __set_special_pids(struct pid *pid)
 | 
						|
{
 | 
						|
	struct task_struct *curr = current->group_leader;
 | 
						|
 | 
						|
	if (task_session(curr) != pid)
 | 
						|
		change_pid(curr, PIDTYPE_SID, pid);
 | 
						|
 | 
						|
	if (task_pgrp(curr) != pid)
 | 
						|
		change_pid(curr, PIDTYPE_PGID, pid);
 | 
						|
}
 | 
						|
 | 
						|
static void set_special_pids(struct pid *pid)
 | 
						|
{
 | 
						|
	write_lock_irq(&tasklist_lock);
 | 
						|
	__set_special_pids(pid);
 | 
						|
	write_unlock_irq(&tasklist_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Let kernel threads use this to say that they allow a certain signal.
 | 
						|
 * Must not be used if kthread was cloned with CLONE_SIGHAND.
 | 
						|
 */
 | 
						|
int allow_signal(int sig)
 | 
						|
{
 | 
						|
	if (!valid_signal(sig) || sig < 1)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	spin_lock_irq(¤t->sighand->siglock);
 | 
						|
	/* This is only needed for daemonize()'ed kthreads */
 | 
						|
	sigdelset(¤t->blocked, sig);
 | 
						|
	/*
 | 
						|
	 * Kernel threads handle their own signals. Let the signal code
 | 
						|
	 * know it'll be handled, so that they don't get converted to
 | 
						|
	 * SIGKILL or just silently dropped.
 | 
						|
	 */
 | 
						|
	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
 | 
						|
	recalc_sigpending();
 | 
						|
	spin_unlock_irq(¤t->sighand->siglock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(allow_signal);
 | 
						|
 | 
						|
int disallow_signal(int sig)
 | 
						|
{
 | 
						|
	if (!valid_signal(sig) || sig < 1)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	spin_lock_irq(¤t->sighand->siglock);
 | 
						|
	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
 | 
						|
	recalc_sigpending();
 | 
						|
	spin_unlock_irq(¤t->sighand->siglock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(disallow_signal);
 | 
						|
 | 
						|
/*
 | 
						|
 *	Put all the gunge required to become a kernel thread without
 | 
						|
 *	attached user resources in one place where it belongs.
 | 
						|
 */
 | 
						|
 | 
						|
void daemonize(const char *name, ...)
 | 
						|
{
 | 
						|
	va_list args;
 | 
						|
	sigset_t blocked;
 | 
						|
 | 
						|
	va_start(args, name);
 | 
						|
	vsnprintf(current->comm, sizeof(current->comm), name, args);
 | 
						|
	va_end(args);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we were started as result of loading a module, close all of the
 | 
						|
	 * user space pages.  We don't need them, and if we didn't close them
 | 
						|
	 * they would be locked into memory.
 | 
						|
	 */
 | 
						|
	exit_mm(current);
 | 
						|
	/*
 | 
						|
	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
 | 
						|
	 * or suspend transition begins right now.
 | 
						|
	 */
 | 
						|
	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
 | 
						|
 | 
						|
	if (current->nsproxy != &init_nsproxy) {
 | 
						|
		get_nsproxy(&init_nsproxy);
 | 
						|
		switch_task_namespaces(current, &init_nsproxy);
 | 
						|
	}
 | 
						|
	set_special_pids(&init_struct_pid);
 | 
						|
	proc_clear_tty(current);
 | 
						|
 | 
						|
	/* Block and flush all signals */
 | 
						|
	sigfillset(&blocked);
 | 
						|
	sigprocmask(SIG_BLOCK, &blocked, NULL);
 | 
						|
	flush_signals(current);
 | 
						|
 | 
						|
	/* Become as one with the init task */
 | 
						|
 | 
						|
	daemonize_fs_struct();
 | 
						|
	exit_files(current);
 | 
						|
	current->files = init_task.files;
 | 
						|
	atomic_inc(¤t->files->count);
 | 
						|
 | 
						|
	reparent_to_kthreadd();
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(daemonize);
 | 
						|
 | 
						|
static void close_files(struct files_struct * files)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	struct fdtable *fdt;
 | 
						|
 | 
						|
	j = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is safe to dereference the fd table without RCU or
 | 
						|
	 * ->file_lock because this is the last reference to the
 | 
						|
	 * files structure.  But use RCU to shut RCU-lockdep up.
 | 
						|
	 */
 | 
						|
	rcu_read_lock();
 | 
						|
	fdt = files_fdtable(files);
 | 
						|
	rcu_read_unlock();
 | 
						|
	for (;;) {
 | 
						|
		unsigned long set;
 | 
						|
		i = j * __NFDBITS;
 | 
						|
		if (i >= fdt->max_fds)
 | 
						|
			break;
 | 
						|
		set = fdt->open_fds->fds_bits[j++];
 | 
						|
		while (set) {
 | 
						|
			if (set & 1) {
 | 
						|
				struct file * file = xchg(&fdt->fd[i], NULL);
 | 
						|
				if (file) {
 | 
						|
					filp_close(file, files);
 | 
						|
					cond_resched();
 | 
						|
				}
 | 
						|
			}
 | 
						|
			i++;
 | 
						|
			set >>= 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct files_struct *get_files_struct(struct task_struct *task)
 | 
						|
{
 | 
						|
	struct files_struct *files;
 | 
						|
 | 
						|
	task_lock(task);
 | 
						|
	files = task->files;
 | 
						|
	if (files)
 | 
						|
		atomic_inc(&files->count);
 | 
						|
	task_unlock(task);
 | 
						|
 | 
						|
	return files;
 | 
						|
}
 | 
						|
 | 
						|
void put_files_struct(struct files_struct *files)
 | 
						|
{
 | 
						|
	struct fdtable *fdt;
 | 
						|
 | 
						|
	if (atomic_dec_and_test(&files->count)) {
 | 
						|
		close_files(files);
 | 
						|
		/*
 | 
						|
		 * Free the fd and fdset arrays if we expanded them.
 | 
						|
		 * If the fdtable was embedded, pass files for freeing
 | 
						|
		 * at the end of the RCU grace period. Otherwise,
 | 
						|
		 * you can free files immediately.
 | 
						|
		 */
 | 
						|
		rcu_read_lock();
 | 
						|
		fdt = files_fdtable(files);
 | 
						|
		if (fdt != &files->fdtab)
 | 
						|
			kmem_cache_free(files_cachep, files);
 | 
						|
		free_fdtable(fdt);
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void reset_files_struct(struct files_struct *files)
 | 
						|
{
 | 
						|
	struct task_struct *tsk = current;
 | 
						|
	struct files_struct *old;
 | 
						|
 | 
						|
	old = tsk->files;
 | 
						|
	task_lock(tsk);
 | 
						|
	tsk->files = files;
 | 
						|
	task_unlock(tsk);
 | 
						|
	put_files_struct(old);
 | 
						|
}
 | 
						|
 | 
						|
void exit_files(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct files_struct * files = tsk->files;
 | 
						|
 | 
						|
	if (files) {
 | 
						|
		task_lock(tsk);
 | 
						|
		tsk->files = NULL;
 | 
						|
		task_unlock(tsk);
 | 
						|
		put_files_struct(files);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MM_OWNER
 | 
						|
/*
 | 
						|
 * Task p is exiting and it owned mm, lets find a new owner for it
 | 
						|
 */
 | 
						|
static inline int
 | 
						|
mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If there are other users of the mm and the owner (us) is exiting
 | 
						|
	 * we need to find a new owner to take on the responsibility.
 | 
						|
	 */
 | 
						|
	if (atomic_read(&mm->mm_users) <= 1)
 | 
						|
		return 0;
 | 
						|
	if (mm->owner != p)
 | 
						|
		return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
void mm_update_next_owner(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	struct task_struct *c, *g, *p = current;
 | 
						|
 | 
						|
retry:
 | 
						|
	if (!mm_need_new_owner(mm, p))
 | 
						|
		return;
 | 
						|
 | 
						|
	read_lock(&tasklist_lock);
 | 
						|
	/*
 | 
						|
	 * Search in the children
 | 
						|
	 */
 | 
						|
	list_for_each_entry(c, &p->children, sibling) {
 | 
						|
		if (c->mm == mm)
 | 
						|
			goto assign_new_owner;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search in the siblings
 | 
						|
	 */
 | 
						|
	list_for_each_entry(c, &p->real_parent->children, sibling) {
 | 
						|
		if (c->mm == mm)
 | 
						|
			goto assign_new_owner;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search through everything else. We should not get
 | 
						|
	 * here often
 | 
						|
	 */
 | 
						|
	do_each_thread(g, c) {
 | 
						|
		if (c->mm == mm)
 | 
						|
			goto assign_new_owner;
 | 
						|
	} while_each_thread(g, c);
 | 
						|
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
	/*
 | 
						|
	 * We found no owner yet mm_users > 1: this implies that we are
 | 
						|
	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 | 
						|
	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 | 
						|
	 */
 | 
						|
	mm->owner = NULL;
 | 
						|
	return;
 | 
						|
 | 
						|
assign_new_owner:
 | 
						|
	BUG_ON(c == p);
 | 
						|
	get_task_struct(c);
 | 
						|
	/*
 | 
						|
	 * The task_lock protects c->mm from changing.
 | 
						|
	 * We always want mm->owner->mm == mm
 | 
						|
	 */
 | 
						|
	task_lock(c);
 | 
						|
	/*
 | 
						|
	 * Delay read_unlock() till we have the task_lock()
 | 
						|
	 * to ensure that c does not slip away underneath us
 | 
						|
	 */
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
	if (c->mm != mm) {
 | 
						|
		task_unlock(c);
 | 
						|
		put_task_struct(c);
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
	mm->owner = c;
 | 
						|
	task_unlock(c);
 | 
						|
	put_task_struct(c);
 | 
						|
}
 | 
						|
#endif /* CONFIG_MM_OWNER */
 | 
						|
 | 
						|
/*
 | 
						|
 * Turn us into a lazy TLB process if we
 | 
						|
 * aren't already..
 | 
						|
 */
 | 
						|
static void exit_mm(struct task_struct * tsk)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = tsk->mm;
 | 
						|
	struct core_state *core_state;
 | 
						|
 | 
						|
	mm_release(tsk, mm);
 | 
						|
	if (!mm)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * Serialize with any possible pending coredump.
 | 
						|
	 * We must hold mmap_sem around checking core_state
 | 
						|
	 * and clearing tsk->mm.  The core-inducing thread
 | 
						|
	 * will increment ->nr_threads for each thread in the
 | 
						|
	 * group with ->mm != NULL.
 | 
						|
	 */
 | 
						|
	down_read(&mm->mmap_sem);
 | 
						|
	core_state = mm->core_state;
 | 
						|
	if (core_state) {
 | 
						|
		struct core_thread self;
 | 
						|
		up_read(&mm->mmap_sem);
 | 
						|
 | 
						|
		self.task = tsk;
 | 
						|
		self.next = xchg(&core_state->dumper.next, &self);
 | 
						|
		/*
 | 
						|
		 * Implies mb(), the result of xchg() must be visible
 | 
						|
		 * to core_state->dumper.
 | 
						|
		 */
 | 
						|
		if (atomic_dec_and_test(&core_state->nr_threads))
 | 
						|
			complete(&core_state->startup);
 | 
						|
 | 
						|
		for (;;) {
 | 
						|
			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 | 
						|
			if (!self.task) /* see coredump_finish() */
 | 
						|
				break;
 | 
						|
			schedule();
 | 
						|
		}
 | 
						|
		__set_task_state(tsk, TASK_RUNNING);
 | 
						|
		down_read(&mm->mmap_sem);
 | 
						|
	}
 | 
						|
	atomic_inc(&mm->mm_count);
 | 
						|
	BUG_ON(mm != tsk->active_mm);
 | 
						|
	/* more a memory barrier than a real lock */
 | 
						|
	task_lock(tsk);
 | 
						|
	tsk->mm = NULL;
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
	enter_lazy_tlb(mm, current);
 | 
						|
	/* We don't want this task to be frozen prematurely */
 | 
						|
	clear_freeze_flag(tsk);
 | 
						|
	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
 | 
						|
		atomic_dec(&mm->oom_disable_count);
 | 
						|
	task_unlock(tsk);
 | 
						|
	mm_update_next_owner(mm);
 | 
						|
	mmput(mm);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When we die, we re-parent all our children.
 | 
						|
 * Try to give them to another thread in our thread
 | 
						|
 * group, and if no such member exists, give it to
 | 
						|
 * the child reaper process (ie "init") in our pid
 | 
						|
 * space.
 | 
						|
 */
 | 
						|
static struct task_struct *find_new_reaper(struct task_struct *father)
 | 
						|
	__releases(&tasklist_lock)
 | 
						|
	__acquires(&tasklist_lock)
 | 
						|
{
 | 
						|
	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 | 
						|
	struct task_struct *thread;
 | 
						|
 | 
						|
	thread = father;
 | 
						|
	while_each_thread(father, thread) {
 | 
						|
		if (thread->flags & PF_EXITING)
 | 
						|
			continue;
 | 
						|
		if (unlikely(pid_ns->child_reaper == father))
 | 
						|
			pid_ns->child_reaper = thread;
 | 
						|
		return thread;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(pid_ns->child_reaper == father)) {
 | 
						|
		write_unlock_irq(&tasklist_lock);
 | 
						|
		if (unlikely(pid_ns == &init_pid_ns))
 | 
						|
			panic("Attempted to kill init!");
 | 
						|
 | 
						|
		zap_pid_ns_processes(pid_ns);
 | 
						|
		write_lock_irq(&tasklist_lock);
 | 
						|
		/*
 | 
						|
		 * We can not clear ->child_reaper or leave it alone.
 | 
						|
		 * There may by stealth EXIT_DEAD tasks on ->children,
 | 
						|
		 * forget_original_parent() must move them somewhere.
 | 
						|
		 */
 | 
						|
		pid_ns->child_reaper = init_pid_ns.child_reaper;
 | 
						|
	}
 | 
						|
 | 
						|
	return pid_ns->child_reaper;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
* Any that need to be release_task'd are put on the @dead list.
 | 
						|
 */
 | 
						|
static void reparent_leader(struct task_struct *father, struct task_struct *p,
 | 
						|
				struct list_head *dead)
 | 
						|
{
 | 
						|
	list_move_tail(&p->sibling, &p->real_parent->children);
 | 
						|
 | 
						|
	if (task_detached(p))
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * If this is a threaded reparent there is no need to
 | 
						|
	 * notify anyone anything has happened.
 | 
						|
	 */
 | 
						|
	if (same_thread_group(p->real_parent, father))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* We don't want people slaying init.  */
 | 
						|
	p->exit_signal = SIGCHLD;
 | 
						|
 | 
						|
	/* If it has exited notify the new parent about this child's death. */
 | 
						|
	if (!task_ptrace(p) &&
 | 
						|
	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 | 
						|
		do_notify_parent(p, p->exit_signal);
 | 
						|
		if (task_detached(p)) {
 | 
						|
			p->exit_state = EXIT_DEAD;
 | 
						|
			list_move_tail(&p->sibling, dead);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	kill_orphaned_pgrp(p, father);
 | 
						|
}
 | 
						|
 | 
						|
static void forget_original_parent(struct task_struct *father)
 | 
						|
{
 | 
						|
	struct task_struct *p, *n, *reaper;
 | 
						|
	LIST_HEAD(dead_children);
 | 
						|
 | 
						|
	write_lock_irq(&tasklist_lock);
 | 
						|
	/*
 | 
						|
	 * Note that exit_ptrace() and find_new_reaper() might
 | 
						|
	 * drop tasklist_lock and reacquire it.
 | 
						|
	 */
 | 
						|
	exit_ptrace(father);
 | 
						|
	reaper = find_new_reaper(father);
 | 
						|
 | 
						|
	list_for_each_entry_safe(p, n, &father->children, sibling) {
 | 
						|
		struct task_struct *t = p;
 | 
						|
		do {
 | 
						|
			t->real_parent = reaper;
 | 
						|
			if (t->parent == father) {
 | 
						|
				BUG_ON(task_ptrace(t));
 | 
						|
				t->parent = t->real_parent;
 | 
						|
			}
 | 
						|
			if (t->pdeath_signal)
 | 
						|
				group_send_sig_info(t->pdeath_signal,
 | 
						|
						    SEND_SIG_NOINFO, t);
 | 
						|
		} while_each_thread(p, t);
 | 
						|
		reparent_leader(father, p, &dead_children);
 | 
						|
	}
 | 
						|
	write_unlock_irq(&tasklist_lock);
 | 
						|
 | 
						|
	BUG_ON(!list_empty(&father->children));
 | 
						|
 | 
						|
	list_for_each_entry_safe(p, n, &dead_children, sibling) {
 | 
						|
		list_del_init(&p->sibling);
 | 
						|
		release_task(p);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Send signals to all our closest relatives so that they know
 | 
						|
 * to properly mourn us..
 | 
						|
 */
 | 
						|
static void exit_notify(struct task_struct *tsk, int group_dead)
 | 
						|
{
 | 
						|
	int signal;
 | 
						|
	void *cookie;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This does two things:
 | 
						|
	 *
 | 
						|
  	 * A.  Make init inherit all the child processes
 | 
						|
	 * B.  Check to see if any process groups have become orphaned
 | 
						|
	 *	as a result of our exiting, and if they have any stopped
 | 
						|
	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 | 
						|
	 */
 | 
						|
	forget_original_parent(tsk);
 | 
						|
	exit_task_namespaces(tsk);
 | 
						|
 | 
						|
	write_lock_irq(&tasklist_lock);
 | 
						|
	if (group_dead)
 | 
						|
		kill_orphaned_pgrp(tsk->group_leader, NULL);
 | 
						|
 | 
						|
	/* Let father know we died
 | 
						|
	 *
 | 
						|
	 * Thread signals are configurable, but you aren't going to use
 | 
						|
	 * that to send signals to arbitary processes.
 | 
						|
	 * That stops right now.
 | 
						|
	 *
 | 
						|
	 * If the parent exec id doesn't match the exec id we saved
 | 
						|
	 * when we started then we know the parent has changed security
 | 
						|
	 * domain.
 | 
						|
	 *
 | 
						|
	 * If our self_exec id doesn't match our parent_exec_id then
 | 
						|
	 * we have changed execution domain as these two values started
 | 
						|
	 * the same after a fork.
 | 
						|
	 */
 | 
						|
	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
 | 
						|
	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
 | 
						|
	     tsk->self_exec_id != tsk->parent_exec_id))
 | 
						|
		tsk->exit_signal = SIGCHLD;
 | 
						|
 | 
						|
	signal = tracehook_notify_death(tsk, &cookie, group_dead);
 | 
						|
	if (signal >= 0)
 | 
						|
		signal = do_notify_parent(tsk, signal);
 | 
						|
 | 
						|
	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
 | 
						|
 | 
						|
	/* mt-exec, de_thread() is waiting for group leader */
 | 
						|
	if (unlikely(tsk->signal->notify_count < 0))
 | 
						|
		wake_up_process(tsk->signal->group_exit_task);
 | 
						|
	write_unlock_irq(&tasklist_lock);
 | 
						|
 | 
						|
	tracehook_report_death(tsk, signal, cookie, group_dead);
 | 
						|
 | 
						|
	/* If the process is dead, release it - nobody will wait for it */
 | 
						|
	if (signal == DEATH_REAP)
 | 
						|
		release_task(tsk);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_STACK_USAGE
 | 
						|
static void check_stack_usage(void)
 | 
						|
{
 | 
						|
	static DEFINE_SPINLOCK(low_water_lock);
 | 
						|
	static int lowest_to_date = THREAD_SIZE;
 | 
						|
	unsigned long free;
 | 
						|
 | 
						|
	free = stack_not_used(current);
 | 
						|
 | 
						|
	if (free >= lowest_to_date)
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock(&low_water_lock);
 | 
						|
	if (free < lowest_to_date) {
 | 
						|
		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
 | 
						|
				"left\n",
 | 
						|
				current->comm, free);
 | 
						|
		lowest_to_date = free;
 | 
						|
	}
 | 
						|
	spin_unlock(&low_water_lock);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void check_stack_usage(void) {}
 | 
						|
#endif
 | 
						|
 | 
						|
NORET_TYPE void do_exit(long code)
 | 
						|
{
 | 
						|
	struct task_struct *tsk = current;
 | 
						|
	int group_dead;
 | 
						|
 | 
						|
	profile_task_exit(tsk);
 | 
						|
 | 
						|
	WARN_ON(atomic_read(&tsk->fs_excl));
 | 
						|
 | 
						|
	if (unlikely(in_interrupt()))
 | 
						|
		panic("Aiee, killing interrupt handler!");
 | 
						|
	if (unlikely(!tsk->pid))
 | 
						|
		panic("Attempted to kill the idle task!");
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If do_exit is called because this processes oopsed, it's possible
 | 
						|
	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 | 
						|
	 * continuing. Amongst other possible reasons, this is to prevent
 | 
						|
	 * mm_release()->clear_child_tid() from writing to a user-controlled
 | 
						|
	 * kernel address.
 | 
						|
	 */
 | 
						|
	set_fs(USER_DS);
 | 
						|
 | 
						|
	tracehook_report_exit(&code);
 | 
						|
 | 
						|
	validate_creds_for_do_exit(tsk);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're taking recursive faults here in do_exit. Safest is to just
 | 
						|
	 * leave this task alone and wait for reboot.
 | 
						|
	 */
 | 
						|
	if (unlikely(tsk->flags & PF_EXITING)) {
 | 
						|
		printk(KERN_ALERT
 | 
						|
			"Fixing recursive fault but reboot is needed!\n");
 | 
						|
		/*
 | 
						|
		 * We can do this unlocked here. The futex code uses
 | 
						|
		 * this flag just to verify whether the pi state
 | 
						|
		 * cleanup has been done or not. In the worst case it
 | 
						|
		 * loops once more. We pretend that the cleanup was
 | 
						|
		 * done as there is no way to return. Either the
 | 
						|
		 * OWNER_DIED bit is set by now or we push the blocked
 | 
						|
		 * task into the wait for ever nirwana as well.
 | 
						|
		 */
 | 
						|
		tsk->flags |= PF_EXITPIDONE;
 | 
						|
		set_current_state(TASK_UNINTERRUPTIBLE);
 | 
						|
		schedule();
 | 
						|
	}
 | 
						|
 | 
						|
	exit_irq_thread();
 | 
						|
 | 
						|
	exit_signals(tsk);  /* sets PF_EXITING */
 | 
						|
	/*
 | 
						|
	 * tsk->flags are checked in the futex code to protect against
 | 
						|
	 * an exiting task cleaning up the robust pi futexes.
 | 
						|
	 */
 | 
						|
	smp_mb();
 | 
						|
	raw_spin_unlock_wait(&tsk->pi_lock);
 | 
						|
 | 
						|
	if (unlikely(in_atomic()))
 | 
						|
		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
 | 
						|
				current->comm, task_pid_nr(current),
 | 
						|
				preempt_count());
 | 
						|
 | 
						|
	acct_update_integrals(tsk);
 | 
						|
	/* sync mm's RSS info before statistics gathering */
 | 
						|
	if (tsk->mm)
 | 
						|
		sync_mm_rss(tsk, tsk->mm);
 | 
						|
	group_dead = atomic_dec_and_test(&tsk->signal->live);
 | 
						|
	if (group_dead) {
 | 
						|
		hrtimer_cancel(&tsk->signal->real_timer);
 | 
						|
		exit_itimers(tsk->signal);
 | 
						|
		if (tsk->mm)
 | 
						|
			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 | 
						|
	}
 | 
						|
	acct_collect(code, group_dead);
 | 
						|
	if (group_dead)
 | 
						|
		tty_audit_exit();
 | 
						|
	if (unlikely(tsk->audit_context))
 | 
						|
		audit_free(tsk);
 | 
						|
 | 
						|
	tsk->exit_code = code;
 | 
						|
	taskstats_exit(tsk, group_dead);
 | 
						|
 | 
						|
	exit_mm(tsk);
 | 
						|
 | 
						|
	if (group_dead)
 | 
						|
		acct_process();
 | 
						|
	trace_sched_process_exit(tsk);
 | 
						|
 | 
						|
	exit_sem(tsk);
 | 
						|
	exit_files(tsk);
 | 
						|
	exit_fs(tsk);
 | 
						|
	check_stack_usage();
 | 
						|
	exit_thread();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Flush inherited counters to the parent - before the parent
 | 
						|
	 * gets woken up by child-exit notifications.
 | 
						|
	 *
 | 
						|
	 * because of cgroup mode, must be called before cgroup_exit()
 | 
						|
	 */
 | 
						|
	perf_event_exit_task(tsk);
 | 
						|
 | 
						|
	cgroup_exit(tsk, 1);
 | 
						|
 | 
						|
	if (group_dead)
 | 
						|
		disassociate_ctty(1);
 | 
						|
 | 
						|
	module_put(task_thread_info(tsk)->exec_domain->module);
 | 
						|
 | 
						|
	proc_exit_connector(tsk);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * FIXME: do that only when needed, using sched_exit tracepoint
 | 
						|
	 */
 | 
						|
	flush_ptrace_hw_breakpoint(tsk);
 | 
						|
 | 
						|
	exit_notify(tsk, group_dead);
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	task_lock(tsk);
 | 
						|
	mpol_put(tsk->mempolicy);
 | 
						|
	tsk->mempolicy = NULL;
 | 
						|
	task_unlock(tsk);
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_FUTEX
 | 
						|
	if (unlikely(current->pi_state_cache))
 | 
						|
		kfree(current->pi_state_cache);
 | 
						|
#endif
 | 
						|
	/*
 | 
						|
	 * Make sure we are holding no locks:
 | 
						|
	 */
 | 
						|
	debug_check_no_locks_held(tsk);
 | 
						|
	/*
 | 
						|
	 * We can do this unlocked here. The futex code uses this flag
 | 
						|
	 * just to verify whether the pi state cleanup has been done
 | 
						|
	 * or not. In the worst case it loops once more.
 | 
						|
	 */
 | 
						|
	tsk->flags |= PF_EXITPIDONE;
 | 
						|
 | 
						|
	if (tsk->io_context)
 | 
						|
		exit_io_context(tsk);
 | 
						|
 | 
						|
	if (tsk->splice_pipe)
 | 
						|
		__free_pipe_info(tsk->splice_pipe);
 | 
						|
 | 
						|
	validate_creds_for_do_exit(tsk);
 | 
						|
 | 
						|
	preempt_disable();
 | 
						|
	exit_rcu();
 | 
						|
	/* causes final put_task_struct in finish_task_switch(). */
 | 
						|
	tsk->state = TASK_DEAD;
 | 
						|
	schedule();
 | 
						|
	BUG();
 | 
						|
	/* Avoid "noreturn function does return".  */
 | 
						|
	for (;;)
 | 
						|
		cpu_relax();	/* For when BUG is null */
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL_GPL(do_exit);
 | 
						|
 | 
						|
NORET_TYPE void complete_and_exit(struct completion *comp, long code)
 | 
						|
{
 | 
						|
	if (comp)
 | 
						|
		complete(comp);
 | 
						|
 | 
						|
	do_exit(code);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(complete_and_exit);
 | 
						|
 | 
						|
SYSCALL_DEFINE1(exit, int, error_code)
 | 
						|
{
 | 
						|
	do_exit((error_code&0xff)<<8);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Take down every thread in the group.  This is called by fatal signals
 | 
						|
 * as well as by sys_exit_group (below).
 | 
						|
 */
 | 
						|
NORET_TYPE void
 | 
						|
do_group_exit(int exit_code)
 | 
						|
{
 | 
						|
	struct signal_struct *sig = current->signal;
 | 
						|
 | 
						|
	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 | 
						|
 | 
						|
	if (signal_group_exit(sig))
 | 
						|
		exit_code = sig->group_exit_code;
 | 
						|
	else if (!thread_group_empty(current)) {
 | 
						|
		struct sighand_struct *const sighand = current->sighand;
 | 
						|
		spin_lock_irq(&sighand->siglock);
 | 
						|
		if (signal_group_exit(sig))
 | 
						|
			/* Another thread got here before we took the lock.  */
 | 
						|
			exit_code = sig->group_exit_code;
 | 
						|
		else {
 | 
						|
			sig->group_exit_code = exit_code;
 | 
						|
			sig->flags = SIGNAL_GROUP_EXIT;
 | 
						|
			zap_other_threads(current);
 | 
						|
		}
 | 
						|
		spin_unlock_irq(&sighand->siglock);
 | 
						|
	}
 | 
						|
 | 
						|
	do_exit(exit_code);
 | 
						|
	/* NOTREACHED */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this kills every thread in the thread group. Note that any externally
 | 
						|
 * wait4()-ing process will get the correct exit code - even if this
 | 
						|
 * thread is not the thread group leader.
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE1(exit_group, int, error_code)
 | 
						|
{
 | 
						|
	do_group_exit((error_code & 0xff) << 8);
 | 
						|
	/* NOTREACHED */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct wait_opts {
 | 
						|
	enum pid_type		wo_type;
 | 
						|
	int			wo_flags;
 | 
						|
	struct pid		*wo_pid;
 | 
						|
 | 
						|
	struct siginfo __user	*wo_info;
 | 
						|
	int __user		*wo_stat;
 | 
						|
	struct rusage __user	*wo_rusage;
 | 
						|
 | 
						|
	wait_queue_t		child_wait;
 | 
						|
	int			notask_error;
 | 
						|
};
 | 
						|
 | 
						|
static inline
 | 
						|
struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 | 
						|
{
 | 
						|
	if (type != PIDTYPE_PID)
 | 
						|
		task = task->group_leader;
 | 
						|
	return task->pids[type].pid;
 | 
						|
}
 | 
						|
 | 
						|
static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 | 
						|
{
 | 
						|
	return	wo->wo_type == PIDTYPE_MAX ||
 | 
						|
		task_pid_type(p, wo->wo_type) == wo->wo_pid;
 | 
						|
}
 | 
						|
 | 
						|
static int eligible_child(struct wait_opts *wo, struct task_struct *p)
 | 
						|
{
 | 
						|
	if (!eligible_pid(wo, p))
 | 
						|
		return 0;
 | 
						|
	/* Wait for all children (clone and not) if __WALL is set;
 | 
						|
	 * otherwise, wait for clone children *only* if __WCLONE is
 | 
						|
	 * set; otherwise, wait for non-clone children *only*.  (Note:
 | 
						|
	 * A "clone" child here is one that reports to its parent
 | 
						|
	 * using a signal other than SIGCHLD.) */
 | 
						|
	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 | 
						|
	    && !(wo->wo_flags & __WALL))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
 | 
						|
				pid_t pid, uid_t uid, int why, int status)
 | 
						|
{
 | 
						|
	struct siginfo __user *infop;
 | 
						|
	int retval = wo->wo_rusage
 | 
						|
		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 | 
						|
 | 
						|
	put_task_struct(p);
 | 
						|
	infop = wo->wo_info;
 | 
						|
	if (infop) {
 | 
						|
		if (!retval)
 | 
						|
			retval = put_user(SIGCHLD, &infop->si_signo);
 | 
						|
		if (!retval)
 | 
						|
			retval = put_user(0, &infop->si_errno);
 | 
						|
		if (!retval)
 | 
						|
			retval = put_user((short)why, &infop->si_code);
 | 
						|
		if (!retval)
 | 
						|
			retval = put_user(pid, &infop->si_pid);
 | 
						|
		if (!retval)
 | 
						|
			retval = put_user(uid, &infop->si_uid);
 | 
						|
		if (!retval)
 | 
						|
			retval = put_user(status, &infop->si_status);
 | 
						|
	}
 | 
						|
	if (!retval)
 | 
						|
		retval = pid;
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 | 
						|
 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | 
						|
 * the lock and this task is uninteresting.  If we return nonzero, we have
 | 
						|
 * released the lock and the system call should return.
 | 
						|
 */
 | 
						|
static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 | 
						|
{
 | 
						|
	unsigned long state;
 | 
						|
	int retval, status, traced;
 | 
						|
	pid_t pid = task_pid_vnr(p);
 | 
						|
	uid_t uid = __task_cred(p)->uid;
 | 
						|
	struct siginfo __user *infop;
 | 
						|
 | 
						|
	if (!likely(wo->wo_flags & WEXITED))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (unlikely(wo->wo_flags & WNOWAIT)) {
 | 
						|
		int exit_code = p->exit_code;
 | 
						|
		int why;
 | 
						|
 | 
						|
		get_task_struct(p);
 | 
						|
		read_unlock(&tasklist_lock);
 | 
						|
		if ((exit_code & 0x7f) == 0) {
 | 
						|
			why = CLD_EXITED;
 | 
						|
			status = exit_code >> 8;
 | 
						|
		} else {
 | 
						|
			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
 | 
						|
			status = exit_code & 0x7f;
 | 
						|
		}
 | 
						|
		return wait_noreap_copyout(wo, p, pid, uid, why, status);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Try to move the task's state to DEAD
 | 
						|
	 * only one thread is allowed to do this:
 | 
						|
	 */
 | 
						|
	state = xchg(&p->exit_state, EXIT_DEAD);
 | 
						|
	if (state != EXIT_ZOMBIE) {
 | 
						|
		BUG_ON(state != EXIT_DEAD);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	traced = ptrace_reparented(p);
 | 
						|
	/*
 | 
						|
	 * It can be ptraced but not reparented, check
 | 
						|
	 * !task_detached() to filter out sub-threads.
 | 
						|
	 */
 | 
						|
	if (likely(!traced) && likely(!task_detached(p))) {
 | 
						|
		struct signal_struct *psig;
 | 
						|
		struct signal_struct *sig;
 | 
						|
		unsigned long maxrss;
 | 
						|
		cputime_t tgutime, tgstime;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The resource counters for the group leader are in its
 | 
						|
		 * own task_struct.  Those for dead threads in the group
 | 
						|
		 * are in its signal_struct, as are those for the child
 | 
						|
		 * processes it has previously reaped.  All these
 | 
						|
		 * accumulate in the parent's signal_struct c* fields.
 | 
						|
		 *
 | 
						|
		 * We don't bother to take a lock here to protect these
 | 
						|
		 * p->signal fields, because they are only touched by
 | 
						|
		 * __exit_signal, which runs with tasklist_lock
 | 
						|
		 * write-locked anyway, and so is excluded here.  We do
 | 
						|
		 * need to protect the access to parent->signal fields,
 | 
						|
		 * as other threads in the parent group can be right
 | 
						|
		 * here reaping other children at the same time.
 | 
						|
		 *
 | 
						|
		 * We use thread_group_times() to get times for the thread
 | 
						|
		 * group, which consolidates times for all threads in the
 | 
						|
		 * group including the group leader.
 | 
						|
		 */
 | 
						|
		thread_group_times(p, &tgutime, &tgstime);
 | 
						|
		spin_lock_irq(&p->real_parent->sighand->siglock);
 | 
						|
		psig = p->real_parent->signal;
 | 
						|
		sig = p->signal;
 | 
						|
		psig->cutime =
 | 
						|
			cputime_add(psig->cutime,
 | 
						|
			cputime_add(tgutime,
 | 
						|
				    sig->cutime));
 | 
						|
		psig->cstime =
 | 
						|
			cputime_add(psig->cstime,
 | 
						|
			cputime_add(tgstime,
 | 
						|
				    sig->cstime));
 | 
						|
		psig->cgtime =
 | 
						|
			cputime_add(psig->cgtime,
 | 
						|
			cputime_add(p->gtime,
 | 
						|
			cputime_add(sig->gtime,
 | 
						|
				    sig->cgtime)));
 | 
						|
		psig->cmin_flt +=
 | 
						|
			p->min_flt + sig->min_flt + sig->cmin_flt;
 | 
						|
		psig->cmaj_flt +=
 | 
						|
			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
 | 
						|
		psig->cnvcsw +=
 | 
						|
			p->nvcsw + sig->nvcsw + sig->cnvcsw;
 | 
						|
		psig->cnivcsw +=
 | 
						|
			p->nivcsw + sig->nivcsw + sig->cnivcsw;
 | 
						|
		psig->cinblock +=
 | 
						|
			task_io_get_inblock(p) +
 | 
						|
			sig->inblock + sig->cinblock;
 | 
						|
		psig->coublock +=
 | 
						|
			task_io_get_oublock(p) +
 | 
						|
			sig->oublock + sig->coublock;
 | 
						|
		maxrss = max(sig->maxrss, sig->cmaxrss);
 | 
						|
		if (psig->cmaxrss < maxrss)
 | 
						|
			psig->cmaxrss = maxrss;
 | 
						|
		task_io_accounting_add(&psig->ioac, &p->ioac);
 | 
						|
		task_io_accounting_add(&psig->ioac, &sig->ioac);
 | 
						|
		spin_unlock_irq(&p->real_parent->sighand->siglock);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now we are sure this task is interesting, and no other
 | 
						|
	 * thread can reap it because we set its state to EXIT_DEAD.
 | 
						|
	 */
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
 | 
						|
	retval = wo->wo_rusage
 | 
						|
		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 | 
						|
	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
 | 
						|
		? p->signal->group_exit_code : p->exit_code;
 | 
						|
	if (!retval && wo->wo_stat)
 | 
						|
		retval = put_user(status, wo->wo_stat);
 | 
						|
 | 
						|
	infop = wo->wo_info;
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user(SIGCHLD, &infop->si_signo);
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user(0, &infop->si_errno);
 | 
						|
	if (!retval && infop) {
 | 
						|
		int why;
 | 
						|
 | 
						|
		if ((status & 0x7f) == 0) {
 | 
						|
			why = CLD_EXITED;
 | 
						|
			status >>= 8;
 | 
						|
		} else {
 | 
						|
			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
 | 
						|
			status &= 0x7f;
 | 
						|
		}
 | 
						|
		retval = put_user((short)why, &infop->si_code);
 | 
						|
		if (!retval)
 | 
						|
			retval = put_user(status, &infop->si_status);
 | 
						|
	}
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user(pid, &infop->si_pid);
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user(uid, &infop->si_uid);
 | 
						|
	if (!retval)
 | 
						|
		retval = pid;
 | 
						|
 | 
						|
	if (traced) {
 | 
						|
		write_lock_irq(&tasklist_lock);
 | 
						|
		/* We dropped tasklist, ptracer could die and untrace */
 | 
						|
		ptrace_unlink(p);
 | 
						|
		/*
 | 
						|
		 * If this is not a detached task, notify the parent.
 | 
						|
		 * If it's still not detached after that, don't release
 | 
						|
		 * it now.
 | 
						|
		 */
 | 
						|
		if (!task_detached(p)) {
 | 
						|
			do_notify_parent(p, p->exit_signal);
 | 
						|
			if (!task_detached(p)) {
 | 
						|
				p->exit_state = EXIT_ZOMBIE;
 | 
						|
				p = NULL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		write_unlock_irq(&tasklist_lock);
 | 
						|
	}
 | 
						|
	if (p != NULL)
 | 
						|
		release_task(p);
 | 
						|
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static int *task_stopped_code(struct task_struct *p, bool ptrace)
 | 
						|
{
 | 
						|
	if (ptrace) {
 | 
						|
		if (task_is_stopped_or_traced(p))
 | 
						|
			return &p->exit_code;
 | 
						|
	} else {
 | 
						|
		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 | 
						|
			return &p->signal->group_exit_code;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
 | 
						|
 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | 
						|
 * the lock and this task is uninteresting.  If we return nonzero, we have
 | 
						|
 * released the lock and the system call should return.
 | 
						|
 */
 | 
						|
static int wait_task_stopped(struct wait_opts *wo,
 | 
						|
				int ptrace, struct task_struct *p)
 | 
						|
{
 | 
						|
	struct siginfo __user *infop;
 | 
						|
	int retval, exit_code, *p_code, why;
 | 
						|
	uid_t uid = 0; /* unneeded, required by compiler */
 | 
						|
	pid_t pid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Traditionally we see ptrace'd stopped tasks regardless of options.
 | 
						|
	 */
 | 
						|
	if (!ptrace && !(wo->wo_flags & WUNTRACED))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	exit_code = 0;
 | 
						|
	spin_lock_irq(&p->sighand->siglock);
 | 
						|
 | 
						|
	p_code = task_stopped_code(p, ptrace);
 | 
						|
	if (unlikely(!p_code))
 | 
						|
		goto unlock_sig;
 | 
						|
 | 
						|
	exit_code = *p_code;
 | 
						|
	if (!exit_code)
 | 
						|
		goto unlock_sig;
 | 
						|
 | 
						|
	if (!unlikely(wo->wo_flags & WNOWAIT))
 | 
						|
		*p_code = 0;
 | 
						|
 | 
						|
	uid = task_uid(p);
 | 
						|
unlock_sig:
 | 
						|
	spin_unlock_irq(&p->sighand->siglock);
 | 
						|
	if (!exit_code)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now we are pretty sure this task is interesting.
 | 
						|
	 * Make sure it doesn't get reaped out from under us while we
 | 
						|
	 * give up the lock and then examine it below.  We don't want to
 | 
						|
	 * keep holding onto the tasklist_lock while we call getrusage and
 | 
						|
	 * possibly take page faults for user memory.
 | 
						|
	 */
 | 
						|
	get_task_struct(p);
 | 
						|
	pid = task_pid_vnr(p);
 | 
						|
	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
 | 
						|
	if (unlikely(wo->wo_flags & WNOWAIT))
 | 
						|
		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
 | 
						|
 | 
						|
	retval = wo->wo_rusage
 | 
						|
		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 | 
						|
	if (!retval && wo->wo_stat)
 | 
						|
		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
 | 
						|
 | 
						|
	infop = wo->wo_info;
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user(SIGCHLD, &infop->si_signo);
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user(0, &infop->si_errno);
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user((short)why, &infop->si_code);
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user(exit_code, &infop->si_status);
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user(pid, &infop->si_pid);
 | 
						|
	if (!retval && infop)
 | 
						|
		retval = put_user(uid, &infop->si_uid);
 | 
						|
	if (!retval)
 | 
						|
		retval = pid;
 | 
						|
	put_task_struct(p);
 | 
						|
 | 
						|
	BUG_ON(!retval);
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Handle do_wait work for one task in a live, non-stopped state.
 | 
						|
 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | 
						|
 * the lock and this task is uninteresting.  If we return nonzero, we have
 | 
						|
 * released the lock and the system call should return.
 | 
						|
 */
 | 
						|
static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
 | 
						|
{
 | 
						|
	int retval;
 | 
						|
	pid_t pid;
 | 
						|
	uid_t uid;
 | 
						|
 | 
						|
	if (!unlikely(wo->wo_flags & WCONTINUED))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	spin_lock_irq(&p->sighand->siglock);
 | 
						|
	/* Re-check with the lock held.  */
 | 
						|
	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
 | 
						|
		spin_unlock_irq(&p->sighand->siglock);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	if (!unlikely(wo->wo_flags & WNOWAIT))
 | 
						|
		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
 | 
						|
	uid = task_uid(p);
 | 
						|
	spin_unlock_irq(&p->sighand->siglock);
 | 
						|
 | 
						|
	pid = task_pid_vnr(p);
 | 
						|
	get_task_struct(p);
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
 | 
						|
	if (!wo->wo_info) {
 | 
						|
		retval = wo->wo_rusage
 | 
						|
			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 | 
						|
		put_task_struct(p);
 | 
						|
		if (!retval && wo->wo_stat)
 | 
						|
			retval = put_user(0xffff, wo->wo_stat);
 | 
						|
		if (!retval)
 | 
						|
			retval = pid;
 | 
						|
	} else {
 | 
						|
		retval = wait_noreap_copyout(wo, p, pid, uid,
 | 
						|
					     CLD_CONTINUED, SIGCONT);
 | 
						|
		BUG_ON(retval == 0);
 | 
						|
	}
 | 
						|
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Consider @p for a wait by @parent.
 | 
						|
 *
 | 
						|
 * -ECHILD should be in ->notask_error before the first call.
 | 
						|
 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 | 
						|
 * Returns zero if the search for a child should continue;
 | 
						|
 * then ->notask_error is 0 if @p is an eligible child,
 | 
						|
 * or another error from security_task_wait(), or still -ECHILD.
 | 
						|
 */
 | 
						|
static int wait_consider_task(struct wait_opts *wo, int ptrace,
 | 
						|
				struct task_struct *p)
 | 
						|
{
 | 
						|
	int ret = eligible_child(wo, p);
 | 
						|
	if (!ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = security_task_wait(p);
 | 
						|
	if (unlikely(ret < 0)) {
 | 
						|
		/*
 | 
						|
		 * If we have not yet seen any eligible child,
 | 
						|
		 * then let this error code replace -ECHILD.
 | 
						|
		 * A permission error will give the user a clue
 | 
						|
		 * to look for security policy problems, rather
 | 
						|
		 * than for mysterious wait bugs.
 | 
						|
		 */
 | 
						|
		if (wo->notask_error)
 | 
						|
			wo->notask_error = ret;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
 | 
						|
		/*
 | 
						|
		 * This child is hidden by ptrace.
 | 
						|
		 * We aren't allowed to see it now, but eventually we will.
 | 
						|
		 */
 | 
						|
		wo->notask_error = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (p->exit_state == EXIT_DEAD)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't reap group leaders with subthreads.
 | 
						|
	 */
 | 
						|
	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
 | 
						|
		return wait_task_zombie(wo, p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It's stopped or running now, so it might
 | 
						|
	 * later continue, exit, or stop again.
 | 
						|
	 */
 | 
						|
	wo->notask_error = 0;
 | 
						|
 | 
						|
	if (task_stopped_code(p, ptrace))
 | 
						|
		return wait_task_stopped(wo, ptrace, p);
 | 
						|
 | 
						|
	return wait_task_continued(wo, p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do the work of do_wait() for one thread in the group, @tsk.
 | 
						|
 *
 | 
						|
 * -ECHILD should be in ->notask_error before the first call.
 | 
						|
 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 | 
						|
 * Returns zero if the search for a child should continue; then
 | 
						|
 * ->notask_error is 0 if there were any eligible children,
 | 
						|
 * or another error from security_task_wait(), or still -ECHILD.
 | 
						|
 */
 | 
						|
static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	list_for_each_entry(p, &tsk->children, sibling) {
 | 
						|
		int ret = wait_consider_task(wo, 0, p);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
 | 
						|
		int ret = wait_consider_task(wo, 1, p);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int child_wait_callback(wait_queue_t *wait, unsigned mode,
 | 
						|
				int sync, void *key)
 | 
						|
{
 | 
						|
	struct wait_opts *wo = container_of(wait, struct wait_opts,
 | 
						|
						child_wait);
 | 
						|
	struct task_struct *p = key;
 | 
						|
 | 
						|
	if (!eligible_pid(wo, p))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return default_wake_function(wait, mode, sync, key);
 | 
						|
}
 | 
						|
 | 
						|
void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
 | 
						|
{
 | 
						|
	__wake_up_sync_key(&parent->signal->wait_chldexit,
 | 
						|
				TASK_INTERRUPTIBLE, 1, p);
 | 
						|
}
 | 
						|
 | 
						|
static long do_wait(struct wait_opts *wo)
 | 
						|
{
 | 
						|
	struct task_struct *tsk;
 | 
						|
	int retval;
 | 
						|
 | 
						|
	trace_sched_process_wait(wo->wo_pid);
 | 
						|
 | 
						|
	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
 | 
						|
	wo->child_wait.private = current;
 | 
						|
	add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
 | 
						|
repeat:
 | 
						|
	/*
 | 
						|
	 * If there is nothing that can match our critiera just get out.
 | 
						|
	 * We will clear ->notask_error to zero if we see any child that
 | 
						|
	 * might later match our criteria, even if we are not able to reap
 | 
						|
	 * it yet.
 | 
						|
	 */
 | 
						|
	wo->notask_error = -ECHILD;
 | 
						|
	if ((wo->wo_type < PIDTYPE_MAX) &&
 | 
						|
	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
 | 
						|
		goto notask;
 | 
						|
 | 
						|
	set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
	read_lock(&tasklist_lock);
 | 
						|
	tsk = current;
 | 
						|
	do {
 | 
						|
		retval = do_wait_thread(wo, tsk);
 | 
						|
		if (retval)
 | 
						|
			goto end;
 | 
						|
 | 
						|
		retval = ptrace_do_wait(wo, tsk);
 | 
						|
		if (retval)
 | 
						|
			goto end;
 | 
						|
 | 
						|
		if (wo->wo_flags & __WNOTHREAD)
 | 
						|
			break;
 | 
						|
	} while_each_thread(current, tsk);
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
 | 
						|
notask:
 | 
						|
	retval = wo->notask_error;
 | 
						|
	if (!retval && !(wo->wo_flags & WNOHANG)) {
 | 
						|
		retval = -ERESTARTSYS;
 | 
						|
		if (!signal_pending(current)) {
 | 
						|
			schedule();
 | 
						|
			goto repeat;
 | 
						|
		}
 | 
						|
	}
 | 
						|
end:
 | 
						|
	__set_current_state(TASK_RUNNING);
 | 
						|
	remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
 | 
						|
		infop, int, options, struct rusage __user *, ru)
 | 
						|
{
 | 
						|
	struct wait_opts wo;
 | 
						|
	struct pid *pid = NULL;
 | 
						|
	enum pid_type type;
 | 
						|
	long ret;
 | 
						|
 | 
						|
	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
 | 
						|
		return -EINVAL;
 | 
						|
	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	switch (which) {
 | 
						|
	case P_ALL:
 | 
						|
		type = PIDTYPE_MAX;
 | 
						|
		break;
 | 
						|
	case P_PID:
 | 
						|
		type = PIDTYPE_PID;
 | 
						|
		if (upid <= 0)
 | 
						|
			return -EINVAL;
 | 
						|
		break;
 | 
						|
	case P_PGID:
 | 
						|
		type = PIDTYPE_PGID;
 | 
						|
		if (upid <= 0)
 | 
						|
			return -EINVAL;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (type < PIDTYPE_MAX)
 | 
						|
		pid = find_get_pid(upid);
 | 
						|
 | 
						|
	wo.wo_type	= type;
 | 
						|
	wo.wo_pid	= pid;
 | 
						|
	wo.wo_flags	= options;
 | 
						|
	wo.wo_info	= infop;
 | 
						|
	wo.wo_stat	= NULL;
 | 
						|
	wo.wo_rusage	= ru;
 | 
						|
	ret = do_wait(&wo);
 | 
						|
 | 
						|
	if (ret > 0) {
 | 
						|
		ret = 0;
 | 
						|
	} else if (infop) {
 | 
						|
		/*
 | 
						|
		 * For a WNOHANG return, clear out all the fields
 | 
						|
		 * we would set so the user can easily tell the
 | 
						|
		 * difference.
 | 
						|
		 */
 | 
						|
		if (!ret)
 | 
						|
			ret = put_user(0, &infop->si_signo);
 | 
						|
		if (!ret)
 | 
						|
			ret = put_user(0, &infop->si_errno);
 | 
						|
		if (!ret)
 | 
						|
			ret = put_user(0, &infop->si_code);
 | 
						|
		if (!ret)
 | 
						|
			ret = put_user(0, &infop->si_pid);
 | 
						|
		if (!ret)
 | 
						|
			ret = put_user(0, &infop->si_uid);
 | 
						|
		if (!ret)
 | 
						|
			ret = put_user(0, &infop->si_status);
 | 
						|
	}
 | 
						|
 | 
						|
	put_pid(pid);
 | 
						|
 | 
						|
	/* avoid REGPARM breakage on x86: */
 | 
						|
	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
 | 
						|
		int, options, struct rusage __user *, ru)
 | 
						|
{
 | 
						|
	struct wait_opts wo;
 | 
						|
	struct pid *pid = NULL;
 | 
						|
	enum pid_type type;
 | 
						|
	long ret;
 | 
						|
 | 
						|
	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
 | 
						|
			__WNOTHREAD|__WCLONE|__WALL))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (upid == -1)
 | 
						|
		type = PIDTYPE_MAX;
 | 
						|
	else if (upid < 0) {
 | 
						|
		type = PIDTYPE_PGID;
 | 
						|
		pid = find_get_pid(-upid);
 | 
						|
	} else if (upid == 0) {
 | 
						|
		type = PIDTYPE_PGID;
 | 
						|
		pid = get_task_pid(current, PIDTYPE_PGID);
 | 
						|
	} else /* upid > 0 */ {
 | 
						|
		type = PIDTYPE_PID;
 | 
						|
		pid = find_get_pid(upid);
 | 
						|
	}
 | 
						|
 | 
						|
	wo.wo_type	= type;
 | 
						|
	wo.wo_pid	= pid;
 | 
						|
	wo.wo_flags	= options | WEXITED;
 | 
						|
	wo.wo_info	= NULL;
 | 
						|
	wo.wo_stat	= stat_addr;
 | 
						|
	wo.wo_rusage	= ru;
 | 
						|
	ret = do_wait(&wo);
 | 
						|
	put_pid(pid);
 | 
						|
 | 
						|
	/* avoid REGPARM breakage on x86: */
 | 
						|
	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef __ARCH_WANT_SYS_WAITPID
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_waitpid() remains for compatibility. waitpid() should be
 | 
						|
 * implemented by calling sys_wait4() from libc.a.
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
 | 
						|
{
 | 
						|
	return sys_wait4(pid, stat_addr, options, NULL);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |