forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			7095 lines
		
	
	
	
		
			276 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			7095 lines
		
	
	
	
		
			276 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | ||
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | ||
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | ||
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | ||
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | ||
| 
 | ||
| /* rendering object for CSS "display: grid | inline-grid" */
 | ||
| 
 | ||
| #include "nsGridContainerFrame.h"
 | ||
| 
 | ||
| #include <algorithm> // for std::stable_sort
 | ||
| #include <functional>
 | ||
| #include <limits>
 | ||
| #include "gfxContext.h"
 | ||
| #include "mozilla/CSSAlignUtils.h"
 | ||
| #include "mozilla/CSSOrderAwareFrameIterator.h"
 | ||
| #include "mozilla/dom/GridBinding.h"
 | ||
| #include "mozilla/IntegerRange.h"
 | ||
| #include "mozilla/Maybe.h"
 | ||
| #include "mozilla/PodOperations.h" // for PodZero
 | ||
| #include "mozilla/Poison.h"
 | ||
| #include "nsAbsoluteContainingBlock.h"
 | ||
| #include "nsAlgorithm.h" // for clamped()
 | ||
| #include "nsCSSAnonBoxes.h"
 | ||
| #include "nsCSSFrameConstructor.h"
 | ||
| #include "nsDataHashtable.h"
 | ||
| #include "nsDisplayList.h"
 | ||
| #include "nsHashKeys.h"
 | ||
| #include "nsIFrameInlines.h"
 | ||
| #include "nsPresContext.h"
 | ||
| #include "nsReadableUtils.h"
 | ||
| #ifdef MOZ_OLD_STYLE
 | ||
| #include "nsRuleNode.h"
 | ||
| #endif
 | ||
| #include "nsStyleContext.h"
 | ||
| #include "nsTableWrapperFrame.h"
 | ||
| 
 | ||
| using namespace mozilla;
 | ||
| 
 | ||
| typedef nsAbsoluteContainingBlock::AbsPosReflowFlags AbsPosReflowFlags;
 | ||
| typedef nsGridContainerFrame::TrackSize TrackSize;
 | ||
| const uint32_t nsGridContainerFrame::kTranslatedMaxLine =
 | ||
|   uint32_t(nsStyleGridLine::kMaxLine - nsStyleGridLine::kMinLine);
 | ||
| const uint32_t nsGridContainerFrame::kAutoLine = kTranslatedMaxLine + 3457U;
 | ||
| typedef nsTHashtable< nsPtrHashKey<nsIFrame> > FrameHashtable;
 | ||
| typedef mozilla::CSSAlignUtils::AlignJustifyFlags AlignJustifyFlags;
 | ||
| typedef nsLayoutUtils::IntrinsicISizeType IntrinsicISizeType;
 | ||
| 
 | ||
| // https://drafts.csswg.org/css-sizing/#constraints
 | ||
| enum class SizingConstraint
 | ||
| {
 | ||
|   eMinContent,  // sizing under min-content constraint
 | ||
|   eMaxContent,  // sizing under max-content constraint
 | ||
|   eNoConstraint // no constraint, used during Reflow
 | ||
| };
 | ||
| 
 | ||
| static void
 | ||
| ReparentFrame(nsIFrame* aFrame, nsContainerFrame* aOldParent,
 | ||
|               nsContainerFrame* aNewParent)
 | ||
| {
 | ||
|   NS_ASSERTION(aOldParent == aFrame->GetParent(),
 | ||
|                "Parent not consistent with expectations");
 | ||
| 
 | ||
|   aFrame->SetParent(aNewParent);
 | ||
| 
 | ||
|   // When pushing and pulling frames we need to check for whether any
 | ||
|   // views need to be reparented
 | ||
|   nsContainerFrame::ReparentFrameView(aFrame, aOldParent, aNewParent);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| ReparentFrames(nsFrameList& aFrameList, nsContainerFrame* aOldParent,
 | ||
|                nsContainerFrame* aNewParent)
 | ||
| {
 | ||
|   for (auto f : aFrameList) {
 | ||
|     ReparentFrame(f, aOldParent, aNewParent);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| static nscoord
 | ||
| ClampToCSSMaxBSize(nscoord aSize, const ReflowInput* aReflowInput)
 | ||
| {
 | ||
|   auto maxSize = aReflowInput->ComputedMaxBSize();
 | ||
|   if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
 | ||
|     MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
 | ||
|     aSize = std::min(aSize, maxSize);
 | ||
|   }
 | ||
|   return aSize;
 | ||
| }
 | ||
| 
 | ||
| // Same as above and set aStatus INCOMPLETE if aSize wasn't clamped.
 | ||
| // (If we clamp aSize it means our size is less than the break point,
 | ||
| // i.e. we're effectively breaking in our overflow, so we should leave
 | ||
| // aStatus as is (it will likely be set to OVERFLOW_INCOMPLETE later)).
 | ||
| static nscoord
 | ||
| ClampToCSSMaxBSize(nscoord aSize, const ReflowInput* aReflowInput,
 | ||
|                    nsReflowStatus* aStatus)
 | ||
| {
 | ||
|   auto maxSize = aReflowInput->ComputedMaxBSize();
 | ||
|   if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
 | ||
|     MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
 | ||
|     if (aSize < maxSize) {
 | ||
|       aStatus->SetIncomplete();
 | ||
|     } else {
 | ||
|       aSize = maxSize;
 | ||
|     }
 | ||
|   } else {
 | ||
|     aStatus->SetIncomplete();
 | ||
|   }
 | ||
|   return aSize;
 | ||
| }
 | ||
| 
 | ||
| static bool
 | ||
| IsPercentOfIndefiniteSize(const nsStyleCoord& aCoord, nscoord aPercentBasis)
 | ||
| {
 | ||
|   return aPercentBasis == NS_UNCONSTRAINEDSIZE && aCoord.HasPercent();
 | ||
| }
 | ||
| 
 | ||
| static nscoord
 | ||
| ResolveToDefiniteSize(const nsStyleCoord& aCoord, nscoord aPercentBasis)
 | ||
| {
 | ||
|   MOZ_ASSERT(aCoord.IsCoordPercentCalcUnit());
 | ||
|   if (::IsPercentOfIndefiniteSize(aCoord, aPercentBasis)) {
 | ||
|     return nscoord(0);
 | ||
|   }
 | ||
|   return std::max(nscoord(0), aCoord.ComputeCoordPercentCalc(aPercentBasis));
 | ||
| }
 | ||
| 
 | ||
| static bool
 | ||
| GetPercentSizeParts(const nsStyleCoord& aCoord, nscoord* aLength, float* aPercent)
 | ||
| {
 | ||
|   switch (aCoord.GetUnit()) {
 | ||
|     case eStyleUnit_Percent:
 | ||
|       *aLength = 0;
 | ||
|       *aPercent = aCoord.GetPercentValue();
 | ||
|       return true;
 | ||
|     case eStyleUnit_Calc: {
 | ||
|       nsStyleCoord::Calc* calc = aCoord.GetCalcValue();
 | ||
|       *aLength = calc->mLength;
 | ||
|       *aPercent = calc->mPercent;
 | ||
|       return true;
 | ||
|     }
 | ||
|     default:
 | ||
|       return false;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| ResolvePercentSizeParts(const nsStyleCoord& aCoord, nscoord aPercentBasis,
 | ||
|                         nscoord* aLength, float* aPercent)
 | ||
| {
 | ||
|   MOZ_ASSERT(aCoord.IsCoordPercentCalcUnit());
 | ||
|   if (aPercentBasis != NS_UNCONSTRAINEDSIZE) {
 | ||
|     *aLength = std::max(nscoord(0),
 | ||
|                         aCoord.ComputeCoordPercentCalc(aPercentBasis));
 | ||
|     *aPercent = 0.0f;
 | ||
|     return;
 | ||
|   }
 | ||
|   if (!GetPercentSizeParts(aCoord, aLength, aPercent)) {
 | ||
|     *aLength = aCoord.ToLength();
 | ||
|     *aPercent = 0.0f;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| // Synthesize a baseline from a border box.  For an alphabetical baseline
 | ||
| // this is the end edge of the border box.  For a central baseline it's
 | ||
| // the center of the border box.
 | ||
| // https://drafts.csswg.org/css-align-3/#synthesize-baselines
 | ||
| // For a 'first baseline' the measure is from the border-box start edge and
 | ||
| // for a 'last baseline' the measure is from the border-box end edge.
 | ||
| static nscoord
 | ||
| SynthesizeBaselineFromBorderBox(BaselineSharingGroup aGroup,
 | ||
|                                 WritingMode aWM,
 | ||
|                                 nscoord aBorderBoxSize)
 | ||
| {
 | ||
|   if (aGroup == BaselineSharingGroup::eFirst) {
 | ||
|     return aWM.IsAlphabeticalBaseline() ? aBorderBoxSize : aBorderBoxSize / 2;
 | ||
|   }
 | ||
|   MOZ_ASSERT(aGroup == BaselineSharingGroup::eLast);
 | ||
|   // Round up for central baseline offset, to be consistent with eFirst.
 | ||
|   return aWM.IsAlphabeticalBaseline() ? 0 :
 | ||
|     (aBorderBoxSize / 2) + (aBorderBoxSize % 2);
 | ||
| }
 | ||
| 
 | ||
| enum class GridLineSide
 | ||
| {
 | ||
|   eBeforeGridGap,
 | ||
|   eAfterGridGap,
 | ||
| };
 | ||
| 
 | ||
| struct nsGridContainerFrame::TrackSize
 | ||
| {
 | ||
|   enum StateBits : uint16_t {
 | ||
|     eAutoMinSizing =              0x1,
 | ||
|     eMinContentMinSizing =        0x2,
 | ||
|     eMaxContentMinSizing =        0x4,
 | ||
|     eMinOrMaxContentMinSizing = eMinContentMinSizing | eMaxContentMinSizing,
 | ||
|     eIntrinsicMinSizing = eMinOrMaxContentMinSizing | eAutoMinSizing,
 | ||
|     eModified =                   0x8,
 | ||
|     eAutoMaxSizing =             0x10,
 | ||
|     eMinContentMaxSizing =       0x20,
 | ||
|     eMaxContentMaxSizing =       0x40,
 | ||
|     eAutoOrMaxContentMaxSizing = eAutoMaxSizing | eMaxContentMaxSizing,
 | ||
|     eIntrinsicMaxSizing = eAutoOrMaxContentMaxSizing | eMinContentMaxSizing,
 | ||
|     eFlexMaxSizing =             0x80,
 | ||
|     eFrozen =                   0x100,
 | ||
|     eSkipGrowUnlimited1 =       0x200,
 | ||
|     eSkipGrowUnlimited2 =       0x400,
 | ||
|     eSkipGrowUnlimited = eSkipGrowUnlimited1 | eSkipGrowUnlimited2,
 | ||
|     eBreakBefore =              0x800,
 | ||
|     eFitContent =              0x1000,
 | ||
|     eInfinitelyGrowable =      0x2000,
 | ||
|   };
 | ||
| 
 | ||
|   StateBits Initialize(nscoord aPercentageBasis,
 | ||
|                        const nsStyleCoord& aMinCoord,
 | ||
|                        const nsStyleCoord& aMaxCoord);
 | ||
|   bool IsFrozen() const { return mState & eFrozen; }
 | ||
| #ifdef DEBUG
 | ||
|   void Dump() const;
 | ||
| #endif
 | ||
| 
 | ||
|   static bool IsMinContent(const nsStyleCoord& aCoord)
 | ||
|   {
 | ||
|     return aCoord.GetUnit() == eStyleUnit_Enumerated &&
 | ||
|       aCoord.GetEnumValue<StyleGridTrackBreadth>() == StyleGridTrackBreadth::MinContent;
 | ||
|   }
 | ||
|   static bool IsDefiniteMaxSizing(StateBits aStateBits)
 | ||
|   {
 | ||
|     return (aStateBits & (eIntrinsicMaxSizing | eFlexMaxSizing)) == 0;
 | ||
|   }
 | ||
| 
 | ||
|   nscoord mBase;
 | ||
|   nscoord mLimit;
 | ||
|   nscoord mPosition;  // zero until we apply 'align/justify-content'
 | ||
|   // mBaselineSubtreeSize is the size of a baseline-aligned subtree within
 | ||
|   // this track.  One subtree per baseline-sharing group (per track).
 | ||
|   nscoord mBaselineSubtreeSize[2];
 | ||
|   StateBits mState;
 | ||
| };
 | ||
| 
 | ||
| MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(TrackSize::StateBits)
 | ||
| 
 | ||
| namespace mozilla {
 | ||
| template <>
 | ||
| struct IsPod<nsGridContainerFrame::TrackSize> : TrueType {};
 | ||
| }
 | ||
| 
 | ||
| TrackSize::StateBits
 | ||
| nsGridContainerFrame::TrackSize::Initialize(nscoord aPercentageBasis,
 | ||
|                                             const nsStyleCoord& aMinCoord,
 | ||
|                                             const nsStyleCoord& aMaxCoord)
 | ||
| {
 | ||
|   MOZ_ASSERT(mBase == 0 && mLimit == 0 && mState == 0,
 | ||
|              "track size data is expected to be initialized to zero");
 | ||
|   auto minSizeUnit = aMinCoord.GetUnit();
 | ||
|   auto maxSizeUnit = aMaxCoord.GetUnit();
 | ||
|   if (minSizeUnit == eStyleUnit_None) {
 | ||
|     // This track is sized using fit-content(size) (represented in style system
 | ||
|     // with minCoord=None,maxCoord=size).  In layout, fit-content(size) behaves
 | ||
|     // as minmax(auto, max-content), with 'size' as an additional upper-bound.
 | ||
|     mState = eFitContent;
 | ||
|     minSizeUnit = eStyleUnit_Auto;
 | ||
|     maxSizeUnit = eStyleUnit_Enumerated; // triggers max-content sizing below
 | ||
|   }
 | ||
|   if (::IsPercentOfIndefiniteSize(aMinCoord, aPercentageBasis)) {
 | ||
|     // https://drafts.csswg.org/css-grid/#valdef-grid-template-columns-percentage
 | ||
|     // "If the inline or block size of the grid container is indefinite,
 | ||
|     //  <percentage> values relative to that size are treated as 'auto'."
 | ||
|     minSizeUnit = eStyleUnit_Auto;
 | ||
|   }
 | ||
|   if (::IsPercentOfIndefiniteSize(aMaxCoord, aPercentageBasis)) {
 | ||
|     maxSizeUnit = eStyleUnit_Auto;
 | ||
|   }
 | ||
|   // http://dev.w3.org/csswg/css-grid/#algo-init
 | ||
|   switch (minSizeUnit) {
 | ||
|     case eStyleUnit_Auto:
 | ||
|       mState |= eAutoMinSizing;
 | ||
|       break;
 | ||
|     case eStyleUnit_Enumerated:
 | ||
|       mState |= IsMinContent(aMinCoord) ? eMinContentMinSizing
 | ||
|                                         : eMaxContentMinSizing;
 | ||
|       break;
 | ||
|     default:
 | ||
|       MOZ_ASSERT(minSizeUnit != eStyleUnit_FlexFraction,
 | ||
|                  "<flex> min-sizing is invalid as a track size");
 | ||
|       mBase = ::ResolveToDefiniteSize(aMinCoord, aPercentageBasis);
 | ||
|   }
 | ||
|   switch (maxSizeUnit) {
 | ||
|     case eStyleUnit_Auto:
 | ||
|       mState |= eAutoMaxSizing;
 | ||
|       mLimit = NS_UNCONSTRAINEDSIZE;
 | ||
|       break;
 | ||
|     case eStyleUnit_Enumerated:
 | ||
|       mState |= IsMinContent(aMaxCoord) ? eMinContentMaxSizing
 | ||
|                                         : eMaxContentMaxSizing;
 | ||
|       mLimit = NS_UNCONSTRAINEDSIZE;
 | ||
|       break;
 | ||
|     case eStyleUnit_FlexFraction:
 | ||
|       mState |= eFlexMaxSizing;
 | ||
|       mLimit = mBase;
 | ||
|       break;
 | ||
|     default:
 | ||
|       mLimit = ::ResolveToDefiniteSize(aMaxCoord, aPercentageBasis);
 | ||
|       if (mLimit < mBase) {
 | ||
|         mLimit = mBase;
 | ||
|       }
 | ||
|   }
 | ||
| 
 | ||
|   mBaselineSubtreeSize[BaselineSharingGroup::eFirst] = nscoord(0);
 | ||
|   mBaselineSubtreeSize[BaselineSharingGroup::eLast] = nscoord(0);
 | ||
|   return mState;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * Is aFrame1 a prev-continuation of aFrame2?
 | ||
|  */
 | ||
| static bool
 | ||
| IsPrevContinuationOf(nsIFrame* aFrame1, nsIFrame* aFrame2)
 | ||
| {
 | ||
|   nsIFrame* prev = aFrame2;
 | ||
|   while ((prev = prev->GetPrevContinuation())) {
 | ||
|     if (prev == aFrame1) {
 | ||
|       return true;
 | ||
|     }
 | ||
|   }
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * Moves all frames from aSrc into aDest such that the resulting aDest
 | ||
|  * is still sorted in document content order and continuation order.
 | ||
|  * Precondition: both |aSrc| and |aDest| must be sorted to begin with.
 | ||
|  * @param aCommonAncestor a hint for nsLayoutUtils::CompareTreePosition
 | ||
|  */
 | ||
| static void
 | ||
| MergeSortedFrameLists(nsFrameList& aDest, nsFrameList& aSrc,
 | ||
|                       nsIContent* aCommonAncestor)
 | ||
| {
 | ||
|   nsIFrame* dest = aDest.FirstChild();
 | ||
|   for (nsIFrame* src = aSrc.FirstChild(); src; ) {
 | ||
|     if (!dest) {
 | ||
|       aDest.AppendFrames(nullptr, aSrc);
 | ||
|       break;
 | ||
|     }
 | ||
|     nsIContent* srcContent = src->GetContent();
 | ||
|     nsIContent* destContent = dest->GetContent();
 | ||
|     int32_t result = nsLayoutUtils::CompareTreePosition(srcContent,
 | ||
|                                                         destContent,
 | ||
|                                                         aCommonAncestor);
 | ||
|     if (MOZ_UNLIKELY(result == 0)) {
 | ||
|       // NOTE: we get here when comparing ::before/::after for the same element.
 | ||
|       if (MOZ_UNLIKELY(srcContent->IsGeneratedContentContainerForBefore())) {
 | ||
|         if (MOZ_LIKELY(!destContent->IsGeneratedContentContainerForBefore()) ||
 | ||
|             ::IsPrevContinuationOf(src, dest)) {
 | ||
|           result = -1;
 | ||
|         }
 | ||
|       } else if (MOZ_UNLIKELY(srcContent->IsGeneratedContentContainerForAfter())) {
 | ||
|         if (MOZ_UNLIKELY(destContent->IsGeneratedContentContainerForAfter()) &&
 | ||
|             ::IsPrevContinuationOf(src, dest)) {
 | ||
|           result = -1;
 | ||
|         }
 | ||
|       } else if (::IsPrevContinuationOf(src, dest)) {
 | ||
|         result = -1;
 | ||
|       }
 | ||
|     }
 | ||
|     if (result < 0) {
 | ||
|       // src should come before dest
 | ||
|       nsIFrame* next = src->GetNextSibling();
 | ||
|       aSrc.RemoveFrame(src);
 | ||
|       aDest.InsertFrame(nullptr, dest->GetPrevSibling(), src);
 | ||
|       src = next;
 | ||
|     } else {
 | ||
|       dest = dest->GetNextSibling();
 | ||
|     }
 | ||
|   }
 | ||
|   MOZ_ASSERT(aSrc.IsEmpty());
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| MergeSortedFrameListsFor(nsFrameList& aDest, nsFrameList& aSrc,
 | ||
|                          nsContainerFrame* aParent)
 | ||
| {
 | ||
|   MergeSortedFrameLists(aDest, aSrc, aParent->GetContent());
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * A LineRange can be definite or auto - when it's definite it represents
 | ||
|  * a consecutive set of tracks between a starting line and an ending line.
 | ||
|  * Before it's definite it can also represent an auto position with a span,
 | ||
|  * where mStart == kAutoLine and mEnd is the (non-zero positive) span.
 | ||
|  * For normal-flow items, the invariant mStart < mEnd holds when both
 | ||
|  * lines are definite.
 | ||
|  *
 | ||
|  * For abs.pos. grid items, mStart and mEnd may both be kAutoLine, meaning
 | ||
|  * "attach this side to the grid container containing block edge".
 | ||
|  * Additionally, mStart <= mEnd holds when both are definite (non-kAutoLine),
 | ||
|  * i.e. the invariant is slightly relaxed compared to normal flow items.
 | ||
|  */
 | ||
| struct nsGridContainerFrame::LineRange
 | ||
| {
 | ||
|  LineRange(int32_t aStart, int32_t aEnd)
 | ||
|    : mUntranslatedStart(aStart), mUntranslatedEnd(aEnd)
 | ||
|   {
 | ||
| #ifdef DEBUG
 | ||
|     if (!IsAutoAuto()) {
 | ||
|       if (IsAuto()) {
 | ||
|         MOZ_ASSERT(aEnd >= nsStyleGridLine::kMinLine &&
 | ||
|                    aEnd <= nsStyleGridLine::kMaxLine, "invalid span");
 | ||
|       } else {
 | ||
|         MOZ_ASSERT(aStart >= nsStyleGridLine::kMinLine &&
 | ||
|                    aStart <= nsStyleGridLine::kMaxLine, "invalid start line");
 | ||
|         MOZ_ASSERT(aEnd == int32_t(kAutoLine) ||
 | ||
|                    (aEnd >= nsStyleGridLine::kMinLine &&
 | ||
|                     aEnd <= nsStyleGridLine::kMaxLine), "invalid end line");
 | ||
|       }
 | ||
|     }
 | ||
| #endif
 | ||
|   }
 | ||
|   bool IsAutoAuto() const { return mStart == kAutoLine && mEnd == kAutoLine; }
 | ||
|   bool IsAuto() const { return mStart == kAutoLine; }
 | ||
|   bool IsDefinite() const { return mStart != kAutoLine; }
 | ||
|   uint32_t Extent() const
 | ||
|   {
 | ||
|     MOZ_ASSERT(mEnd != kAutoLine, "Extent is undefined for abs.pos. 'auto'");
 | ||
|     if (IsAuto()) {
 | ||
|       MOZ_ASSERT(mEnd >= 1 && mEnd < uint32_t(nsStyleGridLine::kMaxLine),
 | ||
|                  "invalid span");
 | ||
|       return mEnd;
 | ||
|     }
 | ||
|     return mEnd - mStart;
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Return an object suitable for iterating this range.
 | ||
|    */
 | ||
|   auto Range() const { return IntegerRange<uint32_t>(mStart, mEnd); }
 | ||
| 
 | ||
|   /**
 | ||
|    * Resolve this auto range to start at aStart, making it definite.
 | ||
|    * Precondition: this range IsAuto()
 | ||
|    */
 | ||
|   void ResolveAutoPosition(uint32_t aStart, uint32_t aExplicitGridOffset)
 | ||
|   {
 | ||
|     MOZ_ASSERT(IsAuto(), "Why call me?");
 | ||
|     mStart = aStart;
 | ||
|     mEnd += aStart;
 | ||
|     // Clamping to where kMaxLine is in the explicit grid, per
 | ||
|     // http://dev.w3.org/csswg/css-grid/#overlarge-grids :
 | ||
|     uint32_t translatedMax = aExplicitGridOffset + nsStyleGridLine::kMaxLine;
 | ||
|     if (MOZ_UNLIKELY(mStart >= translatedMax)) {
 | ||
|       mEnd = translatedMax;
 | ||
|       mStart = mEnd - 1;
 | ||
|     } else if (MOZ_UNLIKELY(mEnd > translatedMax)) {
 | ||
|       mEnd = translatedMax;
 | ||
|     }
 | ||
|   }
 | ||
|   /**
 | ||
|    * Translate the lines to account for (empty) removed tracks.  This method
 | ||
|    * is only for grid items and should only be called after placement.
 | ||
|    * aNumRemovedTracks contains a count for each line in the grid how many
 | ||
|    * tracks were removed between the start of the grid and that line.
 | ||
|    */
 | ||
|   void AdjustForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks)
 | ||
|   {
 | ||
|     MOZ_ASSERT(mStart != kAutoLine, "invalid resolved line for a grid item");
 | ||
|     MOZ_ASSERT(mEnd != kAutoLine, "invalid resolved line for a grid item");
 | ||
|     uint32_t numRemovedTracks = aNumRemovedTracks[mStart];
 | ||
|     MOZ_ASSERT(numRemovedTracks == aNumRemovedTracks[mEnd],
 | ||
|                "tracks that a grid item spans can't be removed");
 | ||
|     mStart -= numRemovedTracks;
 | ||
|     mEnd -= numRemovedTracks;
 | ||
|   }
 | ||
|   /**
 | ||
|    * Translate the lines to account for (empty) removed tracks.  This method
 | ||
|    * is only for abs.pos. children and should only be called after placement.
 | ||
|    * Same as for in-flow items, but we don't touch 'auto' lines here and we
 | ||
|    * also need to adjust areas that span into the removed tracks.
 | ||
|    */
 | ||
|   void AdjustAbsPosForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks)
 | ||
|   {
 | ||
|     if (mStart != nsGridContainerFrame::kAutoLine) {
 | ||
|       mStart -= aNumRemovedTracks[mStart];
 | ||
|     }
 | ||
|     if (mEnd != nsGridContainerFrame::kAutoLine) {
 | ||
|       MOZ_ASSERT(mStart == nsGridContainerFrame::kAutoLine ||
 | ||
|                  mEnd > mStart, "invalid line range");
 | ||
|       mEnd -= aNumRemovedTracks[mEnd];
 | ||
|     }
 | ||
|   }
 | ||
|   /**
 | ||
|    * Return the contribution of this line range for step 2 in
 | ||
|    * http://dev.w3.org/csswg/css-grid/#auto-placement-algo
 | ||
|    */
 | ||
|   uint32_t HypotheticalEnd() const { return mEnd; }
 | ||
|   /**
 | ||
|    * Given an array of track sizes, return the starting position and length
 | ||
|    * of the tracks in this line range.
 | ||
|    */
 | ||
|   void ToPositionAndLength(const nsTArray<TrackSize>& aTrackSizes,
 | ||
|                            nscoord* aPos, nscoord* aLength) const;
 | ||
|   /**
 | ||
|    * Given an array of track sizes, return the length of the tracks in this
 | ||
|    * line range.
 | ||
|    */
 | ||
|   nscoord ToLength(const nsTArray<TrackSize>& aTrackSizes) const;
 | ||
|   /**
 | ||
|    * Given an array of track sizes and a grid origin coordinate, adjust the
 | ||
|    * abs.pos. containing block along an axis given by aPos and aLength.
 | ||
|    * aPos and aLength should already be initialized to the grid container
 | ||
|    * containing block for this axis before calling this method.
 | ||
|    */
 | ||
|   void ToPositionAndLengthForAbsPos(const Tracks& aTracks,
 | ||
|                                     nscoord aGridOrigin,
 | ||
|                                     nscoord* aPos, nscoord* aLength) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * @note We'll use the signed member while resolving definite positions
 | ||
|    * to line numbers (1-based), which may become negative for implicit lines
 | ||
|    * to the top/left of the explicit grid.  PlaceGridItems() then translates
 | ||
|    * the whole grid to a 0,0 origin and we'll use the unsigned member from
 | ||
|    * there on.
 | ||
|    */
 | ||
|   union {
 | ||
|     uint32_t mStart;
 | ||
|     int32_t mUntranslatedStart;
 | ||
|   };
 | ||
|   union {
 | ||
|     uint32_t mEnd;
 | ||
|     int32_t mUntranslatedEnd;
 | ||
|   };
 | ||
| protected:
 | ||
|   LineRange() {}
 | ||
| };
 | ||
| 
 | ||
| /**
 | ||
|  * Helper class to construct a LineRange from translated lines.
 | ||
|  * The ctor only accepts translated definite line numbers.
 | ||
|  */
 | ||
| struct nsGridContainerFrame::TranslatedLineRange : public LineRange
 | ||
| {
 | ||
|   TranslatedLineRange(uint32_t aStart, uint32_t aEnd)
 | ||
|   {
 | ||
|     MOZ_ASSERT(aStart < aEnd && aEnd <= kTranslatedMaxLine);
 | ||
|     mStart = aStart;
 | ||
|     mEnd = aEnd;
 | ||
|   }
 | ||
| };
 | ||
| 
 | ||
| /**
 | ||
|  * A GridArea is the area in the grid for a grid item.
 | ||
|  * The area is represented by two LineRanges, both of which can be auto
 | ||
|  * (@see LineRange) in intermediate steps while the item is being placed.
 | ||
|  * @see PlaceGridItems
 | ||
|  */
 | ||
| struct nsGridContainerFrame::GridArea
 | ||
| {
 | ||
|   GridArea(const LineRange& aCols, const LineRange& aRows)
 | ||
|     : mCols(aCols), mRows(aRows) {}
 | ||
|   bool IsDefinite() const { return mCols.IsDefinite() && mRows.IsDefinite(); }
 | ||
|   LineRange mCols;
 | ||
|   LineRange mRows;
 | ||
| };
 | ||
| 
 | ||
| struct nsGridContainerFrame::GridItemInfo
 | ||
| {
 | ||
|   /**
 | ||
|    * Item state per axis.
 | ||
|    */
 | ||
|   enum StateBits : uint8_t {
 | ||
|     eIsFlexing =              0x1, // does the item span a flex track?
 | ||
|     eFirstBaseline =          0x2, // participate in 'first baseline' alignment?
 | ||
|     // ditto 'last baseline', mutually exclusive w. eFirstBaseline
 | ||
|     eLastBaseline =           0x4,
 | ||
|     eIsBaselineAligned = eFirstBaseline | eLastBaseline,
 | ||
|     // One of e[Self|Content]Baseline is set when eIsBaselineAligned is true
 | ||
|     eSelfBaseline =           0x8, // is it *-self:[last ]baseline alignment?
 | ||
|     // Ditto *-content:[last ]baseline. Mutually exclusive w. eSelfBaseline.
 | ||
|     eContentBaseline =       0x10,
 | ||
|     eAllBaselineBits = eIsBaselineAligned | eSelfBaseline | eContentBaseline,
 | ||
|     // Should apply Automatic Minimum Size per:
 | ||
|     // https://drafts.csswg.org/css-grid/#min-size-auto
 | ||
|     eApplyAutoMinSize =      0x20,
 | ||
|     // Clamp per https://drafts.csswg.org/css-grid/#min-size-auto
 | ||
|     eClampMarginBoxMinSize = 0x40,
 | ||
|   };
 | ||
| 
 | ||
|   explicit GridItemInfo(nsIFrame* aFrame,
 | ||
|                         const GridArea& aArea)
 | ||
|     : mFrame(aFrame)
 | ||
|     , mArea(aArea)
 | ||
|   {
 | ||
|     mState[eLogicalAxisBlock] = StateBits(0);
 | ||
|     mState[eLogicalAxisInline] = StateBits(0);
 | ||
|     mBaselineOffset[eLogicalAxisBlock] = nscoord(0);
 | ||
|     mBaselineOffset[eLogicalAxisInline] = nscoord(0);
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * If the item is [align|justify]-self:[last ]baseline aligned in the given
 | ||
|    * axis then set aBaselineOffset to the baseline offset and return aAlign.
 | ||
|    * Otherwise, return a fallback alignment.
 | ||
|    */
 | ||
|   uint8_t GetSelfBaseline(uint8_t aAlign, LogicalAxis aAxis,
 | ||
|                           nscoord* aBaselineOffset) const
 | ||
|   {
 | ||
|     MOZ_ASSERT(aAlign == NS_STYLE_ALIGN_BASELINE ||
 | ||
|                aAlign == NS_STYLE_ALIGN_LAST_BASELINE);
 | ||
|     if (!(mState[aAxis] & eSelfBaseline)) {
 | ||
|       return aAlign == NS_STYLE_ALIGN_BASELINE ? NS_STYLE_ALIGN_SELF_START
 | ||
|                                                : NS_STYLE_ALIGN_SELF_END;
 | ||
|     }
 | ||
|     *aBaselineOffset = mBaselineOffset[aAxis];
 | ||
|     return aAlign;
 | ||
|   }
 | ||
| 
 | ||
|   // Return true if we should apply Automatic Minimum Size to this item.
 | ||
|   // https://drafts.csswg.org/css-grid/#min-size-auto
 | ||
|   // @note the caller should also check that the item spans at least one track
 | ||
|   // that has a min track sizing function that is 'auto' before applying it.
 | ||
|   bool ShouldApplyAutoMinSize(WritingMode aContainerWM,
 | ||
|                               LogicalAxis aContainerAxis,
 | ||
|                               nscoord aPercentageBasis) const
 | ||
|   {
 | ||
|     const auto* pos = mFrame->IsTableWrapperFrame() ?
 | ||
|       mFrame->PrincipalChildList().FirstChild()->StylePosition() :
 | ||
|       mFrame->StylePosition();
 | ||
|     const auto& size = aContainerAxis == eLogicalAxisInline ?
 | ||
|       pos->ISize(aContainerWM) : pos->BSize(aContainerWM);
 | ||
|     // NOTE: if we have a definite size then our automatic minimum size
 | ||
|     // can't affect our size.  Excluding these simplifies applying
 | ||
|     // the clamping in the right cases later.
 | ||
|     if (size.GetUnit() != eStyleUnit_Auto &&
 | ||
|         !::IsPercentOfIndefiniteSize(size, aPercentageBasis)) {
 | ||
|       return false;
 | ||
|     }
 | ||
|     const auto& minSize = aContainerAxis == eLogicalAxisInline ?
 | ||
|       pos->MinISize(aContainerWM) : pos->MinBSize(aContainerWM);
 | ||
|     return minSize.GetUnit() == eStyleUnit_Auto &&
 | ||
|            mFrame->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE;
 | ||
|   }
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   void Dump() const;
 | ||
| #endif
 | ||
| 
 | ||
|   static bool IsStartRowLessThan(const GridItemInfo* a, const GridItemInfo* b)
 | ||
|   {
 | ||
|     return a->mArea.mRows.mStart < b->mArea.mRows.mStart;
 | ||
|   }
 | ||
| 
 | ||
|   nsIFrame* const mFrame;
 | ||
|   GridArea mArea;
 | ||
|   // Offset from the margin edge to the baseline (LogicalAxis index).  It's from
 | ||
|   // the start edge when eFirstBaseline is set, end edge otherwise. It's mutable
 | ||
|   // since we update the value fairly late (just before reflowing the item).
 | ||
|   mutable nscoord mBaselineOffset[2];
 | ||
|   mutable StateBits mState[2]; // state bits per axis (LogicalAxis index)
 | ||
|   static_assert(mozilla::eLogicalAxisBlock == 0, "unexpected index value");
 | ||
|   static_assert(mozilla::eLogicalAxisInline == 1, "unexpected index value");
 | ||
| };
 | ||
| 
 | ||
| using GridItemInfo = nsGridContainerFrame::GridItemInfo;
 | ||
| using ItemState = GridItemInfo::StateBits;
 | ||
| MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(ItemState)
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
| void
 | ||
| nsGridContainerFrame::GridItemInfo::Dump() const
 | ||
| {
 | ||
|   auto Dump1 = [this] (const char* aMsg, LogicalAxis aAxis) {
 | ||
|     auto state = mState[aAxis];
 | ||
|     if (!state) {
 | ||
|       return;
 | ||
|     }
 | ||
|     printf("%s", aMsg);
 | ||
|     if (state & ItemState::eIsFlexing) {
 | ||
|       printf("flexing ");
 | ||
|     }
 | ||
|     if (state & ItemState::eApplyAutoMinSize) {
 | ||
|       printf("auto-min-size ");
 | ||
|     }
 | ||
|     if (state & ItemState::eClampMarginBoxMinSize) {
 | ||
|       printf("clamp ");
 | ||
|     }
 | ||
|     if (state & ItemState::eFirstBaseline) {
 | ||
|       printf("first baseline %s-alignment ",
 | ||
|              (state & ItemState::eSelfBaseline) ? "self" : "content");
 | ||
|     }
 | ||
|     if (state & ItemState::eLastBaseline) {
 | ||
|       printf("last baseline %s-alignment ",
 | ||
|              (state & ItemState::eSelfBaseline) ? "self" : "content");
 | ||
|     }
 | ||
|     if (state & ItemState::eIsBaselineAligned) {
 | ||
|       printf("%.2fpx", NSAppUnitsToFloatPixels(mBaselineOffset[aAxis],
 | ||
|                                                AppUnitsPerCSSPixel()));
 | ||
|     }
 | ||
|     printf("\n");
 | ||
|   };
 | ||
|   printf("grid-row: %d %d\n", mArea.mRows.mStart, mArea.mRows.mEnd);
 | ||
|   Dump1("  grid block-axis: ", eLogicalAxisBlock);
 | ||
|   printf("grid-column: %d %d\n", mArea.mCols.mStart, mArea.mCols.mEnd);
 | ||
|   Dump1("  grid inline-axis: ", eLogicalAxisInline);
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /**
 | ||
|  * Utility class to find line names.  It provides an interface to lookup line
 | ||
|  * names with a dynamic number of repeat(auto-fill/fit) tracks taken into
 | ||
|  * account.
 | ||
|  */
 | ||
| class MOZ_STACK_CLASS nsGridContainerFrame::LineNameMap
 | ||
| {
 | ||
| public:
 | ||
|   /**
 | ||
|    * Create a LineNameMap.
 | ||
|    * @param aGridTemplate is the grid-template-rows/columns data for this axis
 | ||
|    * @param aNumRepeatTracks the number of actual tracks associated with
 | ||
|    *   a repeat(auto-fill/fit) track (zero or more), or zero if there is no
 | ||
|    *   specified repeat(auto-fill/fit) track
 | ||
|    */
 | ||
|   LineNameMap(const nsStyleGridTemplate& aGridTemplate,
 | ||
|               uint32_t                   aNumRepeatTracks)
 | ||
|     : mLineNameLists(aGridTemplate.mLineNameLists)
 | ||
|     , mRepeatAutoLineNameListBefore(aGridTemplate.mRepeatAutoLineNameListBefore)
 | ||
|     , mRepeatAutoLineNameListAfter(aGridTemplate.mRepeatAutoLineNameListAfter)
 | ||
|     , mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ?
 | ||
|                          aGridTemplate.mRepeatAutoIndex : 0)
 | ||
|     , mRepeatAutoEnd(mRepeatAutoStart + aNumRepeatTracks)
 | ||
|     , mRepeatEndDelta(aGridTemplate.HasRepeatAuto() ?
 | ||
|                         int32_t(aNumRepeatTracks) - 1 :
 | ||
|                         0)
 | ||
|     , mTemplateLinesEnd(mLineNameLists.Length() + mRepeatEndDelta)
 | ||
|     , mHasRepeatAuto(aGridTemplate.HasRepeatAuto())
 | ||
|   {
 | ||
|     MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0);
 | ||
|     MOZ_ASSERT(mRepeatAutoStart <= mLineNameLists.Length());
 | ||
|     MOZ_ASSERT(!mHasRepeatAuto || mLineNameLists.Length() >= 2);
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Find the aNth occurrence of aName, searching forward if aNth is positive,
 | ||
|    * and in reverse if aNth is negative (aNth == 0 is invalid), starting from
 | ||
|    * aFromIndex (not inclusive), and return a 1-based line number.
 | ||
|    * Also take into account there is an unconditional match at aImplicitLine
 | ||
|    * unless it's zero.
 | ||
|    * Return zero if aNth occurrences can't be found.  In that case, aNth has
 | ||
|    * been decremented with the number of occurrences that were found (if any).
 | ||
|    *
 | ||
|    * E.g. to search for "A 2" forward from the start of the grid: aName is "A"
 | ||
|    * aNth is 2 and aFromIndex is zero.  To search for "A -2", aNth is -2 and
 | ||
|    * aFromIndex is ExplicitGridEnd + 1 (which is the line "before" the last
 | ||
|    * line when we're searching in reverse).  For "span A 2", aNth is 2 when
 | ||
|    * used on a grid-[row|column]-end property and -2 for a *-start property,
 | ||
|    * and aFromIndex is the line (which we should skip) on the opposite property.
 | ||
|    */
 | ||
|   uint32_t FindNamedLine(const nsString& aName, int32_t* aNth,
 | ||
|                          uint32_t aFromIndex, uint32_t aImplicitLine) const
 | ||
|   {
 | ||
|     MOZ_ASSERT(aNth && *aNth != 0);
 | ||
|     if (*aNth > 0) {
 | ||
|       return FindLine(aName, aNth, aFromIndex, aImplicitLine);
 | ||
|     }
 | ||
|     int32_t nth = -*aNth;
 | ||
|     int32_t line = RFindLine(aName, &nth, aFromIndex, aImplicitLine);
 | ||
|     *aNth = -nth;
 | ||
|     return line;
 | ||
|   }
 | ||
| 
 | ||
| private:
 | ||
|   /**
 | ||
|    * @see FindNamedLine, this function searches forward.
 | ||
|    */
 | ||
|   uint32_t FindLine(const nsString& aName, int32_t* aNth,
 | ||
|                     uint32_t aFromIndex, uint32_t aImplicitLine) const
 | ||
|   {
 | ||
|     MOZ_ASSERT(aNth && *aNth > 0);
 | ||
|     int32_t nth = *aNth;
 | ||
|     const uint32_t end = mTemplateLinesEnd;
 | ||
|     uint32_t line;
 | ||
|     uint32_t i = aFromIndex;
 | ||
|     for (; i < end; i = line) {
 | ||
|       line = i + 1;
 | ||
|       if (line == aImplicitLine || Contains(i, aName)) {
 | ||
|         if (--nth == 0) {
 | ||
|           return line;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     if (aImplicitLine > i) {
 | ||
|       // aImplicitLine is after the lines we searched above so it's last.
 | ||
|       // (grid-template-areas has more tracks than grid-template-[rows|columns])
 | ||
|       if (--nth == 0) {
 | ||
|         return aImplicitLine;
 | ||
|       }
 | ||
|     }
 | ||
|     MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
 | ||
|     *aNth = nth;
 | ||
|     return 0;
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * @see FindNamedLine, this function searches in reverse.
 | ||
|    */
 | ||
|   uint32_t RFindLine(const nsString& aName, int32_t* aNth,
 | ||
|                      uint32_t aFromIndex, uint32_t aImplicitLine) const
 | ||
|   {
 | ||
|     MOZ_ASSERT(aNth && *aNth > 0);
 | ||
|     if (MOZ_UNLIKELY(aFromIndex == 0)) {
 | ||
|       return 0; // There are no named lines beyond the start of the explicit grid.
 | ||
|     }
 | ||
|     --aFromIndex; // (shift aFromIndex so we can treat it as inclusive)
 | ||
|     int32_t nth = *aNth;
 | ||
|     // The implicit line may be beyond the explicit grid so we match
 | ||
|     // this line first if it's within the mTemplateLinesEnd..aFromIndex range.
 | ||
|     const uint32_t end = mTemplateLinesEnd;
 | ||
|     if (aImplicitLine > end && aImplicitLine < aFromIndex) {
 | ||
|       if (--nth == 0) {
 | ||
|         return aImplicitLine;
 | ||
|       }
 | ||
|     }
 | ||
|     for (uint32_t i = std::min(aFromIndex, end); i; --i) {
 | ||
|       if (i == aImplicitLine || Contains(i - 1, aName)) {
 | ||
|         if (--nth == 0) {
 | ||
|           return i;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
 | ||
|     *aNth = nth;
 | ||
|     return 0;
 | ||
|   }
 | ||
| 
 | ||
|   // Return true if aName exists at aIndex.
 | ||
|   bool Contains(uint32_t aIndex, const nsString& aName) const
 | ||
|   {
 | ||
|     if (!mHasRepeatAuto) {
 | ||
|       return mLineNameLists[aIndex].Contains(aName);
 | ||
|     }
 | ||
|     if (aIndex < mRepeatAutoEnd && aIndex >= mRepeatAutoStart &&
 | ||
|         mRepeatAutoLineNameListBefore.Contains(aName)) {
 | ||
|       return true;
 | ||
|     }
 | ||
|     if (aIndex <= mRepeatAutoEnd && aIndex > mRepeatAutoStart &&
 | ||
|         mRepeatAutoLineNameListAfter.Contains(aName)) {
 | ||
|       return true;
 | ||
|     }
 | ||
|     if (aIndex <= mRepeatAutoStart) {
 | ||
|       return mLineNameLists[aIndex].Contains(aName) ||
 | ||
|              (aIndex == mRepeatAutoEnd &&
 | ||
|               mLineNameLists[aIndex + 1].Contains(aName));
 | ||
|     }
 | ||
|     return aIndex >= mRepeatAutoEnd &&
 | ||
|            mLineNameLists[aIndex - mRepeatEndDelta].Contains(aName);
 | ||
|   }
 | ||
| 
 | ||
|   // Some style data references, for easy access.
 | ||
|   const nsTArray<nsTArray<nsString>>& mLineNameLists;
 | ||
|   const nsTArray<nsString>& mRepeatAutoLineNameListBefore;
 | ||
|   const nsTArray<nsString>& mRepeatAutoLineNameListAfter;
 | ||
|   // The index of the repeat(auto-fill/fit) track, or zero if there is none.
 | ||
|   const uint32_t mRepeatAutoStart;
 | ||
|   // The (hypothetical) index of the last such repeat() track.
 | ||
|   const uint32_t mRepeatAutoEnd;
 | ||
|   // The difference between mTemplateLinesEnd and mLineNameLists.Length().
 | ||
|   const int32_t mRepeatEndDelta;
 | ||
|   // The end of the line name lists with repeat(auto-fill/fit) tracks accounted
 | ||
|   // for.  It is equal to mLineNameLists.Length() when a repeat() track
 | ||
|   // generates one track (making mRepeatEndDelta == 0).
 | ||
|   const uint32_t mTemplateLinesEnd;
 | ||
|   // True if there is a specified repeat(auto-fill/fit) track.
 | ||
|   const bool mHasRepeatAuto;
 | ||
| };
 | ||
| 
 | ||
| /**
 | ||
|  * Encapsulates CSS track-sizing functions.
 | ||
|  */
 | ||
| struct nsGridContainerFrame::TrackSizingFunctions
 | ||
| {
 | ||
|   TrackSizingFunctions(const nsStyleGridTemplate& aGridTemplate,
 | ||
|                        const nsStyleCoord&        aAutoMinSizing,
 | ||
|                        const nsStyleCoord&        aAutoMaxSizing)
 | ||
|     : mMinSizingFunctions(aGridTemplate.mMinTrackSizingFunctions)
 | ||
|     , mMaxSizingFunctions(aGridTemplate.mMaxTrackSizingFunctions)
 | ||
|     , mAutoMinSizing(aAutoMinSizing)
 | ||
|     , mAutoMaxSizing(aAutoMaxSizing)
 | ||
|     , mExplicitGridOffset(0)
 | ||
|     , mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ?
 | ||
|                          aGridTemplate.mRepeatAutoIndex : 0)
 | ||
|     , mRepeatAutoEnd(mRepeatAutoStart)
 | ||
|     , mRepeatEndDelta(0)
 | ||
|     , mHasRepeatAuto(aGridTemplate.HasRepeatAuto())
 | ||
|   {
 | ||
|     MOZ_ASSERT(mMinSizingFunctions.Length() == mMaxSizingFunctions.Length());
 | ||
|     MOZ_ASSERT(!mHasRepeatAuto ||
 | ||
|                (mMinSizingFunctions.Length() >= 1 &&
 | ||
|                 mRepeatAutoStart < mMinSizingFunctions.Length()));
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Initialize the number of auto-fill/fit tracks to use and return that.
 | ||
|    * (zero if no auto-fill/fit track was specified)
 | ||
|    */
 | ||
|   uint32_t InitRepeatTracks(const nsStyleCoord& aGridGap, nscoord aMinSize,
 | ||
|                             nscoord aSize, nscoord aMaxSize)
 | ||
|   {
 | ||
|     uint32_t repeatTracks =
 | ||
|       CalculateRepeatFillCount(aGridGap, aMinSize, aSize, aMaxSize);
 | ||
|     SetNumRepeatTracks(repeatTracks);
 | ||
|     // Blank out the removed flags for each of these tracks.
 | ||
|     mRemovedRepeatTracks.SetLength(repeatTracks);
 | ||
|     for (auto& track : mRemovedRepeatTracks) {
 | ||
|       track = false;
 | ||
|     }
 | ||
|     return repeatTracks;
 | ||
|   }
 | ||
| 
 | ||
|   uint32_t CalculateRepeatFillCount(const nsStyleCoord& aGridGap,
 | ||
|                                     nscoord aMinSize,
 | ||
|                                     nscoord aSize,
 | ||
|                                     nscoord aMaxSize) const
 | ||
|   {
 | ||
|     if (!mHasRepeatAuto) {
 | ||
|       return 0;
 | ||
|     }
 | ||
|     // Spec quotes are from https://drafts.csswg.org/css-grid/#repeat-notation
 | ||
|     const uint32_t numTracks = mMinSizingFunctions.Length();
 | ||
|     MOZ_ASSERT(numTracks >= 1, "expected at least the repeat() track");
 | ||
|     nscoord maxFill = aSize != NS_UNCONSTRAINEDSIZE ? aSize : aMaxSize;
 | ||
|     if (maxFill == NS_UNCONSTRAINEDSIZE && aMinSize == 0) {
 | ||
|       // "Otherwise, the specified track list repeats only once."
 | ||
|       return 1;
 | ||
|     }
 | ||
|     nscoord repeatTrackSize = 0;
 | ||
|     // Note that the repeat() track size is included in |sum| in this loop.
 | ||
|     nscoord sum = 0;
 | ||
|     const nscoord percentBasis = aSize;
 | ||
|     for (uint32_t i = 0; i < numTracks; ++i) {
 | ||
|       // "treating each track as its max track sizing function if that is
 | ||
|       // definite or as its minimum track sizing function otherwise"
 | ||
|       // https://drafts.csswg.org/css-grid/#valdef-repeat-auto-fill
 | ||
|       const auto& maxCoord = mMaxSizingFunctions[i];
 | ||
|       const auto* coord = &maxCoord;
 | ||
|       if (!coord->IsCoordPercentCalcUnit()) {
 | ||
|         coord = &mMinSizingFunctions[i];
 | ||
|         if (!coord->IsCoordPercentCalcUnit()) {
 | ||
|           return 1;
 | ||
|         }
 | ||
|       }
 | ||
|       nscoord trackSize = ::ResolveToDefiniteSize(*coord, percentBasis);
 | ||
|       if (i == mRepeatAutoStart) {
 | ||
|         if (percentBasis != NS_UNCONSTRAINEDSIZE) {
 | ||
|           // Use a minimum 1px for the repeat() track-size.
 | ||
|           if (trackSize < AppUnitsPerCSSPixel()) {
 | ||
|             trackSize = AppUnitsPerCSSPixel();
 | ||
|           }
 | ||
|         }
 | ||
|         repeatTrackSize = trackSize;
 | ||
|       }
 | ||
|       sum += trackSize;
 | ||
|     }
 | ||
|     nscoord gridGap;
 | ||
|     float percentSum = 0.0f;
 | ||
|     float gridGapPercent;
 | ||
|     ResolvePercentSizeParts(aGridGap, percentBasis, &gridGap, &gridGapPercent);
 | ||
|     if (numTracks > 1) {
 | ||
|       // Add grid-gaps for all the tracks including the repeat() track.
 | ||
|       sum += gridGap * (numTracks - 1);
 | ||
|       percentSum = gridGapPercent * (numTracks - 1);
 | ||
|     }
 | ||
|     // Calculate the max number of tracks that fits without overflow.
 | ||
|     nscoord available = maxFill != NS_UNCONSTRAINEDSIZE ? maxFill : aMinSize;
 | ||
|     nscoord size = nsLayoutUtils::AddPercents(sum, percentSum);
 | ||
|     if (available - size < 0) {
 | ||
|       // "if any number of repetitions would overflow, then 1 repetition"
 | ||
|       return 1;
 | ||
|     }
 | ||
|     uint32_t numRepeatTracks = 1;
 | ||
|     bool exactFit = false;
 | ||
|     while (true) {
 | ||
|       sum += gridGap + repeatTrackSize;
 | ||
|       percentSum += gridGapPercent;
 | ||
|       nscoord newSize = nsLayoutUtils::AddPercents(sum, percentSum);
 | ||
|       if (newSize <= size) {
 | ||
|         // Adding more repeat-tracks won't make forward progress.
 | ||
|         return numRepeatTracks;
 | ||
|       }
 | ||
|       size = newSize;
 | ||
|       nscoord remaining = available - size;
 | ||
|       exactFit = remaining == 0;
 | ||
|       if (remaining >= 0) {
 | ||
|         ++numRepeatTracks;
 | ||
|       }
 | ||
|       if (remaining <= 0) {
 | ||
|         break;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (!exactFit && maxFill == NS_UNCONSTRAINEDSIZE) {
 | ||
|       // "Otherwise, if the grid container has a definite min size in
 | ||
|       // the relevant axis, the number of repetitions is the largest possible
 | ||
|       // positive integer that fulfills that minimum requirement."
 | ||
|       ++numRepeatTracks; // one more to ensure the grid is at least min-size
 | ||
|     }
 | ||
|     // Clamp the number of repeat tracks so that the last line <= kMaxLine.
 | ||
|     // (note that |numTracks| already includes one repeat() track)
 | ||
|     const uint32_t maxRepeatTracks = nsStyleGridLine::kMaxLine - numTracks;
 | ||
|     return std::min(numRepeatTracks, maxRepeatTracks);
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Compute the explicit grid end line number (in a zero-based grid).
 | ||
|    * @param aGridTemplateAreasEnd 'grid-template-areas' end line in this axis
 | ||
|    */
 | ||
|   uint32_t ComputeExplicitGridEnd(uint32_t aGridTemplateAreasEnd)
 | ||
|   {
 | ||
|     uint32_t end = NumExplicitTracks() + 1;
 | ||
|     end = std::max(end, aGridTemplateAreasEnd);
 | ||
|     end = std::min(end, uint32_t(nsStyleGridLine::kMaxLine));
 | ||
|     return end;
 | ||
|   }
 | ||
| 
 | ||
|   const nsStyleCoord& MinSizingFor(uint32_t aTrackIndex) const
 | ||
|   {
 | ||
|     if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
 | ||
|       return mAutoMinSizing;
 | ||
|     }
 | ||
|     uint32_t index = aTrackIndex - mExplicitGridOffset;
 | ||
|     if (index >= mRepeatAutoStart) {
 | ||
|       if (index < mRepeatAutoEnd) {
 | ||
|         return mMinSizingFunctions[mRepeatAutoStart];
 | ||
|       }
 | ||
|       index -= mRepeatEndDelta;
 | ||
|     }
 | ||
|     return index < mMinSizingFunctions.Length() ?
 | ||
|       mMinSizingFunctions[index] : mAutoMinSizing;
 | ||
|   }
 | ||
|   const nsStyleCoord& MaxSizingFor(uint32_t aTrackIndex) const
 | ||
|   {
 | ||
|     if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
 | ||
|       return mAutoMaxSizing;
 | ||
|     }
 | ||
|     uint32_t index = aTrackIndex - mExplicitGridOffset;
 | ||
|     if (index >= mRepeatAutoStart) {
 | ||
|       if (index < mRepeatAutoEnd) {
 | ||
|         return mMaxSizingFunctions[mRepeatAutoStart];
 | ||
|       }
 | ||
|       index -= mRepeatEndDelta;
 | ||
|     }
 | ||
|     return index < mMaxSizingFunctions.Length() ?
 | ||
|       mMaxSizingFunctions[index] : mAutoMaxSizing;
 | ||
|   }
 | ||
|   uint32_t NumExplicitTracks() const
 | ||
|   {
 | ||
|     return mMinSizingFunctions.Length() + mRepeatEndDelta;
 | ||
|   }
 | ||
|   uint32_t NumRepeatTracks() const
 | ||
|   {
 | ||
|     return mRepeatAutoEnd - mRepeatAutoStart;
 | ||
|   }
 | ||
|   void SetNumRepeatTracks(uint32_t aNumRepeatTracks)
 | ||
|   {
 | ||
|     MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0);
 | ||
|     mRepeatAutoEnd = mRepeatAutoStart + aNumRepeatTracks;
 | ||
|     mRepeatEndDelta = mHasRepeatAuto ?
 | ||
|                         int32_t(aNumRepeatTracks) - 1 :
 | ||
|                         0;
 | ||
| }
 | ||
| 
 | ||
|   // Some style data references, for easy access.
 | ||
|   const nsTArray<nsStyleCoord>& mMinSizingFunctions;
 | ||
|   const nsTArray<nsStyleCoord>& mMaxSizingFunctions;
 | ||
|   const nsStyleCoord& mAutoMinSizing;
 | ||
|   const nsStyleCoord& mAutoMaxSizing;
 | ||
|   // Offset from the start of the implicit grid to the first explicit track.
 | ||
|   uint32_t mExplicitGridOffset;
 | ||
|   // The index of the repeat(auto-fill/fit) track, or zero if there is none.
 | ||
|   // Relative to mExplicitGridOffset (repeat tracks are explicit by definition).
 | ||
|   const uint32_t mRepeatAutoStart;
 | ||
|   // The (hypothetical) index of the last such repeat() track.
 | ||
|   uint32_t mRepeatAutoEnd;
 | ||
|   // The difference between mExplicitGridEnd and mMinSizingFunctions.Length().
 | ||
|   int32_t mRepeatEndDelta;
 | ||
|   // True if there is a specified repeat(auto-fill/fit) track.
 | ||
|   const bool mHasRepeatAuto;
 | ||
|   // True if this track (relative to mRepeatAutoStart) is a removed auto-fit.
 | ||
|   // Indexed relative to mExplicitGridOffset + mRepeatAutoStart.
 | ||
|   nsTArray<bool> mRemovedRepeatTracks;
 | ||
| };
 | ||
| 
 | ||
| /**
 | ||
|  * State for the tracks in one dimension.
 | ||
|  */
 | ||
| struct nsGridContainerFrame::Tracks
 | ||
| {
 | ||
|   explicit Tracks(LogicalAxis aAxis)
 | ||
|     : mStateUnion(TrackSize::StateBits(0))
 | ||
|     , mAxis(aAxis)
 | ||
|     , mCanResolveLineRangeSize(false)
 | ||
|   {
 | ||
|     mBaselineSubtreeAlign[BaselineSharingGroup::eFirst] = NS_STYLE_ALIGN_AUTO;
 | ||
|     mBaselineSubtreeAlign[BaselineSharingGroup::eLast] = NS_STYLE_ALIGN_AUTO;
 | ||
|     mBaseline[BaselineSharingGroup::eFirst] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|     mBaseline[BaselineSharingGroup::eLast] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   }
 | ||
| 
 | ||
|   void Initialize(const TrackSizingFunctions& aFunctions,
 | ||
|                   const nsStyleCoord&         aGridGap,
 | ||
|                   uint32_t                    aNumTracks,
 | ||
|                   nscoord                     aContentBoxSize);
 | ||
| 
 | ||
|   /**
 | ||
|    * Return the union of the state bits for the tracks in aRange.
 | ||
|    */
 | ||
|    TrackSize::StateBits StateBitsForRange(const LineRange& aRange) const;
 | ||
| 
 | ||
|   // Some data we collect for aligning baseline-aligned items.
 | ||
|   struct ItemBaselineData
 | ||
|   {
 | ||
|     uint32_t mBaselineTrack;
 | ||
|     nscoord mBaseline;
 | ||
|     nscoord mSize;
 | ||
|     GridItemInfo* mGridItem;
 | ||
|     static bool IsBaselineTrackLessThan(const ItemBaselineData& a,
 | ||
|                                         const ItemBaselineData& b)
 | ||
|     {
 | ||
|       return a.mBaselineTrack < b.mBaselineTrack;
 | ||
|     }
 | ||
|   };
 | ||
| 
 | ||
|   /**
 | ||
|    * Calculate baseline offsets for the given set of items.
 | ||
|    * Helper for InitialzeItemBaselines.
 | ||
|    */
 | ||
|   void CalculateItemBaselines(nsTArray<ItemBaselineData>& aBaselineItems,
 | ||
|                               BaselineSharingGroup aBaselineGroup);
 | ||
| 
 | ||
|   /**
 | ||
|    * Initialize grid item baseline state and offsets.
 | ||
|    */
 | ||
|   void InitializeItemBaselines(GridReflowInput&        aState,
 | ||
|                                nsTArray<GridItemInfo>& aGridItems);
 | ||
| 
 | ||
|   /**
 | ||
|    * Apply the additional alignment needed to align the baseline-aligned subtree
 | ||
|    * the item belongs to within its baseline track.
 | ||
|    */
 | ||
|   void AlignBaselineSubtree(const GridItemInfo& aGridItem) const;
 | ||
| 
 | ||
|   enum class TrackSizingPhase
 | ||
|   {
 | ||
|     eIntrinsicMinimums,
 | ||
|     eContentBasedMinimums,
 | ||
|     eMaxContentMinimums,
 | ||
|     eIntrinsicMaximums,
 | ||
|     eMaxContentMaximums,
 | ||
|   };
 | ||
| 
 | ||
|   // Some data we collect on each item for Step 2 of the Track Sizing Algorithm
 | ||
|   // in ResolveIntrinsicSize below.
 | ||
|   struct Step2ItemData final
 | ||
|   {
 | ||
|     uint32_t mSpan;
 | ||
|     TrackSize::StateBits mState;
 | ||
|     LineRange mLineRange;
 | ||
|     nscoord mMinSize;
 | ||
|     nscoord mMinContentContribution;
 | ||
|     nscoord mMaxContentContribution;
 | ||
|     nsIFrame* mFrame;
 | ||
|     static bool IsSpanLessThan(const Step2ItemData& a, const Step2ItemData& b)
 | ||
|     {
 | ||
|       return a.mSpan < b.mSpan;
 | ||
|     }
 | ||
| 
 | ||
|     template<TrackSizingPhase phase>
 | ||
|     nscoord SizeContributionForPhase() const
 | ||
|     {
 | ||
|       switch (phase) {
 | ||
|         case TrackSizingPhase::eIntrinsicMinimums:
 | ||
|         case TrackSizingPhase::eIntrinsicMaximums:
 | ||
|           return mMinSize;
 | ||
|         case TrackSizingPhase::eContentBasedMinimums:
 | ||
|           return mMinContentContribution;
 | ||
|         case TrackSizingPhase::eMaxContentMinimums:
 | ||
|         case TrackSizingPhase::eMaxContentMaximums:
 | ||
|           return mMaxContentContribution;
 | ||
|       }
 | ||
|       MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
 | ||
|     }
 | ||
|   };
 | ||
| 
 | ||
|   using FitContentClamper =
 | ||
|     std::function<bool(uint32_t aTrack, nscoord aMinSize, nscoord* aSize)>;
 | ||
| 
 | ||
|   // Helper method for ResolveIntrinsicSize.
 | ||
|   template<TrackSizingPhase phase>
 | ||
|   bool GrowSizeForSpanningItems(nsTArray<Step2ItemData>::iterator aIter,
 | ||
|                                 const nsTArray<Step2ItemData>::iterator aEnd,
 | ||
|                                 nsTArray<uint32_t>& aTracks,
 | ||
|                                 nsTArray<TrackSize>& aPlan,
 | ||
|                                 nsTArray<TrackSize>& aItemPlan,
 | ||
|                                 TrackSize::StateBits aSelector,
 | ||
|                                 const FitContentClamper& aClamper = nullptr,
 | ||
|                                 bool aNeedInfinitelyGrowableFlag = false);
 | ||
|   /**
 | ||
|    * Resolve Intrinsic Track Sizes.
 | ||
|    * http://dev.w3.org/csswg/css-grid/#algo-content
 | ||
|    */
 | ||
|   void ResolveIntrinsicSize(GridReflowInput&            aState,
 | ||
|                             nsTArray<GridItemInfo>&     aGridItems,
 | ||
|                             const TrackSizingFunctions& aFunctions,
 | ||
|                             LineRange GridArea::*       aRange,
 | ||
|                             nscoord                     aPercentageBasis,
 | ||
|                             SizingConstraint            aConstraint);
 | ||
| 
 | ||
|   /**
 | ||
|    * Helper for ResolveIntrinsicSize.  It implements step 1 "size tracks to fit
 | ||
|    * non-spanning items" in the spec.  Return true if the track has a <flex>
 | ||
|    * max-sizing function, false otherwise.
 | ||
|    */
 | ||
|   bool ResolveIntrinsicSizeStep1(GridReflowInput&            aState,
 | ||
|                                  const TrackSizingFunctions& aFunctions,
 | ||
|                                  nscoord                     aPercentageBasis,
 | ||
|                                  SizingConstraint            aConstraint,
 | ||
|                                  const LineRange&            aRange,
 | ||
|                                  const GridItemInfo&         aGridItem);
 | ||
| 
 | ||
|   // Helper method that returns the track size to use in §11.5.1.2
 | ||
|   // https://drafts.csswg.org/css-grid/#extra-space
 | ||
|   template<TrackSizingPhase phase> static
 | ||
|   nscoord StartSizeInDistribution(const TrackSize& aSize)
 | ||
|   {
 | ||
|     switch (phase) {
 | ||
|       case TrackSizingPhase::eIntrinsicMinimums:
 | ||
|       case TrackSizingPhase::eContentBasedMinimums:
 | ||
|       case TrackSizingPhase::eMaxContentMinimums:
 | ||
|         return aSize.mBase;
 | ||
|       case TrackSizingPhase::eIntrinsicMaximums:
 | ||
|       case TrackSizingPhase::eMaxContentMaximums:
 | ||
|         if (aSize.mLimit == NS_UNCONSTRAINEDSIZE) {
 | ||
|           return aSize.mBase;
 | ||
|         }
 | ||
|         return aSize.mLimit;
 | ||
|     }
 | ||
|     MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Collect the tracks which are growable (matching aSelector) into
 | ||
|    * aGrowableTracks, and return the amount of space that can be used
 | ||
|    * to grow those tracks.  This method implements CSS Grid §11.5.1.2.
 | ||
|    * https://drafts.csswg.org/css-grid/#extra-space
 | ||
|    */
 | ||
|   template<TrackSizingPhase phase>
 | ||
|   nscoord CollectGrowable(nscoord              aAvailableSpace,
 | ||
|                           const LineRange&     aRange,
 | ||
|                           TrackSize::StateBits aSelector,
 | ||
|                           nsTArray<uint32_t>&  aGrowableTracks) const
 | ||
|   {
 | ||
|     MOZ_ASSERT(aAvailableSpace > 0, "why call me?");
 | ||
|     nscoord space = aAvailableSpace - mGridGap * (aRange.Extent() - 1);
 | ||
|     for (auto i : aRange.Range()) {
 | ||
|       const TrackSize& sz = mSizes[i];
 | ||
|       space -= StartSizeInDistribution<phase>(sz);
 | ||
|       if (space <= 0) {
 | ||
|         return 0;
 | ||
|       }
 | ||
|       if (sz.mState & aSelector) {
 | ||
|         aGrowableTracks.AppendElement(i);
 | ||
|       }
 | ||
|     }
 | ||
|     return aGrowableTracks.IsEmpty() ? 0 : space;
 | ||
|   }
 | ||
| 
 | ||
|   template<TrackSizingPhase phase>
 | ||
|   void InitializeItemPlan(nsTArray<TrackSize>&      aItemPlan,
 | ||
|                           const nsTArray<uint32_t>& aTracks) const
 | ||
|   {
 | ||
|     for (uint32_t track : aTracks) {
 | ||
|       auto& plan = aItemPlan[track];
 | ||
|       const TrackSize& sz = mSizes[track];
 | ||
|       plan.mBase = StartSizeInDistribution<phase>(sz);
 | ||
|       bool unlimited = sz.mState & TrackSize::eInfinitelyGrowable;
 | ||
|       plan.mLimit = unlimited ? NS_UNCONSTRAINEDSIZE : sz.mLimit;
 | ||
|       plan.mState = sz.mState;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   template<TrackSizingPhase phase>
 | ||
|   void InitializePlan(nsTArray<TrackSize>& aPlan) const
 | ||
|   {
 | ||
|     for (size_t i = 0, len = aPlan.Length(); i < len; ++i) {
 | ||
|       auto& plan = aPlan[i];
 | ||
|       const auto& sz = mSizes[i];
 | ||
|       plan.mBase = StartSizeInDistribution<phase>(sz);
 | ||
|       MOZ_ASSERT(phase == TrackSizingPhase::eMaxContentMaximums ||
 | ||
|                  !(sz.mState & TrackSize::eInfinitelyGrowable),
 | ||
|                  "forgot to reset the eInfinitelyGrowable bit?");
 | ||
|       plan.mState = sz.mState;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   template<TrackSizingPhase phase>
 | ||
|   void CopyPlanToSize(const nsTArray<TrackSize>& aPlan,
 | ||
|                       bool aNeedInfinitelyGrowableFlag = false)
 | ||
|   {
 | ||
|     for (size_t i = 0, len = mSizes.Length(); i < len; ++i) {
 | ||
|       const auto& plan = aPlan[i];
 | ||
|       MOZ_ASSERT(plan.mBase >= 0);
 | ||
|       auto& sz = mSizes[i];
 | ||
|       switch (phase) {
 | ||
|         case TrackSizingPhase::eIntrinsicMinimums:
 | ||
|         case TrackSizingPhase::eContentBasedMinimums:
 | ||
|         case TrackSizingPhase::eMaxContentMinimums:
 | ||
|           sz.mBase = plan.mBase;
 | ||
|           break;
 | ||
|         case TrackSizingPhase::eIntrinsicMaximums:
 | ||
|           if (plan.mState & TrackSize::eModified) {
 | ||
|             if (sz.mLimit == NS_UNCONSTRAINEDSIZE &&
 | ||
|                 aNeedInfinitelyGrowableFlag) {
 | ||
|               sz.mState |= TrackSize::eInfinitelyGrowable;
 | ||
|             }
 | ||
|             sz.mLimit = plan.mBase;
 | ||
|           }
 | ||
|           break;
 | ||
|         case TrackSizingPhase::eMaxContentMaximums:
 | ||
|           if (plan.mState & TrackSize::eModified) {
 | ||
|             sz.mLimit = plan.mBase;
 | ||
|           }
 | ||
|           sz.mState &= ~TrackSize::eInfinitelyGrowable;
 | ||
|           break;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Grow the planned size for tracks in aGrowableTracks up to their limit
 | ||
|    * and then freeze them (all aGrowableTracks must be unfrozen on entry).
 | ||
|    * Subtract the space added from aAvailableSpace and return that.
 | ||
|    */
 | ||
|   nscoord GrowTracksToLimit(nscoord                   aAvailableSpace,
 | ||
|                             nsTArray<TrackSize>&      aPlan,
 | ||
|                             const nsTArray<uint32_t>& aGrowableTracks,
 | ||
|                             const FitContentClamper&  aFitContentClamper) const
 | ||
|   {
 | ||
|     MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0);
 | ||
|     nscoord space = aAvailableSpace;
 | ||
|     uint32_t numGrowable = aGrowableTracks.Length();
 | ||
|     while (true) {
 | ||
|       nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
 | ||
|       for (uint32_t track : aGrowableTracks) {
 | ||
|         TrackSize& sz = aPlan[track];
 | ||
|         if (sz.IsFrozen()) {
 | ||
|           continue;
 | ||
|         }
 | ||
|         nscoord newBase = sz.mBase + spacePerTrack;
 | ||
|         nscoord limit = sz.mLimit;
 | ||
|         if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
 | ||
|                          aFitContentClamper)) {
 | ||
|           // Clamp the limit to the fit-content() size, for §12.5.2 step 5/6.
 | ||
|           aFitContentClamper(track, sz.mBase, &limit);
 | ||
|         }
 | ||
|         if (newBase > limit) {
 | ||
|           nscoord consumed = limit - sz.mBase;
 | ||
|           if (consumed > 0) {
 | ||
|             space -= consumed;
 | ||
|             sz.mBase = limit;
 | ||
|           }
 | ||
|           sz.mState |= TrackSize::eFrozen;
 | ||
|           if (--numGrowable == 0) {
 | ||
|             return space;
 | ||
|           }
 | ||
|         } else {
 | ||
|           sz.mBase = newBase;
 | ||
|           space -= spacePerTrack;
 | ||
|         }
 | ||
|         MOZ_ASSERT(space >= 0);
 | ||
|         if (space == 0) {
 | ||
|           return 0;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return");
 | ||
|     return 0;
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Helper for GrowSelectedTracksUnlimited.  For the set of tracks (S) that
 | ||
|    * match aMinSizingSelector: if a track in S doesn't match aMaxSizingSelector
 | ||
|    * then mark it with aSkipFlag.  If all tracks in S were marked then unmark
 | ||
|    * them.  Return aNumGrowable minus the number of tracks marked.  It is
 | ||
|    * assumed that aPlan have no aSkipFlag set for tracks in aGrowableTracks
 | ||
|    * on entry to this method.
 | ||
|    */
 | ||
|    static uint32_t
 | ||
|    MarkExcludedTracks(nsTArray<TrackSize>&      aPlan,
 | ||
|                       uint32_t                  aNumGrowable,
 | ||
|                       const nsTArray<uint32_t>& aGrowableTracks,
 | ||
|                       TrackSize::StateBits      aMinSizingSelector,
 | ||
|                       TrackSize::StateBits      aMaxSizingSelector,
 | ||
|                       TrackSize::StateBits      aSkipFlag)
 | ||
|   {
 | ||
|     bool foundOneSelected = false;
 | ||
|     bool foundOneGrowable = false;
 | ||
|     uint32_t numGrowable = aNumGrowable;
 | ||
|     for (uint32_t track : aGrowableTracks) {
 | ||
|       TrackSize& sz = aPlan[track];
 | ||
|       const auto state = sz.mState;
 | ||
|       if (state & aMinSizingSelector) {
 | ||
|         foundOneSelected = true;
 | ||
|         if (state & aMaxSizingSelector) {
 | ||
|           foundOneGrowable = true;
 | ||
|           continue;
 | ||
|         }
 | ||
|         sz.mState |= aSkipFlag;
 | ||
|         MOZ_ASSERT(numGrowable != 0);
 | ||
|         --numGrowable;
 | ||
|       }
 | ||
|     }
 | ||
|     // 12.5 "if there are no such tracks, then all affected tracks"
 | ||
|     if (foundOneSelected && !foundOneGrowable) {
 | ||
|       for (uint32_t track : aGrowableTracks) {
 | ||
|         aPlan[track].mState &= ~aSkipFlag;
 | ||
|       }
 | ||
|       numGrowable = aNumGrowable;
 | ||
|     }
 | ||
|     return numGrowable;
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Mark all tracks in aGrowableTracks with an eSkipGrowUnlimited bit if
 | ||
|    * they *shouldn't* grow unlimited in §11.5.1.2.3 "Distribute space beyond
 | ||
|    * growth limits" https://drafts.csswg.org/css-grid/#extra-space
 | ||
|    * Return the number of tracks that are still growable.
 | ||
|    */
 | ||
|   template<TrackSizingPhase phase>
 | ||
|   static uint32_t
 | ||
|   MarkExcludedTracks(nsTArray<TrackSize>&      aPlan,
 | ||
|                      const nsTArray<uint32_t>& aGrowableTracks,
 | ||
|                      TrackSize::StateBits      aSelector)
 | ||
|   {
 | ||
|     uint32_t numGrowable = aGrowableTracks.Length();
 | ||
|     if (phase == TrackSizingPhase::eIntrinsicMaximums ||
 | ||
|         phase == TrackSizingPhase::eMaxContentMaximums) {
 | ||
|       // "when handling any intrinsic growth limit: all affected tracks"
 | ||
|       return numGrowable;
 | ||
|     }
 | ||
|     MOZ_ASSERT(aSelector == (aSelector & TrackSize::eIntrinsicMinSizing) &&
 | ||
|                             (aSelector & TrackSize::eMaxContentMinSizing),
 | ||
|                "Should only get here for track sizing steps 2.1 to 2.3");
 | ||
|     // Note that eMaxContentMinSizing is always included. We do those first:
 | ||
|     numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks,
 | ||
|                                      TrackSize::eMaxContentMinSizing,
 | ||
|                                      TrackSize::eMaxContentMaxSizing,
 | ||
|                                      TrackSize::eSkipGrowUnlimited1);
 | ||
|     // Now mark min-content/auto min-sizing tracks if requested.
 | ||
|     auto minOrAutoSelector = aSelector & ~TrackSize::eMaxContentMinSizing;
 | ||
|     if (minOrAutoSelector) {
 | ||
|       numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks,
 | ||
|                                        minOrAutoSelector,
 | ||
|                                        TrackSize::eIntrinsicMaxSizing,
 | ||
|                                        TrackSize::eSkipGrowUnlimited2);
 | ||
|     }
 | ||
|     return numGrowable;
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Increase the planned size for tracks in aGrowableTracks that aren't
 | ||
|    * marked with a eSkipGrowUnlimited flag beyond their limit.
 | ||
|    * This implements the "Distribute space beyond growth limits" step in
 | ||
|    * https://drafts.csswg.org/css-grid/#distribute-extra-space
 | ||
|    */
 | ||
|   void GrowSelectedTracksUnlimited(nscoord                   aAvailableSpace,
 | ||
|                                    nsTArray<TrackSize>&      aPlan,
 | ||
|                                    const nsTArray<uint32_t>& aGrowableTracks,
 | ||
|                                    uint32_t                  aNumGrowable,
 | ||
|                                    const FitContentClamper&  aFitContentClamper) const
 | ||
|   {
 | ||
|     MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0 &&
 | ||
|                aNumGrowable <= aGrowableTracks.Length());
 | ||
|     nscoord space = aAvailableSpace;
 | ||
|     DebugOnly<bool> didClamp = false;
 | ||
|     while (aNumGrowable) {
 | ||
|       nscoord spacePerTrack = std::max<nscoord>(space / aNumGrowable, 1);
 | ||
|       for (uint32_t track : aGrowableTracks) {
 | ||
|         TrackSize& sz = aPlan[track];
 | ||
|         if (sz.mState & TrackSize::eSkipGrowUnlimited) {
 | ||
|           continue; // an excluded track
 | ||
|         }
 | ||
|         nscoord delta = spacePerTrack;
 | ||
|         nscoord newBase = sz.mBase + delta;
 | ||
|         if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
 | ||
|                          aFitContentClamper)) {
 | ||
|           // Clamp newBase to the fit-content() size, for §12.5.2 step 5/6.
 | ||
|           if (aFitContentClamper(track, sz.mBase, &newBase)) {
 | ||
|             didClamp = true;
 | ||
|             delta = newBase - sz.mBase;
 | ||
|             MOZ_ASSERT(delta >= 0, "track size shouldn't shrink");
 | ||
|             sz.mState |= TrackSize::eSkipGrowUnlimited1;
 | ||
|             --aNumGrowable;
 | ||
|           }
 | ||
|         }
 | ||
|         sz.mBase = newBase;
 | ||
|         space -= delta;
 | ||
|         MOZ_ASSERT(space >= 0);
 | ||
|         if (space == 0) {
 | ||
|           return;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     MOZ_ASSERT(didClamp, "we don't exit the loop above except by return, "
 | ||
|                          "unless we clamped some track's size");
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Distribute aAvailableSpace to the planned base size for aGrowableTracks
 | ||
|    * up to their limits, then distribute the remaining space beyond the limits.
 | ||
|    */
 | ||
|   template<TrackSizingPhase phase>
 | ||
|   void DistributeToTrackSizes(nscoord              aAvailableSpace,
 | ||
|                               nsTArray<TrackSize>& aPlan,
 | ||
|                               nsTArray<TrackSize>& aItemPlan,
 | ||
|                               nsTArray<uint32_t>&  aGrowableTracks,
 | ||
|                               TrackSize::StateBits aSelector,
 | ||
|                               const FitContentClamper& aFitContentClamper)
 | ||
|   {
 | ||
|     InitializeItemPlan<phase>(aItemPlan, aGrowableTracks);
 | ||
|     nscoord space = GrowTracksToLimit(aAvailableSpace, aItemPlan, aGrowableTracks,
 | ||
|                                       aFitContentClamper);
 | ||
|     if (space > 0) {
 | ||
|       uint32_t numGrowable =
 | ||
|         MarkExcludedTracks<phase>(aItemPlan, aGrowableTracks, aSelector);
 | ||
|       GrowSelectedTracksUnlimited(space, aItemPlan, aGrowableTracks,
 | ||
|                                   numGrowable, aFitContentClamper);
 | ||
|     }
 | ||
|     for (uint32_t track : aGrowableTracks) {
 | ||
|       nscoord& plannedSize = aPlan[track].mBase;
 | ||
|       nscoord itemIncurredSize = aItemPlan[track].mBase;
 | ||
|       if (plannedSize < itemIncurredSize) {
 | ||
|         plannedSize = itemIncurredSize;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Distribute aAvailableSize to the tracks.  This implements 12.6 at:
 | ||
|    * http://dev.w3.org/csswg/css-grid/#algo-grow-tracks
 | ||
|    */
 | ||
|   void DistributeFreeSpace(nscoord aAvailableSize)
 | ||
|   {
 | ||
|     const uint32_t numTracks = mSizes.Length();
 | ||
|     if (MOZ_UNLIKELY(numTracks == 0 || aAvailableSize <= 0)) {
 | ||
|       return;
 | ||
|     }
 | ||
|     if (aAvailableSize == NS_UNCONSTRAINEDSIZE) {
 | ||
|       for (TrackSize& sz : mSizes) {
 | ||
|         sz.mBase = sz.mLimit;
 | ||
|       }
 | ||
|     } else {
 | ||
|       // Compute free space and count growable tracks.
 | ||
|       nscoord space = aAvailableSize;
 | ||
|       uint32_t numGrowable = numTracks;
 | ||
|       for (const TrackSize& sz : mSizes) {
 | ||
|         space -= sz.mBase;
 | ||
|         MOZ_ASSERT(sz.mBase <= sz.mLimit);
 | ||
|         if (sz.mBase == sz.mLimit) {
 | ||
|           --numGrowable;
 | ||
|         }
 | ||
|       }
 | ||
|       // Distribute the free space evenly to the growable tracks. If not exactly
 | ||
|       // divisable the remainder is added to the leading tracks.
 | ||
|       while (space > 0 && numGrowable) {
 | ||
|         nscoord spacePerTrack =
 | ||
|           std::max<nscoord>(space / numGrowable, 1);
 | ||
|         for (uint32_t i = 0; i < numTracks && space > 0; ++i) {
 | ||
|           TrackSize& sz = mSizes[i];
 | ||
|           if (sz.mBase == sz.mLimit) {
 | ||
|             continue;
 | ||
|           }
 | ||
|           nscoord newBase = sz.mBase + spacePerTrack;
 | ||
|           if (newBase >= sz.mLimit) {
 | ||
|             space -= sz.mLimit - sz.mBase;
 | ||
|             sz.mBase = sz.mLimit;
 | ||
|             --numGrowable;
 | ||
|           } else {
 | ||
|             space -= spacePerTrack;
 | ||
|             sz.mBase = newBase;
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Implements "12.7.1. Find the Size of an 'fr'".
 | ||
|    * http://dev.w3.org/csswg/css-grid/#algo-find-fr-size
 | ||
|    * (The returned value is a 'nscoord' divided by a factor - a floating type
 | ||
|    * is used to avoid intermediary rounding errors.)
 | ||
|    */
 | ||
|   float FindFrUnitSize(const LineRange&            aRange,
 | ||
|                        const nsTArray<uint32_t>&   aFlexTracks,
 | ||
|                        const TrackSizingFunctions& aFunctions,
 | ||
|                        nscoord                     aSpaceToFill) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Implements the "find the used flex fraction" part of StretchFlexibleTracks.
 | ||
|    * (The returned value is a 'nscoord' divided by a factor - a floating type
 | ||
|    * is used to avoid intermediary rounding errors.)
 | ||
|    */
 | ||
|   float FindUsedFlexFraction(GridReflowInput&            aState,
 | ||
|                              nsTArray<GridItemInfo>&     aGridItems,
 | ||
|                              const nsTArray<uint32_t>&   aFlexTracks,
 | ||
|                              const TrackSizingFunctions& aFunctions,
 | ||
|                              nscoord                     aAvailableSize) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Implements "12.7. Stretch Flexible Tracks"
 | ||
|    * http://dev.w3.org/csswg/css-grid/#algo-flex-tracks
 | ||
|    */
 | ||
|   void StretchFlexibleTracks(GridReflowInput&            aState,
 | ||
|                              nsTArray<GridItemInfo>&     aGridItems,
 | ||
|                              const TrackSizingFunctions& aFunctions,
 | ||
|                              nscoord                     aAvailableSize);
 | ||
| 
 | ||
|   /**
 | ||
|    * Implements "12.3. Track Sizing Algorithm"
 | ||
|    * http://dev.w3.org/csswg/css-grid/#algo-track-sizing
 | ||
|    */
 | ||
|   void CalculateSizes(GridReflowInput&            aState,
 | ||
|                       nsTArray<GridItemInfo>&     aGridItems,
 | ||
|                       const TrackSizingFunctions& aFunctions,
 | ||
|                       nscoord                     aContentSize,
 | ||
|                       LineRange GridArea::*       aRange,
 | ||
|                       SizingConstraint            aConstraint);
 | ||
| 
 | ||
|   /**
 | ||
|    * Apply 'align/justify-content', whichever is relevant for this axis.
 | ||
|    * https://drafts.csswg.org/css-align-3/#propdef-align-content
 | ||
|    */
 | ||
|   void AlignJustifyContent(const nsStylePosition* aStyle,
 | ||
|                            WritingMode            aWM,
 | ||
|                            const LogicalSize&     aContainerSize);
 | ||
| 
 | ||
|   /**
 | ||
|    * Return the intrinsic size by back-computing percentages as:
 | ||
|    * IntrinsicSize = SumOfCoordSizes / (1 - SumOfPercentages).
 | ||
|    */
 | ||
|   nscoord BackComputedIntrinsicSize(const TrackSizingFunctions& aFunctions,
 | ||
|                                     const nsStyleCoord& aGridGap) const;
 | ||
| 
 | ||
|   nscoord GridLineEdge(uint32_t aLine, GridLineSide aSide) const
 | ||
|   {
 | ||
|     if (MOZ_UNLIKELY(mSizes.IsEmpty())) {
 | ||
|       // https://drafts.csswg.org/css-grid/#grid-definition
 | ||
|       // "... the explicit grid still contains one grid line in each axis."
 | ||
|       MOZ_ASSERT(aLine == 0, "We should only resolve line 1 in an empty grid");
 | ||
|       return nscoord(0);
 | ||
|     }
 | ||
|     MOZ_ASSERT(aLine <= mSizes.Length(), "mSizes is too small");
 | ||
|     if (aSide == GridLineSide::eBeforeGridGap) {
 | ||
|       if (aLine == 0) {
 | ||
|         return nscoord(0);
 | ||
|       }
 | ||
|       const TrackSize& sz = mSizes[aLine - 1];
 | ||
|       return sz.mPosition + sz.mBase;
 | ||
|     }
 | ||
|     if (aLine == mSizes.Length()) {
 | ||
|       return mContentBoxSize;
 | ||
|     }
 | ||
|     return mSizes[aLine].mPosition;
 | ||
|   }
 | ||
| 
 | ||
|   nscoord SumOfGridGaps() const
 | ||
|   {
 | ||
|     auto len = mSizes.Length();
 | ||
|     return MOZ_LIKELY(len > 1) ? (len - 1) * mGridGap : 0;
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Break before aRow, i.e. set the eBreakBefore flag on aRow and set the grid
 | ||
|    * gap before aRow to zero (and shift all rows after it by the removed gap).
 | ||
|    */
 | ||
|   void BreakBeforeRow(uint32_t aRow)
 | ||
|   {
 | ||
|     MOZ_ASSERT(mAxis == eLogicalAxisBlock,
 | ||
|                "Should only be fragmenting in the block axis (between rows)");
 | ||
|     nscoord prevRowEndPos = 0;
 | ||
|     if (aRow != 0) {
 | ||
|       auto& prevSz = mSizes[aRow - 1];
 | ||
|       prevRowEndPos = prevSz.mPosition + prevSz.mBase;
 | ||
|     }
 | ||
|     auto& sz = mSizes[aRow];
 | ||
|     const nscoord gap = sz.mPosition - prevRowEndPos;
 | ||
|     sz.mState |= TrackSize::eBreakBefore;
 | ||
|     if (gap != 0) {
 | ||
|       for (uint32_t i = aRow, len = mSizes.Length(); i < len; ++i) {
 | ||
|         mSizes[i].mPosition -= gap;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Set the size of aRow to aSize and adjust the position of all rows after it.
 | ||
|    */
 | ||
|   void ResizeRow(uint32_t aRow, nscoord aNewSize)
 | ||
|   {
 | ||
|     MOZ_ASSERT(mAxis == eLogicalAxisBlock,
 | ||
|                "Should only be fragmenting in the block axis (between rows)");
 | ||
|     MOZ_ASSERT(aNewSize >= 0);
 | ||
|     auto& sz = mSizes[aRow];
 | ||
|     nscoord delta = aNewSize - sz.mBase;
 | ||
|     NS_WARNING_ASSERTION(delta != nscoord(0), "Useless call to ResizeRow");
 | ||
|     sz.mBase = aNewSize;
 | ||
|     const uint32_t numRows = mSizes.Length();
 | ||
|     for (uint32_t r = aRow + 1; r < numRows; ++r) {
 | ||
|       mSizes[r].mPosition += delta;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   nscoord ResolveSize(const LineRange& aRange) const
 | ||
|   {
 | ||
|     MOZ_ASSERT(mCanResolveLineRangeSize);
 | ||
|     MOZ_ASSERT(aRange.Extent() > 0, "grid items cover at least one track");
 | ||
|     nscoord pos, size;
 | ||
|     aRange.ToPositionAndLength(mSizes, &pos, &size);
 | ||
|     return size;
 | ||
|   }
 | ||
| 
 | ||
|   nsTArray<nsString> GetExplicitLineNamesAtIndex(
 | ||
|     const nsStyleGridTemplate& aGridTemplate,
 | ||
|     const TrackSizingFunctions& aFunctions,
 | ||
|     uint32_t aIndex)
 | ||
|   {
 | ||
|     nsTArray<nsString> lineNames;
 | ||
| 
 | ||
|     bool hasRepeatAuto = aGridTemplate.HasRepeatAuto();
 | ||
|     const nsTArray<nsTArray<nsString>>& lineNameLists(
 | ||
|       aGridTemplate.mLineNameLists);
 | ||
| 
 | ||
|     if (!hasRepeatAuto) {
 | ||
|       if (aIndex < lineNameLists.Length()) {
 | ||
|         lineNames.AppendElements(lineNameLists[aIndex]);
 | ||
|       }
 | ||
|     } else {
 | ||
|       const uint32_t repeatTrackCount = aFunctions.NumRepeatTracks();
 | ||
|       const uint32_t repeatAutoStart = aGridTemplate.mRepeatAutoIndex;
 | ||
|       const uint32_t repeatAutoEnd = (repeatAutoStart + repeatTrackCount);
 | ||
|       const int32_t repeatEndDelta = int32_t(repeatTrackCount - 1);
 | ||
| 
 | ||
|       if (aIndex <= repeatAutoStart) {
 | ||
|         if (aIndex < lineNameLists.Length()) {
 | ||
|           lineNames.AppendElements(lineNameLists[aIndex]);
 | ||
|         }
 | ||
|       }
 | ||
|       if (aIndex <= repeatAutoEnd && aIndex > repeatAutoStart) {
 | ||
|         lineNames.AppendElements(aGridTemplate.mRepeatAutoLineNameListAfter);
 | ||
|       }
 | ||
|       if (aIndex < repeatAutoEnd && aIndex >= repeatAutoStart) {
 | ||
|         lineNames.AppendElements(aGridTemplate.mRepeatAutoLineNameListBefore);
 | ||
|       }
 | ||
|       if (aIndex > repeatAutoEnd && aIndex > repeatAutoStart) {
 | ||
|         uint32_t i = aIndex - repeatEndDelta;
 | ||
|         if (i < lineNameLists.Length()) {
 | ||
|           lineNames.AppendElements(lineNameLists[i]);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     return lineNames;
 | ||
|   }
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   void Dump() const
 | ||
|   {
 | ||
|     for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
 | ||
|       printf("  %d: ", i);
 | ||
|       mSizes[i].Dump();
 | ||
|       printf("\n");
 | ||
|     }
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   AutoTArray<TrackSize, 32> mSizes;
 | ||
|   nscoord mContentBoxSize;
 | ||
|   nscoord mGridGap;
 | ||
|   // The first(last)-baseline for the first(last) track in this axis.
 | ||
|   nscoord mBaseline[2]; // index by BaselineSharingGroup
 | ||
|   // The union of the track min/max-sizing state bits in this axis.
 | ||
|   TrackSize::StateBits mStateUnion;
 | ||
|   LogicalAxis mAxis;
 | ||
|   // Used for aligning a baseline-aligned subtree of items.  The only possible
 | ||
|   // values are NS_STYLE_ALIGN_{START,END,CENTER,AUTO}.  AUTO means there are
 | ||
|   // no baseline-aligned items in any track in that axis.
 | ||
|   // There is one alignment value for each BaselineSharingGroup.
 | ||
|   uint8_t mBaselineSubtreeAlign[2];
 | ||
|   // True if track positions and sizes are final in this axis.
 | ||
|   bool mCanResolveLineRangeSize;
 | ||
| };
 | ||
| 
 | ||
| /**
 | ||
|  * Grid data shared by all continuations, owned by the first-in-flow.
 | ||
|  * The data is initialized from the first-in-flow's GridReflowInput at
 | ||
|  * the end of its reflow.  Fragmentation will modify mRows.mSizes -
 | ||
|  * the mPosition to remove the row gap at the break boundary, the mState
 | ||
|  * by setting the eBreakBefore flag, and mBase is modified when we decide
 | ||
|  * to grow a row.  mOriginalRowData is setup by the first-in-flow and
 | ||
|  * not modified after that.  It's used for undoing the changes to mRows.
 | ||
|  * mCols, mGridItems, mAbsPosItems are used for initializing the grid
 | ||
|  * reflow state for continuations, see GridReflowInput::Initialize below.
 | ||
|  */
 | ||
| struct nsGridContainerFrame::SharedGridData
 | ||
| {
 | ||
|   SharedGridData() :
 | ||
|     mCols(eLogicalAxisInline),
 | ||
|     mRows(eLogicalAxisBlock),
 | ||
|     mGenerateComputedGridInfo(false) {}
 | ||
|   Tracks mCols;
 | ||
|   Tracks mRows;
 | ||
|   struct RowData {
 | ||
|     nscoord mBase; // the original track size
 | ||
|     nscoord mGap;  // the original gap before a track
 | ||
|   };
 | ||
|   nsTArray<RowData> mOriginalRowData;
 | ||
|   nsTArray<GridItemInfo> mGridItems;
 | ||
|   nsTArray<GridItemInfo> mAbsPosItems;
 | ||
|   bool mGenerateComputedGridInfo;
 | ||
| 
 | ||
|   /**
 | ||
|    * Only set on the first-in-flow.  Continuations will Initialize() their
 | ||
|    * GridReflowInput from it.
 | ||
|    */
 | ||
|   NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedGridData)
 | ||
| };
 | ||
| 
 | ||
| struct MOZ_STACK_CLASS nsGridContainerFrame::GridReflowInput
 | ||
| {
 | ||
|   GridReflowInput(nsGridContainerFrame*    aFrame,
 | ||
|                   const ReflowInput& aRI)
 | ||
|     : GridReflowInput(aFrame, *aRI.mRenderingContext, &aRI, aRI.mStylePosition,
 | ||
|                       aRI.GetWritingMode())
 | ||
|   {}
 | ||
|   GridReflowInput(nsGridContainerFrame* aFrame,
 | ||
|                   gfxContext&           aRC)
 | ||
|     : GridReflowInput(aFrame, aRC, nullptr, aFrame->StylePosition(),
 | ||
|                       aFrame->GetWritingMode())
 | ||
|   {}
 | ||
| 
 | ||
|   /**
 | ||
|    * Initialize our track sizes and grid item info using the shared
 | ||
|    * state from aGridContainerFrame first-in-flow.
 | ||
|    */
 | ||
|   void InitializeForContinuation(nsGridContainerFrame* aGridContainerFrame,
 | ||
|                                  nscoord               aConsumedBSize)
 | ||
|   {
 | ||
|     MOZ_ASSERT(aGridContainerFrame->GetPrevInFlow(),
 | ||
|                "don't call this on the first-in-flow");
 | ||
|     MOZ_ASSERT(mGridItems.IsEmpty() && mAbsPosItems.IsEmpty(),
 | ||
|                "shouldn't have any item data yet");
 | ||
| 
 | ||
|     // Get the SharedGridData from the first-in-flow. Also calculate the number
 | ||
|     // of fragments before this so that we can figure out our start row below.
 | ||
|     uint32_t fragment = 0;
 | ||
|     nsIFrame* firstInFlow = aGridContainerFrame;
 | ||
|     for (auto pif = aGridContainerFrame->GetPrevInFlow();
 | ||
|          pif; pif = pif->GetPrevInFlow()) {
 | ||
|       ++fragment;
 | ||
|       firstInFlow = pif;
 | ||
|     }
 | ||
|     mSharedGridData = firstInFlow->GetProperty(SharedGridData::Prop());
 | ||
|     MOZ_ASSERT(mSharedGridData, "first-in-flow must have SharedGridData");
 | ||
| 
 | ||
|     // Find the start row for this fragment and undo breaks after that row
 | ||
|     // since the breaks might be different from the last reflow.
 | ||
|     auto& rowSizes = mSharedGridData->mRows.mSizes;
 | ||
|     const uint32_t numRows = rowSizes.Length();
 | ||
|     mStartRow = numRows;
 | ||
|     for (uint32_t row = 0, breakCount = 0; row < numRows; ++row) {
 | ||
|       if (rowSizes[row].mState & TrackSize::eBreakBefore) {
 | ||
|         if (fragment == ++breakCount) {
 | ||
|           mStartRow = row;
 | ||
|           mFragBStart = rowSizes[row].mPosition;
 | ||
|           // Restore the original size for |row| and grid gaps / state after it.
 | ||
|           const auto& origRowData = mSharedGridData->mOriginalRowData;
 | ||
|           rowSizes[row].mBase = origRowData[row].mBase;
 | ||
|           nscoord prevEndPos = rowSizes[row].mPosition + rowSizes[row].mBase;
 | ||
|           while (++row < numRows) {
 | ||
|             auto& sz = rowSizes[row];
 | ||
|             const auto& orig = origRowData[row];
 | ||
|             sz.mPosition = prevEndPos + orig.mGap;
 | ||
|             sz.mBase = orig.mBase;
 | ||
|             sz.mState &= ~TrackSize::eBreakBefore;
 | ||
|             prevEndPos = sz.mPosition + sz.mBase;
 | ||
|           }
 | ||
|           break;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     if (mStartRow == numRows) {
 | ||
|       // All of the grid's rows fit inside of previous grid-container fragments.
 | ||
|       mFragBStart = aConsumedBSize;
 | ||
|     }
 | ||
| 
 | ||
|     // Copy the shared track state.
 | ||
|     // XXX consider temporarily swapping the array elements instead and swapping
 | ||
|     // XXX them back after we're done reflowing, for better performance.
 | ||
|     // XXX (bug 1252002)
 | ||
|     mCols = mSharedGridData->mCols;
 | ||
|     mRows = mSharedGridData->mRows;
 | ||
| 
 | ||
|     // Copy item data from each child's first-in-flow data in mSharedGridData.
 | ||
|     // XXX NOTE: This is O(n^2) in the number of items. (bug 1252186)
 | ||
|     mIter.Reset();
 | ||
|     for (; !mIter.AtEnd(); mIter.Next()) {
 | ||
|       nsIFrame* child = *mIter;
 | ||
|       nsIFrame* childFirstInFlow = child->FirstInFlow();
 | ||
|       DebugOnly<size_t> len = mGridItems.Length();
 | ||
|       for (auto& itemInfo : mSharedGridData->mGridItems) {
 | ||
|         if (itemInfo.mFrame == childFirstInFlow) {
 | ||
|           auto item = mGridItems.AppendElement(GridItemInfo(child, itemInfo.mArea));
 | ||
|           // Copy the item's baseline data so that the item's last fragment can do
 | ||
|           // 'last baseline' alignment if necessary.
 | ||
|           item->mState[0] |= itemInfo.mState[0] & ItemState::eAllBaselineBits;
 | ||
|           item->mState[1] |= itemInfo.mState[1] & ItemState::eAllBaselineBits;
 | ||
|           item->mBaselineOffset[0] = itemInfo.mBaselineOffset[0];
 | ||
|           item->mBaselineOffset[1] = itemInfo.mBaselineOffset[1];
 | ||
|           break;
 | ||
|         }
 | ||
|       }
 | ||
|       MOZ_ASSERT(mGridItems.Length() == len + 1, "can't find GridItemInfo");
 | ||
|     }
 | ||
| 
 | ||
|     // XXX NOTE: This is O(n^2) in the number of abs.pos. items. (bug 1252186)
 | ||
|     nsFrameList absPosChildren(aGridContainerFrame->GetChildList(
 | ||
|                                  aGridContainerFrame->GetAbsoluteListID()));
 | ||
|     for (auto f : absPosChildren) {
 | ||
|       nsIFrame* childFirstInFlow = f->FirstInFlow();
 | ||
|       DebugOnly<size_t> len = mAbsPosItems.Length();
 | ||
|       for (auto& itemInfo : mSharedGridData->mAbsPosItems) {
 | ||
|         if (itemInfo.mFrame == childFirstInFlow) {
 | ||
|           mAbsPosItems.AppendElement(GridItemInfo(f, itemInfo.mArea));
 | ||
|           break;
 | ||
|         }
 | ||
|       }
 | ||
|       MOZ_ASSERT(mAbsPosItems.Length() == len + 1, "can't find GridItemInfo");
 | ||
|     }
 | ||
| 
 | ||
|     // Copy in the computed grid info state bit
 | ||
|     if (mSharedGridData->mGenerateComputedGridInfo) {
 | ||
|       aGridContainerFrame->AddStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Calculate our track sizes.  If the given aContentBox block-axis size is
 | ||
|    * unconstrained, it is assigned to the resulting intrinsic block-axis size.
 | ||
|    */
 | ||
|   void CalculateTrackSizes(const Grid&        aGrid,
 | ||
|                            LogicalSize&       aContentBox,
 | ||
|                            SizingConstraint   aConstraint);
 | ||
| 
 | ||
|   /**
 | ||
|    * Return the percentage basis for a grid item in its writing-mode.
 | ||
|    * If aAxis is eLogicalAxisInline then we return NS_UNCONSTRAINEDSIZE in
 | ||
|    * both axes since we know all track sizes are indefinite at this point
 | ||
|    * (we calculate column sizes before row sizes).  Otherwise, assert that
 | ||
|    * column sizes are known and calculate the size for aGridItem.mArea.mCols
 | ||
|    * and use NS_UNCONSTRAINEDSIZE in the other axis.
 | ||
|    * @param aAxis the axis we're currently calculating track sizes for
 | ||
|    */
 | ||
|   LogicalSize PercentageBasisFor(LogicalAxis aAxis,
 | ||
|                                  const GridItemInfo& aGridItem) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Return the containing block for a grid item occupying aArea.
 | ||
|    */
 | ||
|   LogicalRect ContainingBlockFor(const GridArea& aArea) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Return the containing block for an abs.pos. grid item occupying aArea.
 | ||
|    * Any 'auto' lines in the grid area will be aligned with grid container
 | ||
|    * containing block on that side.
 | ||
|    * @param aGridOrigin the origin of the grid
 | ||
|    * @param aGridCB the grid container containing block (its padding area)
 | ||
|    */
 | ||
|   LogicalRect ContainingBlockForAbsPos(const GridArea&     aArea,
 | ||
|                                        const LogicalPoint& aGridOrigin,
 | ||
|                                        const LogicalRect&  aGridCB) const;
 | ||
| 
 | ||
|   CSSOrderAwareFrameIterator mIter;
 | ||
|   const nsStylePosition* const mGridStyle;
 | ||
|   Tracks mCols;
 | ||
|   Tracks mRows;
 | ||
|   TrackSizingFunctions mColFunctions;
 | ||
|   TrackSizingFunctions mRowFunctions;
 | ||
|   /**
 | ||
|    * Info about each (normal flow) grid item.
 | ||
|    */
 | ||
|   nsTArray<GridItemInfo> mGridItems;
 | ||
|   /**
 | ||
|    * Info about each grid-aligned abs.pos. child.
 | ||
|    */
 | ||
|   nsTArray<GridItemInfo> mAbsPosItems;
 | ||
| 
 | ||
|   /**
 | ||
|    * @note mReflowInput may be null when using the 2nd ctor above. In this case
 | ||
|    * we'll construct a dummy parent reflow state if we need it to calculate
 | ||
|    * min/max-content contributions when sizing tracks.
 | ||
|    */
 | ||
|   const ReflowInput* const mReflowInput;
 | ||
|   gfxContext& mRenderingContext;
 | ||
|   nsGridContainerFrame* const mFrame;
 | ||
|   SharedGridData* mSharedGridData; // [weak] owned by mFrame's first-in-flow.
 | ||
|   /** Computed border+padding with mSkipSides applied. */
 | ||
|   LogicalMargin mBorderPadding;
 | ||
|   /**
 | ||
|    * BStart of this fragment in "grid space" (i.e. the concatenation of content
 | ||
|    * areas of all fragments).  Equal to mRows.mSizes[mStartRow].mPosition,
 | ||
|    * or, if this fragment starts after the last row, the ConsumedBSize().
 | ||
|    */
 | ||
|   nscoord mFragBStart;
 | ||
|   /** The start row for this fragment. */
 | ||
|   uint32_t mStartRow;
 | ||
|   /**
 | ||
|    * The start row for the next fragment, if any.  If mNextFragmentStartRow ==
 | ||
|    * mStartRow then there are no rows in this fragment.
 | ||
|    */
 | ||
|   uint32_t mNextFragmentStartRow;
 | ||
|   /** Our tentative ApplySkipSides bits. */
 | ||
|   LogicalSides mSkipSides;
 | ||
|   const WritingMode mWM;
 | ||
|   /** Initialized lazily, when we find the fragmentainer. */
 | ||
|   bool mInFragmentainer;
 | ||
| 
 | ||
| private:
 | ||
|   GridReflowInput(nsGridContainerFrame*    aFrame,
 | ||
|                   gfxContext&              aRenderingContext,
 | ||
|                   const ReflowInput* aReflowInput,
 | ||
|                   const nsStylePosition*   aGridStyle,
 | ||
|                   const WritingMode&       aWM)
 | ||
|     : mIter(aFrame, kPrincipalList)
 | ||
|     , mGridStyle(aGridStyle)
 | ||
|     , mCols(eLogicalAxisInline)
 | ||
|     , mRows(eLogicalAxisBlock)
 | ||
|     , mColFunctions(mGridStyle->GridTemplateColumns(),
 | ||
|                     mGridStyle->mGridAutoColumnsMin,
 | ||
|                     mGridStyle->mGridAutoColumnsMax)
 | ||
|     , mRowFunctions(mGridStyle->GridTemplateRows(),
 | ||
|                     mGridStyle->mGridAutoRowsMin,
 | ||
|                     mGridStyle->mGridAutoRowsMax)
 | ||
|     , mReflowInput(aReflowInput)
 | ||
|     , mRenderingContext(aRenderingContext)
 | ||
|     , mFrame(aFrame)
 | ||
|     , mSharedGridData(nullptr)
 | ||
|     , mBorderPadding(aWM)
 | ||
|     , mFragBStart(0)
 | ||
|     , mStartRow(0)
 | ||
|     , mNextFragmentStartRow(0)
 | ||
|     , mWM(aWM)
 | ||
|     , mInFragmentainer(false)
 | ||
|   {
 | ||
|     MOZ_ASSERT(!aReflowInput || aReflowInput->mFrame == mFrame);
 | ||
|     if (aReflowInput) {
 | ||
|       mBorderPadding = aReflowInput->ComputedLogicalBorderPadding();
 | ||
|       mSkipSides = aFrame->PreReflowBlockLevelLogicalSkipSides();
 | ||
|       mBorderPadding.ApplySkipSides(mSkipSides);
 | ||
|     }
 | ||
|   }
 | ||
| };
 | ||
| 
 | ||
| using GridReflowInput = nsGridContainerFrame::GridReflowInput;
 | ||
| 
 | ||
| /**
 | ||
|  * The Grid implements grid item placement and the state of the grid -
 | ||
|  * the size of the explicit/implicit grid, which cells are occupied etc.
 | ||
|  */
 | ||
| struct MOZ_STACK_CLASS nsGridContainerFrame::Grid
 | ||
| {
 | ||
|   /**
 | ||
|    * Place all child frames into the grid and expand the (implicit) grid as
 | ||
|    * needed.  The allocated GridAreas are stored in the GridAreaProperty
 | ||
|    * frame property on the child frame.
 | ||
|    * @param aComputedMinSize the container's min-size - used to determine
 | ||
|    *   the number of repeat(auto-fill/fit) tracks.
 | ||
|    * @param aComputedSize the container's size - used to determine
 | ||
|    *   the number of repeat(auto-fill/fit) tracks.
 | ||
|    * @param aComputedMaxSize the container's max-size - used to determine
 | ||
|    *   the number of repeat(auto-fill/fit) tracks.
 | ||
|    */
 | ||
|   void PlaceGridItems(GridReflowInput& aState,
 | ||
|                       const LogicalSize& aComputedMinSize,
 | ||
|                       const LogicalSize& aComputedSize,
 | ||
|                       const LogicalSize& aComputedMaxSize);
 | ||
| 
 | ||
|   /**
 | ||
|    * As above but for an abs.pos. child.  Any 'auto' lines will be represented
 | ||
|    * by kAutoLine in the LineRange result.
 | ||
|    * @param aGridStart the first line in the final, but untranslated grid
 | ||
|    * @param aGridEnd the last line in the final, but untranslated grid
 | ||
|    */
 | ||
|   LineRange ResolveAbsPosLineRange(const nsStyleGridLine& aStart,
 | ||
|                                    const nsStyleGridLine& aEnd,
 | ||
|                                    const LineNameMap& aNameMap,
 | ||
|                                    uint32_t GridNamedArea::* aAreaStart,
 | ||
|                                    uint32_t GridNamedArea::* aAreaEnd,
 | ||
|                                    uint32_t aExplicitGridEnd,
 | ||
|                                    int32_t aGridStart,
 | ||
|                                    int32_t aGridEnd,
 | ||
|                                    const nsStylePosition* aStyle);
 | ||
| 
 | ||
|   /**
 | ||
|    * Return a GridArea for abs.pos. item with non-auto lines placed at
 | ||
|    * a definite line (1-based) with placement errors resolved.  One or both
 | ||
|    * positions may still be 'auto'.
 | ||
|    * @param aChild the abs.pos. grid item to place
 | ||
|    * @param aStyle the StylePosition() for the grid container
 | ||
|    */
 | ||
|   GridArea PlaceAbsPos(nsIFrame* aChild,
 | ||
|                        const LineNameMap& aColLineNameMap,
 | ||
|                        const LineNameMap& aRowLineNameMap,
 | ||
|                        const nsStylePosition* aStyle);
 | ||
| 
 | ||
|   /**
 | ||
|    * Find the first column in row aLockedRow starting at aStartCol where aArea
 | ||
|    * could be placed without overlapping other items.  The returned column may
 | ||
|    * cause aArea to overflow the current implicit grid bounds if placed there.
 | ||
|    */
 | ||
|   uint32_t FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
 | ||
|                        const GridArea* aArea) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Place aArea in the first column (in row aArea->mRows.mStart) starting at
 | ||
|    * aStartCol without overlapping other items.  The resulting aArea may
 | ||
|    * overflow the current implicit grid bounds.
 | ||
|    * Pre-condition: aArea->mRows.IsDefinite() is true.
 | ||
|    * Post-condition: aArea->IsDefinite() is true.
 | ||
|    */
 | ||
|   void PlaceAutoCol(uint32_t aStartCol, GridArea* aArea) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Find the first row in column aLockedCol starting at aStartRow where aArea
 | ||
|    * could be placed without overlapping other items.  The returned row may
 | ||
|    * cause aArea to overflow the current implicit grid bounds if placed there.
 | ||
|    */
 | ||
|   uint32_t FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
 | ||
|                        const GridArea* aArea) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Place aArea in the first row (in column aArea->mCols.mStart) starting at
 | ||
|    * aStartRow without overlapping other items. The resulting aArea may
 | ||
|    * overflow the current implicit grid bounds.
 | ||
|    * Pre-condition: aArea->mCols.IsDefinite() is true.
 | ||
|    * Post-condition: aArea->IsDefinite() is true.
 | ||
|    */
 | ||
|   void PlaceAutoRow(uint32_t aStartRow, GridArea* aArea) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Place aArea in the first column starting at aStartCol,aStartRow without
 | ||
|    * causing it to overlap other items or overflow mGridColEnd.
 | ||
|    * If there's no such column in aStartRow, continue in position 1,aStartRow+1.
 | ||
|    * Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
 | ||
|    * Post-condition: aArea->IsDefinite() is true.
 | ||
|    */
 | ||
|   void PlaceAutoAutoInRowOrder(uint32_t aStartCol,
 | ||
|                                uint32_t aStartRow,
 | ||
|                                GridArea* aArea) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Place aArea in the first row starting at aStartCol,aStartRow without
 | ||
|    * causing it to overlap other items or overflow mGridRowEnd.
 | ||
|    * If there's no such row in aStartCol, continue in position aStartCol+1,1.
 | ||
|    * Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
 | ||
|    * Post-condition: aArea->IsDefinite() is true.
 | ||
|    */
 | ||
|   void PlaceAutoAutoInColOrder(uint32_t aStartCol,
 | ||
|                                uint32_t aStartRow,
 | ||
|                                GridArea* aArea) const;
 | ||
| 
 | ||
|   /**
 | ||
|    * Return aLine if it's inside the aMin..aMax range (inclusive),
 | ||
|    * otherwise return kAutoLine.
 | ||
|    */
 | ||
|   static int32_t
 | ||
|   AutoIfOutside(int32_t aLine, int32_t aMin, int32_t aMax)
 | ||
|   {
 | ||
|     MOZ_ASSERT(aMin <= aMax);
 | ||
|     if (aLine < aMin || aLine > aMax) {
 | ||
|       return kAutoLine;
 | ||
|     }
 | ||
|     return aLine;
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Inflate the implicit grid to include aArea.
 | ||
|    * @param aArea may be definite or auto
 | ||
|    */
 | ||
|   void InflateGridFor(const GridArea& aArea)
 | ||
|   {
 | ||
|     mGridColEnd = std::max(mGridColEnd, aArea.mCols.HypotheticalEnd());
 | ||
|     mGridRowEnd = std::max(mGridRowEnd, aArea.mRows.HypotheticalEnd());
 | ||
|     MOZ_ASSERT(mGridColEnd <= kTranslatedMaxLine &&
 | ||
|                mGridRowEnd <= kTranslatedMaxLine);
 | ||
|   }
 | ||
| 
 | ||
|   enum LineRangeSide {
 | ||
|     eLineRangeSideStart, eLineRangeSideEnd
 | ||
|   };
 | ||
|   /**
 | ||
|    * Return a line number for (non-auto) aLine, per:
 | ||
|    * http://dev.w3.org/csswg/css-grid/#line-placement
 | ||
|    * @param aLine style data for the line (must be non-auto)
 | ||
|    * @param aNth a number of lines to find from aFromIndex, negative if the
 | ||
|    *             search should be in reverse order.  In the case aLine has
 | ||
|    *             a specified line name, it's permitted to pass in zero which
 | ||
|    *             will be treated as one.
 | ||
|    * @param aFromIndex the zero-based index to start counting from
 | ||
|    * @param aLineNameList the explicit named lines
 | ||
|    * @param aAreaStart a pointer to GridNamedArea::mColumnStart/mRowStart
 | ||
|    * @param aAreaEnd a pointer to GridNamedArea::mColumnEnd/mRowEnd
 | ||
|    * @param aExplicitGridEnd the last line in the explicit grid
 | ||
|    * @param aEdge indicates whether we are resolving a start or end line
 | ||
|    * @param aStyle the StylePosition() for the grid container
 | ||
|    * @return a definite line (1-based), clamped to the kMinLine..kMaxLine range
 | ||
|    */
 | ||
|   int32_t ResolveLine(const nsStyleGridLine& aLine,
 | ||
|                       int32_t aNth,
 | ||
|                       uint32_t aFromIndex,
 | ||
|                       const LineNameMap& aNameMap,
 | ||
|                       uint32_t GridNamedArea::* aAreaStart,
 | ||
|                       uint32_t GridNamedArea::* aAreaEnd,
 | ||
|                       uint32_t aExplicitGridEnd,
 | ||
|                       LineRangeSide aSide,
 | ||
|                       const nsStylePosition* aStyle);
 | ||
| 
 | ||
|   /**
 | ||
|    * Helper method for ResolveLineRange.
 | ||
|    * @see ResolveLineRange
 | ||
|    * @return a pair (start,end) of lines
 | ||
|    */
 | ||
|   typedef std::pair<int32_t, int32_t> LinePair;
 | ||
|   LinePair ResolveLineRangeHelper(const nsStyleGridLine& aStart,
 | ||
|                                   const nsStyleGridLine& aEnd,
 | ||
|                                   const LineNameMap& aNameMap,
 | ||
|                                   uint32_t GridNamedArea::* aAreaStart,
 | ||
|                                   uint32_t GridNamedArea::* aAreaEnd,
 | ||
|                                   uint32_t aExplicitGridEnd,
 | ||
|                                   const nsStylePosition* aStyle);
 | ||
| 
 | ||
|   /**
 | ||
|    * Return a LineRange based on the given style data. Non-auto lines
 | ||
|    * are resolved to a definite line number (1-based) per:
 | ||
|    * http://dev.w3.org/csswg/css-grid/#line-placement
 | ||
|    * with placement errors corrected per:
 | ||
|    * http://dev.w3.org/csswg/css-grid/#grid-placement-errors
 | ||
|    * @param aStyle the StylePosition() for the grid container
 | ||
|    * @param aStart style data for the start line
 | ||
|    * @param aEnd style data for the end line
 | ||
|    * @param aLineNameList the explicit named lines
 | ||
|    * @param aAreaStart a pointer to GridNamedArea::mColumnStart/mRowStart
 | ||
|    * @param aAreaEnd a pointer to GridNamedArea::mColumnEnd/mRowEnd
 | ||
|    * @param aExplicitGridEnd the last line in the explicit grid
 | ||
|    * @param aStyle the StylePosition() for the grid container
 | ||
|    */
 | ||
|   LineRange ResolveLineRange(const nsStyleGridLine& aStart,
 | ||
|                              const nsStyleGridLine& aEnd,
 | ||
|                              const LineNameMap& aNameMap,
 | ||
|                              uint32_t GridNamedArea::* aAreaStart,
 | ||
|                              uint32_t GridNamedArea::* aAreaEnd,
 | ||
|                              uint32_t aExplicitGridEnd,
 | ||
|                              const nsStylePosition* aStyle);
 | ||
| 
 | ||
|   /**
 | ||
|    * Return a GridArea with non-auto lines placed at a definite line (1-based)
 | ||
|    * with placement errors resolved.  One or both positions may still
 | ||
|    * be 'auto'.
 | ||
|    * @param aChild the grid item
 | ||
|    * @param aStyle the StylePosition() for the grid container
 | ||
|    */
 | ||
|   GridArea PlaceDefinite(nsIFrame*              aChild,
 | ||
|                          const LineNameMap&     aColLineNameMap,
 | ||
|                          const LineNameMap&     aRowLineNameMap,
 | ||
|                          const nsStylePosition* aStyle);
 | ||
| 
 | ||
|   bool HasImplicitNamedArea(const nsString& aName) const
 | ||
|   {
 | ||
|     return mAreas && mAreas->Contains(aName);
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * A convenience method to lookup a name in 'grid-template-areas'.
 | ||
|    * @param aStyle the StylePosition() for the grid container
 | ||
|    * @return null if not found
 | ||
|    */
 | ||
|   static const css::GridNamedArea*
 | ||
|   FindNamedArea(const nsAString& aName, const nsStylePosition* aStyle)
 | ||
|   {
 | ||
|     if (!aStyle->mGridTemplateAreas) {
 | ||
|       return nullptr;
 | ||
|     }
 | ||
|     const nsTArray<css::GridNamedArea>& areas =
 | ||
|       aStyle->mGridTemplateAreas->mNamedAreas;
 | ||
|     size_t len = areas.Length();
 | ||
|     for (size_t i = 0; i < len; ++i) {
 | ||
|       const css::GridNamedArea& area = areas[i];
 | ||
|       if (area.mName == aName) {
 | ||
|         return &area;
 | ||
|       }
 | ||
|     }
 | ||
|     return nullptr;
 | ||
|   }
 | ||
| 
 | ||
|   // Return true if aString ends in aSuffix and has at least one character before
 | ||
|   // the suffix. Assign aIndex to where the suffix starts.
 | ||
|   static bool
 | ||
|   IsNameWithSuffix(const nsString& aString, const nsString& aSuffix,
 | ||
|                    uint32_t* aIndex)
 | ||
|   {
 | ||
|     if (StringEndsWith(aString, aSuffix)) {
 | ||
|       *aIndex = aString.Length() - aSuffix.Length();
 | ||
|       return *aIndex != 0;
 | ||
|     }
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   static bool
 | ||
|   IsNameWithEndSuffix(const nsString& aString, uint32_t* aIndex)
 | ||
|   {
 | ||
|     return IsNameWithSuffix(aString, NS_LITERAL_STRING("-end"), aIndex);
 | ||
|   }
 | ||
| 
 | ||
|   static bool
 | ||
|   IsNameWithStartSuffix(const nsString& aString, uint32_t* aIndex)
 | ||
|   {
 | ||
|     return IsNameWithSuffix(aString, NS_LITERAL_STRING("-start"), aIndex);
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * A CellMap holds state for each cell in the grid.
 | ||
|    * It's row major.  It's sparse in the sense that it only has enough rows to
 | ||
|    * cover the last row that has a grid item.  Each row only has enough entries
 | ||
|    * to cover columns that are occupied *on that row*, i.e. it's not a full
 | ||
|    * matrix covering the entire implicit grid.  An absent Cell means that it's
 | ||
|    * unoccupied by any grid item.
 | ||
|    */
 | ||
|   struct CellMap {
 | ||
|     struct Cell {
 | ||
|       Cell() : mIsOccupied(false) {}
 | ||
|       bool mIsOccupied : 1;
 | ||
|     };
 | ||
| 
 | ||
|     void Fill(const GridArea& aGridArea)
 | ||
|     {
 | ||
|       MOZ_ASSERT(aGridArea.IsDefinite());
 | ||
|       MOZ_ASSERT(aGridArea.mRows.mStart < aGridArea.mRows.mEnd);
 | ||
|       MOZ_ASSERT(aGridArea.mCols.mStart < aGridArea.mCols.mEnd);
 | ||
|       const auto numRows = aGridArea.mRows.mEnd;
 | ||
|       const auto numCols = aGridArea.mCols.mEnd;
 | ||
|       mCells.EnsureLengthAtLeast(numRows);
 | ||
|       for (auto i = aGridArea.mRows.mStart; i < numRows; ++i) {
 | ||
|         nsTArray<Cell>& cellsInRow = mCells[i];
 | ||
|         cellsInRow.EnsureLengthAtLeast(numCols);
 | ||
|         for (auto j = aGridArea.mCols.mStart; j < numCols; ++j) {
 | ||
|           cellsInRow[j].mIsOccupied = true;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     uint32_t IsEmptyCol(uint32_t aCol) const
 | ||
|     {
 | ||
|       for (auto& row : mCells) {
 | ||
|         if (aCol < row.Length() && row[aCol].mIsOccupied) {
 | ||
|           return false;
 | ||
|         }
 | ||
|       }
 | ||
|       return true;
 | ||
|     }
 | ||
|     uint32_t IsEmptyRow(uint32_t aRow) const
 | ||
|     {
 | ||
|       if (aRow >= mCells.Length()) {
 | ||
|         return true;
 | ||
|       }
 | ||
|       for (const Cell& cell : mCells[aRow]) {
 | ||
|         if (cell.mIsOccupied) {
 | ||
|           return false;
 | ||
|         }
 | ||
|       }
 | ||
|       return true;
 | ||
|     }
 | ||
| #ifdef DEBUG
 | ||
|     void Dump() const
 | ||
|     {
 | ||
|       const size_t numRows = mCells.Length();
 | ||
|       for (size_t i = 0; i < numRows; ++i) {
 | ||
|         const nsTArray<Cell>& cellsInRow = mCells[i];
 | ||
|         const size_t numCols = cellsInRow.Length();
 | ||
|         printf("%lu:\t", (unsigned long)i + 1);
 | ||
|         for (size_t j = 0; j < numCols; ++j) {
 | ||
|           printf(cellsInRow[j].mIsOccupied ? "X " : ". ");
 | ||
|         }
 | ||
|         printf("\n");
 | ||
|       }
 | ||
|     }
 | ||
| #endif
 | ||
| 
 | ||
|     nsTArray<nsTArray<Cell>> mCells;
 | ||
|   };
 | ||
| 
 | ||
|   /**
 | ||
|    * State for each cell in the grid.
 | ||
|    */
 | ||
|   CellMap mCellMap;
 | ||
|   /**
 | ||
|    * @see HasImplicitNamedArea.
 | ||
|    */
 | ||
|   ImplicitNamedAreas* mAreas;
 | ||
|   /**
 | ||
|    * The last column grid line (1-based) in the explicit grid.
 | ||
|    * (i.e. the number of explicit columns + 1)
 | ||
|    */
 | ||
|   uint32_t mExplicitGridColEnd;
 | ||
|   /**
 | ||
|    * The last row grid line (1-based) in the explicit grid.
 | ||
|    * (i.e. the number of explicit rows + 1)
 | ||
|    */
 | ||
|   uint32_t mExplicitGridRowEnd;
 | ||
|   // Same for the implicit grid, except these become zero-based after
 | ||
|   // resolving definite lines.
 | ||
|   uint32_t mGridColEnd;
 | ||
|   uint32_t mGridRowEnd;
 | ||
| 
 | ||
|   /**
 | ||
|    * Offsets from the start of the implicit grid to the start of the translated
 | ||
|    * explicit grid.  They are zero if there are no implicit lines before 1,1.
 | ||
|    * e.g. "grid-column: span 3 / 1" makes mExplicitGridOffsetCol = 3 and the
 | ||
|    * corresponding GridArea::mCols will be 0 / 3 in the zero-based translated
 | ||
|    * grid.
 | ||
|    */
 | ||
|   uint32_t mExplicitGridOffsetCol;
 | ||
|   uint32_t mExplicitGridOffsetRow;
 | ||
| };
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::GridReflowInput::CalculateTrackSizes(
 | ||
|   const Grid&        aGrid,
 | ||
|   LogicalSize&       aContentBox,
 | ||
|   SizingConstraint   aConstraint)
 | ||
| {
 | ||
|   mCols.Initialize(mColFunctions, mGridStyle->mGridColumnGap,
 | ||
|                    aGrid.mGridColEnd, aContentBox.ISize(mWM));
 | ||
|   mRows.Initialize(mRowFunctions, mGridStyle->mGridRowGap,
 | ||
|                    aGrid.mGridRowEnd, aContentBox.BSize(mWM));
 | ||
| 
 | ||
|   mCols.CalculateSizes(*this, mGridItems, mColFunctions,
 | ||
|                        aContentBox.ISize(mWM), &GridArea::mCols,
 | ||
|                        aConstraint);
 | ||
|   mCols.AlignJustifyContent(mGridStyle, mWM, aContentBox);
 | ||
|   // Column positions and sizes are now final.
 | ||
|   mCols.mCanResolveLineRangeSize = true;
 | ||
| 
 | ||
|   mRows.CalculateSizes(*this, mGridItems, mRowFunctions,
 | ||
|                        aContentBox.BSize(mWM), &GridArea::mRows,
 | ||
|                        aConstraint);
 | ||
|   if (aContentBox.BSize(mWM) == NS_AUTOHEIGHT) {
 | ||
|     aContentBox.BSize(mWM) =
 | ||
|       mRows.BackComputedIntrinsicSize(mRowFunctions, mGridStyle->mGridRowGap);
 | ||
|     mRows.mGridGap =
 | ||
|       ::ResolveToDefiniteSize(mGridStyle->mGridRowGap, aContentBox.BSize(mWM));
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * (XXX share this utility function with nsFlexContainerFrame at some point)
 | ||
|  *
 | ||
|  * Helper for BuildDisplayList, to implement this special-case for grid
 | ||
|  * items from the spec:
 | ||
|  *   The painting order of grid items is exactly the same as inline blocks,
 | ||
|  *   except that [...] 'z-index' values other than 'auto' create a stacking
 | ||
|  *   context even if 'position' is 'static'.
 | ||
|  * http://dev.w3.org/csswg/css-grid/#z-order
 | ||
|  */
 | ||
| static uint32_t
 | ||
| GetDisplayFlagsForGridItem(nsIFrame* aFrame)
 | ||
| {
 | ||
|   const nsStylePosition* pos = aFrame->StylePosition();
 | ||
|   if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) {
 | ||
|     return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT;
 | ||
|   }
 | ||
|   return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT;
 | ||
| }
 | ||
| 
 | ||
| // Align an item's margin box in its aAxis inside aCBSize.
 | ||
| static void
 | ||
| AlignJustifySelf(uint8_t aAlignment, LogicalAxis aAxis,
 | ||
|                  AlignJustifyFlags aFlags,
 | ||
|                  nscoord aBaselineAdjust, nscoord aCBSize,
 | ||
|                  const ReflowInput& aRI, const LogicalSize& aChildSize,
 | ||
|                  LogicalPoint* aPos)
 | ||
| {
 | ||
|   MOZ_ASSERT(aAlignment != NS_STYLE_ALIGN_AUTO, "unexpected 'auto' "
 | ||
|              "computed value for normal flow grid item");
 | ||
| 
 | ||
|   // NOTE: this is the resulting frame offset (border box).
 | ||
|   nscoord offset =
 | ||
|     CSSAlignUtils::AlignJustifySelf(aAlignment, aAxis, aFlags,
 | ||
|                                     aBaselineAdjust, aCBSize,
 | ||
|                                     aRI, aChildSize);
 | ||
| 
 | ||
|   // Set the position (aPos) for the requested alignment.
 | ||
|   if (offset != 0) {
 | ||
|     WritingMode wm = aRI.GetWritingMode();
 | ||
|     nscoord& pos = aAxis == eLogicalAxisBlock ? aPos->B(wm) : aPos->I(wm);
 | ||
|     pos += MOZ_LIKELY(aFlags & AlignJustifyFlags::eSameSide) ? offset : -offset;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| AlignSelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
 | ||
|           uint8_t aAlignSelf, nscoord aCBSize, const WritingMode aCBWM,
 | ||
|           const ReflowInput& aRI, const LogicalSize& aSize,
 | ||
|           LogicalPoint* aPos)
 | ||
| {
 | ||
|   auto alignSelf = aAlignSelf;
 | ||
| 
 | ||
|   AlignJustifyFlags flags = AlignJustifyFlags::eNoFlags;
 | ||
|   if (alignSelf & NS_STYLE_ALIGN_SAFE) {
 | ||
|     flags |= AlignJustifyFlags::eOverflowSafe;
 | ||
|   }
 | ||
|   alignSelf &= ~NS_STYLE_ALIGN_FLAG_BITS;
 | ||
| 
 | ||
|   WritingMode childWM = aRI.GetWritingMode();
 | ||
|   if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisBlock, childWM)) {
 | ||
|     flags |= AlignJustifyFlags::eSameSide;
 | ||
|   }
 | ||
| 
 | ||
|   // Grid's 'align-self' axis is never parallel to the container's inline axis.
 | ||
|   if (alignSelf == NS_STYLE_ALIGN_LEFT || alignSelf == NS_STYLE_ALIGN_RIGHT) {
 | ||
|     alignSelf = NS_STYLE_ALIGN_START;
 | ||
|   }
 | ||
|   if (MOZ_LIKELY(alignSelf == NS_STYLE_ALIGN_NORMAL)) {
 | ||
|     alignSelf = NS_STYLE_ALIGN_STRETCH;
 | ||
|   }
 | ||
| 
 | ||
|   nscoord baselineAdjust = 0;
 | ||
|   if (alignSelf == NS_STYLE_ALIGN_BASELINE ||
 | ||
|       alignSelf == NS_STYLE_ALIGN_LAST_BASELINE) {
 | ||
|     alignSelf = aGridItem.GetSelfBaseline(alignSelf, eLogicalAxisBlock,
 | ||
|                                           &baselineAdjust);
 | ||
|   }
 | ||
| 
 | ||
|   bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
 | ||
|   LogicalAxis axis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock;
 | ||
|   AlignJustifySelf(alignSelf, axis, flags, baselineAdjust,
 | ||
|                    aCBSize, aRI, aSize, aPos);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| JustifySelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
 | ||
|             uint8_t aJustifySelf, nscoord aCBSize, const WritingMode aCBWM,
 | ||
|             const ReflowInput& aRI, const LogicalSize& aSize,
 | ||
|             LogicalPoint* aPos)
 | ||
| {
 | ||
|   auto justifySelf = aJustifySelf;
 | ||
| 
 | ||
|   AlignJustifyFlags flags = AlignJustifyFlags::eNoFlags;
 | ||
|   if (justifySelf & NS_STYLE_JUSTIFY_SAFE) {
 | ||
|     flags |= AlignJustifyFlags::eOverflowSafe;
 | ||
|   }
 | ||
|   justifySelf &= ~NS_STYLE_JUSTIFY_FLAG_BITS;
 | ||
| 
 | ||
|   WritingMode childWM = aRI.GetWritingMode();
 | ||
|   if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisInline, childWM)) {
 | ||
|     flags |= AlignJustifyFlags::eSameSide;
 | ||
|   }
 | ||
| 
 | ||
|   if (MOZ_LIKELY(justifySelf == NS_STYLE_ALIGN_NORMAL)) {
 | ||
|     justifySelf = NS_STYLE_ALIGN_STRETCH;
 | ||
|   }
 | ||
| 
 | ||
|   nscoord baselineAdjust = 0;
 | ||
|   // Grid's 'justify-self' axis is always parallel to the container's inline
 | ||
|   // axis, so justify-self:left|right always applies.
 | ||
|   switch (justifySelf) {
 | ||
|     case NS_STYLE_JUSTIFY_LEFT:
 | ||
|       justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_START
 | ||
|                                       : NS_STYLE_JUSTIFY_END;
 | ||
|       break;
 | ||
|     case NS_STYLE_JUSTIFY_RIGHT:
 | ||
|       justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_END
 | ||
|                                       : NS_STYLE_JUSTIFY_START;
 | ||
|       break;
 | ||
|     case NS_STYLE_JUSTIFY_BASELINE:
 | ||
|     case NS_STYLE_JUSTIFY_LAST_BASELINE:
 | ||
|       justifySelf = aGridItem.GetSelfBaseline(justifySelf, eLogicalAxisInline,
 | ||
|                                               &baselineAdjust);
 | ||
|       break;
 | ||
|   }
 | ||
| 
 | ||
|   bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
 | ||
|   LogicalAxis axis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
 | ||
|   AlignJustifySelf(justifySelf, axis, flags, baselineAdjust,
 | ||
|                    aCBSize, aRI, aSize, aPos);
 | ||
| }
 | ||
| 
 | ||
| static uint16_t
 | ||
| GetAlignJustifyValue(uint16_t aAlignment, const WritingMode aWM,
 | ||
|                      const bool aIsAlign, bool* aOverflowSafe)
 | ||
| {
 | ||
|   *aOverflowSafe = aAlignment & NS_STYLE_ALIGN_SAFE;
 | ||
|   aAlignment &= (NS_STYLE_ALIGN_ALL_BITS & ~NS_STYLE_ALIGN_FLAG_BITS);
 | ||
| 
 | ||
|   // Map some alignment values to 'start' / 'end'.
 | ||
|   switch (aAlignment) {
 | ||
|     case NS_STYLE_ALIGN_LEFT:
 | ||
|     case NS_STYLE_ALIGN_RIGHT: {
 | ||
|       if (aIsAlign) {
 | ||
|         // Grid's 'align-content' axis is never parallel to the inline axis.
 | ||
|         return NS_STYLE_ALIGN_START;
 | ||
|       }
 | ||
|       bool isStart = aWM.IsBidiLTR() == (aAlignment == NS_STYLE_ALIGN_LEFT);
 | ||
|       return isStart ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END;
 | ||
|     }
 | ||
|     case NS_STYLE_ALIGN_FLEX_START: // same as 'start' for Grid
 | ||
|       return NS_STYLE_ALIGN_START;
 | ||
|     case NS_STYLE_ALIGN_FLEX_END: // same as 'end' for Grid
 | ||
|       return NS_STYLE_ALIGN_END;
 | ||
|   }
 | ||
|   return aAlignment;
 | ||
| }
 | ||
| 
 | ||
| static uint16_t
 | ||
| GetAlignJustifyFallbackIfAny(uint16_t aAlignment, const WritingMode aWM,
 | ||
|                              const bool aIsAlign, bool* aOverflowSafe)
 | ||
| {
 | ||
|   uint16_t fallback = aAlignment >> NS_STYLE_ALIGN_ALL_SHIFT;
 | ||
|   if (fallback) {
 | ||
|     return GetAlignJustifyValue(fallback, aWM, aIsAlign, aOverflowSafe);
 | ||
|   }
 | ||
|   // https://drafts.csswg.org/css-align-3/#fallback-alignment
 | ||
|   switch (aAlignment) {
 | ||
|     case NS_STYLE_ALIGN_STRETCH:
 | ||
|     case NS_STYLE_ALIGN_SPACE_BETWEEN:
 | ||
|       return NS_STYLE_ALIGN_START;
 | ||
|     case NS_STYLE_ALIGN_SPACE_AROUND:
 | ||
|     case NS_STYLE_ALIGN_SPACE_EVENLY:
 | ||
|       return NS_STYLE_ALIGN_CENTER;
 | ||
|   }
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| //----------------------------------------------------------------------
 | ||
| 
 | ||
| // Frame class boilerplate
 | ||
| // =======================
 | ||
| 
 | ||
| NS_QUERYFRAME_HEAD(nsGridContainerFrame)
 | ||
|   NS_QUERYFRAME_ENTRY(nsGridContainerFrame)
 | ||
| NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
 | ||
| 
 | ||
| NS_IMPL_FRAMEARENA_HELPERS(nsGridContainerFrame)
 | ||
| 
 | ||
| nsContainerFrame*
 | ||
| NS_NewGridContainerFrame(nsIPresShell* aPresShell,
 | ||
|                          nsStyleContext* aContext)
 | ||
| {
 | ||
|   return new (aPresShell) nsGridContainerFrame(aContext);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| //----------------------------------------------------------------------
 | ||
| 
 | ||
| // nsGridContainerFrame Method Implementations
 | ||
| // ===========================================
 | ||
| 
 | ||
| /*static*/ const nsRect&
 | ||
| nsGridContainerFrame::GridItemCB(nsIFrame* aChild)
 | ||
| {
 | ||
|   MOZ_ASSERT((aChild->GetStateBits() & NS_FRAME_OUT_OF_FLOW) &&
 | ||
|              aChild->IsAbsolutelyPositioned());
 | ||
|   nsRect* cb = aChild->GetProperty(GridItemContainingBlockRect());
 | ||
|   MOZ_ASSERT(cb, "this method must only be called on grid items, and the grid "
 | ||
|                  "container should've reflowed this item by now and set up cb");
 | ||
|   return *cb;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::AddImplicitNamedAreas(
 | ||
|   const nsTArray<nsTArray<nsString>>& aLineNameLists)
 | ||
| {
 | ||
|   // http://dev.w3.org/csswg/css-grid/#implicit-named-areas
 | ||
|   // Note: recording these names for fast lookup later is just an optimization.
 | ||
|   const uint32_t len =
 | ||
|     std::min(aLineNameLists.Length(), size_t(nsStyleGridLine::kMaxLine));
 | ||
|   nsTHashtable<nsStringHashKey> currentStarts;
 | ||
|   ImplicitNamedAreas* areas = GetImplicitNamedAreas();
 | ||
|   for (uint32_t i = 0; i < len; ++i) {
 | ||
|     for (const nsString& name : aLineNameLists[i]) {
 | ||
|       uint32_t indexOfSuffix;
 | ||
|       if (Grid::IsNameWithStartSuffix(name, &indexOfSuffix) ||
 | ||
|           Grid::IsNameWithEndSuffix(name, &indexOfSuffix)) {
 | ||
|         // Extract the name that was found earlier.
 | ||
|         nsDependentSubstring areaName(name, 0, indexOfSuffix);
 | ||
| 
 | ||
|         // Lazily create the ImplicitNamedAreas.
 | ||
|         if (!areas) {
 | ||
|           areas = new ImplicitNamedAreas;
 | ||
|           SetProperty(ImplicitNamedAreasProperty(), areas);
 | ||
|         }
 | ||
| 
 | ||
|         mozilla::css::GridNamedArea area;
 | ||
|         if (!areas->Get(areaName, &area)) {
 | ||
|           // Not found, so prep the newly-seen area with a name and empty
 | ||
|           // boundary information, which will get filled in later.
 | ||
|           area.mName = areaName;
 | ||
|           area.mRowStart = 0;
 | ||
|           area.mRowEnd = 0;
 | ||
|           area.mColumnStart = 0;
 | ||
|           area.mColumnEnd = 0;
 | ||
| 
 | ||
|           areas->Put(areaName, area);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::InitImplicitNamedAreas(const nsStylePosition* aStyle)
 | ||
| {
 | ||
|   ImplicitNamedAreas* areas = GetImplicitNamedAreas();
 | ||
|   if (areas) {
 | ||
|     // Clear it, but reuse the hashtable itself for now.  We'll remove it
 | ||
|     // below if it isn't needed anymore.
 | ||
|     areas->Clear();
 | ||
|   }
 | ||
|   AddImplicitNamedAreas(aStyle->GridTemplateColumns().mLineNameLists);
 | ||
|   AddImplicitNamedAreas(aStyle->GridTemplateRows().mLineNameLists);
 | ||
|   if (areas && areas->Count() == 0) {
 | ||
|     DeleteProperty(ImplicitNamedAreasProperty());
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| int32_t
 | ||
| nsGridContainerFrame::Grid::ResolveLine(const nsStyleGridLine& aLine,
 | ||
|                                         int32_t aNth,
 | ||
|                                         uint32_t aFromIndex,
 | ||
|                                         const LineNameMap& aNameMap,
 | ||
|                                         uint32_t GridNamedArea::* aAreaStart,
 | ||
|                                         uint32_t GridNamedArea::* aAreaEnd,
 | ||
|                                         uint32_t aExplicitGridEnd,
 | ||
|                                         LineRangeSide aSide,
 | ||
|                                         const nsStylePosition* aStyle)
 | ||
| {
 | ||
|   MOZ_ASSERT(!aLine.IsAuto());
 | ||
|   int32_t line = 0;
 | ||
|   if (aLine.mLineName.IsEmpty()) {
 | ||
|     MOZ_ASSERT(aNth != 0, "css-grid 9.2: <integer> must not be zero.");
 | ||
|     line = int32_t(aFromIndex) + aNth;
 | ||
|   } else {
 | ||
|     if (aNth == 0) {
 | ||
|       // <integer> was omitted; treat it as 1.
 | ||
|       aNth = 1;
 | ||
|     }
 | ||
|     bool isNameOnly = !aLine.mHasSpan && aLine.mInteger == 0;
 | ||
|     if (isNameOnly) {
 | ||
|       const GridNamedArea* area = FindNamedArea(aLine.mLineName, aStyle);
 | ||
|       if (area || HasImplicitNamedArea(aLine.mLineName)) {
 | ||
|         // The given name is a named area - look for explicit lines named
 | ||
|         // <name>-start/-end depending on which side we're resolving.
 | ||
|         // http://dev.w3.org/csswg/css-grid/#grid-placement-slot
 | ||
|         uint32_t implicitLine = 0;
 | ||
|         nsAutoString lineName(aLine.mLineName);
 | ||
|         if (aSide == eLineRangeSideStart) {
 | ||
|           lineName.AppendLiteral("-start");
 | ||
|           implicitLine = area ? area->*aAreaStart : 0;
 | ||
|         } else {
 | ||
|           lineName.AppendLiteral("-end");
 | ||
|           implicitLine = area ? area->*aAreaEnd : 0;
 | ||
|         }
 | ||
|         line = aNameMap.FindNamedLine(lineName, &aNth, aFromIndex,
 | ||
|                                       implicitLine);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (line == 0) {
 | ||
|       // If mLineName ends in -start/-end, try the prefix as a named area.
 | ||
|       uint32_t implicitLine = 0;
 | ||
|       uint32_t index;
 | ||
|       auto GridNamedArea::* areaEdge = aAreaStart;
 | ||
|       bool found = IsNameWithStartSuffix(aLine.mLineName, &index);
 | ||
|       if (!found) {
 | ||
|         found = IsNameWithEndSuffix(aLine.mLineName, &index);
 | ||
|         areaEdge = aAreaEnd;
 | ||
|       }
 | ||
|       if (found) {
 | ||
|         const GridNamedArea* area =
 | ||
|           FindNamedArea(nsDependentSubstring(aLine.mLineName, 0, index),
 | ||
|                         aStyle);
 | ||
|         if (area) {
 | ||
|           implicitLine = area->*areaEdge;
 | ||
|         }
 | ||
|       }
 | ||
|       line = aNameMap.FindNamedLine(aLine.mLineName, &aNth, aFromIndex,
 | ||
|                                     implicitLine);
 | ||
|     }
 | ||
| 
 | ||
|     if (line == 0) {
 | ||
|       MOZ_ASSERT(aNth != 0, "we found all N named lines but 'line' is zero!");
 | ||
|       int32_t edgeLine;
 | ||
|       if (aLine.mHasSpan) {
 | ||
|         // http://dev.w3.org/csswg/css-grid/#grid-placement-span-int
 | ||
|         // 'span <custom-ident> N'
 | ||
|         edgeLine = aSide == eLineRangeSideStart ? 1 : aExplicitGridEnd;
 | ||
|       } else {
 | ||
|         // http://dev.w3.org/csswg/css-grid/#grid-placement-int
 | ||
|         // '<custom-ident> N'
 | ||
|         edgeLine = aNth < 0 ? 1 : aExplicitGridEnd;
 | ||
|       }
 | ||
|       // "If not enough lines with that name exist, all lines in the implicit
 | ||
|       // grid are assumed to have that name..."
 | ||
|       line = edgeLine + aNth;
 | ||
|     }
 | ||
|   }
 | ||
|   return clamped(line, nsStyleGridLine::kMinLine, nsStyleGridLine::kMaxLine);
 | ||
| }
 | ||
| 
 | ||
| nsGridContainerFrame::Grid::LinePair
 | ||
| nsGridContainerFrame::Grid::ResolveLineRangeHelper(
 | ||
|   const nsStyleGridLine& aStart,
 | ||
|   const nsStyleGridLine& aEnd,
 | ||
|   const LineNameMap& aNameMap,
 | ||
|   uint32_t GridNamedArea::* aAreaStart,
 | ||
|   uint32_t GridNamedArea::* aAreaEnd,
 | ||
|   uint32_t aExplicitGridEnd,
 | ||
|   const nsStylePosition* aStyle)
 | ||
| {
 | ||
|   MOZ_ASSERT(int32_t(nsGridContainerFrame::kAutoLine) > nsStyleGridLine::kMaxLine);
 | ||
| 
 | ||
|   if (aStart.mHasSpan) {
 | ||
|     if (aEnd.mHasSpan || aEnd.IsAuto()) {
 | ||
|       // http://dev.w3.org/csswg/css-grid/#grid-placement-errors
 | ||
|       if (aStart.mLineName.IsEmpty()) {
 | ||
|         // span <integer> / span *
 | ||
|         // span <integer> / auto
 | ||
|         return LinePair(kAutoLine, aStart.mInteger);
 | ||
|       }
 | ||
|       // span <custom-ident> / span *
 | ||
|       // span <custom-ident> / auto
 | ||
|       return LinePair(kAutoLine, 1); // XXX subgrid explicit size instead of 1?
 | ||
|     }
 | ||
| 
 | ||
|     uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0;
 | ||
|     auto end = ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, aAreaStart,
 | ||
|                            aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd,
 | ||
|                            aStyle);
 | ||
|     int32_t span = aStart.mInteger == 0 ? 1 : aStart.mInteger;
 | ||
|     if (end <= 1) {
 | ||
|       // The end is at or before the first explicit line, thus all lines before
 | ||
|       // it match <custom-ident> since they're implicit.
 | ||
|       int32_t start = std::max(end - span, nsStyleGridLine::kMinLine);
 | ||
|       return LinePair(start, end);
 | ||
|     }
 | ||
|     auto start = ResolveLine(aStart, -span, end, aNameMap, aAreaStart,
 | ||
|                              aAreaEnd, aExplicitGridEnd, eLineRangeSideStart,
 | ||
|                              aStyle);
 | ||
|     return LinePair(start, end);
 | ||
|   }
 | ||
| 
 | ||
|   int32_t start = kAutoLine;
 | ||
|   if (aStart.IsAuto()) {
 | ||
|     if (aEnd.IsAuto()) {
 | ||
|       // auto / auto
 | ||
|       return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
 | ||
|     }
 | ||
|     if (aEnd.mHasSpan) {
 | ||
|       if (aEnd.mLineName.IsEmpty()) {
 | ||
|         // auto / span <integer>
 | ||
|         MOZ_ASSERT(aEnd.mInteger != 0);
 | ||
|         return LinePair(start, aEnd.mInteger);
 | ||
|       }
 | ||
|       // http://dev.w3.org/csswg/css-grid/#grid-placement-errors
 | ||
|       // auto / span <custom-ident>
 | ||
|       return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
 | ||
|     }
 | ||
|   } else {
 | ||
|     uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0;
 | ||
|     start = ResolveLine(aStart, aStart.mInteger, from, aNameMap,
 | ||
|                         aAreaStart, aAreaEnd, aExplicitGridEnd,
 | ||
|                         eLineRangeSideStart, aStyle);
 | ||
|     if (aEnd.IsAuto()) {
 | ||
|       // A "definite line / auto" should resolve the auto to 'span 1'.
 | ||
|       // The error handling in ResolveLineRange will make that happen and also
 | ||
|       // clamp the end line correctly if we return "start / start".
 | ||
|       return LinePair(start, start);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   uint32_t from;
 | ||
|   int32_t nth = aEnd.mInteger == 0 ? 1 : aEnd.mInteger;
 | ||
|   if (aEnd.mHasSpan) {
 | ||
|     if (MOZ_UNLIKELY(start < 0)) {
 | ||
|       if (aEnd.mLineName.IsEmpty()) {
 | ||
|         return LinePair(start, start + nth);
 | ||
|       }
 | ||
|       from = 0;
 | ||
|     } else {
 | ||
|       if (start >= int32_t(aExplicitGridEnd)) {
 | ||
|         // The start is at or after the last explicit line, thus all lines
 | ||
|         // after it match <custom-ident> since they're implicit.
 | ||
|         return LinePair(start, std::min(start + nth, nsStyleGridLine::kMaxLine));
 | ||
|       }
 | ||
|       from = start;
 | ||
|     }
 | ||
|   } else {
 | ||
|     from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0;
 | ||
|   }
 | ||
|   auto end = ResolveLine(aEnd, nth, from, aNameMap, aAreaStart,
 | ||
|                          aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle);
 | ||
|   if (start == int32_t(kAutoLine)) {
 | ||
|     // auto / definite line
 | ||
|     start = std::max(nsStyleGridLine::kMinLine, end - 1);
 | ||
|   }
 | ||
|   return LinePair(start, end);
 | ||
| }
 | ||
| 
 | ||
| nsGridContainerFrame::LineRange
 | ||
| nsGridContainerFrame::Grid::ResolveLineRange(
 | ||
|   const nsStyleGridLine& aStart,
 | ||
|   const nsStyleGridLine& aEnd,
 | ||
|   const LineNameMap& aNameMap,
 | ||
|   uint32_t GridNamedArea::* aAreaStart,
 | ||
|   uint32_t GridNamedArea::* aAreaEnd,
 | ||
|   uint32_t aExplicitGridEnd,
 | ||
|   const nsStylePosition* aStyle)
 | ||
| {
 | ||
|   LinePair r = ResolveLineRangeHelper(aStart, aEnd, aNameMap, aAreaStart,
 | ||
|                                       aAreaEnd, aExplicitGridEnd, aStyle);
 | ||
|   MOZ_ASSERT(r.second != int32_t(kAutoLine));
 | ||
| 
 | ||
|   if (r.first == int32_t(kAutoLine)) {
 | ||
|     // r.second is a span, clamp it to kMaxLine - 1 so that the returned
 | ||
|     // range has a HypotheticalEnd <= kMaxLine.
 | ||
|     // http://dev.w3.org/csswg/css-grid/#overlarge-grids
 | ||
|     r.second = std::min(r.second, nsStyleGridLine::kMaxLine - 1);
 | ||
|   } else {
 | ||
|     // http://dev.w3.org/csswg/css-grid/#grid-placement-errors
 | ||
|     if (r.first > r.second) {
 | ||
|       Swap(r.first, r.second);
 | ||
|     } else if (r.first == r.second) {
 | ||
|       if (MOZ_UNLIKELY(r.first == nsStyleGridLine::kMaxLine)) {
 | ||
|         r.first = nsStyleGridLine::kMaxLine - 1;
 | ||
|       }
 | ||
|       r.second = r.first + 1; // XXX subgrid explicit size instead of 1?
 | ||
|     }
 | ||
|   }
 | ||
|   return LineRange(r.first, r.second);
 | ||
| }
 | ||
| 
 | ||
| nsGridContainerFrame::GridArea
 | ||
| nsGridContainerFrame::Grid::PlaceDefinite(nsIFrame* aChild,
 | ||
|                                           const LineNameMap& aColLineNameMap,
 | ||
|                                           const LineNameMap& aRowLineNameMap,
 | ||
|                                           const nsStylePosition* aStyle)
 | ||
| {
 | ||
|   const nsStylePosition* itemStyle = aChild->StylePosition();
 | ||
|   return GridArea(
 | ||
|     ResolveLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
 | ||
|                      aColLineNameMap,
 | ||
|                      &GridNamedArea::mColumnStart, &GridNamedArea::mColumnEnd,
 | ||
|                      mExplicitGridColEnd, aStyle),
 | ||
|     ResolveLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
 | ||
|                      aRowLineNameMap,
 | ||
|                      &GridNamedArea::mRowStart, &GridNamedArea::mRowEnd,
 | ||
|                      mExplicitGridRowEnd, aStyle));
 | ||
| }
 | ||
| 
 | ||
| nsGridContainerFrame::LineRange
 | ||
| nsGridContainerFrame::Grid::ResolveAbsPosLineRange(
 | ||
|   const nsStyleGridLine& aStart,
 | ||
|   const nsStyleGridLine& aEnd,
 | ||
|   const LineNameMap& aNameMap,
 | ||
|   uint32_t GridNamedArea::* aAreaStart,
 | ||
|   uint32_t GridNamedArea::* aAreaEnd,
 | ||
|   uint32_t aExplicitGridEnd,
 | ||
|   int32_t aGridStart,
 | ||
|   int32_t aGridEnd,
 | ||
|   const nsStylePosition* aStyle)
 | ||
| {
 | ||
|   if (aStart.IsAuto()) {
 | ||
|     if (aEnd.IsAuto()) {
 | ||
|       return LineRange(kAutoLine, kAutoLine);
 | ||
|     }
 | ||
|     uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0;
 | ||
|     int32_t end =
 | ||
|       ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, aAreaStart,
 | ||
|                   aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle);
 | ||
|     if (aEnd.mHasSpan) {
 | ||
|       ++end;
 | ||
|     }
 | ||
|     // A line outside the existing grid is treated as 'auto' for abs.pos (10.1).
 | ||
|     end = AutoIfOutside(end, aGridStart, aGridEnd);
 | ||
|     return LineRange(kAutoLine, end);
 | ||
|   }
 | ||
| 
 | ||
|   if (aEnd.IsAuto()) {
 | ||
|     uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0;
 | ||
|     int32_t start =
 | ||
|       ResolveLine(aStart, aStart.mInteger, from, aNameMap, aAreaStart,
 | ||
|                   aAreaEnd, aExplicitGridEnd, eLineRangeSideStart, aStyle);
 | ||
|     if (aStart.mHasSpan) {
 | ||
|       start = std::max(aGridEnd - start, aGridStart);
 | ||
|     }
 | ||
|     start = AutoIfOutside(start, aGridStart, aGridEnd);
 | ||
|     return LineRange(start, kAutoLine);
 | ||
|   }
 | ||
| 
 | ||
|   LineRange r = ResolveLineRange(aStart, aEnd, aNameMap, aAreaStart,
 | ||
|                                  aAreaEnd, aExplicitGridEnd, aStyle);
 | ||
|   if (r.IsAuto()) {
 | ||
|     MOZ_ASSERT(aStart.mHasSpan && aEnd.mHasSpan, "span / span is the only case "
 | ||
|                "leading to IsAuto here -- we dealt with the other cases above");
 | ||
|     // The second span was ignored per 9.2.1.  For abs.pos., 10.1 says that this
 | ||
|     // case should result in "auto / auto" unlike normal flow grid items.
 | ||
|     return LineRange(kAutoLine, kAutoLine);
 | ||
|   }
 | ||
| 
 | ||
|   return LineRange(AutoIfOutside(r.mUntranslatedStart, aGridStart, aGridEnd),
 | ||
|                    AutoIfOutside(r.mUntranslatedEnd, aGridStart, aGridEnd));
 | ||
| }
 | ||
| 
 | ||
| nsGridContainerFrame::GridArea
 | ||
| nsGridContainerFrame::Grid::PlaceAbsPos(nsIFrame* aChild,
 | ||
|                                         const LineNameMap& aColLineNameMap,
 | ||
|                                         const LineNameMap& aRowLineNameMap,
 | ||
|                                         const nsStylePosition* aStyle)
 | ||
| {
 | ||
|   const nsStylePosition* itemStyle = aChild->StylePosition();
 | ||
|   int32_t gridColStart = 1 - mExplicitGridOffsetCol;
 | ||
|   int32_t gridRowStart = 1 - mExplicitGridOffsetRow;
 | ||
|   return GridArea(
 | ||
|     ResolveAbsPosLineRange(itemStyle->mGridColumnStart,
 | ||
|                            itemStyle->mGridColumnEnd,
 | ||
|                            aColLineNameMap,
 | ||
|                            &GridNamedArea::mColumnStart,
 | ||
|                            &GridNamedArea::mColumnEnd,
 | ||
|                            mExplicitGridColEnd, gridColStart, mGridColEnd,
 | ||
|                            aStyle),
 | ||
|     ResolveAbsPosLineRange(itemStyle->mGridRowStart,
 | ||
|                            itemStyle->mGridRowEnd,
 | ||
|                            aRowLineNameMap,
 | ||
|                            &GridNamedArea::mRowStart,
 | ||
|                            &GridNamedArea::mRowEnd,
 | ||
|                            mExplicitGridRowEnd, gridRowStart, mGridRowEnd,
 | ||
|                            aStyle));
 | ||
| }
 | ||
| 
 | ||
| uint32_t
 | ||
| nsGridContainerFrame::Grid::FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
 | ||
|                                         const GridArea* aArea) const
 | ||
| {
 | ||
|   const uint32_t extent = aArea->mCols.Extent();
 | ||
|   const uint32_t iStart = aLockedRow;
 | ||
|   const uint32_t iEnd = iStart + aArea->mRows.Extent();
 | ||
|   uint32_t candidate = aStartCol;
 | ||
|   for (uint32_t i = iStart; i < iEnd; ) {
 | ||
|     if (i >= mCellMap.mCells.Length()) {
 | ||
|       break;
 | ||
|     }
 | ||
|     const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
 | ||
|     const uint32_t len = cellsInRow.Length();
 | ||
|     const uint32_t lastCandidate = candidate;
 | ||
|     // Find the first gap in the current row that's at least 'extent' wide.
 | ||
|     // ('gap' tracks how wide the current column gap is.)
 | ||
|     for (uint32_t j = candidate, gap = 0; j < len && gap < extent; ++j) {
 | ||
|       if (!cellsInRow[j].mIsOccupied) {
 | ||
|         ++gap;
 | ||
|         continue;
 | ||
|       }
 | ||
|       candidate = j + 1;
 | ||
|       gap = 0;
 | ||
|     }
 | ||
|     if (lastCandidate < candidate && i != iStart) {
 | ||
|       // Couldn't fit 'extent' tracks at 'lastCandidate' here so we must
 | ||
|       // restart from the beginning with the new 'candidate'.
 | ||
|       i = iStart;
 | ||
|     } else {
 | ||
|       ++i;
 | ||
|     }
 | ||
|   }
 | ||
|   return candidate;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Grid::PlaceAutoCol(uint32_t aStartCol,
 | ||
|                                          GridArea* aArea) const
 | ||
| {
 | ||
|   MOZ_ASSERT(aArea->mRows.IsDefinite() && aArea->mCols.IsAuto());
 | ||
|   uint32_t col = FindAutoCol(aStartCol, aArea->mRows.mStart, aArea);
 | ||
|   aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
 | ||
|   MOZ_ASSERT(aArea->IsDefinite());
 | ||
| }
 | ||
| 
 | ||
| uint32_t
 | ||
| nsGridContainerFrame::Grid::FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
 | ||
|                                         const GridArea* aArea) const
 | ||
| {
 | ||
|   const uint32_t extent = aArea->mRows.Extent();
 | ||
|   const uint32_t jStart = aLockedCol;
 | ||
|   const uint32_t jEnd = jStart + aArea->mCols.Extent();
 | ||
|   const uint32_t iEnd = mCellMap.mCells.Length();
 | ||
|   uint32_t candidate = aStartRow;
 | ||
|   // Find the first gap in the rows that's at least 'extent' tall.
 | ||
|   // ('gap' tracks how tall the current row gap is.)
 | ||
|   for (uint32_t i = candidate, gap = 0; i < iEnd && gap < extent; ++i) {
 | ||
|     ++gap; // tentative, but we may reset it below if a column is occupied
 | ||
|     const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
 | ||
|     const uint32_t clampedJEnd = std::min<uint32_t>(jEnd, cellsInRow.Length());
 | ||
|     // Check if the current row is unoccupied from jStart to jEnd.
 | ||
|     for (uint32_t j = jStart; j < clampedJEnd; ++j) {
 | ||
|       if (cellsInRow[j].mIsOccupied) {
 | ||
|         // Couldn't fit 'extent' rows at 'candidate' here; we hit something
 | ||
|         // at row 'i'.  So, try the row after 'i' as our next candidate.
 | ||
|         candidate = i + 1;
 | ||
|         gap = 0;
 | ||
|         break;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
|   return candidate;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Grid::PlaceAutoRow(uint32_t aStartRow,
 | ||
|                                          GridArea* aArea) const
 | ||
| {
 | ||
|   MOZ_ASSERT(aArea->mCols.IsDefinite() && aArea->mRows.IsAuto());
 | ||
|   uint32_t row = FindAutoRow(aArea->mCols.mStart, aStartRow, aArea);
 | ||
|   aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
 | ||
|   MOZ_ASSERT(aArea->IsDefinite());
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Grid::PlaceAutoAutoInRowOrder(uint32_t aStartCol,
 | ||
|                                                     uint32_t aStartRow,
 | ||
|                                                     GridArea* aArea) const
 | ||
| {
 | ||
|   MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
 | ||
|   const uint32_t colExtent = aArea->mCols.Extent();
 | ||
|   const uint32_t gridRowEnd = mGridRowEnd;
 | ||
|   const uint32_t gridColEnd = mGridColEnd;
 | ||
|   uint32_t col = aStartCol;
 | ||
|   uint32_t row = aStartRow;
 | ||
|   for (; row < gridRowEnd; ++row) {
 | ||
|     col = FindAutoCol(col, row, aArea);
 | ||
|     if (col + colExtent <= gridColEnd) {
 | ||
|       break;
 | ||
|     }
 | ||
|     col = 0;
 | ||
|   }
 | ||
|   MOZ_ASSERT(row < gridRowEnd || col == 0,
 | ||
|              "expected column 0 for placing in a new row");
 | ||
|   aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
 | ||
|   aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
 | ||
|   MOZ_ASSERT(aArea->IsDefinite());
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Grid::PlaceAutoAutoInColOrder(uint32_t aStartCol,
 | ||
|                                                     uint32_t aStartRow,
 | ||
|                                                     GridArea* aArea) const
 | ||
| {
 | ||
|   MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
 | ||
|   const uint32_t rowExtent = aArea->mRows.Extent();
 | ||
|   const uint32_t gridRowEnd = mGridRowEnd;
 | ||
|   const uint32_t gridColEnd = mGridColEnd;
 | ||
|   uint32_t col = aStartCol;
 | ||
|   uint32_t row = aStartRow;
 | ||
|   for (; col < gridColEnd; ++col) {
 | ||
|     row = FindAutoRow(col, row, aArea);
 | ||
|     if (row + rowExtent <= gridRowEnd) {
 | ||
|       break;
 | ||
|     }
 | ||
|     row = 0;
 | ||
|   }
 | ||
|   MOZ_ASSERT(col < gridColEnd || row == 0,
 | ||
|              "expected row 0 for placing in a new column");
 | ||
|   aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
 | ||
|   aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
 | ||
|   MOZ_ASSERT(aArea->IsDefinite());
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Grid::PlaceGridItems(GridReflowInput& aState,
 | ||
|                                            const LogicalSize& aComputedMinSize,
 | ||
|                                            const LogicalSize& aComputedSize,
 | ||
|                                            const LogicalSize& aComputedMaxSize)
 | ||
| {
 | ||
|   mAreas = aState.mFrame->GetImplicitNamedAreas();
 | ||
|   const nsStylePosition* const gridStyle = aState.mGridStyle;
 | ||
|   MOZ_ASSERT(mCellMap.mCells.IsEmpty(), "unexpected entries in cell map");
 | ||
| 
 | ||
|   // http://dev.w3.org/csswg/css-grid/#grid-definition
 | ||
|   // Initialize the end lines of the Explicit Grid (mExplicitGridCol[Row]End).
 | ||
|   // This is determined by the larger of the number of rows/columns defined
 | ||
|   // by 'grid-template-areas' and the 'grid-template-rows'/'-columns', plus one.
 | ||
|   // Also initialize the Implicit Grid (mGridCol[Row]End) to the same values.
 | ||
|   // Note that this is for a grid with a 1,1 origin.  We'll change that
 | ||
|   // to a 0,0 based grid after placing definite lines.
 | ||
|   auto areas = gridStyle->mGridTemplateAreas.get();
 | ||
|   uint32_t numRepeatCols = aState.mColFunctions.InitRepeatTracks(
 | ||
|                              gridStyle->mGridColumnGap,
 | ||
|                              aComputedMinSize.ISize(aState.mWM),
 | ||
|                              aComputedSize.ISize(aState.mWM),
 | ||
|                              aComputedMaxSize.ISize(aState.mWM));
 | ||
|   mGridColEnd = mExplicitGridColEnd =
 | ||
|     aState.mColFunctions.ComputeExplicitGridEnd(areas ? areas->mNColumns + 1 : 1);
 | ||
|   LineNameMap colLineNameMap(gridStyle->GridTemplateColumns(), numRepeatCols);
 | ||
| 
 | ||
|   uint32_t numRepeatRows = aState.mRowFunctions.InitRepeatTracks(
 | ||
|                              gridStyle->mGridRowGap,
 | ||
|                              aComputedMinSize.BSize(aState.mWM),
 | ||
|                              aComputedSize.BSize(aState.mWM),
 | ||
|                              aComputedMaxSize.BSize(aState.mWM));
 | ||
|   mGridRowEnd = mExplicitGridRowEnd =
 | ||
|     aState.mRowFunctions.ComputeExplicitGridEnd(areas ? areas->NRows() + 1 : 1);
 | ||
|   LineNameMap rowLineNameMap(gridStyle->GridTemplateRows(), numRepeatRows);
 | ||
| 
 | ||
|   // http://dev.w3.org/csswg/css-grid/#line-placement
 | ||
|   // Resolve definite positions per spec chap 9.2.
 | ||
|   int32_t minCol = 1;
 | ||
|   int32_t minRow = 1;
 | ||
|   aState.mGridItems.ClearAndRetainStorage();
 | ||
|   aState.mIter.Reset();
 | ||
|   for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
 | ||
|     nsIFrame* child = *aState.mIter;
 | ||
|     GridItemInfo* info =
 | ||
|         aState.mGridItems.AppendElement(GridItemInfo(child,
 | ||
|                                           PlaceDefinite(child,
 | ||
|                                                         colLineNameMap,
 | ||
|                                                         rowLineNameMap,
 | ||
|                                                         gridStyle)));
 | ||
|     MOZ_ASSERT(aState.mIter.ItemIndex() == aState.mGridItems.Length() - 1,
 | ||
|                "ItemIndex() is broken");
 | ||
|     GridArea& area = info->mArea;
 | ||
|     if (area.mCols.IsDefinite()) {
 | ||
|       minCol = std::min(minCol, area.mCols.mUntranslatedStart);
 | ||
|     }
 | ||
|     if (area.mRows.IsDefinite()) {
 | ||
|       minRow = std::min(minRow, area.mRows.mUntranslatedStart);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Translate the whole grid so that the top-/left-most area is at 0,0.
 | ||
|   mExplicitGridOffsetCol = 1 - minCol; // minCol/Row is always <= 1, see above
 | ||
|   mExplicitGridOffsetRow = 1 - minRow;
 | ||
|   aState.mColFunctions.mExplicitGridOffset = mExplicitGridOffsetCol;
 | ||
|   aState.mRowFunctions.mExplicitGridOffset = mExplicitGridOffsetRow;
 | ||
|   const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
 | ||
|   const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
 | ||
|   mGridColEnd += offsetToColZero;
 | ||
|   mGridRowEnd += offsetToRowZero;
 | ||
|   aState.mIter.Reset();
 | ||
|   for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
 | ||
|     GridArea& area = aState.mGridItems[aState.mIter.ItemIndex()].mArea;
 | ||
|     if (area.mCols.IsDefinite()) {
 | ||
|       area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
 | ||
|       area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
 | ||
|     }
 | ||
|     if (area.mRows.IsDefinite()) {
 | ||
|       area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
 | ||
|       area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
 | ||
|     }
 | ||
|     if (area.IsDefinite()) {
 | ||
|       mCellMap.Fill(area);
 | ||
|       InflateGridFor(area);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // http://dev.w3.org/csswg/css-grid/#auto-placement-algo
 | ||
|   // Step 1, place 'auto' items that have one definite position -
 | ||
|   // definite row (column) for grid-auto-flow:row (column).
 | ||
|   auto flowStyle = gridStyle->mGridAutoFlow;
 | ||
|   const bool isRowOrder = (flowStyle & NS_STYLE_GRID_AUTO_FLOW_ROW);
 | ||
|   const bool isSparse = !(flowStyle & NS_STYLE_GRID_AUTO_FLOW_DENSE);
 | ||
|   // We need 1 cursor per row (or column) if placement is sparse.
 | ||
|   {
 | ||
|     Maybe<nsDataHashtable<nsUint32HashKey, uint32_t>> cursors;
 | ||
|     if (isSparse) {
 | ||
|       cursors.emplace();
 | ||
|     }
 | ||
|     auto placeAutoMinorFunc = isRowOrder ? &Grid::PlaceAutoCol
 | ||
|                                          : &Grid::PlaceAutoRow;
 | ||
|     aState.mIter.Reset();
 | ||
|     for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
 | ||
|       GridArea& area = aState.mGridItems[aState.mIter.ItemIndex()].mArea;
 | ||
|       LineRange& major = isRowOrder ? area.mRows : area.mCols;
 | ||
|       LineRange& minor = isRowOrder ? area.mCols : area.mRows;
 | ||
|       if (major.IsDefinite() && minor.IsAuto()) {
 | ||
|         // Items with 'auto' in the minor dimension only.
 | ||
|         uint32_t cursor = 0;
 | ||
|         if (isSparse) {
 | ||
|           cursors->Get(major.mStart, &cursor);
 | ||
|         }
 | ||
|         (this->*placeAutoMinorFunc)(cursor, &area);
 | ||
|         mCellMap.Fill(area);
 | ||
|         if (isSparse) {
 | ||
|           cursors->Put(major.mStart, minor.mEnd);
 | ||
|         }
 | ||
|       }
 | ||
|       InflateGridFor(area);  // Step 2, inflating for auto items too
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // XXX NOTE possible spec issue.
 | ||
|   // XXX It's unclear if the remaining major-dimension auto and
 | ||
|   // XXX auto in both dimensions should use the same cursor or not,
 | ||
|   // XXX https://www.w3.org/Bugs/Public/show_bug.cgi?id=16044
 | ||
|   // XXX seems to indicate it shouldn't.
 | ||
|   // XXX http://dev.w3.org/csswg/css-grid/#auto-placement-cursor
 | ||
|   // XXX now says it should (but didn't in earlier versions)
 | ||
| 
 | ||
|   // Step 3, place the remaining grid items
 | ||
|   uint32_t cursorMajor = 0; // for 'dense' these two cursors will stay at 0,0
 | ||
|   uint32_t cursorMinor = 0;
 | ||
|   auto placeAutoMajorFunc = isRowOrder ? &Grid::PlaceAutoRow
 | ||
|                                        : &Grid::PlaceAutoCol;
 | ||
|   aState.mIter.Reset();
 | ||
|   for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
 | ||
|     GridArea& area = aState.mGridItems[aState.mIter.ItemIndex()].mArea;
 | ||
|     MOZ_ASSERT(*aState.mIter == aState.mGridItems[aState.mIter.ItemIndex()].mFrame,
 | ||
|                "iterator out of sync with aState.mGridItems");
 | ||
|     LineRange& major = isRowOrder ? area.mRows : area.mCols;
 | ||
|     LineRange& minor = isRowOrder ? area.mCols : area.mRows;
 | ||
|     if (major.IsAuto()) {
 | ||
|       if (minor.IsDefinite()) {
 | ||
|         // Items with 'auto' in the major dimension only.
 | ||
|         if (isSparse) {
 | ||
|           if (minor.mStart < cursorMinor) {
 | ||
|             ++cursorMajor;
 | ||
|           }
 | ||
|           cursorMinor = minor.mStart;
 | ||
|         }
 | ||
|         (this->*placeAutoMajorFunc)(cursorMajor, &area);
 | ||
|         if (isSparse) {
 | ||
|           cursorMajor = major.mStart;
 | ||
|         }
 | ||
|       } else {
 | ||
|         // Items with 'auto' in both dimensions.
 | ||
|         if (isRowOrder) {
 | ||
|           PlaceAutoAutoInRowOrder(cursorMinor, cursorMajor, &area);
 | ||
|         } else {
 | ||
|           PlaceAutoAutoInColOrder(cursorMajor, cursorMinor, &area);
 | ||
|         }
 | ||
|         if (isSparse) {
 | ||
|           cursorMajor = major.mStart;
 | ||
|           cursorMinor = minor.mEnd;
 | ||
| #ifdef DEBUG
 | ||
|           uint32_t gridMajorEnd = isRowOrder ? mGridRowEnd : mGridColEnd;
 | ||
|           uint32_t gridMinorEnd = isRowOrder ? mGridColEnd : mGridRowEnd;
 | ||
|           MOZ_ASSERT(cursorMajor <= gridMajorEnd,
 | ||
|                      "we shouldn't need to place items further than 1 track "
 | ||
|                      "past the current end of the grid, in major dimension");
 | ||
|           MOZ_ASSERT(cursorMinor <= gridMinorEnd,
 | ||
|                      "we shouldn't add implicit minor tracks for auto/auto");
 | ||
| #endif
 | ||
|         }
 | ||
|       }
 | ||
|       mCellMap.Fill(area);
 | ||
|       InflateGridFor(area);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (aState.mFrame->IsAbsoluteContainer()) {
 | ||
|     // 9.4 Absolutely-positioned Grid Items
 | ||
|     // http://dev.w3.org/csswg/css-grid/#abspos-items
 | ||
|     // We only resolve definite lines here; we'll align auto positions to the
 | ||
|     // grid container later during reflow.
 | ||
|     nsFrameList children(aState.mFrame->GetChildList(
 | ||
|                            aState.mFrame->GetAbsoluteListID()));
 | ||
|     const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
 | ||
|     const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
 | ||
|     // Untranslate the grid again temporarily while resolving abs.pos. lines.
 | ||
|     AutoRestore<uint32_t> save1(mGridColEnd);
 | ||
|     AutoRestore<uint32_t> save2(mGridRowEnd);
 | ||
|     mGridColEnd -= offsetToColZero;
 | ||
|     mGridRowEnd -= offsetToRowZero;
 | ||
|     aState.mAbsPosItems.ClearAndRetainStorage();
 | ||
|     size_t i = 0;
 | ||
|     for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
 | ||
|       nsIFrame* child = e.get();
 | ||
|       GridItemInfo* info =
 | ||
|           aState.mAbsPosItems.AppendElement(GridItemInfo(child,
 | ||
|                                               PlaceAbsPos(child,
 | ||
|                                                           colLineNameMap,
 | ||
|                                                           rowLineNameMap,
 | ||
|                                                           gridStyle)));
 | ||
|       GridArea& area = info->mArea;
 | ||
|       if (area.mCols.mUntranslatedStart != int32_t(kAutoLine)) {
 | ||
|         area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
 | ||
|       }
 | ||
|       if (area.mCols.mUntranslatedEnd != int32_t(kAutoLine)) {
 | ||
|         area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
 | ||
|       }
 | ||
|       if (area.mRows.mUntranslatedStart != int32_t(kAutoLine)) {
 | ||
|         area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
 | ||
|       }
 | ||
|       if (area.mRows.mUntranslatedEnd != int32_t(kAutoLine)) {
 | ||
|         area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Count empty 'auto-fit' tracks in the repeat() range.
 | ||
|   // |colAdjust| will have a count for each line in the grid of how many
 | ||
|   // tracks were empty between the start of the grid and that line.
 | ||
| 
 | ||
|   // Since this loop is concerned with just the repeat tracks, we
 | ||
|   // iterate from 0..NumRepeatTracks() which is the natural range of
 | ||
|   // mRemoveRepeatTracks. This means we have to add
 | ||
|   // (mExplicitGridOffset + mRepeatAutoStart) to get a zero-based
 | ||
|   // index for arrays like mCellMap and colAdjust. We'll then fill out
 | ||
|   // the colAdjust array for all the remaining lines.
 | ||
|   Maybe<nsTArray<uint32_t>> colAdjust;
 | ||
|   uint32_t numEmptyCols = 0;
 | ||
|   if (aState.mColFunctions.mHasRepeatAuto &&
 | ||
|       !gridStyle->GridTemplateColumns().mIsAutoFill &&
 | ||
|       aState.mColFunctions.NumRepeatTracks() > 0) {
 | ||
|     const uint32_t repeatStart = (aState.mColFunctions.mExplicitGridOffset +
 | ||
|                                   aState.mColFunctions.mRepeatAutoStart);
 | ||
|     const uint32_t numRepeats = aState.mColFunctions.NumRepeatTracks();
 | ||
|     const uint32_t numColLines = mGridColEnd + 1;
 | ||
|     for (uint32_t i = 0; i < numRepeats; ++i) {
 | ||
|       if (numEmptyCols) {
 | ||
|         (*colAdjust)[repeatStart + i] = numEmptyCols;
 | ||
|       }
 | ||
|       if (mCellMap.IsEmptyCol(repeatStart + i)) {
 | ||
|         ++numEmptyCols;
 | ||
|         if (colAdjust.isNothing()) {
 | ||
|           colAdjust.emplace(numColLines);
 | ||
|           colAdjust->SetLength(numColLines);
 | ||
|           PodZero(colAdjust->Elements(), colAdjust->Length());
 | ||
|         }
 | ||
| 
 | ||
|         aState.mColFunctions.mRemovedRepeatTracks[i] = true;
 | ||
|       }
 | ||
|     }
 | ||
|     // Fill out the colAdjust array for all the columns after the
 | ||
|     // repeats.
 | ||
|     if (numEmptyCols) {
 | ||
|       for (uint32_t col = repeatStart + numRepeats;
 | ||
|           col < numColLines; ++col) {
 | ||
|         (*colAdjust)[col] = numEmptyCols;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Do similar work for the row tracks, with the same logic.
 | ||
|   Maybe<nsTArray<uint32_t>> rowAdjust;
 | ||
|   uint32_t numEmptyRows = 0;
 | ||
|   if (aState.mRowFunctions.mHasRepeatAuto &&
 | ||
|       !gridStyle->GridTemplateRows().mIsAutoFill &&
 | ||
|       aState.mRowFunctions.NumRepeatTracks() > 0) {
 | ||
|     const uint32_t repeatStart = (aState.mRowFunctions.mExplicitGridOffset +
 | ||
|                                   aState.mRowFunctions.mRepeatAutoStart);
 | ||
|     const uint32_t numRepeats = aState.mRowFunctions.NumRepeatTracks();
 | ||
|     const uint32_t numRowLines = mGridRowEnd + 1;
 | ||
|     for (uint32_t i = 0; i < numRepeats; ++i) {
 | ||
|       if (numEmptyRows) {
 | ||
|         (*rowAdjust)[repeatStart + i] = numEmptyRows;
 | ||
|       }
 | ||
|       if (mCellMap.IsEmptyRow(repeatStart + i)) {
 | ||
|         ++numEmptyRows;
 | ||
|         if (rowAdjust.isNothing()) {
 | ||
|           rowAdjust.emplace(numRowLines);
 | ||
|           rowAdjust->SetLength(numRowLines);
 | ||
|           PodZero(rowAdjust->Elements(), rowAdjust->Length());
 | ||
|         }
 | ||
| 
 | ||
|         aState.mRowFunctions.mRemovedRepeatTracks[i] = true;
 | ||
|       }
 | ||
|     }
 | ||
|     if (numEmptyRows) {
 | ||
|       for (uint32_t row = repeatStart + numRepeats;
 | ||
|           row < numRowLines; ++row) {
 | ||
|         (*rowAdjust)[row] = numEmptyRows;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
|   // Remove the empty 'auto-fit' tracks we found above, if any.
 | ||
|   if (numEmptyCols || numEmptyRows) {
 | ||
|     // Adjust the line numbers in the grid areas.
 | ||
|     for (auto& item : aState.mGridItems) {
 | ||
|       GridArea& area = item.mArea;
 | ||
|       if (numEmptyCols) {
 | ||
|         area.mCols.AdjustForRemovedTracks(*colAdjust);
 | ||
|       }
 | ||
|       if (numEmptyRows) {
 | ||
|         area.mRows.AdjustForRemovedTracks(*rowAdjust);
 | ||
|       }
 | ||
|     }
 | ||
|     for (auto& item : aState.mAbsPosItems) {
 | ||
|       GridArea& area = item.mArea;
 | ||
|       if (numEmptyCols) {
 | ||
|         area.mCols.AdjustAbsPosForRemovedTracks(*colAdjust);
 | ||
|       }
 | ||
|       if (numEmptyRows) {
 | ||
|         area.mRows.AdjustAbsPosForRemovedTracks(*rowAdjust);
 | ||
|       }
 | ||
|     }
 | ||
|     // Adjust the grid size.
 | ||
|     mGridColEnd -= numEmptyCols;
 | ||
|     mExplicitGridColEnd -= numEmptyCols;
 | ||
|     mGridRowEnd -= numEmptyRows;
 | ||
|     mExplicitGridRowEnd -= numEmptyRows;
 | ||
|     // Adjust the track mapping to unmap the removed tracks.
 | ||
|     auto colRepeatCount = aState.mColFunctions.NumRepeatTracks();
 | ||
|     aState.mColFunctions.SetNumRepeatTracks(colRepeatCount - numEmptyCols);
 | ||
|     auto rowRepeatCount = aState.mRowFunctions.NumRepeatTracks();
 | ||
|     aState.mRowFunctions.SetNumRepeatTracks(rowRepeatCount - numEmptyRows);
 | ||
|   }
 | ||
| 
 | ||
|   // Update the line boundaries of the implicit grid areas, if needed.
 | ||
|   if (mAreas &&
 | ||
|       aState.mFrame->HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES)) {
 | ||
|     for (auto iter = mAreas->Iter(); !iter.Done(); iter.Next()) {
 | ||
|       auto& areaInfo = iter.Data();
 | ||
| 
 | ||
|       // Resolve the lines for the area. We use the name of the area as the
 | ||
|       // name of the lines, knowing that the line placement algorithm will
 | ||
|       // add the -start and -end suffixes as appropriate for layout.
 | ||
|       nsStyleGridLine lineStartAndEnd;
 | ||
|       lineStartAndEnd.mLineName = areaInfo.mName;
 | ||
| 
 | ||
|       LineRange columnLines = ResolveLineRange(
 | ||
|         lineStartAndEnd, lineStartAndEnd,
 | ||
|         colLineNameMap,
 | ||
|         &GridNamedArea::mColumnStart, &GridNamedArea::mColumnEnd,
 | ||
|         mExplicitGridColEnd, gridStyle);
 | ||
| 
 | ||
|       LineRange rowLines = ResolveLineRange(
 | ||
|         lineStartAndEnd, lineStartAndEnd,
 | ||
|         rowLineNameMap,
 | ||
|         &GridNamedArea::mRowStart, &GridNamedArea::mRowEnd,
 | ||
|         mExplicitGridRowEnd, gridStyle);
 | ||
| 
 | ||
|       // Put the resolved line indices back into the area structure.
 | ||
|       areaInfo.mColumnStart = columnLines.mStart + mExplicitGridOffsetCol;
 | ||
|       areaInfo.mColumnEnd = columnLines.mEnd + mExplicitGridOffsetCol;
 | ||
|       areaInfo.mRowStart = rowLines.mStart + mExplicitGridOffsetRow;
 | ||
|       areaInfo.mRowEnd = rowLines.mEnd + mExplicitGridOffsetRow;
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Tracks::Initialize(
 | ||
|   const TrackSizingFunctions& aFunctions,
 | ||
|   const nsStyleCoord&         aGridGap,
 | ||
|   uint32_t                    aNumTracks,
 | ||
|   nscoord                     aContentBoxSize)
 | ||
| {
 | ||
|   MOZ_ASSERT(aNumTracks >= aFunctions.mExplicitGridOffset +
 | ||
|                              aFunctions.NumExplicitTracks());
 | ||
|   mSizes.SetLength(aNumTracks);
 | ||
|   PodZero(mSizes.Elements(), mSizes.Length());
 | ||
|   for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
 | ||
|     mStateUnion |= mSizes[i].Initialize(aContentBoxSize,
 | ||
|                                         aFunctions.MinSizingFor(i),
 | ||
|                                         aFunctions.MaxSizingFor(i));
 | ||
|   }
 | ||
|   mGridGap = ::ResolveToDefiniteSize(aGridGap, aContentBoxSize);
 | ||
|   mContentBoxSize = aContentBoxSize;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * Reflow aChild in the given aAvailableSize.
 | ||
|  */
 | ||
| static nscoord
 | ||
| MeasuringReflow(nsIFrame*           aChild,
 | ||
|                 const ReflowInput*  aReflowInput,
 | ||
|                 gfxContext*         aRC,
 | ||
|                 const LogicalSize&  aAvailableSize,
 | ||
|                 const LogicalSize&  aCBSize,
 | ||
|                 nscoord             aIMinSizeClamp = NS_MAXSIZE,
 | ||
|                 nscoord             aBMinSizeClamp = NS_MAXSIZE)
 | ||
| {
 | ||
|   nsContainerFrame* parent = aChild->GetParent();
 | ||
|   nsPresContext* pc = aChild->PresContext();
 | ||
|   Maybe<ReflowInput> dummyParentState;
 | ||
|   const ReflowInput* rs = aReflowInput;
 | ||
|   if (!aReflowInput) {
 | ||
|     MOZ_ASSERT(!parent->HasAnyStateBits(NS_FRAME_IN_REFLOW));
 | ||
|     dummyParentState.emplace(pc, parent, aRC,
 | ||
|                              LogicalSize(parent->GetWritingMode(), 0,
 | ||
|                                          NS_UNCONSTRAINEDSIZE),
 | ||
|                              ReflowInput::DUMMY_PARENT_REFLOW_STATE);
 | ||
|     rs = dummyParentState.ptr();
 | ||
|   }
 | ||
| #ifdef DEBUG
 | ||
|   // This will suppress various CRAZY_SIZE warnings for this reflow.
 | ||
|   parent->SetProperty(
 | ||
|     nsContainerFrame::DebugReflowingWithInfiniteISize(), true);
 | ||
| #endif
 | ||
|   auto wm = aChild->GetWritingMode();
 | ||
|   uint32_t riFlags = ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE;
 | ||
|   if (aAvailableSize.ISize(wm) == INFINITE_ISIZE_COORD) {
 | ||
|     riFlags |= ReflowInput::COMPUTE_SIZE_SHRINK_WRAP;
 | ||
|   }
 | ||
|   if (aIMinSizeClamp != NS_MAXSIZE) {
 | ||
|     riFlags |= ReflowInput::I_CLAMP_MARGIN_BOX_MIN_SIZE;
 | ||
|   }
 | ||
|   if (aBMinSizeClamp != NS_MAXSIZE) {
 | ||
|     riFlags |= ReflowInput::B_CLAMP_MARGIN_BOX_MIN_SIZE;
 | ||
|     aChild->SetProperty(nsIFrame::BClampMarginBoxMinSizeProperty(),
 | ||
|                              aBMinSizeClamp);
 | ||
|   } else {
 | ||
|     aChild->DeleteProperty(nsIFrame::BClampMarginBoxMinSizeProperty());
 | ||
|   }
 | ||
|   ReflowInput childRI(pc, *rs, aChild, aAvailableSize, &aCBSize, riFlags);
 | ||
| 
 | ||
|   // Because we pass ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE, and the
 | ||
|   // previous reflow of the child might not have, set the child's
 | ||
|   // block-resize flag to true.
 | ||
|   // FIXME (perf): It would be faster to do this only if the previous
 | ||
|   // reflow of the child was not a measuring reflow, and only if the
 | ||
|   // child does some of the things that are affected by
 | ||
|   // ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE.
 | ||
|   childRI.SetBResize(true);
 | ||
| 
 | ||
|   ReflowOutput childSize(childRI);
 | ||
|   nsReflowStatus childStatus;
 | ||
|   const uint32_t flags = NS_FRAME_NO_MOVE_FRAME | NS_FRAME_NO_SIZE_VIEW;
 | ||
|   parent->ReflowChild(aChild, pc, childSize, childRI, wm,
 | ||
|                       LogicalPoint(wm), nsSize(), flags, childStatus);
 | ||
|   nsContainerFrame::FinishReflowChild(aChild, pc, childSize, &childRI, wm,
 | ||
|                             LogicalPoint(wm), nsSize(), flags);
 | ||
| #ifdef DEBUG
 | ||
|     parent->DeleteProperty(nsContainerFrame::DebugReflowingWithInfiniteISize());
 | ||
| #endif
 | ||
|   return childSize.BSize(wm);
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * Return the [min|max]-content contribution of aChild to its parent (i.e.
 | ||
|  * the child's margin-box) in aAxis.
 | ||
|  */
 | ||
| static nscoord
 | ||
| ContentContribution(const GridItemInfo&       aGridItem,
 | ||
|                     const GridReflowInput&    aState,
 | ||
|                     gfxContext*               aRC,
 | ||
|                     WritingMode               aCBWM,
 | ||
|                     LogicalAxis               aAxis,
 | ||
|                     const Maybe<LogicalSize>& aPercentageBasis,
 | ||
|                     IntrinsicISizeType        aConstraint,
 | ||
|                     nscoord                   aMinSizeClamp = NS_MAXSIZE,
 | ||
|                     uint32_t                  aFlags = 0)
 | ||
| {
 | ||
|   nsIFrame* child = aGridItem.mFrame;
 | ||
|   PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
 | ||
|   nscoord size = nsLayoutUtils::IntrinsicForAxis(axis, aRC, child, aConstraint,
 | ||
|                    aPercentageBasis,
 | ||
|                    aFlags | nsLayoutUtils::BAIL_IF_REFLOW_NEEDED |
 | ||
|                             nsLayoutUtils::ADD_PERCENTS,
 | ||
|                    aMinSizeClamp);
 | ||
|   if (size == NS_INTRINSIC_WIDTH_UNKNOWN) {
 | ||
|     // We need to reflow the child to find its BSize contribution.
 | ||
|     // XXX this will give mostly correct results for now (until bug 1174569).
 | ||
|     nscoord availISize = INFINITE_ISIZE_COORD;
 | ||
|     nscoord availBSize = NS_UNCONSTRAINEDSIZE;
 | ||
|     auto childWM = child->GetWritingMode();
 | ||
|     const bool isOrthogonal = childWM.IsOrthogonalTo(aCBWM);
 | ||
|     // The next two variables are MinSizeClamp values in the child's axes.
 | ||
|     nscoord iMinSizeClamp = NS_MAXSIZE;
 | ||
|     nscoord bMinSizeClamp = NS_MAXSIZE;
 | ||
|     LogicalSize cbSize(childWM, 0, 0);
 | ||
|     if (aState.mCols.mCanResolveLineRangeSize) {
 | ||
|       nscoord sz = aState.mCols.ResolveSize(aGridItem.mArea.mCols);
 | ||
|       if (isOrthogonal) {
 | ||
|         availBSize = sz;
 | ||
|         cbSize.BSize(childWM) = sz;
 | ||
|         if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
 | ||
|           bMinSizeClamp = sz;
 | ||
|         }
 | ||
|       } else {
 | ||
|         availISize = sz;
 | ||
|         cbSize.ISize(childWM) = sz;
 | ||
|         if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
 | ||
|           iMinSizeClamp = sz;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     if (isOrthogonal == (aAxis == eLogicalAxisInline)) {
 | ||
|       bMinSizeClamp = aMinSizeClamp;
 | ||
|     } else {
 | ||
|       iMinSizeClamp = aMinSizeClamp;
 | ||
|     }
 | ||
|     LogicalSize availableSize(childWM, availISize, availBSize);
 | ||
|     size = ::MeasuringReflow(child, aState.mReflowInput, aRC, availableSize,
 | ||
|                              cbSize, iMinSizeClamp, bMinSizeClamp);
 | ||
|     nsIFrame::IntrinsicISizeOffsetData offsets = child->IntrinsicBSizeOffsets();
 | ||
|     size += offsets.hMargin;
 | ||
|     auto percent = offsets.hPctMargin;
 | ||
|     if (availBSize == NS_UNCONSTRAINEDSIZE) {
 | ||
|       // We always want to add in percent padding too, unless we already did so
 | ||
|       // using a resolved column size above.
 | ||
|       percent += offsets.hPctPadding;
 | ||
|     }
 | ||
|     size = nsLayoutUtils::AddPercents(size, percent);
 | ||
|     nscoord overflow = size - aMinSizeClamp;
 | ||
|     if (MOZ_UNLIKELY(overflow > 0)) {
 | ||
|       nscoord contentSize = child->ContentBSize(childWM);
 | ||
|       nscoord newContentSize = std::max(nscoord(0), contentSize - overflow);
 | ||
|       // XXXmats deal with percentages better, see bug 1300369 comment 27.
 | ||
|       size -= contentSize - newContentSize;
 | ||
|     }
 | ||
|   }
 | ||
|   MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
 | ||
|              "baseline offset should be non-negative at this point");
 | ||
|   MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
 | ||
|              aGridItem.mBaselineOffset[aAxis] == nscoord(0),
 | ||
|              "baseline offset should be zero when not baseline-aligned");
 | ||
|   size += aGridItem.mBaselineOffset[aAxis];
 | ||
|   return std::max(size, 0);
 | ||
| }
 | ||
| 
 | ||
| struct CachedIntrinsicSizes
 | ||
| {
 | ||
|   Maybe<nscoord> mMinSize;
 | ||
|   Maybe<nscoord> mMinContentContribution;
 | ||
|   Maybe<nscoord> mMaxContentContribution;
 | ||
| 
 | ||
|   // The item's percentage basis for intrinsic sizing purposes.
 | ||
|   Maybe<LogicalSize> mPercentageBasis;
 | ||
| 
 | ||
|   // "if the grid item spans only grid tracks that have a fixed max track
 | ||
|   // sizing function, its automatic minimum size in that dimension is
 | ||
|   // further clamped to less than or equal to the size necessary to fit its
 | ||
|   // margin box within the resulting grid area (flooring at zero)"
 | ||
|   // https://drafts.csswg.org/css-grid/#min-size-auto
 | ||
|   // This is the clamp value to use for that:
 | ||
|   nscoord mMinSizeClamp = NS_MAXSIZE;
 | ||
| };
 | ||
| 
 | ||
| static nscoord
 | ||
| MinContentContribution(const GridItemInfo&    aGridItem,
 | ||
|                        const GridReflowInput& aState,
 | ||
|                        gfxContext*            aRC,
 | ||
|                        WritingMode            aCBWM,
 | ||
|                        LogicalAxis            aAxis,
 | ||
|                        CachedIntrinsicSizes*  aCache)
 | ||
| {
 | ||
|   if (aCache->mMinContentContribution.isSome()) {
 | ||
|     return aCache->mMinContentContribution.value();
 | ||
|   }
 | ||
|   if (aCache->mPercentageBasis.isNothing()) {
 | ||
|     aCache->mPercentageBasis.emplace(aState.PercentageBasisFor(aAxis, aGridItem));
 | ||
|   }
 | ||
|   nscoord s = ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
 | ||
|                                   aCache->mPercentageBasis,
 | ||
|                                   nsLayoutUtils::MIN_ISIZE,
 | ||
|                                   aCache->mMinSizeClamp);
 | ||
|   aCache->mMinContentContribution.emplace(s);
 | ||
|   return s;
 | ||
| }
 | ||
| 
 | ||
| static nscoord
 | ||
| MaxContentContribution(const GridItemInfo&    aGridItem,
 | ||
|                        const GridReflowInput& aState,
 | ||
|                        gfxContext*            aRC,
 | ||
|                        WritingMode            aCBWM,
 | ||
|                        LogicalAxis            aAxis,
 | ||
|                        CachedIntrinsicSizes*  aCache)
 | ||
| {
 | ||
|   if (aCache->mMaxContentContribution.isSome()) {
 | ||
|     return aCache->mMaxContentContribution.value();
 | ||
|   }
 | ||
|   if (aCache->mPercentageBasis.isNothing()) {
 | ||
|     aCache->mPercentageBasis.emplace(aState.PercentageBasisFor(aAxis, aGridItem));
 | ||
|   }
 | ||
|   nscoord s = ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
 | ||
|                                   aCache->mPercentageBasis,
 | ||
|                                   nsLayoutUtils::PREF_ISIZE,
 | ||
|                                   aCache->mMinSizeClamp);
 | ||
|   aCache->mMaxContentContribution.emplace(s);
 | ||
|   return s;
 | ||
| }
 | ||
| 
 | ||
| // Computes the min-size contribution for a grid item, as defined at
 | ||
| // https://drafts.csswg.org/css-grid/#min-size-contributions
 | ||
| static nscoord
 | ||
| MinSize(const GridItemInfo&    aGridItem,
 | ||
|         const GridReflowInput& aState,
 | ||
|         gfxContext*            aRC,
 | ||
|         WritingMode            aCBWM,
 | ||
|         LogicalAxis            aAxis,
 | ||
|         CachedIntrinsicSizes*  aCache)
 | ||
| {
 | ||
|   if (aCache->mMinSize.isSome()) {
 | ||
|     return aCache->mMinSize.value();
 | ||
|   }
 | ||
|   nsIFrame* child = aGridItem.mFrame;
 | ||
|   PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
 | ||
|   const nsStylePosition* stylePos = child->StylePosition();
 | ||
|   const nsStyleCoord& sizeStyle =
 | ||
|     axis == eAxisHorizontal ? stylePos->mWidth : stylePos->mHeight;
 | ||
|   if (sizeStyle.GetUnit() != eStyleUnit_Auto) {
 | ||
|     nscoord s =
 | ||
|       MinContentContribution(aGridItem, aState, aRC, aCBWM, aAxis, aCache);
 | ||
|     aCache->mMinSize.emplace(s);
 | ||
|     return s;
 | ||
|   }
 | ||
| 
 | ||
|   // https://drafts.csswg.org/css-grid/#min-size-auto
 | ||
|   // This calculates the min-content contribution from either a definite
 | ||
|   // min-width (or min-height depending on aAxis), or the "specified /
 | ||
|   // transferred size" for min-width:auto if overflow == visible (as min-width:0
 | ||
|   // otherwise), or NS_UNCONSTRAINEDSIZE for other min-width intrinsic values
 | ||
|   // (which results in always taking the "content size" part below).
 | ||
|   MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
 | ||
|              "baseline offset should be non-negative at this point");
 | ||
|   MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
 | ||
|              aGridItem.mBaselineOffset[aAxis] == nscoord(0),
 | ||
|              "baseline offset should be zero when not baseline-aligned");
 | ||
|   nscoord sz = aGridItem.mBaselineOffset[aAxis] +
 | ||
|     nsLayoutUtils::MinSizeContributionForAxis(axis, aRC, child,
 | ||
|                                               nsLayoutUtils::MIN_ISIZE);
 | ||
|   const nsStyleCoord& style = axis == eAxisHorizontal ? stylePos->mMinWidth
 | ||
|                                                       : stylePos->mMinHeight;
 | ||
|   auto unit = style.GetUnit();
 | ||
|   if (unit == eStyleUnit_Enumerated ||
 | ||
|       (unit == eStyleUnit_Auto &&
 | ||
|        child->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE)) {
 | ||
|     // Now calculate the "content size" part and return whichever is smaller.
 | ||
|     MOZ_ASSERT(unit != eStyleUnit_Enumerated || sz == NS_UNCONSTRAINEDSIZE);
 | ||
|     if (aCache->mPercentageBasis.isNothing()) {
 | ||
|       aCache->mPercentageBasis.emplace(aState.PercentageBasisFor(aAxis, aGridItem));
 | ||
|     }
 | ||
|     sz = std::min(sz, ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
 | ||
|                                           aCache->mPercentageBasis,
 | ||
|                                           nsLayoutUtils::MIN_ISIZE,
 | ||
|                                           aCache->mMinSizeClamp,
 | ||
|                                           nsLayoutUtils::MIN_INTRINSIC_ISIZE));
 | ||
|   }
 | ||
|   aCache->mMinSize.emplace(sz);
 | ||
|   return sz;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Tracks::CalculateSizes(
 | ||
|   GridReflowInput&            aState,
 | ||
|   nsTArray<GridItemInfo>&     aGridItems,
 | ||
|   const TrackSizingFunctions& aFunctions,
 | ||
|   nscoord                     aContentBoxSize,
 | ||
|   LineRange GridArea::*       aRange,
 | ||
|   SizingConstraint            aConstraint)
 | ||
| {
 | ||
|   nscoord percentageBasis = aContentBoxSize;
 | ||
|   if (percentageBasis == NS_UNCONSTRAINEDSIZE) {
 | ||
|     percentageBasis = 0;
 | ||
|   }
 | ||
|   InitializeItemBaselines(aState, aGridItems);
 | ||
|   ResolveIntrinsicSize(aState, aGridItems, aFunctions, aRange, percentageBasis,
 | ||
|                        aConstraint);
 | ||
|   if (aConstraint != SizingConstraint::eMinContent) {
 | ||
|     nscoord freeSpace = aContentBoxSize;
 | ||
|     if (freeSpace != NS_UNCONSTRAINEDSIZE) {
 | ||
|       freeSpace -= SumOfGridGaps();
 | ||
|     }
 | ||
|     DistributeFreeSpace(freeSpace);
 | ||
|     StretchFlexibleTracks(aState, aGridItems, aFunctions, freeSpace);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| TrackSize::StateBits
 | ||
| nsGridContainerFrame::Tracks::StateBitsForRange(const LineRange& aRange) const
 | ||
| {
 | ||
|   MOZ_ASSERT(!aRange.IsAuto(), "must have a definite range");
 | ||
|   TrackSize::StateBits state = TrackSize::StateBits(0);
 | ||
|   for (auto i : aRange.Range()) {
 | ||
|     state |= mSizes[i].mState;
 | ||
|   }
 | ||
|   return state;
 | ||
| }
 | ||
| 
 | ||
| bool
 | ||
| nsGridContainerFrame::Tracks::ResolveIntrinsicSizeStep1(
 | ||
|   GridReflowInput&            aState,
 | ||
|   const TrackSizingFunctions& aFunctions,
 | ||
|   nscoord                     aPercentageBasis,
 | ||
|   SizingConstraint            aConstraint,
 | ||
|   const LineRange&            aRange,
 | ||
|   const GridItemInfo&         aGridItem)
 | ||
| {
 | ||
|   CachedIntrinsicSizes cache;
 | ||
|   TrackSize& sz = mSizes[aRange.mStart];
 | ||
|   WritingMode wm = aState.mWM;
 | ||
| 
 | ||
|   // min sizing
 | ||
|   gfxContext* rc = &aState.mRenderingContext;
 | ||
|   if (sz.mState & TrackSize::eAutoMinSizing) {
 | ||
|     nscoord s;
 | ||
|     // Check if we need to apply "Automatic Minimum Size" and cache it.
 | ||
|     if (aGridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) {
 | ||
|       aGridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize;
 | ||
|       // Clamp it if it's spanning a definite track max-sizing function.
 | ||
|       if (TrackSize::IsDefiniteMaxSizing(sz.mState)) {
 | ||
|         auto maxCoord = aFunctions.MaxSizingFor(aRange.mStart);
 | ||
|         cache.mMinSizeClamp = maxCoord.ComputeCoordPercentCalc(aPercentageBasis);
 | ||
|         aGridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
 | ||
|       }
 | ||
|       if (aConstraint != SizingConstraint::eMaxContent) {
 | ||
|         s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
 | ||
|       } else {
 | ||
|         s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
 | ||
|       }
 | ||
|     } else {
 | ||
|       s = MinSize(aGridItem, aState, rc, wm, mAxis, &cache);
 | ||
|     }
 | ||
|     sz.mBase = std::max(sz.mBase, s);
 | ||
|   } else if (sz.mState & TrackSize::eMinContentMinSizing) {
 | ||
|     auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
 | ||
|     sz.mBase = std::max(sz.mBase, s);
 | ||
|   } else if (sz.mState & TrackSize::eMaxContentMinSizing) {
 | ||
|     auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
 | ||
|     sz.mBase = std::max(sz.mBase, s);
 | ||
|   }
 | ||
|   // max sizing
 | ||
|   if (sz.mState & TrackSize::eMinContentMaxSizing) {
 | ||
|     auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
 | ||
|     if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
 | ||
|       sz.mLimit = s;
 | ||
|     } else {
 | ||
|       sz.mLimit = std::max(sz.mLimit, s);
 | ||
|     }
 | ||
|   } else if (sz.mState & (TrackSize::eAutoMaxSizing |
 | ||
|                           TrackSize::eMaxContentMaxSizing)) {
 | ||
|     auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
 | ||
|     if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
 | ||
|       sz.mLimit = s;
 | ||
|     } else {
 | ||
|       sz.mLimit = std::max(sz.mLimit, s);
 | ||
|     }
 | ||
|     if (MOZ_UNLIKELY(sz.mState & TrackSize::eFitContent)) {
 | ||
|       // Clamp mLimit to the fit-content() size, for §12.5.1.
 | ||
|       auto maxCoord = aFunctions.MaxSizingFor(aRange.mStart);
 | ||
|       nscoord fitContentClamp =
 | ||
|         maxCoord.ComputeCoordPercentCalc(aPercentageBasis);
 | ||
|       sz.mLimit = std::min(sz.mLimit, fitContentClamp);
 | ||
|     }
 | ||
|   }
 | ||
|   if (sz.mLimit < sz.mBase) {
 | ||
|     sz.mLimit = sz.mBase;
 | ||
|   }
 | ||
|   return sz.mState & TrackSize::eFlexMaxSizing;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Tracks::CalculateItemBaselines(
 | ||
|   nsTArray<ItemBaselineData>& aBaselineItems,
 | ||
|   BaselineSharingGroup aBaselineGroup)
 | ||
| {
 | ||
|   if (aBaselineItems.IsEmpty()) {
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   // Sort the collected items on their baseline track.
 | ||
|   std::sort(aBaselineItems.begin(), aBaselineItems.end(),
 | ||
|             ItemBaselineData::IsBaselineTrackLessThan);
 | ||
| 
 | ||
|   MOZ_ASSERT(mSizes.Length() > 0, "having an item implies at least one track");
 | ||
|   const uint32_t lastTrack = mSizes.Length() - 1;
 | ||
|   nscoord maxBaseline = 0;
 | ||
|   nscoord maxDescent = 0;
 | ||
|   uint32_t currentTrack = kAutoLine; // guaranteed to not match any item
 | ||
|   uint32_t trackStartIndex = 0;
 | ||
|   for (uint32_t i = 0, len = aBaselineItems.Length(); true ; ++i) {
 | ||
|     // Find the maximum baseline and descent in the current track.
 | ||
|     if (i != len) {
 | ||
|       const ItemBaselineData& item = aBaselineItems[i];
 | ||
|       if (currentTrack == item.mBaselineTrack) {
 | ||
|         maxBaseline = std::max(maxBaseline, item.mBaseline);
 | ||
|         maxDescent = std::max(maxDescent, item.mSize - item.mBaseline);
 | ||
|         continue;
 | ||
|       }
 | ||
|     }
 | ||
|     // Iterate the current track again and update the baseline offsets making
 | ||
|     // all items baseline-aligned within this group in this track.
 | ||
|     for (uint32_t j = trackStartIndex; j < i; ++j) {
 | ||
|       const ItemBaselineData& item = aBaselineItems[j];
 | ||
|       item.mGridItem->mBaselineOffset[mAxis] = maxBaseline - item.mBaseline;
 | ||
|       MOZ_ASSERT(item.mGridItem->mBaselineOffset[mAxis] >= 0);
 | ||
|     }
 | ||
|     if (i != 0) {
 | ||
|       // Store the size of this baseline-aligned subtree.
 | ||
|       mSizes[currentTrack].mBaselineSubtreeSize[aBaselineGroup] =
 | ||
|         maxBaseline + maxDescent;
 | ||
|       // Record the first(last) baseline for the first(last) track.
 | ||
|       if (currentTrack == 0 && aBaselineGroup == BaselineSharingGroup::eFirst) {
 | ||
|         mBaseline[aBaselineGroup] = maxBaseline;
 | ||
|       }
 | ||
|       if (currentTrack == lastTrack &&
 | ||
|           aBaselineGroup == BaselineSharingGroup::eLast) {
 | ||
|         mBaseline[aBaselineGroup] = maxBaseline;
 | ||
|       }
 | ||
|     }
 | ||
|     if (i == len) {
 | ||
|       break;
 | ||
|     }
 | ||
|     // Initialize data for the next track with baseline-aligned items.
 | ||
|     const ItemBaselineData& item = aBaselineItems[i];
 | ||
|     currentTrack = item.mBaselineTrack;
 | ||
|     trackStartIndex = i;
 | ||
|     maxBaseline = item.mBaseline;
 | ||
|     maxDescent = item.mSize - item.mBaseline;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Tracks::InitializeItemBaselines(
 | ||
|   GridReflowInput&        aState,
 | ||
|   nsTArray<GridItemInfo>& aGridItems)
 | ||
| {
 | ||
| 
 | ||
|   nsTArray<ItemBaselineData> firstBaselineItems;
 | ||
|   nsTArray<ItemBaselineData> lastBaselineItems;
 | ||
|   WritingMode wm = aState.mWM;
 | ||
|   nsStyleContext* containerSC = aState.mFrame->StyleContext();
 | ||
|   CSSOrderAwareFrameIterator& iter = aState.mIter;
 | ||
|   iter.Reset();
 | ||
|   for (; !iter.AtEnd(); iter.Next()) {
 | ||
|     nsIFrame* child = *iter;
 | ||
|     GridItemInfo& gridItem = aGridItems[iter.ItemIndex()];
 | ||
|     uint32_t baselineTrack = kAutoLine;
 | ||
|     auto state = ItemState(0);
 | ||
|     auto childWM = child->GetWritingMode();
 | ||
|     const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
 | ||
|     const bool isInlineAxis = mAxis == eLogicalAxisInline; // i.e. columns
 | ||
|     // XXX update the line below to include orthogonal grid/table boxes
 | ||
|     // XXX since they have baselines in both dimensions. And flexbox with
 | ||
|     // XXX reversed main/cross axis?
 | ||
|     const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal;
 | ||
|     if (itemHasBaselineParallelToTrack) {
 | ||
|       // [align|justify]-self:[last ]baseline.
 | ||
|       auto selfAlignment = isOrthogonal ?
 | ||
|         child->StylePosition()->UsedJustifySelf(containerSC) :
 | ||
|         child->StylePosition()->UsedAlignSelf(containerSC);
 | ||
|       selfAlignment &= ~NS_STYLE_ALIGN_FLAG_BITS;
 | ||
|       if (selfAlignment == NS_STYLE_ALIGN_BASELINE) {
 | ||
|         state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline;
 | ||
|         const GridArea& area = gridItem.mArea;
 | ||
|         baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
 | ||
|       } else if (selfAlignment == NS_STYLE_ALIGN_LAST_BASELINE) {
 | ||
|         state |= ItemState::eLastBaseline | ItemState::eSelfBaseline;
 | ||
|         const GridArea& area = gridItem.mArea;
 | ||
|         baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
 | ||
|       }
 | ||
| 
 | ||
|       // [align|justify]-content:[last ]baseline.
 | ||
|       // https://drafts.csswg.org/css-align-3/#baseline-align-content
 | ||
|       // "[...] and its computed 'align-self' or 'justify-self' (whichever
 | ||
|       // affects its block axis) is 'stretch' or 'self-start' ('self-end').
 | ||
|       // For this purpose, the 'start', 'end', 'flex-start', and 'flex-end'
 | ||
|       // values of 'align-self' are treated as either 'self-start' or
 | ||
|       // 'self-end', whichever they end up equivalent to.
 | ||
|       auto alignContent = child->StylePosition()->mAlignContent;
 | ||
|       alignContent &= ~NS_STYLE_ALIGN_FLAG_BITS;
 | ||
|       if (alignContent == NS_STYLE_ALIGN_BASELINE ||
 | ||
|           alignContent == NS_STYLE_ALIGN_LAST_BASELINE) {
 | ||
|         const auto selfAlignEdge = alignContent == NS_STYLE_ALIGN_BASELINE ?
 | ||
|           NS_STYLE_ALIGN_SELF_START : NS_STYLE_ALIGN_SELF_END;
 | ||
|         bool validCombo = selfAlignment == NS_STYLE_ALIGN_NORMAL ||
 | ||
|                           selfAlignment == NS_STYLE_ALIGN_STRETCH ||
 | ||
|                           selfAlignment == selfAlignEdge;
 | ||
|         if (!validCombo) {
 | ||
|           // We're doing alignment in the axis that's orthogonal to mAxis here.
 | ||
|           LogicalAxis alignAxis = GetOrthogonalAxis(mAxis);
 | ||
|           // |sameSide| is true if the container's start side in this axis is
 | ||
|           // the same as the child's start side, in the child's parallel axis.
 | ||
|           bool sameSide = wm.ParallelAxisStartsOnSameSide(alignAxis, childWM);
 | ||
|           switch (selfAlignment) {
 | ||
|             case NS_STYLE_ALIGN_LEFT:
 | ||
|               selfAlignment = !isInlineAxis || wm.IsBidiLTR() ? NS_STYLE_ALIGN_START
 | ||
|                                                               : NS_STYLE_ALIGN_END;
 | ||
|               break;
 | ||
|             case NS_STYLE_ALIGN_RIGHT:
 | ||
|               selfAlignment = isInlineAxis && wm.IsBidiLTR() ? NS_STYLE_ALIGN_END
 | ||
|                                                              : NS_STYLE_ALIGN_START;
 | ||
|               break;
 | ||
|           }
 | ||
|           switch (selfAlignment) {
 | ||
|             case NS_STYLE_ALIGN_START:
 | ||
|             case NS_STYLE_ALIGN_FLEX_START:
 | ||
|               validCombo = sameSide ==
 | ||
|                            (alignContent == NS_STYLE_ALIGN_BASELINE);
 | ||
|               break;
 | ||
|             case NS_STYLE_ALIGN_END:
 | ||
|             case NS_STYLE_ALIGN_FLEX_END:
 | ||
|               validCombo = sameSide ==
 | ||
|                            (alignContent == NS_STYLE_ALIGN_LAST_BASELINE);
 | ||
|               break;
 | ||
|           }
 | ||
|         }
 | ||
|         if (validCombo) {
 | ||
|           const GridArea& area = gridItem.mArea;
 | ||
|           if (alignContent == NS_STYLE_ALIGN_BASELINE) {
 | ||
|             state |= ItemState::eFirstBaseline | ItemState::eContentBaseline;
 | ||
|             baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
 | ||
|           } else if (alignContent == NS_STYLE_ALIGN_LAST_BASELINE) {
 | ||
|             state |= ItemState::eLastBaseline | ItemState::eContentBaseline;
 | ||
|             baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (state & ItemState::eIsBaselineAligned) {
 | ||
|       // XXX available size issue
 | ||
|       LogicalSize avail(childWM, INFINITE_ISIZE_COORD, NS_UNCONSTRAINEDSIZE);
 | ||
|       auto* rc = &aState.mRenderingContext;
 | ||
|       // XXX figure out if we can avoid/merge this reflow with the main reflow.
 | ||
|       // XXX (after bug 1174569 is sorted out)
 | ||
|       //
 | ||
|       // XXX How should we handle percentage padding here? (bug 1330866)
 | ||
|       // XXX (see ::ContentContribution and how it deals with percentages)
 | ||
|       // XXX What if the true baseline after line-breaking differs from this
 | ||
|       // XXX hypothetical baseline based on an infinite inline size?
 | ||
|       // XXX Maybe we should just call ::ContentContribution here instead?
 | ||
|       // XXX For now we just pass a zero-sized CB:
 | ||
|       LogicalSize cbSize(childWM, 0, 0);
 | ||
|       ::MeasuringReflow(child, aState.mReflowInput, rc, avail, cbSize);
 | ||
|       nscoord baseline;
 | ||
|       nsGridContainerFrame* grid = do_QueryFrame(child);
 | ||
|       if (state & ItemState::eFirstBaseline) {
 | ||
|         if (grid) {
 | ||
|           if (isOrthogonal == isInlineAxis) {
 | ||
|             grid->GetBBaseline(BaselineSharingGroup::eFirst, &baseline);
 | ||
|           } else {
 | ||
|             grid->GetIBaseline(BaselineSharingGroup::eFirst, &baseline);
 | ||
|           }
 | ||
|         }
 | ||
|         if (grid ||
 | ||
|             nsLayoutUtils::GetFirstLineBaseline(wm, child, &baseline)) {
 | ||
|           NS_ASSERTION(baseline != NS_INTRINSIC_WIDTH_UNKNOWN,
 | ||
|                        "about to use an unknown baseline");
 | ||
|           auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
 | ||
|           auto m = child->GetLogicalUsedMargin(wm);
 | ||
|           baseline += isInlineAxis ? m.IStart(wm) : m.BStart(wm);
 | ||
|           auto alignSize = frameSize + (isInlineAxis ? m.IStartEnd(wm)
 | ||
|                                                      : m.BStartEnd(wm));
 | ||
|           firstBaselineItems.AppendElement(ItemBaselineData(
 | ||
|             { baselineTrack, baseline, alignSize, &gridItem }));
 | ||
|         } else {
 | ||
|           state &= ~ItemState::eAllBaselineBits;
 | ||
|         }
 | ||
|       } else {
 | ||
|         if (grid) {
 | ||
|           if (isOrthogonal == isInlineAxis) {
 | ||
|             grid->GetBBaseline(BaselineSharingGroup::eLast, &baseline);
 | ||
|           } else {
 | ||
|             grid->GetIBaseline(BaselineSharingGroup::eLast, &baseline);
 | ||
|           }
 | ||
|         }
 | ||
|         if (grid ||
 | ||
|             nsLayoutUtils::GetLastLineBaseline(wm, child, &baseline)) {
 | ||
|           NS_ASSERTION(baseline != NS_INTRINSIC_WIDTH_UNKNOWN,
 | ||
|                        "about to use an unknown baseline");
 | ||
|           auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
 | ||
|           auto m = child->GetLogicalUsedMargin(wm);
 | ||
|           if (!grid) {
 | ||
|             // Convert to distance from border-box end.
 | ||
|             baseline = frameSize - baseline;
 | ||
|           }
 | ||
|           auto descent = baseline + (isInlineAxis ? m.IEnd(wm) : m.BEnd(wm));
 | ||
|           auto alignSize = frameSize + (isInlineAxis ? m.IStartEnd(wm)
 | ||
|                                                      : m.BStartEnd(wm));
 | ||
|           lastBaselineItems.AppendElement(ItemBaselineData(
 | ||
|             { baselineTrack, descent, alignSize, &gridItem }));
 | ||
|         } else {
 | ||
|           state &= ~ItemState::eAllBaselineBits;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     MOZ_ASSERT((state &
 | ||
|                 (ItemState::eFirstBaseline | ItemState::eLastBaseline)) !=
 | ||
|                (ItemState::eFirstBaseline | ItemState::eLastBaseline),
 | ||
|                "first/last baseline bits are mutually exclusive");
 | ||
|     MOZ_ASSERT((state &
 | ||
|                 (ItemState::eSelfBaseline | ItemState::eContentBaseline)) !=
 | ||
|                (ItemState::eSelfBaseline | ItemState::eContentBaseline),
 | ||
|                "*-self and *-content baseline bits are mutually exclusive");
 | ||
|     MOZ_ASSERT(!(state &
 | ||
|                  (ItemState::eFirstBaseline | ItemState::eLastBaseline)) ==
 | ||
|                !(state &
 | ||
|                  (ItemState::eSelfBaseline | ItemState::eContentBaseline)),
 | ||
|                "first/last bit requires self/content bit and vice versa");
 | ||
|     gridItem.mState[mAxis] = state;
 | ||
|     gridItem.mBaselineOffset[mAxis] = nscoord(0);
 | ||
|   }
 | ||
| 
 | ||
|   if (firstBaselineItems.IsEmpty() && lastBaselineItems.IsEmpty()) {
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   // TODO: CSS Align spec issue - how to align a baseline subtree in a track?
 | ||
|   // https://lists.w3.org/Archives/Public/www-style/2016May/0141.html
 | ||
|   mBaselineSubtreeAlign[BaselineSharingGroup::eFirst] = NS_STYLE_ALIGN_START;
 | ||
|   mBaselineSubtreeAlign[BaselineSharingGroup::eLast] = NS_STYLE_ALIGN_END;
 | ||
| 
 | ||
|   CalculateItemBaselines(firstBaselineItems, BaselineSharingGroup::eFirst);
 | ||
|   CalculateItemBaselines(lastBaselineItems, BaselineSharingGroup::eLast);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Tracks::AlignBaselineSubtree(
 | ||
|   const GridItemInfo& aGridItem) const
 | ||
| {
 | ||
|   auto state = aGridItem.mState[mAxis];
 | ||
|   if (!(state & ItemState::eIsBaselineAligned)) {
 | ||
|     return;
 | ||
|   }
 | ||
|   const GridArea& area = aGridItem.mArea;
 | ||
|   int32_t baselineTrack;
 | ||
|   const bool isFirstBaseline = state & ItemState::eFirstBaseline;
 | ||
|   if (isFirstBaseline) {
 | ||
|     baselineTrack = mAxis == eLogicalAxisBlock ? area.mRows.mStart
 | ||
|                                                : area.mCols.mStart;
 | ||
|   } else {
 | ||
|     baselineTrack = (mAxis == eLogicalAxisBlock ? area.mRows.mEnd
 | ||
|                                                 : area.mCols.mEnd) - 1;
 | ||
|   }
 | ||
|   const TrackSize& sz = mSizes[baselineTrack];
 | ||
|   auto baselineGroup = isFirstBaseline ? BaselineSharingGroup::eFirst
 | ||
|                                        : BaselineSharingGroup::eLast;
 | ||
|   nscoord delta = sz.mBase - sz.mBaselineSubtreeSize[baselineGroup];
 | ||
|   const auto subtreeAlign = mBaselineSubtreeAlign[baselineGroup];
 | ||
|   switch (subtreeAlign) {
 | ||
|     case NS_STYLE_ALIGN_START:
 | ||
|       if (state & ItemState::eLastBaseline) {
 | ||
|         aGridItem.mBaselineOffset[mAxis] += delta;
 | ||
|       }
 | ||
|       break;
 | ||
|     case NS_STYLE_ALIGN_END:
 | ||
|       if (isFirstBaseline) {
 | ||
|         aGridItem.mBaselineOffset[mAxis] += delta;
 | ||
|       }
 | ||
|       break;
 | ||
|     case NS_STYLE_ALIGN_CENTER:
 | ||
|       aGridItem.mBaselineOffset[mAxis] += delta / 2;
 | ||
|       break;
 | ||
|     default:
 | ||
|       MOZ_ASSERT_UNREACHABLE("unexpected baseline subtree alignment");
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| template<nsGridContainerFrame::Tracks::TrackSizingPhase phase>
 | ||
| bool
 | ||
| nsGridContainerFrame::Tracks::GrowSizeForSpanningItems(
 | ||
|   nsTArray<Step2ItemData>::iterator aIter,
 | ||
|   const nsTArray<Step2ItemData>::iterator aIterEnd,
 | ||
|   nsTArray<uint32_t>& aTracks,
 | ||
|   nsTArray<TrackSize>& aPlan,
 | ||
|   nsTArray<TrackSize>& aItemPlan,
 | ||
|   TrackSize::StateBits aSelector,
 | ||
|   const FitContentClamper& aFitContentClamper,
 | ||
|   bool aNeedInfinitelyGrowableFlag)
 | ||
| {
 | ||
|   constexpr bool isMaxSizingPhase =
 | ||
|     phase == TrackSizingPhase::eIntrinsicMaximums ||
 | ||
|     phase == TrackSizingPhase::eMaxContentMaximums;
 | ||
|   bool needToUpdateSizes = false;
 | ||
|   InitializePlan<phase>(aPlan);
 | ||
|   for (; aIter != aIterEnd; ++aIter) {
 | ||
|     const Step2ItemData& item = *aIter;
 | ||
|     if (!(item.mState & aSelector)) {
 | ||
|       continue;
 | ||
|     }
 | ||
|     if (isMaxSizingPhase) {
 | ||
|       for (auto i : item.mLineRange.Range()) {
 | ||
|         aPlan[i].mState |= TrackSize::eModified;
 | ||
|       }
 | ||
|     }
 | ||
|     nscoord space = item.SizeContributionForPhase<phase>();
 | ||
|     if (space <= 0) {
 | ||
|       continue;
 | ||
|     }
 | ||
|     aTracks.ClearAndRetainStorage();
 | ||
|     space = CollectGrowable<phase>(space, item.mLineRange, aSelector,
 | ||
|                                    aTracks);
 | ||
|     if (space > 0) {
 | ||
|       DistributeToTrackSizes<phase>(space, aPlan, aItemPlan, aTracks, aSelector,
 | ||
|                                     aFitContentClamper);
 | ||
|       needToUpdateSizes = true;
 | ||
|     }
 | ||
|   }
 | ||
|   if (isMaxSizingPhase) {
 | ||
|     needToUpdateSizes = true;
 | ||
|   }
 | ||
|   if (needToUpdateSizes) {
 | ||
|     CopyPlanToSize<phase>(aPlan, aNeedInfinitelyGrowableFlag);
 | ||
|   }
 | ||
|   return needToUpdateSizes;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Tracks::ResolveIntrinsicSize(
 | ||
|   GridReflowInput&            aState,
 | ||
|   nsTArray<GridItemInfo>&     aGridItems,
 | ||
|   const TrackSizingFunctions& aFunctions,
 | ||
|   LineRange GridArea::*       aRange,
 | ||
|   nscoord                     aPercentageBasis,
 | ||
|   SizingConstraint            aConstraint)
 | ||
| {
 | ||
|   // Resolve Intrinsic Track Sizes
 | ||
|   // http://dev.w3.org/csswg/css-grid/#algo-content
 | ||
|   // We're also setting eIsFlexing on the item state here to speed up
 | ||
|   // FindUsedFlexFraction later.
 | ||
|   struct PerSpanData {
 | ||
|     PerSpanData() : mItemCountWithSameSpan(0)
 | ||
|                   , mStateBits(TrackSize::StateBits(0)) {}
 | ||
|     uint32_t mItemCountWithSameSpan;
 | ||
|     TrackSize::StateBits mStateBits;
 | ||
|   };
 | ||
|   AutoTArray<PerSpanData, 16> perSpanData;
 | ||
|   nsTArray<Step2ItemData> step2Items;
 | ||
|   CSSOrderAwareFrameIterator& iter = aState.mIter;
 | ||
|   gfxContext* rc = &aState.mRenderingContext;
 | ||
|   WritingMode wm = aState.mWM;
 | ||
|   uint32_t maxSpan = 0; // max span of the step2Items items
 | ||
|   // Setup track selector for step 2.2:
 | ||
|   const auto contentBasedMinSelector =
 | ||
|     aConstraint == SizingConstraint::eMinContent ?
 | ||
|     TrackSize::eIntrinsicMinSizing : TrackSize::eMinOrMaxContentMinSizing;
 | ||
|   // Setup track selector for step 2.3:
 | ||
|   const auto maxContentMinSelector =
 | ||
|     aConstraint == SizingConstraint::eMaxContent ?
 | ||
|     (TrackSize::eMaxContentMinSizing | TrackSize::eAutoMinSizing) :
 | ||
|     TrackSize::eMaxContentMinSizing;
 | ||
|   iter.Reset();
 | ||
|   for (; !iter.AtEnd(); iter.Next()) {
 | ||
|     auto& gridItem = aGridItems[iter.ItemIndex()];
 | ||
|     MOZ_ASSERT(!(gridItem.mState[mAxis] &
 | ||
|                  (ItemState::eApplyAutoMinSize | ItemState::eIsFlexing |
 | ||
|                   ItemState::eClampMarginBoxMinSize)),
 | ||
|                "Why are any of these bits set already?");
 | ||
|     const GridArea& area = gridItem.mArea;
 | ||
|     const LineRange& lineRange = area.*aRange;
 | ||
|     uint32_t span = lineRange.Extent();
 | ||
|     if (span == 1) {
 | ||
|       // Step 1. Size tracks to fit non-spanning items.
 | ||
|       if (ResolveIntrinsicSizeStep1(aState, aFunctions, aPercentageBasis,
 | ||
|                                     aConstraint, lineRange, gridItem)) {
 | ||
|         gridItem.mState[mAxis] |= ItemState::eIsFlexing;
 | ||
|       }
 | ||
|     } else {
 | ||
|       TrackSize::StateBits state = StateBitsForRange(lineRange);
 | ||
| 
 | ||
|       // Check if we need to apply "Automatic Minimum Size" and cache it.
 | ||
|       if ((state & TrackSize::eAutoMinSizing) &&
 | ||
|           gridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) {
 | ||
|         gridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize;
 | ||
|       }
 | ||
| 
 | ||
|       if ((state & (TrackSize::eIntrinsicMinSizing |
 | ||
|                     TrackSize::eIntrinsicMaxSizing)) &&
 | ||
|           !(state & TrackSize::eFlexMaxSizing)) {
 | ||
|         // Collect data for Step 2.
 | ||
|         maxSpan = std::max(maxSpan, span);
 | ||
|         if (span >= perSpanData.Length()) {
 | ||
|           perSpanData.SetLength(2 * span);
 | ||
|         }
 | ||
|         perSpanData[span].mItemCountWithSameSpan++;
 | ||
|         perSpanData[span].mStateBits |= state;
 | ||
|         CachedIntrinsicSizes cache;
 | ||
|         // Calculate data for "Automatic Minimum Size" clamping, if needed.
 | ||
|         bool needed = ((state & TrackSize::eIntrinsicMinSizing) ||
 | ||
|                        aConstraint == SizingConstraint::eNoConstraint) &&
 | ||
|                       (gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize);
 | ||
|         if (needed && TrackSize::IsDefiniteMaxSizing(state)) {
 | ||
|           nscoord minSizeClamp = 0;
 | ||
|           for (auto i : lineRange.Range()) {
 | ||
|             auto maxCoord = aFunctions.MaxSizingFor(i);
 | ||
|             minSizeClamp += maxCoord.ComputeCoordPercentCalc(aPercentageBasis);
 | ||
|           }
 | ||
|           minSizeClamp += mGridGap * (span - 1);
 | ||
|           cache.mMinSizeClamp = minSizeClamp;
 | ||
|           gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
 | ||
|         }
 | ||
|         // Collect the various grid item size contributions we need.
 | ||
|         nscoord minSize = 0;
 | ||
|         if (state & (TrackSize::eIntrinsicMinSizing |   // for 2.1
 | ||
|                      TrackSize::eIntrinsicMaxSizing)) { // for 2.5
 | ||
|           minSize = MinSize(gridItem, aState, rc, wm, mAxis, &cache);
 | ||
|         }
 | ||
|         nscoord minContent = 0;
 | ||
|         if (state & contentBasedMinSelector) { // for 2.2
 | ||
|           minContent = MinContentContribution(gridItem, aState,
 | ||
|                                               rc, wm, mAxis, &cache);
 | ||
|         }
 | ||
|         nscoord maxContent = 0;
 | ||
|         if (state & (maxContentMinSelector |                   // for 2.3
 | ||
|                      TrackSize::eAutoOrMaxContentMaxSizing)) { // for 2.6
 | ||
|           maxContent = MaxContentContribution(gridItem, aState,
 | ||
|                                               rc, wm, mAxis, &cache);
 | ||
|         }
 | ||
|         step2Items.AppendElement(
 | ||
|           Step2ItemData({span, state, lineRange, minSize,
 | ||
|                          minContent, maxContent, *iter}));
 | ||
|       } else {
 | ||
|         if (state & TrackSize::eFlexMaxSizing) {
 | ||
|           gridItem.mState[mAxis] |= ItemState::eIsFlexing;
 | ||
|         } else if (aConstraint == SizingConstraint::eNoConstraint &&
 | ||
|                    TrackSize::IsDefiniteMaxSizing(state) &&
 | ||
|                    (gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize)) {
 | ||
|           gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     MOZ_ASSERT(!(gridItem.mState[mAxis] & ItemState::eClampMarginBoxMinSize) ||
 | ||
|                (gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize),
 | ||
|                "clamping only applies to Automatic Minimum Size");
 | ||
|   }
 | ||
| 
 | ||
|   // Step 2.
 | ||
|   if (maxSpan) {
 | ||
|     auto fitContentClamper = [&aFunctions, aPercentageBasis] (uint32_t aTrack,
 | ||
|                                                               nscoord aMinSize,
 | ||
|                                                               nscoord* aSize)
 | ||
|     {
 | ||
|       nscoord fitContentLimit =
 | ||
|         ::ResolveToDefiniteSize(aFunctions.MaxSizingFor(aTrack), aPercentageBasis);
 | ||
|       if (*aSize > fitContentLimit) {
 | ||
|         *aSize = std::max(aMinSize, fitContentLimit);
 | ||
|         return true;
 | ||
|       }
 | ||
|       return false;
 | ||
|     };
 | ||
| 
 | ||
|     // Sort the collected items on span length, shortest first.
 | ||
|     std::stable_sort(step2Items.begin(), step2Items.end(),
 | ||
|                      Step2ItemData::IsSpanLessThan);
 | ||
| 
 | ||
|     nsTArray<uint32_t> tracks(maxSpan);
 | ||
|     nsTArray<TrackSize> plan(mSizes.Length());
 | ||
|     plan.SetLength(mSizes.Length());
 | ||
|     nsTArray<TrackSize> itemPlan(mSizes.Length());
 | ||
|     itemPlan.SetLength(mSizes.Length());
 | ||
|     // Start / end iterator for items of the same span length:
 | ||
|     auto spanGroupStart = step2Items.begin();
 | ||
|     auto spanGroupEnd = spanGroupStart;
 | ||
|     const auto end = step2Items.end();
 | ||
|     for (; spanGroupStart != end; spanGroupStart = spanGroupEnd) {
 | ||
|       const uint32_t span = spanGroupStart->mSpan;
 | ||
|       spanGroupEnd = spanGroupStart + perSpanData[span].mItemCountWithSameSpan;
 | ||
|       TrackSize::StateBits stateBitsForSpan = perSpanData[span].mStateBits;
 | ||
|       bool updatedBase = false; // Did we update any mBase in step 2.1 - 2.3?
 | ||
|       TrackSize::StateBits selector(TrackSize::eIntrinsicMinSizing);
 | ||
|       if (stateBitsForSpan & selector) {
 | ||
|         // Step 2.1 MinSize to intrinsic min-sizing.
 | ||
|         updatedBase =
 | ||
|           GrowSizeForSpanningItems<TrackSizingPhase::eIntrinsicMinimums>(
 | ||
|             spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
 | ||
|       }
 | ||
| 
 | ||
|       selector = contentBasedMinSelector;
 | ||
|       if (stateBitsForSpan & selector) {
 | ||
|         // Step 2.2 MinContentContribution to min-/max-content (and 'auto' when
 | ||
|         // sizing under a min-content constraint) min-sizing.
 | ||
|         updatedBase |=
 | ||
|           GrowSizeForSpanningItems<TrackSizingPhase::eContentBasedMinimums>(
 | ||
|             spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
 | ||
|       }
 | ||
| 
 | ||
|       selector = maxContentMinSelector;
 | ||
|       if (stateBitsForSpan & selector) {
 | ||
|         // Step 2.3 MaxContentContribution to max-content (and 'auto' when
 | ||
|         // sizing under a max-content constraint) min-sizing.
 | ||
|         updatedBase |=
 | ||
|           GrowSizeForSpanningItems<TrackSizingPhase::eMaxContentMinimums>(
 | ||
|             spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
 | ||
|       }
 | ||
| 
 | ||
|       if (updatedBase) {
 | ||
|         // Step 2.4
 | ||
|         for (TrackSize& sz : mSizes) {
 | ||
|           if (sz.mBase > sz.mLimit) {
 | ||
|             sz.mLimit = sz.mBase;
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       selector = TrackSize::eIntrinsicMaxSizing;
 | ||
|       if (stateBitsForSpan & selector) {
 | ||
|         const bool willRunStep2_6 =
 | ||
|           stateBitsForSpan & TrackSize::eAutoOrMaxContentMaxSizing;
 | ||
|         // Step 2.5 MinSize to intrinsic max-sizing.
 | ||
|         GrowSizeForSpanningItems<TrackSizingPhase::eIntrinsicMaximums>(
 | ||
|           spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector,
 | ||
|           fitContentClamper, willRunStep2_6);
 | ||
| 
 | ||
|         if (willRunStep2_6) {
 | ||
|           // Step 2.6 MaxContentContribution to max-content max-sizing.
 | ||
|           selector = TrackSize::eAutoOrMaxContentMaxSizing;
 | ||
|           GrowSizeForSpanningItems<TrackSizingPhase::eMaxContentMaximums>(
 | ||
|             spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector,
 | ||
|             fitContentClamper);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Step 3.
 | ||
|   for (TrackSize& sz : mSizes) {
 | ||
|     if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
 | ||
|       sz.mLimit = sz.mBase;
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| float
 | ||
| nsGridContainerFrame::Tracks::FindFrUnitSize(
 | ||
|   const LineRange&            aRange,
 | ||
|   const nsTArray<uint32_t>&   aFlexTracks,
 | ||
|   const TrackSizingFunctions& aFunctions,
 | ||
|   nscoord                     aSpaceToFill) const
 | ||
| {
 | ||
|   MOZ_ASSERT(aSpaceToFill > 0 && !aFlexTracks.IsEmpty());
 | ||
|   float flexFactorSum = 0.0f;
 | ||
|   nscoord leftOverSpace = aSpaceToFill;
 | ||
|   for (auto i : aRange.Range()) {
 | ||
|     const TrackSize& sz = mSizes[i];
 | ||
|     if (sz.mState & TrackSize::eFlexMaxSizing) {
 | ||
|       flexFactorSum += aFunctions.MaxSizingFor(i).GetFlexFractionValue();
 | ||
|     } else {
 | ||
|       leftOverSpace -= sz.mBase;
 | ||
|       if (leftOverSpace <= 0) {
 | ||
|         return 0.0f;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
|   bool restart;
 | ||
|   float hypotheticalFrSize;
 | ||
|   nsTArray<uint32_t> flexTracks(aFlexTracks);
 | ||
|   uint32_t numFlexTracks = flexTracks.Length();
 | ||
|   do {
 | ||
|     restart = false;
 | ||
|     hypotheticalFrSize = leftOverSpace / std::max(flexFactorSum, 1.0f);
 | ||
|     for (uint32_t i = 0, len = flexTracks.Length(); i < len; ++i) {
 | ||
|       uint32_t track = flexTracks[i];
 | ||
|       if (track == kAutoLine) {
 | ||
|         continue; // Track marked as inflexible in a prev. iter of this loop.
 | ||
|       }
 | ||
|       float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue();
 | ||
|       const nscoord base = mSizes[track].mBase;
 | ||
|       if (flexFactor * hypotheticalFrSize < base) {
 | ||
|         // 12.7.1.4: Treat this track as inflexible.
 | ||
|         flexTracks[i] = kAutoLine;
 | ||
|         flexFactorSum -= flexFactor;
 | ||
|         leftOverSpace -= base;
 | ||
|         --numFlexTracks;
 | ||
|         if (numFlexTracks == 0 || leftOverSpace <= 0) {
 | ||
|           return 0.0f;
 | ||
|         }
 | ||
|         restart = true;
 | ||
|         // break; XXX (bug 1176621 comment 16) measure which is more common
 | ||
|       }
 | ||
|     }
 | ||
|   } while (restart);
 | ||
|   return hypotheticalFrSize;
 | ||
| }
 | ||
| 
 | ||
| float
 | ||
| nsGridContainerFrame::Tracks::FindUsedFlexFraction(
 | ||
|   GridReflowInput&            aState,
 | ||
|   nsTArray<GridItemInfo>&     aGridItems,
 | ||
|   const nsTArray<uint32_t>&   aFlexTracks,
 | ||
|   const TrackSizingFunctions& aFunctions,
 | ||
|   nscoord                     aAvailableSize) const
 | ||
| {
 | ||
|   if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
 | ||
|     // Use all of the grid tracks and a 'space to fill' of the available space.
 | ||
|     const TranslatedLineRange range(0, mSizes.Length());
 | ||
|     return FindFrUnitSize(range, aFlexTracks, aFunctions, aAvailableSize);
 | ||
|   }
 | ||
| 
 | ||
|   // The used flex fraction is the maximum of:
 | ||
|   // ... each flexible track's base size divided by its flex factor (which is
 | ||
|   // floored at 1).
 | ||
|   float fr = 0.0f;
 | ||
|   for (uint32_t track : aFlexTracks) {
 | ||
|     float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue();
 | ||
|     float possiblyDividedBaseSize = (flexFactor > 1.0f)
 | ||
|       ? mSizes[track].mBase / flexFactor
 | ||
|       : mSizes[track].mBase;
 | ||
|     fr = std::max(fr, possiblyDividedBaseSize);
 | ||
|   }
 | ||
|   WritingMode wm = aState.mWM;
 | ||
|   gfxContext* rc = &aState.mRenderingContext;
 | ||
|   CSSOrderAwareFrameIterator& iter = aState.mIter;
 | ||
|   iter.Reset();
 | ||
|   // ... the result of 'finding the size of an fr' for each item that spans
 | ||
|   // a flex track with its max-content contribution as 'space to fill'
 | ||
|   for (; !iter.AtEnd(); iter.Next()) {
 | ||
|     const GridItemInfo& item = aGridItems[iter.ItemIndex()];
 | ||
|     if (item.mState[mAxis] & ItemState::eIsFlexing) {
 | ||
|       // XXX optimize: bug 1194446
 | ||
|       auto pb = Some(aState.PercentageBasisFor(mAxis, item));
 | ||
|       nscoord spaceToFill = ContentContribution(item, aState, rc, wm, mAxis, pb,
 | ||
|                                                 nsLayoutUtils::PREF_ISIZE);
 | ||
|       const LineRange& range =
 | ||
|         mAxis == eLogicalAxisInline ? item.mArea.mCols : item.mArea.mRows;
 | ||
|       MOZ_ASSERT(range.Extent() >= 1);
 | ||
|       const auto spannedGaps = range.Extent() - 1;
 | ||
|       if (spannedGaps > 0) {
 | ||
|         spaceToFill -= mGridGap * spannedGaps;
 | ||
|       }
 | ||
|       if (spaceToFill <= 0) {
 | ||
|         continue;
 | ||
|       }
 | ||
|       // ... and all its spanned tracks as input.
 | ||
|       nsTArray<uint32_t> itemFlexTracks;
 | ||
|       for (auto i : range.Range()) {
 | ||
|         if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
 | ||
|           itemFlexTracks.AppendElement(i);
 | ||
|         }
 | ||
|       }
 | ||
|       float itemFr =
 | ||
|         FindFrUnitSize(range, itemFlexTracks, aFunctions, spaceToFill);
 | ||
|       fr = std::max(fr, itemFr);
 | ||
|     }
 | ||
|   }
 | ||
|   return fr;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Tracks::StretchFlexibleTracks(
 | ||
|   GridReflowInput&            aState,
 | ||
|   nsTArray<GridItemInfo>&     aGridItems,
 | ||
|   const TrackSizingFunctions& aFunctions,
 | ||
|   nscoord                     aAvailableSize)
 | ||
| {
 | ||
|   if (aAvailableSize <= 0) {
 | ||
|     return;
 | ||
|   }
 | ||
|   nsTArray<uint32_t> flexTracks(mSizes.Length());
 | ||
|   for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
 | ||
|     if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
 | ||
|       flexTracks.AppendElement(i);
 | ||
|     }
 | ||
|   }
 | ||
|   if (flexTracks.IsEmpty()) {
 | ||
|     return;
 | ||
|   }
 | ||
|   nscoord minSize = 0;
 | ||
|   nscoord maxSize = NS_UNCONSTRAINEDSIZE;
 | ||
|   if (aState.mReflowInput) {
 | ||
|     auto* ri = aState.mReflowInput;
 | ||
|     minSize = mAxis == eLogicalAxisBlock ? ri->ComputedMinBSize()
 | ||
|                                          : ri->ComputedMinISize();
 | ||
|     maxSize = mAxis == eLogicalAxisBlock ? ri->ComputedMaxBSize()
 | ||
|                                          : ri->ComputedMaxISize();
 | ||
|   }
 | ||
|   Maybe<nsTArray<TrackSize>> origSizes;
 | ||
|   bool applyMinMax = (minSize != 0 || maxSize != NS_UNCONSTRAINEDSIZE) &&
 | ||
|                      aAvailableSize == NS_UNCONSTRAINEDSIZE;
 | ||
|   // We iterate twice at most.  The 2nd time if the grid size changed after
 | ||
|   // applying a min/max-size (can only occur if aAvailableSize is indefinite).
 | ||
|   while (true) {
 | ||
|     float fr = FindUsedFlexFraction(aState, aGridItems, flexTracks,
 | ||
|                                     aFunctions, aAvailableSize);
 | ||
|     if (fr != 0.0f) {
 | ||
|       for (uint32_t i : flexTracks) {
 | ||
|         float flexFactor = aFunctions.MaxSizingFor(i).GetFlexFractionValue();
 | ||
|         nscoord flexLength = NSToCoordRound(flexFactor * fr);
 | ||
|         nscoord& base = mSizes[i].mBase;
 | ||
|         if (flexLength > base) {
 | ||
|           if (applyMinMax && origSizes.isNothing()) {
 | ||
|             origSizes.emplace(mSizes);
 | ||
|           }
 | ||
|           base = flexLength;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     if (applyMinMax) {
 | ||
|       applyMinMax = false;
 | ||
|       // https://drafts.csswg.org/css-grid/#algo-flex-tracks
 | ||
|       // "If using this flex fraction would cause the grid to be smaller than
 | ||
|       // the grid container’s min-width/height (or larger than the grid
 | ||
|       // container’s max-width/height), then redo this step, treating the free
 | ||
|       // space as definite [...]"
 | ||
|       nscoord newSize = 0;
 | ||
|       for (auto& sz : mSizes) {
 | ||
|         newSize += sz.mBase;
 | ||
|       }
 | ||
|       const auto sumOfGridGaps = SumOfGridGaps();
 | ||
|       newSize += sumOfGridGaps;
 | ||
|       if (newSize > maxSize) {
 | ||
|         aAvailableSize = maxSize;
 | ||
|       } else if (newSize < minSize) {
 | ||
|         aAvailableSize = minSize;
 | ||
|       }
 | ||
|       if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
 | ||
|         aAvailableSize = std::max(0, aAvailableSize - sumOfGridGaps);
 | ||
|         // Restart with the original track sizes and definite aAvailableSize.
 | ||
|         if (origSizes.isSome()) {
 | ||
|           mSizes = Move(*origSizes);
 | ||
|           origSizes.reset();
 | ||
|         } // else, no mSizes[].mBase were changed above so it's still correct
 | ||
|         if (aAvailableSize == 0) {
 | ||
|           break; // zero available size wouldn't change any sizes though...
 | ||
|         }
 | ||
|         continue;
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Tracks::AlignJustifyContent(
 | ||
|   const nsStylePosition* aStyle,
 | ||
|   WritingMode            aWM,
 | ||
|   const LogicalSize&     aContainerSize)
 | ||
| {
 | ||
|   if (mSizes.IsEmpty()) {
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   const bool isAlign = mAxis == eLogicalAxisBlock;
 | ||
|   auto valueAndFallback = isAlign ? aStyle->mAlignContent :
 | ||
|                                     aStyle->mJustifyContent;
 | ||
|   bool overflowSafe;
 | ||
|   auto alignment = ::GetAlignJustifyValue(valueAndFallback, aWM, isAlign,
 | ||
|                                           &overflowSafe);
 | ||
|   if (alignment == NS_STYLE_ALIGN_NORMAL) {
 | ||
|     MOZ_ASSERT(valueAndFallback == NS_STYLE_ALIGN_NORMAL,
 | ||
|                "*-content:normal cannot be specified with explicit fallback");
 | ||
|     alignment = NS_STYLE_ALIGN_STRETCH;
 | ||
|     valueAndFallback = alignment; // we may need a fallback for 'stretch' below
 | ||
|   }
 | ||
| 
 | ||
|   // Compute the free space and count auto-sized tracks.
 | ||
|   size_t numAutoTracks = 0;
 | ||
|   nscoord space;
 | ||
|   if (alignment != NS_STYLE_ALIGN_START) {
 | ||
|     nscoord trackSizeSum = 0;
 | ||
|     for (const TrackSize& sz : mSizes) {
 | ||
|       trackSizeSum += sz.mBase;
 | ||
|       if (sz.mState & TrackSize::eAutoMaxSizing) {
 | ||
|         ++numAutoTracks;
 | ||
|       }
 | ||
|     }
 | ||
|     nscoord cbSize = isAlign ? aContainerSize.BSize(aWM)
 | ||
|                              : aContainerSize.ISize(aWM);
 | ||
|     space = cbSize - trackSizeSum - SumOfGridGaps();
 | ||
|     // Use the fallback value instead when applicable.
 | ||
|     if (space < 0 ||
 | ||
|         (alignment == NS_STYLE_ALIGN_SPACE_BETWEEN && mSizes.Length() == 1)) {
 | ||
|       auto fallback = ::GetAlignJustifyFallbackIfAny(valueAndFallback, aWM,
 | ||
|                                                      isAlign, &overflowSafe);
 | ||
|       if (fallback) {
 | ||
|         alignment = fallback;
 | ||
|       }
 | ||
|     }
 | ||
|     if (space == 0 || (space < 0 && overflowSafe)) {
 | ||
|       // XXX check that this makes sense also for [last ]baseline (bug 1151204).
 | ||
|       alignment = NS_STYLE_ALIGN_START;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Optimize the cases where we just need to set each track's position.
 | ||
|   nscoord pos = 0;
 | ||
|   bool distribute = true;
 | ||
|   switch (alignment) {
 | ||
|     case NS_STYLE_ALIGN_BASELINE:
 | ||
|     case NS_STYLE_ALIGN_LAST_BASELINE:
 | ||
|       NS_WARNING("NYI: 'first/last baseline' (bug 1151204)"); // XXX
 | ||
|       MOZ_FALLTHROUGH;
 | ||
|     case NS_STYLE_ALIGN_START:
 | ||
|       distribute = false;
 | ||
|       break;
 | ||
|     case NS_STYLE_ALIGN_END:
 | ||
|       pos = space;
 | ||
|       distribute = false;
 | ||
|       break;
 | ||
|     case NS_STYLE_ALIGN_CENTER:
 | ||
|       pos = space / 2;
 | ||
|       distribute = false;
 | ||
|       break;
 | ||
|     case NS_STYLE_ALIGN_STRETCH:
 | ||
|       distribute = numAutoTracks != 0;
 | ||
|       break;
 | ||
|   }
 | ||
|   if (!distribute) {
 | ||
|     for (TrackSize& sz : mSizes) {
 | ||
|       sz.mPosition = pos;
 | ||
|       pos += sz.mBase + mGridGap;
 | ||
|     }
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   // Distribute free space to/between tracks and set their position.
 | ||
|   MOZ_ASSERT(space > 0, "should've handled that on the fallback path above");
 | ||
|   nscoord between, roundingError;
 | ||
|   switch (alignment) {
 | ||
|     case NS_STYLE_ALIGN_STRETCH: {
 | ||
|       MOZ_ASSERT(numAutoTracks > 0, "we handled numAutoTracks == 0 above");
 | ||
|       nscoord spacePerTrack;
 | ||
|       roundingError = NSCoordDivRem(space, numAutoTracks, &spacePerTrack);
 | ||
|       for (TrackSize& sz : mSizes) {
 | ||
|         sz.mPosition = pos;
 | ||
|         if (!(sz.mState & TrackSize::eAutoMaxSizing)) {
 | ||
|           pos += sz.mBase + mGridGap;
 | ||
|           continue;
 | ||
|         }
 | ||
|         nscoord stretch = spacePerTrack;
 | ||
|         if (roundingError) {
 | ||
|           roundingError -= 1;
 | ||
|           stretch += 1;
 | ||
|         }
 | ||
|         nscoord newBase = sz.mBase + stretch;
 | ||
|         sz.mBase = newBase;
 | ||
|         pos += newBase + mGridGap;
 | ||
|       }
 | ||
|       MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
 | ||
|       return;
 | ||
|     }
 | ||
|     case NS_STYLE_ALIGN_SPACE_BETWEEN:
 | ||
|       MOZ_ASSERT(mSizes.Length() > 1, "should've used a fallback above");
 | ||
|       roundingError = NSCoordDivRem(space, mSizes.Length() - 1, &between);
 | ||
|       break;
 | ||
|     case NS_STYLE_ALIGN_SPACE_AROUND:
 | ||
|       roundingError = NSCoordDivRem(space, mSizes.Length(), &between);
 | ||
|       pos = between / 2;
 | ||
|       break;
 | ||
|     case NS_STYLE_ALIGN_SPACE_EVENLY:
 | ||
|       roundingError = NSCoordDivRem(space, mSizes.Length() + 1, &between);
 | ||
|       pos = between;
 | ||
|       break;
 | ||
|     default:
 | ||
|       MOZ_ASSERT_UNREACHABLE("unknown align-/justify-content value");
 | ||
|       between = 0; // just to avoid a compiler warning
 | ||
|       roundingError = 0; // just to avoid a compiler warning
 | ||
|   }
 | ||
|   between += mGridGap;
 | ||
|   for (TrackSize& sz : mSizes) {
 | ||
|     sz.mPosition = pos;
 | ||
|     nscoord spacing = between;
 | ||
|     if (roundingError) {
 | ||
|       roundingError -= 1;
 | ||
|       spacing += 1;
 | ||
|     }
 | ||
|     pos += sz.mBase + spacing;
 | ||
|   }
 | ||
|   MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
 | ||
| }
 | ||
| 
 | ||
| nscoord
 | ||
| nsGridContainerFrame::Tracks::BackComputedIntrinsicSize(
 | ||
|   const TrackSizingFunctions& aFunctions,
 | ||
|   const nsStyleCoord& aGridGap) const
 | ||
| {
 | ||
|   // Sum up the current sizes (where percentage tracks were treated as 'auto')
 | ||
|   // in 'size'.
 | ||
|   nscoord size = 0;
 | ||
|   for (size_t i = 0, len = mSizes.Length(); i < len; ++i) {
 | ||
|     size += mSizes[i].mBase;
 | ||
|   }
 | ||
| 
 | ||
|   // Add grid-gap contributions to 'size' and calculate a 'percent' sum.
 | ||
|   float percent = 0.0f;
 | ||
|   size_t numTracks = mSizes.Length();
 | ||
|   if (numTracks > 1) {
 | ||
|     const size_t gridGapCount = numTracks - 1;
 | ||
|     nscoord gridGapLength;
 | ||
|     float gridGapPercent;
 | ||
|     if (::GetPercentSizeParts(aGridGap, &gridGapLength, &gridGapPercent)) {
 | ||
|       percent = gridGapCount * gridGapPercent;
 | ||
|     } else {
 | ||
|       gridGapLength = aGridGap.ToLength();
 | ||
|     }
 | ||
|     size += gridGapCount * gridGapLength;
 | ||
|   }
 | ||
| 
 | ||
|   return std::max(0, nsLayoutUtils::AddPercents(size, percent));
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::LineRange::ToPositionAndLength(
 | ||
|   const nsTArray<TrackSize>& aTrackSizes, nscoord* aPos, nscoord* aLength) const
 | ||
| {
 | ||
|   MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
 | ||
|              "expected a definite LineRange");
 | ||
|   MOZ_ASSERT(mStart < mEnd);
 | ||
|   nscoord startPos = aTrackSizes[mStart].mPosition;
 | ||
|   const TrackSize& sz = aTrackSizes[mEnd - 1];
 | ||
|   *aPos = startPos;
 | ||
|   *aLength = (sz.mPosition + sz.mBase) - startPos;
 | ||
| }
 | ||
| 
 | ||
| nscoord
 | ||
| nsGridContainerFrame::LineRange::ToLength(
 | ||
|   const nsTArray<TrackSize>& aTrackSizes) const
 | ||
| {
 | ||
|   MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
 | ||
|              "expected a definite LineRange");
 | ||
|   MOZ_ASSERT(mStart < mEnd);
 | ||
|   nscoord startPos = aTrackSizes[mStart].mPosition;
 | ||
|   const TrackSize& sz = aTrackSizes[mEnd - 1];
 | ||
|   return (sz.mPosition + sz.mBase) - startPos;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::LineRange::ToPositionAndLengthForAbsPos(
 | ||
|   const Tracks& aTracks, nscoord aGridOrigin,
 | ||
|   nscoord* aPos, nscoord* aLength) const
 | ||
| {
 | ||
|   // kAutoLine for abspos children contributes the corresponding edge
 | ||
|   // of the grid container's padding-box.
 | ||
|   if (mEnd == kAutoLine) {
 | ||
|     if (mStart == kAutoLine) {
 | ||
|       // done
 | ||
|     } else {
 | ||
|       const nscoord endPos = *aPos + *aLength;
 | ||
|       auto side = mStart == aTracks.mSizes.Length() ? GridLineSide::eBeforeGridGap
 | ||
|                                                     : GridLineSide::eAfterGridGap;
 | ||
|       nscoord startPos = aTracks.GridLineEdge(mStart, side);
 | ||
|       *aPos = aGridOrigin + startPos;
 | ||
|       *aLength = std::max(endPos - *aPos, 0);
 | ||
|     }
 | ||
|   } else {
 | ||
|     if (mStart == kAutoLine) {
 | ||
|       auto side = mEnd == 0 ? GridLineSide::eAfterGridGap
 | ||
|                             : GridLineSide::eBeforeGridGap;
 | ||
|       nscoord endPos = aTracks.GridLineEdge(mEnd, side);
 | ||
|       *aLength = std::max(aGridOrigin + endPos, 0);
 | ||
|     } else if (MOZ_LIKELY(mStart != mEnd)) {
 | ||
|       nscoord pos;
 | ||
|       ToPositionAndLength(aTracks.mSizes, &pos, aLength);
 | ||
|       *aPos = aGridOrigin + pos;
 | ||
|     } else {
 | ||
|       // The grid area only covers removed 'auto-fit' tracks.
 | ||
|       nscoord pos = aTracks.GridLineEdge(mStart, GridLineSide::eBeforeGridGap);
 | ||
|       *aPos = aGridOrigin + pos;
 | ||
|       *aLength = nscoord(0);
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| LogicalSize
 | ||
| nsGridContainerFrame::GridReflowInput::PercentageBasisFor(
 | ||
|   LogicalAxis aAxis,
 | ||
|   const GridItemInfo& aGridItem) const
 | ||
| {
 | ||
|   auto wm = aGridItem.mFrame->GetWritingMode();
 | ||
|   if (aAxis == eLogicalAxisInline) {
 | ||
|     return LogicalSize(wm, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
 | ||
|   }
 | ||
|   // Note: for now, we only resolve transferred percentages to row sizing.
 | ||
|   // We may need to adjust these assertions once we implement bug 1300366.
 | ||
|   MOZ_ASSERT(mCols.mCanResolveLineRangeSize);
 | ||
|   MOZ_ASSERT(!mRows.mCanResolveLineRangeSize);
 | ||
|   nscoord colSize = aGridItem.mArea.mCols.ToLength(mCols.mSizes);
 | ||
|   nscoord rowSize = NS_UNCONSTRAINEDSIZE;
 | ||
|   return !wm.IsOrthogonalTo(mWM) ?
 | ||
|     LogicalSize(wm, colSize, rowSize) : LogicalSize(wm, rowSize, colSize);
 | ||
| }
 | ||
| 
 | ||
| LogicalRect
 | ||
| nsGridContainerFrame::GridReflowInput::ContainingBlockFor(const GridArea& aArea) const
 | ||
| {
 | ||
|   nscoord i, b, iSize, bSize;
 | ||
|   MOZ_ASSERT(aArea.mCols.Extent() > 0, "grid items cover at least one track");
 | ||
|   MOZ_ASSERT(aArea.mRows.Extent() > 0, "grid items cover at least one track");
 | ||
|   aArea.mCols.ToPositionAndLength(mCols.mSizes, &i, &iSize);
 | ||
|   aArea.mRows.ToPositionAndLength(mRows.mSizes, &b, &bSize);
 | ||
|   return LogicalRect(mWM, i, b, iSize, bSize);
 | ||
| }
 | ||
| 
 | ||
| LogicalRect
 | ||
| nsGridContainerFrame::GridReflowInput::ContainingBlockForAbsPos(
 | ||
|   const GridArea&     aArea,
 | ||
|   const LogicalPoint& aGridOrigin,
 | ||
|   const LogicalRect&  aGridCB) const
 | ||
| {
 | ||
|   nscoord i = aGridCB.IStart(mWM);
 | ||
|   nscoord b = aGridCB.BStart(mWM);
 | ||
|   nscoord iSize = aGridCB.ISize(mWM);
 | ||
|   nscoord bSize = aGridCB.BSize(mWM);
 | ||
|   aArea.mCols.ToPositionAndLengthForAbsPos(mCols, aGridOrigin.I(mWM),
 | ||
|                                            &i, &iSize);
 | ||
|   aArea.mRows.ToPositionAndLengthForAbsPos(mRows, aGridOrigin.B(mWM),
 | ||
|                                            &b, &bSize);
 | ||
|   return LogicalRect(mWM, i, b, iSize, bSize);
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * Return a Fragmentainer object if we have a fragmentainer frame in our
 | ||
|  * ancestor chain of containing block (CB) reflow states.  We'll only
 | ||
|  * continue traversing the ancestor chain as long as the CBs have
 | ||
|  * the same writing-mode and have overflow:visible.
 | ||
|  */
 | ||
| Maybe<nsGridContainerFrame::Fragmentainer>
 | ||
| nsGridContainerFrame::GetNearestFragmentainer(const GridReflowInput& aState) const
 | ||
| {
 | ||
|   Maybe<nsGridContainerFrame::Fragmentainer> data;
 | ||
|   const ReflowInput* gridRI = aState.mReflowInput;
 | ||
|   if (gridRI->AvailableBSize() == NS_UNCONSTRAINEDSIZE) {
 | ||
|     return data;
 | ||
|   }
 | ||
|   WritingMode wm = aState.mWM;
 | ||
|   const ReflowInput* cbRI = gridRI->mCBReflowInput;
 | ||
|   for ( ; cbRI; cbRI = cbRI->mCBReflowInput) {
 | ||
|     nsIScrollableFrame* sf = do_QueryFrame(cbRI->mFrame);
 | ||
|     if (sf) {
 | ||
|       break;
 | ||
|     }
 | ||
|     if (wm.IsOrthogonalTo(cbRI->GetWritingMode())) {
 | ||
|       break;
 | ||
|     }
 | ||
|     LayoutFrameType frameType = cbRI->mFrame->Type();
 | ||
|     if ((frameType == LayoutFrameType::Canvas &&
 | ||
|          PresContext()->IsPaginated()) ||
 | ||
|         frameType == LayoutFrameType::ColumnSet) {
 | ||
|       data.emplace();
 | ||
|       data->mIsTopOfPage = gridRI->mFlags.mIsTopOfPage;
 | ||
|       data->mToFragmentainerEnd = aState.mFragBStart +
 | ||
|         gridRI->AvailableBSize() - aState.mBorderPadding.BStart(wm);
 | ||
|       const auto numRows = aState.mRows.mSizes.Length();
 | ||
|       data->mCanBreakAtStart =
 | ||
|         numRows > 0 && aState.mRows.mSizes[0].mPosition > 0;
 | ||
|       nscoord bSize = gridRI->ComputedBSize();
 | ||
|       data->mIsAutoBSize = bSize == NS_AUTOHEIGHT;
 | ||
|       if (data->mIsAutoBSize) {
 | ||
|         bSize = gridRI->ComputedMinBSize();
 | ||
|       } else {
 | ||
|         bSize = NS_CSS_MINMAX(bSize,
 | ||
|                               gridRI->ComputedMinBSize(),
 | ||
|                               gridRI->ComputedMaxBSize());
 | ||
|       }
 | ||
|       nscoord gridEnd =
 | ||
|         aState.mRows.GridLineEdge(numRows, GridLineSide::eBeforeGridGap);
 | ||
|       data->mCanBreakAtEnd = bSize > gridEnd &&
 | ||
|                              bSize > aState.mFragBStart;
 | ||
|       break;
 | ||
|     }
 | ||
|   }
 | ||
|   return data;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::ReflowInFlowChild(nsIFrame*              aChild,
 | ||
|                                         const GridItemInfo*    aGridItemInfo,
 | ||
|                                         nsSize                 aContainerSize,
 | ||
|                                         const Maybe<nscoord>&  aStretchBSize,
 | ||
|                                         const Fragmentainer*   aFragmentainer,
 | ||
|                                         const GridReflowInput& aState,
 | ||
|                                         const LogicalRect&     aContentArea,
 | ||
|                                         ReflowOutput&   aDesiredSize,
 | ||
|                                         nsReflowStatus&        aStatus)
 | ||
| {
 | ||
|   nsPresContext* pc = PresContext();
 | ||
|   nsStyleContext* containerSC = StyleContext();
 | ||
|   WritingMode wm = aState.mReflowInput->GetWritingMode();
 | ||
|   LogicalMargin pad(aState.mReflowInput->ComputedLogicalPadding());
 | ||
|   const LogicalPoint padStart(wm, pad.IStart(wm), pad.BStart(wm));
 | ||
|   const bool isGridItem = !!aGridItemInfo;
 | ||
|   MOZ_ASSERT(isGridItem == !aChild->IsPlaceholderFrame());
 | ||
|   LogicalRect cb(wm);
 | ||
|   WritingMode childWM = aChild->GetWritingMode();
 | ||
|   bool isConstrainedBSize = false;
 | ||
|   nscoord toFragmentainerEnd;
 | ||
|   // The part of the child's grid area that's in previous container fragments.
 | ||
|   nscoord consumedGridAreaBSize = 0;
 | ||
|   const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
 | ||
|   if (MOZ_LIKELY(isGridItem)) {
 | ||
|     MOZ_ASSERT(aGridItemInfo->mFrame == aChild);
 | ||
|     const GridArea& area = aGridItemInfo->mArea;
 | ||
|     MOZ_ASSERT(area.IsDefinite());
 | ||
|     cb = aState.ContainingBlockFor(area);
 | ||
|     isConstrainedBSize = aFragmentainer && !wm.IsOrthogonalTo(childWM);
 | ||
|     if (isConstrainedBSize) {
 | ||
|       // |gridAreaBOffset| is the offset of the child's grid area in this
 | ||
|       // container fragment (if negative, that distance is the child CB size
 | ||
|       // consumed in previous container fragments).  Note that cb.BStart
 | ||
|       // (initially) and aState.mFragBStart are in "global" grid coordinates
 | ||
|       // (like all track positions).
 | ||
|       nscoord gridAreaBOffset = cb.BStart(wm) - aState.mFragBStart;
 | ||
|       consumedGridAreaBSize = std::max(0, -gridAreaBOffset);
 | ||
|       cb.BStart(wm) = std::max(0, gridAreaBOffset);
 | ||
|       toFragmentainerEnd = aFragmentainer->mToFragmentainerEnd -
 | ||
|         aState.mFragBStart - cb.BStart(wm);
 | ||
|       toFragmentainerEnd = std::max(toFragmentainerEnd, 0);
 | ||
|     }
 | ||
|     cb += aContentArea.Origin(wm);
 | ||
|     aState.mRows.AlignBaselineSubtree(*aGridItemInfo);
 | ||
|     aState.mCols.AlignBaselineSubtree(*aGridItemInfo);
 | ||
|     // Setup [align|justify]-content:[last ]baseline related frame properties.
 | ||
|     // These are added to the padding in SizeComputationInput::InitOffsets.
 | ||
|     // (a negative value signals the value is for 'last baseline' and should be
 | ||
|     //  added to the (logical) end padding)
 | ||
|     typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
 | ||
|     auto SetProp = [aGridItemInfo, aChild] (LogicalAxis aGridAxis,
 | ||
|                                             Prop aProp) {
 | ||
|       auto state = aGridItemInfo->mState[aGridAxis];
 | ||
|       auto baselineAdjust = (state & ItemState::eContentBaseline) ?
 | ||
|              aGridItemInfo->mBaselineOffset[aGridAxis] : nscoord(0);
 | ||
|       if (baselineAdjust < nscoord(0)) {
 | ||
|         // This happens when the subtree overflows its track.
 | ||
|         // XXX spec issue? it's unclear how to handle this.
 | ||
|         baselineAdjust = nscoord(0);
 | ||
|       } else if (baselineAdjust > nscoord(0) &&
 | ||
|                  (state & ItemState::eLastBaseline)) {
 | ||
|         baselineAdjust = -baselineAdjust;
 | ||
|       }
 | ||
|       if (baselineAdjust != nscoord(0)) {
 | ||
|         aChild->SetProperty(aProp, baselineAdjust);
 | ||
|       } else {
 | ||
|         aChild->DeleteProperty(aProp);
 | ||
|       }
 | ||
|     };
 | ||
|     SetProp(eLogicalAxisBlock, isOrthogonal ? IBaselinePadProperty() :
 | ||
|                                               BBaselinePadProperty());
 | ||
|     SetProp(eLogicalAxisInline, isOrthogonal ? BBaselinePadProperty() :
 | ||
|                                                IBaselinePadProperty());
 | ||
|   } else {
 | ||
|     // By convention, for frames that perform CSS Box Alignment, we position
 | ||
|     // placeholder children at the start corner of their alignment container,
 | ||
|     // and in this case that's usually the grid's padding box.
 | ||
|     // ("Usually" - the exception is when the grid *also* forms the
 | ||
|     // abs.pos. containing block. In that case, the alignment container isn't
 | ||
|     // the padding box -- it's some grid area instead.  But that case doesn't
 | ||
|     // require any special handling here, because we handle it later using a
 | ||
|     // special flag (STATIC_POS_IS_CB_ORIGIN) which will make us ignore the
 | ||
|     // placeholder's position entirely.)
 | ||
|     cb = aContentArea - padStart;
 | ||
|     aChild->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
 | ||
|   }
 | ||
| 
 | ||
|   LogicalSize reflowSize(cb.Size(wm));
 | ||
|   if (isConstrainedBSize) {
 | ||
|     reflowSize.BSize(wm) = toFragmentainerEnd;
 | ||
|   }
 | ||
|   LogicalSize childCBSize = reflowSize.ConvertTo(childWM, wm);
 | ||
| 
 | ||
|   // Setup the ClampMarginBoxMinSize reflow flags and property, if needed.
 | ||
|   uint32_t flags = 0;
 | ||
|   if (aGridItemInfo) {
 | ||
|     // Clamp during reflow if we're stretching in that axis.
 | ||
|     auto* pos = aChild->StylePosition();
 | ||
|     auto j = pos->UsedJustifySelf(StyleContext());
 | ||
|     auto a = pos->UsedAlignSelf(StyleContext());
 | ||
|     bool stretch[2];
 | ||
|     stretch[eLogicalAxisInline] = j == NS_STYLE_JUSTIFY_NORMAL ||
 | ||
|                                   j == NS_STYLE_JUSTIFY_STRETCH;
 | ||
|     stretch[eLogicalAxisBlock] = a == NS_STYLE_ALIGN_NORMAL ||
 | ||
|                                  a == NS_STYLE_ALIGN_STRETCH;
 | ||
|     auto childIAxis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
 | ||
|     if (stretch[childIAxis] &&
 | ||
|         aGridItemInfo->mState[childIAxis] & ItemState::eClampMarginBoxMinSize) {
 | ||
|       flags |= ReflowInput::I_CLAMP_MARGIN_BOX_MIN_SIZE;
 | ||
|     }
 | ||
| 
 | ||
|     auto childBAxis = GetOrthogonalAxis(childIAxis);
 | ||
|     if (stretch[childBAxis] &&
 | ||
|         aGridItemInfo->mState[childBAxis] & ItemState::eClampMarginBoxMinSize) {
 | ||
|       flags |= ReflowInput::B_CLAMP_MARGIN_BOX_MIN_SIZE;
 | ||
|       aChild->SetProperty(BClampMarginBoxMinSizeProperty(),
 | ||
|                           childCBSize.BSize(childWM));
 | ||
|     } else {
 | ||
|       aChild->DeleteProperty(BClampMarginBoxMinSizeProperty());
 | ||
|     }
 | ||
| 
 | ||
|     if ((aGridItemInfo->mState[childIAxis] & ItemState::eApplyAutoMinSize)) {
 | ||
|       flags |= ReflowInput::I_APPLY_AUTO_MIN_SIZE;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (!isConstrainedBSize) {
 | ||
|     childCBSize.BSize(childWM) = NS_UNCONSTRAINEDSIZE;
 | ||
|   }
 | ||
|   LogicalSize percentBasis(cb.Size(wm).ConvertTo(childWM, wm));
 | ||
|   ReflowInput childRI(pc, *aState.mReflowInput, aChild, childCBSize,
 | ||
|                       &percentBasis, flags);
 | ||
|   childRI.mFlags.mIsTopOfPage = aFragmentainer ? aFragmentainer->mIsTopOfPage : false;
 | ||
| 
 | ||
|   // Because we pass ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE, and the
 | ||
|   // previous reflow of the child might not have, set the child's
 | ||
|   // block-resize flag to true.
 | ||
|   // FIXME (perf): It would be faster to do this only if the previous
 | ||
|   // reflow of the child was a measuring reflow, and only if the child
 | ||
|   // does some of the things that are affected by
 | ||
|   // ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE.
 | ||
|   childRI.SetBResize(true);
 | ||
| 
 | ||
|   // A table-wrapper needs to propagate the CB size we give it to its
 | ||
|   // inner table frame later.  @see nsTableWrapperFrame::InitChildReflowInput.
 | ||
|   if (aChild->IsTableWrapperFrame()) {
 | ||
|     LogicalSize* cb =
 | ||
|       aChild->GetProperty(nsTableWrapperFrame::GridItemCBSizeProperty());
 | ||
|     if (!cb) {
 | ||
|       cb = new LogicalSize(childWM);
 | ||
|       aChild->SetProperty(nsTableWrapperFrame::GridItemCBSizeProperty(), cb);
 | ||
|     }
 | ||
|     *cb = percentBasis;
 | ||
|   }
 | ||
| 
 | ||
|   // If the child is stretching in its block axis, and we might be fragmenting
 | ||
|   // it in that axis, then setup a frame property to tell
 | ||
|   // nsBlockFrame::ComputeFinalSize the size.
 | ||
|   if (isConstrainedBSize && !wm.IsOrthogonalTo(childWM)) {
 | ||
|     bool stretch = false;
 | ||
|     if (!childRI.mStyleMargin->HasBlockAxisAuto(childWM) &&
 | ||
|         childRI.mStylePosition->BSize(childWM).GetUnit() == eStyleUnit_Auto) {
 | ||
|       auto blockAxisAlignment =
 | ||
|         childRI.mStylePosition->UsedAlignSelf(StyleContext());
 | ||
|       if (blockAxisAlignment == NS_STYLE_ALIGN_NORMAL ||
 | ||
|           blockAxisAlignment == NS_STYLE_ALIGN_STRETCH) {
 | ||
|         stretch = true;
 | ||
|       }
 | ||
|     }
 | ||
|     if (stretch) {
 | ||
|       aChild->SetProperty(FragStretchBSizeProperty(), *aStretchBSize);
 | ||
|     } else {
 | ||
|       aChild->DeleteProperty(FragStretchBSizeProperty());
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // We need the width of the child before we can correctly convert
 | ||
|   // the writing-mode of its origin, so we reflow at (0, 0) using a dummy
 | ||
|   // aContainerSize, and then pass the correct position to FinishReflowChild.
 | ||
|   ReflowOutput childSize(childRI);
 | ||
|   const nsSize dummyContainerSize;
 | ||
|   ReflowChild(aChild, pc, childSize, childRI, childWM, LogicalPoint(childWM),
 | ||
|               dummyContainerSize, 0, aStatus);
 | ||
|   LogicalPoint childPos =
 | ||
|     cb.Origin(wm).ConvertTo(childWM, wm,
 | ||
|                             aContainerSize - childSize.PhysicalSize());
 | ||
|   // Apply align/justify-self and reflow again if that affects the size.
 | ||
|   if (MOZ_LIKELY(isGridItem)) {
 | ||
|     LogicalSize size = childSize.Size(childWM); // from the ReflowChild()
 | ||
|     if (aStatus.IsComplete()) {
 | ||
|       auto align = childRI.mStylePosition->UsedAlignSelf(containerSC);
 | ||
|       auto state = aGridItemInfo->mState[eLogicalAxisBlock];
 | ||
|       if (state & ItemState::eContentBaseline) {
 | ||
|         align = (state & ItemState::eFirstBaseline) ? NS_STYLE_ALIGN_SELF_START
 | ||
|                                                     : NS_STYLE_ALIGN_SELF_END;
 | ||
|       }
 | ||
|       nscoord cbsz = cb.BSize(wm) - consumedGridAreaBSize;
 | ||
|       AlignSelf(*aGridItemInfo, align, cbsz, wm, childRI, size, &childPos);
 | ||
|     }
 | ||
|     auto justify = childRI.mStylePosition->UsedJustifySelf(containerSC);
 | ||
|     auto state = aGridItemInfo->mState[eLogicalAxisInline];
 | ||
|     if (state & ItemState::eContentBaseline) {
 | ||
|       justify = (state & ItemState::eFirstBaseline) ? NS_STYLE_JUSTIFY_SELF_START
 | ||
|                                                     : NS_STYLE_JUSTIFY_SELF_END;
 | ||
|     }
 | ||
|     nscoord cbsz = cb.ISize(wm);
 | ||
|     JustifySelf(*aGridItemInfo, justify, cbsz, wm, childRI, size, &childPos);
 | ||
|   } // else, nsAbsoluteContainingBlock.cpp will handle align/justify-self.
 | ||
| 
 | ||
|   childRI.ApplyRelativePositioning(&childPos, aContainerSize);
 | ||
|   FinishReflowChild(aChild, pc, childSize, &childRI, childWM, childPos,
 | ||
|                     aContainerSize, 0);
 | ||
|   ConsiderChildOverflow(aDesiredSize.mOverflowAreas, aChild);
 | ||
| }
 | ||
| 
 | ||
| nscoord
 | ||
| nsGridContainerFrame::ReflowInFragmentainer(GridReflowInput&     aState,
 | ||
|                                             const LogicalRect&   aContentArea,
 | ||
|                                             ReflowOutput& aDesiredSize,
 | ||
|                                             nsReflowStatus&      aStatus,
 | ||
|                                             Fragmentainer&       aFragmentainer,
 | ||
|                                             const nsSize&        aContainerSize)
 | ||
| {
 | ||
|   MOZ_ASSERT(aStatus.IsEmpty());
 | ||
|   MOZ_ASSERT(aState.mReflowInput);
 | ||
| 
 | ||
|   // Collect our grid items and sort them in row order.  Collect placeholders
 | ||
|   // and put them in a separate array.
 | ||
|   nsTArray<const GridItemInfo*> sortedItems(aState.mGridItems.Length());
 | ||
|   nsTArray<nsIFrame*> placeholders(aState.mAbsPosItems.Length());
 | ||
|   aState.mIter.Reset(CSSOrderAwareFrameIterator::eIncludeAll);
 | ||
|   for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
 | ||
|     nsIFrame* child = *aState.mIter;
 | ||
|     if (!child->IsPlaceholderFrame()) {
 | ||
|       const GridItemInfo* info = &aState.mGridItems[aState.mIter.ItemIndex()];
 | ||
|       sortedItems.AppendElement(info);
 | ||
|     } else {
 | ||
|       placeholders.AppendElement(child);
 | ||
|     }
 | ||
|   }
 | ||
|   // NOTE: no need to use stable_sort here, there are no dependencies on
 | ||
|   // having content order between items on the same row in the code below.
 | ||
|   std::sort(sortedItems.begin(), sortedItems.end(),
 | ||
|             GridItemInfo::IsStartRowLessThan);
 | ||
| 
 | ||
|   // Reflow our placeholder children; they must all be complete.
 | ||
|   for (auto child : placeholders) {
 | ||
|     nsReflowStatus childStatus;
 | ||
|     ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), &aFragmentainer,
 | ||
|                       aState, aContentArea, aDesiredSize, childStatus);
 | ||
|     MOZ_ASSERT(childStatus.IsComplete(),
 | ||
|                "nsPlaceholderFrame should never need to be fragmented");
 | ||
|   }
 | ||
| 
 | ||
|   // The available size for children - we'll set this to the edge of the last
 | ||
|   // row in most cases below, but for now use the full size.
 | ||
|   nscoord childAvailableSize = aFragmentainer.mToFragmentainerEnd;
 | ||
|   const uint32_t startRow = aState.mStartRow;
 | ||
|   const uint32_t numRows = aState.mRows.mSizes.Length();
 | ||
|   bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
 | ||
|                       StyleBoxDecorationBreak::Clone;
 | ||
|   nscoord bpBEnd = aState.mBorderPadding.BEnd(aState.mWM);
 | ||
| 
 | ||
|   // Set |endRow| to the first row that doesn't fit.
 | ||
|   uint32_t endRow = numRows;
 | ||
|   for (uint32_t row = startRow; row < numRows; ++row) {
 | ||
|     auto& sz = aState.mRows.mSizes[row];
 | ||
|     const nscoord bEnd = sz.mPosition + sz.mBase;
 | ||
|     nscoord remainingAvailableSize = childAvailableSize - bEnd;
 | ||
|     if (remainingAvailableSize < 0 ||
 | ||
|         (isBDBClone && remainingAvailableSize < bpBEnd)) {
 | ||
|       endRow = row;
 | ||
|       break;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Check for forced breaks on the items.
 | ||
|   const bool isTopOfPage = aFragmentainer.mIsTopOfPage;
 | ||
|   bool isForcedBreak = false;
 | ||
|   const bool avoidBreakInside = ShouldAvoidBreakInside(*aState.mReflowInput);
 | ||
|   for (const GridItemInfo* info : sortedItems) {
 | ||
|     uint32_t itemStartRow = info->mArea.mRows.mStart;
 | ||
|     if (itemStartRow == endRow) {
 | ||
|       break;
 | ||
|     }
 | ||
|     auto disp = info->mFrame->StyleDisplay();
 | ||
|     if (disp->mBreakBefore) {
 | ||
|       // Propagate break-before on the first row to the container unless we're
 | ||
|       // already at top-of-page.
 | ||
|       if ((itemStartRow == 0 && !isTopOfPage) || avoidBreakInside) {
 | ||
|         aStatus.SetInlineLineBreakBeforeAndReset();
 | ||
|         return aState.mFragBStart;
 | ||
|       }
 | ||
|       if ((itemStartRow > startRow ||
 | ||
|            (itemStartRow == startRow && !isTopOfPage)) &&
 | ||
|           itemStartRow < endRow) {
 | ||
|         endRow = itemStartRow;
 | ||
|         isForcedBreak = true;
 | ||
|         // reset any BREAK_AFTER we found on an earlier item
 | ||
|         aStatus.Reset();
 | ||
|         break;  // we're done since the items are sorted in row order
 | ||
|       }
 | ||
|     }
 | ||
|     uint32_t itemEndRow = info->mArea.mRows.mEnd;
 | ||
|     if (disp->mBreakAfter) {
 | ||
|       if (itemEndRow != numRows) {
 | ||
|         if (itemEndRow > startRow && itemEndRow < endRow) {
 | ||
|           endRow = itemEndRow;
 | ||
|           isForcedBreak = true;
 | ||
|           // No "break;" here since later items with break-after may have
 | ||
|           // a shorter span.
 | ||
|         }
 | ||
|       } else {
 | ||
|         // Propagate break-after on the last row to the container, we may still
 | ||
|         // find a break-before on this row though (and reset aStatus).
 | ||
|         aStatus.SetInlineLineBreakAfter(); // tentative
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Consume at least one row in each fragment until we have consumed them all.
 | ||
|   // Except for the first row if there's a break opportunity before it.
 | ||
|   if (startRow == endRow && startRow != numRows &&
 | ||
|       (startRow != 0 || !aFragmentainer.mCanBreakAtStart)) {
 | ||
|     ++endRow;
 | ||
|   }
 | ||
| 
 | ||
|   // Honor break-inside:avoid if we can't fit all rows.
 | ||
|   if (avoidBreakInside && endRow < numRows) {
 | ||
|     aStatus.SetInlineLineBreakBeforeAndReset();
 | ||
|     return aState.mFragBStart;
 | ||
|   }
 | ||
| 
 | ||
|   // Calculate the block-size including this fragment.
 | ||
|   nscoord bEndRow =
 | ||
|     aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap);
 | ||
|   nscoord bSize;
 | ||
|   if (aFragmentainer.mIsAutoBSize) {
 | ||
|     // We only apply min-bsize once all rows are complete (when bsize is auto).
 | ||
|     if (endRow < numRows) {
 | ||
|       bSize = bEndRow;
 | ||
|       auto clampedBSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
 | ||
|       if (MOZ_UNLIKELY(clampedBSize != bSize)) {
 | ||
|         // We apply max-bsize in all fragments though.
 | ||
|         bSize = clampedBSize;
 | ||
|       } else if (!isBDBClone) {
 | ||
|         // The max-bsize won't make this fragment COMPLETE, so the block-end
 | ||
|         // border will be in a later fragment.
 | ||
|         bpBEnd = 0;
 | ||
|       }
 | ||
|     } else {
 | ||
|       bSize = NS_CSS_MINMAX(bEndRow,
 | ||
|                             aState.mReflowInput->ComputedMinBSize(),
 | ||
|                             aState.mReflowInput->ComputedMaxBSize());
 | ||
|     }
 | ||
|   } else {
 | ||
|     bSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
 | ||
|                           aState.mReflowInput->ComputedMinBSize(),
 | ||
|                           aState.mReflowInput->ComputedMaxBSize());
 | ||
|   }
 | ||
| 
 | ||
|   // Check for overflow and set aStatus INCOMPLETE if so.
 | ||
|   bool overflow = bSize + bpBEnd > childAvailableSize;
 | ||
|   if (overflow) {
 | ||
|     if (avoidBreakInside) {
 | ||
|       aStatus.SetInlineLineBreakBeforeAndReset();
 | ||
|       return aState.mFragBStart;
 | ||
|     }
 | ||
|     bool breakAfterLastRow = endRow == numRows && aFragmentainer.mCanBreakAtEnd;
 | ||
|     if (breakAfterLastRow) {
 | ||
|       MOZ_ASSERT(bEndRow < bSize, "bogus aFragmentainer.mCanBreakAtEnd");
 | ||
|       nscoord availableSize = childAvailableSize;
 | ||
|       if (isBDBClone) {
 | ||
|         availableSize -= bpBEnd;
 | ||
|       }
 | ||
|       // Pretend we have at least 1px available size, otherwise we'll never make
 | ||
|       // progress in consuming our bSize.
 | ||
|       availableSize = std::max(availableSize,
 | ||
|                                aState.mFragBStart + AppUnitsPerCSSPixel());
 | ||
|       // Fill the fragmentainer, but not more than our desired block-size and
 | ||
|       // at least to the size of the last row (even if that overflows).
 | ||
|       nscoord newBSize = std::min(bSize, availableSize);
 | ||
|       newBSize = std::max(newBSize, bEndRow);
 | ||
|       // If it's just the border+padding that is overflowing and we have
 | ||
|       // box-decoration-break:clone then we are technically COMPLETE.  There's
 | ||
|       // no point in creating another zero-bsize fragment in this case.
 | ||
|       if (newBSize < bSize || !isBDBClone) {
 | ||
|         aStatus.SetIncomplete();
 | ||
|       }
 | ||
|       bSize = newBSize;
 | ||
|     } else if (bSize <= bEndRow && startRow + 1 < endRow) {
 | ||
|       if (endRow == numRows) {
 | ||
|         // We have more than one row in this fragment, so we can break before
 | ||
|         // the last row instead.
 | ||
|         --endRow;
 | ||
|         bEndRow = aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap);
 | ||
|         bSize = bEndRow;
 | ||
|         if (aFragmentainer.mIsAutoBSize) {
 | ||
|           bSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
 | ||
|         }
 | ||
|       }
 | ||
|       aStatus.SetIncomplete();
 | ||
|     } else if (endRow < numRows) {
 | ||
|       bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
 | ||
|     } // else - no break opportunities.
 | ||
|   } else {
 | ||
|     // Even though our block-size fits we need to honor forced breaks, or if
 | ||
|     // a row doesn't fit in an auto-sized container (unless it's constrained
 | ||
|     // by a max-bsize which make us overflow-incomplete).
 | ||
|     if (endRow < numRows && (isForcedBreak ||
 | ||
|                              (aFragmentainer.mIsAutoBSize && bEndRow == bSize))) {
 | ||
|       bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // If we can't fit all rows then we're at least overflow-incomplete.
 | ||
|   if (endRow < numRows) {
 | ||
|     childAvailableSize = bEndRow;
 | ||
|     if (aStatus.IsComplete()) {
 | ||
|       aStatus.SetOverflowIncomplete();
 | ||
|       aStatus.SetNextInFlowNeedsReflow();
 | ||
|     }
 | ||
|   } else {
 | ||
|     // Children always have the full size of the rows in this fragment.
 | ||
|     childAvailableSize = std::max(childAvailableSize, bEndRow);
 | ||
|   }
 | ||
| 
 | ||
|   return ReflowRowsInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
 | ||
|                                    aFragmentainer, aContainerSize, sortedItems,
 | ||
|                                    startRow, endRow, bSize, childAvailableSize);
 | ||
| }
 | ||
| 
 | ||
| nscoord
 | ||
| nsGridContainerFrame::ReflowRowsInFragmentainer(
 | ||
|   GridReflowInput&                     aState,
 | ||
|   const LogicalRect&                   aContentArea,
 | ||
|   ReflowOutput&                 aDesiredSize,
 | ||
|   nsReflowStatus&                      aStatus,
 | ||
|   Fragmentainer&                       aFragmentainer,
 | ||
|   const nsSize&                        aContainerSize,
 | ||
|   const nsTArray<const GridItemInfo*>& aSortedItems,
 | ||
|   uint32_t                             aStartRow,
 | ||
|   uint32_t                             aEndRow,
 | ||
|   nscoord                              aBSize,
 | ||
|   nscoord                              aAvailableSize)
 | ||
| {
 | ||
|   FrameHashtable pushedItems;
 | ||
|   FrameHashtable incompleteItems;
 | ||
|   FrameHashtable overflowIncompleteItems;
 | ||
|   bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
 | ||
|                       StyleBoxDecorationBreak::Clone;
 | ||
|   bool didGrowRow = false;
 | ||
|   // As we walk across rows, we track whether the current row is at the top
 | ||
|   // of its grid-fragment, to help decide whether we can break before it. When
 | ||
|   // this function starts, our row is at the top of the current fragment if:
 | ||
|   //  - we're starting with a nonzero row (i.e. we're a continuation)
 | ||
|   // OR:
 | ||
|   //  - we're starting with the first row, & we're not allowed to break before
 | ||
|   //    it (which makes it effectively at the top of its grid-fragment).
 | ||
|   bool isRowTopOfPage = aStartRow != 0 || !aFragmentainer.mCanBreakAtStart;
 | ||
|   const bool isStartRowTopOfPage = isRowTopOfPage;
 | ||
|   // Save our full available size for later.
 | ||
|   const nscoord gridAvailableSize = aFragmentainer.mToFragmentainerEnd;
 | ||
|   // Propagate the constrained size to our children.
 | ||
|   aFragmentainer.mToFragmentainerEnd = aAvailableSize;
 | ||
|   // Reflow the items in row order up to |aEndRow| and push items after that.
 | ||
|   uint32_t row = 0;
 | ||
|   // |i| is intentionally signed, so we can set it to -1 to restart the loop.
 | ||
|   for (int32_t i = 0, len = aSortedItems.Length(); i < len; ++i) {
 | ||
|     const GridItemInfo* const info = aSortedItems[i];
 | ||
|     nsIFrame* child = info->mFrame;
 | ||
|     row = info->mArea.mRows.mStart;
 | ||
|     MOZ_ASSERT(child->GetPrevInFlow() ? row < aStartRow : row >= aStartRow,
 | ||
|                "unexpected child start row");
 | ||
|     if (row >= aEndRow) {
 | ||
|       pushedItems.PutEntry(child);
 | ||
|       continue;
 | ||
|     }
 | ||
| 
 | ||
|     bool rowCanGrow = false;
 | ||
|     nscoord maxRowSize = 0;
 | ||
|     if (row >= aStartRow) {
 | ||
|       if (row > aStartRow) {
 | ||
|         isRowTopOfPage = false;
 | ||
|       }
 | ||
|       // Can we grow this row?  Only consider span=1 items per spec...
 | ||
|       rowCanGrow = !didGrowRow && info->mArea.mRows.Extent() == 1;
 | ||
|       if (rowCanGrow) {
 | ||
|         auto& sz = aState.mRows.mSizes[row];
 | ||
|         // and only min-/max-content rows or flex rows in an auto-sized container
 | ||
|         rowCanGrow = (sz.mState & TrackSize::eMinOrMaxContentMinSizing) ||
 | ||
|                      ((sz.mState & TrackSize::eFlexMaxSizing) &&
 | ||
|                       aFragmentainer.mIsAutoBSize);
 | ||
|         if (rowCanGrow) {
 | ||
|           if (isBDBClone) {
 | ||
|             maxRowSize = gridAvailableSize -
 | ||
|                          aState.mBorderPadding.BEnd(aState.mWM);
 | ||
|           } else {
 | ||
|             maxRowSize = gridAvailableSize;
 | ||
|           }
 | ||
|           maxRowSize -= sz.mPosition;
 | ||
|           // ...and only if there is space for it to grow.
 | ||
|           rowCanGrow = maxRowSize > sz.mBase;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // aFragmentainer.mIsTopOfPage is propagated to the child reflow state.
 | ||
|     // When it's false the child can request BREAK_BEFORE.  We intentionally
 | ||
|     // set it to false when the row is growable (as determined in CSS Grid
 | ||
|     // Fragmentation) and there is a non-zero space between it and the
 | ||
|     // fragmentainer end (that can be used to grow it).  If the child reports
 | ||
|     // a forced break in this case, we grow this row to fill the fragment and
 | ||
|     // restart the loop.  We also restart the loop with |aEndRow = row|
 | ||
|     // (but without growing any row) for a BREAK_BEFORE child if it spans
 | ||
|     // beyond the last row in this fragment.  This is to avoid fragmenting it.
 | ||
|     // We only restart the loop once.
 | ||
|     aFragmentainer.mIsTopOfPage = isRowTopOfPage && !rowCanGrow;
 | ||
|     nsReflowStatus childStatus;
 | ||
|     // Pass along how much to stretch this fragment, in case it's needed.
 | ||
|     nscoord bSize =
 | ||
|       aState.mRows.GridLineEdge(std::min(aEndRow, info->mArea.mRows.mEnd),
 | ||
|                                 GridLineSide::eBeforeGridGap) -
 | ||
|       aState.mRows.GridLineEdge(std::max(aStartRow, row),
 | ||
|                                 GridLineSide::eAfterGridGap);
 | ||
|     ReflowInFlowChild(child, info, aContainerSize, Some(bSize), &aFragmentainer,
 | ||
|                       aState, aContentArea, aDesiredSize, childStatus);
 | ||
|     MOZ_ASSERT(childStatus.IsInlineBreakBefore() ||
 | ||
|                !childStatus.IsFullyComplete() ||
 | ||
|                !child->GetNextInFlow(),
 | ||
|                "fully-complete reflow should destroy any NIFs");
 | ||
| 
 | ||
|     if (childStatus.IsInlineBreakBefore()) {
 | ||
|       MOZ_ASSERT(!child->GetPrevInFlow(),
 | ||
|                  "continuations should never report BREAK_BEFORE status");
 | ||
|       MOZ_ASSERT(!aFragmentainer.mIsTopOfPage,
 | ||
|                  "got IsInlineBreakBefore() at top of page");
 | ||
|       if (!didGrowRow) {
 | ||
|         if (rowCanGrow) {
 | ||
|           // Grow this row and restart with the next row as |aEndRow|.
 | ||
|           aState.mRows.ResizeRow(row, maxRowSize);
 | ||
|           if (aState.mSharedGridData) {
 | ||
|             aState.mSharedGridData->mRows.ResizeRow(row, maxRowSize);
 | ||
|           }
 | ||
|           didGrowRow = true;
 | ||
|           aEndRow = row + 1;  // growing this row makes the next one not fit
 | ||
|           i = -1;  // i == 0 after the next loop increment
 | ||
|           isRowTopOfPage = isStartRowTopOfPage;
 | ||
|           overflowIncompleteItems.Clear();
 | ||
|           incompleteItems.Clear();
 | ||
|           nscoord bEndRow =
 | ||
|             aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap);
 | ||
|           aFragmentainer.mToFragmentainerEnd = bEndRow;
 | ||
|           if (aFragmentainer.mIsAutoBSize) {
 | ||
|             aBSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
 | ||
|           } else if (aStatus.IsIncomplete()) {
 | ||
|             aBSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
 | ||
|                                    aState.mReflowInput->ComputedMinBSize(),
 | ||
|                                    aState.mReflowInput->ComputedMaxBSize());
 | ||
|             aBSize = std::min(bEndRow, aBSize);
 | ||
|           }
 | ||
|           continue;
 | ||
|         }
 | ||
| 
 | ||
|         if (!isRowTopOfPage) {
 | ||
|           // We can break before this row - restart with it as the new end row.
 | ||
|           aEndRow = row;
 | ||
|           aBSize = aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap);
 | ||
|           i = -1;  // i == 0 after the next loop increment
 | ||
|           isRowTopOfPage = isStartRowTopOfPage;
 | ||
|           overflowIncompleteItems.Clear();
 | ||
|           incompleteItems.Clear();
 | ||
|           aStatus.SetIncomplete();
 | ||
|           continue;
 | ||
|         }
 | ||
|         NS_ERROR("got BREAK_BEFORE at top-of-page");
 | ||
|         childStatus.Reset();
 | ||
|       } else {
 | ||
|         NS_ERROR("got BREAK_BEFORE again after growing the row?");
 | ||
|         childStatus.SetIncomplete();
 | ||
|       }
 | ||
|     } else if (childStatus.IsInlineBreakAfter()) {
 | ||
|       MOZ_ASSERT_UNREACHABLE("unexpected child reflow status");
 | ||
|     }
 | ||
| 
 | ||
|     if (childStatus.IsIncomplete()) {
 | ||
|       incompleteItems.PutEntry(child);
 | ||
|     } else if (!childStatus.IsFullyComplete()) {
 | ||
|       overflowIncompleteItems.PutEntry(child);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Record a break before |aEndRow|.
 | ||
|   aState.mNextFragmentStartRow = aEndRow;
 | ||
|   if (aEndRow < aState.mRows.mSizes.Length()) {
 | ||
|     aState.mRows.BreakBeforeRow(aEndRow);
 | ||
|     if (aState.mSharedGridData) {
 | ||
|       aState.mSharedGridData->mRows.BreakBeforeRow(aEndRow);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (!pushedItems.IsEmpty() ||
 | ||
|       !incompleteItems.IsEmpty() ||
 | ||
|       !overflowIncompleteItems.IsEmpty()) {
 | ||
|     if (aStatus.IsComplete()) {
 | ||
|       aStatus.SetOverflowIncomplete();
 | ||
|       aStatus.SetNextInFlowNeedsReflow();
 | ||
|     }
 | ||
|     // Iterate the children in normal document order and append them (or a NIF)
 | ||
|     // to one of the following frame lists according to their status.
 | ||
|     nsFrameList pushedList;
 | ||
|     nsFrameList incompleteList;
 | ||
|     nsFrameList overflowIncompleteList;
 | ||
|     auto* pc = PresContext();
 | ||
|     auto* fc = pc->PresShell()->FrameConstructor();
 | ||
|     for (nsIFrame* child = GetChildList(kPrincipalList).FirstChild(); child; ) {
 | ||
|       MOZ_ASSERT((pushedItems.Contains(child) ? 1 : 0) +
 | ||
|                  (incompleteItems.Contains(child) ? 1 : 0) +
 | ||
|                  (overflowIncompleteItems.Contains(child) ? 1 : 0) <= 1,
 | ||
|                  "child should only be in one of these sets");
 | ||
|       // Save the next-sibling so we can continue the loop if |child| is moved.
 | ||
|       nsIFrame* next = child->GetNextSibling();
 | ||
|       if (pushedItems.Contains(child)) {
 | ||
|         MOZ_ASSERT(child->GetParent() == this);
 | ||
|         StealFrame(child);
 | ||
|         pushedList.AppendFrame(nullptr, child);
 | ||
|       } else if (incompleteItems.Contains(child)) {
 | ||
|         nsIFrame* childNIF = child->GetNextInFlow();
 | ||
|         if (!childNIF) {
 | ||
|           childNIF = fc->CreateContinuingFrame(pc, child, this);
 | ||
|           incompleteList.AppendFrame(nullptr, childNIF);
 | ||
|         } else {
 | ||
|           auto parent = static_cast<nsGridContainerFrame*>(childNIF->GetParent());
 | ||
|           MOZ_ASSERT(parent != this || !mFrames.ContainsFrame(childNIF),
 | ||
|                      "child's NIF shouldn't be in the same principal list");
 | ||
|           // If child's existing NIF is an overflow container, convert it to an
 | ||
|           // actual NIF, since now |child| has non-overflow stuff to give it.
 | ||
|           // Or, if it's further away then our next-in-flow, then pull it up.
 | ||
|           if ((childNIF->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) ||
 | ||
|               (parent != this && parent != GetNextInFlow())) {
 | ||
|             parent->StealFrame(childNIF);
 | ||
|             childNIF->RemoveStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
 | ||
|             if (parent == this) {
 | ||
|               incompleteList.AppendFrame(nullptr, childNIF);
 | ||
|             } else {
 | ||
|               // If childNIF already lives on the next grid fragment, then we
 | ||
|               // don't need to reparent it, since we know it's destined to end
 | ||
|               // up there anyway.  Just move it to its parent's overflow list.
 | ||
|               if (parent == GetNextInFlow()) {
 | ||
|                 nsFrameList toMove(childNIF, childNIF);
 | ||
|                 parent->MergeSortedOverflow(toMove);
 | ||
|               } else {
 | ||
|                 ReparentFrame(childNIF, parent, this);
 | ||
|                 incompleteList.AppendFrame(nullptr, childNIF);
 | ||
|               }
 | ||
|             }
 | ||
|           }
 | ||
|         }
 | ||
|       } else if (overflowIncompleteItems.Contains(child)) {
 | ||
|         nsIFrame* childNIF = child->GetNextInFlow();
 | ||
|         if (!childNIF) {
 | ||
|           childNIF = fc->CreateContinuingFrame(pc, child, this);
 | ||
|           childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
 | ||
|           overflowIncompleteList.AppendFrame(nullptr, childNIF);
 | ||
|         } else {
 | ||
|           DebugOnly<nsGridContainerFrame*> lastParent = this;
 | ||
|           auto nif = static_cast<nsGridContainerFrame*>(GetNextInFlow());
 | ||
|           // If child has any non-overflow-container NIFs, convert them to
 | ||
|           // overflow containers, since that's all |child| needs now.
 | ||
|           while (childNIF &&
 | ||
|                  !childNIF->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
 | ||
|             auto parent = static_cast<nsGridContainerFrame*>(childNIF->GetParent());
 | ||
|             parent->StealFrame(childNIF);
 | ||
|             childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
 | ||
|             if (parent == this) {
 | ||
|               overflowIncompleteList.AppendFrame(nullptr, childNIF);
 | ||
|             } else {
 | ||
|               if (!nif || parent == nif) {
 | ||
|                 nsFrameList toMove(childNIF, childNIF);
 | ||
|                 parent->MergeSortedExcessOverflowContainers(toMove);
 | ||
|               } else {
 | ||
|                 ReparentFrame(childNIF, parent, nif);
 | ||
|                 nsFrameList toMove(childNIF, childNIF);
 | ||
|                 nif->MergeSortedExcessOverflowContainers(toMove);
 | ||
|               }
 | ||
|               // We only need to reparent the first childNIF (or not at all if
 | ||
|               // its parent is our NIF).
 | ||
|               nif = nullptr;
 | ||
|             }
 | ||
|             lastParent = parent;
 | ||
|             childNIF = childNIF->GetNextInFlow();
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|       child = next;
 | ||
|     }
 | ||
| 
 | ||
|     // Merge the results into our respective overflow child lists.
 | ||
|     if (!pushedList.IsEmpty()) {
 | ||
|       MergeSortedOverflow(pushedList);
 | ||
|       AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
 | ||
|       // NOTE since we messed with our child list here, we intentionally
 | ||
|       // make aState.mIter invalid to avoid any use of it after this point.
 | ||
|       aState.mIter.Invalidate();
 | ||
|     }
 | ||
|     if (!incompleteList.IsEmpty()) {
 | ||
|       MergeSortedOverflow(incompleteList);
 | ||
|       // NOTE since we messed with our child list here, we intentionally
 | ||
|       // make aState.mIter invalid to avoid any use of it after this point.
 | ||
|       aState.mIter.Invalidate();
 | ||
|     }
 | ||
|     if (!overflowIncompleteList.IsEmpty()) {
 | ||
|       MergeSortedExcessOverflowContainers(overflowIncompleteList);
 | ||
|     }
 | ||
|   }
 | ||
|   return aBSize;
 | ||
| }
 | ||
| 
 | ||
| nscoord
 | ||
| nsGridContainerFrame::ReflowChildren(GridReflowInput&     aState,
 | ||
|                                      const LogicalRect&   aContentArea,
 | ||
|                                      ReflowOutput& aDesiredSize,
 | ||
|                                      nsReflowStatus&      aStatus)
 | ||
| {
 | ||
|   MOZ_ASSERT(aState.mReflowInput);
 | ||
|   MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
 | ||
| 
 | ||
|   nsOverflowAreas ocBounds;
 | ||
|   nsReflowStatus ocStatus;
 | ||
|   if (GetPrevInFlow()) {
 | ||
|     ReflowOverflowContainerChildren(PresContext(), *aState.mReflowInput,
 | ||
|                                     ocBounds, 0, ocStatus,
 | ||
|                                     MergeSortedFrameListsFor);
 | ||
|   }
 | ||
| 
 | ||
|   WritingMode wm = aState.mReflowInput->GetWritingMode();
 | ||
|   const nsSize containerSize =
 | ||
|     (aContentArea.Size(wm) + aState.mBorderPadding.Size(wm)).GetPhysicalSize(wm);
 | ||
| 
 | ||
|   nscoord bSize = aContentArea.BSize(wm);
 | ||
|   Maybe<Fragmentainer> fragmentainer = GetNearestFragmentainer(aState);
 | ||
|   if (MOZ_UNLIKELY(fragmentainer.isSome())) {
 | ||
|     aState.mInFragmentainer = true;
 | ||
|     bSize = ReflowInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
 | ||
|                                   *fragmentainer, containerSize);
 | ||
|   } else {
 | ||
|     aState.mIter.Reset(CSSOrderAwareFrameIterator::eIncludeAll);
 | ||
|     for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
 | ||
|       nsIFrame* child = *aState.mIter;
 | ||
|       const GridItemInfo* info = nullptr;
 | ||
|       if (!child->IsPlaceholderFrame()) {
 | ||
|         info = &aState.mGridItems[aState.mIter.ItemIndex()];
 | ||
|       }
 | ||
|       ReflowInFlowChild(*aState.mIter, info, containerSize, Nothing(), nullptr,
 | ||
|                         aState, aContentArea, aDesiredSize, aStatus);
 | ||
|       MOZ_ASSERT(aStatus.IsComplete(), "child should be complete "
 | ||
|                  "in unconstrained reflow");
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Merge overflow container bounds and status.
 | ||
|   aDesiredSize.mOverflowAreas.UnionWith(ocBounds);
 | ||
|   aStatus.MergeCompletionStatusFrom(ocStatus);
 | ||
| 
 | ||
|   if (IsAbsoluteContainer()) {
 | ||
|     nsFrameList children(GetChildList(GetAbsoluteListID()));
 | ||
|     if (!children.IsEmpty()) {
 | ||
|       // 'gridOrigin' is the origin of the grid (the start of the first track),
 | ||
|       // with respect to the grid container's padding-box (CB).
 | ||
|       LogicalMargin pad(aState.mReflowInput->ComputedLogicalPadding());
 | ||
|       const LogicalPoint gridOrigin(wm, pad.IStart(wm), pad.BStart(wm));
 | ||
|       const LogicalRect gridCB(wm, 0, 0,
 | ||
|                                aContentArea.ISize(wm) + pad.IStartEnd(wm),
 | ||
|                                bSize + pad.BStartEnd(wm));
 | ||
|       const nsSize gridCBPhysicalSize = gridCB.Size(wm).GetPhysicalSize(wm);
 | ||
|       size_t i = 0;
 | ||
|       for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
 | ||
|         nsIFrame* child = e.get();
 | ||
|         MOZ_ASSERT(i < aState.mAbsPosItems.Length());
 | ||
|         MOZ_ASSERT(aState.mAbsPosItems[i].mFrame == child);
 | ||
|         GridArea& area = aState.mAbsPosItems[i].mArea;
 | ||
|         LogicalRect itemCB =
 | ||
|           aState.ContainingBlockForAbsPos(area, gridOrigin, gridCB);
 | ||
|         // nsAbsoluteContainingBlock::Reflow uses physical coordinates.
 | ||
|         nsRect* cb = child->GetProperty(GridItemContainingBlockRect());
 | ||
|         if (!cb) {
 | ||
|           cb = new nsRect;
 | ||
|           child->SetProperty(GridItemContainingBlockRect(), cb);
 | ||
|         }
 | ||
|         *cb = itemCB.GetPhysicalRect(wm, gridCBPhysicalSize);
 | ||
|       }
 | ||
|       // We pass a dummy rect as CB because each child has its own CB rect.
 | ||
|       // The eIsGridContainerCB flag tells nsAbsoluteContainingBlock::Reflow to
 | ||
|       // use those instead.
 | ||
|       nsRect dummyRect;
 | ||
|       AbsPosReflowFlags flags =
 | ||
|         AbsPosReflowFlags::eCBWidthAndHeightChanged; // XXX could be optimized
 | ||
|       flags |= AbsPosReflowFlags::eConstrainHeight;
 | ||
|       flags |= AbsPosReflowFlags::eIsGridContainerCB;
 | ||
|       GetAbsoluteContainingBlock()->Reflow(this, PresContext(),
 | ||
|                                            *aState.mReflowInput,
 | ||
|                                            aStatus, dummyRect, flags,
 | ||
|                                            &aDesiredSize.mOverflowAreas);
 | ||
|     }
 | ||
|   }
 | ||
|   return bSize;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::Reflow(nsPresContext*           aPresContext,
 | ||
|                              ReflowOutput&     aDesiredSize,
 | ||
|                              const ReflowInput& aReflowInput,
 | ||
|                              nsReflowStatus&          aStatus)
 | ||
| {
 | ||
|   MarkInReflow();
 | ||
|   DO_GLOBAL_REFLOW_COUNT("nsGridContainerFrame");
 | ||
|   DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus);
 | ||
|   MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
 | ||
| 
 | ||
|   if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) {
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   // First we gather child frames we should include in our reflow,
 | ||
|   // i.e. overflowed children from our prev-in-flow, and pushed first-in-flow
 | ||
|   // children (that might now fit). It's important to note that these children
 | ||
|   // can be in arbitrary order vis-a-vis the current children in our lists.
 | ||
|   // E.g. grid items in the document order: A, B, C may be placed in the rows
 | ||
|   // 3, 2, 1.  Assume each row goes in a separate grid container fragment,
 | ||
|   // and we reflow the second fragment.  Now if C (in fragment 1) overflows,
 | ||
|   // we can't just prepend it to our mFrames like we usually do because that
 | ||
|   // would violate the document order invariant that other code depends on.
 | ||
|   // Similarly if we pull up child A (from fragment 3) we can't just append
 | ||
|   // that for the same reason.  Instead, we must sort these children into
 | ||
|   // our child lists.  (The sorting is trivial given that both lists are
 | ||
|   // already fully sorted individually - it's just a merge.)
 | ||
|   //
 | ||
|   // The invariants that we maintain are that each grid container child list
 | ||
|   // is sorted in the normal document order at all times, but that children
 | ||
|   // in different grid container continuations may be in arbitrary order.
 | ||
| 
 | ||
|   auto prevInFlow = static_cast<nsGridContainerFrame*>(GetPrevInFlow());
 | ||
|   // Merge overflow frames from our prev-in-flow into our principal child list.
 | ||
|   if (prevInFlow) {
 | ||
|     AutoFrameListPtr overflow(aPresContext,
 | ||
|                               prevInFlow->StealOverflowFrames());
 | ||
|     if (overflow) {
 | ||
|       ReparentFrames(*overflow, prevInFlow, this);
 | ||
|       ::MergeSortedFrameLists(mFrames, *overflow, GetContent());
 | ||
| 
 | ||
|       // Move trailing next-in-flows into our overflow list.
 | ||
|       nsFrameList continuations;
 | ||
|       for (nsIFrame* f = mFrames.FirstChild(); f; ) {
 | ||
|         nsIFrame* next = f->GetNextSibling();
 | ||
|         nsIFrame* pif = f->GetPrevInFlow();
 | ||
|         if (pif && pif->GetParent() == this) {
 | ||
|           mFrames.RemoveFrame(f);
 | ||
|           continuations.AppendFrame(nullptr, f);
 | ||
|         }
 | ||
|         f = next;
 | ||
|       }
 | ||
|       MergeSortedOverflow(continuations);
 | ||
| 
 | ||
|       // Move trailing OC next-in-flows into our excess overflow containers list.
 | ||
|       nsFrameList* overflowContainers =
 | ||
|         GetPropTableFrames(OverflowContainersProperty());
 | ||
|       if (overflowContainers) {
 | ||
|         nsFrameList moveToEOC;
 | ||
|         for (nsIFrame* f = overflowContainers->FirstChild(); f; ) {
 | ||
|           nsIFrame* next = f->GetNextSibling();
 | ||
|           nsIFrame* pif = f->GetPrevInFlow();
 | ||
|           if (pif && pif->GetParent() == this) {
 | ||
|             overflowContainers->RemoveFrame(f);
 | ||
|             moveToEOC.AppendFrame(nullptr, f);
 | ||
|           }
 | ||
|           f = next;
 | ||
|         }
 | ||
|         if (overflowContainers->IsEmpty()) {
 | ||
|           DeleteProperty(OverflowContainersProperty());
 | ||
|         }
 | ||
|         MergeSortedExcessOverflowContainers(moveToEOC);
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Merge our own overflow frames into our principal child list,
 | ||
|   // except those that are a next-in-flow for one of our items.
 | ||
|   DebugOnly<bool> foundOwnPushedChild = false;
 | ||
|   {
 | ||
|     nsFrameList* ourOverflow = GetOverflowFrames();
 | ||
|     if (ourOverflow) {
 | ||
|       nsFrameList items;
 | ||
|       for (nsIFrame* f = ourOverflow->FirstChild(); f; ) {
 | ||
|         nsIFrame* next = f->GetNextSibling();
 | ||
|         nsIFrame* pif = f->GetPrevInFlow();
 | ||
|         if (!pif || pif->GetParent() != this) {
 | ||
|           MOZ_ASSERT(f->GetParent() == this);
 | ||
|           ourOverflow->RemoveFrame(f);
 | ||
|           items.AppendFrame(nullptr, f);
 | ||
|           if (!pif) {
 | ||
|             foundOwnPushedChild = true;
 | ||
|           }
 | ||
|         }
 | ||
|         f = next;
 | ||
|       }
 | ||
|       ::MergeSortedFrameLists(mFrames, items, GetContent());
 | ||
|       if (ourOverflow->IsEmpty()) {
 | ||
|         DestroyOverflowList();
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Pull up any first-in-flow children we might have pushed.
 | ||
|   if (HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) {
 | ||
|     RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
 | ||
|     nsFrameList items;
 | ||
|     auto nif = static_cast<nsGridContainerFrame*>(GetNextInFlow());
 | ||
|     auto firstNIF = nif;
 | ||
|     DebugOnly<bool> nifNeedPushedItem = false;
 | ||
|     while (nif) {
 | ||
|       nsFrameList nifItems;
 | ||
|       for (nsIFrame* nifChild = nif->GetChildList(kPrincipalList).FirstChild();
 | ||
|            nifChild; ) {
 | ||
|         nsIFrame* next = nifChild->GetNextSibling();
 | ||
|         if (!nifChild->GetPrevInFlow()) {
 | ||
|           nif->StealFrame(nifChild);
 | ||
|           ReparentFrame(nifChild, nif, this);
 | ||
|           nifItems.AppendFrame(nullptr, nifChild);
 | ||
|           nifNeedPushedItem = false;
 | ||
|         }
 | ||
|         nifChild = next;
 | ||
|       }
 | ||
|       ::MergeSortedFrameLists(items, nifItems, GetContent());
 | ||
| 
 | ||
|       if (!nif->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) {
 | ||
|         MOZ_ASSERT(!nifNeedPushedItem || mDidPushItemsBitMayLie,
 | ||
|                    "NS_STATE_GRID_DID_PUSH_ITEMS lied");
 | ||
|         break;
 | ||
|       }
 | ||
|       nifNeedPushedItem = true;
 | ||
| 
 | ||
|       for (nsIFrame* nifChild = nif->GetChildList(kOverflowList).FirstChild();
 | ||
|            nifChild; ) {
 | ||
|         nsIFrame* next = nifChild->GetNextSibling();
 | ||
|         if (!nifChild->GetPrevInFlow()) {
 | ||
|           nif->StealFrame(nifChild);
 | ||
|           ReparentFrame(nifChild, nif, this);
 | ||
|           nifItems.AppendFrame(nullptr, nifChild);
 | ||
|           nifNeedPushedItem = false;
 | ||
|         }
 | ||
|         nifChild = next;
 | ||
|       }
 | ||
|       ::MergeSortedFrameLists(items, nifItems, GetContent());
 | ||
| 
 | ||
|       nif->RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
 | ||
|       nif = static_cast<nsGridContainerFrame*>(nif->GetNextInFlow());
 | ||
|       MOZ_ASSERT(nif || !nifNeedPushedItem || mDidPushItemsBitMayLie,
 | ||
|                  "NS_STATE_GRID_DID_PUSH_ITEMS lied");
 | ||
|     }
 | ||
| 
 | ||
|     if (!items.IsEmpty()) {
 | ||
|       // Pull up the first next-in-flow of the pulled up items too, unless its
 | ||
|       // parent is our nif (to avoid leaving a hole there).
 | ||
|       nsFrameList childNIFs;
 | ||
|       nsFrameList childOCNIFs;
 | ||
|       for (auto child : items) {
 | ||
|         auto childNIF = child->GetNextInFlow();
 | ||
|         if (childNIF && childNIF->GetParent() != firstNIF) {
 | ||
|           auto parent = childNIF->GetParent();
 | ||
|           parent->StealFrame(childNIF);
 | ||
|           ReparentFrame(childNIF, parent, firstNIF);
 | ||
|           if ((childNIF->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER)) {
 | ||
|             childOCNIFs.AppendFrame(nullptr, childNIF);
 | ||
|           } else {
 | ||
|             childNIFs.AppendFrame(nullptr, childNIF);
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|       // Merge items' NIFs into our NIF's respective overflow child lists.
 | ||
|       firstNIF->MergeSortedOverflow(childNIFs);
 | ||
|       firstNIF->MergeSortedExcessOverflowContainers(childOCNIFs);
 | ||
|     }
 | ||
| 
 | ||
|     MOZ_ASSERT(foundOwnPushedChild || !items.IsEmpty() || mDidPushItemsBitMayLie,
 | ||
|                "NS_STATE_GRID_DID_PUSH_ITEMS lied");
 | ||
|     ::MergeSortedFrameLists(mFrames, items, GetContent());
 | ||
|   }
 | ||
| 
 | ||
|   RenumberList();
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   mDidPushItemsBitMayLie = false;
 | ||
|   SanityCheckGridItemsBeforeReflow();
 | ||
| #endif // DEBUG
 | ||
| 
 | ||
|   mBaseline[0][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   mBaseline[0][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   mBaseline[1][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   mBaseline[1][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
| 
 | ||
|   const nsStylePosition* stylePos = aReflowInput.mStylePosition;
 | ||
|   if (!prevInFlow) {
 | ||
|     InitImplicitNamedAreas(stylePos);
 | ||
|   }
 | ||
|   GridReflowInput gridReflowInput(this, aReflowInput);
 | ||
|   if (gridReflowInput.mIter.ItemsAreAlreadyInOrder()) {
 | ||
|     AddStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
 | ||
|   } else {
 | ||
|     RemoveStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
 | ||
|   }
 | ||
|   if (gridReflowInput.mIter.AtEnd()) {
 | ||
|     // We have no grid items, our parent should synthesize a baseline if needed.
 | ||
|     AddStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
 | ||
|   } else {
 | ||
|     RemoveStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
 | ||
|   }
 | ||
|   const nscoord computedBSize = aReflowInput.ComputedBSize();
 | ||
|   const nscoord computedISize = aReflowInput.ComputedISize();
 | ||
|   const WritingMode& wm = gridReflowInput.mWM;
 | ||
|   LogicalSize computedSize(wm, computedISize, computedBSize);
 | ||
| 
 | ||
|   nscoord consumedBSize = 0;
 | ||
|   nscoord bSize;
 | ||
|   if (!prevInFlow) {
 | ||
|     Grid grid;
 | ||
|     grid.PlaceGridItems(gridReflowInput, aReflowInput.ComputedMinSize(),
 | ||
|                         computedSize, aReflowInput.ComputedMaxSize());
 | ||
| 
 | ||
|     gridReflowInput.CalculateTrackSizes(grid, computedSize,
 | ||
|                                         SizingConstraint::eNoConstraint);
 | ||
|     bSize = computedSize.BSize(wm);
 | ||
|   } else {
 | ||
|     consumedBSize = ConsumedBSize(wm);
 | ||
|     gridReflowInput.InitializeForContinuation(this, consumedBSize);
 | ||
|     const uint32_t numRows = gridReflowInput.mRows.mSizes.Length();
 | ||
|     bSize = gridReflowInput.mRows.GridLineEdge(numRows,
 | ||
|                                                GridLineSide::eAfterGridGap);
 | ||
|   }
 | ||
|   if (computedBSize == NS_AUTOHEIGHT) {
 | ||
|     bSize = NS_CSS_MINMAX(bSize,
 | ||
|                           aReflowInput.ComputedMinBSize(),
 | ||
|                           aReflowInput.ComputedMaxBSize());
 | ||
|   } else {
 | ||
|     bSize = computedBSize;
 | ||
|   }
 | ||
|   bSize = std::max(bSize - consumedBSize, 0);
 | ||
|   auto& bp = gridReflowInput.mBorderPadding;
 | ||
|   LogicalRect contentArea(wm, bp.IStart(wm), bp.BStart(wm),
 | ||
|                           computedISize, bSize);
 | ||
| 
 | ||
|   if (!prevInFlow) {
 | ||
|     // Apply 'align/justify-content' to the grid.
 | ||
|     // CalculateTrackSizes did the columns.
 | ||
|     gridReflowInput.mRows.AlignJustifyContent(stylePos, wm, contentArea.Size(wm));
 | ||
|   }
 | ||
| 
 | ||
|   bSize = ReflowChildren(gridReflowInput, contentArea, aDesiredSize, aStatus);
 | ||
|   bSize = std::max(bSize - consumedBSize, 0);
 | ||
| 
 | ||
|   // Skip our block-end border if we're INCOMPLETE.
 | ||
|   if (!aStatus.IsComplete() &&
 | ||
|       !gridReflowInput.mSkipSides.BEnd() &&
 | ||
|       StyleBorder()->mBoxDecorationBreak !=
 | ||
|         StyleBoxDecorationBreak::Clone) {
 | ||
|     bp.BEnd(wm) = nscoord(0);
 | ||
|   }
 | ||
| 
 | ||
|   LogicalSize desiredSize(wm, computedISize + bp.IStartEnd(wm),
 | ||
|                               bSize         + bp.BStartEnd(wm));
 | ||
|   aDesiredSize.SetSize(wm, desiredSize);
 | ||
|   nsRect frameRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height());
 | ||
|   aDesiredSize.mOverflowAreas.UnionAllWith(frameRect);
 | ||
| 
 | ||
|   // Convert INCOMPLETE -> OVERFLOW_INCOMPLETE and zero bsize if we're an OC.
 | ||
|   if (HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
 | ||
|     if (!aStatus.IsComplete()) {
 | ||
|       aStatus.SetOverflowIncomplete();
 | ||
|       aStatus.SetNextInFlowNeedsReflow();
 | ||
|     }
 | ||
|     bSize = 0;
 | ||
|     desiredSize.BSize(wm) = bSize + bp.BStartEnd(wm);
 | ||
|     aDesiredSize.SetSize(wm, desiredSize);
 | ||
|   }
 | ||
| 
 | ||
|   if (!gridReflowInput.mInFragmentainer) {
 | ||
|     MOZ_ASSERT(gridReflowInput.mIter.IsValid());
 | ||
|     auto sz = frameRect.Size();
 | ||
|     CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
 | ||
|                        &gridReflowInput.mGridItems, gridReflowInput.mCols,
 | ||
|                        0, gridReflowInput.mCols.mSizes.Length(),
 | ||
|                        wm, sz, bp.IStart(wm),
 | ||
|                        bp.IEnd(wm), desiredSize.ISize(wm));
 | ||
|     CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
 | ||
|                        &gridReflowInput.mGridItems, gridReflowInput.mRows,
 | ||
|                        0, gridReflowInput.mRows.mSizes.Length(),
 | ||
|                        wm, sz, bp.BStart(wm),
 | ||
|                        bp.BEnd(wm), desiredSize.BSize(wm));
 | ||
|   } else {
 | ||
|     // Only compute 'first baseline' if this fragment contains the first track.
 | ||
|     // XXXmats maybe remove this condition? bug 1306499
 | ||
|     BaselineSet baselines = BaselineSet::eNone;
 | ||
|     if (gridReflowInput.mStartRow == 0 &&
 | ||
|         gridReflowInput.mStartRow != gridReflowInput.mNextFragmentStartRow) {
 | ||
|       baselines = BaselineSet::eFirst;
 | ||
|     }
 | ||
|     // Only compute 'last baseline' if this fragment contains the last track.
 | ||
|     // XXXmats maybe remove this condition? bug 1306499
 | ||
|     uint32_t len = gridReflowInput.mRows.mSizes.Length();
 | ||
|     if (gridReflowInput.mStartRow != len &&
 | ||
|         gridReflowInput.mNextFragmentStartRow == len) {
 | ||
|       baselines = BaselineSet(baselines | BaselineSet::eLast);
 | ||
|     }
 | ||
|     Maybe<CSSOrderAwareFrameIterator> iter;
 | ||
|     Maybe<nsTArray<GridItemInfo>> gridItems;
 | ||
|     if (baselines != BaselineSet::eNone) {
 | ||
|       // We need to create a new iterator and GridItemInfo array because we
 | ||
|       // might have pushed some children at this point.
 | ||
|       // Even if the gridReflowInput iterator is invalid we can reuse its
 | ||
|       // state about order to optimize initialization of the new iterator.
 | ||
|       // An ordered child list can't become unordered by pushing frames.
 | ||
|       // An unordered list can become ordered in a number of cases, but we
 | ||
|       // ignore that here and guess that the child list is still unordered.
 | ||
|       // XXX this is O(n^2) in the number of items in this fragment: bug 1306705
 | ||
|       using Filter = CSSOrderAwareFrameIterator::ChildFilter;
 | ||
|       using Order = CSSOrderAwareFrameIterator::OrderState;
 | ||
|       bool ordered = gridReflowInput.mIter.ItemsAreAlreadyInOrder();
 | ||
|       auto orderState = ordered ? Order::eKnownOrdered : Order::eKnownUnordered;
 | ||
|       iter.emplace(this, kPrincipalList, Filter::eSkipPlaceholders, orderState);
 | ||
|       gridItems.emplace();
 | ||
|       for (; !iter->AtEnd(); iter->Next()) {
 | ||
|         auto child = **iter;
 | ||
|         for (const auto& info : gridReflowInput.mGridItems) {
 | ||
|           if (info.mFrame == child) {
 | ||
|             gridItems->AppendElement(info);
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     auto sz = frameRect.Size();
 | ||
|     CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
 | ||
|                        gridReflowInput.mCols, 0,
 | ||
|                        gridReflowInput.mCols.mSizes.Length(), wm, sz,
 | ||
|                        bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm));
 | ||
|     CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
 | ||
|                        gridReflowInput.mRows, gridReflowInput.mStartRow,
 | ||
|                        gridReflowInput.mNextFragmentStartRow, wm, sz,
 | ||
|                        bp.BStart(wm), bp.BEnd(wm), desiredSize.BSize(wm));
 | ||
|   }
 | ||
| 
 | ||
|   if (HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES)) {
 | ||
|     // This state bit will never be cleared, since reflow can be called
 | ||
|     // multiple times in fragmented grids, and it's challenging to scope
 | ||
|     // the bit to only that sequence of calls. This is relatively harmless
 | ||
|     // since this bit is only set by accessing a ChromeOnly property, and
 | ||
|     // therefore can't unduly slow down normal web browsing.
 | ||
| 
 | ||
|     // Now that we know column and row sizes and positions, set
 | ||
|     // the ComputedGridTrackInfo and related properties
 | ||
| 
 | ||
|     uint32_t colTrackCount = gridReflowInput.mCols.mSizes.Length();
 | ||
|     nsTArray<nscoord> colTrackPositions(colTrackCount);
 | ||
|     nsTArray<nscoord> colTrackSizes(colTrackCount);
 | ||
|     nsTArray<uint32_t> colTrackStates(colTrackCount);
 | ||
|     nsTArray<bool> colRemovedRepeatTracks(
 | ||
|       gridReflowInput.mColFunctions.mRemovedRepeatTracks);
 | ||
|     uint32_t col = 0;
 | ||
|     for (const TrackSize& sz : gridReflowInput.mCols.mSizes) {
 | ||
|       colTrackPositions.AppendElement(sz.mPosition);
 | ||
|       colTrackSizes.AppendElement(sz.mBase);
 | ||
|       bool isRepeat = ((col >= gridReflowInput.mColFunctions.mRepeatAutoStart) &&
 | ||
|                        (col < gridReflowInput.mColFunctions.mRepeatAutoEnd));
 | ||
|       colTrackStates.AppendElement(
 | ||
|           isRepeat ?
 | ||
|           (uint32_t)mozilla::dom::GridTrackState::Repeat :
 | ||
|           (uint32_t)mozilla::dom::GridTrackState::Static
 | ||
|       );
 | ||
| 
 | ||
|       col++;
 | ||
|     }
 | ||
|     ComputedGridTrackInfo* colInfo = new ComputedGridTrackInfo(
 | ||
|       gridReflowInput.mColFunctions.mExplicitGridOffset,
 | ||
|       gridReflowInput.mColFunctions.NumExplicitTracks(),
 | ||
|       0,
 | ||
|       col,
 | ||
|       Move(colTrackPositions),
 | ||
|       Move(colTrackSizes),
 | ||
|       Move(colTrackStates),
 | ||
|       Move(colRemovedRepeatTracks),
 | ||
|       gridReflowInput.mColFunctions.mRepeatAutoStart);
 | ||
|     SetProperty(GridColTrackInfo(), colInfo);
 | ||
| 
 | ||
|     uint32_t rowTrackCount = gridReflowInput.mRows.mSizes.Length();
 | ||
|     nsTArray<nscoord> rowTrackPositions(rowTrackCount);
 | ||
|     nsTArray<nscoord> rowTrackSizes(rowTrackCount);
 | ||
|     nsTArray<uint32_t> rowTrackStates(rowTrackCount);
 | ||
|     nsTArray<bool> rowRemovedRepeatTracks(
 | ||
|       gridReflowInput.mRowFunctions.mRemovedRepeatTracks);
 | ||
|     uint32_t row = 0;
 | ||
|     for (const TrackSize& sz : gridReflowInput.mRows.mSizes) {
 | ||
|       rowTrackPositions.AppendElement(sz.mPosition);
 | ||
|       rowTrackSizes.AppendElement(sz.mBase);
 | ||
|       bool isRepeat = ((row >= gridReflowInput.mRowFunctions.mRepeatAutoStart) &&
 | ||
|                        (row < gridReflowInput.mRowFunctions.mRepeatAutoEnd));
 | ||
|       rowTrackStates.AppendElement(
 | ||
|         isRepeat ?
 | ||
|         (uint32_t)mozilla::dom::GridTrackState::Repeat :
 | ||
|         (uint32_t)mozilla::dom::GridTrackState::Static
 | ||
|       );
 | ||
| 
 | ||
|       row++;
 | ||
|     }
 | ||
|     // Row info has to accomodate fragmentation of the grid, which may happen in
 | ||
|     // later calls to Reflow. For now, presume that no more fragmentation will
 | ||
|     // occur.
 | ||
|     ComputedGridTrackInfo* rowInfo = new ComputedGridTrackInfo(
 | ||
|       gridReflowInput.mRowFunctions.mExplicitGridOffset,
 | ||
|       gridReflowInput.mRowFunctions.NumExplicitTracks(),
 | ||
|       gridReflowInput.mStartRow,
 | ||
|       row,
 | ||
|       Move(rowTrackPositions),
 | ||
|       Move(rowTrackSizes),
 | ||
|       Move(rowTrackStates),
 | ||
|       Move(rowRemovedRepeatTracks),
 | ||
|       gridReflowInput.mRowFunctions.mRepeatAutoStart);
 | ||
|     SetProperty(GridRowTrackInfo(), rowInfo);
 | ||
| 
 | ||
|     if (prevInFlow) {
 | ||
|       // This frame is fragmenting rows from a previous frame, so patch up
 | ||
|       // the prior GridRowTrackInfo with a new end row.
 | ||
| 
 | ||
|       // FIXME: This can be streamlined and/or removed when bug 1151204 lands.
 | ||
| 
 | ||
|       ComputedGridTrackInfo* priorRowInfo =
 | ||
|         prevInFlow->GetProperty(GridRowTrackInfo());
 | ||
| 
 | ||
|       // Adjust track positions based on the first track in this fragment.
 | ||
|       if (priorRowInfo->mPositions.Length() >
 | ||
|           priorRowInfo->mStartFragmentTrack) {
 | ||
|         nscoord delta =
 | ||
|           priorRowInfo->mPositions[priorRowInfo->mStartFragmentTrack];
 | ||
|         for (nscoord& pos : priorRowInfo->mPositions) {
 | ||
|           pos -= delta;
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       ComputedGridTrackInfo* revisedPriorRowInfo = new ComputedGridTrackInfo(
 | ||
|         priorRowInfo->mNumLeadingImplicitTracks,
 | ||
|         priorRowInfo->mNumExplicitTracks,
 | ||
|         priorRowInfo->mStartFragmentTrack,
 | ||
|         gridReflowInput.mStartRow,
 | ||
|         Move(priorRowInfo->mPositions),
 | ||
|         Move(priorRowInfo->mSizes),
 | ||
|         Move(priorRowInfo->mStates),
 | ||
|         Move(priorRowInfo->mRemovedRepeatTracks),
 | ||
|         priorRowInfo->mRepeatFirstTrack);
 | ||
|       prevInFlow->SetProperty(GridRowTrackInfo(), revisedPriorRowInfo);
 | ||
|     }
 | ||
| 
 | ||
|     // Generate the line info properties. We need to provide the number of
 | ||
|     // repeat tracks produced in the reflow. Only explicit names are assigned
 | ||
|     // to lines here; the mozilla::dom::GridLines class will later extract
 | ||
|     // implicit names from grid areas and assign them to the appropriate lines.
 | ||
| 
 | ||
|     // Generate column lines first.
 | ||
|     uint32_t capacity = gridReflowInput.mCols.mSizes.Length();
 | ||
|     const nsStyleGridTemplate& gridColTemplate =
 | ||
|       gridReflowInput.mGridStyle->GridTemplateColumns();
 | ||
|     nsTArray<nsTArray<nsString>> columnLineNames(capacity);
 | ||
|     for (col = 0; col <= gridReflowInput.mCols.mSizes.Length(); col++) {
 | ||
|       // Offset col by the explicit grid offset, to get the original names.
 | ||
|       nsTArray<nsString> explicitNames =
 | ||
|         gridReflowInput.mCols.GetExplicitLineNamesAtIndex(
 | ||
|           gridColTemplate,
 | ||
|           gridReflowInput.mColFunctions,
 | ||
|           col - gridReflowInput.mColFunctions.mExplicitGridOffset);
 | ||
| 
 | ||
|       columnLineNames.AppendElement(explicitNames);
 | ||
|     }
 | ||
|     // Get the explicit names that follow a repeat auto declaration.
 | ||
|     nsTArray<nsString> colNamesFollowingRepeat;
 | ||
|     if (gridColTemplate.HasRepeatAuto()) {
 | ||
|       // The line name list after the repeatAutoIndex holds the line names
 | ||
|       // for the first explicit line after the repeat auto declaration.
 | ||
|       uint32_t repeatAutoEnd = gridColTemplate.mRepeatAutoIndex + 1;
 | ||
|       MOZ_ASSERT(repeatAutoEnd < gridColTemplate.mLineNameLists.Length());
 | ||
|       colNamesFollowingRepeat.AppendElements(
 | ||
|         gridColTemplate.mLineNameLists[repeatAutoEnd]);
 | ||
|     }
 | ||
| 
 | ||
|     ComputedGridLineInfo* columnLineInfo = new ComputedGridLineInfo(
 | ||
|       Move(columnLineNames),
 | ||
|       gridColTemplate.mRepeatAutoLineNameListBefore,
 | ||
|       gridColTemplate.mRepeatAutoLineNameListAfter,
 | ||
|       Move(colNamesFollowingRepeat));
 | ||
|     SetProperty(GridColumnLineInfo(), columnLineInfo);
 | ||
| 
 | ||
|     // Generate row lines next.
 | ||
|     capacity = gridReflowInput.mRows.mSizes.Length();
 | ||
|     const nsStyleGridTemplate& gridRowTemplate =
 | ||
|       gridReflowInput.mGridStyle->GridTemplateRows();
 | ||
|     nsTArray<nsTArray<nsString>> rowLineNames(capacity);
 | ||
|     for (row = 0; row <= gridReflowInput.mRows.mSizes.Length(); row++) {
 | ||
|       // Offset row by the explicit grid offset, to get the original names.
 | ||
|       nsTArray<nsString> explicitNames =
 | ||
|         gridReflowInput.mRows.GetExplicitLineNamesAtIndex(
 | ||
|           gridRowTemplate,
 | ||
|           gridReflowInput.mRowFunctions,
 | ||
|           row - gridReflowInput.mRowFunctions.mExplicitGridOffset);
 | ||
| 
 | ||
|       rowLineNames.AppendElement(explicitNames);
 | ||
|     }
 | ||
|     // Get the explicit names that follow a repeat auto declaration.
 | ||
|     nsTArray<nsString> rowNamesFollowingRepeat;
 | ||
|     if (gridRowTemplate.HasRepeatAuto()) {
 | ||
|       // The line name list after the repeatAutoIndex holds the line names
 | ||
|       // for the first explicit line after the repeat auto declaration.
 | ||
|       uint32_t repeatAutoEnd = gridRowTemplate.mRepeatAutoIndex + 1;
 | ||
|       MOZ_ASSERT(repeatAutoEnd < gridRowTemplate.mLineNameLists.Length());
 | ||
|       rowNamesFollowingRepeat.AppendElements(
 | ||
|         gridRowTemplate.mLineNameLists[repeatAutoEnd]);
 | ||
|     }
 | ||
| 
 | ||
|     ComputedGridLineInfo* rowLineInfo = new ComputedGridLineInfo(
 | ||
|       Move(rowLineNames),
 | ||
|       gridRowTemplate.mRepeatAutoLineNameListBefore,
 | ||
|       gridRowTemplate.mRepeatAutoLineNameListAfter,
 | ||
|       Move(rowNamesFollowingRepeat));
 | ||
|     SetProperty(GridRowLineInfo(), rowLineInfo);
 | ||
| 
 | ||
|     // Generate area info for explicit areas. Implicit areas are handled
 | ||
|     // elsewhere.
 | ||
|     if (gridReflowInput.mGridStyle->mGridTemplateAreas) {
 | ||
|       nsTArray<css::GridNamedArea>* areas = new nsTArray<css::GridNamedArea>(
 | ||
|           gridReflowInput.mGridStyle->mGridTemplateAreas->mNamedAreas);
 | ||
|       SetProperty(ExplicitNamedAreasProperty(), areas);
 | ||
|     } else {
 | ||
|       DeleteProperty(ExplicitNamedAreasProperty());
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (!prevInFlow) {
 | ||
|     SharedGridData* sharedGridData = GetProperty(SharedGridData::Prop());
 | ||
|     if (!aStatus.IsFullyComplete()) {
 | ||
|       if (!sharedGridData) {
 | ||
|         sharedGridData = new SharedGridData;
 | ||
|         SetProperty(SharedGridData::Prop(), sharedGridData);
 | ||
|       }
 | ||
|       sharedGridData->mCols.mSizes.Clear();
 | ||
|       sharedGridData->mCols.mSizes.SwapElements(gridReflowInput.mCols.mSizes);
 | ||
|       sharedGridData->mCols.mContentBoxSize = gridReflowInput.mCols.mContentBoxSize;
 | ||
|       sharedGridData->mCols.mBaselineSubtreeAlign[0] =
 | ||
|         gridReflowInput.mCols.mBaselineSubtreeAlign[0];
 | ||
|       sharedGridData->mCols.mBaselineSubtreeAlign[1] =
 | ||
|         gridReflowInput.mCols.mBaselineSubtreeAlign[1];
 | ||
|       sharedGridData->mRows.mSizes.Clear();
 | ||
|       sharedGridData->mRows.mSizes.SwapElements(gridReflowInput.mRows.mSizes);
 | ||
|       // Save the original row grid sizes and gaps so we can restore them later
 | ||
|       // in GridReflowInput::Initialize for the continuations.
 | ||
|       auto& origRowData = sharedGridData->mOriginalRowData;
 | ||
|       origRowData.ClearAndRetainStorage();
 | ||
|       origRowData.SetCapacity(sharedGridData->mRows.mSizes.Length());
 | ||
|       nscoord prevTrackEnd = 0;
 | ||
|       for (auto& sz : sharedGridData->mRows.mSizes) {
 | ||
|         SharedGridData::RowData data = {sz.mBase, sz.mPosition - prevTrackEnd};
 | ||
|         origRowData.AppendElement(data);
 | ||
|         prevTrackEnd = sz.mPosition + sz.mBase;
 | ||
|       }
 | ||
|       sharedGridData->mRows.mContentBoxSize = gridReflowInput.mRows.mContentBoxSize;
 | ||
|       sharedGridData->mRows.mBaselineSubtreeAlign[0] =
 | ||
|         gridReflowInput.mRows.mBaselineSubtreeAlign[0];
 | ||
|       sharedGridData->mRows.mBaselineSubtreeAlign[1] =
 | ||
|         gridReflowInput.mRows.mBaselineSubtreeAlign[1];
 | ||
|       sharedGridData->mGridItems.Clear();
 | ||
|       sharedGridData->mGridItems.SwapElements(gridReflowInput.mGridItems);
 | ||
|       sharedGridData->mAbsPosItems.Clear();
 | ||
|       sharedGridData->mAbsPosItems.SwapElements(gridReflowInput.mAbsPosItems);
 | ||
| 
 | ||
|       sharedGridData->mGenerateComputedGridInfo =
 | ||
|           HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES);
 | ||
|     } else if (sharedGridData && !GetNextInFlow()) {
 | ||
|       DeleteProperty(SharedGridData::Prop());
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   FinishAndStoreOverflow(&aDesiredSize);
 | ||
|   NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize);
 | ||
| }
 | ||
| 
 | ||
| nscoord
 | ||
| nsGridContainerFrame::IntrinsicISize(gfxContext* aRenderingContext,
 | ||
|                                      IntrinsicISizeType  aType)
 | ||
| {
 | ||
|   RenumberList();
 | ||
| 
 | ||
|   // Calculate the sum of column sizes under intrinsic sizing.
 | ||
|   // http://dev.w3.org/csswg/css-grid/#intrinsic-sizes
 | ||
|   GridReflowInput state(this, *aRenderingContext);
 | ||
|   InitImplicitNamedAreas(state.mGridStyle); // XXX optimize
 | ||
| 
 | ||
|   auto GetDefiniteSizes = [] (const nsStyleCoord& aMinCoord,
 | ||
|                               const nsStyleCoord& aSizeCoord,
 | ||
|                               const nsStyleCoord& aMaxCoord,
 | ||
|                               nscoord* aMin,
 | ||
|                               nscoord* aSize,
 | ||
|                               nscoord* aMax) {
 | ||
|     if (aMinCoord.ConvertsToLength()) {
 | ||
|       *aMin = aMinCoord.ToLength();
 | ||
|     }
 | ||
|     if (aMaxCoord.ConvertsToLength()) {
 | ||
|       *aMax = std::max(*aMin, aMaxCoord.ToLength());
 | ||
|     }
 | ||
|     if (aSizeCoord.ConvertsToLength()) {
 | ||
|       *aSize = Clamp(aSizeCoord.ToLength(), *aMin, *aMax);
 | ||
|     }
 | ||
|   };
 | ||
|   // The min/sz/max sizes are the input to the "repeat-to-fill" algorithm:
 | ||
|   // https://drafts.csswg.org/css-grid/#auto-repeat
 | ||
|   // They're only used for auto-repeat so we skip computing them otherwise.
 | ||
|   LogicalSize min(state.mWM, 0, 0);
 | ||
|   LogicalSize sz(state.mWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
 | ||
|   LogicalSize max(state.mWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
 | ||
|   if (state.mColFunctions.mHasRepeatAuto) {
 | ||
|     GetDefiniteSizes(state.mGridStyle->MinISize(state.mWM),
 | ||
|                      state.mGridStyle->ISize(state.mWM),
 | ||
|                      state.mGridStyle->MaxISize(state.mWM),
 | ||
|                      &min.ISize(state.mWM),
 | ||
|                      &sz.ISize(state.mWM),
 | ||
|                      &max.ISize(state.mWM));
 | ||
|   }
 | ||
|   if (state.mRowFunctions.mHasRepeatAuto &&
 | ||
|       !(state.mGridStyle->mGridAutoFlow & NS_STYLE_GRID_AUTO_FLOW_ROW)) {
 | ||
|     // Only 'grid-auto-flow:column' can create new implicit columns, so that's
 | ||
|     // the only case where our block-size can affect the number of columns.
 | ||
|     GetDefiniteSizes(state.mGridStyle->MinBSize(state.mWM),
 | ||
|                      state.mGridStyle->BSize(state.mWM),
 | ||
|                      state.mGridStyle->MaxBSize(state.mWM),
 | ||
|                      &min.BSize(state.mWM),
 | ||
|                      &sz.BSize(state.mWM),
 | ||
|                      &max.BSize(state.mWM));
 | ||
|   }
 | ||
| 
 | ||
|   Grid grid;
 | ||
|   grid.PlaceGridItems(state, min, sz, max);  // XXX optimize
 | ||
|   if (grid.mGridColEnd == 0) {
 | ||
|     return 0;
 | ||
|   }
 | ||
|   state.mCols.Initialize(state.mColFunctions, state.mGridStyle->mGridColumnGap,
 | ||
|                          grid.mGridColEnd, NS_UNCONSTRAINEDSIZE);
 | ||
|   auto constraint = aType == nsLayoutUtils::MIN_ISIZE ?
 | ||
|     SizingConstraint::eMinContent : SizingConstraint::eMaxContent;
 | ||
|   state.mCols.CalculateSizes(state, state.mGridItems, state.mColFunctions,
 | ||
|                              NS_UNCONSTRAINEDSIZE, &GridArea::mCols,
 | ||
|                              constraint);
 | ||
|   return state.mCols.BackComputedIntrinsicSize(state.mColFunctions,
 | ||
|                                                state.mGridStyle->mGridColumnGap);
 | ||
| }
 | ||
| 
 | ||
| nscoord
 | ||
| nsGridContainerFrame::GetMinISize(gfxContext* aRC)
 | ||
| {
 | ||
|   DISPLAY_MIN_WIDTH(this, mCachedMinISize);
 | ||
|   if (mCachedMinISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
 | ||
|     mCachedMinISize = IntrinsicISize(aRC, nsLayoutUtils::MIN_ISIZE);
 | ||
|   }
 | ||
|   return mCachedMinISize;
 | ||
| }
 | ||
| 
 | ||
| nscoord
 | ||
| nsGridContainerFrame::GetPrefISize(gfxContext* aRC)
 | ||
| {
 | ||
|   DISPLAY_PREF_WIDTH(this, mCachedPrefISize);
 | ||
|   if (mCachedPrefISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
 | ||
|     mCachedPrefISize = IntrinsicISize(aRC, nsLayoutUtils::PREF_ISIZE);
 | ||
|   }
 | ||
|   return mCachedPrefISize;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::MarkIntrinsicISizesDirty()
 | ||
| {
 | ||
|   mCachedMinISize = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   mCachedPrefISize = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   mBaseline[0][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   mBaseline[0][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   mBaseline[1][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   mBaseline[1][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
 | ||
|   nsContainerFrame::MarkIntrinsicISizesDirty();
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::BuildDisplayList(nsDisplayListBuilder*   aBuilder,
 | ||
|                                        const nsDisplayListSet& aLists)
 | ||
| {
 | ||
|   DisplayBorderBackgroundOutline(aBuilder, aLists);
 | ||
|   if (GetPrevInFlow()) {
 | ||
|     DisplayOverflowContainers(aBuilder, aLists);
 | ||
|   }
 | ||
| 
 | ||
|   // Our children are all grid-level boxes, which behave the same as
 | ||
|   // inline-blocks in painting, so their borders/backgrounds all go on
 | ||
|   // the BlockBorderBackgrounds list.
 | ||
|   typedef CSSOrderAwareFrameIterator::OrderState OrderState;
 | ||
|   OrderState order = HasAnyStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
 | ||
|                        ? OrderState::eKnownOrdered
 | ||
|                        : OrderState::eKnownUnordered;
 | ||
|   CSSOrderAwareFrameIterator iter(this, kPrincipalList,
 | ||
|                                   CSSOrderAwareFrameIterator::eIncludeAll, order);
 | ||
|   for (; !iter.AtEnd(); iter.Next()) {
 | ||
|     nsIFrame* child = *iter;
 | ||
|     BuildDisplayListForChild(aBuilder, child, aLists, ::GetDisplayFlagsForGridItem(child));
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| bool
 | ||
| nsGridContainerFrame::DrainSelfOverflowList()
 | ||
| {
 | ||
|   // Unlike nsContainerFrame::DrainSelfOverflowList we need to merge these lists
 | ||
|   // so that the resulting mFrames is in document content order.
 | ||
|   // NOTE: nsContainerFrame::AppendFrames/InsertFrames calls this method.
 | ||
|   AutoFrameListPtr overflowFrames(PresContext(), StealOverflowFrames());
 | ||
|   if (overflowFrames) {
 | ||
|     ::MergeSortedFrameLists(mFrames, *overflowFrames, GetContent());
 | ||
|     return true;
 | ||
|   }
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::AppendFrames(ChildListID aListID, nsFrameList& aFrameList)
 | ||
| {
 | ||
|   NoteNewChildren(aListID, aFrameList);
 | ||
|   nsContainerFrame::AppendFrames(aListID, aFrameList);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::InsertFrames(ChildListID aListID, nsIFrame* aPrevFrame,
 | ||
|                                    nsFrameList& aFrameList)
 | ||
| {
 | ||
|   NoteNewChildren(aListID, aFrameList);
 | ||
|   nsContainerFrame::InsertFrames(aListID, aPrevFrame, aFrameList);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::RemoveFrame(ChildListID aListID, nsIFrame* aOldFrame)
 | ||
| {
 | ||
| #ifdef DEBUG
 | ||
|   ChildListIDs supportedLists =
 | ||
|     kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList;
 | ||
|   // We don't handle the kBackdropList frames in any way, but it only contains
 | ||
|   // a placeholder for ::backdrop which is OK to not reflow (for now anyway).
 | ||
|   supportedLists |= kBackdropList;
 | ||
|   MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list");
 | ||
| 
 | ||
|   // Note that kPrincipalList doesn't mean aOldFrame must be on that list.
 | ||
|   // It can also be on kOverflowList, in which case it might be a pushed
 | ||
|   // item, and if it's the only pushed item our DID_PUSH_ITEMS bit will lie.
 | ||
|   if (aListID == kPrincipalList && !aOldFrame->GetPrevInFlow()) {
 | ||
|     // Since the bit may lie, set the mDidPushItemsBitMayLie value to true for
 | ||
|     // ourself and for all our contiguous previous-in-flow nsGridContainerFrames.
 | ||
|     nsGridContainerFrame* frameThatMayLie = this;
 | ||
|     do {
 | ||
|       frameThatMayLie->mDidPushItemsBitMayLie = true;
 | ||
|       frameThatMayLie = static_cast<nsGridContainerFrame*>(
 | ||
|         frameThatMayLie->GetPrevInFlow());
 | ||
|     } while (frameThatMayLie);
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   nsContainerFrame::RemoveFrame(aListID, aOldFrame);
 | ||
| }
 | ||
| 
 | ||
| uint16_t
 | ||
| nsGridContainerFrame::CSSAlignmentForAbsPosChild(const ReflowInput& aChildRI,
 | ||
|                                                  LogicalAxis aLogicalAxis) const
 | ||
| {
 | ||
|   MOZ_ASSERT(aChildRI.mFrame->IsAbsolutelyPositioned(),
 | ||
|              "This method should only be called for abspos children");
 | ||
| 
 | ||
|   uint16_t alignment = (aLogicalAxis == eLogicalAxisInline) ?
 | ||
|     aChildRI.mStylePosition->UsedJustifySelf(StyleContext()) :
 | ||
|     aChildRI.mStylePosition->UsedAlignSelf(StyleContext());
 | ||
| 
 | ||
|   // XXX strip off <overflow-position> bits until we implement it
 | ||
|   // (bug 1311892)
 | ||
|   alignment &= ~NS_STYLE_ALIGN_FLAG_BITS;
 | ||
| 
 | ||
|   if (alignment == NS_STYLE_ALIGN_NORMAL) {
 | ||
|     // "the 'normal' keyword behaves as 'start' on replaced
 | ||
|     // absolutely-positioned boxes, and behaves as 'stretch' on all other
 | ||
|     // absolutely-positioned boxes."
 | ||
|     // https://drafts.csswg.org/css-align/#align-abspos
 | ||
|     // https://drafts.csswg.org/css-align/#justify-abspos
 | ||
|     alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced) ?
 | ||
|       NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_STRETCH;
 | ||
|   } else if (alignment == NS_STYLE_ALIGN_FLEX_START) {
 | ||
|     alignment = NS_STYLE_ALIGN_START;
 | ||
|   } else if (alignment == NS_STYLE_ALIGN_FLEX_END) {
 | ||
|     alignment = NS_STYLE_ALIGN_END;
 | ||
|   } else if (alignment == NS_STYLE_ALIGN_LEFT ||
 | ||
|              alignment == NS_STYLE_ALIGN_RIGHT) {
 | ||
|     if (aLogicalAxis == eLogicalAxisInline) {
 | ||
|       const bool isLeft = (alignment == NS_STYLE_ALIGN_LEFT);
 | ||
|       WritingMode wm = GetWritingMode();
 | ||
|       alignment = (isLeft == wm.IsBidiLTR()) ? NS_STYLE_ALIGN_START
 | ||
|                                              : NS_STYLE_ALIGN_END;
 | ||
|     } else {
 | ||
|       alignment = NS_STYLE_ALIGN_START;
 | ||
|     }
 | ||
|   } else if (alignment == NS_STYLE_ALIGN_BASELINE) {
 | ||
|     alignment = NS_STYLE_ALIGN_START;
 | ||
|   } else if (alignment == NS_STYLE_ALIGN_LAST_BASELINE) {
 | ||
|     alignment = NS_STYLE_ALIGN_END;
 | ||
|   }
 | ||
| 
 | ||
|   return alignment;
 | ||
| }
 | ||
| 
 | ||
| nscoord
 | ||
| nsGridContainerFrame::SynthesizeBaseline(
 | ||
|   const FindItemInGridOrderResult& aGridOrderItem,
 | ||
|   LogicalAxis          aAxis,
 | ||
|   BaselineSharingGroup aGroup,
 | ||
|   const nsSize&        aCBPhysicalSize,
 | ||
|   nscoord              aCBSize,
 | ||
|   WritingMode          aCBWM)
 | ||
| {
 | ||
|   if (MOZ_UNLIKELY(!aGridOrderItem.mItem)) {
 | ||
|     // No item in this fragment - synthesize a baseline from our border-box.
 | ||
|     return ::SynthesizeBaselineFromBorderBox(aGroup, aCBWM, aCBSize);
 | ||
|   }
 | ||
|   auto GetBBaseline = [] (BaselineSharingGroup aGroup, WritingMode aWM,
 | ||
|                           const nsIFrame* aFrame, nscoord* aBaseline) {
 | ||
|     return aGroup == BaselineSharingGroup::eFirst ?
 | ||
|       nsLayoutUtils::GetFirstLineBaseline(aWM, aFrame, aBaseline) :
 | ||
|       nsLayoutUtils::GetLastLineBaseline(aWM, aFrame, aBaseline);
 | ||
|   };
 | ||
|   nsIFrame* child = aGridOrderItem.mItem->mFrame;
 | ||
|   nsGridContainerFrame* grid = do_QueryFrame(child);
 | ||
|   auto childWM = child->GetWritingMode();
 | ||
|   bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
 | ||
|   nscoord baseline;
 | ||
|   nscoord start;
 | ||
|   nscoord size;
 | ||
|   if (aAxis == eLogicalAxisBlock) {
 | ||
|     start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).B(aCBWM);
 | ||
|     size = child->BSize(aCBWM);
 | ||
|     if (grid && aGridOrderItem.mIsInEdgeTrack) {
 | ||
|       isOrthogonal ? grid->GetIBaseline(aGroup, &baseline) :
 | ||
|                      grid->GetBBaseline(aGroup, &baseline);
 | ||
|     } else if (!isOrthogonal && aGridOrderItem.mIsInEdgeTrack) {
 | ||
|       baseline = child->BaselineBOffset(childWM, aGroup, AlignmentContext::eGrid);
 | ||
|     } else {
 | ||
|       baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
 | ||
|     }
 | ||
|   } else {
 | ||
|     start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).I(aCBWM);
 | ||
|     size = child->ISize(aCBWM);
 | ||
|     if (grid && aGridOrderItem.mIsInEdgeTrack) {
 | ||
|       isOrthogonal ? grid->GetBBaseline(aGroup, &baseline) :
 | ||
|                      grid->GetIBaseline(aGroup, &baseline);
 | ||
|     } else if (isOrthogonal && aGridOrderItem.mIsInEdgeTrack &&
 | ||
|                GetBBaseline(aGroup, childWM, child, &baseline)) {
 | ||
|       if (aGroup == BaselineSharingGroup::eLast) {
 | ||
|         baseline = size - baseline; // convert to distance from border-box end
 | ||
|       }
 | ||
|     } else {
 | ||
|       baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
 | ||
|     }
 | ||
|   }
 | ||
|   return aGroup == BaselineSharingGroup::eFirst ? start + baseline :
 | ||
|     aCBSize - start - size + baseline;
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::CalculateBaselines(
 | ||
|   BaselineSet                   aBaselineSet,
 | ||
|   CSSOrderAwareFrameIterator*   aIter,
 | ||
|   const nsTArray<GridItemInfo>* aGridItems,
 | ||
|   const Tracks&    aTracks,
 | ||
|   uint32_t         aFragmentStartTrack,
 | ||
|   uint32_t         aFirstExcludedTrack,
 | ||
|   WritingMode      aWM,
 | ||
|   const nsSize&    aCBPhysicalSize,
 | ||
|   nscoord          aCBBorderPaddingStart,
 | ||
|   nscoord          aCBBorderPaddingEnd,
 | ||
|   nscoord          aCBSize)
 | ||
| {
 | ||
|   const auto axis = aTracks.mAxis;
 | ||
|   auto firstBaseline = aTracks.mBaseline[BaselineSharingGroup::eFirst];
 | ||
|   if (!(aBaselineSet & BaselineSet::eFirst)) {
 | ||
|     mBaseline[axis][BaselineSharingGroup::eFirst] =
 | ||
|       ::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::eFirst, aWM,
 | ||
|                                         aCBSize);
 | ||
|   } else if (firstBaseline == NS_INTRINSIC_WIDTH_UNKNOWN) {
 | ||
|     FindItemInGridOrderResult gridOrderFirstItem =
 | ||
|       FindFirstItemInGridOrder(*aIter, *aGridItems,
 | ||
|         axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
 | ||
|         axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
 | ||
|         aFragmentStartTrack);
 | ||
|     mBaseline[axis][BaselineSharingGroup::eFirst] =
 | ||
|       SynthesizeBaseline(gridOrderFirstItem,
 | ||
|                          axis,
 | ||
|                          BaselineSharingGroup::eFirst,
 | ||
|                          aCBPhysicalSize,
 | ||
|                          aCBSize,
 | ||
|                          aWM);
 | ||
|   } else {
 | ||
|     // We have a 'first baseline' group in the start track in this fragment.
 | ||
|     // Convert it from track to grid container border-box coordinates.
 | ||
|     MOZ_ASSERT(!aGridItems->IsEmpty());
 | ||
|     nscoord gapBeforeStartTrack = aFragmentStartTrack == 0 ?
 | ||
|       aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::eAfterGridGap) :
 | ||
|       nscoord(0); // no content gap at start of fragment
 | ||
|     mBaseline[axis][BaselineSharingGroup::eFirst] =
 | ||
|       aCBBorderPaddingStart + gapBeforeStartTrack + firstBaseline;
 | ||
|   }
 | ||
| 
 | ||
|   auto lastBaseline = aTracks.mBaseline[BaselineSharingGroup::eLast];
 | ||
|   if (!(aBaselineSet & BaselineSet::eLast)) {
 | ||
|     mBaseline[axis][BaselineSharingGroup::eLast] =
 | ||
|       ::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::eLast, aWM,
 | ||
|                                         aCBSize);
 | ||
|   } else if (lastBaseline == NS_INTRINSIC_WIDTH_UNKNOWN) {
 | ||
|     // For finding items for the 'last baseline' we need to create a reverse
 | ||
|     // iterator ('aIter' is the forward iterator from the GridReflowInput).
 | ||
|     using Iter = ReverseCSSOrderAwareFrameIterator;
 | ||
|     auto orderState = aIter->ItemsAreAlreadyInOrder() ?
 | ||
|       Iter::OrderState::eKnownOrdered : Iter::OrderState::eKnownUnordered;
 | ||
|     Iter iter(this, kPrincipalList, Iter::ChildFilter::eSkipPlaceholders,
 | ||
|               orderState);
 | ||
|     iter.SetItemCount(aGridItems->Length());
 | ||
|     FindItemInGridOrderResult gridOrderLastItem =
 | ||
|       FindLastItemInGridOrder(iter, *aGridItems,
 | ||
|         axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
 | ||
|         axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
 | ||
|         aFragmentStartTrack, aFirstExcludedTrack);
 | ||
|     mBaseline[axis][BaselineSharingGroup::eLast] =
 | ||
|       SynthesizeBaseline(gridOrderLastItem,
 | ||
|                          axis,
 | ||
|                          BaselineSharingGroup::eLast,
 | ||
|                          aCBPhysicalSize,
 | ||
|                          aCBSize,
 | ||
|                          aWM);
 | ||
|   } else {
 | ||
|     // We have a 'last baseline' group in the end track in this fragment.
 | ||
|     // Convert it from track to grid container border-box coordinates.
 | ||
|     MOZ_ASSERT(!aGridItems->IsEmpty());
 | ||
|     auto borderBoxStartToEndOfEndTrack = aCBBorderPaddingStart +
 | ||
|       aTracks.GridLineEdge(aFirstExcludedTrack, GridLineSide::eBeforeGridGap) -
 | ||
|       aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::eBeforeGridGap);
 | ||
|     mBaseline[axis][BaselineSharingGroup::eLast] =
 | ||
|       (aCBSize - borderBoxStartToEndOfEndTrack) + lastBaseline;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| #ifdef DEBUG_FRAME_DUMP
 | ||
| nsresult
 | ||
| nsGridContainerFrame::GetFrameName(nsAString& aResult) const
 | ||
| {
 | ||
|   return MakeFrameName(NS_LITERAL_STRING("GridContainer"), aResult);
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::NoteNewChildren(ChildListID aListID,
 | ||
|                                       const nsFrameList& aFrameList)
 | ||
| {
 | ||
| #ifdef DEBUG
 | ||
|   ChildListIDs supportedLists =
 | ||
|     kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList;
 | ||
|   // We don't handle the kBackdropList frames in any way, but it only contains
 | ||
|   // a placeholder for ::backdrop which is OK to not reflow (for now anyway).
 | ||
|   supportedLists |= kBackdropList;
 | ||
|   MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list");
 | ||
| #endif
 | ||
| 
 | ||
|   nsIPresShell* shell = PresShell();
 | ||
|   for (auto pif = GetPrevInFlow(); pif; pif = pif->GetPrevInFlow()) {
 | ||
|     if (aListID == kPrincipalList) {
 | ||
|       pif->AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
 | ||
|     }
 | ||
|     shell->FrameNeedsReflow(pif, nsIPresShell::eTreeChange, NS_FRAME_IS_DIRTY);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::MergeSortedOverflow(nsFrameList& aList)
 | ||
| {
 | ||
|   if (aList.IsEmpty()) {
 | ||
|     return;
 | ||
|   }
 | ||
|   MOZ_ASSERT(!aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER),
 | ||
|              "this is the wrong list to put this child frame");
 | ||
|   MOZ_ASSERT(aList.FirstChild()->GetParent() == this);
 | ||
|   nsFrameList* overflow = GetOverflowFrames();
 | ||
|   if (overflow) {
 | ||
|     ::MergeSortedFrameLists(*overflow, aList, GetContent());
 | ||
|   } else {
 | ||
|     SetOverflowFrames(aList);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::MergeSortedExcessOverflowContainers(nsFrameList& aList)
 | ||
| {
 | ||
|   if (aList.IsEmpty()) {
 | ||
|     return;
 | ||
|   }
 | ||
|   MOZ_ASSERT(aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER),
 | ||
|              "this is the wrong list to put this child frame");
 | ||
|   MOZ_ASSERT(aList.FirstChild()->GetParent() == this);
 | ||
|   nsFrameList* eoc = GetPropTableFrames(ExcessOverflowContainersProperty());
 | ||
|   if (eoc) {
 | ||
|     ::MergeSortedFrameLists(*eoc, aList, GetContent());
 | ||
|   } else {
 | ||
|     SetPropTableFrames(new (PresShell()) nsFrameList(aList),
 | ||
|                        ExcessOverflowContainersProperty());
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| /* static */ nsGridContainerFrame::FindItemInGridOrderResult
 | ||
| nsGridContainerFrame::FindFirstItemInGridOrder(
 | ||
|   CSSOrderAwareFrameIterator& aIter,
 | ||
|   const nsTArray<GridItemInfo>& aGridItems,
 | ||
|   LineRange GridArea::* aMajor,
 | ||
|   LineRange GridArea::* aMinor,
 | ||
|   uint32_t aFragmentStartTrack)
 | ||
| {
 | ||
|   FindItemInGridOrderResult result = { nullptr, false };
 | ||
|   uint32_t minMajor = kTranslatedMaxLine + 1;
 | ||
|   uint32_t minMinor = kTranslatedMaxLine + 1;
 | ||
|   aIter.Reset();
 | ||
|   for (; !aIter.AtEnd(); aIter.Next()) {
 | ||
|     const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
 | ||
|     if ((item.mArea.*aMajor).mEnd <= aFragmentStartTrack) {
 | ||
|       continue; // item doesn't span any track in this fragment
 | ||
|     }
 | ||
|     uint32_t major = (item.mArea.*aMajor).mStart;
 | ||
|     uint32_t minor = (item.mArea.*aMinor).mStart;
 | ||
|     if (major < minMajor || (major == minMajor && minor < minMinor)) {
 | ||
|       minMajor = major;
 | ||
|       minMinor = minor;
 | ||
|       result.mItem = &item;
 | ||
|       result.mIsInEdgeTrack = major == 0U;
 | ||
|     }
 | ||
|   }
 | ||
|   return result;
 | ||
| }
 | ||
| 
 | ||
| /* static */ nsGridContainerFrame::FindItemInGridOrderResult
 | ||
| nsGridContainerFrame::FindLastItemInGridOrder(
 | ||
|   ReverseCSSOrderAwareFrameIterator& aIter,
 | ||
|   const nsTArray<GridItemInfo>& aGridItems,
 | ||
|   LineRange GridArea::* aMajor,
 | ||
|   LineRange GridArea::* aMinor,
 | ||
|   uint32_t aFragmentStartTrack,
 | ||
|   uint32_t aFirstExcludedTrack)
 | ||
| {
 | ||
|   FindItemInGridOrderResult result = { nullptr, false };
 | ||
|   int32_t maxMajor = -1;
 | ||
|   int32_t maxMinor = -1;
 | ||
|   aIter.Reset();
 | ||
|   int32_t lastMajorTrack = int32_t(aFirstExcludedTrack) - 1;
 | ||
|   for (; !aIter.AtEnd(); aIter.Next()) {
 | ||
|     const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
 | ||
|     // Subtract 1 from the end line to get the item's last track index.
 | ||
|     int32_t major = (item.mArea.*aMajor).mEnd - 1;
 | ||
|     // Currently, this method is only called with aFirstExcludedTrack ==
 | ||
|     // the first track in the next fragment, so we take the opportunity
 | ||
|     // to assert this item really belongs to this fragment.
 | ||
|     MOZ_ASSERT((item.mArea.*aMajor).mStart < aFirstExcludedTrack,
 | ||
|                "found an item that belongs to some later fragment");
 | ||
|     if (major < int32_t(aFragmentStartTrack)) {
 | ||
|       continue; // item doesn't span any track in this fragment
 | ||
|     }
 | ||
|     int32_t minor = (item.mArea.*aMinor).mEnd - 1;
 | ||
|     MOZ_ASSERT(minor >= 0 && major >= 0, "grid item must have span >= 1");
 | ||
|     if (major > maxMajor || (major == maxMajor && minor > maxMinor)) {
 | ||
|       maxMajor = major;
 | ||
|       maxMinor = minor;
 | ||
|       result.mItem = &item;
 | ||
|       result.mIsInEdgeTrack = major == lastMajorTrack;
 | ||
|     }
 | ||
|   }
 | ||
|   return result;
 | ||
| }
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
| void
 | ||
| nsGridContainerFrame::SetInitialChildList(ChildListID  aListID,
 | ||
|                                           nsFrameList& aChildList)
 | ||
| {
 | ||
| #ifdef DEBUG
 | ||
|   ChildListIDs supportedLists = kAbsoluteList | kFixedList | kPrincipalList;
 | ||
|   // We don't handle the kBackdropList frames in any way, but it only contains
 | ||
|   // a placeholder for ::backdrop which is OK to not reflow (for now anyway).
 | ||
|   supportedLists |= kBackdropList;
 | ||
|   MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list");
 | ||
| #endif
 | ||
| 
 | ||
|   return nsContainerFrame::SetInitialChildList(aListID, aChildList);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::SanityCheckGridItemsBeforeReflow() const
 | ||
| {
 | ||
|   ChildListIDs absLists = kAbsoluteList | kFixedList |
 | ||
|     kOverflowContainersList | kExcessOverflowContainersList;
 | ||
|   ChildListIDs itemLists = kPrincipalList | kOverflowList;
 | ||
|   for (const nsIFrame* f = this; f; f = f->GetNextInFlow()) {
 | ||
|     MOZ_ASSERT(!f->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS),
 | ||
|                "At start of reflow, we should've pulled items back from all "
 | ||
|                "NIFs and cleared NS_STATE_GRID_DID_PUSH_ITEMS in the process");
 | ||
|     for (nsIFrame::ChildListIterator childLists(f);
 | ||
|          !childLists.IsDone(); childLists.Next()) {
 | ||
|       if (!itemLists.Contains(childLists.CurrentID())) {
 | ||
|         MOZ_ASSERT(absLists.Contains(childLists.CurrentID()) ||
 | ||
|                    childLists.CurrentID() == kBackdropList,
 | ||
|                    "unexpected non-empty child list");
 | ||
|         continue;
 | ||
|       }
 | ||
|       for (auto child : childLists.CurrentList()) {
 | ||
|         MOZ_ASSERT(f == this || child->GetPrevInFlow(),
 | ||
|                    "all pushed items must be pulled up before reflow");
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
|   // If we have a prev-in-flow, each of its children's next-in-flow
 | ||
|   // should be one of our children or be null.
 | ||
|   const auto pif = static_cast<nsGridContainerFrame*>(GetPrevInFlow());
 | ||
|   if (pif) {
 | ||
|     const nsFrameList* oc =
 | ||
|       GetPropTableFrames(OverflowContainersProperty());
 | ||
|     const nsFrameList* eoc =
 | ||
|       GetPropTableFrames(ExcessOverflowContainersProperty());
 | ||
|     const nsFrameList* pifEOC =
 | ||
|       pif->GetPropTableFrames(ExcessOverflowContainersProperty());
 | ||
|     for (const nsIFrame* child : pif->GetChildList(kPrincipalList)) {
 | ||
|       const nsIFrame* childNIF = child->GetNextInFlow();
 | ||
|       MOZ_ASSERT(!childNIF || mFrames.ContainsFrame(childNIF) ||
 | ||
|                  (pifEOC && pifEOC->ContainsFrame(childNIF)) ||
 | ||
|                  (oc && oc->ContainsFrame(childNIF)) ||
 | ||
|                  (eoc && eoc->ContainsFrame(childNIF)));
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| nsGridContainerFrame::TrackSize::Dump() const
 | ||
| {
 | ||
|   printf("mPosition=%d mBase=%d mLimit=%d", mPosition, mBase, mLimit);
 | ||
| 
 | ||
|   printf(" min:");
 | ||
|   if (mState & eAutoMinSizing) {
 | ||
|     printf("auto ");
 | ||
|   } else if (mState & eMinContentMinSizing) {
 | ||
|     printf("min-content ");
 | ||
|   } else if (mState & eMaxContentMinSizing) {
 | ||
|     printf("max-content ");
 | ||
|   }
 | ||
| 
 | ||
|   printf(" max:");
 | ||
|   if (mState & eAutoMaxSizing) {
 | ||
|     printf("auto ");
 | ||
|   } else if (mState & eMinContentMaxSizing) {
 | ||
|     printf("min-content ");
 | ||
|   } else if (mState & eMaxContentMaxSizing) {
 | ||
|     printf("max-content ");
 | ||
|   } else if (mState & eFlexMaxSizing) {
 | ||
|     printf("flex ");
 | ||
|   }
 | ||
| 
 | ||
|   if (mState & eFrozen) {
 | ||
|     printf("frozen ");
 | ||
|   }
 | ||
|   if (mState & eModified) {
 | ||
|     printf("modified ");
 | ||
|   }
 | ||
|   if (mState & eBreakBefore) {
 | ||
|     printf("break-before ");
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| #endif // DEBUG
 | ||
| 
 | ||
| nsGridContainerFrame*
 | ||
| nsGridContainerFrame::GetGridFrameWithComputedInfo(nsIFrame* aFrame)
 | ||
| {
 | ||
|   // Prepare a lambda function that we may need to call multiple times.
 | ||
|   auto GetGridContainerFrame = [](nsIFrame *aFrame) {
 | ||
|     // Return the aFrame's content insertion frame, iff it is
 | ||
|     // a grid container.
 | ||
|     nsGridContainerFrame* gridFrame = nullptr;
 | ||
| 
 | ||
|     if (aFrame) {
 | ||
|       nsIFrame* contentFrame = aFrame->GetContentInsertionFrame();
 | ||
|       if (contentFrame && (contentFrame->IsGridContainerFrame())) {
 | ||
|         gridFrame = static_cast<nsGridContainerFrame*>(contentFrame);
 | ||
|       }
 | ||
|     }
 | ||
|     return gridFrame;
 | ||
|   };
 | ||
| 
 | ||
|   nsGridContainerFrame* gridFrame = GetGridContainerFrame(aFrame);
 | ||
|   if (gridFrame) {
 | ||
|     // if any of our properties are missing, generate them
 | ||
|     bool reflowNeeded = (!gridFrame->HasProperty(GridColTrackInfo()) ||
 | ||
|                          !gridFrame->HasProperty(GridRowTrackInfo()) ||
 | ||
|                          !gridFrame->HasProperty(GridColumnLineInfo()) ||
 | ||
|                          !gridFrame->HasProperty(GridRowLineInfo()));
 | ||
| 
 | ||
|     if (reflowNeeded) {
 | ||
|       // Trigger a reflow that generates additional grid property data.
 | ||
|       // Hold onto aFrame while we do this, in case reflow destroys it.
 | ||
|       AutoWeakFrame weakFrameRef(aFrame);
 | ||
| 
 | ||
|       nsIPresShell* shell = gridFrame->PresShell();
 | ||
|       gridFrame->AddStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES);
 | ||
|       shell->FrameNeedsReflow(gridFrame,
 | ||
|                               nsIPresShell::eResize,
 | ||
|                               NS_FRAME_IS_DIRTY);
 | ||
|       shell->FlushPendingNotifications(FlushType::Layout);
 | ||
| 
 | ||
|       // Since the reflow may have side effects, get the grid frame
 | ||
|       // again. But if the weakFrameRef is no longer valid, then we
 | ||
|       // must bail out.
 | ||
|       if (!weakFrameRef.IsAlive()) {
 | ||
|         return nullptr;
 | ||
|       }
 | ||
| 
 | ||
|       gridFrame = GetGridContainerFrame(weakFrameRef.GetFrame());
 | ||
| 
 | ||
|       // Assert the grid properties are present
 | ||
|       MOZ_ASSERT(!gridFrame ||
 | ||
|                   gridFrame->HasProperty(GridColTrackInfo()));
 | ||
|       MOZ_ASSERT(!gridFrame ||
 | ||
|                   gridFrame->HasProperty(GridRowTrackInfo()));
 | ||
|       MOZ_ASSERT(!gridFrame ||
 | ||
|                   gridFrame->HasProperty(GridColumnLineInfo()));
 | ||
|       MOZ_ASSERT(!gridFrame ||
 | ||
|                   gridFrame->HasProperty(GridRowLineInfo()));
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   return gridFrame;
 | ||
| }
 | 
