forked from mirrors/gecko-dev
		
	 2c84305426
			
		
	
	
		2c84305426
		
	
	
	
	
		
			
			D2D has a more efficient path when asked to stroke circles vs. circular paths. This will let us use that. Differential Revision: https://phabricator.services.mozilla.com/D181545
		
			
				
	
	
		
			399 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			399 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| #ifndef MOZILLA_GFX_PATHHELPERS_H_
 | |
| #define MOZILLA_GFX_PATHHELPERS_H_
 | |
| 
 | |
| #include "2D.h"
 | |
| #include "UserData.h"
 | |
| 
 | |
| #include <cmath>
 | |
| 
 | |
| namespace mozilla {
 | |
| namespace gfx {
 | |
| 
 | |
| struct PathOp {
 | |
|   ~PathOp() = default;
 | |
| 
 | |
|   enum OpType {
 | |
|     OP_MOVETO = 0,
 | |
|     OP_LINETO,
 | |
|     OP_BEZIERTO,
 | |
|     OP_QUADRATICBEZIERTO,
 | |
|     OP_ARC,
 | |
|     OP_CLOSE
 | |
|   };
 | |
| 
 | |
|   OpType mType;
 | |
|   Point mP1;
 | |
| #if (!defined(__GNUC__) || __GNUC__ >= 7) && defined(__clang__)
 | |
|   PathOp() {}
 | |
| 
 | |
|   union {
 | |
|     struct {
 | |
|       Point mP2;
 | |
|       Point mP3;
 | |
|     };
 | |
|     struct {
 | |
|       float mRadius;
 | |
|       float mStartAngle;
 | |
|       float mEndAngle;
 | |
|       bool mAntiClockwise;
 | |
|     };
 | |
|   };
 | |
| #else
 | |
|   PathOp() = default;
 | |
| 
 | |
|   Point mP2;
 | |
|   Point mP3;
 | |
|   float mRadius;
 | |
|   float mStartAngle;
 | |
|   float mEndAngle;
 | |
|   bool mAntiClockwise;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| const int32_t sPointCount[] = {1, 1, 3, 2, 0, 0};
 | |
| 
 | |
| // Kappa constant for 90-degree angle
 | |
| const Float kKappaFactor = 0.55191497064665766025f;
 | |
| 
 | |
| // Calculate kappa constant for partial curve. The sign of angle in the
 | |
| // tangent will actually ensure this is negative for a counter clockwise
 | |
| // sweep, so changing signs later isn't needed.
 | |
| inline Float ComputeKappaFactor(Float aAngle) {
 | |
|   return (4.0f / 3.0f) * tanf(aAngle / 4.0f);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Draws a partial arc <= 90 degrees given exact start and end points.
 | |
|  * Assumes that it is continuing from an already specified start point.
 | |
|  */
 | |
| template <typename T>
 | |
| inline void PartialArcToBezier(T* aSink, const Point& aStartOffset,
 | |
|                                const Point& aEndOffset,
 | |
|                                const Matrix& aTransform,
 | |
|                                Float aKappaFactor = kKappaFactor) {
 | |
|   Point cp1 =
 | |
|       aStartOffset + Point(-aStartOffset.y, aStartOffset.x) * aKappaFactor;
 | |
| 
 | |
|   Point cp2 = aEndOffset + Point(aEndOffset.y, -aEndOffset.x) * aKappaFactor;
 | |
| 
 | |
|   aSink->BezierTo(aTransform.TransformPoint(cp1),
 | |
|                   aTransform.TransformPoint(cp2),
 | |
|                   aTransform.TransformPoint(aEndOffset));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Draws an acute arc (<= 90 degrees) given exact start and end points.
 | |
|  * Specialized version avoiding kappa calculation.
 | |
|  */
 | |
| template <typename T>
 | |
| inline void AcuteArcToBezier(T* aSink, const Point& aOrigin,
 | |
|                              const Size& aRadius, const Point& aStartPoint,
 | |
|                              const Point& aEndPoint,
 | |
|                              Float aKappaFactor = kKappaFactor) {
 | |
|   aSink->LineTo(aStartPoint);
 | |
|   if (!aRadius.IsEmpty()) {
 | |
|     Float kappaX = aKappaFactor * aRadius.width / aRadius.height;
 | |
|     Float kappaY = aKappaFactor * aRadius.height / aRadius.width;
 | |
|     Point startOffset = aStartPoint - aOrigin;
 | |
|     Point endOffset = aEndPoint - aOrigin;
 | |
|     aSink->BezierTo(
 | |
|         aStartPoint + Point(-startOffset.y * kappaX, startOffset.x * kappaY),
 | |
|         aEndPoint + Point(endOffset.y * kappaX, -endOffset.x * kappaY),
 | |
|         aEndPoint);
 | |
|   } else if (aEndPoint != aStartPoint) {
 | |
|     aSink->LineTo(aEndPoint);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Draws an acute arc (<= 90 degrees) given exact start and end points.
 | |
|  */
 | |
| template <typename T>
 | |
| inline void AcuteArcToBezier(T* aSink, const Point& aOrigin,
 | |
|                              const Size& aRadius, const Point& aStartPoint,
 | |
|                              const Point& aEndPoint, Float aStartAngle,
 | |
|                              Float aEndAngle) {
 | |
|   AcuteArcToBezier(aSink, aOrigin, aRadius, aStartPoint, aEndPoint,
 | |
|                    ComputeKappaFactor(aEndAngle - aStartAngle));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void ArcToBezier(T* aSink, const Point& aOrigin, const Size& aRadius,
 | |
|                  float aStartAngle, float aEndAngle, bool aAntiClockwise,
 | |
|                  float aRotation = 0.0f, const Matrix& aTransform = Matrix()) {
 | |
|   Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f;
 | |
| 
 | |
|   // Calculate the total arc we're going to sweep.
 | |
|   Float arcSweepLeft = (aEndAngle - aStartAngle) * sweepDirection;
 | |
| 
 | |
|   // Clockwise we always sweep from the smaller to the larger angle, ccw
 | |
|   // it's vice versa.
 | |
|   if (arcSweepLeft < 0) {
 | |
|     // Rerverse sweep is modulo'd into range rather than clamped.
 | |
|     arcSweepLeft = Float(2.0f * M_PI) + fmodf(arcSweepLeft, Float(2.0f * M_PI));
 | |
|     // Recalculate the start angle to land closer to end angle.
 | |
|     aStartAngle = aEndAngle - arcSweepLeft * sweepDirection;
 | |
|   } else if (arcSweepLeft > Float(2.0f * M_PI)) {
 | |
|     // Sweeping more than 2 * pi is a full circle.
 | |
|     arcSweepLeft = Float(2.0f * M_PI);
 | |
|   }
 | |
| 
 | |
|   Float currentStartAngle = aStartAngle;
 | |
|   Point currentStartOffset(cosf(aStartAngle), sinf(aStartAngle));
 | |
|   Matrix transform = Matrix::Scaling(aRadius.width, aRadius.height);
 | |
|   if (aRotation != 0.0f) {
 | |
|     transform *= Matrix::Rotation(aRotation);
 | |
|   }
 | |
|   transform.PostTranslate(aOrigin);
 | |
|   transform *= aTransform;
 | |
|   aSink->LineTo(transform.TransformPoint(currentStartOffset));
 | |
| 
 | |
|   while (arcSweepLeft > 0) {
 | |
|     Float currentEndAngle =
 | |
|         currentStartAngle +
 | |
|         std::min(arcSweepLeft, Float(M_PI / 2.0f)) * sweepDirection;
 | |
|     Point currentEndOffset(cosf(currentEndAngle), sinf(currentEndAngle));
 | |
| 
 | |
|     PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform,
 | |
|                        ComputeKappaFactor(currentEndAngle - currentStartAngle));
 | |
| 
 | |
|     // We guarantee here the current point is the start point of the next
 | |
|     // curve segment.
 | |
|     arcSweepLeft -= Float(M_PI / 2.0f);
 | |
|     currentStartAngle = currentEndAngle;
 | |
|     currentStartOffset = currentEndOffset;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* This is basically the ArcToBezier with the parameters for drawing a circle
 | |
|  * inlined which vastly simplifies it and avoids a bunch of transcedental
 | |
|  * function calls which should make it faster. */
 | |
| template <typename T>
 | |
| void EllipseToBezier(T* aSink, const Point& aOrigin, const Size& aRadius) {
 | |
|   Matrix transform(aRadius.width, 0, 0, aRadius.height, aOrigin.x, aOrigin.y);
 | |
|   Point currentStartOffset(1, 0);
 | |
| 
 | |
|   aSink->LineTo(transform.TransformPoint(currentStartOffset));
 | |
| 
 | |
|   for (int i = 0; i < 4; i++) {
 | |
|     // cos(x+pi/2) == -sin(x)
 | |
|     // sin(x+pi/2) == cos(x)
 | |
|     Point currentEndOffset(-currentStartOffset.y, currentStartOffset.x);
 | |
| 
 | |
|     PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform);
 | |
| 
 | |
|     // We guarantee here the current point is the start point of the next
 | |
|     // curve segment.
 | |
|     currentStartOffset = currentEndOffset;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Appends a path represending a rectangle to the path being built by
 | |
|  * aPathBuilder.
 | |
|  *
 | |
|  * aRect           The rectangle to append.
 | |
|  * aDrawClockwise  If set to true, the path will start at the left of the top
 | |
|  *                 left edge and draw clockwise. If set to false the path will
 | |
|  *                 start at the right of the top left edge and draw counter-
 | |
|  *                 clockwise.
 | |
|  */
 | |
| GFX2D_API void AppendRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
 | |
|                                 bool aDrawClockwise = true);
 | |
| 
 | |
| inline already_AddRefed<Path> MakePathForRect(const DrawTarget& aDrawTarget,
 | |
|                                               const Rect& aRect,
 | |
|                                               bool aDrawClockwise = true) {
 | |
|   RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
 | |
|   AppendRectToPath(builder, aRect, aDrawClockwise);
 | |
|   return builder->Finish();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Appends a path represending a rounded rectangle to the path being built by
 | |
|  * aPathBuilder.
 | |
|  *
 | |
|  * aRect           The rectangle to append.
 | |
|  * aCornerRadii    Contains the radii of the top-left, top-right, bottom-right
 | |
|  *                 and bottom-left corners, in that order.
 | |
|  * aDrawClockwise  If set to true, the path will start at the left of the top
 | |
|  *                 left edge and draw clockwise. If set to false the path will
 | |
|  *                 start at the right of the top left edge and draw counter-
 | |
|  *                 clockwise.
 | |
|  */
 | |
| GFX2D_API void AppendRoundedRectToPath(
 | |
|     PathBuilder* aPathBuilder, const Rect& aRect, const RectCornerRadii& aRadii,
 | |
|     bool aDrawClockwise = true, const Maybe<Matrix>& aTransform = Nothing());
 | |
| 
 | |
| inline already_AddRefed<Path> MakePathForRoundedRect(
 | |
|     const DrawTarget& aDrawTarget, const Rect& aRect,
 | |
|     const RectCornerRadii& aRadii, bool aDrawClockwise = true) {
 | |
|   RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
 | |
|   AppendRoundedRectToPath(builder, aRect, aRadii, aDrawClockwise);
 | |
|   return builder->Finish();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Appends a path represending an ellipse to the path being built by
 | |
|  * aPathBuilder.
 | |
|  *
 | |
|  * The ellipse extends aDimensions.width / 2.0 in the horizontal direction
 | |
|  * from aCenter, and aDimensions.height / 2.0 in the vertical direction.
 | |
|  */
 | |
| GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder,
 | |
|                                    const Point& aCenter,
 | |
|                                    const Size& aDimensions);
 | |
| 
 | |
| inline already_AddRefed<Path> MakePathForEllipse(const DrawTarget& aDrawTarget,
 | |
|                                                  const Point& aCenter,
 | |
|                                                  const Size& aDimensions) {
 | |
|   RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
 | |
|   AppendEllipseToPath(builder, aCenter, aDimensions);
 | |
|   return builder->Finish();
 | |
| }
 | |
| 
 | |
| inline already_AddRefed<Path> MakePathForCircle(const DrawTarget& aDrawTarget,
 | |
|                                                 const Point& aCenter,
 | |
|                                                 float aRadius) {
 | |
|   RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
 | |
|   builder->Arc(aCenter, aRadius, 0.0f, Float(2.0 * M_PI));
 | |
|   builder->Close();
 | |
|   return builder->Finish();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * If aDrawTarget's transform only contains a translation, and if this line is
 | |
|  * a horizontal or vertical line, this function will snap the line's vertices
 | |
|  * to align with the device pixel grid so that stroking the line with a one
 | |
|  * pixel wide stroke will result in a crisp line that is not antialiased over
 | |
|  * two pixels across its width.
 | |
|  *
 | |
|  * @return Returns true if this function snaps aRect's vertices, else returns
 | |
|  *   false.
 | |
|  */
 | |
| GFX2D_API bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
 | |
|                                                  const DrawTarget& aDrawTarget,
 | |
|                                                  Float aLineWidth);
 | |
| 
 | |
| /**
 | |
|  * This function paints each edge of aRect separately, snapping the edges using
 | |
|  * SnapLineToDevicePixelsForStroking. Stroking the edges as separate paths
 | |
|  * helps ensure not only that the stroke spans a single row of device pixels if
 | |
|  * possible, but also that the ends of stroke dashes start and end on device
 | |
|  * pixels too.
 | |
|  */
 | |
| GFX2D_API void StrokeSnappedEdgesOfRect(const Rect& aRect,
 | |
|                                         DrawTarget& aDrawTarget,
 | |
|                                         const ColorPattern& aColor,
 | |
|                                         const StrokeOptions& aStrokeOptions);
 | |
| 
 | |
| /**
 | |
|  * Return the margin, in device space, by which a stroke can extend beyond the
 | |
|  * rendered shape.
 | |
|  * @param  aStrokeOptions The stroke options that the stroke is drawn with.
 | |
|  * @param  aTransform     The user space to device space transform.
 | |
|  * @return                The stroke margin.
 | |
|  */
 | |
| GFX2D_API Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
 | |
|                                   const Matrix& aTransform);
 | |
| 
 | |
| extern UserDataKey sDisablePixelSnapping;
 | |
| 
 | |
| /**
 | |
|  * If aDrawTarget's transform only contains a translation or, if
 | |
|  * aAllowScaleOr90DegreeRotate is true, and/or a scale/90 degree rotation, this
 | |
|  * function will convert aRect to device space and snap it to device pixels.
 | |
|  * This function returns true if aRect is modified, otherwise it returns false.
 | |
|  *
 | |
|  * Note that the snapping is such that filling the rect using a DrawTarget
 | |
|  * which has the identity matrix as its transform will result in crisp edges.
 | |
|  * (That is, aRect will have integer values, aligning its edges between pixel
 | |
|  * boundaries.)  If on the other hand you stroking the rect with an odd valued
 | |
|  * stroke width then the edges of the stroke will be antialiased (assuming an
 | |
|  * AntialiasMode that does antialiasing).
 | |
|  *
 | |
|  * Empty snaps are those which result in a rectangle of 0 area.  If they are
 | |
|  * disallowed, an axis is left unsnapped if the rounding process results in a
 | |
|  * length of 0.
 | |
|  */
 | |
| inline bool UserToDevicePixelSnapped(Rect& aRect, const DrawTarget& aDrawTarget,
 | |
|                                      bool aAllowScaleOr90DegreeRotate = false,
 | |
|                                      bool aAllowEmptySnaps = true) {
 | |
|   if (aDrawTarget.GetUserData(&sDisablePixelSnapping)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Matrix mat = aDrawTarget.GetTransform();
 | |
| 
 | |
|   const Float epsilon = 0.0000001f;
 | |
| #define WITHIN_E(a, b) (fabs((a) - (b)) < epsilon)
 | |
|   if (!aAllowScaleOr90DegreeRotate &&
 | |
|       (!WITHIN_E(mat._11, 1.f) || !WITHIN_E(mat._22, 1.f) ||
 | |
|        !WITHIN_E(mat._12, 0.f) || !WITHIN_E(mat._21, 0.f))) {
 | |
|     // We have non-translation, but only translation is allowed.
 | |
|     return false;
 | |
|   }
 | |
| #undef WITHIN_E
 | |
| 
 | |
|   Point p1 = mat.TransformPoint(aRect.TopLeft());
 | |
|   Point p2 = mat.TransformPoint(aRect.TopRight());
 | |
|   Point p3 = mat.TransformPoint(aRect.BottomRight());
 | |
| 
 | |
|   // Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
 | |
|   // two opposite corners define the entire rectangle. So check if
 | |
|   // the axis-aligned rectangle with opposite corners p1 and p3
 | |
|   // define an axis-aligned rectangle whose other corners are p2 and p4.
 | |
|   // We actually only need to check one of p2 and p4, since an affine
 | |
|   // transform maps parallelograms to parallelograms.
 | |
|   if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) {
 | |
|     Point p1r = p1;
 | |
|     Point p3r = p3;
 | |
|     p1r.Round();
 | |
|     p3r.Round();
 | |
|     if (aAllowEmptySnaps || p1r.x != p3r.x) {
 | |
|       p1.x = p1r.x;
 | |
|       p3.x = p3r.x;
 | |
|     }
 | |
|     if (aAllowEmptySnaps || p1r.y != p3r.y) {
 | |
|       p1.y = p1r.y;
 | |
|       p3.y = p3r.y;
 | |
|     }
 | |
| 
 | |
|     aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y)));
 | |
|     aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(),
 | |
|                       std::max(p1.y, p3.y) - aRect.Y()));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This function has the same behavior as UserToDevicePixelSnapped except that
 | |
|  * aRect is not transformed to device space.
 | |
|  */
 | |
| inline bool MaybeSnapToDevicePixels(Rect& aRect, const DrawTarget& aDrawTarget,
 | |
|                                     bool aAllowScaleOr90DegreeRotate = false,
 | |
|                                     bool aAllowEmptySnaps = true) {
 | |
|   if (UserToDevicePixelSnapped(aRect, aDrawTarget, aAllowScaleOr90DegreeRotate,
 | |
|                                aAllowEmptySnaps)) {
 | |
|     // Since UserToDevicePixelSnapped returned true we know there is no
 | |
|     // rotation/skew in 'mat', so we can just use TransformBounds() here.
 | |
|     Matrix mat = aDrawTarget.GetTransform();
 | |
|     mat.Invert();
 | |
|     aRect = mat.TransformBounds(aRect);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| }  // namespace gfx
 | |
| }  // namespace mozilla
 | |
| 
 | |
| #endif /* MOZILLA_GFX_PATHHELPERS_H_ */
 |