forked from mirrors/gecko-dev
		
	 097b276f5c
			
		
	
	
		097b276f5c
		
	
	
	
	
		
			
			They were workarounds for bugs in GCC 4.9, which is no longer supported. --HG-- extra : rebase_source : b793b4643e1e44199afdb8e8b35f930e02664be8
		
			
				
	
	
		
			428 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			428 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| /* Utilities for hashing. */
 | |
| 
 | |
| /*
 | |
|  * This file exports functions for hashing data down to a uint32_t (a.k.a.
 | |
|  * mozilla::HashNumber), including:
 | |
|  *
 | |
|  *  - HashString    Hash a char* or char16_t/wchar_t* of known or unknown
 | |
|  *                  length.
 | |
|  *
 | |
|  *  - HashBytes     Hash a byte array of known length.
 | |
|  *
 | |
|  *  - HashGeneric   Hash one or more values.  Currently, we support uint32_t,
 | |
|  *                  types which can be implicitly cast to uint32_t, data
 | |
|  *                  pointers, and function pointers.
 | |
|  *
 | |
|  *  - AddToHash     Add one or more values to the given hash.  This supports the
 | |
|  *                  same list of types as HashGeneric.
 | |
|  *
 | |
|  *
 | |
|  * You can chain these functions together to hash complex objects.  For example:
 | |
|  *
 | |
|  *  class ComplexObject
 | |
|  *  {
 | |
|  *    char* mStr;
 | |
|  *    uint32_t mUint1, mUint2;
 | |
|  *    void (*mCallbackFn)();
 | |
|  *
 | |
|  *  public:
 | |
|  *    HashNumber hash()
 | |
|  *    {
 | |
|  *      HashNumber hash = HashString(mStr);
 | |
|  *      hash = AddToHash(hash, mUint1, mUint2);
 | |
|  *      return AddToHash(hash, mCallbackFn);
 | |
|  *    }
 | |
|  *  };
 | |
|  *
 | |
|  * If you want to hash an nsAString or nsACString, use the HashString functions
 | |
|  * in nsHashKeys.h.
 | |
|  */
 | |
| 
 | |
| #ifndef mozilla_HashFunctions_h
 | |
| #define mozilla_HashFunctions_h
 | |
| 
 | |
| #include "mozilla/Assertions.h"
 | |
| #include "mozilla/Attributes.h"
 | |
| #include "mozilla/Char16.h"
 | |
| #include "mozilla/MathAlgorithms.h"
 | |
| #include "mozilla/Types.h"
 | |
| #include "mozilla/WrappingOperations.h"
 | |
| 
 | |
| #include <stdint.h>
 | |
| 
 | |
| namespace mozilla {
 | |
| 
 | |
| using HashNumber = uint32_t;
 | |
| static const uint32_t kHashNumberBits = 32;
 | |
| 
 | |
| /**
 | |
|  * The golden ratio as a 32-bit fixed-point value.
 | |
|  */
 | |
| static const HashNumber kGoldenRatioU32 = 0x9E3779B9U;
 | |
| 
 | |
| /*
 | |
|  * Given a raw hash code, h, return a number that can be used to select a hash
 | |
|  * bucket.
 | |
|  *
 | |
|  * This function aims to produce as uniform an output distribution as possible,
 | |
|  * especially in the most significant (leftmost) bits, even though the input
 | |
|  * distribution may be highly nonrandom, given the constraints that this must
 | |
|  * be deterministic and quick to compute.
 | |
|  *
 | |
|  * Since the leftmost bits of the result are best, the hash bucket index is
 | |
|  * computed by doing ScrambleHashCode(h) / (2^32/N) or the equivalent
 | |
|  * right-shift, not ScrambleHashCode(h) % N or the equivalent bit-mask.
 | |
|  *
 | |
|  * FIXME: OrderedHashTable uses a bit-mask; see bug 775896.
 | |
|  */
 | |
| constexpr HashNumber
 | |
| ScrambleHashCode(HashNumber h)
 | |
| {
 | |
|   /*
 | |
|    * Simply returning h would not cause any hash tables to produce wrong
 | |
|    * answers. But it can produce pathologically bad performance: The caller
 | |
|    * right-shifts the result, keeping only the highest bits. The high bits of
 | |
|    * hash codes are very often completely entropy-free. (So are the lowest
 | |
|    * bits.)
 | |
|    *
 | |
|    * So we use Fibonacci hashing, as described in Knuth, The Art of Computer
 | |
|    * Programming, 6.4. This mixes all the bits of the input hash code h.
 | |
|    *
 | |
|    * The value of goldenRatio is taken from the hex expansion of the golden
 | |
|    * ratio, which starts 1.9E3779B9.... This value is especially good if
 | |
|    * values with consecutive hash codes are stored in a hash table; see Knuth
 | |
|    * for details.
 | |
|    */
 | |
|   return mozilla::WrappingMultiply(h, kGoldenRatioU32);
 | |
| }
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW
 | |
| constexpr HashNumber
 | |
| RotateLeft5(HashNumber aValue)
 | |
| {
 | |
|   return (aValue << 5) | (aValue >> 27);
 | |
| }
 | |
| 
 | |
| constexpr HashNumber
 | |
| AddU32ToHash(HashNumber aHash, uint32_t aValue)
 | |
| {
 | |
|   /*
 | |
|    * This is the meat of all our hash routines.  This hash function is not
 | |
|    * particularly sophisticated, but it seems to work well for our mostly
 | |
|    * plain-text inputs.  Implementation notes follow.
 | |
|    *
 | |
|    * Our use of the golden ratio here is arbitrary; we could pick almost any
 | |
|    * number which:
 | |
|    *
 | |
|    *  * is odd (because otherwise, all our hash values will be even)
 | |
|    *
 | |
|    *  * has a reasonably-even mix of 1's and 0's (consider the extreme case
 | |
|    *    where we multiply by 0x3 or 0xeffffff -- this will not produce good
 | |
|    *    mixing across all bits of the hash).
 | |
|    *
 | |
|    * The rotation length of 5 is also arbitrary, although an odd number is again
 | |
|    * preferable so our hash explores the whole universe of possible rotations.
 | |
|    *
 | |
|    * Finally, we multiply by the golden ratio *after* xor'ing, not before.
 | |
|    * Otherwise, if |aHash| is 0 (as it often is for the beginning of a
 | |
|    * message), the expression
 | |
|    *
 | |
|    *   mozilla::WrappingMultiply(kGoldenRatioU32, RotateLeft5(aHash))
 | |
|    *   |xor|
 | |
|    *   aValue
 | |
|    *
 | |
|    * evaluates to |aValue|.
 | |
|    *
 | |
|    * (Number-theoretic aside: Because any odd number |m| is relatively prime to
 | |
|    * our modulus (2**32), the list
 | |
|    *
 | |
|    *    [x * m (mod 2**32) for 0 <= x < 2**32]
 | |
|    *
 | |
|    * has no duplicate elements.  This means that multiplying by |m| does not
 | |
|    * cause us to skip any possible hash values.
 | |
|    *
 | |
|    * It's also nice if |m| has large-ish order mod 2**32 -- that is, if the
 | |
|    * smallest k such that m**k == 1 (mod 2**32) is large -- so we can safely
 | |
|    * multiply our hash value by |m| a few times without negating the
 | |
|    * multiplicative effect.  Our golden ratio constant has order 2**29, which is
 | |
|    * more than enough for our purposes.)
 | |
|    */
 | |
|   return mozilla::WrappingMultiply(kGoldenRatioU32,
 | |
|                                    RotateLeft5(aHash) ^ aValue);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter.
 | |
|  */
 | |
| template<size_t PtrSize>
 | |
| constexpr HashNumber
 | |
| AddUintptrToHash(HashNumber aHash, uintptr_t aValue)
 | |
| {
 | |
|   return AddU32ToHash(aHash, static_cast<uint32_t>(aValue));
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline HashNumber
 | |
| AddUintptrToHash<8>(HashNumber aHash, uintptr_t aValue)
 | |
| {
 | |
|   uint32_t v1 = static_cast<uint32_t>(aValue);
 | |
|   uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(aValue) >> 32);
 | |
|   return AddU32ToHash(AddU32ToHash(aHash, v1), v2);
 | |
| }
 | |
| 
 | |
| } /* namespace detail */
 | |
| 
 | |
| /**
 | |
|  * AddToHash takes a hash and some values and returns a new hash based on the
 | |
|  * inputs.
 | |
|  *
 | |
|  * Currently, we support hashing uint32_t's, values which we can implicitly
 | |
|  * convert to uint32_t, data pointers, and function pointers.
 | |
|  */
 | |
| template<typename T,
 | |
|          bool TypeIsNotIntegral = !mozilla::IsIntegral<T>::value,
 | |
|          typename U = typename mozilla::EnableIf<TypeIsNotIntegral>::Type>
 | |
| MOZ_MUST_USE inline HashNumber
 | |
| AddToHash(HashNumber aHash, T aA)
 | |
| {
 | |
|   /*
 | |
|    * Try to convert |A| to uint32_t implicitly.  If this works, great.  If not,
 | |
|    * we'll error out.
 | |
|    */
 | |
|   return detail::AddU32ToHash(aHash, aA);
 | |
| }
 | |
| 
 | |
| template<typename A>
 | |
| MOZ_MUST_USE inline HashNumber
 | |
| AddToHash(HashNumber aHash, A* aA)
 | |
| {
 | |
|   /*
 | |
|    * You might think this function should just take a void*.  But then we'd only
 | |
|    * catch data pointers and couldn't handle function pointers.
 | |
|    */
 | |
| 
 | |
|   static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!");
 | |
| 
 | |
|   return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA));
 | |
| }
 | |
| 
 | |
| // We use AddUintptrToHash() for hashing all integral types.  8-byte integral types
 | |
| // are treated the same as 64-bit pointers, and smaller integral types are first
 | |
| // implicitly converted to 32 bits and then passed to AddUintptrToHash() to be hashed.
 | |
| template<typename T,
 | |
|          typename U = typename mozilla::EnableIf<mozilla::IsIntegral<T>::value>::Type>
 | |
| MOZ_MUST_USE constexpr HashNumber
 | |
| AddToHash(HashNumber aHash, T aA)
 | |
| {
 | |
|   return detail::AddUintptrToHash<sizeof(T)>(aHash, aA);
 | |
| }
 | |
| 
 | |
| template<typename A, typename... Args>
 | |
| MOZ_MUST_USE HashNumber
 | |
| AddToHash(HashNumber aHash, A aArg, Args... aArgs)
 | |
| {
 | |
|   return AddToHash(AddToHash(aHash, aArg), aArgs...);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The HashGeneric class of functions let you hash one or more values.
 | |
|  *
 | |
|  * If you want to hash together two values x and y, calling HashGeneric(x, y) is
 | |
|  * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes
 | |
|  * that x has already been hashed.
 | |
|  */
 | |
| template<typename... Args>
 | |
| MOZ_MUST_USE inline HashNumber
 | |
| HashGeneric(Args... aArgs)
 | |
| {
 | |
|   return AddToHash(0, aArgs...);
 | |
| }
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| template<typename T>
 | |
| constexpr HashNumber
 | |
| HashUntilZero(const T* aStr)
 | |
| {
 | |
|   HashNumber hash = 0;
 | |
|   for (; T c = *aStr; aStr++) {
 | |
|     hash = AddToHash(hash, c);
 | |
|   }
 | |
|   return hash;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| HashNumber
 | |
| HashKnownLength(const T* aStr, size_t aLength)
 | |
| {
 | |
|   HashNumber hash = 0;
 | |
|   for (size_t i = 0; i < aLength; i++) {
 | |
|     hash = AddToHash(hash, aStr[i]);
 | |
|   }
 | |
|   return hash;
 | |
| }
 | |
| 
 | |
| } /* namespace detail */
 | |
| 
 | |
| /**
 | |
|  * The HashString overloads below do just what you'd expect.
 | |
|  *
 | |
|  * If you have the string's length, you might as well call the overload which
 | |
|  * includes the length.  It may be marginally faster.
 | |
|  */
 | |
| MOZ_MUST_USE inline HashNumber
 | |
| HashString(const char* aStr)
 | |
| {
 | |
|   return detail::HashUntilZero(reinterpret_cast<const unsigned char*>(aStr));
 | |
| }
 | |
| 
 | |
| MOZ_MUST_USE inline HashNumber
 | |
| HashString(const char* aStr, size_t aLength)
 | |
| {
 | |
|   return detail::HashKnownLength(reinterpret_cast<const unsigned char*>(aStr), aLength);
 | |
| }
 | |
| 
 | |
| MOZ_MUST_USE
 | |
| inline HashNumber
 | |
| HashString(const unsigned char* aStr, size_t aLength)
 | |
| {
 | |
|   return detail::HashKnownLength(aStr, aLength);
 | |
| }
 | |
| 
 | |
| // You may need to use the
 | |
| // MOZ_{PUSH,POP}_DISABLE_INTEGRAL_CONSTANT_OVERFLOW_WARNING macros if you use
 | |
| // this function. See the comment on those macros' definitions for more detail.
 | |
| MOZ_MUST_USE constexpr HashNumber
 | |
| HashString(const char16_t* aStr)
 | |
| {
 | |
|   return detail::HashUntilZero(aStr);
 | |
| }
 | |
| 
 | |
| MOZ_MUST_USE inline HashNumber
 | |
| HashString(const char16_t* aStr, size_t aLength)
 | |
| {
 | |
|   return detail::HashKnownLength(aStr, aLength);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On Windows, wchar_t is not the same as char16_t, even though it's
 | |
|  * the same width!
 | |
|  */
 | |
| #ifdef WIN32
 | |
| MOZ_MUST_USE inline HashNumber
 | |
| HashString(const wchar_t* aStr)
 | |
| {
 | |
|   return detail::HashUntilZero(aStr);
 | |
| }
 | |
| 
 | |
| MOZ_MUST_USE inline HashNumber
 | |
| HashString(const wchar_t* aStr, size_t aLength)
 | |
| {
 | |
|   return detail::HashKnownLength(aStr, aLength);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Hash some number of bytes.
 | |
|  *
 | |
|  * This hash walks word-by-word, rather than byte-by-byte, so you won't get the
 | |
|  * same result out of HashBytes as you would out of HashString.
 | |
|  */
 | |
| MOZ_MUST_USE extern MFBT_API HashNumber
 | |
| HashBytes(const void* bytes, size_t aLength);
 | |
| 
 | |
| /**
 | |
|  * A pseudorandom function mapping 32-bit integers to 32-bit integers.
 | |
|  *
 | |
|  * This is for when you're feeding private data (like pointer values or credit
 | |
|  * card numbers) to a non-crypto hash function (like HashBytes) and then using
 | |
|  * the hash code for something that untrusted parties could observe (like a JS
 | |
|  * Map). Plug in a HashCodeScrambler before that last step to avoid leaking the
 | |
|  * private data.
 | |
|  *
 | |
|  * By itself, this does not prevent hash-flooding DoS attacks, because an
 | |
|  * attacker can still generate many values with exactly equal hash codes by
 | |
|  * attacking the non-crypto hash function alone. Equal hash codes will, of
 | |
|  * course, still be equal however much you scramble them.
 | |
|  *
 | |
|  * The algorithm is SipHash-1-3. See <https://131002.net/siphash/>.
 | |
|  */
 | |
| class HashCodeScrambler
 | |
| {
 | |
|   struct SipHasher;
 | |
| 
 | |
|   uint64_t mK0, mK1;
 | |
| 
 | |
| public:
 | |
|   /** Creates a new scrambler with the given 128-bit key. */
 | |
|   constexpr HashCodeScrambler(uint64_t aK0, uint64_t aK1) : mK0(aK0), mK1(aK1) {}
 | |
| 
 | |
|   /**
 | |
|    * Scramble a hash code. Always produces the same result for the same
 | |
|    * combination of key and hash code.
 | |
|    */
 | |
|   HashNumber scramble(HashNumber aHashCode) const
 | |
|   {
 | |
|     SipHasher hasher(mK0, mK1);
 | |
|     return HashNumber(hasher.sipHash(aHashCode));
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   struct SipHasher
 | |
|   {
 | |
|     SipHasher(uint64_t aK0, uint64_t aK1)
 | |
|     {
 | |
|       // 1. Initialization.
 | |
|       mV0 = aK0 ^ UINT64_C(0x736f6d6570736575);
 | |
|       mV1 = aK1 ^ UINT64_C(0x646f72616e646f6d);
 | |
|       mV2 = aK0 ^ UINT64_C(0x6c7967656e657261);
 | |
|       mV3 = aK1 ^ UINT64_C(0x7465646279746573);
 | |
|     }
 | |
| 
 | |
|     uint64_t sipHash(uint64_t aM)
 | |
|     {
 | |
|       // 2. Compression.
 | |
|       mV3 ^= aM;
 | |
|       sipRound();
 | |
|       mV0 ^= aM;
 | |
| 
 | |
|       // 3. Finalization.
 | |
|       mV2 ^= 0xff;
 | |
|       for (int i = 0; i < 3; i++)
 | |
|         sipRound();
 | |
|       return mV0 ^ mV1 ^ mV2 ^ mV3;
 | |
|     }
 | |
| 
 | |
|     void sipRound()
 | |
|     {
 | |
|       mV0 = WrappingAdd(mV0, mV1);
 | |
|       mV1 = RotateLeft(mV1, 13);
 | |
|       mV1 ^= mV0;
 | |
|       mV0 = RotateLeft(mV0, 32);
 | |
|       mV2 = WrappingAdd(mV2, mV3);
 | |
|       mV3 = RotateLeft(mV3, 16);
 | |
|       mV3 ^= mV2;
 | |
|       mV0 = WrappingAdd(mV0, mV3);
 | |
|       mV3 = RotateLeft(mV3, 21);
 | |
|       mV3 ^= mV0;
 | |
|       mV2 = WrappingAdd(mV2, mV1);
 | |
|       mV1 = RotateLeft(mV1, 17);
 | |
|       mV1 ^= mV2;
 | |
|       mV2 = RotateLeft(mV2, 32);
 | |
|     }
 | |
| 
 | |
|     uint64_t mV0, mV1, mV2, mV3;
 | |
|   };
 | |
| };
 | |
| 
 | |
| } /* namespace mozilla */
 | |
| 
 | |
| #endif /* mozilla_HashFunctions_h */
 |